
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Computer Graphics and Interaction

Master’s esis

Data Structures for Interpolation of Illumination with
Radiance and Irradiance Caching

Bc. Ondřej Karlík

Supervisor: Ing. Vlastimil Havran, Ph.D.

Study Programme: Open Informatics

Field of Study: Computer Graphics and Interaction

May 13, 2011

iv

Aknowledgements

I would like to thank Vlastimil Havran for supervising and correcting this thesis, and for his helpful
ideas, cjxǭǱǫǫ for the chess pieces model, Jiří “Biolit” Friml for providing the Diffuse interior model, and
Ludvík “Rawalanche” Koutný for making the Glossy interior model and testing the irradiance caching
algorithm. Finally, I would like to thank my family and friends for their support.

v

Declaration

I hereby declare that I have completed this thesis independently and that I have listed all the literature
and publications used.
I have no objection to usage of this work in compliance with the act §60 Zákon č. 121/2000Sb. (copyright
law), and with the rights connected with the copyright act including the changes in the act.

Prague, 13. 5. 2011 .

Abstract

Irradiance and radiance caching are important algorithms for solving the light transport problem in re-
alistic image synthesis. ey both require geometric search data structures for efficient rendering. Our
goal was to improve the caching algorithms by improving these data structures.

We have implemented 6 different data structures for irradiance caching, 2 previously used and 4 newly
adapted to the problem. Our testing showed that multiple-reference data structures offer the best traversal
performance at the cost of higher memory consumption.

For interpolation on glossy surfaces we have implemented the spatial directional radiance caching. Instead
of modifying its data structures we have created a novel radiance caching algorithm by merging its spatial
and directional interpolation phases, creating the uniíed radiance cache.

Abstrakt

Irradiance a radiance caching jsou důležité algoritmy používané pro řešení problému přenosu světla v re-
alistické syntéze obrazu. Oba algoritmy potřebují k efektivní činnosti datové struktury pro geometrické
vyhledávání. Našim cílem bylo vylepšit tyto algoritmy vylepšením jejich datových struktur.

Implementovali jsme celkem 6 různých datových struktur pro irradiance caching (2 standardně používané
a 4 které jsme adaptovali pro použití pro tento problém). Naše měření ukázalo, že struktury založené na
duplikování záznamů umožňují nejrychlejší vyhledávání za cenu vysoké spotřeby paměti.

Pro interpolaci osvětlení lesklých povrchů jsme naimplementovali algoritmus spatial directional radiance
caching. Místo modiëkace jeho datových struktur jsme pak vytvořili nový algoritmus typu radiance
caching spojující prostorovou a směrovou fázi interpolace – uniíed radiance cache.

vi

Contents

1 Introduction 1

2 Basics of light transport and global illumination 3
2.1 Radiometric quantities . 3
2.2 Bidirectional reìectance distribution function . 5

2.2.1 BRDF properties . 6
2.2.2 BRDF examples . 6
2.2.3 BRDF generalizations . 7

2.3 Rendering equation . 8
2.4 Solving the rendering equation . 9

2.4.1 Ray casting . 9
2.4.2 Monte Carlo integration . 10
2.4.3 Monte Carlo path tracing . 13
2.4.4 Photon mapping . 15

3 Irradiance and radiance caching 18
3.1 Irradiance caching . 18

3.1.1 Record creation . 19
3.1.2 Interpolation . 20
3.1.3 Irradiance gradients . 21
3.1.4 Two-pass rendering . 23
3.1.5 Algorithm improvements . 24
3.1.6 Integrating irradiance caching into complex global illumination solution 26

3.2 Radiance caching algorithms . 27
3.2.1 Spherical harmonics radiance caching . 27
3.2.2 Spatial directional radiance caching . 28

4 Geometric searching 31
4.1 Problem formulation . 31
4.2 Space subdivisions . 33

4.2.1 Uniform grid . 33
4.2.2 Octree . 33
4.2.3 Kd-tree . 34

4.3 Handling non-point data . 35

vii

CONTENTS viii

5 Data structures for irradiance caching 37
5.1 Ward’s octree . 38
5.2 Multiple-reference octree . 39
5.3 Multiple-reference kd-tree . 40

5.3.1 Split position heuristic . 40
5.3.2 Tree updates . 41

5.4 Point kd-tree . 42
5.5 Bounding volume hierarchy . 43
5.6 Dual space kd-tree . 44

6 Uniíed radiance caching 46
6.1 Uniëed radiance caching overview . 46
6.2 Radiance samples interpolation . 47
6.3 e directional mapping problem . 49
6.4 Samples storage . 51
6.5 Ray length heuristic . 51

7 Implementation 52
7.1 Corona framework architecture overview . 52

7.1.1 Rendering core interface (CoronaCore) . 52
7.1.2 3ds Max plug-in integration (CoronaMax and CoronaMaxUtils) 53
7.1.3 Standalone renderer (CoronaStandalone) . 54

7.2 Corona rendering core . 55
7.2.1 Scene and settings . 55
7.2.2 Lighting solvers . 57
7.2.3 Rendering workìow . 58
7.2.4 Ray casting engine . 60

7.3 Irradiance and radiance caching in Corona . 61
7.3.1 Irradiance caching implementation . 61
7.3.2 Radiance caching implementation . 63

8 Results 65
8.1 Testing methodology . 65
8.2 Irradiance caching tests . 66

8.2.1 Testing scenes . 67
8.2.2 Kd-trees leaf sizes . 68
8.2.3 Multiple-reference kd-tree and BVH build heuristics 69
8.2.4 Nearest neighbour count for the point kd-tree 70
8.2.5 Overall data structures comparison . 71

8.3 Radiance caching tests . 73
8.3.1 Testing scenes . 74
8.3.2 Radiance caching results . 75
8.3.3 Visual comparison of radiance caching algorithms 76

9 Conclusion 80

CONTENTS ix

Bibliography 87

A List of abbreviations 88

B Test scenes gallery 90

C DVD Content 96

List of Figures

2.1 Geometry for the deënition of radiance . 4
2.2 Geometry for the deëniton of BRDF . 5
2.3 BRDF examples . 7
2.4 Image artefacts from different GI algorithms . 9
2.5 Different random sampling methods . 11
2.6 Different PDFs for Monte Carlo importance sampling 12
2.7 Monte Carlo path tracing . 14
2.8 Monte Carlo path tracing with direct lighting . 15
2.9 Photon mapping . 17
2.10 Photon mapping with and without ënal gathering . 17

3.1 Irradiance caching . 19
3.2 e split sphere model scene . 21
3.3 Irradiance caching precomputation . 23
3.4 Irradiance caching near a geometry detail . 24
3.5 Missed geometry during the hemisphere sampling . 25
3.6 Neighbour clamping . 26
3.7 Spatial directional radiance caching . 30

4.1 Different geometric searching queries examples . 32
4.2 Different space subdivisions . 34
4.3 Sliding midpoint . 35
4.4 Bounding volume hierarchy example . 36

5.1 Multiple-reference octree insertion recursion stopping criterion improvement 39
5.2 Multiple-reference kd-tree tight ball bounding boxes 41
5.3 Multiple-reference kd-tree tight ball bounding box computation 42

6.1 Uniëed radiance caching . 47
6.2 Division of the sphere into two domains . 50
6.3 Mapping of directions in 3D to a plane in 2D . 50
6.4 Ray lengths heuristic . 51

7.1 3ds Max viewport visualizator . 53
7.2 Light tracing . 58
7.3 Integrators implemented in Corona . 60

x

LIST OF FIGURES xi

8.1 Scenes for irradiance caching tests . 67
8.2 Impact of k on k-NN-search based IC interpolation 70
8.3 Top-down view of the Power sockets scene . 73
8.4 Uniëed radiance caching ray lengths heuristic effect 74
8.5 Scenes for radiance caching tests . 75
8.6 Radiance caching details in Chessboard and Computer case scenes 78
8.7 Radiance caching detail in Stanford dragon and Components plate scenes 79

B.1 Diffuse interior scene . 90
B.2 Conference scene . 91
B.3 Sibenik cathedral scene . 91
B.4 Power sockets scene . 92
B.5 Sponza atrium scene . 92
B.6 Computer case scene . 93
B.7 Components plate scene . 94
B.8 Stanford dragon scene . 94
B.9 Glossy interior scene . 95
B.10 Chessboard scene . 95

List of Tables

8.1 Testing PC conëguration . 65
8.2 Compiler conëguration for testing . 66
8.3 Irradiance caching testing scenes statistics . 68
8.4 Effects of different point kd-tree leaf sizes . 68
8.5 Effect of different dual space kd-tree leaf sizes . 69
8.6 Experimental results for data structure heuristics . 69
8.7 Point kd-tree statistics for k-NN queries with different k 70
8.8 Overall comparison of irradiance caching data structures 72
8.9 Results of radiance caching tests . 77

xii

Chapter 1

Introduction

Realistic image synthesis a very important ëeld of computer graphics. It gained prominence in the last
two decades, as the exponential growth in computer power allowed artists to create artiëcial images (ren-
ders) indistinguishable from real world photographs at ërst sight. What was once only a research interest
of a small group of scientists is now a multi-billion dollar industry producing countless pictures and ani-
mations every day, which are used in entertainment, advertising, architecture, design, education, science
and many other areas.

Main task of a rendering software is to produce realistically looking image from scene description created
by the artist. is is achieved by simulating the light energy transport through the scene from light
sources into the observer’s eye as it would happen in real life. To perform this simulation, image synthesis
combines several disciplines: physics, used for describing the light behaviour in real world, mathematics,
used for solving obtained light transport equations and ënally computer science, which provides robust
and efficient implementation of solver algorithms. e physics of the light transport is solved problem,
as it is described by the rendering equation. e research is instead focused on algorithms used for solving
the light transport problem, because even after the tremendous advancements we saw in last years these
algorithms still cannot produce satisfactory results in real time¹.

Algorithms solving the rendering equation are usually called global illumination (GI) algorithms. is
name stems from the fact that when rendering an image with the global illumination, single surface
is lit by the entire scene via the diffuse inter-reîections, not just by a few localized direct light sources.
Traditional shading algorithms are sometimes referred to as local illumination in contrast to global illu-
mination. Some of the most well-known global illumination algorithms are Monte Carlo path tracing,
photon mapping, radiosity, and irradiance caching.

It is the last algorithm, irradiance caching, that is the main focus of this thesis. It works by precomputing
the illumination only in few sparse points in the scene, storing them in an acceleration data structure
and then searching and interpolating between them to get the illumination in ënal image. Because this
algorithm is simple, robust, produces high quality results fast, and can be combined well with other global
illumination methods, it is used by many commercial and free renderers. Its main disadvantage is that
it cannot handle other materials than perfectly diffuse. Extensions to non-diffuse materials are however
possible; they are collectively called radiance caching.

¹Real time in this context means frame rate of 25 frames per second or higher.

1

CHAPTER 1. INTRODUCTION 2

Because the irradiance caching algorithm received much attention over the years and many efficient and
highly optimized implementations exist, we ënd it surprising that a simple multiple reference octree is
still considered standard data structure for accelerating irradiance cache queries. Because we feel that the
algorithm has reserves in this area we implement various geometric searching acceleration data structures
and integrate them into the same irradiance caching algorithm so that their performance can be directly
compared. We also explore different possibilities of data storage in radiance caching, which result in new
radiance caching algorithm formulation.

Thesis structure

e rest of this thesis is organized as follows: in Chapter 2 we introduce basic radiometric quantities, the
bidirectional reîectance distribution function (BRDF) and the rendering equation as a way to describe the
light transport, and standard algorithms for solving it. In Chapter 3 we give detailed description of the
irradiance caching algorithm for accelerating GI computation on diffuse surfaces. We also introduce ra-
diance caching as a way to extend the original algorithm to glossy surfaces. Next, in Chapter 4 we describe
the problem of geometric searching. After brief theoretical introduction we discuss some commonly used
acceleration data structures for search in low dimensional space, such as octrees and kd-trees. en we
describe possible modiëcations to allow queries over non-point data.

In Chapter 5 we postulate the search problem in irradiance cache interpolation and then analyse our
examined data structures. Similarly in Chapter 6 we analyse the search problem for radiance cache in-
terpolation and derive new radiance caching algorithm. In Chapter 7 we describe the implementation of
data structures from Chapters 5 and 6 in our ray tracing system Corona. Finally, in Chapter 8 we present
experimental results of all implemented data structures in our set of 10 test scenes and discuss them. We
conclude in Chapter 9 by summing up our ëndings and suggesting possible directions of future research.

Chapter 2

Basics of light transport and global
illumination

To produce realistically looking images we need precise mathematical description of the light transport.
We present a way to describe the light interaction in a scene with single integral equation, called rendering
equation. is is the standard solution presented by many textbooks [SM03, DBB06, PH10]. To obtain
this reasonably simple model, for which efficient solutions exist, we ërst have to make few simpliëcations.

In real world, light consists of subatomic particles, photons, which behave both as waves and particles
(this phenomenon is called the wave-particle duality). We choose to ignore the wave behaviour, which
creates such effects as interference, diffraction, and polarization. We also do not take into account partic-
ipating environments which can absorb or scatter photons on the way, instead we assume that photons
travel through the environment unchanged in a straight line and that they interact only upon hitting a
scene surface. It is worth mentioning that it is possible to simulate even these advanced light phenom-
ena [CPP+05, JMLH01, WTP01].

e number of photons in real life situations is so high¹ that the discrete nature of light cannot be ob-
served in vast majority of situations. Because of that we can describe light by continuous quantities. is
description is simpler and more elegant. It is however used only conceptually for deriving needed for-
mulas. To solve them using a computer we need to discretize the light representation again. Because we
cannot afford to simulate each photon individually, the discretization is much coarser. Instead of photons
we use rays, idealized narrow beams of light with energy much higher energy than in physical reality.

2.1 Radiometric quantities

Before we can start describing the light transport, we need to deëne physical quantities we will use. ere
are two ways to describe the problem – with radiometric and photometric quantities. e difference is that
while radiometric quantities are based on physical measurements of light, photometric ones are based on
its subjective perception by human visual system. We use the former system, since photometric qualities
can be easily derived from corresponding radiometric terms.

¹For example, single 100 watt light bulb produces approximately 1020 photons per second [SM03].

3

CHAPTER 2. BASICS OF LIGHT TRANSPORT AND GLOBAL ILLUMINATION 4

Basic radiometric quantity is the radiant energy (Q). Electromagnetic radiation consists of photons, each
of which has associated energy proportional to its frequency. Radiant energy is the sum of all photon
energies Epi in the area of interest:

Q = ∑Epi .

We are typically more interested in the radiant îux (Φ). It corresponds to power and is expressed inWatts
(W). It measures how much energy ìows from or to a surface per unit of time:

Φ =
dQ
d t

.

If we express the radiant ìux per unit area, we get either irradiance (E) or radiosity (B), also called
radiant exitance. Difference between the two is that irradiance is the incident radiant ìux per unit area
and radiosity is the exitant radiant ìux per unit area. Irradiance at a surface point x is denoted E(x),
radiosity at x is B(x). ey are both expressed as W/m2 and computed as:

E =
dΦ
dA

, B =
dΦ
dA

.

Final and the most important quantity is the radiance (L). It is the radiant ìux per unit projected area
per unit solid angle:

L =
d2 Φ

dω⃗ dA cosθ
=

dE
dω⃗ cosθ

. (2.1)

e cosine term arises from perpendicular projection of the differential area where wemeasure the radiance
(as we are almost exclusively interested in radiance with respect to a surface), as shown in Figure 2.1.
Radiance at surface point x in direction ω⃗ is denoted L(x, ω⃗). We can also use L(x← ω⃗) and L(x→ ω⃗)
to distinguish between incident and exitant radiance, respectively.

x

ω

N
x

θ

Figure 2.1: Geometry for the deínition of radiance. Radiance L(x, ω⃗) is deíned with respect to the differential
surface dx and differential solid angle d ω⃗ .

Radiance is the most important quantity in global illumination computation, because it is the one quan-
tity that sensors like human eye or camera chip register. Moreover, radiance values are constant along
straight lines in non-participating media. is law is the key to formulating the rendering equation.

We can express all other quantities as integrals of radiance. Irradiance at surface x is an integral of inci-
dent radiance multiplied by the cosine over the hemisphere of directions Ω (Equation 2.2). Radiosity is
computed the same way, only with incident radiance replaced by exitant (Equation 2.3). Radiant ìux

CHAPTER 2. BASICS OF LIGHT TRANSPORT AND GLOBAL ILLUMINATION 5

is an integral of irradiance or radiosity over a surface (Equation 2.4) and radiant energy is an integral of
radiant ìux over time (Equation 2.5):

E(x) =
∫

Ω
L(x← ω⃗)cosθ dω⃗, (2.2)

B(x) =
∫

Ω
L(x→ ω⃗)cosθ dω⃗, (2.3)

Φ =
∫

A
E(x) dA =

∫
A

∫
Ω

L(x, ω⃗)cosθ dω⃗ dA, (2.4)

Q =
∫

T
Φ(t) dt =

∫
T

∫
A

∫
Ω

L(x, ω⃗)cosθ dω⃗ dA dt. (2.5)

2.2 Bidirectional reflectance distribution function

Next we need to describe the light interaction upon hitting a surface. More precisely, we want to know
reìected radiance distribution given particular incident radiance distribution. is can be described by the
four-dimensional bidirectional reîectance distribution function (BRDF).is function takes as argument an
incident (ω⃗i) and exitant (ω⃗o) direction on hemisphere around surface point x (as illustrated in Figure 2.2)
and returns the fraction of irradiance due to the radiance incoming from the incident direction reìected
to the exitant direction:

fr(x, ω⃗i, ω⃗o) =
dL(x→ ω⃗o)

dE(x, ω⃗i)
=

dL(x→ ω⃗o)

Li(x← ω⃗i) cosθi dω⃗i

x

ω
i

ωo

N
x

Figure 2.2: Geometry for the BRDF function – visualization of the hemisphere around point x, and incident
and exitant directions ω⃗i, ω⃗o.

More informally, BRDF can be viewed as function describing probability density that a photon hitting
the surface from direction ω⃗i is reìected to the direction ω⃗o. BRDF is however not a probability density
function (PDF) because it may not integrate to one (the probability that a photon is reìected is lower or
equal to 1 as it can also be absorbed).

CHAPTER 2. BASICS OF LIGHT TRANSPORT AND GLOBAL ILLUMINATION 6

2.2.1 BRDF properties

inking of BRDF as probability density function gives us its several key properties. BRDF, similarly to
PDF, can take any positive value, even approach inënity (as for example Dirac delta function [Dir82]).
PDF always have to integrate to 1, BRDF multiplied by the cosine for any ëxed incident direction have
to integrate to value between 0 and 1. is constraint can be expressed with equation (equation 2.6); It
corresponds to the fact that we permit only realistic materials that obey the law of energy conservation:

∀ω⃗i : 0 ≤
∫

Ω
fr(x, ω⃗i, ω⃗o) cosθo dω⃗o ≤ 1. (2.6)

BRDF is purely material description and as such is not dependent on incident radiance distribution. Its
ënal important property is the Helmholtz reciprocity, which states that swapping the input and output
direction arguments of BRDF do not change its value:

fr(x, ω⃗i, ω⃗o) = fr(x, ω⃗o, ω⃗i). (2.7)

2.2.2 BRDF examples

Simplest example of a BRDF is that of ideal diffuse surface (Figure 2.3a). Such surface, also called Lam-
bertian, reìects any incident light uniformly, independently of incident or exitant direction. e BRDF
value is constant:

fD(x, ω⃗i, ω⃗o) =
ρd

π
, (2.8)

where ρd is the surface diffuse albedo, fraction of incident radiance that is diffusely reìected off the surface.
Clearly 0≤ ρd ≤ 1. is BRDF is frequently encountered in the real world.

Opposite of diffuse surface is the ideal mirror, that is a surface with BRDF producing only ideal specular
reìection (Figure 2.3c). Such BRDF is an instance of the Dirac delta function mentioned in the previous
section: each incident direction has associated only single exitant direction with non-zero BRDF value
(the direction of ideal specular reìection, computed using the well-known law of reîection). Its values
are:

fS(x, ω⃗i, ω⃗o) =

{
+∞ if ω⃗o is the ideal reìection of ω⃗i,
0 otherwise.

Integral of this BRDF multiplied by the cosine is ρs – specular albedo of the surface, i.e. fraction of
incident radiance that is specularly reìected.

We can create a new BRDF as mixture (convex combination) of others, just like we can create a mixture
density from several probability density functions. We can for example create a diffuse BRDF with ideal
specular component as:

fmix = α fD +(1−α) fS; 0 < α < 1.

Another example of such mixture is the extended Phong BRDF (Figure 2.3b) [LW94]. It is a mixture
of diffuse BRDF and imperfect specular one. It is based on traditional Phong reìection model of local

CHAPTER 2. BASICS OF LIGHT TRANSPORT AND GLOBAL ILLUMINATION 7

illumination [Pho75], which is made into a BRDF and modiëed to be physically correct (based on the
rules from previous section):

fr(x, ω⃗i, ω⃗o) =
ρd

π
+

(n+2)
2π

ρs cos(ω⃗o, ω⃗s)
n; ρd +ρs ≤ 1, (2.9)

ω⃗s is the ideal reìection of ω⃗i.

e specular component is the strongest in the direction of ideal reìection and gradually decreases with
increasing deviation from it. Single parameter, specular exponent n describes how rapid this change is and
as a consequence how blurred is the reìection. Value of 1 produces almost diffuse reìection and values
approaching inënity produce almost ideal mirror. Notice the multiplicative term of specular component
which causes the amount of energy specularly reìected to be dependent only on ρs and not on n.

(a) Diffuse BRDF. (b) Glossy Phong BRDF. (c) Ideal mirror BRDF.

Figure 2.3: is scene demonstrates how different BRDFs can alter material appearance. e left sphere has
an ideal diffuse material, middle has highly glossy Phong BRDF and the last one has an ideal mirror material.

Phong BRDF is an example of empirical model – simple model which works well in practice. Other ex-
amples of models falling into this category are Ward [War92b] and Lafortune [LFTG97] BRDFs. ere
is another category of physically-based models, that are based on simulating the light interaction on mi-
crofacets of the surface. Examples include Cook-Torrance [CT81] and Torrance-Sparrow [TS67]. Last
possibility is to physically measure the BRDF and use these values directly [DR05]. Although there
are several difficulties with this method, for example with data acquisition and compression, it seems
promising in the future.

2.2.3 BRDF generalizations

A BRDF can only capture limited range of light interactions with the surface. So far we have only
considered directions on the hemisphere over a surface. In order to describe the refraction of light, we need
to extend the domain to full sphere. Such extended function is called bidirectional scattering distribution
function (BSDF); its refractive component description is called the bidirectional transmittance function. It
employs the Snell law which describes the relation between angle of incidence θ1 and angle of refraction
θ2 using indices of refraction of the two optical media n1 and n2:

sinθ1

sinθ2
=

n2

n1
.

CHAPTER 2. BASICS OF LIGHT TRANSPORT AND GLOBAL ILLUMINATION 8

A BRDF can vary in space, for example on textured objects. is is extremely common in the real
world. Functions describing it have two additional arguments for space parametrization, making them
6-dimensional in total (7-dimensional when also considering the light wavelength as another argument).
ese functions are called bidirectional texture functions (BTF) [FH09] or spatially-varying bidirectional
reîectance distribution functions (SVBRDF) [NRH+77].

We have naturally assumed that once a ray hits surface, it is reìected from the same point. is is however
not always true as there exist materials exhibiting subsurface scattering (SSS) phenomenon. When a ray
hits such material in one point, it is absorbed at ërst, travels randomly inside, and then exits the surface at
another point. is gives the material distinctive “soft” look. is behaviour is mathematically described
by the bidirectional surface scattering reîectance distribution function (BSSRDF) [JMLH01].

2.3 Rendering equation

We can compute exitant radiance from single surface point x in any direction ω⃗o if we know its BRDF
fr(x, ω⃗i, ω⃗o), distribution of incident radiance L(x← ω⃗i) and distribution of surface own radiance
emission Le(x→ ω⃗o) by integrating the product of incident radiance and BRDF and adding the surface
emission. is is called the reîection equation:

L(x→ ω⃗o) = Le(x→ ω⃗o)+
∫

Ω
L(x← ω⃗i) fr(x, ω⃗i, ω⃗o)cosθi dω⃗i. (2.10)

We can however solve this equation only if we know the incident radiance distribution. It is generally
unknown, but because, as we have postulated before, radiance stays constant along straight lines we can
replace the incident radiance with exitant radiance from another surface. is gives us the rendering
equation, as ërst formulated by Kajiya in ǫǳǲǰ [Kaj86]:

L(x→ ω⃗o) = Le(x→ ω⃗o)+
∫

Ω
L(r(x, ω⃗i)→−ω⃗i) fr(x, ω⃗i, ω⃗o)cosθi dω⃗i. (2.11)

r(x, ω⃗i) is the ray-casting function – a function that returns the closest surface from x in direction ω⃗i.
e unknown quantity, L(x, ω⃗o) is present on both sides of the equation, once inside the integral. is
makes the equation very hard to solve.

is formulation is called the hemispherical formulation, because we integrate over all directions on hemi-
sphere around x. It is also possible to integrate over the setA of all surfaces in the scene. e corresponding
area formulation of the rendering equation is:

L(x→ ω⃗o) = Le(x→ ω⃗o)+
∫

A
L(y, y→ x) fr(x, x→ y, ω⃗o)V (x, y)

cosθx cosθy

∥x−y∥2 dAy. (2.12)

e V (x, y) term is called visibility term and is deëned as follows:

V (x, y) =

{
1 if y is visible from x,
0 otherwise.

CHAPTER 2. BASICS OF LIGHT TRANSPORT AND GLOBAL ILLUMINATION 9

2.4 Solving the rendering equation

Computing global illumination in the scene means solving the rendering equation. Because the equation
has no analytical solution in general scene, we must settle for approximate solutions. Such solutions
produce errors which are perceived in the image as artefacts – various splotches, blurred-out details, or
noise (Figure 2.4). Wide variety of algorithms was developed for solving the light transport problem.
ey differ in principle, speed, quality of result, artefacts produced, and other aspects. But before we
can discuss examples of these algorithms, we need to introduce ray casting and Monte Carlo methods as
common elements used by these solvers.

(a)Monte Carlo path tracing. (b) Photon mapping. (c) Irradiance caching.

Figure 2.4: Examples of artefacts created by different GI algorithms. Left image (Monte Carlo path tracing)
shows high-frequency noise. Middle image (photon mapping) exhibits typical low-frequency noise. e last
image (irradiance caching) shows splotches from imperfect interpolation together with overall blurriness of the
GI.

2.4.1 Ray casting

From the realistic image synthesis point of view ray casting is an efficient way to calculate the visibility
terms in the rendering equation. e algorithm was ërst introduced by Appel in ǫǳǰǲ [App68]. In ray
casting, we take a ray (in this context a geometric half-line) and search for its closest intersection with
the scene. Naïve algorithm does this by individually testing the ray for intersection with each object
(primitive) in the scene and returning the closest intersection.

Intersection of the ray with a parametric or implicit surface can be computed by solving a system of
equations. A fairly simple examples for sphere and triangle are given in [SM03]. An example of more
complicated but faster algorithm for triangle intersection is theMöller-Trumbore intersection test [MT97].
One of the advantages of ray casting is that we can use it to visualize any primitive for which we are able
to ënd its intersection with a ray.

In practice it would be too slow to test each ray for intersection with each primitive, as scenes can contain
millions of polygons. Because of this specialized ray casting acceleration data structures are used. ey
store additional data about the spatial distribution of objects to achieved sub-linear expected query times.
An example of such data structure is the kd-tree [MB90, Hav00], which recursively partitions the space
by axis-aligned planes to create analogue to binary search tree in higher dimensions. Bounding volume
hierarchy (BVH) [GS87] is another data structure that works similarly, but partitions primitives instead
of space, creating a hierarchy of their axis-aligned bounding boxes.

CHAPTER 2. BASICS OF LIGHT TRANSPORT AND GLOBAL ILLUMINATION 10

Both BVH and kd-tree have O(log n) expected query time, but there are large variable factors hidden
behind the big-O notation. Overall ray casting performance is dependent on quality of the tree, which
is determined by its build algorithm. Simple approach of creating a balanced tree in terms of number
of primitives or amount of space in each sub-tree works, but much better results are obtained with the
surface area heuristic (SAH) [GS87]. It is simple recursive cost function predicting computational cost of
each sub-tree traversal. It is derived from observation that probability of a random uniformly distributed
ray hitting a convex object is proportional to its surface area. is leads to the SAH formula:

SAH(X) =

{
N ·C i if X is leaf,
C t +SAH(L) S(L)

S(X) +SAH(R) S(R)
S(X) if X is inner node,

where C i and C t are costs of intersecting a primitive and traversing an inner node, L, R are left and right
children of the node, N is number of primitives and S is the surface area of node bounding volume.
e formula estimates cost of traversing leaf node as cost of intersecting all its primitives and cost of
traversing inner node as sum of its children costs multiplied by the probability a ray hits them. e SAH
function is evaluated for multiple possible split positions during each build step and best split is then
selected. Recursion in the SAH function is eliminated by approximating SAH(L) and SAH(R) by leaf
node formula. Using the SAH greatly increases ray casting performance (by orders of magnitude) at cost
of more complicated and slower build [Hav00].

Different example of acceleration data structure is the uniform grid [ISP07]. It is non-recursive non-
adaptive partition of space into set of cells with O(3

√
n) expected query time. Its biggest advantage is

the O(n) build time (compared to O(n log n) time for tree data structures), but its inability to deal with
non-uniform primitives distribution makes it impractical for many scenes [HKH11].

We need two ray casting operations for solving the rendering equation. First is ënding the closest surface
visible from some point x in direction ω⃗ . is operation appears in the hemispherical formulation of
rendering equation (Equation 2.11) as function r. Evaluation of r(x, ω⃗i)means casting a ray with origin
in x and direction of ω⃗ and returning the closest intersection found. e area formulation of rendering
equation (Equation 2.12) features the visibility function V instead of r. Evaluation of V (x, y) involves
casting a shadow ray which originates at x and has direction of y−x. Shadow ray are traced differently – we
are not interested in the closest intersection, but instead in the mere fact if there exists an intersection on
the line segment between x and y. is modiëcation permits more efficient traversal of some acceleration
data structures.

2.4.2 Monte Carlo integration

One apparent problem in evaluation of the rendering equation is the presence of an integral. It is clear
that it cannot be solved analytically for arbitrary scene. We have to resort to an approximation by nu-
merical integration. ere is wide variety of deterministic methods, from simple quadrature rule to more
sophisticated ones [DB08], but instead stochastic Monte Carlo methods [Met87] are used almost exclu-
sively. It is because they are easy to implement, their convergence rate is independent of the integration
domain dimension, and errors produced by them manifest in image as noise, which is not as disturbing
as regular patterns produced by deterministic methods.

CHAPTER 2. BASICS OF LIGHT TRANSPORT AND GLOBAL ILLUMINATION 11

Monte Carlo integration works by evaluating the integrated function using random samples. Imagine we
would like to compute the integral of function f :∫ b

a
f (x) dx.

We need to select N random samples xi over the integration domain. We select them with probability
described by probability density function p(x). Monte Carlo estimator ⟨I⟩ estimating value of the integral
is then simply:

⟨I⟩ = 1
N

N

∑
i=1

f (xi)

p(xi)
.

Variance of the estimator decreases linearly with N. Standard deviation σ decreases at rate
√

N. is
means that to reduce the error in image to half we need to quadruple the number of samples. is is
somewhat unfortunate, as it means that we need a lot of samples to get image without visible errors. Each
sample evaluation typically involves casting a ray, which is generally an expensive operation. ere are
several strategies to increase the rate of convergence. ey all exploit the way we generate the random
samples.

Stratiíed sampling breaks a single integral over whole domain into sum of integrals over a set of sub-
domains: ∫ αn

α1

f (x) dx =
n−1

∑
i=1

∫ αi+1

αi

f (x) dx; αi ≤ αi+1.

Each subdomain is computed with a single sample. All strata should have equal size (with respect to
the underlying PDF). Stratiëed sampling is implemented implicitly by using stratiëed random sampling
(ërst dividing the sampled domain to several sub-domains and then generating single sample for each
one). Expected variance of stratiëed estimator is guaranteed to be lower or in worst case equal to that of
standard one [DBB06, p. 70].

(a) Random points. (b) Stratiíed points. (c) Halton points.

Figure 2.5: A visualization of 900 random samples generated in 2D domain. It is clearly visible that stratiíed
and low discrepancy sampling is superior to simple random sampling in terms of uniformity and clumping
prevention.

e stratiëed sampling is better because it prevents “clumping” of random samples (Figure 2.5). Unfor-
tunately, it has also disadvantages: its optimal number of samples grows exponentially with dimension

CHAPTER 2. BASICS OF LIGHT TRANSPORT AND GLOBAL ILLUMINATION 12

and the number of samples needs to be known in advance, which may cause implementation troubles.
ere are other ways to prevent samples clumping, such as low discrepancy sampling. is method does
not use any random numbers, instead it uses deterministic low discrepancy sequence (sequence that ëlls
the space with samples with minimal clumping). Because no random numbers are used, this method is
called quasi-Monte Carlo. ere are several low discrepancy sequences: Halton (Figure 2.5c) [Hal64],
Hammersley [WLH97], Sobol [BF88] and others.

Another effective way to reduce the variance is to use better PDF for generating samples. is is called
importance sampling. When integrating non-negative function f (x) we would intuitively like to place
more samples where the value of f (x) is high, as these regions inìuence the integral value the most.
Optimal PDF in this sense is:

popt(x) =
f (x)∫ b

a f (x) dx
.

It is easy to show that estimator using this PDF has zero error for any number of samples:

⟨I⟩ = 1
N

N

∑
i=1

f (xi)

popt(xi)
=

1
N

N

∑
i=1

f (xi)
f (xi)∫ b

a f (x) dx

=
1
N

N

∑
i=1

∫ b

a
f (x) dx =

∫ b

a
f (x) dx.

e problem is that to obtain this PDF we would need to know the value of
∫ b

a f (x) dx, which is what we
are trying to compute in the ërst place. We can however still greatly lower the estimator error by using
importance sampling according to terms of integrand which we do know in advance. Our goal is for the
PDF to match the shape of integrand as closely as possible (Figure 2.6). However if we do not have any
knowledge about the integrand shape, it is best to sample with uniform (constant) PDF, as wrong PDF
can actually increase the estimator variance.

f(x)

x

p(x)

(a) No importance sampling (uniform
PDF).

f(x)

x

p(x)

(b) Bad importance sampling.

f(x)

x

p(x)

(c) Goood importance sampling.

Figure 2.6: ree examples of different probability density functions p(x) that can be used for sampling f (x).
Left image shows uniform PDF (no importance sampling). Middle image shows an example of bad PDF that
does not match the shape of f (x) and will increase the variance. e last image shows an example of good PDF
that matches the shape of f (x) very closely and will signiícantly reduce the variance.

CHAPTER 2. BASICS OF LIGHT TRANSPORT AND GLOBAL ILLUMINATION 13

2.4.3 Monte Carlo path tracing

Monte Carlo path tracing is straightforward application of Monte Carlo sampling for solving the render-
ing equation introduced by Kajiya [Kaj86]. It computes GI only for surfaces visible from the camera.
Colour of single sample in image² corresponds to single radiance value L(o, ω⃗a,b), where o is the origin
of camera and ω⃗a,b is the direction of ray from o through point in image plane with coordinates (a,b).
As we have shown previously, this is equal to L(r(o, −ω⃗a,b), −ω⃗a,b). Use of the ray casting function r
means that we ërst cast a primary ray from the camera.

Let us assume that the ray hits a surface point x with associated BRDF fr. Rendering equation states that
the exitant radiance in direction −ω⃗a,b is:

L(x→−ω⃗a,b) = Le(x→−ω⃗a,b)+

∫
Ω

L(r(x, ω⃗i)→−ω⃗i) fr(x, ω⃗i, −ω⃗a,b) cosθi dω⃗i.

Le(x→−ω⃗a,b) is known from the scene description. Monte Carlo estimator for the integral using general
PDF p is:

⟨L(x→−ω⃗a,b)⟩ =
1
N

N

∑
n=1

L(r(x, ω⃗in)→−ω⃗in) fr(x, ω⃗in , −ω⃗a,b)cosθin

p(ω⃗in)
. (2.13)

We can use the importance sampling according to BRDF and cosine terms (assuming reasonable BRDF),
but not according to the radiance term as it is unknown. is gives us estimator:

⟨L(x→−ω⃗a,b)⟩′ = ρ
1
N

N

∑
n=1

L(r(x, ω⃗in)→−ω⃗in) (2.14)

using probability density function

p(ω⃗in) =
fr(x, ω⃗in , −ω⃗a,b)cosθin

ρ
. (2.15)

For each sample we take we need to cast another ray evaluating r(x, ω⃗i) and recursively evaluate the
rendering equation. Obvious problem in this approach is how to terminate the recursion as it would
never end in closed environment on its own. Limiting the depth of recursion to any ëxed number would
cause bias. Better approach is to use Russian roulette. It is stochastic algorithm for terminating path tracing
paths. Suppose we want to compute value of function f (x). Russian roulette estimator generates single
random number α uniformly distributed in interval [0,1] and returns:

⟨IRR⟩=

{
1
P f (x) α ≤ P
0 α > P

P is a constant between 0 and 1. is estimator is unbiased for any valid P. Suitable choice of P is the
total surface albedo ρ . Chance that ray terminates in each bounce is 1−P, chance that the ray survives
n rounds of Russian roulette is Pn. Rays in lower level of recursion are therefore efficiently terminated
without introducing any bias.

²We intentionally avoid the term pixel, because pixel has non-zero area and to get its colour, we have to integrate over it.

CHAPTER 2. BASICS OF LIGHT TRANSPORT AND GLOBAL ILLUMINATION 14

Another problem is the ray branching – if our estimator uses N samples on each recursion level there can
be as many as Nx rays traced at x-th level of recursion, each of which with very small contribution to the
ënal image. We prevent this by using only single random sample in the estimator during the recursion.
is eliminates branching of rays; single continuous path (also called random walk) is created instead as
shown in Figure 2.7. Because of this the method is called path tracing.

Figure 2.7: Random walks generated by the Monte Carlo path tracing algorithm. Several rays are shot from
the camera into the scene. ese rays bounce from surface to surface until they are absorbed or leave the scene.
Only a very small fraction of rays hits the light.

Variance of the path tracing estimator creates large amounts of noise in ënal image. To decrease it,
multiple paths are traced through single pixel. Hundreds to tens of thousands different paths may be
used. Notice that the path needs to hit a light to return non-black colour. is is a problem in scenes
with small bright light sources, because the probability of a path hitting them is very small. Explicit light
sampling is used to deal with this. It splits the illumination integral into a direct and indirect part. Direct
illumination is due to emitted radiance Le incoming directly from other surfaces (lights), indirect is due
to other (reìected) incoming radiance. e indirect part is solved by the recursive Monte Carlo sampling
of hemisphere, we just no longer add the material emission Le to the result. For computing the direct
component we modify the area formulation of rendering equation (Equation 2.12) – we integrate emitted
radiance Le over the area of all light emitting surfaces in the scene:

Ldirect(x→ ω⃗o) =
∫

Alights

Le(y, y→ x) fr(x, x→ y, ω⃗o)V (x,y)
cosθx cosθy

∥x−y∥2 dAy. (2.16)

Monte Carlo estimator for this integral using general PDF p(yi) is:

⟨Ldirect(x→ ω⃗o)⟩ =
1
N

N

∑
i=1

Le(yi, yi→ x) fr(x, x→ yi, ω⃗o)V (x, yi)
cosθx cosθyi
∥x−yi∥2

p(yi)
.

Evaluation of this integral is non-recursive. Because use the visibility function V (x,y) instead of ray
casting function, direct light calculation involves casting shadow rays. By explicitly sampling lights we
get much better convergence. In addition point lights cannot be used without explicit light sampling as

CHAPTER 2. BASICS OF LIGHT TRANSPORT AND GLOBAL ILLUMINATION 15

Figure 2.8: e path tracing algorithm with explicit direct lighting. Any time a ray hits a surface in the
scene we shoot a shadow ray towards the light. Because of that paths no longer have to hit the light to result in
non-zero illumination.

they have no area and therefore cannot be hit during the hemisphere sampling. Path tracing with explicit
light sampling is depicted in Figure 2.8.

Path tracing is simple, unbiased algorithm derived by direct application of the Monte Carlo integration
and Russian roulette to the rendering equation. It does not need any precomputation phase and the only
error it produces is noise in the rendered image, which can be lowered by adding more samples. Usually,
several thousand paths need to be traced for a single pixel to get rid of the noise. e random walk
which the algorithm produces mimics how photons bounce and get absorbed through the scene, with the
difference that path tracing random walk starts at camera and may hit a light, but photons are emitted at
lights and may hit the camera.

2.4.4 Photon mapping

Another approach to solving the rendering equation is the photon mapping algorithm introduced by
Jensen [Jen96]. It is a biased two-pass method which ërst emits a set of photons from light sources,
traces them through the scene, stores them in a data structure called photon map and then computes the
global illumination by querying this structure. e term “photons” in this algorithm refers to concep-
tual particles carrying ìux information, not to photons in their physical sense as light radiation particles
carrying energy.

e algorithm operates as follows: we are given scene description including emission function Le(x, ω⃗).
We discretize the radiant ìux resulting from Le into N samples, which means we emit N photons. Each
photon has random origin on and random direction ω⃗n. We choose them with probability density func-
tion:

p(on, ω⃗n) =
Le(on, ω⃗n)

Φtotal
.

CHAPTER 2. BASICS OF LIGHT TRANSPORT AND GLOBAL ILLUMINATION 16

As a result, each photon carries the same portion of the radiant ìux Φtotal
N . Because the ìux is discretized,

we can easily propagate it through the scene by recursively reìecting it off its surfaces. We use the surface
BRDF multiplied by cosine (similarly to path tracing – Equation 2.15) to create the probability density
function for selecting the direction in which the photon reìects. Before the reìection the algorithm ran-
domly decides if the photon should be absorbed (with absorption probability of 1−ρ). e propagation
is therefore terminated using the Russian roulette. Because of the way we choose the next interaction
reìecting the photon does not change its associated ìux. We store each photon position and incoming
direction every time it interacts with a surface.

After the emission phase we build a kd-tree over all photon hits recorded. is ends the precomputation
phase. To visualise the result we need to perform density estimation. We start with the reìection equation:

L(x→ ω⃗o) = Le(x→ ω⃗o)+
∫

Ω
L(x← ω⃗i) fr(x, ω⃗i, ω⃗o)cosθi dω⃗i.

is equation uses incoming radiance, but we have only radiant ìux information available. We
therefore substitute radiant ìux according to Equation 2.1:

L(x→ ω⃗o) = Le(x→ ω⃗o)+
∫

Ω

d2 Φi(x, ω⃗i)

dA
fr(x, ω⃗i, ω⃗o).

We approximate dA by surface area of sphere centred at x with radius r. is allows us to estimate the
integral by summing ìuxes Φp of all photons inside the sphere:

L(x→ ω⃗o) ≈ Le(x→ ω⃗o)+
n

∑
p=1

Φp

πr2 fr(x, ω⃗p, ω⃗o).

To get all photons inside a sphere, we perform a k-nearest neighbour (k-NN) query in the kd-tree. is sets
the value of r to distance to k-th nearest neighbour. Adjusting the parameter k allows us to trade estimator
variance for bias – higher value will decrease the noise, but they will also blur the result. Commonly used
values are 50–250. e two phases of photon mapping are illustrated in Figure 2.9.

e photon map stores the ìux information decoupled from scene geometry. is means that photon
mapping can be used with arbitrary scene geometry. e method is also easy to implement, precom-
putation is short and non-diffuse BRDFs are supported. Unfortunately, it has one major drawback –
the density estimation produces artefacts which are very hard to get rid of (Figure 2.10a). We could try
increasing the number of emitted photons and the number of nearest neighbours used, but this would
result in too high memory usage even for simple scenes.

Better solution is to use ínal gathering. We can view the photon mapping as a bidirectional method be-
cause it ërst creates paths from lights (photons), then paths from camera (primary rays) and connects
them through the density estimation. Length of photon paths is arbitrary, but camera paths have always
length of 1. Final gathering extends camera paths by tracing an extra bounce of the ray from primary hit
point. To eliminate the noise we trace several hundreds or thousands of rays from the primary hit point,
using importance sampling according to the product of BRDF and cosine, as in path tracing (Equa-
tions 2.14 and 2.15). is method eliminates the low frequency noise of photon map (Figure 2.10b),
but the number of rays traced and photon map lookups is orders of magnitude higher, which makes ënal
gathering very slow. Irradiance cache can be used to speed up the process, as we show in the next chapter.

CHAPTER 2. BASICS OF LIGHT TRANSPORT AND GLOBAL ILLUMINATION 17

Figure 2.9: An illustration of the photon mapping in a simple scene. First photons are traced from the light
and stored (blue rays). en primary rays are shot and in each of their hit points nearby photons are located to
perform the density estimation.

(a) Direct photon map visualization. (b) Using ínal gathering.

Figure 2.10: Differences between direct photon map visualization and ínal gathering. In the left image we
visualize the photon map directly by performing the density estimation in each primary ray hit point, in the
right image we írst shoot several (1000) ínal gather rays and perform the density estimation at their hit points.
e second image does not suffer from artefacts but it took signiícantly longer to compute.

Chapter 3

Irradiance and radiance caching

Irradiance caching is another global illumination algorithm. It was invented more than ǬǪ years ago by
Ward et. al. [WRC88]. It exploits that indirect irradiance in scene changes very slowly over most surfaces
and as a consequence it can be easily interpolated from a sparse set of samples. Because of its simplicity
and efficiency irradiance caching is nowadays the preferred algorithm for GI computation in the majority
of production renderers [KG09].

Because the algorithm caches only the irradiance it works only with diffuse surfaces. is major weakness
of irradiance caching led to creation of radiance caching by Křivánek et. al. [KGPB05]. is algorithm
allows interpolation of illumination on glossy surfaces by storing directional information about incoming
radiance in form of spherical harmonics vectors. Although it performs well for low-frequency BRDFs, it
fails for high-frequency ones. In addition this method requires converting all materials BRDFs to spherical
harmonics representation.

Because of these shortcomings, an alternative algorithm was introduced by Gassenbauer et. al. [GKB09].
e spatial directional radiance caching also stores directional information, but directly in form of discrete
radiance samples. is removes the need for special BRDF representation and also allows use of BRDF
importance sampling, which is essential for efficient rendering of highly glossy materials.

3.1 Irradiance caching

e irradiance caching algorithm is based on lazy evaluation of irradiance: for each irradiance query we
ërst try to interpolate the result from existing records, and if that fails we create new record at the point
of query. is process is illustrated in Figure 3.1a. e cache stores incident irradiance values for few
selected surface points (records) in the scene (Figure 3.1b). e interpolation takes place in the world
space, but all created records are directly visible from the camera. Because of that no unnecessary work
for surfaces not visible in image is needed, unlike in radiosity or photon mapping.

e records store illumination information only in form of incident irradiance E; no directional informa-
tion is stored. is implies the need for diffuse BRDF (independent of directions). We can compute the

18

CHAPTER 3. IRRADIANCE AND RADIANCE CACHING 19

a

b

c

(a) Irradiance caching visualization. (b) Record positions.

Figure 3.1: Irradiance caching example in a simple scene. Two records with areas where they can be reused
(yellow) are shown in the left picture. ree primary rays trigger three interpolations in the cache: point a is
interpolated using single record, point b is interpolated using both records, and point c cannot be interpolated;
a new record has to be created in it. Because of the caching the irradiance needs only to be computed in few
selected points, shown in the right picture.

exitant radiance L(x→ ω⃗) in any direction ω⃗ due to incident irradiance E(x) for surface x with diffuse
albedo ρd(x) as:

L(x→ ω⃗) =
ρd(x)

π
E(x). (3.1)

3.1.1 Record creation

If the interpolation at surface point x is unsuccessful (because there are no usable records nearby) we need
to compute a new record. Recall that incident irradiance is an integral of incident radiance weighted by
cosine:

E(x) =
∫

Ω
L(x← ω⃗)cosθ dω⃗. (3.2)

We solve this integral by the Monte Carlo method, using stratiëed sampling and importance sampling
according to the cosine term. Stratiëcation breaks the hemisphere into a set of cells; single ray through
a random point in each cell is traced. e probability density function for this importance sampling is:

p(ω⃗) =
cosθ

π
. (3.3)

Estimator for integral 3.2 using this PDF is:

⟨I⟩ = 1
MN

M

∑
i=1

N

∑
j=1

L(x← ω⃗i j)cosθ
p(ω⃗i j)

=
π

MN

M

∑
i=1

N

∑
j=1

L(x← ω⃗i j).

We use M ·N samples due to the stratiëcation which divides θ to M and ϕ to N strata. We usually needs
several hundred or thousand samples to get a good estimate. M to N ratio can be arbitrary, although

CHAPTER 3. IRRADIANCE AND RADIANCE CACHING 20

Křivánek and Gautron [KG09] suggests N ≈ πM. Note that we need to compute L(x← ω⃗i j). We will
discuss possible ways to do so in separate chapter. During the hemisphere sampling we also calculate
distance to other visible surfaces R and irradiance gradients. Both of these will be discussed later. After the
irradiance cache record is created it is inserted in the cache.

3.1.2 Interpolation

To interpolate the irradiance at given point x we need to select a set S(x) of records which can possibly
inìuence the value E(x) and determine their weights wi(x). Interpolated irradiance is then simply:

Einterp.(x) =
∑

i∈S(x)
Ei wi(x)

∑
i∈S(x)

wi(x)
. (3.4)

To get formula for interpolation weights we use the split sphere model. is model describes one par-
ticular example of scene with rapidly changing irradiance: single ìat surface enclosed in half white,
half black sphere (Figure 3.2). It was introduced by Ward et. al. in the original paper on irradiance
caching [WRC88]. e argued that under certain restricting conditions¹ this model provides an upper
bound on interpolation error made by reusing an irradiance value at point with different position and
normal. Interpolation weight is just inverse of this error bound minus user-adjustable term controlling
the accuracy of interpolation (based on user selectable maximal permitted interpolation error a). Formula
for the weight is:

wi(x) =
1

∥x−pi∥
Ri

+
√

1−n ·ni
− 1

a
, (3.5)

where x is position of the point where we interpolate the irradiance and n is its normal. Position and
normal of i-th record in the cache is denoted pi, ni. Ri is the distance to visible surfaces from record i. Its
value is also derived from the split sphere model as harmonic mean of lengths ri j of the rays traced from
pi during the hemisphere sampling:

Ri =
MN

N
∑

i=1

M
∑
j=1

1
ri j

(3.6)

Tabellion and Lamorlette [TL04] suggest alternative interpolation scheme. Instead of a single error term
which combines errors due to position and normals difference they use two separate terms – one for
positions and one for normals – and interpolate using maximum of the two:

wi(x) = 1 − α max
(
∥x−pi∥

0.5Ri
,

√
1−n ·ni

1− cos10°

)
, (3.7)

where 10° and 0.5Ri are arbitrarily chosen constants specifying sensitivity to position and normal differ-
ences. is scheme has also user-adjustable parameter for interpolation accuracy – α . Note that, unlike
the original scheme, maximum weight possible is always 1, even when a record has the same position
and normal as the point being interpolated. Eliminating the singularity allows smoother interpolation

¹We assume that there are no concentrated sources of indirect illumination, which is true in most scenes.

CHAPTER 3. IRRADIANCE AND RADIANCE CACHING 21

x

Figure 3.2: e split sphere model scene. e scene features single surface containing the point to interpolate (
x). e environment is divided into white and black halfs, with the point lying exactly in between them.

without some artefacts at cost of increased bias. is scheme also deënes an alternative way to compute
the Ri as minimum of ray lengths:

Ri = min
j,k

ri j

Rays close to horizon should not be included in this version of Ri calculation, because that would cause
trouble on slightly concavely curved surfaces. Using minimum instead of harmonic mean causes the
algorithm to put more samples around small details, increasing overall accuracy.

3.1.3 Irradiance gradients

Irradiance gradients are an extension of the original algorithm, proposed byWard and Heckbert [WH92].
ey improved the algorithm by performing ërst-order (linear) approximation of the irradiance function
during the interpolation. is means that during the interpolation we do not simply interpolate using
the irradiance values stored in records, but we ërst use the rate of change to compute the estimate of
each record irradiance projected to the query point. To be able to perform this approximation we need
to calculate and store additional information for each record. Big advantage of the algorithm is that this
computation can be done during the hemisphere sampling and is essentially free.

Irradiance of a surface depends both on its position and normal. We are able to compute irradiance
anywhere in scene using the hemisphere sampling. It can be therefore described by a ëve-dimensional
scalar ëeld² – three degrees of freedom are due to position and two due to rotation. To get the linear
approximation of the rate of change in a single point, we need the ërst derivative (gradient). is gradient
is single ëve-dimensional vector, but for simplicity and ease of computation we use two independent three-
dimensional vectors instead – rotational and translational gradients. Additionally, both vectors have only
two degrees of freedom – we constrain them to lie in the tangent plane of the surface. As a consequence
we lose one degree of freedom of translational gradient. is is however not a problem, but because as we
want to interpolate using only samples lying approximately in the plane of interpolated point, we do not
need information about how the irradiance changes with translation in the direction of surface normal.

²We do not consider colour now for the sake of clarity.

CHAPTER 3. IRRADIANCE AND RADIANCE CACHING 22

e rotational gradient expresses how the irradiance changes with rotation of the surface normal. Its
direction is the axis around which the rotation causes greatest increase in irradiance. is increase can
be caused by new bright surfaces appearing on the horizon, or by already visible bright surfaces being
projected higher over the horizon, where they will cause higher amount of irradiance due to the cosine
weighting. Size of the rotational gradient vector is the rate of this change. e gradient is calculated
during the hemisphere sampling using this formula:

∇r(E)≈
π

MN

N

∑
i=1

(
vi

M

∑
j=1
−Li, j tanθ j

)
,

where

• (i, j) are indices of a hemisphere stratiëcation cell,

• Li, j is incoming radiance from cell (i, j) and

• vi is unit vector in the tangent plane in direction ϕi +
π
2 .

e translational gradient indicates how the irradiance changes with translation in the surface tangent
plane (as we have established before we do not consider translation perpendicular to this plane). is
change can be caused by bright surfaces getting closer, moving higher on the horizon, or by their occlusion
and dis-occlusion. Direction of this gradient is the direction of translation that yields highest increase in
the irradiance, its magnitude is the rate of this change. Formula for the gradient is:

∇tE ≈
N

∑
i=1

(
ui

2π
N

M

∑
j=2

cos2 θ j− sinθ j−

min(r(i, j), r(i, j−1))
(Li, j−Li, j−1)+

vi−

M

∑
j=1

cosθ j(cosθ j−− cosθ j+)

sinθi, j min(r(i, j), r(i−1, j))
(Li, j−Li−1, j)

)
, (3.8)

where:

• i, j are indices of a hemisphere stratiëcation cell,

• Li, j is incoming radiance from cell i, j,

• r(i, j) is length of the ray traced through cell i, j,

• θ j− and θ j+ are the lower and upper bound of elevation angle of any cell x, j, respectively,

• ϕi− , ϕi+ , and ϕi are the lower bound, upper bound, and centre value of azimuthal angle in any cell
i,x, respectively,

• ui is unit vector in tangent plane in direction ϕi and

• vi− is unit vector in tangent plane in direction ϕk−+
π
2 .

Interpolation with gradients is done by substituting the Ei in Equation 3.4 by Egrad
i (x)which is calculated

by performing the ërst-order approximation:

Egrad
i (x) = Ei +∇rEi · (ni×n)+∇tEi · (x−pi).

CHAPTER 3. IRRADIANCE AND RADIANCE CACHING 23

3.1.4 Two-pass rendering

Although the irradiance caching in its basic form does not need a precomputation pass because of the
lazy evaluation scheme, it has one fatal ìaw: results of the algorithm are dependent on the order in which
are pixels rendered. For example when visiting pixels in the scanline order³ we may create a record for
ërst pixel, and then reuse it for several next pixels, until ënally for next pixel it has zero weight. en we
create another record and use it for next few pixels. But even though each of these new records can also
be used for interpolation of several previous pixels, we have not used it. is creates an error called missed
contribution (Figure 3.3a).

Natural solution to this problem is to use hierarchical reínement – instead of the scanline order we ërst
render only few sparse pixels to get low-resolution version of image and then progressively reëne it to get
the full resolution render. is pixel ordering not only signiëcantly decreases the number of samples with
missed contributions, but also lowers the number of cache records needed.

Even though the hierarchical reënement is great improvement, it does not eliminate the problem of
missed contributions entirely. Because of that we use the two-pass rendering. is means that before
the ënal image rendering we perform another rendering with the sole purpose of populating the cache.
e populating is performed in multiple passes using the hierarchical reënement for maximum efficiency
(Figure 3.3b). Results of this precomputation render are not shown⁴, the interpolation is done only to
see if it is possible or if a new record should be created.

Another advantage of this approach is that the user-adjustable maximum interpolation error constant a
can be set to different values during each phase. By setting it low for precomputation and slightly higher
for visualization we can get both enough details in the cache due to denser records created during the
precomputation and smooth result of interpolation due to the higher permitted error during visualization
(Figure 3.3c). Křivánek and Gautron suggest to multiply a by a constant from 1.4 to 1.5 [KG09].

(a) Simple lazy evaluation. (b) Using precomputation pass. (c) Using precomputation pass and cache
smoothing.

Figure 3.3: We render the same simple scene with different irradiance cache precomputation methods using
low quality overall settings to amplify differences. First picture was created without precomputation; missed
contribution artefacts are clearly visible. Second picture uses precomputation with hierarchical reínement.
Interpolation has no discontinuities, but soft shadows are not smooth. Increasing maximum permitted error
after precomputation in the third picture gives the best result.

³at is for example from top to bottom, row by row, single row from left to right at a time.
⁴Although renderers often display it to user to show the progress and allow him to estimate how the ënal render will look.

CHAPTER 3. IRRADIANCE AND RADIANCE CACHING 24

3.1.5 Algorithm improvements

Many improvements were proposed to improve the quality of irradiance caching results. One of the most
trivial is to reject records “in front of” the interpolated point. When we interpolate irradiance in x we
calculate quantity di(x) for each record i:

di(x) = (x−pi) ·
(n+ni)

2
,

where n is the normal of interpolated point and pi, ni is the position and normal of i-th record. If di(x)
is smaller than a small negative constant we set weight of the record i to zero, because it lies in front of
x (with respect to its normal). is prevents unoccluded records from being used for interpolation in
various trenches and pits, as shown in Figure 3.4. One could argue that we need to do the same in the
other direction, preventing records in grooves and pits from being reused on surrounding open surfaces.
is is however taken care of automatically by the Ri, which is very small for any occluded sample.

a

b

Figure 3.4: A geometry detail with two irradiance cache records displayed with their distances to surfaces. We
have to make the additional “in front of ” test to make sure that the unoccluded record a is not reused in the
groove. We do not however need any inverse test for record b as distances to surfaces of any records in the groove
are very small.

Another problem encountered is the clumping of records in corners. Record density is by default deter-
mined by their distances to surfaces. is is sufficient in most cases, but sometimes it creates unnecessary
high record density near corners. e density there can be higher than 1 sample per pixel, causing the
algorithm to degenerate into a brute force solution. In the same time missing close surfaces during the
hemisphere sampling can cause some record Ri to be too big. Such record is then reused over too large
area, which may result in artefacts. We solve this by imposing limits on the record spacing by limiting
Ri to be between Rmin and Rmax. Because perspective camera projection changes apparent sizes of dif-
ferent objects in the scene, no single world-space limit would produce satisfactory results. We instead
use camera space limits: each record has its own Rmin

i and Rmax
i that are used to clamp the value of Ri.

User sets minimum and maximum record spacing in pixels and Rmin
i and Rmax

i are computed individually
for each record by multiplying user-submitted values by the projected pixel size at each record location.
Recommended values are 1-3 projected pixel size for Rmin are no more than 20 for Rmax [TL04].

Another way to improve the record spacing is by limiting Ri by the translational gradient magnitude.
Because the split sphere model makes assumptions which are not necessarily valid for all scenes, it is
possible to create a record with too high Ri in an environment where the indirect illumination changes
rapidly. Because we have estimate of this rate of change (translational gradient), we can use it to clamp
the Ri to lower the interpolation error using this formula:

Ri := min
(

Ri,
Ei

∥∇tEi∥

)
.

CHAPTER 3. IRRADIANCE AND RADIANCE CACHING 25

e translational gradient itself can also be a source of errors. It is computed using ray lengths (Equa-
tion 3.8) that could be very short for records in corners and in areas with lots of geometric details. During
the gradient computation we divide by these rays near-zero lengths. is may result in excessively high
value of ∇tEi, which consequently causes artefacts during the interpolation. Solution to this problem is
to clamp the gradient magnitude using this formula:

∇tEi := ∇tEi ·min
(

1,
Ri

Rmin

)
,

where Rmin is the minimal distance to surfaces described previously and Ri is the true geometric distance
to surfaces before clamping.

Artifacts can appear even in scenes for which split sphere model holds, because the hemisphere sampling
is stochastic and can randomly hit or miss important close objects which therefore may or may not cause
signiëcant reduction of computed distance to surfaces. In some situations, such as in Figure 3.5, even
one record which missed the thin geometry would cover the area with its inìuence radius and no other
records would be created, resulting in complete lack of detail.

Figure 3.5: An illustration how single record which missed small geometry detail can ruin the interpolation
without neighbour clamping. e single record shown has erroneously high value of Ri because no ray during
its hemisphere sampling hit the thin object. No new records will be created in the yellow area, because the
irradiance can be interpolated even from single record. is means that the ínal image will completely lack
details around the object.

is problem is solved by another very important improvement of the original algorithm called neighbour
clamping [KBPv08]. It solves the problem using triangle inequality. When inserting a new record i into
the cache, we test all nearby records if their stored Ri plus distance to the new record is smaller than
the new record Ri. If this inequality does not hold, it indicates missed features during the hemisphere
sampling and we clamp the new record Ri accordingly. en we also clamp distances to surfaces of nearby
records in the same way. After clamping these two inequalities hold for all neighbouring records j:

∀ j : Ri ≤ R j + ∥pi−p j∥,
∀ j : R j ≤ Ri + ∥pi−p j∥.

Because of this even single small value of Ri from a record where small geometric feature was hit during
the hemisphere sampling can propagate to all relevant nearby records, as shown in Figure 3.6. Because of
that this method can sometimes provide dramatic improvement in ënal image quality.

CHAPTER 3. IRRADIANCE AND RADIANCE CACHING 26

Ri

Rj

ij

Figure 3.6: e missed geometry problem with neighbour clamping. e scene is similar to that in Figure 3.5,
the difference is that we now use the neighbour clamping. Because of that the record that did not miss the small
geometry (i) causes reduction of R j to Ri + ∥pi−p j∥ (dotted circle).

3.1.6 Integrating irradiance caching into complex global illumination solution

When describing the hemisphere sampling during irradiance computation we have completely skipped
the incoming radiance calculation. We will now discuss several possibilities how to calculate the illumi-
nation at these secondary hit points, as it is an important part of the algorithm. e simplest possibility
is to consider direct lighting only. is creates so-called single-bounce indirect illumination. While it cre-
ates visually plausible smooth gradients of varying illumination, it is not physically correct and ignores
signiëcant portion of the light transfer. Its main advantage is that it is non-recursive, simple and fast to
compute.

If we want physically correct full GI solution, we can either use a secondary GI algorithm, or apply
the irradiance caching recursively. Recursive irradiance caching was ërst described in the original paper
on irradiance caching [WRC88]. To get the illumination at a secondary hit point, we simply try to
interpolate it from the cache and if that fails we create new cache record. is means that ërst record is
always computed extremely slowly, as the cache is initially empty and multiple secondary records need to
be recursively created, but successive records are computed faster and faster, because the cache is gradually
populated and an interpolation can be performed more often than new record creation. e recursive
creation of new records must be stopped at some depth. is is done by substituting some constant,
possibly zero, ambient irradiance value.

Because the secondary records do not affect the ënal result as much as primary ones, we can get away
with increasing the maximum interpolation error a and making fewer samples during the hemisphere
sampling. Ward et. al.[WRC88] suggest halving the number of rays cast and increasing the maximum
error a by 40% in each recursive step for scene with mean surface reìectivity of 50%. Because of resulting
decreased cache accuracy, it is advisable to create a separate irradiance cache for each level of recursion,
and avoid interpolation using records from cache belonging to deeper recursion level.

Using suitable secondary GI algorithm has the advantage of combining strong points of irradiance caching
with those of another method. Many algorithms integrate seamlessly with irradiance caching. For ex-
ample to use path tracing we just bounce each ray cast during the hemisphere sampling multiple times,
as described in Chapter 2.4.3. When using the photon mapping algorithm with irradiance caching we

CHAPTER 3. IRRADIANCE AND RADIANCE CACHING 27

simply perform the density estimation at each secondary hit point. e whole process of hemisphere
sampling, where multiple rays are cast and their colours are averaged, is analogous to ënal gathering.
Irradiance caching can be therefore regarded as an acceleration method for photon mapping with ënal
gathering. Many other GI algorithms can be accelerated the same way.

During the hemisphere sampling we have ignored direct lighting. Because of that we have to sample it
explicitly during the visualization phase with shadow rays. Finally, we need to deal with the fact that irra-
diance caching supports only diffuse BRDFs. We split each BRDF to diffuse and non-diffuse component
during visualization. e diffuse component is used for modulating the result of irradiance cache inter-
polation (see Equation 3.1); illumination reìected by the non-diffuse component have to be calculated
by another method. Simplest approach is to use “brute force” and calculate the result with Monte Carlo
path tracing. is however generates noise and many samples may be needed to get clean result. Other
possibility is to use one of the extensions of irradiance caching to non-diffuse BRDFs. ey are described
in the next section.

3.2 Radiance caching algorithms

We cannot handle handle non-diffuse surfaces if we store only irradiance, we need the directional infor-
mation represented by radiance. We cannot however simply modify the irradiance caching algorithm to
store radiance samples obtained during the hemisphere sampling instead of irradiance. Main problem of
this modiëcation is that there can be thousands of samples in each record which would have to be stored
and iterated through during each interpolation. is would cause signiëcant memory consumption and
computational overhead to the point where there would be no advantage over the “brute-force” path
tracing.

Efficient radiance storage and interpolation is therefore a crucial part of any radiance caching algorithm.
We present two different approaches: Radiance caching presented by Křivánek et. al. [KGPB05] and
spatial directional radiance caching (SDRC) presented later by Gassenbauer et. al.[GKB09]. We will call
the former method spherical harmonics radiance caching (SHRC) to avoid confusion with radiance caching
as general idea of extending the irradiance caching to glossy surfaces.

3.2.1 Spherical harmonics radiance caching

is method approximates the incident radiance on a hemisphere using spherical or hemispherical har-
monics [Gre03, MS67]. Spherical harmonics are generalization of Fourier series to a sphere. ey can be
used to approximate a function F(ω⃗) deëned on a sphere as:

F(ω⃗) ≈
n−1

∑
l=0

l

∑
m=−l

λ m
l Y m

l (ω⃗).

Approximation of F(ω⃗) by spherical harmonics of order n consists of the vector Λ of n2 coefficients
(λ 0

0 ,λ
−1
1 ,λ 0

1 ,λ 1
1 , ...,λ−n

n , ...,λ n
n). Functions Y m

l are called spherical harmonics basis functions.

CHAPTER 3. IRRADIANCE AND RADIANCE CACHING 28

All coefficients λ m
l of the vector can be computed by projecting the functionF(ω⃗) onto the corresponding

basis:
λ m

l =

∫
Ω

F(ω⃗) Y m
l (ω⃗) dω⃗.

is integral can be easily solved using Monte Carlo sampling. Very important property of spherical har-
monics is that an integral of product of two functions F1(ω⃗), F2(ω⃗) represented by spherical harmonics
is simply dot product of their coefficients vectors Λ1, Λ2:∫

Ω
F1(ω⃗) ·F2(ω⃗) dω⃗ ≈ Λ1 ·Λ2. (3.9)

Hemispherical harmonics are very similar to spherical ones, only they are deëned over a hemisphere.
We continue to describe the algorithm using spherical harmonics. e hemispherical version is largely
identical. For detailed discussion of differences see the original proposal [KGPB05].

e interpolation scheme for SHRC is identical to the original irradiance caching. We precompute the
indirect illumination at sparse locations in the scene, based on the same split sphere heuristic and using the
same hemisphere sampling, but instead of integrating the samples and storing resulting irradiance E(x)
we use the samples to approximate the incoming radiance function L(x← ω⃗) by spherical harmonics
and store the resulting vector of coefficients. We must also convert scene BRDFs (pre-multiplied by the
cosine) to spherical harmonics representation. To do so we discretize all exitant directions ω⃗o into ënite
samples and calculate spherical harmonics vectors Cω⃗o for each such direction.

To interpolate the illumination at single point, we ërst calculate weighted average of spherical harmonics
vectors of all records inìuencing the point. e weights are computed from surface normal and position
differences identically to the original algorithm (Equation 3.5). Each cached spherical harmonics vector
must be ërst rotated to the coordinate frame of the interpolated surface point by rotation matrix Ri. Since
we now have the interpolated incoming radiance distribution and BRDF pre-multiplied by the cosine for
the outgoing direction we want, we can compute resulting radiance simply as dot product of these two
vectors, using Equation 3.9.

e rotation of spherical harmonics coefficients performed during interpolation can be very costly op-
eration. Křivánek however developed fast rotation approximation by truncated Taylor expansion of the
rotation matrix [KGPB05], which performs well for small rotation angles. Many other improvements
were proposed, mostly taken over from the irradiance caching, for example neighbour clamping, gradient
clamping and use of gradients. Rotational gradients are no longer needed as they are replaced by the
rotation, but translational gradients can still substantially enhance the interpolation.

Because of the spherical harmonics radiance representation, the algorithm offers good approximation for
low-frequency BRDFs, it is highly memory-efficient and the needed rotations are very fast. It however
fails to capture high-frequency BRDFs and does not allow importance sampling because the radiance
representation does not allow directional localization.

3.2.2 Spatial directional radiance caching

Because the SHRC algorithm has several shortcomings, Gassenbauer and Křivánek proposed the spatial
directional radiance caching (SDRC) [GKB09]. ey have decided to keep the original radiance samples

CHAPTER 3. IRRADIANCE AND RADIANCE CACHING 29

in each record, because none of the potential representation methods (spherical harmonics, wavelets, ...)
meet all demands: directional localization, ability to capture high-frequency functions, and fast rotation.
e deëning characteristics of this method is the use of BRDF importance sampling both during precom-
putation and interpolation phases, which provides good quality and performance even for high-frequency
BRDFs with sharp specular lobes.

SDRC creates a set of sparse samples in the scene again in the same way as the original irradiance caching.
e hemisphere sampling is however different: only small part of the samples is distributed uniformly
according to the original PDF (Equation 3.3) to compute the harmonicmean of distances to other surfaces
(Equation 3.6). Most samples are created using importance sampling of the local surface BRDF. is is
the key of the algorithm efficiency: only directions close to specular lobe are sampled densely. After the
sampling we project the samples to 2D domain D using paraboloid mapping [HS98]. e mapping from
unit direction vector on y-up hemisphere (x,y,z) to point (a,b) in D is:

a =
x

y+1
,

b =
z

y+1
. (3.10)

is mapping is fast to compute, has no singularities or discontinuities on the hemisphere and has low
distortion⁵. A kd-tree (called L-tree) is built over the entries after mapping to allow fast range queries
later. To save memory, each sample position in D is discretized into 1 byte per axis (2 bytes total) and
its colour is saved using Ward RGBE format [War92a] (4 bytes). is allows to pack each sample into 8
bytes.

Interpolation in SDRC hast two stages – spatial and directional. Spatial interpolation is similar to irradi-
ance caching and SHRC – we identify the set S(x) of records inìuencing the interpolated point x and
assign them spatial weights ws

i (x) calculated from position and normal differences (Equation 3.5).

It is the directional interpolation that sets this algorithm apart. Instead of using all directions stored in
records of S(x) we ërst generate set of samples (directions on hemisphere) using importance sampling of
BRDF at x. For each such direction ω⃗ j we locate all nearby cached directions in records from S(x) and
use them to interpolate radiance in that direction, as shown in Figure 3.7. If no such sample is found, we
simply create a new sample with the direction ω⃗ j in random record. In order to adapt to varying sample
density we limit the search radius in L-trees for each BRDF sample ω⃗ j to:

r j = min

(
rmax,

1
2π

1
M
√

p(ω⃗ j)

)
. (3.11)

M is the number of BRDF samples generated, p(ω⃗ j) is the probability density corresponding to gener-
ating a sample in direction ω⃗ j and rmax is the search radius upper bound, used to reduce artefacts in areas
with low probability density, set to 0.15 in the original paper. Directional weight of kth sample (with
direction ω⃗k) reported from i-th L-tree is:

wd
ik(ω⃗ j) = max

(
0, 1−

∥ω⃗ j− ω⃗ik∥D

r j

)
.

⁵Density of uniformly distributed points on hemisphere varies after the transformation no more than by factor of 4.

CHAPTER 3. IRRADIANCE AND RADIANCE CACHING 30

Figure 3.7: An illustration of the spatial directional radiance caching. Single primary ray (red) hits the
surface. Multiple BRDF samples are created (green rays). Instead of ray tracing these samples we perform the
interpolation by locating the two nearby radiance cache records and searching their stored directions.

Total weight of single sample is simply product of the spatial weight of its parent record ws
i and its

directional weight wd
ik. Total radiance estimate for BRDF sample ω⃗ j is:

L(x← ω⃗ j) ≈
∑i ∑k ws

i (x)wd
ik(ω⃗ j)Lik

∑i ∑k ws
i (x)wd

ik(ω⃗ j)
. (3.12)

If set S(x) contains n records andwe useM BRDF samples, then total of nM lookups are performed. Using
these interpolated incident radiance values we can easily compute exitant radiance using the estimator in
Equation 2.13.

is variant of radiance caching is more memory-consuming and requires many searches in the directional
domain for single interpolation, but these disadvantages are more than compensated by elimination of
the need for special BRDF representation and the ability to use importance sampling according to a
surface BRDF. Although the algorithm can handle all materials, it is advisable to combine it with simple
irradiance caching for diffuse surfaces, as the radiance caching is always slower than irradiance caching.

Chapter 4

Geometric searching

e problem of efficient searching in a multidimensional space is frequently encountered in computa-
tional geometry [Mat94, AE97], realistic image synthesis [Hav00, Jen96, WRC88], databases [GG98],
computer vision, pattern recognition, geographical information systems, etc. Algorithms and data struc-
tures for multidimensional searching can be substantially more complicated than in one-dimensional
domain, where efficient search using sorted arrays or balanced search trees is possible [Knu98].

e searching problem comes in many ìavours – for example database applications (which are called
spatial databases) usually deal with low-dimensional spaces, but they must be able to process big datasets,
which do not ët in the main memory. As a result external memory accesses are the performance limiting
factor and the performance of used data structures is measured solely in the number of disk input/output
operations [MNPT]. Because of that R-trees (multidimensional generalizations of B-trees) are the most
commonly used spatial database data structures, even though they are not the most efficient ones in terms
of computational complexity [Arg01].

On the other hand, applications in computer vision and pattern recognition usually deal with smaller
datasets, but they work in extremely high-dimensional spaces. Because of the curse of dimensional-
ity [Cla94], most data structures become quickly inefficient with increasing dimensionality to the point
where linear time algorithms become once again competitive [CS02].

4.1 Problem formulation

In the typical point search problem we are given a set S of n points in ℜd and a distance metric. We
want to preprocess this set by creating an auxiliary data structure, using which we could answer queries
efficiently, that is in asymptotically lower time than by using simple sweep through the data.

ere are various types of queries. Nearest neighbour (NN) query (Figure 4.1a) returns single point p ∈ S
which is closest to the query point q according to the metric used. A generalization of the nearest neigh-
bour query is the k-nearest neighbour (k-NN) query (Figure 4.1b), which returns the set {p1, p2, . . . , pk}
of k closest points to the query point. NN and k-NN queries are examples of a similarity search.

31

CHAPTER 4. GEOMETRIC SEARCHING 32

Another type of query is the range search query. In range searching we have the set of possible search ranges
R, and we want to efficiently report or count all points inside a particular range R∈R. Examples of ranges
commonly used are rectangles, balls (Figure 4.1c), rectangles (Figure 4.1d), halfspaces (Figure 4.1e), and
simplices. ere are various ìavours of range queries: a range-reporting query reports all points inside the
query range, a range-counting query only reports the number of points in the query and a range-emptiness
query only reports whether there are any points in the query at all.

Speciëc subclass of range queries are the optimization queries. Answer to an optimization query is a point
lying inside the query range that maximizes certain optimization criterion (for example has highest x-
coordinate). Ray casting can be viewed as a type of optimization query, where the ranges are half-lines.
Another example of an optimization query is the linear programming problem.

Another variant of geometric range searching problem is the search in non-point data. In this case the set
S does not contain points, but objects with spatial extent (for example lines, rectangles, balls, polytopes,
etc.). A point or range query returns all such objects which overlap the query point or region. Containment
query in contrast returns all objects entirely contained in the query range. Similarly to point search we can
deëne large variety of additional query types. Point data structure cannot be directly used for non-point
data; special data structures are needed that can be very complicated.

(a) Nearest neigbour query. (b) k-Nearest neigbour query.

(c) Disk range query. (d) Rectangular range query. (e) Half-space range query.

Figure 4.1: Examples of queries in 2D: top row shows similarity queries (nearest neighbour and 3-nearest
neighbour). Query points are red and query answers are green. Bottom row shows range queries with 3 different
ranges: a disk, a rectangle, and a half-space.

CHAPTER 4. GEOMETRIC SEARCHING 33

4.2 Space subdivisions

A common approach to constructing a point data structure is to introduce some type of spatial subdivision.
Such scheme partitions the space ℜd into ënite set of disjoint cells, possibly with hierarchy built over
them. Each point from S is stored in the cell it overlaps. e data structure thus provides additional
spatial information about our dataset which we may use to speed up the queries. For example in range-
searching queries, only cells which overlap the query region need to be inspected, as only they can contain
points inside the query. Examples of such data structures are in Figure 4.2.

4.2.1 Uniform grid

Simple example of a spatial subdivision data structure is the uniform grid. is data structure divides the
volume of dataset axis-aligned bounding box uniformly in each axis, creating a grid, and places each data
point in its corresponding cell. e data structure is built by simply assigning all points to their cells
in O(n) time. Searching is simple – for range queries we enumerate cells intersecting the query and test
points they store, for similarity searches we iterate cells in the order of increasing distance from the query
point until we have the result.

Because the cell containing a point can be computed as well as addressed directly, the expected query
time for similarity search in uniformly distributed data is O(1), making uniform grid the optimal data
structure [BWY80]. However because it is non-adaptive, its performance degrades quickly for non-
uniform data. In a highly non-uniform dataset most points are stored in single or very few cells and
have to be all processed if the search procedure encounters such cell. Recursive or non-uniform grids
can be used to overcome this problem [Wei78]. Its other disadvantage is that it scales very poorly with
increasing dimensionality of the search space, as the total number of cells needed to maintain constant
subdivision of all axes rises exponentially with dimension.

4.2.2 Octree

Octree improves upon the uniform grid in that it can adapt to the data distribution – it induces recursive
space subdivision that is ëner in areas with higher data density. is data structure is an adaptation of
the two-dimensional quadtree (Figure 4.2b) [FB74] to 3D space. Adaptations to arbitrary-dimensional
spaces are possible. During the data structure build we start with the same axis-aligned box as in the
uniform grid, but we divide it only once in each axis. is creates 2d child cells, where d is the search
space dimension. is means that in 2D there are 4 and in 3D there are 8 children, hence the names
quadtree and octree. After the split we move all points to children that contain them, and we recursively
repeat the split procedure for any children that contain too many points.

Expected NN and k-NN query times are logarithmic, because the tree has logarithmic depth on average.
e general search procedure for any query is similar: we recursively traverse the tree from root to leaves;
in each leaf node we process all stored points and in each inner node we decide in which children we will
continue the search.

CHAPTER 4. GEOMETRIC SEARCHING 34

(a) Regular grid. (b) Quadtree. (c) Kd-tree.

Figure 4.2: Examples of different space subdivisions in 2D: the regular grid, quadtree, and the kd-tree.

4.2.3 Kd-tree

A k-dimensional (kd) tree, introduced in ǫǳǱǯ by Bentley [Ben75], is the generalization of binary search
tree into higher-dimensional space. Each inner node splits the search space in one dimension, creating
hierarchical spatial subdivision, as shown in Figure 4.2c. Nodes containing at most some small constant
number of points are no longer divided, but instead become leaves.

Inner nodes of the tree can be either implicit or explicit. When using implicit nodes, data points them-
selves create the tree - each inner node is just data point with the split axis and child pointers saved.
Explicit inner nodes are stored separately from data points and the resulting tree is independent on the
data it stores. Implicit nodes conserve memory, but they also restrict the number of possible split posi-
tions, make the search slower because points are not stored only in leaves and make deletion of a point
very difficult. Inner nodes of the tree can be either implicit or explicit. When using implicit nodes, data
points themselves create the tree - each inner node is just data point with the split axis and child pointers
saved. Explicit inner nodes are stored separately from data points and the resulting tree is independent
on the data it stores. Implicit nodes conserve memory, but they also restrict the number of possible split
positions, make the search slower because points are not stored only in leaves and make deletion of a
point very difficult.

Important factor determining the kd-tree performance is the split plane axis and position selection. In the
original paper the build algorithm cycles through all axes in round-robin fashion. Friedman et. al. [FBF77]
suggest splitting in the dimension with the largest spread of points. Another simple and yet efficient
technique is to always select the axis in which is the node bounding box largest [DDG00].

ere are several methods for selecting the position of splitting hyperplane. In the original paper the
split position was simply position of a randomly chosen point. Better alternative is to use the median of
stored points with respect to the split dimension [FBF77], or spatial median (value of node bounding box
centre) [Moo90]. Note that the last splitting rule can result in nodes that are empty. is can negatively
affect similarity search query performance. Solution to this is the sliding midpoint rule [MM99]. If one
of the children after the split should be empty we move the split hyperplane so that single point resides
in the previously empty node as shown in Figure 4.3. is prevents creation of empty nodes, which are
undesirable in NN search.

Both search and build procedures for kd-tree are very similar to those of the octree. e biggest difference

CHAPTER 4. GEOMETRIC SEARCHING 35

Figure 4.3: Picture of a single kd-tree node. Splitting this node using the spatial median rule would produce
an empty left child. Because of that we slide the split plane to the right to move a single point to the left child.

is that the kd-tree is always binary. Because it is highly adaptive to data distribution, it does not suffer from
high branching factors in higher dimensions and is generally less complicated than octree, the kd-tree is
widely used in point search applications.

4.3 Handling non-point data

Point-location data structures cannot be used with non-point data directly, but there are several tech-
niques we can apply in order to handle this type of data. Simple data objects can be transformed to
higher-dimensional points and then stored in a conventional data structure [SK88]. is approach, called
object mapping, is common in computational geometry. For example simple axis-aligned rectangle in two
dimensions can be transformed to four-dimensional point (c1,c2,e1,e2), where (c1,c2) are coordinates
of its centre and (e1,e2) are its half width and half height. An alternative transformation maps the rect-
angle to (l1, l2,u1,u2), where (l1, l2) and (u1,u2) are coordinates of its lower left and upper right corner,
respectively. Choice of the mapping obviously affects the search algorithm and search performance. e
higher-dimensional point space is called dual space. More complex objects, for which we cannot construct
the transformation, can be also used with this method, when approximated by their bounding boxes or
bounding spheres.

Another quite straightforward way to store non-point data in space partitioning data structures is by object
duplication. Normally we would not be able to store arbitrary objects in these data structures as it may be
impossible to construct a non-trivial space partitioning in which each object belongs to only single cell.
We solve this by cutting objects straddling any partition hyperplane and inserting references to them into
cells on both sides of the hyperplane. Object duplication increases the memory consumption and splits
on lower level of the data structure may become very inefficient (because most objects have to be inserted
in both children nodes), but resulting data structure has good query performance – to obtain all objects
overlapping a query point, only single path from the root to a leaf has to be traversed. A prominent
example of such data structure is the R+-tree [SRF87].

A different approach is to abandon the space partitioning schemes completely and permit overlapping
regions, as illustrated in Figure 4.4. is allows us to construct data structures where each object is ref-
erenced only once, leading to low memory consumption and simple updates. Downside of this method
is the worse query performance, because more paths from the root to leaves have to be traversed due to

CHAPTER 4. GEOMETRIC SEARCHING 36

the spatial overlap of nodes. Example of such object-partitioning data structures are R-trees [Gut84] and
R∗-trees [BKSS90], both used in spatial databases, and bounding volume hierarchies used frequently in
collision detection [Eri05] and ray tracing [GS87].

Figure 4.4: An example of the bounding volume hierarchy build over simple scene with non-point data (balls).
e bounding volumes are intentionally not drawn tightly enclosing their interiors for better clarity.

Chapter 5

Data structures for irradiance caching

During the irradiance interpolation using irradiance caching at a surface x (described in Section 3.1.2)
we need to determine the set S(x) of all records that can inìuence the interpolation result. For each of
these candidates we evaluate the weight function wi(x) (Equation 3.5 or 3.7) and if it is non-zero, we use
the candidate for the interpolation. For the irradiance caching to be efficient we need a way to determine
S(x) efficiently. We also want S(x) to contain as little false positives (records with zero weight) as possible,
because weight function evaluation is costly.

Solution to this search problem is to create a ball from each record with centre at the record position and
radius equal to the maximum distance from record where it can have non-zero weight and perform a point
query which reports all balls intersecting x. e radius of each ball (which we will call validity radius) is
not identical to record distance to surfaces Ri. Relation between the two can be derived from the weight
equation by letting n = ni and creating an inequality by requiring the weight to be greater than zero. For
the Ward weight function we get:

1
∥x−pi∥

Ri
+
√

1−n ·ni
− 1

a
> 0,

1
∥x−pi∥

Ri

− 1
a

> 0,

Ri

∥x−pi∥
>

1
a
,

aRi > ∥x−pi∥.

We are able to derive similar bounds for the weight function of Tabellion and Lamorlette:

1−α max
(
∥x−pi∥

0.5Ri
,

√
1−n ·ni

1− cos10°

)
> 0,

1 > α
∥x−pi∥

0.5Ri
,

0.5Ri

α
> ∥x−pi∥.

37

CHAPTER 5. DATA STRUCTURES FOR IRRADIANCE CACHING 38

As we can see, in both cases ball radii are dependent only on original records validity radii and maximal
error settings.

Irradiance caching have speciëc requirements on the search data structure. It needs to support only single
object type (ball) and single search method (point query). Number of objects stored is low (typically
in orders of tens of thousands), which means that the entire data structure will ët in main memory
and we cannot measure data structure performance by the asymptotic time complexity alone. Because
of the lazy irradiance evaluation scheme the data structure needs to support insertions on the ìy. is
can be a problem for many data structures. We solve it with a compromise – we require that the data
structures support insertions, but we rebuild them few times during and after the precomputation phase.
Because of the relatively low number of records rebuild times are generally negligible and it allows us to use
“semi-incremental” data structures, which slightly deteriorate withmultiple insertions and are periodically
repaired. is approach is further supported by the fact that only very few records are inserted after the
precomputation phase. Additionally because of the neighbour clamping (Section 3.1.5) some record radii
can get signiëcantly reduced after they are inserted into the cache. is means that any data structure
would slightly deteriorate without complicated re-insertion procedure or rebuilding.

Now that we have formulated the problem we try applying different algorithms and data structures for
solving it. First we review already known and used data structures: Ward’s original octree and themultiple-
reference octree. en we try using multiple-reference kd-tree as a multiple-reference octree alternative,
reducing the problem to simple point k-NN search with a kd-tree, employing a bounding volume hier-
archy and ënally transforming the problem to higher dimension range query over point data.

5.1 Ward’s octree

Octree is the data structure originally proposed for irradiance caching by Ward et. al. [WRC88]. It is
built by recursively subdividing bounding cube of the scene to 8 smaller cubes. Each record is stored
in a single node which contains its position. Records can be stored at any level of the tree, not only in
leaves. Where are they stored is determined by their validity radii: each record is placed in a node with
side length 2-4 times larger than its validity radius.

To ënd all records inìuencing an area, we have to traverse multiple paths from the root to leaves. In each
node we report its stored records and recursively continue to all its children that are closer to query point
than half of their size (cube side length). is in combination with the way records are inserted into the
tree guarantees that search will ënd all records possibly inìuencing the query point. Expected query time
is O(log(n)), as at most 8 nodes have to be traversed at any level of the tree.

Biggest advantage of the octree is its memory efficiency, as it avoids object duplication and its relative
simplicity. Because it adapts only very little to input data, it is easy to implement with full insertion
support (with no deterioration after any sequence of inserts). On the other hand its traversal performance
is very poor, because the data structure fails to sufficiently separate overlapping and non-overlapping balls
and many false positives are reported.

CHAPTER 5. DATA STRUCTURES FOR IRRADIANCE CACHING 39

5.2 Multiple-reference octree

Multiple-reference octree is based on the object duplication technique (Section 4.3) – single object (ball)
can be referenced in multiple nodes¹. is results in increased memory consumption, but better query
performance. e key invariant of the multiple-reference octree is that each object is referenced exactly
once on each path from the root to any leaf it intersects. Objects can be again referenced both in leaves
and inner nodes. is allows us to ënd all records of S(x) by simply traversing single path from the root
to the leaf containing the query point and returning all objects referenced by visited nodes.

Unlike the simple and efficient search procedure the insertion is more complicated. We have to recursively
propagate each inserted record ball from the root node to all children it intersects. e recursion is stopped
when a leaf is reached or when the node size becomes approximately the same as the ball radius. When
the number of records referenced in single node exceeds a pre-set maximum value (the node “overìows”)
we split the node creating 8 children, keep large balls in the node and propagate all other to children they
intersect. e same procedure is also used for rebuilding from the scratch.

In our implementation we change the somewhat vague original insertion recursion stopping criterion.
e original criterion does not reìect mutual position of the node and record. It may place a record with
big radius of inìuence unnecessarily high in a sub-tree it barely intersects, as illustrated in Figure 5.1. We
change the stopping criterion to:

∥Cfurthest − Pi∥ ≤ kri, (5.1)

where Cfurthest is the corner of node bounding box furthest from the record position Pi, ri is the record
validity radius and k is a constant determining how aggressively we will propagate the records to lower
levels of the tree. In our implementation we use value of 1.4. is criterion takes into account both size
of record ball and its position with respect to the node.

r

C
farthest

Figure 5.1: An example (in 2D) of a ball position that is particularly bad for the original insertion recursion
stopping criterion. Because the ball itself is large, it would be placed in the root node, although it barely intersects
it. Our stopping criterion compares ball radius r and the distance from ball centre to the furthest point Cfurthest
and propagates the record deeper.

Multiple-reference octree is a simple, yet very efficient data structure. Because of that it is used in most
irradiance cache implementations [KG09]. Its main problem is the memory consumption – cache with

¹In order to save memory the records are not actually duplicated, but stored separately from the tree and only their numerical
indices are duplicated in tree nodes.

CHAPTER 5. DATA STRUCTURES FOR IRRADIANCE CACHING 40

only tens of thousands of records can generate an octree with millions of references. e data structure
thus requires careful ëne-tuning of maximum node depth parameter and insertion recursion stopping cri-
terion to generate trees with reasonable memory requirements without causing performance degradation
due to insufficient space subdivision.

5.3 Multiple-reference kd-tree

Multiple-reference kd-tree is our new irradiance cache data structure based on the multiple-reference
octree. It uses the same concept of object duplication, search is again done by traversing single path
from the root to a leaf containing the query point and the insertion of a record is a recursive procedure
analogical the octree. e main difference between the two is in their branching factor – each octree node
has zero or 8 children because it splits the space in all dimensions at once; each kd-tree node has zero or
only 2 children as it splits the space only in single dimension.

We hope that the different branching factor will help in several ways. First is improving the adaptivity
of the data structure to scene records distribution. Every node split in octree results in 8 new nodes.
Equivalent space partitioning in kd-tree is obtained by 3 consecutive splits in alternating axes. We have
however the possibility to make only 1 or 2 splits, which allows for ëner control of the level of space
subdivision. It also allows to keep the node aspect ratios close to 1 in non-cube scenes while keeping
the root node tightly enclosing the scene. Finally, because the split procedure is greatly simpliëed by
restricting the split to single axis, we can derive a heuristic for determining best split position.

5.3.1 Split position heuristic

Our heuristic is similar to the surface area heuristic known from ray casting (Section 2.4.1). e idea of
improving a geometric search data structures outside of ray tracing using a SAH analogy is not new, it
was previously explored for example in the context of k-nearest neighbour search in photon mapping by
Wald et. al. [WGS04]. We cannot however use their results directly as they deal with slightly different
scenario, we have to manually derive our own cost function.

During the multiple-reference kd-tree traversal we follow single path from the root to a leaf. In each inner
node we continue to exactly one child containing the query point. Probability that a node contains the
query point is proportional to its volume², not to its surface area as in ray casting. Another difference is
that any node can hold records, not only a leaf node. ese facts lead to following cost function for a
(sub)tree:

f (X) =

{
N ·Co if X is a leaf,
N ·Co +C t + f (L)V (L)

V (X) + f (R)V (R)
V (X) if X is an inner node,

whereN is the number of records stored on the actual level,Co andC t are costs of reporting a record and
descending to next node, respectively, and V (X) is the volume of node X .

²Assuming uniformly distributed queries.

CHAPTER 5. DATA STRUCTURES FOR IRRADIANCE CACHING 41

5.3.2 Tree updates

Insertion procedure is similar to multiple-reference octree. We use the same criterion for stopping record
propagation as in the octree (Equation 5.1). We use the heuristic for splitting nodes that became too
big due to insertions and in recursive top-down rebuild-from-scratch algorithm to select both the axis
and position of the split by evaluating multiple possibilities and selecting the one minimizing f (X). We
also use the heuristic to determine whether to further split a node or create a leaf during the rebuild by
comparing the cost of creating a leaf node to the best split cost found.

Figure 5.2: An example (in 2D) of a tight bounding box of sphere-node intersection. Intersecting bounding
boxes of the node and sphere would give us correct but not optimal result (green dashed box). Computing
optimal (tight) result is more complicated (red box).

To efficiently evaluate the cost function for multiple splits we cannot work with balls directly, we have to
use their axis-aligned bounding boxes instead. Obtaining a bounding box from a ball is trivial, but we
want to keep the record bounding box tight with respect to the ball intersection with a node (Figure 5.2).
is is analogous to perfect splits known from kd-trees for ray tracing [SSK08]. Each time a ball is copied
to a child during the splitting we calculate its tight bounding box: we start with the intersection of node
and ball bounding boxes. en we iterate over all three axes and shrink this bounding box by applying
the Pythagorean theorem as illustrated in Figure 5.3.

In each level we can make the split in any of the 3 axes. ere are inënitely many possible split positions,
but similarly to SAH in kd-trees for ray tracing the cost function is piecewise linear [Hav00] with dis-
continuities at the beginning and end of each tight bounding box. We therefore evaluate the cost at these
locations only for each axis. Similarly to SAH builders we approximate f(L) and f(R) by leaf function
values (NL ·Co and NR ·Co). Note that because of the object duplication, NL +NR varies with different
splitting plane positions. e cost function implicitly favours not only balanced splits, but also splits with
minimal object duplication.

Multiple-reference kd-tree is very similar to the multiple-reference octree and same advantages and disad-
vantages apply. Multiple-reference kd-treemay deteriorate after several insertions when using the heuristic
because we do not search for new optimal split after each insertion. e data structure however always
reports correct results and can be easily rebuilt. We hope that the heuristic will lower overall size of the
tree and improve performance in comparison to the multiple-reference octree.

CHAPTER 5. DATA STRUCTURES FOR IRRADIANCE CACHING 42

d (R, N)

r

x

s

Figure 5.3: To compute the tight bounding box of ball-node intersection we iterate over all axes and calculate
s as

√
r2−di(R,N), where r is the ball radius and di(R,N) is the minimal distance between node N and

record ball R in axis i. Because of the Pythagorean theorem the half-length of the tight bounding box in the
other two dimensions cannot be larger than s, so we trim it accordingly.

5.4 Point kd-tree

Obviously no point data data structure without any modiëcation can give correct answers to our ball
searching problem. We however argue that the k-nearest neighbour (k-NN) search can give sufficient
approximate solution in most cases. We exploit the observation that usually only a small constant number
of records is used for the interpolation. is is the result of irradiance caching lazy evaluation scheme
– the cache can be always saturated using ënite number of records to provide irradiance estimate for
all visible surfaces. Once it is possible to interpolate the irradiance at a surface no new records have to
be created there from that moment on. e neighbour clamping (Section 3.1.5) also reduces number
of usable records at a point by shrinking their validity radii. Finally, if we report k nearest neighbours
we are guaranteed that for any unreported record with non-zero weight there are at least k closest ones.
ese will most probably have greater weights since they are closer than the unreported one. erefore
neglected records will have relatively small weights.

We test our hypothesis of k-NN search sufficiency by implementing a point kd-tree and using it in the ir-
radiance caching algorithm with k-NN search for ëxed k. We compare its visual results, statistics (number
of records really used for the interpolation) and performance to a reference method giving exact solution.

We use the adaptive kd-tree [FBF77] with explicit inner nodes, which decouples the tree data structure
from data, permits splitting at any position and axis, and stores data only in leaves. Each inner node is split
in half in its longest side. We use the sliding midpoint rule to get optimal performance for k-NN queries
(see Section 4.2.3). e tree uses many additional improvements – tracking nodes, depth írst branch and
bound, path ordering and bounds-overlap-ball (BOB) test, all described by Sample et. al. [SHAP01]. We
also use node packing – using bit manipulation we store each node in only 8 bytes. Because of that we
cannot afford to store both child pointers for an inner node. We instead store numerical index of only
the left child. Right child is implicit – stored immediately after the left one.

Record insertion into the kd-tree is simple, we just locate the leaf containing the record position and
insert it there. For each leaf we store tight bounding box of all its records for the BOB test, so we need to

CHAPTER 5. DATA STRUCTURES FOR IRRADIANCE CACHING 43

update it as well. If the leaf exceeds maximum size, we split it in two using the longest side rule. Rebuild
from the scratch is done by recursively applying the splitting rule, until no leaves exceed the maximum
size.

e k-NN search uses two priority queues - one for results and one for open nodes. ey both order
elements by their distance from the query point. We traverse multiple paths in the tree, starting with the
root. For each node encountered during the traversal we compute its distance from the query point (this
is accelerated by the tracking nodes) and if it is smaller than current distance to k-th nearest neighbour
we enqueue it in the open nodes queue. If we encounter an inner node we only try to enqueue both its
children. If we encounter a leaf we compute distances of all its records from the query and enqueue those
closer than previous best results. Before that we compute minimal distance from the query to the leaf
tight bounding box to determine if it is even possible to ënd closer points than we already have (BOB
test). e open nodes queue allows us to ërst process nodes closer to the query (path ordering) and to
stop the search when there are no unprocessed nodes closer than k-th nearest neighbour.

Biggest advantage of this search method is that it uses a well-known, extensively researched data struc-
ture with many existing implementations. It is easy to visualize and debug, and it has very good search
performance in point search. Kd-tree quality may degrade after multiple insertions into a region that was
previously empty and triggered the sliding midpoint, this is however taken care of during rebuilds.

5.5 Bounding volume hierarchy

Bounding volume hierarchy (BVH) is able to store non-point data without object duplication by allowing
node regions to overlap. Nodes do not partition space, each one is instead associated with an explicit axis-
aligned bounding box. Each node is either an inner node with two children or a leaf node with a list of
stored balls. Records are stored only in leaves. Search procedure is very simple: we traverse the tree from
the root to all leaves containing the query point. In each inner node we test both children bounding boxes
if they contain the query and descend into those which do. Insertion procedure simply ënds a suitable
leaf to insert the ball, enlarging bounding boxes of nodes on the path.

Similarly to the ray tracing variant there are many possibilities how to build the tree and the data structure
quality dramatically affects search performance. We would like to minimize overlapping of nodes as well
as surface area of node bounding boxes, because we expect these parameters to affect query performance
the most [BKSS90]. For incremental updates we use simple heuristic: in each level we insert the ball into
the child whose bounding box have to be enlarged less. If inserting a record causes a leaf record count to
exceed a pre-set maximum value (“overìow”), we split the leaf according to a heuristic similar to that of
multiple-reference kd-tree (Section 5.3).

In an inner BVH node we can descend into both children, but the condition for traversing a child (it
containing the query point) remains the same, therefore the probability is the same as in kd-tree. Only
difference reìected by the function is that inner nodes can no longer contain records:

f (X) =

{
N ·Co if X is a leaf,
C t + f (L)V (L)

V (X) + f (R)V (R)
V (X) if X is an inner node.

(5.2)

CHAPTER 5. DATA STRUCTURES FOR IRRADIANCE CACHING 44

e heuristic is again used for splitting nodes both during insertion and rebuild. We ënd the best split
by iterating over all axes, sorting the list of n records in each axis, computing the costs of n−1 possible
divisions of the list in two and selecting the one with lowest cost. Values of f (L) and f (R) are again
estimated by NL ·Co and NR ·Co. We also use the heuristic to determine if a node with less than maximum
amount of records should be further divided or if a leaf should be created. is is done by comparing the
cost of creating a leaf from Equation 5.2 with the lowest cost of split found and selecting the option with
lower function value.

BVH is simple and robust data structure, easy to implement and with lowmemory consumption, because
it avoids any object duplication. Its traversal performance is however lower, because multiple paths from
the root need to be traversed to answer a query and also because point-bounding box tests are more
expensive than simpler point-half-space tests of space-partitioning data structures.

5.6 Dual space kd-tree

Another method for dealing with non-point data we want to try is the object mapping, described in
Section 4.3. Because a ball in 3D space have 4 degrees of freedom (3 for its origin position and 1 for
radius), we transform it to a single point in 4D euclidean space. Exact formula for the transformation is
closely linked to the search procedure. We can derive both from the point-ball overlap test:

(px− cx)
2 +(py− cy)

2 +(pz− cz)
2 ≤ r2,

where p = (px, py, pz) is the query point position and c = (cx,cy,cz) is the ball centre position:

p2
x−2pxcx + c2

x + p2
y−2pycy + c2

y + p2
z −2pzcz + c2

z ≤ r2,

−2pxcx−2pycy−2pzcz + c2
x + c2

y + c2
z − r2 ≤ −p2

x− p2
y− p2

z ,

(−2px, −2py, −2pz, 1) · (cx, cy, cz, c2
x + c2

y + c2
z − r2)T ≤ −p2

x− p2
y− p2

z .

We can easily recognize the 4D point in half-space test in the last inequality. We therefore transform the
problem of reporting all balls overlapping a point in 3D to the problem of reporting all points inside a
half-space in 4D (Figure 4.1e). Mapping of each record ball with centre (cx,cy,cz) and radius r to 4D
point (x′,y′,z′,w′) is:

(cx, cy, cz), r→ (cx, cy, cz, c2
x + c2

y + c2
z − r2).

Query point position (qx,qy,qz) is transformed to query half-space deëned by this inequality:

(−2qx, −2qy, −2qz, 1) ·pT ≤−q2
x−q2

y−q2
z .

We organize the transformed points in a kd-tree to accelerate the half-space queries. e tree is identical
to our point kd-tree (Section 5.4), except it is built in 4 dimensions and the sliding midpoint rule is not
used because we do not perform k-NN queries. e search procedure is, as all range queries, very simple.
We just traverse the tree from the root, visiting all nodes which intersect the query range (half-space) and
reporting records in all leaves encountered.

CHAPTER 5. DATA STRUCTURES FOR IRRADIANCE CACHING 45

One potential problem of this object mapping approach is that the non-linearity of the fourth coordinate
transformation may induce a non-uniformity in resulting point distribution, which could negatively af-
fect kd-tree performance. Because of this we translate the scene to have its bounding box centre in the
coordinate system origin to lower the magnitude of some of the mapping terms. We also scale the fourth
dimension to set its size (difference between minimum and maximum values of stored data) equal to the
mean size of ërst three dimensions. is is to ensure that the tree is built correctly, with roughly 1⁄4 of
splits occurring in each dimension.

Transforming the problem to a higher dimensionmay seem overcomplicated and unintuitive, but it allows
us to solve the problem exactly using well-known point kd-tree and half-space range searching algorithms.
Biggest problem is the dimensionality of transformed problem – 4D tree is hard to visualize and debug
and the increase of dimensionality from 3D to 4D negatively affects its performance. e fact that we do
not work directly with original data, but with transformed points, also further complicates debugging.

Chapter 6

Unified radiance caching

Optimizing the search in radiance caching is not as straightforward as in the irradiance caching. We do
not implement the spherical harmonics radiance caching (SHRC), because its search problem is identical
to that of irradiance caching. We instead investigate the spatial directional radiance cache (SDRC), which
is simpler and promises more potential for improvement.

e search problem in SDRC has two stages: spatial and directional. e spatial phase identiëes spatially
close records. e search is again identical to both irradiance caching and spherical harmonics radiance
caching. It is performed once per interpolation and its computational cost is insigniëcant to the rest of
the interpolation. After close records are located we generate random samples on the hemisphere around
interpolated point using importance sampling according to the surface BRDF. For each one of them we
search all spatially close records for any directionally close radiance samples stored in them. is means
that the second search is performed M · |S(x)| times, with M being the number of BRDF samples and
|S(x)| the number of spatially close records.

e second search is a k-NN point search in the two-dimensional domainD in and it is accelerated using a
standard kd-tree. It is unlikely that any other data structure would consistently perform better, as the data
can be both uniform and highly non-uniform, but it is possible to reduce the number of searches needed
to perform the interpolation. is however cannot be done only by changing the search data structure;
we need to change the algorithm as well. Because of this we derive our own variant of radiance caching
combining spatial and directional interpolation into a single process, called uniíed radiance caching.

6.1 Unified radiance caching overview

Both SHRC and SDRC algorithms are heavily based on the original irradiance caching algorithm. We
instead use the phase space rendering approach presented byHinkenjann [HR07]. We no longer create any
records in sense of radiance samples clusters and we abandon the split sphere model spatial interpolation
phase.

We still reconstruct the exitant radiance using cached incident radiance similarly to SDRC, but we store
individual incident radiance samples in a single data structure, the uniíed radiance cache. Each radiance

46

CHAPTER 6. UNIFIED RADIANCE CACHING 47

sample has an origin and a direction, that means that the phase space of all possible radiance sample
conëgurations has 5 degrees of freedom and the uniëed radiance cache have to operate in at least 5D
space.

To compute the reìected radiance in a point we solve the reìection equation (Equation 2.10) using the
Monte Carlo method. We create M samples on the hemisphere using importance sampling according to
BRDF and cosine terms. e estimator is simply:

⟨I⟩ = ρ
1
M

M

∑
n=1

L(x← ω⃗in), (6.1)

with the PDF:
p(ω⃗in) =

fr(x, ω⃗in , −ω⃗o)cosθin

ρ
. (6.2)

We are able to solve the integral non-recursively by using the cached incidence radiance values. For each
direction ω⃗in generated by the sampling we need to search the cache for values close to (x, ω⃗in). If such
values exist, we interpolate them to get the estimate of L(x← ω⃗in). If the interpolation is not possible,
we create new radiance sample by casting a ray from x in the direction of −ω⃗in , insert it into the cache
and use its value in the estimator. Stored radiance samples and generated BRDF samples are shown in
Figure 6.1.

Figure 6.1: An illustration of the uniíed radiance caching. Single primary ray (red) hits the surface. Mul-
tiple BRDF samples are created (green rays). ese samples are not ray traced, but instead we perform the
interpolation for each of them, using cached radiance samples (black).

6.2 Radiance samples interpolation

To calculate the exitant radiance at a point using Equation 6.1 we need to interpolate incoming ra-
diance for several directions. is interpolation is an example of the scattered data interpolation prob-
lem. Standard approach is to interpolate between stored samples using weights computed as inverse of
squared distances between stored samples and the query point (this process is called inverse distance weight-
ing [She68]). We use this method, but for efficiency reasons we do not use all stored samples for each
interpolation. We instead limit the interpolation to k nearest neighbours that are not farther from the
interpolated point than a maximum interpolation distance.

CHAPTER 6. UNIFIED RADIANCE CACHING 48

e problem is how to deëne the distance both for ënding nearest neighbours and for the weight com-
putation. To be able to use standard data structures for efficient searching we need the metric to be
Euclidean. Because of that we simply unite spatial and directional dimensions (by directional dimensions
we mean dimensions of the Euclidean space to which we map directions, as described later) to create
single 5D space. Distance between two arbitrary radiance samples is then:

d(L(x1, ω⃗1), L(x2, ω⃗2)) =
√

α∥x1−x2∥2 +β∥ω⃗ ′1− ω⃗ ′2∥2, (6.3)

where ω⃗ ′ is the mapped radiance direction vector and α and β are spatial and directional sensitivity
coefficients, respectively. ey determine how sensitive is the interpolation to spatial and directional
deviations of cached values from the interpolated point.

e interpolation is now very simple. If we wish to interpolate the value of L(x, ω⃗), we simply locate
k closest cached samples according to the metric from Equation 6.3 and assign them weights by inverse
distance weighting:

w(L(xi, ω⃗ i)) = max
(

1
d(L(x, ω⃗), L(xi, ω⃗ i))2 − 1, 0

)
. (6.4)

If all weights are zero, we simply compute a new radiance sample, store it in the cache and use its value as
the interpolation result. If there is at least one sample with non-zero weight, we perform the interpolation:

Linterp.(x, ω⃗) =
∑k

i=1 w(L(xi, ω⃗i)) L(xi, ω⃗i)

∑k
i=1 w(L(xi, ω⃗i))

.

We subtract 1 from the weight in Equation 6.4 to limit the maximum distance at which any sample can
be reused. is is an arbitrarily chosen constant; the actual domain over which each sample can be reused
is determined by our choice of coefficients α and β in the distance computation (Equation 6.3).

Biggest problem is how to determine the coefficients α and β . Setting them too high would cause
caching inefficiency because the samples could not be properly reused, but setting them too low would
cause artefacts and bias as a result from reusing samples over too large area. For the spatial coefficient
α we draw inspiration from record spacing limits in irradiance caching (Section 3.1.5). We choose the
coefficient so that, assuming themaximum distance for interpolation of 1, a radiance sample can be reused
no farther than few (3–10, 5 in our implementation) projected pixels. For the directional coefficient β we
use the same approach as in SDRC and base it on the number of BRDF samples N and the probability
of generating a particular sample p(ω⃗i) (Equation 6.2). We also limit it by using a global minimum
directional sensitivity βmin to avoid errors from reusing samples over too large area in directions where
p(ω⃗i) is low. e resulting formula for β is:

β = max
(

βmin, k
√

N p(ω⃗)

)
. (6.5)

e formula is based on similar formula from the SDRC (Equation 3.11) that operates with maximum
interpolation distance instead of sensitivity. ese two quantities are reciprocal. We use a constant mul-
tiplier of directional difference sensitivity k. Its value is determined empirically. In our implementation
we let k = 15. e β value adapts both to the number of BRDF samples N and to the BRDF, causing

CHAPTER 6. UNIFIED RADIANCE CACHING 49

more accurate directional interpolation at sharp BRDF peaks and when using more samples in the exitant
radiance estimator (Equation 6.1).

Note that we use
√

N instead of directly N in the last formula, unlike the original SDRC formula (Equa-
tion 3.11). If we would have used N directly then doubling the number of BRDF samples would double
the sensitivity and reduce the maximum search radius by half. is would reduce the area of the disk
region where each sample can be reused to one quarter. Probability that we can reuse a sample is propor-
tional to the area of this disk. is means that we would need quadratically more cached samples when
linearly increasing the BRDF samples count. By using

√
N we keep the relation linear.

6.3 The directional mapping problem

Biggest problem in the uniëed radiance caching is how to integrate the directional dimensions into the Eu-
clidean space, to allow efficient searching. Ideal mapping would be area-preserving and shape-preserving
(so it does not warp the radiance proximity metric) and continuous (because discontinuities would cause
close samples to be neglected during the interpolation). Unfortunately, no single mapping can satisfy
these requirements.

ere are several existing mappings we could possibly use, with some being better than other. Building
the tree over the standard θ , ϕ parametrization of a sphere is out of the question, as this parametrization
extremely deforms the space, has two singularities on poles (segments that map to single points) and a dis-
continuity along one edge. As a result the directional sensitivity of the cache would be greatly inìuenced
by the direction of query and many valid samples would be missed while searching near the discontinu-
ity. More straightforward way is to simply build the tree over endpoints of direction vectors on the unit
sphere. is would work, as the sphere surface is locally sufficiently ìat, but it would add an additional
unnecessary dimension to the search problem. Because of the curse of dimensionality 6D search is con-
siderably more difficult than the basic 5D variant. Another option is the paraboloid mapping [HS98]
used in the SDRC, but it is not area-preserving and it is discontinuous along the equator.

We solve the problem by dividing the sphere of dimensions into a north and south hemisphere and
keeping two separate trees for each one. is obviously creates a discontinuity along the equator. We
remedy this by enlarging both hemispheres to create a central overlapping belt, as shown in Figure 6.2.
Each record that falls into the belt is duplicated – stored in both north and south hemisphere. Size of
the belt is determined by the maximum directional distance at which a sample can be reused (which is
reciprocal to the minimal directional sensitivity βmin).

To map a direction (unit vector end point) on the north hemisphere to a plane we use the area-preserving
bicontinuous mapping from unit hemisphere (x, y, z) to unit disk (rd , ϕd) [Dut03, p. 19]:

rd =
√

1− y,

ϕd = atan2(x, z),

combined with the mapping from a disk to square by Shirley [SC97], which is also area-preserving,
bicontinuous and with low distortion. e ërst mapping is sufficient for our task on its own, the second

CHAPTER 6. UNIFIED RADIANCE CACHING 50

o

Figure 6.2: is illustration shows how we divide the entire sphere to two hemispheres and then enlarge them
to get the central overlapping belt. Any point on that belt belongs to both north and south domains. Half-size
of the belt o is equal to 1/βmin.

mapping is not necessary for the algorithm to work. We however use it because it is simple, fast to
compute when we already have polar coordinates of the point on disk computed and it makes the domain
rectangular, which beneëts the kd-tree we use for searching. e mapping results are shown in Figure 6.3.

(a)Uniformly distributed points on a hemisphere. (b)Result of mapping from
the hemisphere to a unit
circle.

(c) Result of mapping from
the hemisphere to unit cir-
cle to unit square.

Figure 6.3: Mapping of directions in 3D to a plane in 2D: írst picture shows original data (uniformly
distributed directions on a unit hemisphere). Second picture shows the same directions mapped to a unit disk.
ird picture shows the same directions additionally mapped to a unit square using Shirley’s mapping.

Mapping for the south hemisphere is analogical, we only change the sign of y. Both mappings have no
problem with the overlap belt at the equator – they map points from the other hemisphere continuously
outside the original unit rectangle. We could in fact use single tree for the whole sphere with this mapping,
but the mapped domain would have a singularity at one of the poles and nearby areas would be greatly
distorted by the mapping.

CHAPTER 6. UNIFIED RADIANCE CACHING 51

6.4 Samples storage

Because the samples are simple points in 5D space, we can use the standard kd-tree, virtually identical
to the one we use in irradiance caching (Sections 5.4 and 5.6) except for dimensionality. Because of the
mapping we have to actually keep two kd-trees in parallel. Before storing each sample we ërst determine
whether it should go in the north, south or both trees. After that the mapping is performed, the tree is
traversed and the sample is inserted into the node it intersects.

During searching we map the query to a 5D point and perform the standard k-NN query using the
distance metric from Equation 6.3 with coefficients α and β computed separately for each query. e
kd-tree needs to be build carefully, with keeping in mind that spatial dimensions can have dramatically
different sizes than directional ones. We need to build the tree with approximately 2⁄5 splits occurring in
directional dimensions.

6.5 Ray length heuristic

One big problem of the described algorithm is that by abandoning aggregate records we have given up
the information about Ri, the distance to other surfaces. We cannot use it to make the algorithm adaptive
to scene geometry, which is the key to producing high quality results. We achieve the adaptivity another
way – for each radiance sample we store its ray length (distance to the surface from which the radiance
was emitted) and during the incident radiance interpolation we calculate weighted variance of all used
sample ray lengths. If the variance exceeds a pre-set threshold we compute a new radiance sample instead
of interpolation, use it and store it in the cache. is gives us some degree of geometry adaptivity, because
high variance indicates that reìected rays hit very different objects in the scene, as shown in Figure 6.4.

Figure 6.4: An example of scene where varying ray lengths of radiance samples used for interpolation indicate
fast-changing indirect illumination: because a part of samples hit the cube and the rest hits the background,
the variance of ray lengths is there very high.

Chapter 7

Implementation

We have implemented the data structures and algorithms described in Chapters 5 and 6 in our rendering
system,Corona. It was created as a part of bachelor thesis [Kar09] and since then it was being continuously
expanded and improved. In its current version it implements wide variety of algorithms for realistic image
synthesis in static scenes via ray tracing.

7.1 Corona framework architecture overview

Corona is a rendering framework written in C++ language. It consists of multiple applications. Central
component is CoronaCore - the rendering core, which takes already loaded scene, camera description,
and render settings, and renders it. It does not handle scene loading nor output display. It is realized
as a dynamic-link library (.dll) loaded by a front-end application handling input and output. ere are
two front-ends currently available: CoronaStandalone – a standalone (.exe) application, which is capable
of loading and parsing various ële inputs and displaying the results using simple graphical window and
CoronaMax – a plug-in for the Autodesk 3ds Max modelling software [Inc11]. ere is also a set of utility
plug-ins (materials, data visualization tools, etc.) for 3ds Max called CoronaMaxUtils.

7.1.1 Rendering core interface (CoronaCore)

Only task of CoronaCore is to create the ënal render from an already prepared scene. Its interface is
very simple. Caller simply creates an instance of class CoronaCore and then calls its render method,
which renders a single image. All input data are passed to this method in an instance of the Context
class. is aggregate class holds pointer to the scene being rendered (an instance of the Scene class) and
pointers to several objects realizing the input/output interface. ese objects are implemented by the
caller; callee only speciëes the needed interface in form of pure virtual (abstract) methods. ey are used
to retrieve render settings (Abstract::Settings), store resulting image (Abstract::FrameBuffer), log
events, progress and statistics during rendering (Abstract::Logger) and visualize various data structures
for debugging and tuning (Abstract::Visualizator).

52

CHAPTER 7. IMPLEMENTATION 53

7.1.2 3ds Max plug-in integration (CoronaMax and CoronaMaxUtils)

CoronaMax is implemented as a plug-in for 3ds Max. ere are two ways to create a 3ds Max plug-
in: either via MAXScript, a built-in high-level scripting language, or by creating a C++ dynamic-link
library using 3ds Max software development kit (SDK) [Lan07]. Due to performance considerations and
limitations of MAXScript, CoronaMax uses the latter option.

Main class of the plug-in, CoronaMax, is derived from the Renderer class provided by 3ds Max API.
Any such derived class is automatically listed as an additional renderer in the system. e plug-in acts
as an adaptor between the rendering core and the 3ds Max API. It provides the rendering core with
implementations of all needed classes, each of which encapsulating different functionality of 3ds Max.
is allows the core to be application-independent.

Settings are handled by the MaxSettings class. It uses 3dsMax integrated Parameter blocks system [Inc09]
for setting and retrieving the render settings, as well as saving and loading it in the 3ds Max native
scene format. An instance of MaxFrameBuffer handles the image output – it holds pointer to a Bitmap
class instance provided by 3ds Max API, which is mapped to the rendered frame window inside the 3ds
Max. Logging is handled by MaxLogger, which logs events to a ële and updates the progress bar in 3ds
Max render dialogue provided by the API. e visualizator can be of two types: a DummyVisualizator,
which does nothing, and DataViz, which is realized as a scene object (a part of the scene hierarchy in
the modeller) derived from the HelperObject API base class. is visualizator can display various data
structures it receives from CoronaCore as geometry objects in 3ds Max viewports. Examples of these
visualizations are shown in Figure 7.1.

(a) Kd-tree visualization. (b) Irradiance cache records visualization.

Figure 7.1: Two examples of data structure visualizations in the viewport of 3ds Max – a ray casting kd-tree
(left) and an irradiance cache (right). e irradiance cache in the second image was created by rendering the
image using the depicted camera.

e renderer also implements its own material class, CoronaMtl, with custom adjustable parameters,
which directly translate to Corona native material properties. It is implemented by deriving the class
from API base class Mtl. Its parameters are once again stored using the Parameter blocks system.

During the start-up of 3ds Max an instance of MaxEnvironment is created. It parses the default settings
default conëguration ëles (.conf ëles, described in detail in Appendix C), holds it together with other data

CHAPTER 7. IMPLEMENTATION 54

and remains in memory until the plug-in in unloaded. It can be accessed by anyone using the Singleton
pattern [GHJV95].

3ds Max starts the render by calling the Render method of CoronaMax. First settings from conëguration
dialogue are saved, then MaxSceneParser is instantiated. It iterates through scene objects and extracts
all geometry, lights and materials. MaxSceneBuilder accumulates them and builds the scene. e scene
is saved to a Context instance and passed to MaxEnvironment, which instantiates CoronaCore and in-
vokes its render method, starting the actual render. In order to provide maximum responsiveness of user
interface during rendering, MaxEnvironment calls the method in another thread. e main thread only
periodically updates the rendered frame window and handles any eventual user input.

A renderer in 3ds Max have to render not only the ënal image, but also small material previews in the
material editor. Special care have to be taken to handle this. Fortunately 3ds Max API provides a way to
differentiate standard render from material render. For a material render we disable logging and render
progress bar updating (because there is no progress bar), add default lights to the scene and most impor-
tantly, use different set of settings. is is to ensure consistent behaviour of material editor regardless of
render settings for ënal image and because of optimization, as material editor does not require such high
quality rendering as ënal image.

7.1.3 Standalone renderer (CoronaStandalone)

e “standalone” version of Corona is much simpler. It loads scene description from ële (or multiple
ëles), uses CoronaCore to render the result and displays it on the screen using the Simple DirectMedia
Layer (SDL) multimedia library [Gam11].

e application is capable of parsing multiple input formats. Its primary input is a scene (.scn) ële,
which contains list of all ëles to parse for the scene. It supports Wavefront OBJ format for geometry [Ali]
(triangles and quads) and MTL ëles for corresponding materials deënition [RRT95]. Settings are loaded
from the same .conf format as in CoronaMax. Textures are supported in BMP format using the EasyBMP
library [Mac06] to load them.

Because both OBJ andMTL formats are very limited, we have developed simple extensions to the original
format – syntax for speciëcation of camera, lights and advanced material properties. ese additions are
in form of special comments. Because of that standard parser ignores them and they do not cause syntax
error. List of these extensions in Appendix C.

CoronaStandalone can also load one binary scene format – Corona binary íle (.cbf). is format is as
close as possible to a simple binary dump of memory where the scene is stored. is causes the saved
scene to be small and saving/loading to be fast, but scenes saved in older versions of Corona may be
incompatible with newer builds. Single .cbf ële contains entire scene including materials and textures.
Only settings are stored separately in an independent .conf ële. CBF export is built into the core. When
the scene is to be exported, no rendering takes place and CBF and OBJ exports are created instead. e
OBJ ële created uses the extensions described earlier.

Single run of CoronaStandalone renders a single image. First, all input ëles are parsed, scene is created
and settings are loaded. Settings are stored using an instance of StandaloneSettings. Frame buffer for
the standalone renderer is implemented in the class SdlFrameBuffer. It holds pointer to a SDL_Surface

CHAPTER 7. IMPLEMENTATION 55

provided by the SDL library, using which results are displayed on screen. Second implementation of a
frame buffer is SimpleFrameBuffer, a simple class with no GUI used for testing. Both frame buffers also
save the ënal image after rendering as a BMP image using the EasyBMP library. Logging is handled by
StandaloneLogger, which writes log events to standard output as well as to a log ële. CoronaStandalone
always uses DummyVisualizator as visualizator, as it does not support visualization of any data structure.
e rendering is once again invoked in another thread in order to provide responsive user interface.

7.2 Corona rendering core

e renderer has modular architecture. Many key components are realized as exchangeable components
by specifying required interface in an abstract base class and using virtual methods. Centre of the renderer
is the InternalInterface object, which holds the scene, input/output objects passed by the front-end
(frame buffer, settings, logger, visualizator), camera, ray tracing acceleration data structure and the inte-
grator (object which computes colour for given ray). Many other objects hold pointer to the Internal-
Interface, as it provides other parts of renderer with key functionality, such as the ability to cast a ray,
create a ray from image sample, and turn a ray into colour via shading.

7.2.1 Scene and settings

Scene description in Corona is a single instance of the Scene class, which holds pointers to all primitives,
lights and materials. All primitives in the scene are stored in a single array; no other information about
their hierarchy in the scene is preserved. Corona supports multiple primitive types via polymorphism: all
primitives are stored up-casted to the base class Abstract::Primitive. is class provides interface for
ray intersection and stores the material ID (index to the materials array) of the primitive. Currently imple-
mented primitives are triangle, quad (two triangles sharing common edge) and sphere. Both triangles and
quads use the Möller-Trumbore intersection test [MT97]. Other primitives can be added easily, but virtu-
ally all available scenes use exclusively triangles. All materials are derived from the Abstract::Material
base class, which deënes interface for shading and holds pointer to its BSDF. Each material in Corona
has an associated BSDF object. It is an instance of class derived from Abstract::Bsdf and it has two key
methods: transported, which calculates the BSDF value pre-multiplied by cosine (fr(x, ω⃗i, ω⃗o) ·cosθi)
for given pairs of incident and exitant directions, and sample, which performs importance sampling of
exitant directions for given ëxed incident direction according to the BSDF value multiplied by cosine
(Equation 2.15).

Difference between a material and a BSDF is that material is more complex object. It stores all colours and
textures required for shading the surface, and it is capable of performing this shading on its own. BSDF
is much simpler, as it only represents the reìectivity distribution function. It cannot perform shading
independently, but instead is used by GI algorithms. It obtains all informations about the surface (e.g.
diffuse and specular colour, specular exponent, ...) from its parent material.

Corona currently supports two materials: NativeMtl – the standard Corona material, used for realistic
rendering and UnsupportedMtl – dummy material with constant colour, used when unknown mate-
rial is encountered at input. Implemented BSDFs are NoBsdf, a dummy BSDF whose value is always

CHAPTER 7. IMPLEMENTATION 56

zero (ideal black body), and PhongBsdf, the modiëed Phong BRDF with possible refractive component
(Equation 2.9).

All lights of the scene are stored in an array, up-casted to their common base class Abstract::Light.
is class, however, does not provide any interface for illumination computation, because there are two
principally different types of lights: delta lights and area lights. Illumination from a delta light can be
easily determined by a single shadow ray, because this type of light is an idealized model which does
not emit energy from a surface, but only from single point (point light, spot light, ...) or only in single
direction with no origin (directional light). Area lights in contrast have non-zero light-emitting area and
have to be sampled using the Monte Carlo method. ey represent the Le factor in rendering equation
(Equation 2.11).

Because each light type requires different interface for the illumination computation method, there two
additional abstract base classes derived from the Abstract::Light class: Abstract::DeltaLight and
Abstract::AreaLight. Each one has the same method getIllumination but with different parame-
ters; area light variant takes number of shadow rays to use and an array of random samples as additional
parameters. Delta lights does not need them as they are deterministic. e illumination method in both
cases takes the shaded surface BSDF as a parameter and returns radiance reìected in viewing direction by
the BSDF due to the light, not radiance incoming to the surface from the light¹. ere is one additional
light type: Abstract::EnvironmentLight. It represents illumination coming from non-black scene en-
vironment. Although it could be represented by an area light type instance, we choose to separate it, as
it is often advantageous to handle direct environment lighting differently from ordinary lights. is sep-
aration allows us for example to selectively enable or disable explicit environment sampling for different
types of rays.

Corona currently supports single delta and single area light type. e delta light supported is PointLight
– a standard omnidirectional point light with optional quadratic attenuation. It illuminates surfaces
deterministically by casting a single shadow ray between the light origin and surface point. e area
light implemented is TriangleLight, a light-emitting triangle. We use triangles instead of rectangles,
because any light-emitting surface, including rectangles, can be triangulated. A TriangleLight instance
is automatically created for any triangle in scene with light-emitting material. e emission is required to
be diffuse and constant across the triangle (Le(x→ ω⃗o)must be constant with respect to both ω⃗o and x).
Illumination due to this light is an integral over the triangle surface, which is estimated by Monte Carlo
method (using Equation 2.16 and the estimator in Equation 2.4.3).

ere is currently only one implementation of environment light - class EnvironmentLight. It allows
explicit sampling of the environment using shadow rays. Directions to be sampled are chosen with PDF
proportional to the environment colour intensity.

e environment is stored discretized and rendered to a bitmap. Cumulative intensities are computed for
pixels in each row and for all rows as wholes. Sampling is then done by generating a random sample and
locating corresponding cumulative intensity value using binary search. Importance sampling according
to the lighting intensity gives bad results in scenes with uniform environment colour. It is usually better
not to use explicit environment lighting and sample it implicitly (through rays that missed the scene).
Exceptions are scenes with highly non-uniform environment, for example scenes lit by an HDRI map.

¹is is because of area lights, which would otherwise have to return some sort of incoming radiance distribution description,
which would then have to be integrated together with the BSDF.

CHAPTER 7. IMPLEMENTATION 57

7.2.2 Lighting solvers

e lighting computation in Corona is split into multiple terms for efficiency reasons; each one is handled
by different algorithm. ese algorithms are once again made interchangeable by wrapping them in solver
objects which make use of virtual methods. e quantity computed by all solvers is the radiance reìected
off the surface towards the viewer. Some solvers may need to perform precomputation. Because of this
the base classes have the precompute method, which has to be called before the solver is used. Another
shared methods are dumpToFile and loadFromFile, which are used for saving and subsequent loading
of the GI solution from a ële. e loadFromFile method is called instead of precompute.

Direct lighting (light arriving at surface directly from light, with no bounces on its path) is computed by
a direct light solver (derived from Abstract::DirectLightSolver class), which determines which lights
in scene to sample. First implemented solver, SimpleLightSolver, offers simple implementation which
iterates over all lights and accumulates their contributions. SmartLightSolver is more sophisticated
solver, which samples all lights as whole. It works by iteratively randomly selecting single light with
probability proportional to its power output and sampling it. is allows to calculate lighting in scenes
with many lights using only constant number of shadow rays (as described in [SWZ96]).

Global illumination (light arriving at surface that was reìected at least once in the scene) is computed
by Abstract::GiSolver. To further increase modularity, there are two types of GI solvers: primary and
secondary. Primary solver (Abstract::PrimaryGiSolver) computes the GI for primary hit points (points
directly visible from camera). A secondary solver (Abstract::SecondaryGiSolver) is used only by some
types of primary solvers which need to compute GI at additional points in the scene. All these solvers
are held by the LightingEngine class, which encapsulates the entire lighting process in single method,
getIllumination.

Simplest GI solver is the NoGiSolver, which always return black colour. It is a dummy solver used for
disabling GI computation. PathtracingGiSolver computes GI using the Monte Carlo path tracing
described in Section 2.4.3. Photon mapping (Section 2.4.4) in Corona is implemented by the Photon-
MapGiSolver. It stores all photons in the PhotonMap object, with additional kd-tree built over them (re-
alized by the universal PointKdTree class). e photon emission and kd-tree build takes place during the
precomputation. Irradiance and radiance caching implementations are encapsulated in the IcGiSolver
class, which holds irradiance and radiance cache solvers. Because of performance reasons the solvers are
supplied as template parameters. Our irradiance caching implementation is described in greater detail in
Section 7.3.

e relations between solvers are quite complicated. Because the primary GI solver depends on the sec-
ondary and they both depend on the direct light solver, direct light solver is initialized and runs precom-
putation ërst. en the secondary GI solver is initialized, if primary solver needs it. Primary GI solver
is initialized last. Another intricacy is that some solvers can compute some direct lighting components
virtually for free. For example the photon mapping can easily compute direct lighting from scene lights
(by storing photons at their ërst bounce) and irradiance caching can easily compute diffusely reìected
direct lighting from environment. Because of this each GI solver has a componentsComputed method,
which returns direct lighting components it computes, and direct lighting solvers and environment maps
can be conëgured to compute only those components not covered by the GI solver.

NoGiSolver, PathtracingGiSolver and PhotonMapGiSolver can be used both as primary and secondary

CHAPTER 7. IMPLEMENTATION 58

solvers. IcGiSolver can be only used as the primary solver. By combining different solvers we can
easily recreate common algorithms traditionally used for computing global illumination: by using photon
mapping as primary solver we get direct photon map visualization, but by using it as secondary solver and
selecting path tracing (with high ërst bounce branching) as primary solver we obtain the ínal gathering.
e ënal gathering can be accelerated by selecting irradiance caching as primary solver, irradiance caching
on its own with no secondary GI (NoGiSolver) produces single bounce GI approximation, and so on.

7.2.3 Rendering workflow

e render is started when a front-end instantiates the CoronaCore class, calls its render method and
passes it a Context class instance holding the prepared scene. CoronaCore instantiates the Internal-
Interface and initializes its various components (GI solvers, camera, ...). First the acceleration data
structure is built using user-selected data structure builder. en, if physically correct lighting is needed,
direct and indirect lighting solvers run their precomputation². After this initialization phase a renderer
is instanced. Renderer in this context is an instance of class inheriting from Abstract::Renderer that
controls the rest of the rendering process.

ere are various renderers implemented. LightTracerRenderer is simple unbiased, progressive renderer
that uses light tracing – the dual algorithm to path tracing [DBB06, p. 143]. It propagates photons
through the scene the same way as photon mapping does, but does not save them. Instead, a contribution
ray from each surface hit by a photon is sent to the camera and if it is unoccluded, we add its contribution
to the pixel it projects to. is process is depicted in Figure 7.2. Because the photons are not stored and
the method is unbiased, the renderer can run in an inënite loop, constantly reëning the image, until it is
interrupted by user.

Figure 7.2: Visualization of the light tracing rendering algorithm. Rays are shot from the light and traced
through the scene. Any time a ray hits any surface a contribution ray is created and traced towards the camera.
If there is no obstacle in the way then contribution of the ray is computed and added to the image.

²Precomputation phase for various algorithms differs greatly: photon mapping solver emits photons and builds a kd-tree
from them, irradiance cache solver populates the cache, path tracing solver does nothing.

CHAPTER 7. IMPLEMENTATION 59

e standard renderer implementation is the MultithreadedRenderer. It allows multithreaded render-
ing by splitting the rendered region into multiple square tiles, called buckets. It then uses a scheduler
(Abstract::Scheduler subclass) to spawn worker threads, each of which renders single bucket at a time.
Two scheduler implementations are available: SingleThreadedScheduler uses only single thread to ren-
der the image sequentially while the WinThreadsScheduler spawns multiple threads using Microsoft
Windows API functions [Mic10].

MultithreadedRenderer instantiates an image sampler that determines which pixels and how to sample,
creates primary rays for these samples using the camera, turns these samples into colour using an integrator,
and accumulates results in the frame buffer.

e image sampler interface is deëned in the Abstract::ImageSampler class. It handles the integration
of radiance over each pixel area to create its ënal colour. It determines both the number and positions
of samples for each pixel as well as order in which the pixels are evaluated. Currently the only imple-
mentation of image sampler in Corona is the AdaptiveSampler. It supports adaptive anti-aliasing by
iterating multiple times over the image. All pixels are sampled in the ërst pass, then in subsequent passes
it computes perceptual difference for all neighbouring pixels (based on the Weber law [FPSG96]), and
places additional samples at pixels which differ from their neighbours by more than a speciëed threshold.

e camera does not only create rays from samples, it can also perform the inverse operation (called un-
projection in Corona) and compute estimated projected pixel area in scene. e standard implemented
camera is the PinholeCamera, an idealized model of projective camera (camera obscura), producing rays
with a single common origin and different directions. ThinLensCamera is another camera implementa-
tion. It simulates a real world camera with non-negligible aperture size, which causes blurring of objects
that do not lie in the focal plane (the depth of íeld effect). It is simulated by selecting the ray origin for
each ray randomly on the surface of the aperture (which is simpliëed to a disk). Other than perspec-
tive projection is possible, as demonstrated by the OrthogonalCamera. It implements the orthographic
projection with arbitrary direction vector. It generates rays sharing the same direction, but differing in
origin.

e ënal step in the rendering process is obtaining the colour from the ray. is is done by a subclass
of Abstract::Integrator. Default integrator is SimpleIntegrator. It works by tracing the ray it is
given, and then calling the shademethod of material it hits, or returning background colour for any rays
missing the scene (Figure 7.3a). is effectively delegates the shading process to materials, which allows
combining various shading methods. Other integrators can be however used to override the materials.
One implemented example is the DotProductIntegrator, which after tracing the ray simply returns
shade of grey computed as cosine of the angle between ray direction and surface normal (Figure 7.3b).
Because this shading is simple and predictable, it is useful for debugging.

ere are another specialized renderers – SaveHitpointsRenderer and LoadHitpointsRenderer. ey
are used for saving and then loading hit points of primary rays to disk. Because this eliminates randomness
of image sampling and the overhead of ray shooting, it can be useful for debugging and shading algorithms
performance measurements.

CHAPTER 7. IMPLEMENTATION 60

(a) SimpleIntegrator. (b) DotProductIntegrator.

Figure 7.3: Two images of the same scene made with different integrators. e írst image uses the standard
integrator – SimpleIntegrator. Second image uses specialized intergrator (DotProductIntegrator) that creates
very different shading.

7.2.4 Ray casting engine

e InternalInterface class provides three differentmethods to cast a ray: intersect returns the closest
intersection of a ray with the scene. It implements the ray-casting function r(x, ω⃗) (Section 2.3). e
visibility function V (x, y) is realized by the castsShadow method. It casts a shadow ray, which searches
for any intersection closer than speciëed distance, and returns only true or false value indicating whether
any such surface exists. e ënal ray casting method, intersectAll, returns all intersections of a ray with
the scene, stored in an array.

All ray casting methods use an acceleration data structure to achieve sub-linear query time. Corona
implements naïve list, uniform grid, kd tree and bounding volume hierarchy (described in Section 2.4.1).
ey are all derived from a single abstract base class (Abstract::AccelerationStructure). e virtual
methods mechanism allows to change the data structure during run time. Type of the data structure is
determined by structure builder, which is selected by the user. ere can be multiple builders for single
data structure, each one using different method to build it.

Uniform grid is built by single sweep over the data. Both kd-tree and bounding volume hierarchy are built
using the surface area heuristic (SAH) (Section 2.4.1). Standard top-down build algorithms recursively
split the list of primitives to create the tree. SAH determines how to make the splits by evaluating many
possible candidates and picking the one that minimizes the SAH cost function.

For BVH we have implemented “full SAH” builder (class SahBvhBuilder), which sorts primitives in
each axis and evaluates 3(n−1) possible splits [WBS07] (with presorting optimization that makes it run
in O(N log(N)) time [WH06]), and “binning” builder (class Binning1BvhBuilder), which evaluates
the SAH only for a ëxed number of bins [Wal07], trading tree quality for the build speed. Similarly
for kd-tree we have “full SAH” (SahKdBuilder) [Hav00] and “binning” (BinningKdBuilder) builders.
Standard data structure ordinarily used for rendering in Corona is the BVH built using full SAH builder,

CHAPTER 7. IMPLEMENTATION 61

because it gives the best results in our implementation.

7.3 Irradiance and radiance caching in Corona

In Corona we use irradiance and radiance caching together – irradiance caching is used for the diffuse
part of shaded surface BRDF and radiance caching is used for the remaining non-diffuse part. is
BRDF decomposition is allowed by the linearity of BRDF (Section 2.2.2). We implement irradiance
and radiance caching as separate independent classes that are joined together in a single GI solver –
IcGiSolver. is solver encapsulates both caches, distributes work between them (it calls only irradiance
cache interpolation, only radiance cache interpolation or both, based on surface properties of interpolated
point) and combines their results.

Particular irradiance and radiance caches can be interchanged via the C++ templating mechanism. IcGi-
Solver has two template parameters – class names of both solvers – and is instantiated with right template
parameters based on conëguration from the user. After that it is up-casted to its abstract predecessor like
other GI solvers, and each different template conëguration is treated by C++ as a different derived class.
is creates a sort of “compile-time” polymorphism that allows us to select solvers at run time without
duplicating source code and without additional overhead incurred by the virtual calls mechanism.

Both used caches have to implement similar interface. ey have the init method for initialization and
conëguration, rebuildStructure method for rebuilding the acceleration data structure used, method
precomputeInPoint that precomputes the cache in a single given point, and ënally the interpolate
method for interpolating the cache at given point. e solvers implement two methods for serialized
to disk: save saves the cache contents into given stream and load loads previously saved cache from a
stream. e latter has a parameter determining if the cache should be loaded incrementally (merged with
current cache content). Finally, each cache have a makeStats method for computing statistics.

e solver initialization is simple – it obtains settings from InternalInterface and stores them in an
IcConfig class instance, then it initializes irradiance and radiance caches used. Because we use two-pass
rendering (Section 3.1.4), the precompute method needs to populate both caches. is is done by an
IcSampler instance, which acts as the renderer and renders the image multiple times in progressively
increasing resolution (hierarchical reínement technique). First pass image resolution is only a fraction
of that of ënal image. Each successive pass doubles the resolution of previous pass in each dimension.
For efficiency reason we do not perform full shading during the precomputation phase, instead we only
compute primary ray intersections and try to interpolate GI in these points.

7.3.1 Irradiance caching implementation

ere is only single irradiance cache implemented (class IrradianceCache), it has however a template
parameter determining the type of data structure it uses. Different data structures have to implement the
same interface so that the irradiance cache can work with them without any code redundancy. Any its
initialization is done in its init method. is method is called before the data structure is queried and
before any records are stored. It initializes and conëgures the data structure (using the IcConfig object
that is passed as an argument). e data structure is rebuilt by its build method. is method takes the

CHAPTER 7. IMPLEMENTATION 62

scene bounding box and the list of all irradiance records as arguments. Individual records are added using
the addRecord method. Last method is makeStats. It is used for compiling various statistics.

e search is not implemented as a simple method, because it is more complicated to unite all search
procedures under single interface. We cannot simply make a method that returns an array of results,
because there is no guaranteed maximum number of results, and dynamic allocation is out of the question
for performance reasons. Because of that we use the iterator design pattern – we use a special object for
iterating through the result set. Each data structure is required to have an inner class Iterator. Search is
performed by instancing the iterator with the search data structure and query point as parameters. Result
set is iterated through by the getNext method, which moves the iterator to next record and returns its
index. Second method (hasNext) indicates whether there are any more records in the result set.

We implement all data structures described in Chapter 5 – Ward’s original octree (Section 5.1, class
IcOctree), multiple-reference octree (Section 5.2, class IcMultirefOctree), multiple-reference kd-tree
(Section 5.3, class IcMultirefKdTree), point kd-tree (Section 5.4, class IcKdTree), bounding volume
hierarchy (Section 5.5, class IcBvh) and dual space point kd-tree (Section 5.6, class IcDualKdTree). We
also implement single dummy data structure that uses brute force search for validation and debugging
(class IcLinearList).

e irradiance cache itself is straightforward implementation of the algorithm outlined in Section 3.1.
We implement both interpolation schemes (Ward, Tabellion and Lamorlette), both rotational and trans-
lational gradients, neighbour clamping, record density control and other improvements described in Sec-
tion 3.1.5. e irradiance interpolation is straightforward – we perform the query and go through its
results. For each record reported we calculate its weight, perform the interpolation using gradients and
add it the ënal result. If no record has non-zero weight the interpolation fails and a new record is created.

Creation of a record is handled by the IcRecordFactory. It handles the hemisphere sampling and com-
puting of the radiance and all other stored data: distance to the surfaces Ri and rotational and transla-
tional gradients. We store single rotational and translational gradient for each record. We also have to
store Rmin and Rmax values for each record because of the neighbour clamping. Indirect illumination
during the hemisphere sampling is computed by another GI solver (secondary solver). After the record
is ënished it is inserted into the central array of records. en the neighbour clamping is performed by
locating nearby records and testing if the triangle inequality holds. As a last step the record is inserted
into the search data structure, using its addRecord method. Because the rendering can run in multiple
threads and there could be other threads accessing the cache during this modiëcation we synchronize it
using the reader-writer lock which allows multiple threads to read, but only single thread to write at a
time. We use the Microsoft Windows API implementation (SRWLOCK) of the lock.

e incremental mode of cache loading can be used for example to render a walk-through animation,
because the irradiance cache is view-independent. e full cache is rendered only for the ërst frame of
the sequence, all other frames use the previously computed cache to save computing time and only create
records in areas previously not computed. One problem that has to be addressed is that due to movement
of the camera origin we may render a previously rendered surface from much closer distance. e cache
from previous render allows interpolation of the entire surface, but it may have insufficient detail because
its record spacing limits were computed for much more distant camera. Because of this we recompute the
limits for all loaded records during the incremental load and clamp validity radii that are too large. We
could do the same in the other way and enlarge validity radii of records that got farther away from the

CHAPTER 7. IMPLEMENTATION 63

camera, but this would cause only performance degradation because without any form of record pruning
there would be unnecessarily large amounts of records inìuencing each point.

7.3.2 Radiance caching implementation

Unlike the irradiance caching, there are multiple different implementations of radiance caching. We
implement the spatial directional radiance caching (Section 3.2.2) in class Sdrc, our uniëed radiance
caching (Chapter 6) in class UnifiedRc and also a dummy radiance cache, that uses brute force path
tracing instead of any caching and which encapsulates the standard path tracing GI solver, in class Path-
tracingRcWrapper. is last “pseudo-cache” allows us to disable radiance caching and use path tracing
for glossy BRDF components instead, without having to treat it as a special case.

e SDRC implementation is done according to the original paper [GKB09]. e spatial search and
interpolation implementation is identical to that of irradiance caching. e Sdrc class has single template
parameter – spatial search data structure – identically to the IrradianceCache. Again, if no usable record
is found during the spatial interpolation phase we create new one (using the class SdrcRecordFactory
and its createRecord method), perform the neighbour clamping and insert it into the cache.

During record creation we ërst create small number of rays (30% of ënal amount) distributed according
to the cosine PDF from irradiance caching (Equation 3.3) to compute the distance to surfaces Ri, then
we sample the product of surface BRDF and cosine to get directions of other rays. We trace each ray and
use the secondary GI solver to compute its radiance. After the sampling we store all colours obtained as
radiance samples. We map their associated directions using the paraboloid mapping (Equation 3.10) and
build a static kd-tree over them.

When we have non-zero number of usable records, we can perform the interpolation. We sample the
BRDF to get directions for which we need to perform the interpolation. We map each one to the
paraboloid domain D, calculate the associated directional search radius r j (Equation 3.11) and search
for nearby samples in all records with non-zero spatial weight. If we ënd at least one sample, we perform
the interpolation (Equation 3.12), otherwise we create a new sample by tracing a ray in the direction
being interpolated. We store this sample in random nearby record with non-zero weight. is is because
creating new spatial record would lead to many small records in the spatial cache, which would cripple
the performance of the algorithm. Using closest record would present a risk of samples clumping in single
record. Because local trees in records are static (to conserve memory) and do not support insertion we
keep a buffer of inserted samples in each record, and when it is large enough, we merge them with the
main storage and rebuild the tree. e algorithm is calibrated for sample insertions to happen only rarely,
so this is not a problem.

Our implementation has several differences from the original paper. We do not pack radiance samples
using the RGBE colour format and position discretization and we do not implement the cache record
density control heuristic (a heuristic for automatic clamping the Ri based on a radiance rate of change
estimate). We also change the maximum directional distance formula for interpolation by using a square
root of number of samples to keep the number of samples needed linearly dependent on number of BRDF
samples M, as described in Section 6.2:

r j = min

(
rmax,

1
2π

1√
Mp(ω⃗ j)

)
.

CHAPTER 7. IMPLEMENTATION 64

Implementation of the uniíed radiance cache is much more straightforward. It simply keeps two arrays
of radiance samples and two acceleration data structures build over them. Its interpolate method simply
computes the spatial and directional sensitivity factors α and β , samples the surface BRDF and for each
sample performs the interpolation. First a k-NN search in either north or south hemisphere is performed,
then the samples found are interpolated. Each sample holds only its colour, position, direction and ray
length. During the interpolation we calculate the weighted variance of sample ray lengths, then divide it
by the mean value and if a user-set threshold is exceeded we stop the interpolation, create new sample via
ray tracing, store it and add it to north, south, or both trees, based on the direction. We do the same if
no close radiance samples were found.

e search data structure in uniëed radiance cache can be exchanged by the same template mechanism as
in the irradiance cache, but we have implemented only one – UnifiedRcKdTree, a 5D dynamic point kd-
tree. Its interface is very similar to that of irradiance caching and SDRC data structures – it is initialized by
its initmethod, rebuilt with buildmethod and new samples are added using the addmethod. Search is
in this case done by a single method, getClosest, instead of using an iterator. Because we perform k-NN
queries, we are able to safely preallocate space for results and thus we are able to simplify the interface to
the single method that writes results into given array.

Precomputation is done simply by attempting to interpolate the illumination at points chosen by the
hierarchical reënement technique and creating new samples in the cache where needed.

Chapter 8

Results

To objectively assess the quality of our implemented data structures and algorithms we have to perform
extensive testing during which we will compare the performance of different data structures in wide variety
of scenes from everyday 3D graphics production. It is important that we use correct testing methodology
to be sure that the results are not biased or inìuenced by any random factors. We have the total of 10 test
scenes: 5 scenes with mostly diffuse materials for testing irradiance caching data structures, with one
being animated, and 5 scenes with heavy use of specular materials for testing radiance caching.

8.1 Testing methodology

We perform all tests by rendering our test scenes with different settings and measuring certain important
statistics. We use the standalone version of Corona (CoronaStandalone) (Section 7.1.3) for all tests. It is
because the 3ds Max-integrated version depends on closed-source unpredictable API that could poten-
tially skew the results (for example by excessive time spent inside API calls). e standalone version can
also be run in a scripted sequence using the Windows batch ëles. is is essential, given the amount of
tests we perform.

Computer Lenovo inkpad X201i

CPU

Model Intel Core i3 370M
Frequency 2,4 GHz
Core Arrandale
L1 cache 2× 64 kB
L2 cache 2× 256 kB
L3 cache 3 MB

RAM 4GB, 533 MHz

Table 8.1: Coníguration of the PC used for experiments.

All testing is done on the computer with conëguration listed in Table 8.1. All tests are scripted to run
sequentially using a batch ële. Corona is the only computationally intensive application running during
testing and all operating system power saving features are disabled. is is done to minimize any external
factors that could inìuence the rendering performance. No user input is performed during testing and we
run all tests multiple times and average the measured data to further make sure that we have correct results.

65

CHAPTER 8. RESULTS 66

Operating system Microsoft Windows 7 Professional 64bit
C++ compiler Microsoft Visual C++ 2010 x64

Important compiler switches

/Ox Full optimization
/Ob2 Inline any suitable function
/Ot Favour fast code over small
/MD Multi-threaded dynamic runtime library
/fp:fast Fast ìoating point model

Table 8.2: Compiler coníguration for testing.

eCorona executable used for testing is built using the 64-bit version of Microsoft Visual C++ compiler.
Its conëguration is shown in Table 8.2. Even though Corona allows it we do not use the multi-threaded
rendering for our tests. is has several reasons: it allows us to easily gather exact statistics such as
number of data structures iteration steps without the need for synchronization and it removes the inherent
randomness of threads. is decreases the variance in performance across multiple runs and allows us to
get completely identical pictures frommultiple runs by setting the random number generator to the same
state before each rendering.

We perform all tests with the BVH built using the full surface area heuristic (Section 7.2.4) as ray casting
acceleration data structure. Secondary GI algorithm is the photon mapping where possible with 106 pho-
tons emitted and density estimation using 50 nearest neighbours. When photon mapping cannot be used
(scenes with environment lighting) we useMonte Carlo path tracing instead. GUI frame buffer is disabled
for the testing, SimpleFrameBuffer is used instead.

8.2 Irradiance caching tests

We test all irradiance caching data structures by rendering the same set of scenes with them and comparing
results. Because we are interested only in irradiance cache data structure search performance we conëgure
the rendering so that it takes the majority of time. is means that we reduce both the number of shadow
rays and the number of secondary rays for glossy surfaces to the minimal possible value (1). We also use
pre-computed irradiance caches for all tests. For each scene we have one precomputed cache (list of
records) that is loaded before rendering. is is for two reasons: to save time on redundant computations
and to improve comparability of results by performing the tests with exactly the same cache, only with
different data structure built over it. We do not allow addition of records during rendering to further lower
the amount of time spent outside of the irradiance cache searching and to simplify statistics processing.
is restriction is not a problem in most tests. All caches are precomputed with sufficient detail and
because of that only few hit points cannot be interpolated.

Irradiance caches for all scenes are precomputed using the hierarchical reënement with highest resolution
of 16 samples per pixel. We use Ward’s original interpolation schema (Equation 3.5) with a = 0.3 for
precomputation and a = 0.6 for ënal image rendering. We use the screen-space record density limits
with (Section 3.1.5) with Rmin = 1 and Rmax = 20 pixels. All images are rendered in 800×600 pixels
resolution using 4 samples per pixel. Non-diffuse portions of BRDFs are sampled using the Monte Carlo
path tracing with single path generated.

All measured interpolated performance data are calculated only from the time spent inside the rendering
loop measured by Corona, not from the run time of the application as whole. Because of that scene

CHAPTER 8. RESULTS 67

loading, initialization, precomputation and clean-up times are not included in measured times. We prefer
to express the rendering performance in samples per second instead of render time. is allows us to easily
compare results for images with different resolution or anti-aliasing settings.

8.2.1 Testing scenes

We test the irradiance caching data structures on 5 scenes shown in Figure 8.1. ey are all geometrically
complex to trigger creation of large number of records. All scenes are interiors with the exception of the
Power sockets (Figure 8.1d), which is a still life. ey are all lit by area lights and use photon mapping
as the secondary GI method (with the exception of Power sockets that uses diffuse environment lighting
together with area lights and therefore must use path tracing as the secondary GI method). e vast
majority of surfaces have only diffuse materials to make irradiance caching the key factor in rendering
performance. Important statistics for all scenes are shown in Table 8.3.

(a) Diffuse interior. (b) Conference. (c) Sibenik cathedral.

(d) Power sockets. (e) Sponza atrium.

Figure 8.1: All scenes used for irradiance caching tests. e Diffuse interior model is courtesy of Jiří “Biolit”
Friml. Conference is a standard free model, Sibenik cathedral and Sponza atrium scenes are courtesy of Marko
Dabrovic. e Power sockets model is our own. e images in higher resolution are provided in Appendix B.
Only a single frame from the walk-through animation in Sponza atrium is shown.

e last scene, “Sponza atrium” (Figure 8.1e) features an animated walk-through. We animate the camera
to move in the arcades in a straight line looking at a stationary target. e animation has 30 frames and
uses single precomputed irradiance map created by rendering the sequence while incrementally saving
the irradiance cache. Because the standalone Corona has no support for animations, we use separate
conëguration ëles for each frame (generated with a script) containing interpolated camera data.

CHAPTER 8. RESULTS 68

Diffuse Conference Sibenik Power Sponza
interior cathedral sockets atrium

Triangle count 165 403 190 841 78 414 1 369 636 66 598
Primary rays 1 920 000 1 920 000 1 920 000 1 920 000 1 920 000
Shadow rays 1 554 584 1 556 926 1 330 249 1 796 358 991 782
Glossy (path tracing) rays 681 207 403 019 0 7 845 0
Irradiance cache interpolations 1 920 000 1 701 636 1 913 597 1 912 908 1 920 000
Irradiance cache records 36 095 17 595 24 970 38 111 71 949
Avg. IC records used 7.1 9.0 4.5 8.2 8.5

Table 8.3: Various statistics for our irradiance caching testing scenes. Primary rays are the rays shot from the
camera. Each primary ray that hits the scene can trigger shadow ray casting if the surface hit is facing a light,
an irradiance cache interpolation if the surface is at least partially diffuse, and casting a path tracing GI ray if
the surface is partially specular. Avg. IC records used is the average number of records with non-zero weight in
single interpolation (when using acceleration data structure that returns all record balls overlapping the query).
Values for the Sponza atrium scene are averaged over the 30 frames we render.

8.2.2 Kd-trees leaf sizes

First we test how the search performance depends on the size of data structure leaves. We have to do
this test only for point kd-tree and dual space kd-tree, because leaf sizes for octree and multiple-reference
octree are determined by record distribution and stopping criteria. Similarly in multiple-reference kd-tree
and BVH they are determined individually for each node by the heuristics.

For both kd-tree and dual space kd-tree we measure the performance in the Conference scene for different
leaf sizes (15, 20, 25, 30, 35, and 40 for the kd-tree and 20, 30, 40, 50, 60, and 70 for the dual space
kd-tree). We run each test 5-times and average the results. e point kd-tree is set to report 15 nearest
neighbours.

Leaf size 15 20 25 30 35 40
Tree nodes 4 823 3 713 3 023 2 639 2 281 2 005
Data structure build time [ms] 12.8 13.0 9.8 10.0 10.2 10.0
Nodes visited per query 34.2 30.9 29.0 27.8 26.5 25.4
Leaves visited per query 8.6 7.4 6.8 6.4 6.0 5.7
Records visited per query 44.1 52.1 57.9 62.3 70.1 78.5
Performance [samples/s] 108 407 109 650 109 842 109 827 109 387 108 654

Table 8.4: Key point kd-tree statistics for varying leaf size. Visited node is any node into which the search
algorithm descends (leaf or inner). Visited record is any record for which the search algorithm computes distance
from the query point.

Results for the point kd-tree are in Table 8.4 and for dual space kd-tree in Table 8.5. We can see that
increasing the leaf size decreases the build time and the number of visited nodes and leaves, but increases
the number of visited records. Differences in performance are for both data structures only small in the
selected ranges of node sizes. We conclude that the leaf size does not have particularly signiëcant effect
and choose near-middle values of 25 for point kd-tree and 40 for dual space kd-tree for next tests.

CHAPTER 8. RESULTS 69

Leaf size 20 30 40 50 60 70
Tree nodes 5 505 3 783 2 717 2 117 1 735 1 491
Data structure build time [ms] 17.2 18.2 14.2 14.8 15 11.6
Nodes visited per query 698.6 561.9 459.4 385.3 325.1 290.8
Leaves visited per query 288.4 232.9 191.5 160.7 135.4 121.0
Records visited per query 1 624.9 1 888.2 2 181.9 2 435.0 2 692.1 2 863.7
Performance [samples/s] 31 879.7 33 437.6 34 270.6 34 450.9 34 336 33 998.2

Table 8.5: e key statistics for dual space kd-trees with varying leaf sizes. Deínitions of visited node and
record are analogical to the kd-tree – visited node is any node into which the search algorithm descends, visited
record is any record for which the half-space test is performed.

8.2.3 Multiple-reference kd-tree and BVH build heuristics

Next we test the effect of tree build heuristics we have developed for multiple-reference kd-tree and BVH
by directly comparing data structure quality and search performance of trees built with and without
them¹. We again use only the Conference scene with each test repeated 5-times. If we disable the heuristic,
we have to manually specify leaf size for the BVH. We use value of 5 as it gives best results in on our
preliminary testing.

Heuristic
on off

Data structure build time [ms] 788.2 503.6
Tree nodes 152 229 166 445
Total references 515 656 650 473
Tree size [MB] 5.7 6.6
Nodes visited per query 18.5 19.7
Records visited per query 16.7 19.9
Performance [samples/s] 135 210 133 578

(a) Effect of heuristic on multiple-reference kd-tree perfor-
mance.

Heuristic
on off

Data structure build time [ms] 125.8 41.2
Tree nodes 11 063 10 613
Leaves visited per query 8.9 10.6
Nodes visited per query 38.0 54.9
Records visited per query 29.1 33.3
Performance [samples/s] 122 642 115 611

(b) Effect of heuristic on BVH performance.

Table 8.6: is table shows results for both multiple-reference kd-tree and BVH heuristic compared to the basic
version of each data structure. Total references for the kd-tree is the number of all record references duplicately
stored in the tree. e tree size is an estimate (lower bound) of kd-tree size in the memory computed by summing
sizes of all nodes and references.

Results for the tests are in Table 8.6. In both cases the heuristic slightly improves all monitored statistics:
number of nodes and records visited per query, and in the case of multiple-reference kd-tree the number
of tree nodes and duplicate references. Because of that the heuristic reduces the kd-tree memory footprint.
It is however surprising how little is the traversal performance inìuenced by these improvements. e
beneëts are also not free – data structure build times are greatly increased when using heuristics.

¹Multiple-reference kd-tree without heuristic is built by recursively splitting each node in its largest axis; BVH without
heuristic is built by recursively sorting records with respect to node largest axis and splitting the list in the middle.

CHAPTER 8. RESULTS 70

8.2.4 Nearest neighbour count for the point kd-tree

e point kd-tree is unique in that it does not return all balls intersecting the query, but only a ëxed
number of balls with closest centres (k-nearest neighbour). Lowering the k increases the rendering per-
formance (not only because the search is faster, but also fewer records have to be subsequently processed
in the interpolation), but it may lead to artefacts from missed contributions of records not included in
the query result.

We search for the optimal k by ërst rendering the Diffuse interior scene with varying k to measure how is
the performance dependent on it. We choose this scene because it is illuminated mostly by the indirect
lighting and so any differences in irradiance caching quality in it are more prominent than in other scenes.
e scene is again rendered 5-times for each conëguration and results are averaged. e kd-tree is built
using maximum leaf size of 25 (Section 8.2.2).

k-NN 1 5 10 15 20 30 40 50
Nodes visited per query 16.8 23.3 28.3 32.4 35.8 41.6 46.9 51.7
Leaves visited per query 2.1 4.3 6.2 7.8 9.2 11.5 13.7 15.7
Records visited per query 19.1 35.7 50.4 63.1 74.6 95.1 113.7 131.3
Performance [samples/s] 107 912 100 421 92 273 86 093 80 746 72 416 65 217 59 655
Avg. IC records used 1.0 4.1 5.7 6.1 6.4 6.7 6.8 6.9

Table 8.7: Illustration of point kd-tree search performance in relation to the number of nearest neighbours we
search for. “Avg. IC records used” is the average number of records reported by the tree that are really used for
the interpolation. Any data structure that reports all records inîuencing a point would have this statistic equal
to 7.1 for this scene.

Results of our tests are shown in Table 8.7. It is not surprising that increasing the k signiëcantly increases
the number of nodes and records we have to visit to get the result. e traversal performance decreases
accordingly. e number of records used for interpolation would be equal to 7.1 for any data structure
that gives exact results; it is lower for the point kd-tree because it gives only approximate results. It is
interesting that we are unable to reach 7.1 even when reporting 50 nearest neighbours.

(a) 1-NN (b) 5-NN (c) 10-NN (d) 15-NN (e) 20-NN

Figure 8.2: Enlarged detail of the left wall in the Diffuse interior scene rendered using point kd-tree with
different k (number of nearest neighbours reported). Artifacts are visible when rendering with low k. In the
extreme case of k = 1 (interpolation using nearest neighbour) we can easily see the structure of Voronoi diagram.

CHAPTER 8. RESULTS 71

We evaluate the impact of k by rendering the scene in higher resolution and overall quality. When
rendering with low k there are several areas where artefacts become visible, most prominently the left
and back walls. We show higher quality images of the left wall with different k in Figure 8.2. In case of
1-NN and 5-NN artefacts are clearly visible. e 10-NN interpolation is nearly identical to reference,
but because of safety margin we decide to use 15-NN as default setting.

8.2.5 Overall data structures comparison

Now that we have ëne-tuned all irradiance caching data structures we perform the most important test –
we render all scenes using all data structures multiple times for direct comparison of their performances.
First 4 scenes we render once again 5-times per structure. e ëfth scene is the animation (Sponza atrium).
We render the whole animation (30 frames) only once and average results from all its frames.

e results are shown in table 8.8. As expected, the single-reference (Ward’s) octree does not perform
well. Although it is built fast and it is very memory inexpensive, its render performance is bad compared
to its multiple-reference variant, especially in scenes with many cache entries (Power sockets, Sponza
atrium). is is because both number of nodes and records visited is very high – because of the way the
data structure works (Section 5.1) many paths from root to leaves have to be traversed for each query.

As expected, both multiple-reference data structures (octree and kd-tree) offer better query performance
than any other data structure. Because of the object duplication only single path from the root to a leaf
have to be traversed. As a result the number of visited nodes per query is much lower than for other
data structures, especially in the case of multiple-reference octree because of its higher branching factor.
We need 3 kd-tree nodes to split the space in the same way as 1 octree node does. Because of that the
number of kd-tree nodes visited is indeed approximately 3-times larger. is however does not mean that
multiple-reference kd-tree is slower, because its each traversal step is faster.

Biggest disadvantages of both data structures are their high build times and memory consumption. ey
can store millions of references even for our relatively small caches with only tens of thousands of records.
Because of that they take up much more memory that the cache itself. For example in the Sponza atrium
the cache size is approximately 5,5 MB (with 72 000 records and 76 bytes per record), but the multiple-
reference octree presents another 21,7 MB and multiple-reference kd-tree 38 MB of memory allocated.
Size of these data structures can be decreased by limiting their depth or changing the record insertion
propagation criterion, but this negatively affects the performance.

ere is one interesting anomaly in multiple-reference octree statistics in the Power sockets scene. e
data structure creates unusually small number of references and because of that visits many records un-
necessarily, which causes its traversal performance to drop. We assume it is because of the overall scene
design. Only relatively small portion of it is shown in the image (Figure 8.3). Because of that if we
build the octree over entire scene we end up with many nodes in higher levels empty and we reach the
maximum depth before the records are sufficiently separated into different nodes. ere is of course the
simple solution of building the octree over the bounding box of records, not the scene. e problem is
however that this bounding box is not known in advance.

If we directly compare the multiple-reference octree and multiple-reference kd-tree it is hard to determine
which is better. e kd-tree is more adaptive and does not suffer the problem of octree in the Power sockets

CHAPTER 8. RESULTS 72

Diffuse Conference Sibenik Power Sponza
interior cathedral sockets atrium

Total references Multi-ref octree 1 285 800 883 010 894 726 205 816 3 317 090
Tree size [MB] 8.3 6.3 6.2 1.0 21.8
Leaves visited/query Kd-tree 7.8 6.8 7.7 8.3 7.3
Avg. IC records used 6.1 7.3 4.1 7.2 7.2
Ref. IC records used 7.1 9.0 4.5 8.2 8.5
Total references Multi-ref kd-tree 1 253 350 515 656 819 745 3 379 320 3 768 360
Tree size [MB] 13.6 5.7 8.9 23.0 38.0

Data structure nodes

Octree 10 217 5 425 7 913 8 985 20 713
Multi-ref octree 112 401 99 129 92 097 7 721 303 617
Kd-tree 5 987 3 023 4 363 6 525 12 025
Multi-ref kd-tree 356 377 152 229 233 591 394 699 954 485
BVH 19 827 11 063 16 407 21 797 41 423
Dual kd-tree 6 043 2 717 4 069 6 119 11 959

Nodes visited
per query

Octree 75.3 77.7 81.1 90.2 104.8
Multi-ref octree 7.5 7.4 7.3 7.9 8.5
Kd-tree 32.5 29.0 31.5 35.4 35.8
Multi-ref kd-tree 19.7 18.5 19.9 19.6 22.8
BVH 33.1 38.0 35.1 40.0 46.5
Dual kd-tree 715.4 459.4 640.3 3 138.2 1 672.3

Records visited
per query

Octree 256.8 251.8 182.0 341.6 333.7
Multi-ref octree 22.4 20.7 21.1 87.9 29.0
Kd-tree 63.2 58.0 56.0 60.1 64.3
Multi-ref kd-tree 17.2 16.7 16.3 24.9 20.5
BVH 28.5 29.1 25.3 39.2 36.4
Dual kd-tree 2 977.9 2 182.0 2 559.0 14 727.9 6 287.8

Data structure
build time [ms]

Octree 31.2 13.0 22.4 40.4 74.8
Multi-ref octree 312.6 229.2 244.0 65.4 894.7
Kd-tree 21.4 9.4 15.8 38.8 64.4
Multi-ref kd-tree 1 834.6 780.2 1 238.4 2 873.4 5 520.9
BVH 295.4 126.6 207.6 334.2 675.9
Dual kd-tree 27.4 13.8 21.2 46.0 86.8

Performance
[samples/s]

Octree 40 903 48 512 51 164 41 763 35 769
Multi-ref octree 107 519 134 863 179 370 150 376 181 147
Kd-tree 86 331 110 373 130 863 144 956 135 342
Multi-ref kd-tree 108 005 136 096 181 225 202 767 186 613
BVH 99 243 121 842 159 794 167 343 153 661
Dual kd-tree 21 235 34 509 26 588 4 800 10 314

Table 8.8: Comparison of the best variants of all implemented irradiance caching data structures. Various data
structure statistics are given at the beginning of the table. “Total references” in context of multiple-reference data
structures means the total number of duplicately stored record references. e tree size is a lower bound estimate
of data structure size in RAM computed by adding number of nodes multiplied by the size of a node and number
of references multiplied by the size of a reference (integer index of a node). e “Avg. IC records used” statistic
of the kd-tree is explained in Section 8.2.4. Reference values for data structures performing exact searches are
given for comparison (“Ref. IC records used”).

CHAPTER 8. RESULTS 73

Figure 8.3: A top-down view of the Power sockets scene, with camera position and angle of view visible. e
two isolated rectangles on left and bottom are area ligts.

scene. It stores generally lower or the same number of references as the octree, but because of its higher
node count it takes more memory. Its traversal performance is only slightly better than that of octree,
but its build times are signiëcantly higher because of the heuristic (although they could be easily lowered
using the binning technique [Wal07]).

When considering results for the point kd-tree we have to keep in mind that it is the only data structure
that does not return exact solution, even though this is not a problem in praxis. It has lowest build times
from all data structures, but its traversal performance is worse than that of BVH and multiple-reference
data structures. is is because the k-NN search procedure is rather complicated.

Results of BVH are a pleasant surprise for us. It has the best performance except for the memory-intensive
multiple-reference data structures. Its build times are relatively high because of the heuristic, but they
could be easily lowered by presorting [WH06].

e dual space kd-tree performs consistently worst of all tested data structures. e half-space range
search in higher dimension is extremely computationally demanding. Hundreds of nodes and thousands
of records have to be visited to get the result.

8.3 Radiance caching tests

e radiance caching tests are very different from irradiance caching tests because we have implemented
two very different algorithms that cannot be compared directly in terms of rendering time. Because they
are both biased and produce speciëc low-frequency artefacts we also cannot compare them using root
mean square error (RMSE) of rendered images. We instead conëgure them to run approximately the
same amount of time and then visually compare the results. We also include the “brute force” approach
(path tracing glossy parts of BRDFs) as a third method into these tests.

CHAPTER 8. RESULTS 74

We use the irradiance caching for diffuse parts of all BRDFs. We again precompute the cache for each
scene and then load it for each rendering. To eliminate the randomness and ensure reproducibility of
our results we again disable multi-threaded rendering. Other irradiance caching settings are identical
to previous tests (Section 8.2). Both irradiance caching and SDRC use multiple-reference octree as the
spatial search data structure in this set of tests. We employ a precomputation phase for both uniëed
directional caching and SDRC using the hierarchical reënement that pre-renders the image² four times
with increasing resolution, identically to irradiance caching. Resolution of the last precomputation pass
is identical to that of the ënal image. We use 5 shadow rays to explicitly sample direct lights for each
primary ray in scenes with area lights.

SDRC caching uses the same conëguration for its spatial phase as irradiance caching (Section 8.2). Its
number of radiance samples per record is set to ten times of the number of interpolation samples. e
uniëed radiance caching is conëgured to use the distance metric described in Section 6.2 with maximum
permitted spatial distance of 5 projected pixels and directional sensitivity coefficient k = 15. e inter-
polation is performed using 10 nearest neighbours. We set the ray lengths variance threshold that triggers
new sample insertion (Section 6.5) to 100. is forces the algorithm to generate additional samples in
areas where the illumination changes rapidly without too many unnecessary samples generated, as shown
in Figure 8.4.

Figure 8.4: Visualization of uniíed radiance caching samples density showing the effect of ray lengths heuristic.
Each dot represents place where a radiance sample was created; dark areas have greater concentration of samples.
Spikes in record concentration near the mirror reîections of chess pieces are clearly visible.

8.3.1 Testing scenes

We test using 5 different scenes with mostly specular materials, shown in Figure 8.5. Scenes Computer
case and Glossy interior are lit completely with area lights, scene Components plate is lit by a combination
of area lights and diffuse environment. Scenes Stanford dragon and Glossy interior are lit entirely by
environment lighting. e last two scenes are very similar; they feature complex models with specular
materials sitting atop the table inside the Conference scene. Because the appearance of these objects was

²More speciëcally it only casts primary rays and tries to interpolate the indirect illumination.

CHAPTER 8. RESULTS 75

too dependent on the direct lighting from lights at the ceiling we have disabled these lights and instead
removed ceiling and geometry in windows to light the scene using environment lighting.

e scenes used vary greatly in geometry complexity (Glossy interior and Stanford dragon scenes and
simpler; Computer case and Components plate are very complicated) and percentage of specular surfaces
(with Components plate scene being only partially specular, and Chessboard and Stanford dragon scenes
being almost entirely specular).

(a) Components plate. (b) Glossy interior.

(c) Chessboard. (d) Stanford dragon.

(e) Computer case

Figure 8.5: All scenes used for irradiance caching tests. Computer case and Components plate are our own
scenes. Stanford dragon model is a free model retrieved from the Stanford 3D Scanning Repository [Sta10].
e Glossy interior scene was kindly provided by Ludvík “Rawalanche” Koutný. Chessboard features a free chess
pieces model by cjxėěďď [cjx10]. Models in Stanford dragon and Chessboard scenes are place atop a table in
the Conference standard scene. e images rendered in in higher resolution are provided in Appendix B.

8.3.2 Radiance caching results

Important scene statistics and results of SDRC, uniëed radiance caching, and brute force path tracing
are shown in Table 8.9. We have tried to conëgure each algorithm to run approximately the same time
(in terms of the sum of rendering time and irradiance/radiance caching precomputation time). Note
that, even though the path tracing does not need any precomputation phase, we still run it (without
precomputing anything) to keep the testing unbiased. is phase would have to be performed in any
real-world scenario because of the irradiance caching.

We can see that, given the same same, the brute force path tracing is able to make the highest number
of BRDF samples in most scenes. An exception is the Computer case scene, where the SDRC is faster.
We can assume that it is because the scene features very complicated geometry that makes the ray casting
very expensive. Second exception is the Glossy interior. is scene glossy surfaces are very simple, which
makes both radiance caching algorithms very efficient.

CHAPTER 8. RESULTS 76

It is difficult to directly compare rendering performance of SDRC and uniëed radiance caching. Uni-
ëed radiance caching greatly outperforms SDRC³ in Stanford dragon and Glossy interior scenes, but is
outperformed in the other ones. ere is no clear link between distinct scene features and relative per-
formance of any algorithm. It is surprising that SDRC performs well in scenes where it is forced to make
many spatial records (Computer case, Chessboard).

Statistics for uniëed radiance caching show that the overall number of searches is signiëcantly lower than
in SDRC when both algorithms use approximately the same number of BRDF samples (scene Compo-
nents plate). is however does not mean that the uniëed radiance caching is faster, because it searches
in the 5D space. Because of that the number of tree nodes and samples visited by the search algorithm is
very high.

By comparing “Total samples in the cache” and “Total searches” we can see how the caching reduces the
number of rays that have to be traced. Without the caching one ray would have to be cast for each search.
Ratio of this reduction greatly varies, with extremes being scenes Glossy interior and Stanford dragon.
e last important uniëed radiance caching statistic is the number of samples duplicated in the equator
belt (Figure 6.2). As expected it is only a small fraction of total number of samples.

8.3.3 Visual comparison of radiance caching algorithms

Although comparison of numerical statistics in the previous section showed some interesting facts, key
in this case is comparing the images radiance caching algorithms produce. We do this by comparing
renders of all scenes with direct lighting disabled for primary lights. We do not show entire images here
because they are for the most part very similar, we instead focus on interesting regions. Figure 8.6 shows
details of Computer case and Chessboard scenes. ey demonstrate how different algorithms deal with
the interpolation of illumination on ìat glossy surfaces in complex environments. Path tracing creates
only noise. Uniëed radiance caching generates considerable low-frequency noise created by variance in
cached radiance values. SDRC has the best results in these scenes. It performs smooth interpolation with
less noise than both uniëed radiance caching and path tracing.

Figure 8.7 shows details of Stanford dragon and Components plate scenes. ese feature more compli-
cated geometry. Uniëed radiance caching again creates the low-frequency noise, but in this case it is not
as distracting because it is masked by the geometry (for example on the dragon). SDRC creates again
smooth interpolation with less noise than path tracing, but in these scenes it exhibits some problems:
in the Components plate scene it creates black artefacts on edges of the copper heat sink leaves. is is
because SDRC uses the same spatial interpolation as irradiance caching, that has problems with the same
type of geometry (thin layered objects). In the Stanford dragon scene we can clearly see how the SDRC
alters material perception by excessive blurring of reìections. is is because the algorithm is not suitable
for high-frequency BRDFs, as was already established in the original paper [GKB09].

In most scenes each structure show the same behaviour. Although brute force path tracing is able to use
larger amount of BRDF samples than both radiance caching algorithms, it creates largest amount of noise.
SDRC generates least amount of noise, but it produces very biased results. Uniëed radiance caching offers
muchmore accurate interpolation than SDRC (for mirror-like materials and near complicated geometry),
but exhibits large amounts of low-frequency noise.

³In terms of number of BRDF samples it is able to interpolate in the same time.

CHAPTER 8. RESULTS 77

Computer Components Stanford Glossy Chessboardcase plate dragon interior
Secondary GI algorithm PM PT PT PM PT
Triangle count 1 079 448 1 431 468 288 339 464 970 427 483
Primary rays 2 880 000 1 440 000 1 920 000 1 440 000 1 920 000
Glossy surfaces hits 1 897 702 400 667 1 498 921 737 416 1 697 293
Specular surfaces [%] 65.9 27.8 78.1 51.2 88.4
Irradiance cache interpolations 2 859 931 1 439 216 1 225 083 1 436 449 1 725 829
Irradiance cache records 108 923 23 192 13 479 57 971 41 741

Path
tracing

BRDF samples/interpolation 7 32 25 8 17
Rendering time [s] 239.7 157.8 254.8 104.5 197.0
Precomputation time [s] 4.9 2.8 1.1 12.1 3.4

SDRC

BRDF samples/interpolation 13 22 12 8 10
Rendering time [s] 201.5 133.9 217.0 68.6 144.4
Precomputation time [s] 63.5 44.3 31.4 30.9 36.8
Radiance samples/record 130 220 120 80 100
Spatial records 20 491 8 733 10 485 14 527 18 322
Directional searches 158 381 184 55 805 240 136 646 416 32 493 024 124 909 248

Uniëed
RC

BRDF samples/interpolation 5 20 20 20 7
Rendering time [s] 242.9 144.3 255.2 74.7 156.9
Precomputation time [s] 16.5 10.7 24.8 19.1 12.9
Total samples in the cache 1 293 035 1 842 321 13 139 824 451 875 3 063 202
Equator samples 79 367 79 898 1 230 189 76 382 312 666
Total searches 9 487 970 8 008 917 29 979 688 14 748 842 11 878 849
Tree nodes visited/search 251.8 138.8 72.5 60.5 133.9
Samples visited/search 553.3 275.9 107.6 114.5 270.9
Avg. samples reported 5.4 5.8 2.7 3.4 6.5

Table 8.9: Results of the radiance caching testing in all scenes. “PM” and “PT” in the secondary GI algorithm
íelds mean photon mapping and path tracing, respectively. “Glossy surfaces hits” is the number of primary rays
that triggered radiance cache interpolation because they hit glossy surfaces. “Specular surfaces” is the ratio of
primary rays that hit glossy surfaces to all primary rays. “Radiance samples/record” in SDRC is the number
of radiance samples we create in each SDRC record. “Directional searches” is the total number of searches
in L-trees we make during the directional phase of interpolation. “Equator samples” in the uniíed radiance
caching is the number of records that are stored duplicately in both north and south hemispheres. “Avg. samples
reported” is the average number of results for each k-NN query.

CHAPTER 8. RESULTS 78

(a) Computer case detail -
uniíed radiance caching

(b) Computer case detail -
SDRC

(c) Computer case detail -
path tracing

(d) Computer case detail -
reference

(e) Stanford dragon detail - uniíed radiance
caching

(f) Stanford dragon detail - SDRC

(g) Stanford dragon detail - path tracing (h) Stanford dragon detail - reference

Figure 8.6: Radiance caching details in Chessboard and Computer case scenes

CHAPTER 8. RESULTS 79

(a) Components plate detail - uniíed radiance caching (b) Components plate detail - SDRC

(c) Components plate detail - path tracing (d) Components plate detail - reference

(e) Stanford dragon detail - uniíed radiance caching (f) Stanford dragon detail - SDRC

(g) Stanford dragon detail - path tracing (h) Stanford dragon detail - reference

Figure 8.7: Radiance caching detail in Stanford dragon and Components plate scenes

Chapter 9

Conclusion

We have analysed the problem of realistic image synthesis and its solution by irradiance and radiance
caching. Because the irradiance caching performance is highly dependent on the quality of its record data
structure, we have tried to improve it by implementing a total of 6 different data structures, 2 previously
used in this context (Ward’s original octree and the multiple-reference octree) and 4 new ones created by
adapting existing techniques to the problem of irradiance caching – point kd-tree, multiple-reference kd-
tree, bounding volume hierarchy, and kd-tree in 4D space (dual space) created by object transformations. We
have also developed a heuristics for buildingmultiple-reference kd-trees and bounding volume hierarchies,
based on the surface area heuristic known from ray tracing.

We have tested all implemented data structures using our set of 5 geometrically complex scenes. Results
have shown that, although they are verymemory-intensive, themultiple-reference data structures give best
traversal performance. Multiple-reference kd-tree have shown slightly better traversal performance, but
also much higher build times and memory consumption. Best data structure without object duplication
in terms of traversal performance is the bounding volume hierarchy. Point kd-tree is slightly worse and
in addition it gives only approximate results, although this have turned out to be no problem. e last
two data structures, Ward’s octree and dual space kd-tree have signiëcantly worse performance than the
rest, with the dual space kd-tree being consistently the worst data structure.

For illumination interpolation on glossy surfaces we have implemented the spatial directional radiance
caching (SDRC) algorithm. During analysis of this algorithm we have concluded that there is no room
for improvements by a change of its data structures alone. Because of that we have created an entirely
new radiance caching algorithm – uniíed radiance caching. en we have compared this algorithm with
the SDRC and brute force (path tracing without caching).

Results of these three algorithms on our set of another 5 scenes with varying glossy materials show that
when running the same amount of time SDRC gives smooth illumination interpolation with less noise
than path tracing, but it is unsuitable for near mirror-like surfaces because it is unable to reproduce sharp
reìections. Uniëed radiance caching also creates images with less high-frequency noise than path tracing,
and it is able to reproduce even mirror-like reìections, but it generates very distinctive low-frequency
noise.

80

CHAPTER 9. CONCLUSION 81

Future work

ere are many things left that could be improved. A heuristic similar to that of multiple-reference kd-
tree and BVH could be implemented for the multiple-reference octree. Algorithms for data structures
building with heuristics could be deënitely made faster by using presorting [WH06] or binning [Wal07]
techniques.

e uniëed radiance caching can also be improved in many ways, partially by removing the low-frequency
noise it generates by reducing the variance of stored radiance samples. We could also improve the adap-
tivity of the algorithm to scene geometry, incident radiance distribution, and surface materials.

Another ëeld of interest are GPU implementations of the data structures and algorithms presented, for
example using the CUDA technology [NVI07].

Bibliography

[AE97] Pankaj K. Agarwal and Jeff Erickson. Geometric range searching and its relatives. InAdvances
in Discrete and Computational Geometry, pages 1–56. AmericanMathematical Society, 1997.

[Ali] Alias|Wavefront Inc. Object Files (.obj). http://paulbourke.net/dataformats/obj/.

[App68] Arthur Appel. Some techniques for shading machine renderings of solids. In Proceedings of
the April 30–May 2, 1968, spring joint computer conference, AFIPS ’68 (Spring), pages 37–45,
New York, NY, USA, 1968. ACM.

[Arg01] Lars Arge. External memory data structures. In Proceedings of the 9th Annual European
Symposium on Algorithms, ESA ’01, pages 1–29, London, UK, 2001. Springer-Verlag.

[Ben75] Jon L. Bentley. Multidimensional binary search trees used for associative searching. Com-
mun. ACM, 18:509–517, September 1975.

[BF88] Paul Bratley and Bennett L. Fox. Algorithm 659: Implementing Sobol’s quasirandom se-
quence generator. ACM Trans. Math. Softw., 14:88–100, March 1988.

[BKSS90] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger. e R∗-tree:
an efficient and robust access method for points and rectangles. SIGMODRec., 19:322–331,
May 1990.

[BWY80] Jon L. Bentley, Bruce W. Weide, and Andrew C. Yao. Optimal expected-time algorithms
for closest point problems. ACM Trans. Math. Softw., 6:563–580, December 1980.

[cjx10] cjx3711. Glass Chess Set. http://www.turbosquid.com/FullPreview/Index.cfm/ID/544320, July
2010.

[Cla94] Kenneth L. Clarkson. An algorithm for approximate closest-point queries. In Proceedings
of the tenth annual symposium on Computational geometry, SCG ’94, pages 160–164, New
York, NY, USA, 1994. ACM.

[CPP+05] Eva Cerezo, Frederic Pérez, Xavier Pueyo, Francisco J. Seron, and François X. Sillion. A
survey on participating media rendering techniques. e Visual Computer, 21(5):303–328,
June 2005.

[CS02] Sung-HyukCha and SargurN. Srihari. A fast nearest neighbor search algorithm by ëltration.
Pattern Recognition, 35(2):515 – 525, 2002.

82

BIBLIOGRAPHY 83

[CT81] Robert L. Cook and Kenneth E. Torrance. A reìectance model for computer graphics.
In Proceedings of the 8th annual conference on Computer graphics and interactive techniques,
SIGGRAPH ’81, pages 307–316, New York, NY, USA, 1981. ACM.

[DB08] Germund Dahlquist and Åke Björck. Numerical Methods in Scientiíc Computing: Volume
1. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2008.

[DBB06] Phil Dutre, Kavita Bala, and Philippe Bekaert. Advanced Global Illumination. A K Peters,
Natick, MA, 2nd edition, 2006.

[DDG00] Matthew Dickerson, Christian A. Duncan, and Michael T. Goodrich. K-D Trees Are Better
when Cut on the Longest Side. In Proceedings of the 8th Annual European Symposium on
Algorithms, ESA ’00, pages 179–190, London, UK, 2000. Springer-Verlag.

[Dir82] Paul Adrien Maurice Dirac. e Principles of Quantum Mechanics (International Series of
Monographs on Physics). Oxford University Press, USA, 1982.

[DR05] Julie Dorsey and Holly Rushmeier. Digital modeling of the appearance of materials. In
ACM SIGGRAPH 2005 Courses, SIGGRAPH ’05, New York, NY, USA, 2005. ACM.

[Dut03] Philip Dutré. Global Illumination Compendium. http://www.cs.kuleuven.ac.be/ phil/GI/,
September 2003.

[Eri05] Christer Ericson. Real-Time Collision Detection (e Morgan Kaufmann Series in Interactive
3-D Technology). Morgan Kaufmann, January 2005.

[FB74] Raphael A. Finkel and Jon L. Bentley. Quad Trees: A Data Structure for Retrieval on Com-
posite Keys. Acta Informatica, 4(1):1–9, March 1974.

[FBF77] Jerome H. Friedman, Jon L. Bentley, and Raphael A. Finkel. An algorithm for ënding best
matches in logarithmic expected time. ACM Trans. Math. Softw., 3:209–226, September
1977.

[FH09] Jiří Filip and Michal Haindl. Bidirectional Texture Function Modeling: A State of the Art
Survey. IEEETransactions on Pattern Analysis andMachine Intelligence, 31:1921–1940, 2009.

[FPSG96] James A. Ferwerda, Sumanta N. Pattanaik, Peter Shirley, and Donald P. Greenberg. A model
of visual adaptation for realistic image synthesis. In Proceedings of the 23rd annual conference
on Computer graphics and interactive techniques, SIGGRAPH ’96, pages 249–258, New York,
NY, USA, 1996. ACM.

[Gam11] Galaxy Gameworks. Simple DirectMedia Layer. http://www.libsdl.org/, 1998–2011.

[GG98] Volker Gaede and Oliver Günther. Multidimensional access methods. ACM Comput. Surv.,
30:170–231, June 1998.

[GHJV95] Erich Gamma, Richard Helm, Ralph E. Johnson, and John Vlissides. Design Patterns: Ele-
ments of Reusable Object-Oriented Software. Addison-Wesley, Reading, MA, 1995.

[GKB09] Václav Gassenbauer, Jaroslav Křivánek, and Kadi Bouatouch. Spatial Directional Radiance
Caching. Computer Graphics Forum, 28(4):1189–1198, 2009.

BIBLIOGRAPHY 84

[Gre03] Robin Green. Spherical Harmonic Lighting: e Gritty Details. Archives of the Game
Developers Conference, March 2003.

[GS87] Jeffrey Goldsmith and John Salmon. Automatic creation of object hierarchies for ray tracing.
IEEE Comput. Graph. Appl., 7:14–20, May 1987.

[Gut84] Antonin Guttman. R-trees: a dynamic index structure for spatial searching. SIGMOD Rec.,
14:47–57, June 1984.

[Hal64] John H. Halton. Algorithm 247: Radical-inverse quasi-random point sequence. Commun.
ACM, 7:701–702, December 1964.

[Hav00] Vlastimil Havran. Heuristic Ray Shooting Algorithms. Ph.d. thesis, Department of Computer
Science and Engineering, Faculty of Electrical Engineering, Czech Technical University in
Prague, November 2000.

[HKH11] Michal Hapala, Ondřej Karlík, and Vlastimil Havran. When ItMakes Sense to Use Uniform
Grids for Ray Tracing. In Proceedings of WSCG’2011, communication papers, pages 193–200,
Feb 2011.

[HR07] André Hinkenjann and orsten Roth. Phase space rendering. In Advances in Visual Com-
puting, volume 4842 of Lecture Notes in Computer Science, pages 691–700. Springer Berlin
/ Heidelberg, 2007.

[HS98] Wolfgang Heidrich and Hans-Peter Seidel. View-independent environment maps. In
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware,
HWWS ’98, pages 39–ff., New York, NY, USA, 1998. ACM.

[Inc09] Autodesk Inc. 3ds Max SDK Programmer’s Guide. 111 Mclnnis Parkway, San Rafael, CA
94903, USA, 2009.

[Inc11] Autodesk Inc. 3ds Max. http://www.autodesk.com/3dsmax, 2011.

[ISP07] iago Ize, Peter Shirley, and Steven Parker. Grid creation strategies for efficient ray trac-
ing. In Proceedings of the 2007 IEEE Symposium on Interactive Ray Tracing, pages 27–32,
Washington, DC, USA, 2007. IEEE Computer Society.

[Jen96] Henrik Wann Jensen. Global illumination using photon maps. In Proceedings of the euro-
graphics workshop on Rendering techniques ’96, pages 21–30, London, UK, 1996. Springer-
Verlag.

[JMLH01] Henrik Wann Jensen, Stephen R. Marschner, Marc Levoy, and Pat Hanrahan. A practical
model for subsurface light transport. In Proceedings of the 28th annual conference on Computer
graphics and interactive techniques, SIGGRAPH ’01, pages 511–518, New York, NY, USA,
2001. ACM.

[Kaj86] James T. Kajiya. e rendering equation. In Proceedings of the 13th annual conference on
Computer graphics and interactive techniques, SIGGRAPH ’86, pages 143–150, New York,
NY, USA, 1986. ACM.

BIBLIOGRAPHY 85

[Kar09] Ondřej Karlík. Utilization of generic programming in ray tracing, 2009. Bachelor thesis,
Czech Technical University in Prague, Faculty of electrical Engineering, Supervisor: Tomáš
Davidovič.

[KBPv08] Jaroslav Křivánek, Kadi Bouatouch, Sumanta Pattanaik, and Jiří Žára. Making radiance and
irradiance caching practical: adaptive caching and neighbor clamping. In ACM SIGGRAPH
2008 classes, SIGGRAPH ’08, pages 77:1–77:12, New York, NY, USA, 2008. ACM.

[KG09] Jaroslav Křivánek and Pascal Gautron. Practical Global Illumination with Irradiance
Caching. Synthesis Lectures on Computer Graphics and Animation, 4(1):1–148, 2009.

[KGPB05] Jaroslav Křivánek, Pascal Gautron, Sumanta Pattanaik, and Kadi Bouatouch. Radiance
caching for efficient global illumination computation. IEEE Transactions on Visualization
and Computer Graphics, 11:550–561, September 2005.

[Knu98] Donald E. Knuth.e art of computer programming, volume 3: (2nd ed.) sorting and searching.
Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 1998.

[Lan07] David Lanier. 3D Studio Max SDK, 2007.

[LFTG97] Eric P. F. Lafortune, Sing-Choong Foo, Kenneth E. Torrance, and Donald P. Greenberg.
Non-linear approximation of reìectance functions. In Proceedings of the 24th annual confer-
ence on Computer graphics and interactive techniques, SIGGRAPH ’97, pages 117–126, New
York, NY, USA, 1997. ACM Press/Addison-Wesley Publishing Co.

[LW94] Eric P. F. Lafortune and Yves D. Willems. Using the Modiëed Phong brdf for Phys-
ically Based Rendering. Technical Report CW197, Department of Computer Science,
K.U.Leuven, 1994.

[Mac06] Paul Macklin. EasyBMP. http://easybmp.sourceforge.net/, 2005–2006.

[Mat94] Jiří Matoušek. Geometric range searching. ACM Comput. Surv., 26:422–461, December
1994.

[MB90] David J. MacDonald and Kellogg S. Booth. Heuristics for ray tracing using space subdivi-
sion. Vis. Comput., 6:153–166, May 1990.

[Met87] Nicholas Metropolis. e beginning of the Monte Carlo method. Los Alamos Sci., Special
Issue, 1987.

[Mic10] Microsoft Corporation. MSDN: Processes and reads (Windows), December 2010.
http://msdn.microsoft.com/en-us/library/ms684841.aspx.

[MM99] Songrit Maneewongvatana and David M. Mount. Analysis of approximate nearest neighbor
searching with clustered point sets. Proc.Workshop Algorithm Eng. and Experiments (ALENEX
’99), January 1999.

[MNPT] Yannis Manolopoulos, Alexandros Nanopoulos, Apostolos N. Papadopoulos, and Yannis
eodoridis. R-Trees Have Grown Everywhere.

[Moo90] Andrew W. Moore. Efficient Memory-based Learning for Robot Control. PhD thesis, Univer-
sity of Cambridge, Cambridge, UK, November 1990.

BIBLIOGRAPHY 86

[MS67] omas M. MacRobert and Ian N. Sneddon. Spherical harmonics; an elementary treatise on
harmonic functions, with applications, volume 98 of International series of monographs in pure
and applied mathematics. Pergamon Press, New York, NY, USA, third edition, 1967.

[MT97] TomasMöller and Ben Trumbore. Fast, minimum storage ray-triangle intersection. J. Graph.
Tools, 2:21–28, October 1997.

[NRH+77] Fred E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and T. Limperis. Geomet-
rical considerations and nomenclature for reìectance. Washington DC, 160(October):1–52,
1977.

[NVI07] NVIDIA Corporation. e CUDA homepage. http://www.nvidia.com/object/cuda_home.html,
2007.

[PH10] Matt Pharr and Greg Humphreys. Physically Based Rendering, Second Edition: From eory
To Implementation. Morgan Kaufmann, 2 edition, July 2010.

[Pho75] Bui Tuong Phong. Illumination for computer generated pictures. Commun. ACM,
18:311–317, June 1975.

[RRT95] Diane Ramey, Linda Rose, and Lisa Tyerman. MTL material format (Lightwave, OBJ).
http://paulbourke.net/dataformats/mtl/, October 1995.

[SC97] Peter Shirley and Kenneth Chiu. A low distortion map between disk and square. journal of
graphics, gpu, and game tools, 2(3):45–52, 1997.

[SHAP01] Neal Sample, Matthew Haines, Mark Arnold, and Timothy Purcell. Optimizing Search
Strategies in k-d Trees. In 5th WSES/IEEE World Multiconference on Circuits, Systems, Com-
munications & Computers (CSCC 2001), July 2001.

[She68] Donald Shepard. A two-dimensional interpolation function for irregularly-spaced data. In
Proceedings of the 1968 23rd ACM national conference, ACM ’68, pages 517–524, New York,
NY, USA, 1968. ACM.

[SK88] Bernhard Seeger and Hans-Peter Kriegel. Techniques for design and implementation of effi-
cient spatial access methods. In Proceedings of the 14th International Conference on Very Large
Data Bases, VLDB ’88, pages 360–371, San Francisco, CA, USA, 1988. Morgan Kaufmann
Publishers Inc.

[SM03] Peter Shirley and R. Keith Morley. Realistic Ray Tracing. A. K. Peters, Ltd., Natick, MA,
USA, 2 edition, 2003.

[SRF87] Timos K. Sellis, Nick Roussopoulos, and Christos Faloutsos. e R+-Tree: A Dynamic
Index for Multi-Dimensional Objects. In Proceedings of the 13th International Conference on
Very Large Data Bases, VLDB ’87, pages 507–518, San Francisco, CA, USA, 1987. Morgan
Kaufmann Publishers Inc.

[SSK08] Alexei Soupikov, Maxim Shevtsov, and Alexander Kapustin. Improving Kd-tree Quality at
a Reasonable Construction Cost. In Symposium on Interactive Ray Tracing. IEEE, 2008.

BIBLIOGRAPHY 87

[Sta10] Stanford University Computer Graphics Laboratory. e Stanford 3D Scanning Repository.
http://graphics.stanford.edu/data/3Dscanrep/, 2010.

[SWZ96] Peter Shirley, Changyaw Wang, and Kurt Zimmerman. Monte Carlo techniques for direct
lighting calculations. ACM Trans. Graph., 15:1–36, January 1996.

[TL04] Eric Tabellion and Arnauld Lamorlette. An approximate global illumination system for
computer generated ëlms. ACM Trans. Graph., 23:469–476, August 2004.

[TS67] Kenneth E. Torrance and Ephraim M. Sparrow. eory for off-specular reìection from
roughened surfaces. J. Opt. Soc. Am., 57(9):1105–1112, Sep 1967.

[Wal07] Ingo Wald. On fast Construction of SAH-based Bounding Volume Hierarchies. In Proceed-
ings of the 2007 IEEE Symposium on Interactive Ray Tracing, pages 33–40, Washington, DC,
USA, 2007. IEEE Computer Society.

[War92a] Greg Ward. Real Pixels. In James Arvo, editor, Graphics Gems II. Academic Press. Inc., 1250
Sixth Avenue, San Diego, CA 92101, 1992.

[War92b] Gregory J. Ward. Measuring and modeling anisotropic reìection. In Proceedings of the 19th
annual conference on Computer graphics and interactive techniques, SIGGRAPH ’92, pages
265–272, New York, NY, USA, 1992. ACM.

[WBS07] IngoWald, SolomonBoulos, and Peter Shirley. Ray tracing deformable scenes using dynamic
bounding volume hierarchies. ACM Trans. Graph., 26, January 2007.

[Wei78] Bruce W. Weide. Statistical methods in algorithm design and analysis. PhD thesis, Carnegie-
Mellon Univ., Pittsburgh, PA. Dept. of Computer Science., Pittsburgh, PA, USA, 1978.
AAI7909881.

[WGS04] Ingo Wald, Johannes Günther, and Philipp Slusallek. Balancing Considered Harmful
– Faster Photon Mapping using the Voxel Volume Heuristi. Computer Graphics Forum,
22(3):595–603, 2004. (Proceedings of Eurographics).

[WH92] Gregory J. Ward and Paul S. Heckbert. Irradiance Gradients. In Eurographics Workshop on
Rendering, pages 85–98, 1992.

[WH06] Ingo Wald and Vlastimil Havran. On building fast kd-trees for ray tracing, and on doing
that in O(N log N). In Proceedings of IEEE Symposium on Interactive Ray Tracing 2006, pages
61–69, September 2006.

[WLH97] Tien-Tsin Wong, Wai-Shing Luk, and Pheng-Ann Heng. Sampling with Hammersley and
Halton points. J. Graph. Tools, 2:9–24, November 1997.

[WRC88] Gregory J. Ward, Francis M. Rubinstein, and Robert D. Clear. A ray tracing solution for
diffuse interreìection. SIGGRAPH Comput. Graph., 22:85–92, June 1988.

[WTP01] Alexander Wilkie, Robert F. Tobler, andWerner Purgathofer. Combined rendering of polar-
ization and ìuorescence effects. In Proceedings of the 12th EurographicsWorkshop on Rendering
Techniques, pages 197–204, London, UK, 2001. Springer-Verlag.

Appendix A

List of abbreviations

API Application programming interface

BOB Bounds overlap ball

BRDF Bidirectional reìectance distribution function

BSDF Bidirectional scattering distribution function

BSSRDF Bidirectional surface scattering reìectance distribution function

BTF Bidirectional texture function

BVH Bounding volume hierarchy

CBF Corona binary ële

CUDA Compute Uniëed Device Architecture

DLL Dynamic-link library

DVD Digital Versatile Disc

GI Global illumination

HDRI High dynamic range image

IC Irradiance caching

k-NN k-nearest neighbour

NN Nearest neighbour

PDF Probability density function

RAM Random access memory

RC Radiance caching

88

APPENDIX A. LIST OF ABBREVIATIONS 89

RGBE Red, green, blue, exponent

RMSE Root mean square error

SAH Surface area heuristic

SDK Software development kit

SDL Simple DirectMedia Layer

SDRC Spatial directional radiance caching

SHRC Spherical harmonics radiance caching

SSS Bidirectional subsurface scattering

SVBRDF Spatially-varying bidirectional reìectance distribution function

Appendix B

Test scenes gallery

Figure B.1: Diffuse interior by Jiří “Biolit” Friml.

90

APPENDIX B. TEST SCENES GALLERY 91

Figure B.2: Conference (standard free test scene).

Figure B.3: Sibenik cathedral, courtesy of Marko Dabrovic.

APPENDIX B. TEST SCENES GALLERY 92

Figure B.4: Power sockets.

Figure B.5: Sponza atrium, courtesy of Marko Dabrovic.

APPENDIX B. TEST SCENES GALLERY 93

Figure B.6: Computer case.

APPENDIX B. TEST SCENES GALLERY 94

Figure B.7: Components plate.

Figure B.8: Stanford dragon, courtesy of Stanford University Computer Graphics Laboratory [Sta10].

APPENDIX B. TEST SCENES GALLERY 95

Figure B.9: Glossy interior, courtesy of Ludvík “Rawalanche” Koutný.

Figure B.10: Chessboard, courtesy of cjxėěďď [cjx10].

Appendix C

DVD Content

bin Compiled corona executables together with needed libraries
corona

 plugins Plugins needed by Corona
 src Source codes of Corona in a MSVS 2010 project
demo Scripts for running demonstration renders
doxygen Class documentation generated by Doxygen
results Results of tests
scenes Scenes used for testing in the thesis in the OBJ format
tests Scripts that run the tests presented in the thesis
thesis Both print-optimized and web-optimized versions of this thesis
 src XeLaTeX Source codes of this thesis
 figures All !gures used in this thesis

readme.txt File containing brief overview of the DVD content

96

	Introduction
	Basics of light transport and global illumination
	Radiometric quantities
	Bidirectional reflectance distribution function
	BRDF properties
	BRDF examples
	BRDF generalizations

	Rendering equation
	Solving the rendering equation
	Ray casting
	Monte Carlo integration
	Monte Carlo path tracing
	Photon mapping

	Irradiance and radiance caching
	Irradiance caching
	Record creation
	Interpolation
	Irradiance gradients
	Two-pass rendering
	Algorithm improvements
	Integrating irradiance caching into complex global illumination solution

	Radiance caching algorithms
	Spherical harmonics radiance caching
	Spatial directional radiance caching

	Geometric searching
	Problem formulation
	Space subdivisions
	Uniform grid
	Octree
	Kd-tree

	Handling non-point data

	Data structures for irradiance caching
	Ward's octree
	Multiple-reference octree
	Multiple-reference kd-tree
	Split position heuristic
	Tree updates

	Point kd-tree
	Bounding volume hierarchy
	Dual space kd-tree

	Unified radiance caching
	Unified radiance caching overview
	Radiance samples interpolation
	The directional mapping problem
	Samples storage
	Ray length heuristic

	Implementation
	Corona framework architecture overview
	Rendering core interface (CoronaCore)
	3ds Max plug-in integration (CoronaMax and CoronaMaxUtils)
	Standalone renderer (CoronaStandalone)

	Corona rendering core
	Scene and settings
	Lighting solvers
	Rendering workflow
	Ray casting engine

	Irradiance and radiance caching in Corona
	Irradiance caching implementation
	Radiance caching implementation

	Results
	Testing methodology
	Irradiance caching tests
	Testing scenes
	Kd-trees leaf sizes
	Multiple-reference kd-tree and BVH build heuristics
	Nearest neighbour count for the point kd-tree
	Overall data structures comparison

	Radiance caching tests
	Testing scenes
	Radiance caching results
	Visual comparison of radiance caching algorithms

	Conclusion
	Bibliography
	List of abbreviations
	Test scenes gallery
	DVD Content

