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Abstract

Progressiveness in a global illumination algorithm is a desirable, yet seldom considered property. We have
decided to explore this class of algorithms with additional focus on estimate consistency and suitability
for GPU implementation. Of these, several were chosen for implementation, including path tracing and
various ëltering techniques on one hand and several progressive photon tracing algorithms on the other.

In total, seven algorithms were implemented. e process of parallelizing these for a Single Program
Multiple Data (SPMD) parallel computer is described, the resulting implementations were then tested
on several scenes with varying complexity and illumination features. Results were compared, with main
focus on progression of estimation error in time.

Abstrakt

Progresivita v algoritmech pro globální osvětlení je žádoucí, ale zřídka uvažovaná vlastnost. Rozhodli
jsme se prozkoumat tuto třídu algoritmů s dodatečným důrazem na konzistenci odhadu a vhodnost pro
implementaci na GPU. Několik z těchto algoritmů bylo zvoleno k implementaci, včetně sledování cest a
různých ëltrovacích technik, jakož i několik progresivních algoritmů založených na sledování fotonů.

Dohromady bylo implementováno sedm algoritmů. Je popsán proces jejich paralelizace pro Single Pro-
gram Multiple Data (SPMD) paralelní počítač, výsledné implementace pak byly testovány na několika
scénách různé složitosti a skladby osvětlení. Výsledky pak byly porovnány s hlavním důrazem na průběh
chyby odhadu v čase.
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Chapter 1

Introduction

In August 1986, James Kajiya published his seminal paper on the Rendering Equation [Kaj86], laying
down the theoretical foundations for the ëeld of realistic image synthesis, which he formulated as a
recursive integration problem. In the 25 years since, this ëeld has found applications in the entertainment
industry, industrial design, architecture, scientiëc visualization and many other areas.

In the same paper, path tracing was proposed as an unbiased algorithm to solve said equation, but for over
a decade, radiosity [GTGB84] was instead accepted as the optimal solution for the problem of realistic
image synthesis, due to, mostly, restrictions on available computational power. Towards the end of the
millennium, evolution of computer hardware brought sufficient computational power for more universal
methods, such as path tracing and recently developed photon mapping [Jen96], to regain prominence.

However, these rendering methods rely quite heavily on the ray tracing operator, which is rather computa-
tionally intensive. is has been the limiting factor in the drive for higher quality images. In response, the
research community focused on making ray tracing faster with accelerating data structures, while at the
same time attempting to get better convergence with the same number of rays through more sophisticated
sampling schemes and biased techniques.

Outside of realistic image synthesis, GPUs have been used to accelerate real-time rendering for computer
games, virtual realities and real-time visualisation. Starting out as simple hardware rasterizing units, more
and more parts of the Rendering Pipeline were being moved to the GPU. is prompted programmers,
mainly game developers, to demand greater freedom in conëguring GPU behaviour, which led to the de-
velopment of programmable shaders at the beginning of themillennium. Since then, the programmability
of the GPUs was being expanded and circa 2005 GPUs effectively became specialized SIMD computers.
Rising interest in harnessing the power of the GPU for purposes other than game graphics, such as sci-
entiëc computations, led to the development of several GPGPU programming platforms, most notable
of which was NVIDIA CUDA ërst presented in 2007 [NVI07].

is new technology allowed massive parallelisation of many types of computation, potentially providing
substantial speed-ups and, in the case of realistic image synthesis, completely upsetting conventional
wisdoms on which operations are to be considered “cheap”. In comparing GPU implementations, we
may no longer rely on such measures as convergence per number of samples, because the relationship
between the computational cost of drawing a sample and of any additional calculation is potentially very

1



2 CHAPTER 1. INTRODUCTION

different from the same relationship in a CPU implementation. To address this issue, we will have to be
very careful in analysing convergence rates and computational costs.

As of writing of this thesis, fully programmable SIMD computers with a performance of over 1000
GFLOPS are available as consumer-grade computer hardware. Software developers have yet to utilize
this, but in the research community, GPUs have become quite popular. Even in realistic image synthesis,
new algorithms are already being developed with GPU utilization in mind. erefore, one of the key
points of this thesis is to attempt to evaluate the impact of GPU utilization on existing algorithms.

At the same time, the focus of this thesis are progressive algorithms. In common implementations, realistic
image synthesis algorithms have to be conëgured prior to rendering, by providing them with a set of
inputs (besides the scene information), characteristic for each algorithm. ese inputs then determine
both rendering time and quality of the resultant image. In practice, however, ënding optimal values for
these input settings is non-trivial and users, who are usually not privy to the theory behind their renderers,
end up conëguring them wrong. If the result is unsatisfactory, they are often forced to either touch it up
manually in an image editor, or discard the result and start the computation from scratch with different
settings.

To avoid this, a class of progressive algorithms have been developed. While these also often require input
parameters, an ideal progressive algorithm is designed so that nomatter what the parameters are, the result
will eventually converge to the correct solution. e rendering can then be stopped at any point, and if
the intermediate result is satisfactory, it may be used; or if not, rendering may be resumed to improve
quality without discarding previous results.

Out of these algorithms, several that are known to be consistent – that is, theoretically guaranteed to
converge to the correct solution – will be selected, implemented on the GPU via the NVIDIA CUDA
platform, and their rates of convergence will be compared on different scenes. Such a comparison is
particular to this thesis, because these algorithms are progressive, so the rate of convergence of a single run
can be analysed, rather than rates of convergence of different runs conëgured to run for a given time, and
they are all implemented on the GPU, which impacts the computation cost of even the most elementary
operations and upsets the traditional measures, such as convergence per paths traced, or similar.

Thesis Structure

is thesis shall be organized as follows: Chapter 2 will present the theoretical groundwork for the rest
of the thesis. Radiometric quantities and their relations as well as the Rendering Equation will be brieìy
presented, along with a short introduction into Monte Carlo estimators and on how they may be used to
solve the aforementioned equation. Chapter 3 will present each of the GI solving methods we have chosen
to implement in greater detail, from the standpoint of their mathematical formulation. In Chapter 4,
we will describe how can the methods from the previous chapter be paralelized and implemented on a
SIMD architecture, or rather CUDA in particular. Chapter 5 will present the methodology and results
of the testing of our implementations, as well as a discussion on the meaning and reliability of these
measurements. Chapter 6 will conclude the thesis with a discussion of the outcome of the testing and
with proposals for future research.



Chapter 2

Fundamental Theory

In this chapter, we are going to present some of the fundamentals of the theory of realistic image synthesis.
First, mainly for reference, we will present an overview of basic radiometric quantities and the relations
between them. After that, we will present the Rendering Equation and related concepts and ënally, we
will describe some of the theory of Monte Carlo estimators, and how it pertains to the problem at hand.

2.1 Radiometric Quantities

In attempting to model behaviour of light within a system of interest in a physically correct manner, we
ërst need to be able to quantitatively describe aspects of that system. To this end, we will be using Radio-
metric quantities – these come from a ëeld of physics concerning itself with description and modelling of
propagation of radiation, and are commonly used as the basic theory of realistic image synthesis. A more
thorough introduction to radiometry is presented in [DBB06].

Alternatively, we could have used Photometric quantities, which are used in practice to describe and pre-
dict illumination of real areas in the visible spectrum. e distinction is that while photometry measures
radiation in terms of how it is perceived by human vision (and thus is restricted to the visible spectrum),
radiometry measures it in terms of physical energy. It is important to note that any radiometric unit
is always used in relation to a particular frequency or band of frequencies of electromagnetic radiation,
while photometric units are always understood to represent total visual brightness. It is possible to use
photometric rather than radiometric quantities to describe image synthesis, as any radiometric quantity
has a direct photometric equivalent. e relationship between them may be derived from the base rela-
tionship of radiant ìux, expressed in watts, and luminous ìux, expressed in lumens. e conversion is
done by considering the spectral distribution of radiant ìux and weighting it with a Luminosity function.

As has been mentioned, the basis of radiometry is Radiant energy Q [J]. is quantity represents total
electromagnetic energy within the area of interest at a point in time¹. However, this quantity is usually
of little interest, as it cannot easily be assigned a visual equivalent.

¹According to quantum physics, we may calculate this energy as a sum of all photons, or E = ∑photons h fp, where h is the
Planck constant and fp is the frequency of each particular photon.

3



4 CHAPTER 2. FUNDAMENTAL THEORY

A more tangible quantity is the Radiant îux:

Φ =
dQ
dt

[W ]

In everyday use, it is commonly associated with light sources as the total energy a light source emits per
unit of time (that is, a second) and represents total energy incident to a particular surface, regardless of
direction, per unit of time. In realistic image synthesis, it is commonly quantized to photons, where each
photon carries a quantum of radiant ìux and has an associated position and direction at a point in time².

Differentiating radiant ìux emitted per unit area, regardless of direction, yields Radiosity B (also called
Radiant exitance). A photometric counterpart of this particular quantity is called Luminance LV

[Cd
m2

]
and is used in everyday practice to measure brightness of computer screens, for instance. Radiosity may
be expressed in a differential form thus:

B =
dΦ
dA

[
W
m2

]
(2.1)

If we consider incoming, rather then outgoing radiant ìux, we get Irradiance E, which is otherwise
identical to Radiosity.

If we choose to take direction into account as well, we get radiant ìux incident to a point on surface per
solid angle, a quantity called Radiance L. Radiance may be either incoming or exitant and is a quantity
associated with a ray, as (barring participating media) radiance along a ray is constant. is is the most
important quantity in realistic image synthesis, because it is the quantity that elicits sensor response (that
is, we may actually see or photograph it). Because radiance is usually measured with respect to a point of
surface, it is projected and may be expressed thus:

L =
dE

dω⃗ cosθ

[
W

m2srad

]

As it will be used proliëcally, radiance warrants some further attention. In the rest of this thesis, we
will be using subscripts to indicate what kind of radiance is meant, using Li for incoming radiance,
Lo for outgoing radiance, and Le for emitted radiance. Li (x, ω⃗) shall denote incoming radiance at a
particular point x from direction ω⃗ . Analogically, Lo (x, ω⃗) and Le (x, ω⃗) shall denote outgoing and
emitted radiance from a point x in direction ω⃗ , respectively.

is concludes our brief introduction into radiometric quantities.

2.2 The Rendering Equation

Rendering in realistic image synthesis may be formulated in radiometric terms as follows: For a given
image plane, incoming radiance is integrated over the area of each individual pixel. is is done by the

²ese photons are, however, distinct from photons in the physical sense. For one, physical photons carry energy rather
than ìux, and in practice a single “graphics” photon represents many orders of magnitude more of physical photons. is makes
attempting to simulate waveform properties of light impractical at best, and quite impossible in practice.
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θ

dω

Figure 2.1: How radiance is differentiated at a point of surface

way of drawing samples from the image plane and using a camera model to project them into the scene.
As each of the samples has a position (as determined by its position within the image plane and the image
plane’s position within the scene) and orientation (which is necessary because radiance is always associated
with a direction), projecting it into the scene, we get a ray³.

Barring participating media, radiance along this ray may be determined by the way of Ray Tracing. at
is, we trace the ray to ënd its intersection with an object in the scene and then attempt to determine
exitant radiance at that given point of scene in that particular outgoing direction. e question of just
how exactly do we go about doing that is answered by the Rendering equation.

e Rendering Equation, ërst published by James Kajiya [Kaj86], describes the relation between material
properties, incoming radiance and exitant radiance. Exitant radiance is calculated as a sum of emitted
radiance and reìected radiance. Both of these terms depend on material properties – the ërst one is
directly a material property, as we have to require description of light sources be part of scene information,
while the other is dependent on both the incoming radiance and the material’s reìective properties.

e reìective properties may be quantitatively described by a Bidirectional Reîectance Distribution Func-
tion. In radiometric terms, it describes the relationship between incoming radiance Li(x, ω⃗i) and reìected
radiance Lr(x, ω⃗o) at a given point thus:

f (ω⃗i, ω⃗o,x) =
dLr(x, ω⃗o)

Li(x, ω⃗i) cosθi dω⃗i

In addition, laws of physics (or more precisely, radiometry) dictate that the BRDF of a realistic material
has to satisfy several constraints:

³is is a necessary consequence of the fact mentioned in the previous section, that is, radiance is quantity associated with
a ray and constant along a ray.
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(a) Diffuse (Lambertian) BRDF (b) Specular (Glossy) BRDF (c) Generic BRDF

Figure 2.2: Visualisations of different possible BRDFs. A solid arrow represents incoming radiance, while
dashed arrows represent exitant radiance. Figures 2.2a and 2.2b represent classic model BRDFs, but in
practice, a BRDF will often look as something in between, as seen in Figure 2.2c.

Non-negativity ∀ω⃗i, ω⃗o : f (ω⃗i, ω⃗o,x)≥ 0

Helmholtz reciprocity ∀ω⃗i, ω⃗o : f (ω⃗i, ω⃗o,x) = f (ω⃗o, ω⃗i,x)

Conservation of energy ∀ω⃗i:
∫

Ω f (ω⃗i, ω⃗o,x)cosθo dω⃗o ≤ 1

Such BRDF is then called physically plausible. e integral
∫

Ω f (ω⃗i, ω⃗o,x)cosθo dω⃗o is called Albedo
ρ , a dimensionless quantity describing how much of incoming light is reìected by the material, the rest
being absorbed.

Since the BRDF is characteristic for the material being modelled, it has to be part of the scene description
as well. In practice, BRDF values are either experimentally measured, using a specialized device called
gonioreîectometer, or modelled by an analytical model (also called Empirical BRDF ). While the measured
BRDFs have the advantage of being more faithful to the original and thus more realistic, empirical models
have other desirable properties. e two most important of these are that empirical models may be
analytically inverted and directly used as a PDF for importance sampling, and that most of the commonly
used BRDFs may be separated into their diffuse and specular components.

For this reason, we will be using the Extended Phong BRDFModel in this thesis. is is an empirical BRDF
derived from the original Phong model [Pho75] as extended by Lafortune [LW94], as the original does
not necessarily conserve energy and thus was not physically plausible. Lafortune’s Phong model [LW94]
may be analytically inverted and allows the separation of diffuse and specular components.

As a side note, the BRDF is not the only possible way of modelling interaction of a material with light.
If we also consider transparent (refractive) materials, we get the Bidirectional Transfer Function, which is
analogous to the BRDF in all respects save that it permits incoming and outgoing directions below the
normal plane, and allowing for sub-surface scattering we get the Bidirectional Surface Scattering Reîectance
Distribution Function, which also has to be integrated over an area. e extension of all the methods we
will be using to cover these more complicated material descriptions is quite straightforward, but will not
be explored in this thesis.
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Having formulated our material description convention, we may now formulate the rendering equa-
tion [Kaj86] as follows:

Lo (x, ω⃗o) = Le (x, ω⃗o)+
∫

Ω
Li(x, ω⃗i) f (x, ω⃗i, ω⃗o)cosθi dω⃗i

As is immediately obvious, we need to be able to integrate the product of incoming radiance, BRDF and
the dot product of the incoming direction and shading normal, if we are to arrive at a solution of this
equation. However, given that the incoming radiance can almost never be analytically integrated (save
for the most trivial of scenes), the only solution we may attempt is a numerical one. Furthermore, the
equation is recursive and in order to get Li(x, ω⃗i), we will have to resort to using the ray tracing operator
once more and solving the same equation at a different point of scene.

Before we propose a method to solve this equation, we should note that there are multiple other ways in
which this equation can be formulated, most important for our purposes being the area formulation:

L(x, ω⃗o) = Le(x, ω⃗o)+
∫

A
L(y, y → x) fr(x, x → y, ω⃗o)V (x, y)

cosθx cosθy

∥x−y∥
dAy

Where y → x is shorthand for the direction from y to x from the point of view of y and V (x, y) is
the Visibility term, which evaluates to 1 if and only if there is unoccluded line of sight from y to x and
to 0 otherwise. is formulation integrates over the entire surface area of the scene rather than over a
hemisphere at a point, which has repercussions on possible sampling schemes, but in the limit, yields the
same result. is particular formulation is in fact the basis of Radiosity [GTGB84] method.

2.3 Monte Carlo Methods

Monte Carlo is a method of stochastically estimating the result of a deterministic calculation that is either
very complex or impossible to solve analytically. While the term was coined by Stanislaw Ulam and John
von Neumann [MU49, Met87] as a part of their work on simulating neutron behaviour in a nuclear
device, this methods date back to Comte de Buffon and his famous needle throwing experiment, which
Pierre Laplace noted could be used to experimentally estimate the value of π [Bad94].

In Monte Carlo, samples drawn from a random variable are used as an input for a deterministic calcula-
tion. e results of this function of a random variable are then aggregated and this aggregation is taken to
be the result of the calculation in question. is may be applied to many problems, the most signiëcant
of which (for our purposes, at least) is Monte Carlo Integration.

2.3.1 Monte Carlo Integration

While the principles and use of Monte Carlo integration are well documented in literature [DBB06] (as
is the fact that deterministic methods are much more efficient at estimating one-dimensional integrals),
we shall nonetheless provide a brief introduction, so that we may build on it later.
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Suppose we have a function f (x) deëned over x ∈ [a,b]. If we wish to evaluate the integral

I =
∫ b

a
f (x) dx,

we may do so by drawing samples from a uniform random variable G that distributes samples g1 . . .gn

evenly over [a,b] and aggregating the results into an estimator

⟨I⟩= 1
N

N

∑
i=1

f (gi)

p(gi)
,

where N is the total number of samples drawn so far and p(gi) is the probability density function (PDF)

corresponding to the distribution of variable G, which in this case evaluates to a constant
1

b−a
. us

we may rewrite the estimator like this:

⟨I⟩= 1
N (b−a)

N

∑
i=1

f (gi)

Using the original form, we may analytically calculate the expected value of ⟨I⟩:

E [⟨I⟩] = E

[
1
N

N

∑
i=1

f (gi)

p(gi)

]
=

1
N

N

∑
i=1

E
[

f (gi)

p(gi)

]
=

1
N

N
∫ f (g)

p(g)
p(g) dg =

∫
f (g) dg = I

e variance of this estimator can be calculated as follows:

σ 2 =
1
N

∫ ( f (g)
p(g)

− I2
)

p(g) dg,

which goes to show that the standard deviation of the estimate will be on the order of O
(

1√
N

)
. Note

that this is only asymptotically true – the actual standard deviation may differ signiëcantly due to hidden

constants caused by the ratio
f (g)
p(g)

and multiplication by p(g) itself. While this asymptotic rate of

convergence is not great, it is one of the strengths of the Monte Carlo method. Using multivariate
distributions, Monte Carlo integration can easily be extended into arbitrary dimension while maintaining
this rate of convergence. In comparison, in d dimensions, the classic quadrature integration has a rate

of convergence of O
(

1
d
√

N

)
. Also note that this is a stochastic bound – the result will be a random

variable with an unknown distribution, but with the expected value of I and the aforementioned standard
deviation. As the number of samples increases, the standard deviation decreases and value of the estimator
is more likely to fall close to the expected value.

2.3.2 Improving Convergence

In the previous section, we have demonstrated how we can estimate the value of a deënite integral by
uniformly randomly sampling the integration domain and averaging the function results at these samples.



2.3. MONTE CARLO METHODS 9

While this approach is robust and versatile, there are strategies that allow us to improve convergence with
the same number of samples, using additional information about the integral in question.

e ërst of these is Stratiíed Sampling, also called Jittering in the context of computer graphics. is
simply means that rather than attempting to calculate a single deënite integral, we split the integration
domain into several disjoint subdomains (or strata), estimate each of them separately and sum the re-
sults, in effect calculating several deënite integrals. is reduces variance caused by “clustering”, where
randomly drawn samples are concentrated in a particular subarea of the domain, rather than distributed
evenly⁴. Using stratiëed sampling, we are more likely to explore greater part of the integration domain
(or in layman’s terms, at most 2d samples may “clump” together in d dimensions) and reduce variance
more quickly. However, this becomes difficult as the dimensionality grows, and stratifying becomes more
complex. Also, we may not draw an arbitrary number of samples, but have to instead draw a multiple of
the number of strata.

Another method is using Importance Sampling. is means that rather than a uniform distribution, we
use some other distribution that we believe to be more “similar” to the function we are integrating. In
fact, if p(g) ∝ f (g), we get the correct value upon drawing the very ërst sample, and have zero variance
altogether. e PDF does not need to be identical to the function we are integrating to get a correct
estimator. e only limitation is that this PDF has to be non-zero wherever f (x) is non-zero. However,
a poor choice of p(g) may actually increase variance rather than decrease it, because we will spend more
time sampling parts of the domain that do not signiëcantly contribute to the result.

If the integrand is a product of known functions and an unknown one, we may pick a PDF that is
proportional to the known factors. In computer graphics, and solving the rendering equation in particular,
we commonly use a PDF proportional to f (ω⃗i, ω⃗o, x)cosθi for sampling. Furthermore, there are several
methods of randomly sampling a known PDF using a source of uniform random samples. If we can
analytically calculate the Quantile Function (an inverse of the Cumulative Distribution Function), we may
directly use it to draw samples from a given distribution. Otherwise, if we only know the PDF an its
maximum, we may use Rejection Sampling. One of the advantages of empirical BRDFs is that their
quantile functions are known, and we can thus sample them rather efficiently.

Also of note is, that if we know the quantile function, wemay combine importance sampling and stratiëed
sampling for an additional improvement in convergence – rather than using a uniform distribution as an
input for the quantile function, we use a stratiëed uniform distribution.

Further methods, such asMetropolis Sampling or Quasi Monte Carlo exist, and are dealt with in introduc-
tory works such as [AFH+01], but are beyond the scope of this thesis.

2.3.3 Unbiased, Biased and Consistent Methods

For the purposes ofMonte Carlo Integration, we have introduced an estimator ⟨IN⟩, that draws N samples
and uses them to estimate value of a deënite integral I. We have further demonstrated that the expected

⁴is is possible because we assume the samples are independent, identically distributed. Independence implies that any new
sample is drawn completely regardless to positions of those already drawn, so there is nothing to stop us from drawing them in
close proximity to each other. Note that this only affects variance, not the ënal outcome – in the limit, the result will be correct.



10 CHAPTER 2. FUNDAMENTAL THEORY

value of this estimator is equal to the value of the integral, regardless to the number of samples drawn:

∀N ≥ 1,E [⟨IN⟩] = I

Now, there is a property of a Monte Carlo estimator commonly called Bias. is is deëned, for N samples
drawn, as follows⁵:

BN = |E [⟨IN⟩]− I|

e estimator ⟨IN⟩ we have introduced earlier has a bias of 0 for any positive N. We may thus call it
unbiased. If this were not so, and the expected value would differ from the ënal result, such an estimator
would be called biased. Apart from this, there is a special class of consistent estimators, for which the
following holds:

lim
N→∞

BN = 0

(a) Biased estimate (b) Reference (c) Estimate with variance

Figure 2.3: Estimation Error in Realistic Image Synthesis – the correctly converged result (2.3b) compared
to an unconverged biased estimate (2.3a) and an unconverged unbiased one (2.3c).

e advantage of using consistent estimators is that while they still converge to the correct result (which is
guaranteed by their bias being zero in the limit), they may exhibit lower variance in particular situations,
leading to a lower overall error⁶. Exploring exactly how the overall error behaves is the principal purpose
of this thesis.

2.3.4 Progressiveness

In addition to properties already deëned, we may judge an estimator based on whether or not it is progres-
sive. An estimator is called progressive if it produces a useful estimate for any number of samples N, and is
capable of incrementally drawing more samples to improve the estimate. Any such estimator is effectively

⁵Note that bias is commonly introduced without the lower index. We have used it here merely as a convenient shorthand
to help understand this particular equation. As it is at best non-trivial to actually calculate bias of a given biased estimator, we
will not be using it much more.

⁶On the other hand, unbiased estimators have an arguably advantageous property that any weighted average of any number
of unbiased estimates is in itself an unbiased estimate.
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formulated recursively, which may be used to prove progressiveness. For instance, our estimator ⟨I⟩ may
be formulated as follows:

IN+1 =
1

N +1

N+1

∑
i=1

f (gi)

p(gi)

IN+1 =
1

N +1

((
N

∑
i=1

f (gi)

p(gi)

)
+

f (gN+1)

p(gN+1)

)

IN+1 =

(
1

N +1

N

∑
i=1

f (gi)

p(gi)

)
+

1
N +1

f (gN+1)

p(gN+1)

IN+1 =

(
1

N +1
N
N

N

∑
i=1

f (gi)

p(gi)

)
+

1
N +1

f (gN+1)

p(gN+1)

IN+1 =

(
N

N +1
1
N

N

∑
i=1

f (gi)

p(gi)

)
+

1
N +1

f (gN+1)

p(gN+1)

IN+1 =

(
N

N +1
1
N

N

∑
i=1

f (gi)

p(gi)

)
+

1
N +1

f (gN+1)

p(gN+1)

IN+1 =
N

N +1
IN +

1
N +1

f (gN+1)

p(gN+1)
,

with a postulation that I0 = 0. We have thus demonstrated that the basic Monte Carlo estimator is not
only unbiased, but also progressive. is holds for any such estimator based on importance sampling, but
does not hold for estimators based on stratiëed sampling. is is because we have stratiëed the integration
domain for a given number of expected samples, and if we were to re-stratify it, we could no longer use
any of the previous results. We can, however, add samples in each of the strata, but that is a different
formulation that sacriëces some of the advantages that convinced us to use stratiëed sampling in the ërst
place.

However, it does not necessarily hold that:

∀i > j, |⟨Ii⟩− I|< |⟨I j⟩− I|

is is because the estimator is still effectively a random variable, and while asymptotically the error is
guaranteed to decrease, error with number of samples drawn is not necessarily a monotonous function
even for unbiased estimators.

Note that bias and progressiveness are independent properties. We have shown we have a progressive
unbiased estimator, as well as a non-progressive unbiased one – wemight as well have deëned a progressive
biased estimator, or a non-progressive biased one. In fact, as the title of this thesis suggests, the group of
biased (consistent) progressive estimators is rather signiëcant and in our opinion, merits research.
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Chapter 3

Selected Algorithms

is chapter shall present the algorithms we have chosen to implement. ese will include Path Tracing,
three different algorithms of Filtered Path Tracing, Progressive PhotonMapping, Stochastic Progressive Photon
Mapping and Progressive Photon Ray Splatting. e theoretical basis of each of these techniques shall be
explained in this chapter, while their parallel implementation on the CUDA platform shall be described
in detail in the following chapter.

3.1 Path Tracing

Path Tracing, introduced by Kajiya in the same paper as the Rendering Equation [Kaj86], is a straightfor-
ward combination of the equation (in its directional formulation) with a Monte Carlo estimator. Upon
tracing the primary ray, the rendering equation at the point of impact is estimated by casting a single ray,
and so on recursively. is sequence of rays, illustrated in Figure 3.1, is called a path, hence Path Tracing.

In addition, if we are using simple model materials, like the ërst two in Figure 2.2, or a BRDF that is
a simple composition of these, we may view each bounce of the path as either a specular or a diffuse
interaction. It is common practice to describe paths by their interactions, using a combination of letters
D (for diffuse) and S (for specular). A path may then be described as a string of these letters starting from
a certain direction of interest (eg. “DD path”, “SD path”, etc.), or as a substring describing only the start
of the path. More complex descriptive grammars exist, but will not be used in this thesis.

Usually, the rays are terminated either after a given number of bounces, or when their contribution
(that is, the product of the BRDF and cosine terms accumulated along the path) gets lower than a pre-
set threshold. is approach, however, introduces bias, as it may inadvertently eliminate paths with
signiëcant contribution. To avoid both bias and inënitely long paths that would appear in closed scenes,
we instead terminate paths by the way of Russian Roulette, proposed in [DLW93]. At each bounce a
termination probability is determined. A sample is randomly drawn from a uniform [0,1] distribution,
and if it is less than the determined probability, the path is terminated. Otherwise, the path continues
with a contribution divided by the termination probability. For convenience, surface albedo at bounce
point is used as termination probability, which corresponds to the physical behaviour of light.

13
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Figure 3.1: An example path tracing path. Notice that it starts at the eye and never hits a light source.

Based on the idea of importance sampling, we may attempt to improve the convergence of path tracing
by selecting a good PDF for sampling. Since we know the contribution of a sample is proportional to the
expression f (ω⃗i, ω⃗o, x) cosθi, we will choose a PDF to be proportional to this expression as well. is is
a common approach in path tracing that helps improve convergence especially on glossy surfaces. Using
an empirical BRDF with a known inversion allows efficient sampling directly via the quantile function.

To get a proper PDF out of the term f (ω⃗i, ω⃗o, x) cosθi, we need to normalize it so that it integrates to
1 on a hemisphere. As we know that for a ëxed ω⃗i this expression integrates to albedo ρ , we can get a
PDF by simply dividing by albedo:

p(x, ω⃗o) =
f (ω⃗i, ω⃗o, x) cosθi

ρ

Using this PDF to draw a sample, we get the following Monte Carlo estimator for reìected radiance:

Li(x, ω⃗i) f (x, ω⃗i, ω⃗o) cosθi

f (x, ω⃗i, ω⃗o) cosθi

ρ
ρ

,

which can be simpliëed to:
Li(x, ω⃗i)

Taking these modiëcations into account, we get the following as a radiance estimate:

⟨Lo(x, ω⃗o)⟩=

{
Le(x, ω⃗o) + Li(x, ω⃗i) if t ≥ ρ
Le(x, ω⃗o) if t < ρ

,
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where t is a random variable drawn from a [0,1] uniform distribution.

is is, of course, contingent on ω⃗i being chosen from the aforementioned PDF, and on only a single
sample being drawn. If we were to draw more samples, the second term of the estimator would be
expressed as an arithmetic mean of the samples:

⟨Lo(x, ω⃗o)⟩= Le(x, ω⃗o) +
1
N

N

∑
n=1

Li(x, ω⃗in)

Assuming that most of the scene surfaces are non-emissive, using the directional formulation, it is rather
unlikely that a path hits a light source (point light sources, which are impossible to hit with a ray, notwith-
standing). us most vertices, and indeed most paths would have zero total contribution. To counter
this, path tracing is usually further reëned by separating the computation of emission and reìection
terms. is is called Next Event Estimation (illustrated in Figure 3.2) and uses the area formulation of the
rendering equation to modify the estimator thus:

⟨Lo(x, ω⃗o)⟩=
Le(y,y → x) f (x, ω⃗o, y → x)

p(y)
cosθx cosθy V (y,x) ∥y−x∥ + Li(x, ω⃗i)

In this equation, y is a randomly selected point in scene drawn from distribution Y with a PDF p(y).
Importance sampling is commonly used here as well, usually with a PDF proportional to emitted radiosity
Be (recall Equation 2.1) at a given point. Assuming only area light sources with uniform emission, we
get:

p(y) ∝ Be(y)

or more precisely

p(y) =
Be(y)

ΦTOTAL
,

where ΦTOTAL is the total emitted radiant ìux of all lights in the scene. is is easily calculated by
summing up the emitted radiant ìux of each of the lights, which in turn is calculated as area multiplied
by emitted radiosity. If we also assume only diffuse light sources, it holds that

Le(y, ω⃗o) =
B(y)

π
,∀ω⃗o

And we may express the estimator as:

⟨Lo(x, ω⃗o)⟩=
Le(y,y → x) f (x, ω⃗o, y → x)

Be(y)
ΦTOTAL

cosθx cosθy V (y,x) ∥y−x∥ + Li(x, ω⃗i)

⟨Lo(x, ω⃗o)⟩=
Le(y,y → x) f (x, ω⃗o, y → x) ΦTOTAL

Le(y,y → x)π
cosθx cosθy V (y,x) ∥y−x∥ + Li(x, ω⃗i)

⟨Lo(x, ω⃗o)⟩= f (x, ω⃗o, y → x)
ΦTOTAL

π
cosθx cosθy V (y,x) ∥y−x∥ + Li(x, ω⃗i),

with V (y,x) evaluated by casting an additional shadow ray.

As has been demonstrated in the previous chapter, such an estimator is both progressive and unbiased.
Additionally, with a path tracer, we may start each path at a different position within the pixel (or in other
words, with a different primary ray) and we may thus get progressive anti-aliasing, as well.
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Figure 3.2: How a light source contributes to a path when using Next Event Estimation.

3.2 Filtered Path Tracing

One proposed way to deal with noise exhibited by path tracing has always been through the use of post-
processing ëlters. ese ëlters deëne a matrix of coefficients, whereby each pixel in the resultant image
is calculated as a weighted sum of its neighbouring pixels in the original image, with matrix members
determining the weight. If the sum of these weights is equal to 1, we call such a ëlter Energy Preserving.
A correctly implemented energy preserving ëlter does not alter the total luminance of the image¹. ese
energy preserving ëlters tend to be based on statistical kernels, as they share some of their properties.

e purpose of these ëlters is usually to spread out the radiance of the noisy (too bright) pixels in their
neighbourhood. is trades variance for bias, exhibited as blur. While blur tends to be more visually
pleasing on ìat surfaces than high-frequency white noise (as seen in Figure 2.3c), it becomes visually
disruptive on object boundaries, as these ëlters usually blur the image indiscriminately. e challenge,
then, is to ënd the right balance by selecting such ëlter shape and bandwidth, that variance is reduced as
much as possible, while introducing the minimum amount of blur. e approaches we will describe here
achieve this either by only ëltering certain components of the image, or by using locally-varying kernel
footprint based on local image characteristics.

e ëlters we will be implementing are Jensen’s and Christensen’s component separating ëlter [JC94],
Willems’ and Suykens’ adaptive kernel ëlter [SW00] and Xu’s and Pattanaik’s bilateral ëlter [XP05].

¹“Correct implementation” in this case means that pixels along the border should be handled correctly, because in their case,
part of the ëlter falls outside of the image. ere are multiple ways to handle this – one is to render the original image slightly
bigger (which is correct, but not in fact energy conserving), the other is to only consider pixels in the image, but to normalize
the ëlter matrix in such a way that the used weights sum up to 1.
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3.2.1 Component Separating Kernel Filter

is ëltering technique was proposed by Jensen in Christensen in 1994 [JC94]. It is based on the assump-
tion that most of the variance is introduced through diffuse inter-reìections, or more precisely, paths that
start with a double diffuse bounce from the eye. e proposed solution is to store these paths in a separate
image buffer and, prior to visualization, ëlter them and then add them to the rest of the image.

e paper proposed the use of either a kernel ëlter or a median ëlter. ese would eliminate noise
while not disrupting high-frequency features, such as direct illumination changes at object boundaries.
Furthermore, if an energy preserving kernel ëlter is used² and the ëltering only occurs directly before
visualization, we retain the option of presenting the original, unbiased image.

e size and shape of the matrix ëlter are important parameters. Shaped kernels (such as the Epanechnikov
kernel) are thought to be better for this purpose than box (or ìat) kernels, because they are better at
preserving high-frequency features and do not introduce as much blur. e size of the matrix ëlter is
then a trade-off between noise and blur. In the original paper [JC94], a 3× 3 pixel shaped kernel ëlter
was determined to be best at eliminating variance.

3.2.2 Adaptive Kernel Filter

Adaptive Kernel Filter proposed by Suykens and Willems [SW00] operates on individual paths, rather
than pixels. Image synthesis is ërst formulated as kernel density estimation in the image plane, where
value at each pixel p(t) is estimated thus³:

⟨p(t)⟩= 1
N h2

N

∑
i=1

K

(
t − xi

h

)
,

where h is the kernel width, xi is a sample (path) value, and K is a kernel function. However, this
estimator necessarily introduces bias proportional to the size of kernel footprint h. Again, there is a trade-
off here between reducing variance effectively (with a larger h) and introducing minimum bias (with a
smaller h). Suykens mentions that one of the ways to optimize this trade-off is to derive the kernel width
from the properties of a sample in relation to its surroundings (called Variable Kernel Density Estimation).

e concept of determining the kernel width from the value of a previous estimate is then introduced.
Based on different previous estimates of optimum heuristic, they note that kernel bandwidth should be
proportional to

h(xi) ∝

√
1

f (xi)

²Note that a median ëlter can never be energy preserving.
³It should be mentioned that their method was developed for Bidirectional Path Tracing [LW93], which is more complicated

and less well suited for GPU implementation than regular path tracing. However, the ëltering is trivially adapted, since we can
simply disregard the weights Gk,i that come with BDPT samples and go on from there.
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Furthermore, they note that to obtain a progressive estimate that converges to the correct solution, band-
width should converge to 0 as the number of samples N increases. erefore, they propose the following
heuristic:

h(xi) = C ·
(

1
N

)α
·

√
1

f (xi)
, (3.1)

where α is a user-determined exponent between 1/2 and 1/6 and C is a reference base kernel width.

Based on this heuristic, they propose an algorithm that progressively reënes a ëltered estimate:

1. Trace N0 paths per pixel and store the screen hits (xi)

2. Compute a reference image f ′0 using a ëxed width kernel density estimation (with width h =

C′ ·N−1/2

0 )

3. Compute the image f0 with a variable width kernel density estimation, using f ′0 as reference

4. Dispose of stored hits

5. Ntotal = N0

6. Each iteration:

(a) Choose a number of samples N j

(b) Ntotal+= N j

(c) f j =
Ntotal −N j

Ntotal
· f j−1 (scale down)

(d) Trace paths (N j samples per pixel) and spread them through variable width kernel density
estimation, using f j−1 as reference.

As is apparent from the algorithm description, this ëltering method is progressive in nature. Adaptive
kernel width ensures that high frequency features are preserved (as long as they are present in the reference
image), while variance is reduced with brighter paths being spread out. Eventually, as kernel width goes
to 0, paths are simply added instead of being spread out, and the algorithm becomes a regular path tracer.
is guarantees that in the limit, there is no bias, and the algorithm is thus consistent.

3.2.3 Bilateral Kernel Filter

e de-noising operator put forward by Xu and Pattanaik [XP05] is based on earlier bilateral ëlters. An
archetypical bilateral ëlter might look like this:

⟨p(x)⟩=
∫

A f (ξ ) c(ξ ,x) s( f (ξ ), f (x)) dξ∫
A c(ξ ,x) s( f (ξ ), f (x)) dξ

Where ⟨p(x)⟩ is the estimator of a pixel at x, f (x) is the unëltered value of the same pixel, ξ represents the
coordinates of a pixel in the neighbourhood and c(ξ ,x) and s( f (ξ ), f (x)) are the domain and range ëlter
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kernels, respectively. Note that the denominator guarantees that the resulting ëlter is energy preserving
by normalizing the result with the sum of weights used.

e ëlters are modelled by a Gaussian function with parameters σd and σr, respectively:

c(ξ ,x) = exp

(
−1

2

(
|ξ − x|

σd

)2
)

(3.2)

s( f (ξ ), f (x)) = exp

(
−1

2

(
| f (ξ )− f (x)|

σr

)2
)

(3.3)

e domain ëlter c(ξ ,x) reduces the contribution of incoherent neighbours (preserving, for instance,
object boundaries), while the range ëlter s( f (ξ ), f (x)) restricts contribution to a local neighbourhood.
Xu, however, points out that this simple bilateral ëlter cannot be relied upon to suppress outliers. is is
because a radically different pixel value will only assign minute weight to the neighbours that might mod-
erate that value. On the other hand, it keeps the neighbourhood of an outlier from being “contaminated”
with high variance.

To counteract this, Xu proposes to instead use a near-true estimator f̃ (x) as a domain reference:

⟨p(x)⟩=
∫

A f (ξ ) c(ξ ,x) s
(

f (ξ ), f̃ (x)
)

dξ∫
A c(ξ ,x) s

(
f (ξ ), f̃ (x)

)
dξ

At the same time, a Gaussian ëltered input is proposed as f̃ (x):

f̃ (x) =
∫

A f (ξ ) c(ξ ,x) dξ∫
A c(ξ ,x) dξ

In a numerical formulation, where the integral is instead expressed as a discreet sum, we may restrict the
ëlter window to a range of 6σd ×6σd around the pixel of interest, as the value of the Gaussian beyond
this range is negligible. at allows us to rewrite the expressions thus:

⟨p(i, j)⟩=
∑3σd

u=−3σd
∑3σd

v=−3σd
f (i+u, j+ v) c(u,v) s

(
f (i+u, j+ v), f̃ (i, j)

)
∑3σd

u=−3σd
∑3σd

v=−3σd
c(u,v) s

(
f (i+u, j+ v), f̃ (i, j)

)
f̃ (i, j) =

∑3σd
u=−3σd

∑3σd
v=−3σd

f (i+u, j+ v) c(u,v)

∑3σd
u=−3σd

∑3σd
v=−3σd

c(u,v)

For a pixel at coordinates (i, j).

Note that as the ëlter width is in and of itself independent of the total sample count, the ëlter is not
by itself progressive and introduces bias. On the other hand, this ëlter is self-normalizing and may be
restricted on image borders and remain energy preserving.

In addition, Xu proposes to use this algorithm to ëlter only on separated DD paths, much like Jensen and
Christensen. Also, he recommends that range ëlter be ëltered according to luminance in the logarithmic
domain.
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3.3 Photon Mapping Family

In this section, Photon Mapping [Jen96] shall be introduced as a precursor to Progressive Photon Map-
ping [HOJ08] and Stochastic Progressive Photon Mapping [HJ09] to demonstrate how these are related.

3.3.1 Photon Mapping

In 1996, Jensen presented a novel approach to solving the rendering equation [Jen96]. Rather than
recursively sample the incoming radiance, he proposed to calculate it from a local ìux density estimate.
is estimate would the be calculated prior to primary ray shooting by emitting a number of “photons”
from light sources, tracing them through the scene and storing their interactions with the scene.

us the reìected radiance at a point in scene would be calculated as follows:

Lr(x, ω⃗i) =
∫

Ω
f (x, ω⃗o, ω⃗i)

d2Φi(x, ω⃗i)

dA dω⃗i
dω⃗i,

where Φi(x, ω⃗i) is the ìux estimate at x from direction ω⃗i. Note the absence of the cosine term from the
equation – this is unnecessary, because incoming ìux from a direction is proportional to the cosθ of that
direction. A caveat is that this cosine is with respect to geometry normal rather than the shading normal,
which causes artefacts where these two are noticeably different.

Using a discreet estimate we get:

Lr(x, ω⃗i) =
N

∑
p=1

f (x, ω⃗o, ω⃗i,p)
∆Φi(x, ω⃗i,p)

πr2

is in fact represents searching an area for photons, summing all their contributions and then dividing
the result by surface area. In the original paper, the search radius was to be set to the distance of Nth
nearest photon, thus using the same number of photons for the estimate at any point of scene. In addition,
the photon’s contributions were to be weighted by a conical ëlter, resulting in a slightly different estimate:

Lr(x, ω⃗i) =
∑N

p=1 f (x, ω⃗o, ω⃗i,p)∆Φi(x, ω⃗i,p)wp(
1− 2

3k

)
πr2

With wp a function of the distance d from photon’s position to x:

wp = max
(

0,1− d
kr

)
However, this also works for any 2D-normalized kernel function. An additional improvement of the
algorithm, not presented in the original paper, was in the photon tracing step. We may use the same PDF
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(a) Photon pass (b) Eye pass

Figure 3.3: e two phases of photon mapping. First, many Photon passes (3.3a) generate photon records
throughout the scene, and later in an Eye pass (3.3b) they are used to estimate local ìux density. e
dashed circle in 3.3b shows the area considered in a 5-NN search, the size of which is the source of
proximity bias.

as in Next Event Estimation in path tracing to select the emission point, and use a cosine-weighted PDF
(that is, a cosine lobe for a diffuse light) to sample emission direction, we get a ìux of

Φp =
ΦTOTAL

N

For each photon, where N is the total number of photons emitted. is is convenient, because we do not
need to store the ìux of photons. Furthermore, using Russian Roulette, we also guarantee that their ìux
remains the same regardless of the number of reìections they have gone through.

e resulting algorithm is a robust one, able to calculate difficult illumination features (such as caustics)
quite efficiently, at the cost of introducing bias. Several different kinds of bias are identiëed for photon
mapping, most signiëcant being Proximity Bias. is is caused by the fact that area used to estimate ìux is
greater than a differential area, causing problems at illumination feature boundaries (shadow boundaries,
for instance), and creating the characteristic “splotchy” appearance.

e bias disappears as the number of photons emitted approaches inënity, but emitting very large quan-
tities of photons is often infeasible due to memory constraints, as all the photons have to be stored in
memory. is makes the algorithm consistent in theory, but biased in practice as the lack of memory is
always a limit.

To overcome bias, a technique called Final Gathering is often used. In this technique, the primary rays
(ie. those that originate in the camera) are not stopped at ërst bounce, and the hemisphere around the
hitpoint is sampled using traditional Monte Carlo. Only the secondary hitpoints are then solved using
photon mapping. To preserve crisp caustics, two photon maps are constructed in the photon tracing
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phase – a caustic map that stores photons that have been reìected specularly (once or several times) and
then diffusely, and a regular photon map that stores the rest. e caustics map is then used at primary
hitpoints and both are used at secondary hitpoints.

While this eliminates noticeable bias, many secondary samples (often thousands) have to be taken at each
hitpoint, which in turn generates billions of photon map queries on typical modern image resolution.
Even with very efficient accelerating structures (such as k-D trees [SHAP01]) for photon queries, this
rapidly becomes prohibitive, due to computation time required. Photon mapping is therefore usually
relegated to the role of a secondary solver for techniques such as Irradiance Caching [WRC88].

3.3.2 Progressive Photon Mapping

In 2008, Hachisuka, Ogaki and Jensen presented a novel technique called Progressive PhotonMapping [HOJ08].
In this variant, the photon tracing and gathering steps are reversed. Primary rays are cast, their hitpoints
are stored and assigned gather radii. en, ëxed-size batches of photons are emitted from light sources
and traced, and are only recorded if they land within a hitpoint’s gather radius. is leads to the following
density estimate:

d(x) =
n

πr2 ,

for a ëxed radius r, and n photons fallen within this radius. Tracing another batch of photons and
recording their intersections with hitpoint radii would yield a different estimate. ese two could be
averaged, but that is not very helpful, as both of them are irredeemably biased. To achieve consistency,
we have to progressively decrease the radius while increasing the photon density, until it becomes inënite
in the limit. To that end, we have to reformulate the estimate. Taking R(x) to be the radius at point x,
N(x) to be the number of previously accumulated photons and M(x) to be the photons accumulated in
this batch, we get:

d̂(x) =
N(x)+M(x)

πR(x)2

Since we have to reduce the radius to achieve consistency, we will do so by subtracting dR(x), or R̂(x) =
R(x)− dR(x). Assuming constant local density, we can then recalculate the number of photons within
that radius as:

N̂(x) = πR̂(x)2d̂(x) = π(R̂(x) = R(x)−dR(x))2d̂(x)

e exact amount of photons to add is controlled by a parameter α ∈ [0,1]:

N̂(x) = N(x)+αM(x) (3.4)

e radius reduction dR(x) may then be expressed as follows:

π (R(x)−dR(x))2 d̂(x) = N̂(x)

π (R(x)−dR(x))2 N(x)+M(x)
πR(x)2 = N(x)+αM(x)

dR(x) = R(x) − R(x)

√
N(x)+αM(x)
N(x)+M(x)
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And the reduced radius R̂(x) as:

R̂(x) = R(x) − dR(x) = R(x)

√
N(x)+αM(x)
N(x)+M(x)

(3.5)

Each hitpoint then stores an unnormalized (not divided by the number of photons) ìux estimate τN(x, ω⃗o)
calculated as:

τN(x, ω⃗o) =
N

∑
p=1

f (x, ω⃗o, ω⃗i,p)Φp(xp, ω⃗i,p)

Note that this ìux is pre-multiplied by the BRDF so we no longer need to take photon’s incoming
direction into account. Similarly, ìux contribution of the last batch is calculated as:

τM(x, ω⃗o) =
M

∑
p=1

f (x, ω⃗o, ω⃗i,p)Φp(xp, ω⃗i,p)

However, as we decrease the radius, we need to reduce the ìux to account for the photons that are now
outside the gather radius. To avoid the need to store all the photons, we may exploit the assumption that
local density is constant and express the reduction like this:

τN̂(x, ω⃗o) = (τN(x, ω⃗o)+ τM(x, ω⃗o))
πR̂(x)2

πR(x)2

τN̂(x, ω⃗o) = τN+M(x, ω⃗o)

π

(
R(x)

√
N(x)+αM(x)
N(x)+M(x)

)2

πR(x)2

τN̂(x, ω⃗o) = τN+M(x, ω⃗o)
N(x)+αM(x)
N(x)+M(x)

(3.6)

Where τN+M(x, ω⃗o) = τN(x, ω⃗o)+ τM(x, ω⃗o) and τN̂(x, ω⃗o) is the new, reduced value corresponding to
N̂(x). Note that the above assumption may not hold initially, causing effects such as light leaking, but as
the radius is reduced, it becomes very nearly true.

Finally, the photon count is updated simply as:

N(x+1) = N(x)+M(x) (3.7)

Using the above, progressive photon mapping produces a progressive and consistent ìux density esti-
mate. As the ìux is pre-multiplied by the BRDF, we may directly use it to estimate outgoing radiance by
normalizing it with Nemitted – the total number of emitted photons:

Lr(x, ω⃗r)≈
1

∆A

n

∑
p=1

f (x, ω⃗o, ω⃗p)∆Φp(xp, ω⃗p) =
1

πR(x)2
τ(x, ω⃗o)

Nemitted
(3.8)

is estimator is also both progressive and consistent. e major advantage of Progressive Photon Mapping
over regular photon mapping is that the photons do not need to be stored anywhere, so the algorithm is
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not memory-bounded by total number of photons emitted. us, in theory, arbitrarily many photons
may be emitted only at expense of rendering time, with the guarantee that bias will disappear in the limit.

e key parameter in this algorithm is α . rough controlling radius reduction, this parameter directly
inìuences the trade-off between bias (high radius) and variance (low radius). ere is not yet any formal
analysis of how exactly this parameter inìuences convergence, but setting it appropriately is crucial.

In a more recent paper [HJJ10], Hachisuka presented an error estimation framework for progressive
photon mapping and re-derived some of the equations above, relaxing the assumption that ìux needs to
be locally constant. e equations remain unchanged, save for one detail – it is proven that the estimate
is correct even if the photons are weighted by a radial-symmetric kernel function.

(a) Eye pass (b) Photon pass

Figure 3.4: e two phases of progressive photon mapping. First, primary rays are cast in an eye pass
(3.4a), establishing primary hitpoints within the scene. en, photons are traced in an arbitrary number
of photon passes (3.4b), contributing to any primary hitpoints to the gather radius of which they fall.
As photons are contributed to hitpoints, their gather radii are reduced. In Stochastic Progressive Photon
Mapping (Section 3.3.3), positions of primary hitpoints are changed every so often by recasting eye rays
while retaining the hitpoint statistics.

3.3.3 Stochastic Progressive Photon Mapping

Stochastic Progressive Photon Mapping is a technique proposed by Hachisuka and Jensen [HJ09]. It builds
on the original progressive photon mapping to allow simulating of effects usually simulated by distributed
ray tracing, such as anti-aliasing, depth of ëeld, motion blur, and so on.

e principle of this method is that the estimation is reformulated in terms of estimating radiance over
pixel area (in potentially much more than two dimensions) by re-casting the primary rays after a certain
number of photons has been emitted. However, while averaging several images rendered by progressive



3.4. PHOTON RAY SPLATTING 25

photon mapping with distinct primary rays would yield a valid estimate, this estimate would be biased
(as each of the inputs is biased) and would never converge to the correct solution.

Instead, a radiance estimator over area L(S, ω⃗) is deëned and formulated as:

L(S, ω⃗) = lim
i→∞

τi(S, ω⃗)

Ne(i)πRi(S)2 ,

where i is the number of photons emitted, and τi(S, ω⃗), Ne(i) and Ri(S) are shared ìux, photon count
and radius respectively.

e key difference is that estimator variables are stored for the entire pixel rather than for individual
primary samples, and are retained between primary ray recasts, maintaining consistency of the estimate.
Radius and ìux reduction are performed in the same manner as in regular photon mapping, and there
is no implementation difference. Photon count, however, is updated differently. For N accumulated
photons and M new photons in the last round, the updated photon count N̂ is given as:

N̂ = N +αM, (3.9)

where α is the same parameter used in computing radius reduction in Equation 3.5.

e result is a consistent progressive estimator capable of simulating a variety of global illumination effects,
such as anti-aliasing, motion blur, depth of ëeld, and more.

3.4 Photon Ray Splatting

Photon Ray Splatting is a global illumination technique developed in 2007 by Herzog et al. [HHK+07].
It is similar to progressive photon mapping in that eye rays are cast ërst, and then energy is distributed
among them from the scene lights.

e basic idea is that the ìux of a photon ray is splatted to hitpoints within a conical frustum of the ray,
as shown in Figure 3.5. e width of this frustum is a key parameter, and has to be set so that all points
within the frustum are very likely visible from the point of origin, or light leaking might occur.

In effect, photons are traced normally, but a conical frustum around each of the photon rays is searched for
hitpoints and part of the photon’s energy is then splatted to each hitpoint, weighted by a kernel function
perpendicular to ray direction:

E(x) =
Ntotal

∑
i=1

Kh(x,xi, ω⃗i)∆Φi(xi, ω⃗i)cosθi,

whereKh(x,xi, ω⃗i) is a 2D kernel function with a domain oriented perpendicular to ω⃗i and centred on xi

and bandwidth h. Note that while irradiance is measured per projected differential area, if it is guaranteed
that

∫
S Kh(x,xi, ω⃗i) dx = 1 we need not explicitly divide by footprint area.

Reformulating this, we may calculate outgoing radiance due to a photon ray:

Lr(x, ω⃗o) =
Ntotal

∑
i=1

f (x, ω⃗o, ω⃗i) Kh(x,xi, ω⃗i) ∆Φi(xi, ω⃗i) cosθi (3.10)
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Figure 3.5: A photon pass in Photon Ray Splatting. Notice that while hitpoints are treated as points,
a photon ray contributes to any hitpoint it passes, rather than just to those that are near path vertices
(compare Figure 3.4b).

With the caveat that photon rays coming from a direction below the normal plane should be discarded.

e most important theoretical issue, then, is to ënd a way to correctly determine the splatting foot-
print bandwidth, or equivalently the width of the conical frustum. e original paper presents a very
sophisticated heuristic based on probability density of each photon:

p̃(xi+1|xi) =


pe(x0,x1)

D(x0,x1)
i = 0

p̃(xi,xi−1) ·
p⊥s (xi−1,xi,xi+1)

D(xi,xi+1)
∀i > 0

,

where pe is the probability density of a photon being emitted in that particular direction, while p⊥s is the
projected probability density of a photon reìection. D(x,y) is then the distance between two points. e
original proposal called for these values to be clamped with scene-dependent thresholds.

Based on this probability density, a heuristic for determining bandwidth at bounce point was deëned:

h(xi) =


0 i = 0

C
6
√

M
w√

p̃(xi|xi−1)S
∀i > 0

, (3.11)

where M is the total number of photons emitted, S andC are user-deëned parameters, and w is a constant
estimated during the photon tracing phase as:

w = m0
a ·E[D(x,y)]

1
E[
√

p̃(xi|xi−1)S]

,
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where m0 and a are more user-deëned parameters. Original proposal also called for value of h(x) to be
clamped.

While the sixth root and dependency on mean values of parameters correspond to what is proven to
make an optimum heuristic, our early efforts have found it entirely unsuited for progressive rendering.
e problem is that many of the user-deëned parameters have a signiëcantly non-linear response, causing
most of the computed values to be clamped anyway, as the heuristic only works reasonably for a constant
photon count.

Another problem was found with the sixth root – this method introduces bias directly related to the width
of the splatting footprint, most notably, discontinuity bias and light leaking beyond corners in certain
cases. is bias eventually goes away as the splatting footprint decreases⁴, but using a sixth root effectively
gives the error function an upper bound of O( 6

√
n). Until a theoretical study proposes a heuristic better

suited for progressive rendering, we have decided to replace the heuristic from Equation 3.11 with the
following formula:

dh(x) =
C

α
√

N
(3.12)

Where dh is the differential of footprint per unit of ray length, N is the number of photons emitted so
far and C and α are user-deëned parameters.

is new heuristic guarantees that the splatting footprint decreases with the number of photons emitted,
and while most likely not optimal, ensures consistency.

Note that in a progressive rendering algorithm, photon ìux is unnormalized, much like it was in pro-
gressive photon mapping, and the resulting radiance has to be divided by number of photons emitted
prior to visualization. Because we do not discard prior rendering results, this in fact means that the bias
introduced by the ërst photon rays remains in the image for good. On the other hand, in the ënal result,
we could express a bias function B(n) that computes bias for a certain number of photons traced:

B(n) =
n

∑
i=1

1
n

b(i)

As the contribution, as well as bias, of each photon ray is weighted by the inverse of the photon count.
us, assuming a photon-wise bias function b(i) that decreases with i (as we know that in the limit with
a zero footprint and inënite density, we get a perfect ìux density estimate, and the method is unbiased),
the bias introduced by each individual photon decreases with n, ensuring consistency.

⁴is is because bias comes from width of the splatting kernel, as well as low photon ray density in the initial phases. We
could simply set the footprint to zero, but then we would have a zero probability of connecting any particular photon ray to a
hitpoint.
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Chapter 4

Parallelization and Implementation

In this chapter, we will describe the implementation speciëcs of the algorithms presented in the previous
chapter. At the beginning, we present the software framework we were using and the platform it is based.
en, we will describe the process of parallelizing originally serial algorithms for our speciëc paradigm of
parallel computation. And ënally, the implementation particulars of each algorithm will be pointed out.

All of the algorithms were implemented in the Uskglass renderer, based on NVIDIA CUDA [NVI07]
platform. is platform provides a comprehensive API for programming graphics cards from nVidia
corporation. As the programming model used by this platform is directly based on the hardware archi-
tecture, the exposed elements of parallelism are directly analogous to their hardware implementation.
Programs can thus be easily tailored to the hardware even in the design phase, without having to sacriëce
abstraction.

Another advantage of this particular architecture is that it provides a C/C++ language extension CUDA
C and a compiler (called NVCC) that allows easy integration of CUDA code into an existing C/C++
project. is is a major advantage over other platforms, such as OpenCL [Khr08], because a CUDA
project may use C++ classes on the GPU, or share routines between CPU and GPU.

4.1 CUDA C

In CUDA, the GPU is introduced as a co-processor for the CPU. It has its own memory space and the
CPU (called host) can allocatememory on theGPU (called device), transfer data in both directions and run
massively parallel computation routines called kernels. A kernel is executed by multiple threads in parallel,
with these arranged in a grid, making this a SPMD architecture. is grid is in fact a two-dimensional
array of blocks, each block itself a three-dimensional array of threads.

reads are executed concurrently in groups called warps of 32 (usually, this may differ between architec-
tures). As memory access is by far the most expensive operation, this architecture relies on rapid context
switching and executing many warps in parallel to hide memory latency.

As this is a SPMD architecture, jump instructions are possible and widely used. However, as the archi-
tecture is SIMD with respect to warps, if individual threads in a warp diverge in program ìow, both

29
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Figure 4.1: A CUDA Streaming Multiprocessor with its constituent parts. Each of these can execute two
warps at any given point in time, with yet more performing memory operations. Taken from [NVI09].

paths need to be executed consecutively, with some of the threads deactivated in each path. is incurs
performance penalties for code that has threads take wildly varying program paths, but does not incur
any penalties where the entire warp jumps coherently, regardless of the program ìow complexity. is
has important implications that will be explored later.

Grid conëguration is speciëed by user on each kernel launch and may be varying, though there are
architectural constraints on possible dimensions of blocks and the grid, as well as constraints on the
maximum number of threads/blocks in a block/grid. During execution, each thread has access to its
index within a block, as well as its block’s index within a grid and overall grid and block dimensions.
Blocks in execution are of importance, because threads in a block may access a common on-chip memory
space called shared memory, as well as utilize some synchronization primitives.

When a kernel is executed, grid blocks are assigned to Streaming Multiprocessors (see Figure 4.1) on the
GPU. Each multiprocessor may run several blocks concurrently, but a block is never divided among
multiprocessors. When blocks are assigned to a multiprocessor, its shared resources are divided among
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Figure 4.2: e CUDA Fermi architecture, pictured with 16 constituent Streaming multiprocessors (see
Figure 4.1), the newly introduced L2 cache and other supplementary features. Taken from [NVI09].

them, and block size may thus impact performance. Each streaming multiprocessor contains a number of
CUDA Cores for most common operations, as well as memory access handlers and special function units
that implement some of common mathematical functions, like square root, goniometric functions, and
such. Multiple warps may execute on a streaming multiprocessor in parallel (with others waiting their
turn) provided they utilize different units of the streaming multiprocessor¹.

In CUDA, there are several different segments of memory. ough their address space has been uniëed in
the Fermi architecture, there still are differences. Aside from the Shared memory already mentioned, there
is the Linear Memory that contains both thread-local Local Memory² and application-localGlobal Memory.
Furthermore, the GPU has Texture Memory and Constant Memory, both of which have their dedicated
cache. In addition, Texture Memory supports hardware-accelerated interpolation and multi-dimensional
indexing, albeit for only speciëc data formats. e downside of texture memory is that it can only be
accessed via Texture References, which cannot be dynamically created at runtime. In addition, Fermi
architecture has added a new layer of caching for Linear Memory, which especially beneëts applications
with many non-local memory accesses, as ours is guaranteed to be.

¹Note that this is a very general description that does not cover many of the architecture particulars. It has been included
mainly to establish a frame of reference and introduce some of the terminology that will be used later. For a more thorough
description of Fermi architecture, that this description was based on and that was the target architecture for our implementation,
a reader may consult the Fermi Architecture White Paper [NVI09].

²Local memory contains any thread local variables that are not stored in a register. In practice, the rule of thumb is that any
structured data types are stored in linear memory (with slower access), while primitive variables may be stored in registers (for
rapid access). ere are, however, many exceptions to this rule particular to each architecture.
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CUDA exposes two APIs to the programmer – a very lightweight Runtime API, as well as the more
hands-onDevice API. ese facilitate memory operations, as well as kernel launches and general handling
of device-host cooperation. Both of these may be used in conjunction with CUDA C, which is a C/C++
language extension accepted by theNVCC (or CUDACC) compiler. is allows kernel code to be written
directly beside host code, compiled together with the application and linked with it immediately. Kernels
are annotated as functions with the __global__qualiëer. ey accept arguments either as value, or as
a pointer into global memory, as shown in Listing 4.1.

1 s t a t i c vo id __g loba l __ p e rmu t a t i o nK e r n e l ( uns igned i n t * i n d i c e s ,
uns igned i n t * f l a g s , DataType * inpu t , DataType * ou tpu t ,
uns igned i n t l e n g t h ) {

2 / / g e t l i n e a r i n d e x o f t h i s t h r e a d
3 uns igned i n t t h r e a d I d = b lock Idx . x * blockDim . x + t h r e ad Idx . x ;
4
5 / / i f we h a v e s p awn ed mor e t h r e a d s t h a n was n e e d e d ,

s u p e r f l u o u s t h r e a d s a r e t e r m i n a t e d h e r e
6 i f ( t h r e a d I d >= l e n g t h )
7 r e t u r n ;
8
9 / / i f f l a g f o r t h i s o b j e c t i s s e t , p e r f o r m t h e p e r m u t a t i o n
10 i f ( f l a g s [ t h r e a d I d ] ) {
11 ou t pu t [ i n d i c e s [ t h r e a d I d ] ] = i n p u t [ t h r e a d I d ] ;
12 }
13 }

Listing 4.1: A sample kernel that performs a permutation operation. Note that it is assumed that both
grid and block conëgurations are one-dimensional in the X dimension.

Such a kernel may then be called from application code by a special call syntax that provides the grid
conëguration, shown in Listing 4.2.

1 uns igned i n t * i n d i c e s , * f l a g s ;
2 DataType * inpu t , * ou t pu t ;
3 uns igned i n t l e n g t h ;
4 / / a r r a y s a r e a l l o c a t e d and i n i t i a l i z e d u s i n g a c om b i n a t i o n o f

k e r n e l s and API c a l l s
5 p e rmu t a t i o nK e r n e l <<<dim3 ( 6 4 , 1 , 1 ) , / / s e t b l o c k d i m e n s i o n s
6 dim3 ( ( l e n g t h / 6 4 ) +1 , 1 , 1 ) >>> / / s e t g r i d d i m e n s i o n s . No t e t h a t a

v a r i a b l e i s u s e d
7 ( i n d i c e s , f l a g s , i npu t , ou tpu t , l e n g t h ) ; / / p r o v i d e a r g um e n t s

t o t h e c a l l

Listing 4.2: A sample kernel call. Note the grid conëguration speciëed in angled braces, passed as a
special data type.

Kernels may be executed asynchronously or synchronously. On the Fermi architecture, asynchronously
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launched kernels may execute concurrently on different streaming multiprocessors, providing a speed-up
if “small” kernels that are embarrassingly parallel need to be executed. is is, however, not usually the
case in our context.

In addition to the __global__keyword, two more important qualiëers are introduced. Any function
ormethod can be annotated by the__device__keyword, meaning that it should be compiled to run on
theGPU. Such a function (ormethod)may then be called by a kernel (also called “called from device code”).
e __host__keyword annotates functions and methods that should be compiled for the CPU, but is
not usually used, since that is the default behaviour. However, when used together, a function or method
annotated as __host____device__may be called both from device code and from host code. ere
are, however, restrictions. A __device__functionmay only in turn call other__device__functions
(or __host____device__functions), and __host____device__functions may only call other
__host____device__functions. In addition, a function or method that is to be run on the device
may not be recursive, since the device does not implement a full-ìedged call stack.

is provides a brief introduction into CUDA programming. Before we go on to describe the framework
used for rendering, it should be noted that there are several libraries that perform some of the basic parallel
operations (as well as freely available libraries that perform much more complicated routines, one of the
strengths of CUDA). Among these routines are reduction (using an associative operator on all the elements
of an array and reporting the result), parallel preíx sum or parallel scan (using an associative operator on all
elements of an array and reporting for each element the “sum” of all preceding elements) and parallel sort
(self-explanatory). Since an efficient implementation of these often-used operations is crucial, we have
used the CUDA Data Parallel Primitives (CUDPP) library [HSO07] to carry them out.

4.2 Uskglass Renderer

e Uskglass renderer³ is a CUDA-based progressive interactive renderer originally developed as a GPU-
based offshot of Corona renderer to test the feasibility of Volumetric Radiance Caching for interactive
applications (such as scene walkthroughs). Rather than being a plug-in for a modelling program, the
original aim in development of this renderer was to allow the user to explore the scene, supplying him
with photo-realistic imagery at an interactive rate, while at the same time having the ability to progressively
improve render quality if the user stops moving through the scene, in order to allow the user to explore
the more interesting parts of the scene in detail and at a higher visual quality.

To this end, the renderer provides a framework of numerous utility classes, as well as a ray tracing frame-
work. Furthermore, it deënes progressive work ìow that a rendering algorithm must implement. is is
embodied in the interface of ProgressiveSolver class, from which the actual implementations of
all our algorithms are derived. e progressive work ìow is described in Algorithm 1.

For displaying results, Uskglass supports either copying a framebuffer to the CPU and then displaying it as
an SDL software buffer, or by copying the framebuffer into anOpenGL pixel unpack buffer, which is then
displayed directly. e latter variant is more convenient for GPU-based renderers, as CUDA provides
direct interoperability with OpenGL, where OpenGL buffers may be mapped into device memory space
and then written into or read from.

³Named after John Uskglass in tribute to Susanna Clarke’s Jonathan Strange and Mr. Norrell.
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Algorithm 1 Progressive work ìow
1: ProgressiveSolver solver
2: solver.initialize //Allocate and initialize internal structures
3: cameraChanged = true
4: repeat
5: process user input and set the cameraChanged ìag if appropriate
6: if cameraChanged then
7: //User has moved the camera
8: solver.clear //Clear the framebuffer and other internal structures
9: end if
10: if solver.canProgress then
11: //Some solvers may eventually be incapable of progressing any further, due to numerical con-

straints, running out of data or due to self-termination
12: solver.progress //Next step in calculation
13: end if
14: display result
15: until program terminated

e basic design paradigm in Uskglass is that as much computation as possible should be performed on
the GPU. Because copying data between host and device is a comparatively expensive operation (in fact
this is one of the recognized bottlenecks), vector data should only be copied between host and device in
the initialization phase of the rendering. A renderer should not need to move vector data to host in order
to progress in computation⁴.

For this reason, all vector operations are executed on the device. Essentially, any do in parallel code block
is implemented as a kernel launch, with each thread processing an item as speciëed by the annotation. For
ray tracing, several accelerating structures, implemented as classes derived from the ParallelInter-
sector class, are available, built during the scene loading phase and then moved to device⁵. Primary
rays are generated on the device as well, using the ParallelCamera class. An instance of this class is
ëlled with data on the host, based on user input, and then moved to device, where it generates primary
rays on demand (the solver only speciëes how should a pixel be sampled).

Also, large quantities of pseudo-random numbers are needed for Monte Carlo algorithms. To perform
well and to not cause any structured noise, these numbers should be independent both in time in a thread,
as well as between threads. On the CPU, high-quality PRNGs such as Mersenne Twister [MN98] may
be used, but these are difficult to implement on the GPU, as they tend to have a large internal state and
would be impractical to retain persistently, as the thread counts as well as their conëgurations may vary
wildly during execution.

To face this issue, Zafar et al. [ZOC10] have tested feasibility of using the Tiny Encryption Algorithm
as a pseudo-random number generator on the GPU. ey have concluded that for at least six rounds,
TEA passes most of NIST randomness tests, and quality may be traded for speed with less rounds. As

⁴is terminology gets slightly confusing in computer graphics, when we consider that the “scalar” data that may be copied
are in fact often vectors. In this chapter, a vector is understood to be an array of data elements not limited in size, while the
vectors mentioned further will almost invariably be three-dimensional.

⁵e one used in these implementations is a SAH BVH.
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the algorithm is very simple and the generator itself only has an internal state of 8 bytes, it is well-suited
for being implemented on the GPU. Uskglass provides a TEA PRNG as the TEA class template, where
the number of rounds may be set as a template argument. In practical application, six or eight rounds
are used. To ensure independence between threads, 4 bytes of the seed are the linearised thread index
(occasionally multiplied by a prime constant) and the other 4 bytes, uniform among all the threads, are
a seed value generated host-side by a Mersenne Twister, to ensure independence between launches.

is concludes the description of important general features of Uskglass. More of them will be mentioned
in individual implementations, where appropriate.

4.3 Path Tracing

e canonical implementation of path tracing is a recursive one. In practice, this would often be rewritten
to use an explicit stack or otherwise optimized, but the gist of the algorithm is the same as in Algorithm 2.

Algorithm 2 A serial recursive path tracing implementation
1: procedure recursivePathtracer ( in Ray r)
2: Hit point h = traceRay(r)
3: if h.invalid then
4: //Ray went out of scene
5: return Color.BLACK
6: end if
7: //Performs the next event estimation as described in Chapter 3.1
8: Color emitted = nextEventEstimate(h)
9: Ray next = h.BRDF.sample //Samples the BRDF as described in the same section
10: if h.BRDF.shouldTerminate then
11: //plays the Russian Roulete
12: return emitted
13: else
14: return emitted +h.BRDF.valueNormalized(r,next)∗ recursivePathtracer(next)
15: //e value of the BRDF is normalized (with an intensity of 1) and only modiëes colour
16: end if
17: end procedure

Even though individual paths are embarrassingly parallel, this implementation is highly inconvenient for
GPU use. ere are two main reasons for this. First, most GPU programming platforms (and CUDA
among them) do not support recursion. Second, if we were to implement this procedure with an explicit
stack, the entire kernel execution would have to wait for the longest path to ënish. To counteract this,
Coulthurst et al. [CDD+10] have proposed an implementation well-suited to SIMD coprocessors. In
their method, called Incoherent Path-Atom Binning, path tracing is reformulated as an iterative process.
It is broken down to path tracing primitives, described in Algorithm 3, and these are than assigned to
individual processors in order to keep them all occupied. e ability to de-couple paths from processors
mid-path allows us to assign new primitives to processors that have become idle, bringing an originally
work-optimal algorithm much closer to cost-optimality.
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For an array of a mix of active and inactive paths, we may use the parallel scan operation to compact
the active paths to the start of the array and assign new paths contiguously into unused positions at the
end. Additionally, unlike in the original paper, in CUDA, we may want to assign multiple paths to each
processor to improve occupancy. is results in Algorithm 4.

Algorithm 3e path tracing primitive and how it can implement serial path tracing.
1: procedure pathtracingPrimitive (in out Path p)
2: Hit point h = traceRay(path.ray)
3: if h.invalid then
4: p.setInactive
5: return
6: end if
7: //Perform the next event estimation and add its result multiplied by path’s accumulated BRDF to

the pixel
8: p.addContribution(p.accumulatedBRDF ∗nextEventEstimate(h))
9: Ray next = h.BRDF.sample
10: if h.BRDF.shouldTerminate then
11: p.setInactive
12: return
13: end if
14: //BRDF value is accumulated over path lifetime by multiplication
15: p.accumulatedBRDF∗= h.BRDF.valueNormalized(r,next)
16: return
17: end procedure
18: procedure iterativePathtracer ( in Sample screenSample, in Camera c)
19: Path p = c.makePath(screenSample)
20: repeat
21: pathtracingPrimitive(p)
22: until p.isInactive
23: end procedure

Also, unlike the recursive implementation, we have to explicitly keep track of accumulated BRDF of
the entire path. As this also presupposes importance sampling by the f (ω⃗i, ω⃗o, x) cosθi

ρ function, we could
disregard BRDF completely if we were only interested in radiance. In practice, however, radiance is
deëned in terms of RGB components and we use per-component multiplication by a normalized BRDF
value to keep track of colour.

e key point here is exactly how the method Path.addContribution is implemented. In our imple-
mentation, each path is explicitly associated with a pixel. As the value of a pixel may be expressed as an
arithmetic mean of the contributions of all the paths that pass through it, we may simply add whatever
contribution the path generates, provided we keep track of the number of paths per pixel. As this number
is actually uniform among pixels, there is no need to store it explicitly. We only have to divide all the
pixel values by the number of paths per pixel during visualisation as we copy the buffer contents into the
framebuffer.

However, as more paths may compete contribute to a single pixel in parallel, errors known as race condi-



4.3. PATH TRACING 37

Algorithm 4e SIMD parallel path tracing algorithm

1: procedure parallelPathtracer (in Sample[] screenSamples, in Camera c, in uint sampleCount)
2: uint parallelPaths = PROCESSOR_COUNT ∗OCCUPANCY_CONSTANT
3: Path paths[parallelPaths]
4: uint activePaths = 0
5: uint processedPaths = 0
6: repeat
7: //Fills the path array with freshly generated paths from the sample array.
8: c. f illPaths(paths, activePaths, parallelPaths, processedPaths)
9: do in parallel per path
10: pathtracingPrimitive(paths[index])
11: end parallel
12: compact(paths, activePaths) //Compacts active paths to the start of the array.
13: until processedPaths = sampleCount && activePaths = 0
14: end procedure

tions may arise. To prevent these, we make use of CUDA’s atomic functions, namely ìoating point atomic
addition. is ensures that multiple threads writing to a single ìoat each add their value properly. As a
downside, however, this restricts our application to GPUs with a Compute Model version 2.0 or higher.

While this all is sufficient for a pure path tracer, we have implemented additional features. In order to
support path separation necessary for component separated ëltering, we have added a variable that tracks
the ërst two path interactions. On demand, DD paths may be separated and stored in a separate buffer
(with a separate counting buffer keeping track of how many paths in a pixel were separated).

In addition, our path tracing implementation is a distributed path tracer, that is, paths start at the primary
hitpoint and direct illumination is sampled separately (and stored in a separate buffer). On the other
hand, the primary rays are re-cast each iteration from a random point in pixel, so progressive anti-aliasing
is kept. e main advantage of this approach is that the user may specify how many direct illumination
samples should be taken, as well as howmany paths should be traced. is may be advantageous in scenes
where direct illumination contributes to variance signiëcantly more, or vice versa⁶.

4.3.1 Component Separating Kernel Filter

Having implemented parallel path tracing with path separation, the component separating kernel ëlter
is relatively straightforward to implement. In the visualization phase, we separately calculate estimates
by dividing the pixel values by the number of paths that contributed to them. In the second buffer for
DD paths, we then apply kernel ëltering over a square grid area, using a radially symmetric epanechnikov

⁶In addition, we use a compaction scheme on our primary hitpoints to gather the valid ones (those that did have a valid
intersection with the scene) into a contiguous array and avoid processing the invalid ones. at is the only implementation
difference, as once the gathered radiance has been stored in the frame buffer, all hitpoint information may be discarded and new
ones may be created. is holds even for path separation, as we have a global paths per pixel counter and invalid hitpoints are
considered to contribute black.
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kernel. Using K(x,h) for the epanechnikov kernel, the formula used in implementation is as follows:

f̂ (u,v) =
∑h

i=−h ∑h
j=−h f (u+ i,v+ j)K(

√
i2 + j2,h)

∑h
i=−h ∑h

j=−hK(
√

i2 + j2,h)

e iterator values of i and j are clamped so as not to reference invalid indices. Note that the result
is normalized by the sum of weights, so that this ëlter remains valid and energy-conserving even along
image boundaries.

Having ëltered the DD component, the result for visualization is obtained by simply adding the direct
illumination component, DD component and the residual component. ese operations are embarrass-
ingly parallel per result pixel, so the ëlter as well as addition are easily parallelized and all of these operations
are performed on the GPU in the ParallelProgressiveKernelFilteredPT class, deëned
in ële ParallelProgressiveKernelFilteredPathtracer.h.

4.3.2 Adaptive Kernel Filter

Our adaptive kernel ëltered pathtracing implementation is built on top of the regular pathtracer (in the
ParallelProgressiveAdaptiveFilteredPT class derived from the original Parallel-
PRogressivePathtracer). However, only one path per pixel is traced before they are splatted as
per Section 3.2.2. e splatting operation is parallelized per path (that is, per source pixel), so that each
thread only iterates through the neighbourhood determined by kernel width h. If this were parallelized
per result pixel, we would have to ërst determine maximum splatting radius and have all threads search
this radius, signiëcantly increasing runtime.

Note that this ëlter is not applied as a post-processing operation, but the newly traced paths are splatted
directly into the internal persistent radiance buffer.

4.3.3 Bilateral Kernel Filter

Bilateral kernel ëlter is applied as a post-processing ëlter after path tracing in the ParallelProgres-
siveBilateralFilteredPT class. It is built on top of regular path tracer and does not modify the
internal radiance buffer. Bilateral kernel ëlter is parallelized per pixel (both source and output, as these
are identical in this case). As per Section 3.2.3, a gaussian-ëltered estimate is ërst calculated and then
used as a basis for the bilateral ëlter. Kernel ëltering is done the same way as in Component Separating
Kernel Filter, with range ëlter used over total luminance, expressed with a luminance function similar to
one mentioned by Xu and Pattanaik [XP05].

4.4 Progressive Photon Mapping

e implementation of progressive photon mapping has two principal phases – the eye ray shooting
phase, and the photon tracing phase. e eye ray shooting phase is quite straightforward, and is imple-
mented similarly as a path tracer would be. On intersection, a PPMHitpoint is created, that stores
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additional data required for photon mapping, as per the original paper [HOJ08]. e variables stored
are enumerated in Table 4.1.

Member name Meaning

hit point Index into the primary hitpoint array. Referenced entry contains the
position, normal, material etc. of this hitpoint.

R(x) e gather radius of this hitpoint
N(x) e total photon count
M(x) Photons gathered this round
τ(x) e pre-multiplied unnormalized ìux at this hitpoint

Table 4.1: e PPMHitpoint structure and its members.

However, unlike the original proposal, we never let the primary ray bounce on a glossy surface. is is due
to difficulty associated with dynamic memory allocation in CUDA, where having to save a potentially
unlimited number of hitpoints per ray would require laborious workarounds that could potentially break
the algorithm. is change should only manifest itself on specular surfaces, where specular reìections
will take longer to converge.

e photon tracing step is much like path tracing described above, with the difference being that pho-
tons have to be gathered by hitpoints after each bounce. For gathering, we use an algorithm described
by Hachisuka and Jensen [HJ10], where a hashed grid is built over photon hitpoints and these are then
stochastically assigned to grid cells. is is done with an understanding that photon assignment is par-
allelized per photon, and each grid cell only contains a photon counter (that is incremented atomically)
and a photon index (that is written to competitively). Assuming that there is an even chance for any
photon to be the last, using just the last photon with a ìux multiplied by N, the number of photons
that fell to the same grid cell, is an unbiased choice. is is in fact a variation of the Russian Roulette,
where we assume that the probability for each of the photons to be chosen is equal to 1

N . Dividing by the
probability then translates to multiplying by N as speciëed.

is approach, embodied by the ParallelPointGrid class, implemented in a ële of the same name,
saves many the problems associated with organizing photons into a search structure, at the cost of increas-
ing variance. is, however, is potentially offset by an improvement in computation speed.

As in path tracing, photons that leave the scene or are absorbed are declared inactive. After each iteration,
those that are left active are compacted to the start of the array, and new ones are generated. Note,
however, that absorbed photons still contribute to hitpoints, and thus should be written into the grid as
well.

e overall Parallel Progressive Photon Mapping algorithm is described in Algorithm 6 and implemented
in the ParallelProgressivePhotonMapper class. Note that by gathering photons (paral-
lelized per hitpoint) after each bounce, we get improved convergence as a more diverse selection of pho-
tons is retained, and as an additional advantage, we need not allocate persistent storage for our photons,
because we gather them directly from the storage used for tracing. e gathering operation can be called
reasonably fast as we take time to set grid cell dimensions to be equal to maximum gather radius. is
guarantees that any hitpoint needs to search at most 8 grid cells.
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Algorithm 5e Parallel Photon Tracing Routine
1: procedure tracePhotons(in uint parallelPhotons, in uint roundPhotons, ref HashGrid grid, ref

PPMHit point[] hit points)
2: uint activePhotons = 0
3: uint generatedPhotons = 0
4: repeat
5: generatePhotons(photons,activePhotons,generatedPhotons,roundPhotons)
6: grid.clear()
7: do in parallel per photon
8: photons[index].trace
9: if photon.isActive then
10: //Only for photons that did not leave the scene
11: //Competitively writes photon index into the appropriate grid cell and atomically incre-

ments photon count in the same cell
12: grid.writePhoton(photons[index])
13: photons[index].nextBounce //Chooses the next interaction
14: //e Russian roulette based on selected interaction and either absorbs the photon, or

modiëes its ìux (and colour) appropriately
15: photons[index].russianRoulette
16: end if
17: end parallel
18: do in parallel per hitpoint
19: grid.search(hit points[index])
20: end parallel
21: //Compact active photons to the start of the array and update the active photon count
22: compactInactive(photons,activeCount)
23: until activePhotons = 0 && generatedPhotons = roundPhotons
24: end procedure
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Algorithm 6e Parallel Progressive Photon Mapping algorithm

1: PPMHit point[] hit points //e primary hitpoints
2: Photon[] photons //e array for currently traced photons
3: HashGrid grid //A search grid for photon splatting
4: procedure parallelProgressivePhotonMapping ( in ScreenSample[] samples, in uint sampleCount,

in f loat initialRadius, in f loat al pha in uint parallelPhotons, in uint roundPhotons)
5: hit points= tracePrimary(samples,sampleCount, initialRadius) //Traces primary rays and ini-

tializes their hitpoints
6: BoundingBox hit pointBox = makeBox(hit points)
7: grid.makeGrid(hit pointBox, initialRadius)
8: loop
9: //Using procedure from Algorithm 5
10: tracePhotons(parallelPhotons,roundPhotons,grid,hit points)
11: do in parallel per hitpoint
12: reduceHit point(hit points[index]) //Performs radius and ìux reduction, updates photon

count
13: end parallel
14: grid.reGrid(parMAX(hit points[].radius))
15: displayRadianceEstimate(hit points)
16: end loop
17: end procedure

e reGrid operation recalculates the grid cell dimensions, to keep them equal to largest used search
radius, as suggested by [HJ10]. As the grid is empty at this point, this is an O(1) operation. Our
implementation uses a hash grid suggested by Hachisuka, meaning that we may change cell dimensions
(and cell counts) without requiring a reallocation of underlying storage. In addition, the reGrid operation
does not need to be performed each round. In fact, as the radius reduction is done at a rate similar to
exponential, after the initial few iterations, it may be omitted altogether.

On initialization, a bounding box of primary hitpoints is constructed with a series of parallel MAX reduc-
tions, and is immediately expanded by initial search radius. is allows us to eliminate from the gather
step any photons that fall outside this bounding box. e grid cell dimensions are set to the initial radius,
identical for all hitpoints.

A radiance estimate is calculated from unnormalized gather ìux by dividing it with the total number of
photons emitted.

4.5 Stochastic Progressive Photon Mapping

As has been mentioned, Progressive Photon Mapping does not allow for distributed ray tracing effects,
most important for our purposes being anti-aliasing. Stochastic Progressive Photon Mapping allows us
to remedy this, as with the modiëed update routine we are able to recast primary rays while maintaining
consistency. To do this, we introduce a method that recasts the primary hitpoints, while leaving their
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respective PPMHitpoints untouched. Having deëned the PPMHitpoint as we did above, this is trivial
to do⁷.

Recasting the primary rays necessitates reconstruction of the photon grid. In addition to resizing grid cells,
we need to again build a bounding box over primary hitpoints, as their positions might be substantially
different. However, as we are using a hash grid, this operation is only as expensive as the parallel reductions
over the hitpoints needed to build the box. e new box is then expanded by current, rather than initial,
maximal search radius.

e other key difference is in photon count update – rather than using formula from Equation 3.7, we
use the updated one from Equation 3.9.

e overall Parallel Stochastic Progressive Photon Mapping algorithm is described in Algorithm 7 and im-
plemented in the ParallelStochasticPPM class, as derived from the original ParallelPro-
gressivePhotonMapper.

Algorithm 7e Parallel Stochastic Progressive Photon Mapping algorithm

1: PPMHit point[] hit points //e primary hitpoints
2: Photon[] photons //e array for currently traced photons
3: HashGrid grid //A search grid for photon splatting
4: procedure parallelProgressivePhotonMapping ( in ScreenSample[] samples, in uint sampleCount,

in f loat initialRadius, in f loat al pha in uint parallelPhotons, in uint roundPhotons)
5: hit points = tracePrimary(samples,sampleCount, initialRadius)
6: BoundingBox hit pointBox = makeBox(hit points)
7: grid.makeGrid(hit pointBox, initialRadius)
8: loop
9: //Use the routine from Algorithm 5.
10: tracePhotons(parallelPhotons,roundPhotons,grid,hit points)
11: do in parallel per hitpoint
12: //Perform radius and ìux reduction and updates photon count as per Equations 3.5,3.6, and

3.9
13: reduceHit point(hit points[index])
14: end parallel
15: recastPrimary(hit points) //Recasts the primary rays
16: hit pointBox = makeBox(hit points)
17: grid.reBox(hit pointBox)
18: grid.reGrid(parMAX(hit points[].radius))
19: displayRadianceEstimate(hit points)
20: end loop
21: end procedure

⁷Actually, our implementation does retain a PPMHitpoint for each pixel in a persistent buffer. is is done because we
use a compaction scheme on primary hitpoints and their corresponding PPMHitpoints to avoid processing arrays of mixed valid
and invalid (missed the scene) hitpoints.
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4.6 Progressive Photon Ray Splatting

Progressive Photon Ray Splatting is quite distinct from the previous algorithms. While photon tracing is
much the same, the ray splatting is a different challenge altogether. In the original proposal, it is speciëed
that a kD-tree is to be used to splat photon rays. For each ray, we search a conical frustum capped with a
hemisphere on the wider end. In order to be able to efficiently search a point kD-tree for a conical area,
we ërst need to deëne efficient intersection tests.

For the initial intersection test of a bounding box against a conical frustum, Herzog et al. [HHK+07]
proposed to expand the bounding box by terminal ray radius and then perform a box-segment intersection
test. is is a straightforward enough test, and a conservative one. However, crucial for a kD-tree traversal
is a test against an axis-aligned plane. is can in turn be done by a simple interval test. If this were just a
segment, we could construct the interval for the x dimension (and analogically for any other dimension)
simply as:

⟨min(xstart ,xend);max(xstart ,xend)⟩
However, as this is a conical frustum, we need to project the cone as a whole onto the axis of interest.
Using rstart for the initial radius and rend for the terminal radius, we may express the interval as:

⟨min(xstart − rstart ,xend − rend);max(xstart + rstart ,xend + rend)⟩

And we may directly test the splitting plane coordinate against this. Note that as at the start, the frustum
is capped by a plane rather than by a hemisphere, we could have calculated the term for the starting radius
exactly as rstart · sinα , where alpha is the angle between the frustum directional vector and the axis, but
this would likely not be worth the additional calculation and logic. us we satisfy ourselves with this
conservative test.

For this search, we use a kD-tree build on host (the ParallelPointKdTree class and associated
classes and kernels), utilizing the SlidingMidpoint method and Box over Bounds optimization presented by
Sample et al. [SHAP01]. e tree is built on host because this is only done once in algorithm initialization,
and we have not discovered any published research on efficient point kD-tree construction with this
method on the GPU.

Overall, as photon rays are bound to photons, the photon tracing, as well as generating, method is exactly
the same as in progressive photonmapping. Utilizing a photon tracing algorithm described asAlgorithm 8,
the entire algorithm is described in Algorithm 9.

e key differences are that even the photon rays that leave the scene have to have their frustums searched,
as these may still contain some hitpoints. Any hitpoints that are found than have their radiance con-
tributed to as per Equation 3.10 (provided they are not back-faced). e differential frustum width per
unit length is derived from the heuristic described by Equation 3.12, with base frustum width either re-
tained from last bounce, or 0 on ray start – this information then fully deënes a photon ray frustum.
Photon rays that leave the scene are capped at their intersection with the bounding box of primary hit-
points. Radiance estimate is calculated exactly the same way as in progressive photon mapping.

Note that unlike the previous method, progressive photon ray splatting does not require a special hitpoint
structure. A regular hitpoint together with a radiance buffer will suffice.

Progressive photon ray splatting is implemented by theParallelProgressivePhotonRaySplat-
ter class.
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Algorithm 8 Photon tracing in Progressive Photon Ray Splatting
1: procedure tracePhotons(in uint photonCount, in uint parallelPhotons, ref PointKdTree tree)
2: uint activePhotons = 0
3: uint generatedPhotons = 0
4: photonRay[parallelPhotons]photons
5: repeat
6: generatePhotons(photons,activePhotons, parallelPhotons,generatedPhotons)
7: do in parallel per photon ray
8: photons[index].trace
9: photons[index].setCone()
10: tree.contribute(photons[index])
11: if photons[index].isActive then
12: //We can only bounce photons that are still in scene
13: photons[index].bounce()
14: photons[index].russianRoulette()
15: end if
16: end parallel
17: compactActive(photons,activePHotons)
18: until activePhotons = 0 && generatedPhotons = photonCount
19: end procedure

Algorithm 9 Parallel Progressive Photon Ray Splatting

1: procedure parallelProgressivePhotonRaySplatting(in ScreenSample[] samples, in
uint sampleCount, in uint photonsPerRound, in uint parallelPhotons)

2: Hit point[sampleCount] hit points
3: hit points = tracePrimary(samples,sampleCount) //Trace the primary rays
4: PointKDTreetree
5: tree.build(hit points) //Constructs the kD-tree host-side
6: loop
7: tracePhotons(photonsPerRound, parallelPhotons, tree) //Perform tracing and contribution

8: displayResults(hit points)
9: end loop
10: end procedure



Chapter 5

Testing and Discussion of Results

In this chapter, we will present the methodology used for our testing, as well as the individual test cases.
Next, the results of this test suite shall be presented. A more detailed analysis of each algorithm’s perfor-
mance will follow, with the aim to determine to what degree may our results be skewed by particulars of
our implementation, as well as to discover where there is room for improvement in each of the algorithms.

5.1 Testing Methodology

In this thesis, the principal area of interest is the use of presented algorithms as radiance estimators, rather
than any aesthetic criteria. For this reason, we will be performing measurements directly on the radiance
estimate, represented as a 96-bit ìoating point RGB triplet, rather than on any tone mapped values.

For the purposes of testing, we have selected ëve scenes, varying in complexity and illumination features.
In each of these scenes, we picked a view and let each of the algorithms render it for four hours. During
this time, no other computationally intensive processes were run and in algorithm-dependent intervals,
the renderer would dump the complete state of its radiance buffer into a ële on the hard drive, with the
application measuring intervals between these events.

After we were done rendering, we selected a reference image for the given scene (typically the path tracing
output) and compared each frame to this reference. To aggregate estimation error over the image, we
used the Root Mean Square Error:

RMSE (⃗x,⃗r) =

√
∑n

i=1 (⃗xi − r⃗i)
2

n
,

where images are taken to be vectors of pixels. Each colour channel is considered separately, without any
perceptive weighting, as we are interested strictly in estimator precision, rather than the visual result.

As we can associate each of the RMSE values with its rendering time, we may plot these values on a time
line and thus compare the algorithms side-to-side for a single scene. Whenever an algorithms requires
any conëguration parameters, we will provide the values we used for that scene.

45



46 CHAPTER 5. TESTING AND DISCUSSION OF RESULTS

Furthermore, to provide a better idea of how the error manifest itself in each algorithms, we will provide
some rendering snapshot and difference images in Appendix C. For each snapshot, the difference image
will be calculated as the vector of absolute values of channel- and pixel-wise differences. In addition, a
mapped difference image shall be provided for each difference image.

In these, Relative Luminance Error:

RLE (⃗xi, r⃗i) =
L(|⃗xi − r⃗i|)

L(⃗ri)

With L(⃗xi) being the relative luminance of a given RGB triplet, calculated as L = 0.2126R+0.7152G+
0.0722B, shall be displayed in false colour mapping for visual reference.

For performance analysis, one of the scenes will be chosen and rendered with each of the algorithms
run in the Compute Visual Proíler [NVI07]. e output of the proëler shall be presented along with a
discussion and analysis of the results.

5.2 Test Cases

e following scenes were used for testing:

Cornell Box

Figure 5.1: e Cornell Box

e Cornell Box is one of the classic test scenes in realistic image synthesis. In our version, it contains a
single box and a sphere. Geometrically, it is a simple enough scene that should not be very hard on ray
tracing, and contains diffuse materials exclusively. We should see here how our algorithms handle diffuse
inter-reìections, and how well they can cope with paths or photons leaving the scene unexpectedly.
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Glossy Interior

Figure 5.2: e Glossy interior scene

is scene, courtesy of its author Rawalanche, is a slightly more complex interior scene with a moderately
glossy material (that is, specular, but with a very low shininess), falling into a class of scenes generally
considered difficult. Geometry wise, it is a plain interior with a Utah teapot in the middle. We should
be able to see many specular inter-reìections in this scene.

Ring

Figure 5.3: e Ring scene

is is a simple scene speciëcally engineered to present several difficulties. It consists of a large diffuse
plane with a mirror-like purely specular ring in the middle, illuminated by an area light placed some
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distance above. Since the ring is by far the most complex object in the scene, this is a sort of ”teapot in
a stadium” scenario that is known to present difficulties to ray tracers. Furthermore, this is a very open
scene, so there will be many photons falling outside of area of interest, or out of the scene altogether. We
have chosen a view that should show off a mild cardioid caustic on the surface below the ring.

Conference

Figure 5.4: e Conference scene

Another one of the classic test scenes, Conference presents a mixture of diffuse and specular materials as
well as an assortment of objects of varying geometric complexity. Of the scenes we have, this one can
be said to be the closest to a real-world production scene. e mixture of materials should provide for a
variety of path combinations, as well as areas dominated by indirect illumination.
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Sponza

Figure 5.5: e Sponza scene

A ëne model of the courtyard of the Sponza palace in Dubrovnik, this scene is a partially open one,
composed exclusively of diffuse materials. e arcades of the courtyard are illuminated exclusively by
indirect diffuse paths, making this a production-scale diffuse scene. is should test how our algorithms
handle diffuse inter-reìections in a scene closely resembling production.

5.3 Testing Results

Having run the tests and aggregated the output data, we are able to present the resulting graphs. Before
we do that, however, we will ërst explain some of the particulars of the testing. e testing conëguration
used is presented in Table 5.1.

CPU Intel Pentium Dual CPU E2180 2,00GHz 2,00GHz
RAM 4,00 GB DDR3
GPU NVIDIA GeForce GTX460 2GB GDDR
OS Windows 7 Professional 64

Table 5.1: e testing conëguration

As has been mentioned, no other computationally intensive processes were run on the testing machine
during the time of the testing. To accurately measure time spent on GPU computations, we used CUDA’s
built-in time measurement function, which measure with a precision of a hundredth of a millisecond.
What we factually measured was the time to take a rendering step, while time spent on transferring data
for visualization and saving the frame buffer on the hard drive was not counted towards rendering time.

We used a base resolution of 512×512 for each of the algorithms. ose that did not support progressive
antialiasing were using antialiasing by 4× super-sampling with regularly spaced samples.
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Furthermore, all of the algorithms require speciëc conëguration variables to be provided. In each test
case, the values used for rendering were determined in preliminary testing and will be presented in full
in Appendix B. e values will be presented in a table form, and their speciëc meanings are explained in
Table 5.2¹.

e performance graphs we will be providing will only span the ërst hour of rendering. is is because the
results themselves show that any algorithm plateaus during the ërst hour and only converges very slowly
after that. Since the convergence doesn’t change dramatically after that point, we may easily extrapolate
it from the data provided and by omitting it, gain more space to provide a detailed analysis of the initial
convergence.

5.3.1 Cornell Box
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Figure 5.6: e time-error plot for the Cornell Box scene.

As Cornell Box is a very simple scene, it is hardly surprising that all of the implemented algorithms
successfully converge to an acceptable error rather quickly. An interesting observation is that while the
photon-based methods converge rather quickly at ërst, they are the ërst to plateau, being all overtaken in
the course of approximately three minutes. As for the path tracing methods, it is clearly visible that the
adaptive ëlter is consistently worse with regard to RMSE than any other path tracing method, while the
other ëlters exhibit little discernible difference.

¹Note that the ëltering techniques based on path tracing necessarily inherit conëguration variables from path tracing. ese
are not explicitly mentioned and were always set the same for both ëltered and unëltered path tracing.
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Algorithm Variable Meaning

Path Tracing parallelPaths Howmany paths should be traced in par-
allel, as per Algorithm 4

pathsPerRound How many paths should be traced from
a single primary hitpoint, before the re-
sults are visualized and the primary ray is
recast

directSamples How many Next Event Estimation sam-
ples should be taken from the primary
hitpoint to determine direct illumination

Component Separation Filter kernelWidth e ëltering kernel width, in pixels
Adaptive Filter α e sample exponent, as per Equa-

tion 3.1
C e reference kernel width in pixels, as

per Equation 3.1
Bilateral Filter σd e domain ëlter width from Equa-

tion 3.2
σr e range ëlter width from Equation 3.3

Progressive Photon Mapper parallelPhotons How many photons should be traced in
parallel, as per Algorithm 6

photonsPerRound How many photons should be traced be-
fore each reduction step

initialRadius Initial gather radius for new hitpoints
α e reduction coefficient from Equa-

tion 3.4
Stochastic Progressive Photon Mapper parallelPhotons same as PPM

photonsPerRound same as PPM
initialRadius same as PPM

α same as PPM
Progressive Photon Ray Splatting parallelPhotons How many photon rays should be traced

in parallel, as per Algorithm 9
photonsPerRound How many photon rays should be traced

before visualization
C e reference differential width as per

Equation 3.12
α e exponent from the same

Table 5.2: e names and meaning of conëguration variables for our algorithms
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As this is a scene dominated by diffuse inter-reìections, there were expectations that a path traced so-
lution would be noisy at ërst, but would clear up quickly. is expectation was largely met, with the
comparatively poor performance of the adaptive ëlter being somewhat surprising.

5.3.2 Glossy Interior
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Figure 5.7: e time-error plot for the Glossy Interior scene

is one scene consists exclusively of slightly glossy materials, making this a very difficult scene. Indeed,
even after a full day of rendering, a path tracer would not converge, still exhibiting signiëcant high-
frequency noise. As noise like this would irreparably skew our RMSE measurement, we were forced to
use a different renderer for reference in this scene. For this we have chosen the bilateral ëltered path
tracer, which is energy conserving, doesn’t exhibit white noise, but is otherwise visually very close to the
path traced solution.

erefore it is immediately obvious why the bilateral ëlter exhibits the lowest error overall, during the
entire measurement. e shapes of convergence graphs of unëltered path tracing and component sep-
aration ëlter show how the error may actually increase, even as variance decreases, as was mentioned in
Section 2.3.4.

Of the photon-based methods, both photon mapping algorithms exhibit good initial convergence, but
are soon overtaken ërst by path tracers and later by photon ray splatter, as well. A closer examination
of resultant imagery shows, that while the photon ray splatter handles indirect illumination quite well,
with bias spread out over the scene, direct illumination is very visibly biased. is can be ascribed to low
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initial cone radius, which causes uneven illumination when the initial ray segment is comparatively short.
In comparison, both photon mapping methods tend to under-illuminate the ceiling immediately next to
the light.

On examining the adaptive ëltered path tracer, we can see that it exhibits visibly less noise than path
tracer, but still signiëcantly more than the bilateral ëlter. Also, indirect illumination appears to have been
suppressed by this ëlter – shadows are noticeably darker.

e bilateral ëlter, on the other hand, doesn’t exhibit any visible noise and converges to the ënal solution
very rapidly. It appears to have handled this very difficult scene quite well.

5.3.3 Ring
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Figure 5.8: e time-error plot for the Ring scene

In this scene, two illumination components are clearly dominant. First, it is direct illumination, visible
on the specular highlights, as well as the base. Second, it is the mild cardioid caustic visible inside the
ring. Surprisingly, photon-based methods do not do very well in this particular scene. Not only do they
miss the caustic, they miss the specular highlights, as well. Additionally, photon ray splatting exhibits
signiëcant light leaking.

e reason for this should be probably seen in the scene layout – the light is comparatively far up, causing
most photons that are emitted to leave the scene without contributing. e probability of a photon
successfully contributing to a hitpoint is minute, as the area of interest only takes up a small part of the
scene.
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In conclusion, this scene demonstrates that photon-basedmethods, as they are implemented, are ill-suited
to exterior scenes.

5.3.4 Conference
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Figure 5.9: e time-error plot for the Conference scene, part 1
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Figure 5.10: e time-error plot for the Conference scene, part 2

e time-error plot for this scene has been split into two parts, as there are performance-wise two groups
of algorithms with signiëcantly different rates of convergence.

e path tracers, even though unëltered path tracing was eventually used for reference, initially exhibit
an order of magnitude higher error, and for at least the ërst twenty minutes are visibly struggling with
variance. Examination of images shows that regardless of ëltering, there is a great deal of visible white
noise.

In comparison, photon-based algorithms converge very rapidly. Stochastic progressive photon mapping
shows the lowest error at ërst, but is eventually overtaken by photon ray splatter. On the other hand,
examination of images reveals that there is very visible bias in photon ray splatting, due poor direct
illumination handling. e difference images also show, that themain source of bias in progressive photon
mapper is very likely aliasing – there is a signiëcant amount of bias around the edges of light ëxtures.

Also, due to differences in photon counting, stochastic progressive photon mapper does away with corner
bias more quickly, which is visible especially on the conference chairs.

Overall, this scene highlights the strengths of photon mapping. ere is a signiëcant amount of indirect
illumination, which is approximated handily by photon mapping, in spite of some rather complex paths.
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5.3.5 Sponza
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Figure 5.11: e time-error plot for the Sponza scene

Sponza is a semi-open scene with a large area light above the courtyard. us, not unlike the ring scene,
many of generated photons will hit the roof or leave the scene entirely, handicapping photon-based al-
gorithms. Out of these, photon ray splatting appears to be the most successful in this scene, likely due
to the fact that a single photon ray can contribute to many more hitpoints than a photon in progressive
photon mapping. Lack of contributing photons is clearly visible in discontinuity bias that only goes away
very slowly. In comparison, photon ray splatting initially has signiëcant bias due to light leaking, but
this goes away as more photon rays are cast and the splatting footprint decreases.

Of the path tracers, bilateral ëlter initially exhibits the lowest error, but is later overtaken by both unëltered
path tracer, as well as the component separating ëlter. Adaptive ëlter appears to be rather ineffective in
dealing with noise, as well as again leaving shadows visibly darker. Meanwhile, the component separating
ëlter appears to introduce slightly more bias than it removes variance. Bilateral ëlter exhibits problems
of its own, most signiëcantly a lot of highly visible blurring that does not seem to go away as the render
progresses.

Overall, the path tracers converge signiëcantly faster on this scene, in great part due to their view-
independent nature. is scene also seems to be the breaking point for several of the ëlters.



5.4. PERFORMANCE ANALYSIS 57

5.4 Performance Analysis

Performance analysis was performed on the Glossy Interior scene, using that scene’s settings under the
Compute Visual Proëler. is proëler takes and reports many different measurements, such as runtime of
each kernel, breakdown of memory operations in each kernel, even taking into account cache utilization
and cache misses. While this information is important when attempting to tune, debug or optimize
an application, for our purposes the most important is the GPU Time Summary Plot, which provides
aggregated information on how much time was spent in each of the kernels in the application lifetime.
As our algorithms are based on the idea of path-atom binning, the tracing procedure is broken down
into several kernels rather then using a single, monolithic one, so we may explore the computational
complexity of each step separately.

To provide a detailed idea of the efficiency of each particular step of computation, we will provide the
summary plots in full, and provide a brief explanation of the role of the most computational intensive
kernels. An interested reader may explore the source code and documentation for more information.

5.4.1 Path Tracing

Figure 5.12: Proëling results for path tracing

As is evident from Figures 5.12 through 5.15, the single most computationally intensive part of path
tracing is the bvhIntersect kernel. is kernel performs the ray tracing proper (that is, for an array
of rays, ënds the scene intersection for each of them, or reports that there is none). While we know
from previous measurements that our ray tracing implementation is reasonably efficient, and is in fact
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Figure 5.13: Proëling results for component separation ëltered path tracing

Figure 5.14: Proëling results foradaptive ëltered path tracing
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much faster than a comparable CPU implementation, it is very likely that other part of the path tracing
primitive beneët from the parallelization signiëcantly more.

e reason why ray tracing consumes so much computing time is that with the accelerating structure
we are using, there are bound to be many memory operations that are not coherent within a warp (we
call these operations uncoalesced). Such memory operations are likely the most expensive operations in
CUDA, and in each ray tracing step, many have to be performed. Further problems stem from the fact
that secondary rays in path tracing tend to be very incoherent in themselves, making any attempt at
exploiting coherence a losing proposition.

is operation is so signiëcant because many more rays are traced in path tracing than in any other
method used – each path casts two rays for every bounce, and we have to cast hundreds to thousands
paths per pixel, so in our test case with 100 paths per pixel per iteration, 25 million paths would be traced
each round, requiring hundreds of millions rays to be traced each iteration.

e only other signiëcant contributor in our implementation is the makeLightRays kernel, using up
about 4% of GPU time. e purpose of this kernel is to sample lights, create shadow rays and compute
radiance transfer for direct illumination. While a quick glance at this method reveals there is room for
improvement (for instance, searching the light array with a binary search rather than linearly, or using
only 8 TEA rounds instead of 16), there is little reward in attempting to do so.

Note that none of the ëltering kernels are even in the plot – this means that the ëltering operation is
essentially “free” (probably due to it exhibiting good memory access coherence), there is no penalty in
using ëltering whenever wemight think it is convenient, or rather, whenever measurements show it would
lead to better image quality with less variance. Conversely, the ëltering step may be omitted at will, if we
ënd it to be unnecessary with a converged path traced image.

5.4.2 Progressive Photon Mapping

Looking at Figures 5.16 and 5.17, the gatherPhotons kernel takes up the most GPU time. is
kernel in fact implements photon gathering described in [HJ10] over a hashed grid. Compared to this, the
runtime of contributeNaive kernel that assigns photons to grid cells seems negligible. We believe
the cause of this to be that while contributeNaive is parallelized per photon and is performed by
thousands of threads at most, each only exploring a single grid cell, the contributeNaive kernel
is parallelized per hitpoint, is executed by hundreds of thousands to millions threads in parallel, each of
which accesses up to eight grid cells. ese accesses are then uncoalesced both in time and among threads,
due to hashing and due to there being little coherence between hitpoint positions in the grid and their
placement in the hitpoint array.

ere could be several ways to remedy this. At the expense of memory, we could use a full grid rather
than a hashed one (though we would not be able to resize it and change cell counts at will) and impose
some sort of spatial sorting on the hitpoints, thus improving coherence. Alternatively, it would make
sense from an algorithmic standpoint to splat photons to hitpoints (peforming thousands of searches of
an accelerating structure rather than millions) rather than gather them as we do now. is could also save
us the expense of rebuilding the grid, but the cost of that operation is not high enough to substantiate
that. Whether this approach would bring any improvement is a question for future research.
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Figure 5.15: Proëling results for bilateral ëltered path tracing

Figure 5.16: Proëling results for progressive photon mapping
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One should also note that Figure 5.17 shows much more time being spent in the bvhIntersect
kernel, tracing rays. While the exact same amount of photons is traced in Progressive Photon Mapping
as in Stochastic Progressive Photon Mapping, the primary ray recasts appear to be signiëcant. is is true
even in spite of their being much more coherent than photon rays – there is simply signiëcantly more of
primary rays than there are photon rays.

e greatest potential for improvement thus lies in the splatting/gathering step. Since photon mapping
techniques have been shown to exhibit comparable convergence to a full path tracer with signiëcantly
less rays traced, this may be a viable avenue of research.

5.4.3 Progressive Photon Ray Splatting

Figure 5.18 shows that practically the entire runtime of Photon Ray Splatting is spent in the splatAnd-
Bounce kernel. is kernel runs the heuristic from Equation 3.12 to determine ray cone dimensions and
than traverses a kD-tree to ënd all hitpoints within that area. e photon is then bounced or terminated,
as in regular photon mapping. is may indicate either that the kD-tree is in fact a very poor structure
to traverse on a GPU, or that the cone dimensions that resulted from our choice of parameters are not
very viable for practical computation.

Some improvement could be found if we attempted to spatially sort the photon rays to improve memory
access coherence. ought could also be given to the use of alternative accelerating structures. On the
other hand, it has shown that the heuristic we have proposed is far from optimal, and a better one could
improve performance both by reshaping the cones to minimize bias and by being more judicial with cone
dimensions. Again, this is a topic for future research.
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Figure 5.17: Proëling results for stochastic progressive photon mapping

Figure 5.18: Proëling results for photon ray splatting
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Conclusion

Our testing has shown that each of the algorithms we tried is in itself viable for GPU use. None of them
was found to be inherently superior to others, as relative performance was shown to be scene-dependent.
Overall, photon-based algorithms converged faster in interior scenes, while path tracers exhibited better
convergence on scenes dominated by diffuse inter-reìections or direct illumination.

Incoherent Path-atomBinning [CDD+10] has been shown to be useful in CUDA, improving thread coher-
ence with minimum overhead. An extension of the original principle allowed an efficient implementation
of photon tracing.

Measurements have shown that powerful ëlters for path tracing may be implemented in CUDA for a
negligible computational cost, and that some of them, particularly the Bilateral Filter [XP05], are very
efficient in removing high-frequency noise even from difficult scenes, such as scenes comprising mostly
of moderately glossy materials.

Among photon mapping algorithms, Stochastic Progressive Photon Mapping [HJ09] has proven superior
to Progressive Photon Mapping [HOJ08], in no small part due to its enhanced capabilities.

While Progressive Photon Ray Splatting [HHK+07] has proven viable, neither the original kernel footprint
heuristic, nor our progressive heuristic are entirely satisfactory.

Future Work

For path tracing, a progressive version of the bilateral ëltering operator could be developed, reducing
the range of the near-true estimator as well as the domain range as variance is expected to decrease.
By ëguring in some sort of error estimation, a progressive ëlter could avoid introducing too much bias
through blurring, as we have seen in testing.

For photon mapping, it would certainly be worth the effort to explore more efficient data structures and
approaches to photon splatting or gathering, with GPU implementation speciëcally in mind.

Progressive photon ray splatting deënitely needs a better splatting footprint heuristic, to resolve both the
problems with light leaking and poor performance in direct illumination. Furthermore, the data structure
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used along with a rather inconvenient shape of the search area signiëcantly impact performance, so the
new heuristic could help in this respect by selecting cone dimensions more judiciously, to maintain thread
coherence.

Additionally, all of the photon-based methods suffer when used in exterior scenes, due to a signiëcant
proportion of photons leaving the scene without contributing to the image. Progressive rendering pro-
vides us with a unique opportunity to interactively keep track of the contribution of each photon, and in
response, re-shape the emission probability density function so that areas and directions that contribute
more to the ënal image are preferred.

Pertaining speciëcally to path tracing and stochastic progressive photon mapping, utilizing GPUs to
progressively render entire animations rather than a single frame might have applications as a superior
way to render an animation compared to frame-by-frame rendering.
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Appendix A

List of Acronyms

2D Two-Dimensional

BRDF Bidirectional Reìection Distribution Function

CUDA Compute Uniëed Device Architecture, a GPU programming platform from nVidia Corporation

FLOPS Floating Point Operations per Second

GI Global Illumination

GPU Graphics Processing Unit, also known as Graphics Card

GPGPU General Purpose GPU, a GPU utilization paradigm

MIMD Multiple Instruction Multiple Data, a class of parallel computer architectures

RMSE Root Mean Square Error, an estimator error metric

SIMD Single Instruction Multiple Data, a class of parallel computer architectures in Flynn’s taxonomy
[Fly72]

SPMD Single ProgramMultiple Data, a class of parallel computers. Introduced in [DGNP88] and is in
fact a subclass of MIMD.
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Appendix B

Algorithm Configuration in Testing

Algorithm Variable Value
Cornell Rawalanche Ring Conference Sponza

PT parallelPaths 65536 65536 65536 65536 65536
pathsPerRound 100 100 100 100 100
directSamples 100 100 100 100 100

CSF kernelWidth 4 4 4 4 4
AF α 1/3 1/3 1/3 1/3 1/3

C 512 512 512 512 512
BF σd 8 8 8 8 8

σr 1 1 1 1 1
PPM parallelPhotons 65536 65536 65536 65536 65536

photonsPerRound 2M 2M 2M 2M 2M
initialRadius 1 1 1 1 1

α 0.8 0.8 0.8 0.8 0.8
SPPM parallelPhotons 65536 65536 65536 65536 65536

photonsPerRound 2M 2M 2M 2M 2M
initialRadius 0.5 0.5 0.5 0.5 0.5

α 0.8 0.8 0.8 0.8 0.8
PPRS parallelPhotons 1024 1024 1024 1024 1024

photonsPerRound 8192 8192 8192 8192 8192
C 0.01 0.01 0.005 0.01 0.01
α 1/3 1/3 1/3 1/3 1/3

Table B.1: e names and meaning of conëguration variables for our algorithms
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Appendix C

Selected Rendering Results

For each scene and each algorithm, this appendix contains a representative output image. A complete set
of extracted images (one taken every 15 minutes) and differential images can be found on the enclosed
DVD.e images presented are a rendering output, a differential image and a false colour relative differ-
ence image, mapped to a BGR gradient (for relative difference between 0 and 1, with greater difference
shown as white).

e algorithm order is:

1. Path Tracing

2. Component Separation Filtered Path Tracing

3. Adaptive Filtered Path Tracing

4. Bilateral Filtered Path Tracing

5. Progressive Photon Mapping

6. Stochastic Progressive Photon Mapping

7. Progressive Photon Ray Splatting
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Cornell Box
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Glossy Interior
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Ring



78 APPENDIX C. SELECTED RENDERING RESULTS



79

Conference
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Appendix D

Enclosed DVD Contents

e enclosed DVD contains the source code of our implementation, as well as a helper project used
to process and aggregate rendering results. Also enclosed is documentation for both projects and their
executable binaries.

All the data necessary to replicate our testing results is included, although the executables have certain
hardware requirements.

e enclosed DVD is organized thus:

.
├── bin
│ └── The binaries and their associated DLLs
├── doc
│ ├── proj
│ │ └── Code documentaton
│ ├── thesis
│ │ └── This thesis
│ └── thesis-src
│ └── Source code of this thesis
├── results
│ └── Aggregated testing results
├── scenes
│ └── Testing scenes
└── src

├── RawViz
│ └── The .raw format visualizer
└── Uskglass

└── The Uskglass renderer
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