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Abstract

In this thesis we develop a detector of facial landmarks based on the Deformable Part Models.
We treat the task of landmark detection as an instance of the structured output classification
problem. We propose to learn the parameters of the detector from data by the Structured Out-
put Support Vector Machines algorithm. In contrast to previous works, the objective function
of the learning algorithm is directly related to the performance of the resulting detector which is
controlled by a user-defined loss function. The resulting detector is real-time on a standard PC,
simple to implement and it can be easily changed for detection of a different set of landmarks.
We evaluate performance of the proposed landmark detector on a challenging “Labeled Faces
in the Wild” database. The empirical results demonstrate that the proposed detector is consis-
tently more accurate than two public domain implementations based on the Active Appearance
Models and the Deformable Part Models. We provide an open source implementation of the
proposed detector as well as the algorithm for supervised learning of its parameters from data.

Keywords: Facial Landmark Detection, Support Vector Machines, Structured Output Classi-
fication, Deformable Part Models
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Resumé

Tato práce navrhuje detektor významných bodů na lidské tváři založený na Deformable Part
Models. Na problém detekce významných bodů pohlížíme jako na úlohu strukturální klasi-
fikace. Parametry detektoru jsou učeny z dat pomocí algoritmu Structured Output Support
Vector Machines. Na rozdíl od předchozích prací námi používaný algoritmus učení optimal-
izuje přímo přesnost výsledného detektoru. Algorimus učení navíc umožňuje snadno měnit
statistiku měřící přesnost detektoru pomocí uživatelem definované ztrátové funkce. Výsledný
detektor pracuje v reálném čase na standardním PC, je jednoduchý na implementaci a může
být snadno modifikován pro detekci jiné množiny významných bodů. Funkčnost navrhovaného
detektoru je vyhodnocena na náročné databázi „Labeled Faces in the Wild“. Získané výsledky
demonstrují, že navrhovaný detektor dosahuje konzistentně vyšší přesnosti než dvě testované
volně dostupné implementace založené na Active Appearance Models a Deformable Part Mod-
els. Součástí práce je i open source implementace navrhovaného detektoru a algoritmus pro
učení jeho parametrů z anotovaných dat.

Klíčová slova: Support Vector Machines, strukturální klasifikace, Deformable Part Models,
detekce významných bodů na lidské tváři
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1. Introduction

This master thesis deals with the problem of automatic detection of facial landmarks like centers
(or corners) of eyes, nose and mouth. Functionality of the landmark detector is illustrated by
Figure 1.1.

Figure 1.1. Given a face image along with a rough estimate of the face bounding box (yellow), the
landmark detector estimates positions of a set of facial landmarks like centers of eyes, nose and
mouth (red points S0, . . ., S3).

The detection of facial landmarks is an essential part of many face recognition systems.
Accuracy and speed of the landmark detection significantly influences final performance of the
face recognition system [Beumer and Veldhuis, 2005], [Cristinacce et al., 2004],
[Riopka and Boult, 2003].

The problem of detecting facial landmarks is largely considered to be a solved scientific
problem. There exists several succesful commercial solutions like the OKAO Vision Facial
Feature Extraction API [OMRON, 2011] which is used for example in PicasaTM or Apple iPhoto
software. On the other hand, open source implementations of acceptable quality are scarce. The
goal of this thesis is to fill this gap by developing high performance open source implementation
available for accademic use.

In this thesis we develop a landmark detector based on the Deformable Part Models (DPM)
[Fischler and Elschlager, 1973]. We treat the landmark detector as an instance of the structured
output classifier whose accuracy is measured by a user-defined loss function. We propose to
learn parameters of the detector from data by the Structured Output Support Vector Machines
algorithm [Tsochantaridis et al., 2005]. In contrast to existing approaches which learn the de-
tector in two independent stages, objective function of our learning algorithm is directly related
to the performance of the resulting detector via clearly specified loss function. The novelty
of our approach is not in using the deformable part models for the landmark detection but in
using a principled approach to learn the parameters of the detector from data. The proposed
landmark detector is real-time on a standard PC, simple to implement and it can be easily used
to detect different sets of landmarks. We evaluate performance of the proposed detector on
a challenging “Labeled Faces in the Wild” database. The experimental results demonstrate

7



1. Introduction

that the proposed landmark detector consistently outperforms two public domain implementa-
tions based on the Active Appearance Models [Kroon, 2010] and the Deformable Part Models
[Sivic et al., 2009]. We would like to point out that especially the letter landmark detector was
a strong competitor which had been previously used in a number of successful face recognition
projects [Everingham et al., 2006], [Everingham et al., 2009], [Sivic et al., 2009].

The main contributions of this thesis are as follows:

1. We treat the landmark detection with the Deformable Part Model as an instance of the struc-
tured output classification problem whose detection accuracy is measured by a user-defined
loss function.

2. We propose to use the Structured Output Support Vector Machines for supervised learning
of the parameters of the landmark detector from data.

3. We empirically evaluate accuracy of the proposed landmark detector on a challenging “La-
beled Faces in the Wild” database. The results show that the proposed detector consistently
outperforms a baseline “unstructured” SVM detector and two public domain landmark de-
tectors based on the Active Appearance Models and the Deformable Part Models.

4. We provide an empirical comparison of two optimization algorithms — the Bundle Method
for Regularized Risk Minimization [Teo et al., 2010] and the Stochastic Gradient Descend
[Bordes et al., 2009] — which are sutiable for solving the convex optimization problem
emerging in the Structured Output SVM learning.

5. We provide an open source implementation of the proposed landmark detector as well as the
algorithm for supervised learning of its parameters from data.

The text of the thesis is organized as follows:

Chapter 2 Related work Gives a brief description of two approaches which are most fre-
quently used for the detection of facial landmarks. Namely, the detectors based on the Active
Appearance Models and the Deformable Part Models are outlined.

Chapter 3 Proposed Detector Describes the proposed landmark detector based on the De-
formable Part Models and the algorithm for supervised learning of its parameters from data.

Chapter 4 Experiments Provides experimental evaluation of the proposed landmark detec-
tor and its comparison to one baseline approach and two public domain implementations. In
addition, two solvers for the Structured Output SVM learning are also compared.

Chapter 5 Implementation Gives a brief description of the open source library flandmark
implementing the proposed detector and the learning algorithm.

Chapter 6 Conclusions Gives the conclusions.

Chapter 7 Further extensions Provides ideas for further extension on the detector.

Appendix A Tuning the model configuration Describes the experiments done in order
to tune the optimal configuration of the proposed detector.

Appendix B CD Contents Describes the content of the enclosed CD.

8



2. Related work

In this chapter we give a brief description of two approaches which are most frequently used
for the detection of facial landmarks. First, in Section 2.1, we describe the Active Appearance
Model which we use as one of the competing method in the empirical evaluation. Second,
in Section 2.2, we outline the Deformable Part Models on which we build our own landmark
detector.

2.1. Active Appearance Models

Among the most popular are the detectors based on the Active Appearance Models (AAM)
[Cootes et al., 2001]. This method uses joint statistical model of a shape and appearance. De-
tectors build on AAM provide a dense set of facial features. In turn, whole contoures of facial
parts like eyes, nose or mouth can be extracted from the response of the AAM detector. On
the other AAM have several drawbacks. First, AAM require high resolution images. Second,
annotation of training data is very costly. Third, the detection leads to a non-convex optimiza-
tion problem susceptible to local optima unless a good initial guess of the landmark positions
is available.

AAM rely on the statistical model of shape and appearance. The shape is captured by a finite
number of points which define contours of the object. The appearance is a texture (i.e. pixel-
based pattern of intensities or colors across an image patch) captured by sampling a suitable
image warping function. AAM normalize the aligning contours w.r.t. position, orientation
and scale using a Procrustes analysis into a “shape-free patch”. The appearance (or texture)
is normalized by removing the linear global illumination effects by standardization. Finally,
the Principal Component Analysis (PCA) is performed on both shape and texture to achieve a
constrained and compact description.

In the test time, the parameters of the AAM are tuned in order to generate a synthetic im-
age from the AAM which best matches the input image. This process leads to a non-convex
optimization problem. [Cootes et al., 2001] proposed a scheme to solve this optimization prob-
lem efficiently. In brief, the iterative model refinement procedure projects the texture sample
into the texture frame and evaluates the error vector which is then used for computation of
the predicted displacements. Then the model parameters are updated and the projection error
vector computation is repeated until the fit error is less than the current one. In practice the
coarse-to-fine approach is used which applies the iterative procedure in different scales.

2.2. Deformable Part Models

A straightforward approach to landmark detection is based on using independently trained de-
tectors for each facial landmark. For instance, the AdaBoost based detector and its modifica-
tions have been frequently used [Viola and Jones, 2004]. If applied independently, the individ-
ual detectors often fail to provide a robust estimate of the landmark positions. The weakness
of the local evidence can be compensated by using a prior on the geometrical configuration
of the landmarks. The detection is then carried out in two consecutive steps. In the first step
the individual detectors are used to find a set of candidate positions for each landmark sep-
arately. In the second step the best landmark configuration with the highest support from the

9



2. Related work

geometrical prior is selected. The landmark detectors based on this approach were proposed for
example in [Beumer et al., 2006], [Cristinacce and Cootes, 2003], [Erukhimov and Lee, 2008],
[Wu and Trivedi, 2005].

The Deformable Part Models (DPM) [Fischler and Elschlager, 1973], [Crandall et al., 2005],
[Felzenszwalb and Huttenlocher, 2005], [Felzenszwalb et al., 2009], go one step further by fus-
ing the local appearance model and the geometrical constraint into a single model. The DPM
is given by set of parts along with a set of connections between certain pairs of parts arranged
in a deformable configuration. A natural way to describe the DPM is an undirected graph with
vertices corresponding to the parts and edges representing the pairs of connected parts. The
DPM based detector estimates all landmark positions simultaneously by optimizing a single
cost function composed of a local appearance model and a deformation cost. The complexity
of finding the best landmark configuration depends on the structure of the underlying graph.
If the graph does not contain loops, e.g. it has star-like structure with the central node cor-
responding to the nose, the estimation can be solved efficiently by a variant of the Dynamic
Programming.

An instance of finely tuned facial landmark detector based on the DPM has been proposed
in [Everingham et al., 2006]. The very same detector was also used in several successful face
recognition systems described in [Everingham et al., 2009] and [Sivic et al., 2009]. This land-
mark detector is publicly available and we use it for comparison with our detector. In this case,
the local appearance model is learned by a multiple-instance variant of the AdaBoost algorithm
with the Haar-like features used as the weak classifiers. The deformation cost is expressed as
a mixture of Gaussian trees. Importantly, learning of the local appearance model and the de-
formation cost is done in two independent steps which simplifies the problem but may not be
the optimal solution. In contrast, we propose to learn the parameters in one step by directly
optimizing accuracy of the resulting detector.
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3. Proposed detector

In this chapter we describe the proposed detector of the facial landmarks and an algorithm for
supervised learning of the parameters of the detector from data. The chapter is split into two
main sections. First, in Section 3.1, we describe the model of the detector which we treat as
an instance of the structured output classifier based on the Deformable Part Models. We also
describe several instances of the detector which use different local appearance models and the
deformation costs. Second, in Section 3.2, we formulate the problem of learning the parameters
of the detector based on the Structured Output SVM algorithm (SO-SVM). We also describe
two optimization methods which are suitable for optimization of large-scale instances of the
convex problem emerging in the SO-SVM learning.

3.1. Structured output classifier

We assume that the input of our classifier is a still image of a fixed size which contains a single
face. We denote this input image as a normalized image frame. The normalized image frame
is constructed as follows. First, the face bounding box is estimated by a face detector (e.g. we
use a commercial implementation of the AdaBoost face detector [Viola and Jones, 2004] 1).
Second, the face box is enlarged by a certain margin to ensure that the whole face is contained.
Third, the face image is cropped according to the enlarged face box and its size is normalized.

Let I ∈ ℐ = XH×W be an input image and let Si ⊂ {1, . . . ,H} × {1 . . . ,W} denote a
set of all admissible positions of the i-th landmark within the image I . The symbol X denotes
a set of pixel values which in our experiments, dealing with 8bit gray-scale images, equals
to {0, . . . , 255}. Each landmark is defined by certain region that surrounds it, i.e. bounding
box around the landmark. We refer to this region as the component (see Figure 3.1). The
set of all configurations of M landmarks is denoted by S = S0 × ⋅ ⋅ ⋅ × SM−1. The quality
of a landmark configuration s = (s0, . . . , sM−1) given an image I is measured by a scoring
function f : ℐ × S → ℝ defined as

f(I, s) =

M−1∑
i=0

qi(I, si) +

M−1∑
i=1

gi(s0, si) (3.1)

The first term in (3.1) corresponds to a local appearance model which evaluates how well
landmarks on positions s match with the input image I . The second term in (3.1) corresponds
to the deformation cost which evaluates the relative positions of the landmarks with respect to
the anchor position s0. In particular, we use the nose as the anchor landmark. We assume that
the costs qi : ℐ × Si → ℝ, i = 0, . . . ,M − 1 and gi : S0 × Si → ℝ, i = 0, . . . ,M − 1 are
linearly parametrized functions

qi(I, si) =
〈
wq
i ,Ψ

q
i (I, si)

〉
(3.2)

gi(s0, si) =
〈
wg
i ,Ψ

g
i (s0, si)

〉
(3.3)

where Ψq
i : ℐ × Si → ℝniq , Ψg

i : S0 × Si → ℝnig , i = 0, . . . ,M − 1 are predefined maps
and wq

i ∈ ℝniq , wg
i ∈ ℝnig , i = 0, . . . ,M − 1 are parameter vectors which will be learned

1The face detector was provided by courtesy of the Eyedea Recognition s.r.o. (http://www.eyedea.cz)
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3. Proposed detector

from examples. Let us introduce a joint map Ψ : ℐ × S → ℝn and a joint parameter vector
w ∈ ℝn defined as a column-wise concatenation of the individual maps Ψq

i , Ψg
i and the

individual parameter vectors wq
i , w

g
i , respectively. With these definitions we see that the cost

function (3.1) simplifies to
f(I, s) = ⟨w,Ψ(I, s)⟩. (3.4)

Figure 3.1. Our configuration of Landmarks & components depicted in the normalized image frame.
Note that this is not the only possible configuration. Both size of the components and the number of
landmarks may be modified. Sizes of components were determined experimentally, the number of
landmarks corresponds with the annotation of the available face database.

Given an input image I , the structured output classifier outputs the configurations ŝ com-
puted by maximizing the cost function f(I, s), i.e.,

ŝ ∈ arg max
s∈S

f(I, s)

= arg max
s0∈S0

[
q0(I, s0) +

M�1∑
i=1

max
si∈Si

(
qi(I, si) + gi(s0, si)

)]
(3.5)

The star like structure of the max-sum problem (3.5) allows to solve the classification prob-
lem efficiently by dynamic programming (DP). The way how to organize the DP algorithm is
apparent directly from (3.5).

A complete specification of the structured classifier (3.5) requires to define:
• The fixed maps Ψq

i (I, si), i = 0, . . . ,M � 1, which define a feature description of a rect-
angle cropped around the position si, i.e., Ψq

i (I, si) is the feature description of the i-th
component. The size of the rectangular component and the particular feature descriptor are
crucial design options which have to be made carefully. In Section 3.1.1, we describe list
of feature descriptors we have considered. Results of the experimental tuning of the best
configuration of the components size and the feature descriptor are provided in Appendix A.

• The fixed maps Ψg
i (s0, si), i = 0, . . . ,M � 1, which define parametrization of the deforma-

tion cost. Section 3.1.2 describes the parametrization which we considered. The selection
of the best parametrization is done experimentally. These experiments are described in Ap-
pendix A.

• The set S = (s0 × ⋅ ⋅ ⋅ × sM�1) which defines the search space of the landmark positions.
These sets can be interpreted as hard constraints on the admissible configurations of the
landmarks, i.e. the landmark positions outside these sets correspond to �∞ value of the
deformation cost. The optimal setting of these sets is selected experimentally (more details

12



3.1. Structured output classifier

are in Section 4). Figures 3.2a and 3.2b visualize the found optimal search spaces for each
component.

• The joint parameter vector w ∈ ℝn which is learned from training examples by the structured
output SVMs described in Section 3.2.
Note, that the set of four landmarks and their star-like structure used in this thesis is only one

option. The approach proposed here can be readily applied for different sets of landmarks as
well as different structural constraints. Of course, the particular choice must be done carefully
in order to keep the inference problem (3.1) efficiently solvable.

a) Acceptable regions for components b) Symmetric regions for components

Figure 3.2. We put hard constraints on admissible positions of each component by restricting the
search space for each component to a certain region. Hard constraints are estimated from training
examples by computing bounding boxes of all positions of the respective landmark. Finally, the
search regions are made vertically symmetric.

3.1.1. Appearance Model

We tried several features for the appearance model qi(I, si) and we summarize them in this
section. The best features were found experimentally. The corresponding experiments are
summarized in Appendix A.

Normalized image intensity values

Among the simplest features are the normalized image intensity values. We generate the feature
map Ψq

i (I, si) as a concatenation of the normalized image intensity values x and its element
wise square x2. The normalized image intensity values are defined as

xi =
xi � �
�

(3.6)

where xi is the i-the component of x, � is the mean and � is the standard deviation of the
intensities in x.

Experimental evaluation of this feature is given in Appendix A.4.
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3. Proposed detector

Derivatives of image intensity values

Other simple features, which can be easily used in combination with the normalized image
intensity values are derivatives of image intensity values. We compute directional derivatives
(column-wise and row-wise) as the difference of consecutive columns (and rows), i.e. we are
using the uncentered discrete derivative masks ([−1, 1]).

We generate the feature map Ψq
i (I, si) as a concatenation of the normalized image intensity

values as defined above (with the square of the normalized image intensity values also) and a
concatenation of square of column-wise derivatives c and square of row-wise derivatives r. So
the final feature vector is defined as

Ψq
i (I, si) =

⎡⎢⎢⎣
x
x2

c2

r2

⎤⎥⎥⎦ (3.7)

where the squares are computed component-wise. The squares of derivatives are used because
otherwise the derivatives are a linear combination of the normalized image intensity values.

Experimental evaluation of this feature is given in Appendix A.5.

Local Binary Patterns histogram

The Local Binary Patterns (LBP) have been successfully used in many face recognition prob-
lems [Ahonen et al., 2004]. It can be used in a form of the histogram or directly as described
in the next section. The LBP number that characterizes the spatial structure of the local image
texture [Heikkilä et al., 2009] [Matas et al., 2010, lecture 1–3] is defined as

LBPP,R =

P−1∑
p=0

s(x)2p, x = gp − gc, where (3.8)

s(x) =

{
1 if x ≥ 0
0 if x < 0

(3.9)

where gc, gp are image intensity values as depicted in Figure 3.3. P defines neighbourhood and
R is the spatial resolution. We generate the feature map Ψq

i (I, si) by computing LBP features
of i-th component (with P = 8 and R = 1.0), then the histogram of LBP values is made and
the resulting vector is normalized to a unit size.

gc
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1 2
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81632
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128

Figure 3.3. LBP computation scheme. The yellow box shows the center pixel, i.e. the pixel for which
LBP number is computed. The green boxes are 8-neighbourhood for the center pixel.

Experimental evaluation of this feature is given in Appendix A.6.
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3.1. Structured output classifier

LBP pyramid

Instead of the histogram of the LBP features we can use LBP features directly (i.e. binary
encoded LBP features as defined in equation (3.8)) in form of the LBP pyramid. That is,
the feature description is a concatnation of binary encoded LBP numbers computed in several
scales [Franc and Sonnenburg, 2010]. In particular, we use LBPs computed in 4 scales starting
from the original image and consequently downscaling the image 3 times by 1

2 . The resulting
feature vector is very sparse which is exploited by the learning algorithm as well as during the
classification.

Experimental evaluation of this feature is given in Appendix A.1, A.2, A.3 and Section 4.4

Histogram of Oriented Gradients

Another option for generating the feature map Ψq
i (I, si) is the usage of the Histogram of Ori-

ented Gradients (HOG) [Dalal and Triggs, 2005]. The computation of HOG features goes as
follows. The first step computes image derivatives. Following the original paper we use cen-
tered discrete derivative masks ([−1, 0, 1], [−1, 0, 1]T) without previous Gaussian smoothing.
The second step is spatial/orientation binning— in this step each pixel calculates a weighted
vote for an edge orientation histogram channel. We use 9 bins histograms. The votes are bilin-
early interpolated between neighbouring bin centers and accumulated into spatial regions called
cells. We use rectangular cells of size 2 × 2 pixels. The last step is block normalization and
feature desciptor generation— in this step we normalize the histograms accumulated in cells
that are contained in blocks. Blocks are overlapping so that each cell contributes to several
blocks. We use blocks of size covering 2 × 2 cells. The block overlap is set to be half of their
size.

Experimental evaluation of this feature is given in Appendix A.7.

3.1.2. Deformation Cost

We consider two parametrizations of the deformation cost gi(s0, si). Namely, we represent the
cost as a table and as a quadratic function of a displacement vector between landmark positions.

Table representation

If no prior knowledge is available, the deformation cost gi(s0, si) can be represented by a ta-
ble whose elements specify cost for each combination of s0 and si separately. In this case
Ψg(s0, si) is a sparse vector with all elements zero but the element corresponding to the com-
binations (s0, si) which is one.

Representation of the deformation cost by a table is the most flexible way (least prior on the
configuration) and it is easy to implement. On the other hand, it is given by a large number of
parameters which, in turn, requires a large number of the training examples in order to avoid
over-fitting. In fact, each combination (s0, si) should be present in training examples at least
once in order to make the corresponding cost non-zero.

Displacement representation

Another option to define the cost gi(s0, si) is to consider its value to be a function of a displace-
ment vector si − s0. Following [Felzenszwalb et al., 2009], we define the deformation cost as

Ψg
i (s0, si) = (dx, dy, dx2, dy2)
(dx, dy) = (xi, yi)− (x0, y0)

}
(3.10)
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3. Proposed detector

This representation accounts for the distance and the direction of the i-th landmark si with
respect to the anchor landmark s0. This representation is given only by four free parameters
which substantially reduces the risk of over-fitting.

3.2. Learning parameters of the structured output classifier

We learn the joint parameter vector w by the Structured Output SVMs (SO-SVM) algorithm
proposed in [Tsochantaridis et al., 2005]. The requirements on the classifier are specified by a
user-defined loss functionL : S×S → ℝ. The valueL(s, s∗) penalizes the classifier estimate s
provided the actual configuration of the landmarks is s∗. The SO-SVM requires loss function to
be non-negative and zero only if the estimate is absolutely correct, i.e. L(s, s′) ≥ 0, ∀s, s′ ∈ S,
and L(s, s′) = 0 iff s = s′. In particular, we use the mean deviation of the estimated and the
ground truth positions as the loss function, i.e.,

L(s, s∗) =
1

M

M−1∑
j=0

∥sj − s∗j∥. (3.11)

However, any other loss function meeting the constraints defined above can be readily used.
Given a set of training examples {(I1, s1), . . . , (Im, sm)} ∈ (ℐ × S)m the parameter w is

obtained by solving the following convex minimization problem

w∗ = arg min
w∈ℝn

[
�

2
∥w∥2 +R(w)

]
(3.12)

where

R(w) =
1

m

m∑
i=1

max
s∈S

(
L(si, s) +

〈
w,Ψ(Ii, s)

〉)
− 1

m

m∑
i=1

〈
w,Ψ(Ii, si)

〉
. (3.13)

The number � ∈ ℝ+ is a regularization constant whose optimal value is tuned on a validation
set. R(w) is a convex upper bound on the empirical risk which is the average of the loss L
computed over the training examples.

We consider two different optimization algorithms for solving the problem (3.12), namely,
the Bundle Method for Regularized Risk Minimization (BMRM) and the Stochastic Gradient
Descent (SGD). The algorithms are shortly described in the following two sections. Experi-
ments comparing their performance on learning our landmark detector are presented in Sec-
tion 4.4.

3.2.1. Bundle Method for Regularized Risk Minimization

Bundle Method for Regularized Risk Minimization (BMRM) is a generic method for minimiza-
tion of regularized convex functions proposed in [Teo et al., 2010]. This method is guaranteed
to find �-precise solution in O(1/�) iterations. The BMRM requires a procedure which for
given w returns value of the risk R(w) and its sub-gradient R′(w). In our case, the sub-
gradient R′(w) is given by

R′(w) =
1

m

m∑
i=1

(
Ψ(Ii, ŝi)−Ψ(Ii, si)

)
(3.14)

where
ŝi = arg max

s∈S

[
L(si, s) +

〈
w,Ψ(Ii, s)

〉]
. (3.15)

Note that evaluation of R(w) and R′(w) is dominated by computation of the scalar products
⟨w,Ψ(Ii, s)⟩, i = 1, . . . ,m, s ∈ S, which, fortunately, can be efficiently parallelized.
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3.2. Learning parameters of the structured output classifier

3.2.2. Stochastic Gradient Descent

Another method that can be used to solve (3.12) is the Stochastic Gradient Descent (SGD). We
use the modification proposed in [Bordes et al., 2009] which uses two neat tricks. Starting from
an initial guess w0, the SGD algorithm iteratively changes w by applying the following update
rule:

wt+1 = wt −
�−1

t0 + t
gt, where (3.16)

gt = �wt +R′t(w) (3.17)

� is a regularization constant and t0 is a constant and t is the number of the iteration. The
SGD implementation proposed in [Bordes et al., 2009] tunes the optimal value of t0 on a small
portion of training examples subsampled from training set. The sub-gradient is computed in
almost the same manner as in (3.14), but only for one training image at a time, i.e.,

R′t(w) = Ψ(It, ŝt)−Ψ(It, st) (3.18)

In addition, [Bordes et al., 2009] propose to exploit the sparsity of the data in the update step.
The equation (3.16) can be expressed as

wt+1 = wt − �twt − �tht, where (3.19)

� =
1

t0 + t
, � =

�−1

t0 + t
(3.20)

ht = Ψ(It, ŝt)−Ψ(It, st). (3.21)

Note that if ht is sparse then substracting �tht involves only the nonzero coefficients of ht,
but substracting �twt involves all coefficients of wt. In turn, it is beneficial to reformulate the
equation (3.19) as

wt+1 = (1− �t)wt − �tht . (3.22)

By using this trick, the complexity O(d) corresponding to the naive implementation of the
update rule (3.16) reduces to the complexity O(dnon−zero) corresponding to the reformulated
rule (3.22), where d is the dimension of the parameter vector and dnon−zero is the number of
the non-zero elements in ht.

A big advantage of the SGD algorithm is its simplicity. Disadvantage is that the SGD algo-
rithm does not provide any certificate of optimality and thus theoretically grounded stopping
condition is not available.
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4. Experiments

In this chapter we present comprehensive experimental evaluation of the proposed landmark
detector using challenging data. This chapter is organized as follows:

In Section 4.1 we describe the “Labeled Faces in the Wild” (LFW) database which were used
in the experiments.

In Section 4.2 we describe our evaluation procedure along with the performance statistics used
to measure the accuracy of the detectors.

In Section 4.3 we describe three competing methods against which we compare our land-
mark detector. In particular, we compare against independently trained SVM detector (Sec-
tion 4.3.1) and two public domain implementations of the facial landmark detectors which
are based on the Active Appearance Models (Section 4.3.2) and the Deformable Part Models
(Section 4.3.3). We would like to point out that especially the last mentioned landmark detec-
tor, which we will refer to as the Oxford detector due to its origin, is a strong competitor that
has been used in numerous successful face recognition projects [Everingham et al., 2006],
[Everingham et al., 2009], [Sivic et al., 2009].

In Section 4.4 we present comparison of the BMRM and the SGD solvers which were used
for solving the SO-SVM learning problem.

In section 4.5 we present summary results of the experimental evaluation of the proposed
detector and its comparison against the competing methods. We also provide basic timing
statistics of the proposed detector.

Besides the parameters learned by the SO-SVMs, the proposed landmark detector is spec-
ified by several design options. In particular, the right combination of the feature descriptor
for the local appearance model, the sizes of the components and the parametrization of the
deformation cost have to be selected carefully. In order to select the best configuration we per-
formed extensive experimental evaluation which is described in Appendix A. The experiments
presented in this chapter use only the best found configuration specified in Appendix A.3.

4.1. Database: Labeled Faces in the Wild

We use the Labeled Faces in the Wild (LFW) database [Huang et al., 2007] for evaluation as
well as for training our detector. The LFW database contains 13,233 images each of them
250×250 pixels in size. The LFW database was augmented by manually annotating positions of
4 landmarks: centers of the left and the right eye, the mouth and the nose 1. The LFW database
contains a great ethnicity variance and the images have challenging background clutter.

Before using in experiments we preprocessed the LFW database as follows. First, we run
the face detector on all images in the database. Second, we filtered out the images where i) the
face detector missed the face and/or ii) the annotation is incomplete (e.g. in side faces only one
eye is visible). Third, we determine the search spaces for individual components. We tune the
parameters (size of the base window, margin of the base window and sizes of the components)
in order to guarantee that 95% of images fit to the normalized image frame. The images that
do not pass this step are discarded from evaluation and training. The preprocessing reduced the
number of faces to 11,929.

1The annotation was provided by courtesy of Eyedea Recognition s.r.o. (http://www.eyedea.cz/)
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Some examples from the LFW face database are depicted in Figure 4.1. Note the challenging
background of images. As you can see, some people also wear glasses or have beard. The LFW
database consists mostly of relatively good quality images of famous people.

a) b) c) d)

Figure 4.1. Examples from the LFW face database. As you can see, this database contains great
ethnicity variance. Also it contains faces wearing glasses/sunglasses or which have beards.

4.2. Evaluation procedure

Our evaluation procedure involves three stages:

i) training stage (estimation of the vector w from examples).

ii) validation stage (selection of the optimal regularization parameter �.

iii) testing stage (evaluation of the detector on hold out examples).

Each stage requires statistically independent set of examples. For this reason, we split the
LFW database randomly into training, validation and testing sets. Table 4.1 describes the
partitioning. The evaluation procedure itself is outlined in Algorithm 1.

Originally, we used the same loss function for training and testing which is defined by equa-
tion (3.11). This loss function is given as an average deviation between the annotated and the
estimated landmark positions. Later, we came up with a better loss which normalizes the devi-
ations relatively to the length of the line connecting the center of eyes with mouth (see Figure
4.2). The normalized loss function accounts for a relatively large variance in the size of face
boxes estimated by our face detector. As a result, we use a slightly different loss for training
(3.11) and testing (4.4). We are aware that ideally we should have used the same normalized
loss function also in the training stage. We did not do this due to the time reasons (evaluation of
all experiments would take at least a month using our computer cluster). On the other hand, we
do not expect large improvement in the accuracy if the normalized loss was used in the training
stage.

Data set Training Validation Testing
Percentage 60% 20% 20%
# of examples 7,157 2,386 2,386

Table 4.1. Partitioning of the LFW database into training, validation and testing set.

4.3. Competing methods

In this section we describe the three detectors used for comparison with the proposed detector.
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eye distance

∥c − pmouth∥2

peyer peyel
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c

Figure 4.2. Error normalization scheme. All measured deviations are normalized to the length of
the line connecting the center of eyes with the mouth. This normalization is needed to make the
comparison invariant to the changing scale of the detected faces (the face detector is not perfect).

4.3.1. Independently trained binary SVMs detector

This detector is formed by binary (i.e. standard two-class) SVM classifiers trained indepen-
dently for each facial landmark. For training we use the SVM solver implemented in LIBO-
CAS [Franc and Sonnenburg, 2010]. For each facial landmark we create a different training set
containing examples of the positive class and negative class. The positive class contains sub-
images cropped around the ground truth position of the respective component. The negative
class contains sub-images of the same size as the component which are cropped outside the
ground truth region. In concrete, the negative sub-images satisfy the following condition

∣∣P x− − P xGT
∣∣ > 1

2
widthGT (4.10)∣∣P y− − P yGT

∣∣ > 1

2
heightGT (4.11)

where P x− is the x-coordinate of the negative component and P xGT is the x-coordinate of the
ground truth component. widthGT and heightGT denote the width and the height of the compo-
nent. Figure 4.3 illustrates the scheme of the aquisition of the positive and negative examples
for training the binary SVMs.

Having the binary SVM classifiers trained for all components, the landmark position is es-
timated by selecting the place with the maximal response of the classifier score function. The
responses are evaluated in search regions defined for each component differently. The size of
the search region is exactly the same as we use in the proposed structured SVM detector. We
use this baseline detector manly to show that learning of the deformation cost from data im-
proves the accuracy. Note, that the binary SVM detector is a simple instance of the DPM where
the deformation cost gi(s0, si) is zero for all positions inside the search region and it is −∞
outside the region.
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Figure 4.3. The aquisition of the positive and negative examples for the binary SVM training. The red
rectangles are the positive examples for this image and the annotation. The Black rectangle labeled
“Win” is the sliding window, which generates negative examples— window is shifted by dx or dy in
the x or y-axis and cropped window is used as a negative example as long as the conditions (4.10)
and (4.11) are fulfilled.

4.3.2. AAM

We use a slightly modified version of the publicly available implementation2 of the AAM
[Kroon, 2010]. As the initial guess of the face position required by the AAM, we use the
center of the bounding box obtained from our face detector. The AAM estimates a dense set of
feature points which are distributed around important face contours like the contour of mouth,
eyes, nose and chin. The AAM requires a different training database which contains high res-
olution images along with annotation of all contour points. The used database is described in
the next section.

To compare the AAM based detector with our detector, we have to transform the output
of the AAM, i.e. points on contours around important face parts, to the landmark positions
returned by our detector. To this end, we use centroids of the contours as the estimate of the
corresponding landmark position. Figure 4.4 shows examples of the output of the AAM and
the extracted landmark positions.

2Can be downloaded from http://www.mathworks.com/matlabcentral/fileexchange/
26706-active-shape-model-asm-and-active-appearance-model-aam.
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a) b)

Figure 4.4. Example of detection made by the AAM detector on the LFW database. The green points
are the ground truth positoins of facial landmarks. The red points are estimated landmarks from the
AAM countours.

IIM Face database

For training the AAM model we use a publicly available IIM Face database described in
[Nordstrøm et al., 2004]. The IIM database consists of 240 annotated images (6 images per
person). Each image is 640 × 480 pixel in size and comes with 58 manually annotated points
which are distributed along the main face contours. The main disadvantage of this database is
a lack of ethnicity variance.

In Figure 4.5 you can see some annotated examples from the IIM face database. Note that
creation of the training examples for the AAM puts much higher demands on the annotator,
because he/she has to click a large number of points (in our case 58) uniformly distributed
on the respective contours. In contrast, our classifier requires only a few well defined points
(in particular, 4 points corresponding to center of eyes, nose and mouth). Table 4.2 shows
comparison of total number of annotated points for both face databases. It is seen that the
labor required to create both databases is similar though the total number of images in the IIM
database is much smaller.

Face database # of annotated points
IIM 13920

LFW 28628

Table 4.2. Overall number of annotated points in the LFW and IIM face database.

4.3.3. Oxford detector

The last competing detector is the DPM based Oxford detector3 [Everingham et al., 2008]. This
detector was trained on a collection of consumer images which, however, are not available.

3Can be downloaded from http://www.robots.ox.ac.uk/~vgg/research/nface/index.html.
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4. Experiments

This detector returns corners of both eyes (2 landmarks for each eye), corners of mouth (2
landmarks) and 3 landmarks on the nose.

To compare the Oxford detector with our detector, we have to transform these landmarks to
the landmarks returned by our detector. Similarly as in the AAM detector, we use the centroids
of each logical group of landmarks. Figure 4.6 shows output of this detector together with the
transformed landmarks.
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4.3. Competing methods

Algorithm 1 Evaluation procedure
1: for each � ∈ Λ do
2: Find the parameter vector w(�) by solving (3.12) on the TRN set.
3: Compute the validation risk on p examples from the VAL set.

RVAL

(
w(�)

)
=

1

p

p∑
i=1

L(si, ŝi) where ŝi = arg max
s∈S

〈
w(�),Ψ(Ii, s)

〉
(4.1)

4: end for
5: Find the optimal regularization constant

�∗ = arg min
�∈Λ

RVAL

(
w(�)

)
(4.2)

6: Compute the test risk on q examples on the TST set

RTST =
1

q

q∑
i=1

L′(si, ŝi) where ŝi = arg max
s∈S

〈
w(�∗),Ψ(Ii, s)

〉
(4.3)

where the test loss is give by

L′(si, ŝi) = �i
1

M

M−1∑
j=0

∥sj − s∗j∥, (4.4)

�i =
1

∥ci − simouth∥2

, (4.5)

ci =
sieyel + sieyer

2
(4.6)

Evaluation of further test statistics:

RjTST =
1

q

q∑
i=1

�i∥sij − ŝij∥ , j = 0, . . . ,M (4.7)

Rmax
TST =

1

q

q∑
i=1

max
j=0,...,3

�i∥sij − ŝij∥ (4.8)

Rjmax

TST = max
i=1,...,q

�i∥sij − ŝij∥ (4.9)
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4. Experiments

a) Frontal view

b) Side view

Figure 4.5. Some annotated examples of the IIM face database. The red crosses are the landmarks
from the annotation. The blue polylines depicts the main contours which are used to estimate land-
marks that are consistent with the LFW database annotation (eyes, nose and mouth).
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4.3. Competing methods

a) Original image from the LFW database. The blue
rectangle is the bounding box provided by the face de-
tector, the red cross is its center. The green crosses
are the detected landmarks. The red squares are trans-
formed landmarks for comparison with our detector.

b) Normalized image frame. The red points are esti-
mated positions of facial landmarks. The green points
are the ground truth positions from the image annota-
tion.

c) Original image from the LFW database. The blue
rectangle is the bounding box provided by the face de-
tector, the red cross is its center. The green crosses
are the detected landmarks. The red squares are trans-
formed landmarks for comparison with our detector.

d) Normalized image frame. The red points are esti-
mated positions of facial landmarks. The green points
are the ground truth positions from the image annota-
tion.

Figure 4.6. Output of the Oxford’s detector together with the transformed landmarks for the compari-
son with our detector.
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4. Experiments

4.4. Comparison of BMRM and SGD

This section describes the experiment which compares two solvers for the SO-SVM problem.
Namely, the Bundle Method for Regularized risk Minimization (BMRM) (Section 3.2.1) and
the Stochastic Gradient Descent (SGD) (Section 3.2.2) are compared on the problem of learning
the landmark detector. Parameters for this experiment are set equally to those in the experiments
described in Appendix A.2 (see Table A.4).

The task of the solvers is to minimize the following convex objective function

F (w) =
�

2
∥w∥2 +R(w). (4.12)

Besides the objective value F (w), we are also interested in the value of the validation risk
RVAL(w) (defined by equation (4.1)) which is another important criterion characterizing the
trained classifier. To make the iterations of the BMRM and SGD comparable we define one
iteration of the SGD as a sequence of m single update steps where m is the number of training
examples. The best SGD parameter t0 was selected from a set {1, 10, . . . , 106} according to
the minimum of the objective function F (w) computed only on 10% training examples after
one pass of the SGD algorithm thorough the data. Note that for each value of � we have to tune
the parameter t0 again. We fixed the total number of iterations of the SGD algorithm to 50.

We run both solver on the problem (4.12) with the parameters � ∈ {10−2, 10−1, . . . , 1} and
we recorded both F (w) andRVAL(w). Results of the experiment are summarized in Table 4.3.
Figure 4.7 and 4.8 show convergence curves for � = 0.1 and � = 10.

It is seen that the SGD converges quickly at the beginning and it stalls as it approaches the
minimum of the objective F . The validation risk achieved by the SGD after 50 iterations is in
many cases comparable to the validation risk obtained by the BMRM after much more itera-
tions which are required to achieve solution with guaranteed high precision. The problem is
that solution obtained after 50 iterations is in some cases much worse than the precise solution.
For example, 50 iterations is enough for � = 0.1 (see Figure 4.7), however it is insufficient for
� = 10 (see Figure 4.8). Unfortunately, there is no versatile method to set the correct number
of iterations for the SGD algorithm (unless one knows the optimal solution). On the other hand,
the BMRM algorithm has a reasonable stopping condition specified by the maximal deviation
from the optimal value of the optimized objective function. Hence, we conclude that SGD is
useful in cases when using the precise but slower BMRM algorithm is not feasible. In oppo-
site cases the BMRM algorithm returning the solution with guaranteed optimality certificate is
preferable. In the remaining experiments we use a parallelized variant of the BMRM algorithm.

# of iterations 50 29 434 128 52 50
� 10−2 10−1 1 10 10−2 10−1 1 10

BMRM
F (w) 5.201 4.553 7.045 10.920 1.985 3.719 6.923
RVAL 1.680 1.240 1.478 3.182 1.078 1.126 1.473

SGD
F (w) 3.316 3.632 7.666 12.160 12.130
RVAL 1.210 1.243 1.935 5.173 4.850

Table 4.3. Comparison of the BMRM and SGD.
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4.4. Comparison of BMRM and SGD

a) Objective function F (w)

b) Validation risk RVAL(w)

Figure 4.7. The comparison of the BMRM and SGD. Cutout of the first 50 iterations from the graphs
of (a) the objective function F (w) for � = 0.1 (b) the validation risk RVAL(w) for � = 0.1.
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4. Experiments

a) Objective function F (w)

b) Validation risk RVAL(w)

Figure 4.8. The comparison of the BMRM and SGD. (a) the graph of the objective function F (w) for
� = 0.1 (b) the graph of the validation risk RVAL(w) for � = 10.
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4.5. Summary results

4.5. Summary results

In this section we compare the proposed landmark detector with the three competing detectors
described in Section 4.3 in terms of the accuracy of estimating the landmark positions. To
measure the accuracy, we follow the evaluation protocol described in Algorithm 1. In the
case of the competing detectors whose models are trained differently (see Section 4.3 for more
details), we execute only the last step of the algorithm which evaluates the test statistics.

We measure several accuracy statistics which are defined in the last step of Algorithm 1.
The notion of relative error is equivalent to the error normalization relatively to the size of the
face as described in Section 4.2. Recall, that the face size is defined as the length of the line
connecting the mouth and the point between eyes.

The overall results are summarized in Table 4.5 (mean deviations per component) and Ta-
ble 4.6 (maximal deviations per component). Figure 4.9 shows the cumulative histograms of
the count of occurrences of the relative errors. That is, the cumulative histogram shows the
number of test examples which have the relative error less or equal certain value. Table 4.4
shows the detail around 10% of the relative error taken from Figure 4.9. That is, this table
shows the percentage of the test examples which have the relative error less or equal to 10% of
the face size. As can bee seen, the proposed detector clearly outperforms all its competitors in
all measured statistics.

We also measured average of the detection time which was below 100 milliseconds per image
on a notebook with Intel Core 2 Duo T9300 2.50 GHz. Around 75% of the detection time takes
computation of the LBP features. The rest is consumed by solving the max-sum problem (3.5).
Note, however, that this time is measured in the MATLAB implementation. Moreover, the code
can be further optimized, e.g. by computing the LBP features in parallel. Hence, the 100ms is
a conservative estimate of the detection time.

Detail around 10% taken from Figure 4.9
Average mean deviation Average maximal deviation

AAM 18.57 % 2.831 %

Binary SVMs 91.91 % 62.53 %

Oxford’s detector 71.63 % 16.20 %

proposed detector 97.15 % 77.25 %

Table 4.4. The values are percentages of test examples with error less or equal to 10 % of the face size.

Mean deviations per component
AAM Binary SVMs Oxford proposed detector

Rleft eye
TST 17.1167 5.3333 6.5028 4.0931

Rright eye
TST 16.4095 5.2212 5.8537 3.9484

Rmouth
TST 16.9982 5.9941 12.5138 5.2365

Rnose
TST 17.1284 7.0347 12.2694 5.7556

RTST 16.9132 5.8958 9.2849 4.7584

Table 4.5. Summary of mean errors. Average mean deviation for each landmark Rj
TST is computed

according to (4.7). RTST is defined by (4.3). We call the s0 nose, but in the proposed detector is this
component rather the center of the face.
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Maximal deviations per component
AAM Binary SVMs Oxford proposed detector

R
maxleft eye

TST 100.3249 66.6667 44.7214 41.0651
R

maxright eye

TST 89.0327 96.5146 52.1536 74.9429
Rmaxmouth

TST 70.6225 64.4465 37.9987 80.5220
Rmaxnose

TST 65.4023 77.2270 77.2496 34.4904
Rmax

TST 25.7790 11.6788 15.9857 9.8533

Table 4.6. Summary of maximal deviations. Average maximal deviation for each landmark Rjmax

TST is
computed according to (4.9). Rmax

TST is defined by (4.8). We call the s0 nose, but in the proposed
detector is this component rather the center of the face.
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4.5. Summary results

a) Average mean deviation

b) Average maximal deviation

Figure 4.9. Cumulative histograms of the average (a) and maximal (b) deviations estimated on the test
examples for all experiments.
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5. Implementation

We implemented an open source library which contains the proposed landmark detector as well
as the SO-SVM algorithm for learnig its parameters from annotated images. The homepage of
the library flandmark is at http://cmp.felk.cvut.cz/~uricamic/flandmark/.
The library is a collection of MATLAB and C codes. The learning scripts are implemented in
Matlab. The time demanding procedures of the learning algorithm like the QP solver or the
evaluation of the cost qi(I, si) are implemented in C and interfaced to Matlab. The landmark
detector itself is implemented both in Matlab (this implementation was used in experiments and
can be useful for further prototyping) and in C with a simple API for integrating the detector to
other applications. A MEX-interface to Matlab for the C implementation of the detector is also
provided. The library implements only the best configuration of the landmark detector found
in experiments.

The following MATLAB example creates the binary file describing the detector from the
structure model obtrained by the learning script and it calls the mex-function for the facial
landmark detection on an image.

1 %% Creation of binary file holding the model structure
2 % load structure model
3 load('./data/exp03_detector_model_gdisp.mat'); % containes the ...

structure "model"
4

5 % save the structure model to a binary file
6 flandmark_load_model(model, './data/model_changeS0.dat');

1 %% Detection
2 % get normalized frame from image
3 I = rgb2gray(imread('photo.jpg'));
4 bbox = dlmread('photo.dat'); % the detected face box is in ...

file 'photo.dat'
5 [face_image bbox2] = getNormalizedFrame(I, bbox(1,:), ...

model.data.options);
6

7 % call the detector
8 detection = flandmark_detector(face_image(:), ...

'./data/model_changeS0.dat');

35

http://cmp.felk.cvut.cz/~uricamic/flandmark/




6. Conclusions

In this theis we have developed a detector of facial landmarks based on the Deformable Part
Models. We have formulated the problem of landmark detection as an instance of the structured
output classification which allows to specify requirements on the detector’s accuracy via a user-
defined loss function. We use the Structured Output Support Vector Machine algorithm for
learning parameters of the detector from annotated images. In contrast to the previous works,
we learn the parameters of the detector in one-stage process and the objective function of the
learning algorithm is directly related to the performance of the resulting detector.

We have performed extensive experiments in order to find the best configuration of the land-
mark detector from a large number of design options.

We have evaluated performance of the proposed detector on a challenging database and com-
pared its accuracy against two public domain landmark detectors based on the Active Appear-
ance Models and finely tuned Deformation Part Models. Especially the latter landmark detector
was a very strong competitor which had been previously used in many successful face recog-
nition projects. The empirical results demonstrate that the proposed landmark detector clearly
outperforms all its competitors in all measured statistics.

We have implemented an open source library flandmark
http://cmp.felk.cvut.cz/~uricamic/flandmark/

which contains the implemented detector as well as the algorithm for learning its parameters
from annotated examples.
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7. Further extensions

Although the proposed detector is fully functional there is still a large room for further im-
provements. We summarize the main ideas of these extensions:

• We used slightly different loss functions in training and testing stages. Of course, using the
same loss function in both stages would be better. On the other hand, the difference in the
loss functions is minor and we do not expect big boost in accuracy if the same loss is used.

• We used a single loss function which measures the average deviation of the estimated land-
mark positions. There are clearly other interesting options to try, for instance the maximal
deviation over the components

L(s, s∗) = max
i
∥si − s∗i ∥ (7.1)

• We used a simple star-like structure to describe the landmark deformation cost. It would be
interesting to experiment with more complex configurations like e.g. using complete graph
instead of the star-like structure.

• We used the centers of important facial parts (eyes, nose, mouth) as the components. This
option was predetermined by the available annotation of our database. It seems to be a better
options to use the corners of the parts because of their more discriminative structure. Using
the corners will require a different structure of the deformable part model as shown in Figure
7.1. However, our implementation can easily accommodate this modification.

Figure 7.1. Modification of the deformable part model. The current variant versus the new one uses
the corners instead of the centers.

• The current code uses single core implementation of the landmark detector. However, both
solving the max-sum problem (3.5) and manly computation of features of the local appear-
ance model can be done in parallel. For example, computation of the LBP pyramid can be
parallelized very efficiently.
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A. Experimental tuning of the detector
configuration

In this appendix we describe the experiments that were made to find out the best configuration
of the parameters of the detector which cannot be learned by the SO-SVM algorithm. First two
experiments (see Sections A.1 and A.2) concern the deformation cost function gi(s0, si) (see
Section 3.1.2). In the next experiment (see Section A.3) we focus on the components and we try
to change the landmark which represents the nose for the landmark representing the center of
the face. The rest of experiments deals with the appearance model qi(I, si) and follows outline
of Section 3.1.1 (see Sections A.4, A.5, A.6 and A.7). In the end of this appendix we provide a
comparison of all experiments.

A.1. Structured output SVM with table deformation cost

In the first experiment we build the proposed model with the deformation cost represented by
a table (see Section 3.1.2 for details). As the model of appearance we use the LBP pyramid
(see Section 3.1.1). Because of the nature of this deformation cost we can exploit the sparsity
of the feature map Ψq

i (I, si) (which is made by the composition of LBP pyramid features with
height of pyramid equal to 4) and the deformation cost map Ψg(s0, si) (which in this case is
the identity matrix).

Learning of the joint parameter vector w for the optimal � = 0.1 converged to precision
� = 0.01 in 48 iterations. Overall training time (i.e. learning of the joint parameter vector w
for all � ∈ {10−3, 10−2, . . . , 10}) took less than a day (about 20 hours) computed parallel in 8
threads. One iteration took less than 4 minutes.

A.1.1. Parameters

Table A.1 shows the parameters settings for this experiment. Results of the validation depicts
Table A.2. Optimal value of the regularization term � is denoted in bold.

Structured output SVM with the table deformation cost
Base window [40, 40]T px
Base window margin [20, 20]T %

Components
[
13 13 20 13
13 13 13 13

]
px

Table A.1. Parameters settings for the experiment: structured output SVM with the table deformation
cost

A.1.2. Results

As we already mentioned the deformation cost represented by a table has many disadvantages.
We should ideally provide training database that has each combination of (s0, si) present at
least once. Otherwise the corresponding weight in the joint parameter vector w is set to zero.
Also this kind of the deformation cost allows strange configurations of the estimated landmark
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A. Experimental tuning of the detector configuration

Structured output SVM with
the table deformation cost
� RTRN RVAL

10−2 0.22937 0.77943
10−1 0.60101 0.77824
1 0.97624 1.00844
10 1.28770 1.27809

Table A.2. The training risk and validation risk as a function of the regularization constant �measured
for the experiment structured output SVM with the table deformation cost. The optimal �minimizing
the validation risk is denoted in bold.

positions (see Figures A.1d, A.1e or A.1f). Figure A.1 depicts some randomly chosen images
from the TST set.

Table A.3 shows the normalized errors for each landmark as well as the average mean RTST

and average maximal Rmax
TST deviation. Figure A.2 shows the cumulative histograms of the

average mean and maximal deviation estimated on the test examples for the detector with pa-
rameters set as described in this experiment. Section 4.5 summarizes results of all experiments
together.

Structured output SVM with the table deformation cost
Left eye Right eye Mouth Nose
j = 1 j = 3 j = 2 j = 0

RjTST 4.8684 4.8974 5.3685 6.7003
Rjmax

TST 100.2596 96.5146 74.2781 115.7292
Rmax

TST 11.39167
RTST 5.45866

Table A.3. Normalized errors of the experiment: structured output SVM with the table deformation
cost.
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A.1. Structured output SVM with table deformation cost

a) b) c)

d) e) f)

Figure A.1. Image results for experiment: structured output SVM with the table deformation cost. The
red squares are estimated landmarks. The green squares are the ground truth positions. The top row
shows some good results of the landmark estimation, the bottom row shows the worst results. Note
that in A.1d and A.1e the landmarks for eyes are swapped.

a) Average mean deviation b) Average maximal deviation

Figure A.2. Cumulative histograms of the average (a) and maximal (b) deviations estimated on the
test examples for the experiment structured output SVM with the table deformation cost.
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A. Experimental tuning of the detector configuration

A.2. Structured output SVM with displacement
deformation cost

In the second experiment we build the proposed model with the deformation cost represented
by a displacement (see section 3.1.2 for details). As the model of appearance we use the LBP
pyramid (see Section 3.1.1). Because of the nature of this deformation cost we can exploit
the sparsity of the feature map Ψq

i (I, si) (which is made by the composition of LBP pyramid
features with height of pyramid equal to 4) and the deformation cost map Ψg(s0, si) (which in
this case are only four numbers for each (s0, si) pair).

Learning of the joint parameter vector w for the optimal � = 0.1 converged to precision
� = 0.01 in 132 iterations. Overall training time (i.e. learning of the joint parameter vector w
for all � ∈ {10−3, 10−2, . . . , 10}) took 6 days and 9 hours computed parallel in 8 threads. One
iteration took less than 3 minutes.

A.2.1. Parameters

Table A.4 shows the parameters settings for this experiment. Results of the validation depicts
Table A.5. Optimal value of the regularization term � is denoted in bold.

Structured output SVM with the displacement deformation cost
Base window [40, 40]T px
Base window margin [20, 20]T %

Components
[
13 13 20 13
13 13 13 13

]
px

Table A.4. Parameters settings for the experiment: structured output SVM with the displacement de-
formation cost

Structured output SVM with the dis-
placement deformation cost
� RTRN RVAL

10−2 0.17265 0.72376
10−1 0.52029 0.69892
1 0.84171 0.87090
10 1.44613 1.46576

Table A.5. The training risk and validation risk as a function of the regularization constant �measured
for the experiment structured output SVM with the displacement deformation cost. The optimal �
minimizing the validation risk is denoted in bold.

A.2.2. Results

The deformation cost represented by the displacement instead of the table have quite a big
impact on the detector performance. The displacement representation also reduces the dimen-
sionality of the joint parameter vector w. Figure A.3 depicts some randomly chosen images
from TST set with the detected landmarks. Note that Figures A.3a, A.3b and A.3c are the same
images as in the previous experiment (see Figure A.1). Figures A.3d, A.3e and A.3f shows the
worst results.

Table A.6 shows the normalized errors for each landmark as well as the average mean RTST

and average maximal Rmax
TST deviation. Figure A.4 shows the cumulative histograms of the
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A.2. Structured output SVM with displacement deformation cost

average mean and maximal deviation estimated on the test examples for the detector with pa-
rameters set as described in this experiment. Section 4.5 summarizes results of all experiments
together.

a) b) c)

d) e) f)

Figure A.3. Image results for experiment: structured output SVM with the displacement deformation
cost. The red squares are estimated landmarks. The green squares are the ground truth positions. The
top row shows the results to compare with the previous experiment (see Section A.1). Note that the
displacement deformation cost gives much better results for these images. The bottom row shows the
worst results.

Structured output SVM with the displacement
deformation cost

Left eye Right eye Mouth Nose
j = 1 j = 3 j = 2 j = 0

RjTST 4.2234 4.5212 4.9546 6.0083
Rjmax

TST 81.3456 80.0000 73.2177 76.8662
Rmax

TST 10.10671
RTST 4.92684

Table A.6. Normalized errors of the experiment: structured output SVM with the displacement defor-
mation cost.
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A. Experimental tuning of the detector configuration

a) Average mean deviation b) Average maximal deviation

Figure A.4. Cumulative histograms of the average (a) and maximal (b) deviations estimated on the
test examples for the experiment structured output SVM with the displacement deformation cost.
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A.3. Modification of s0

A.3. Modification of s0

In this experiment we replace s0 (i.e. the nose component) with the center of the face and make
this component larger. We do this because the proposed model is defined as a star-like structure
with the center component. The nose is hard to be defined with only one point (different
annotators mark the nose differently ). The center of the face is on the other hand not so much
dependent on the face rotation and can be computed exactly.

Because the LFW annotation does not have entry for the center of the face, we have to define
it. We define the center of the face as the point derived from the annotation as follows: Let c
be the center of both eyes (i.e. c =

peyel+peyer

2 ) and l be the normal to the line connecting both
eyes. Then the center of the face is defined as the midpoint of the line segment l2 = c −m,
where m is the orthogonal projection of pmouth on the line l. See Figure A.5 for clarification.

eye distance

peyer
peyel

pnose

pmouth

c

p0

m

l

1
2
∣cm∣

Figure A.5. The definition of the center of the face p0.

A.3.1. Parameters

Table A.7 shows the parameters settings for this experiment. Results of the validation depicts
Table A.8. Optimal value of the regularization term � is denoted in bold.

Base window [40, 40]T px
Base window margin [20, 20]T %

Components
[
20 13 20 13
20 13 13 13

]
px

Table A.7. Parameters settings for experiment: modification of s0.

A.3.2. Results

Modification of the s0 component appears to be a good choice — it solves a lot of really bad
detections from the previous experiments (see Figure A.7 for comparison). Figure A.6 shows
some randomly chosen examples from the TST set. The s0 component can be ignored in image
results of this experiments, for it does not correspond to the real facial landmark. It is defined

47



A. Experimental tuning of the detector configuration

Modification of s0

� RTRN RVAL

10−2 0.06150 0.72250
10−1 0.36933 0.66465
1 0.69369 0.75019

Table A.8. The training risk and validation risk as a function of the regularization constant �measured
for the experiment modification of s0. The optimal � minimizing the validation risk is denoted in
bold.

mainly for the purpose of the detector functionality. However, we calculate all measurements
with this component for completeness.

Table A.9 shows the normalized errors for each landmark as well as the average mean RTST

and average maximal Rmax
TST deviation. Figure A.8 shows the cumulative histograms of the

average mean and maximal deviation estimated on the test examples for the detector with pa-
rameters set as described in this experiment. Section 4.5 summarizes results of all experiments
together.

a) b) c)

d) e) f)

Figure A.6. Image results for experiment: modification of s0. The red squares are estimated land-
marks. The green squares are the ground truth positions. Figure A.7d is the worst classified ex-
ample from the TST set. Figures A.7e and A.7f may also serve for comparison with the previous
experiments.
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A.3. Modification of s0

a) b) c)

d) e) f)

Figure A.7. The comparison of image results for the experiment structured ouput SVM with the dis-
placement deformation cost and the experiment modification of s0. The top row shows images from
the displacement experiment, bottom row shows images from the modification of s0.

a) Average mean deviation b) Average maximal deviation

Figure A.8. Cumulative histograms of the average (a) and maximal (b) deviations estimated on the
test examples for the experiment modification of s0.
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A. Experimental tuning of the detector configuration

Modification of s0

Left eye Right eye Mouth Nose
j = 1 j = 3 j = 2 j = 0

RjTST 4.0931 3.9484 5.2365 5.7556
Rjmax

TST 41.0651 74.9429 80.5220 34.4904
Rmax

TST 9.20465
RTST 4.75839

Table A.9. Normalized errors of the experiment: modification of s0.
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A.4. Features: Normalized image intensity values

A.4. Features: Normalized image intensity values

In this experiment we build the proposed model with the deformation cost represented by a
displacement(see section 3.1.2 for details). As the model of appearance we use the normalized
image intensity values (see Section 3.1.1). We wrote a mex-file very similar to the one used for
computation of the LBP pyramid features — which makes the modification of comptation of
the feature map Ψq

i (I, si) very convenient.
Learning of the joint parameter vector w for the � = 0.01 converged to precision � = 0.01

in 2493 iterations. Overall training time (i.e. learning of the joint parameter vector w for all
�-values) took 6 days and 9 hours computed parallel in 8 threads. One iteration took less than
3 minutes. Note that the � = 0.01 may not be optimal, we schould try learning also for the
� = 0.001. We omit this step according to the very high number of iterations of the last �-value
used.

A.4.1. Parameters

Table A.10 shows the parameters settings for this experiment. Results of the validation depicts
Table A.11. Optimal value of the regularization term � was not found.

Base window [40, 40]T px
Base window margin [20, 20]T %

Components
[
13 13 20 13
13 13 13 13

]
px

Table A.10. Parameters settings for experiment: normalized image intensity values features.

Normalized image intensity values features
� RTRN RVAL

10−2 0.8525 0.8669
10−1 0.8713 0.8843
1 0.9655 0.9661
10 1.2198 1.2118

Table A.11. The training risk and validation risk as a function of the regularization constant � mea-
sured for the experiment normalized image intensity values features. The optimal � was not found.

A.4.2. Results

The normalized image intensity values used for computation of the feature map Ψq
i (I, si) pro-

vides quite good results, even though we do not know if the last used value of � is optimal.
The computation of these features is very fast and can be implemented even faster (e.g. with
integral image). The main disadvantage of this features is the very high number of iterations of
the BMRM in learning stage. Figure A.9 shows some randomly chosen examples from the test
set.

Table A.12 shows the normalized errors for each landmark as well as the average mean
RTST and average maximal Rmax

TST deviation. Figure A.10 shows the cumulative histograms
of the average mean and maximal deviation estimated on the test examples for the detector
with parameters set as described in this experiment. Section 4.5 summarizes results of all
experiments together.
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A. Experimental tuning of the detector configuration

a) b) c)

d) e) f)

Figure A.9. Image results for experiment: normalized image intensity values features. The red squares
are estimated landmarks. The green squares are the ground truth positions. The top row of images
shows some randomly chosen good results. The bottom row shows the worst results.

a) Average mean deviation b) Average maximal deviation

Figure A.10. Cumulative histograms of the average (a) and maximal (b) deviations estimated on the
test examples for the experiment Normalized image intensity values features.
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A.4. Features: Normalized image intensity values

Normalized image intensity values features
Left eye Right eye Mouth Nose
j = 1 j = 3 j = 2 j = 0

RjTST 4.7045 4.8463 7.1165 7.4313
Rjmax

TST 108.5531 76.4199 69.1269 116.6190
Rmax

TST 12.14191
RTST 6.02465

Table A.12. Normalized errors of the experiment: normalized image intensity values features.
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A. Experimental tuning of the detector configuration

A.5. Features: Derivatives of image intensity values

In this experiment we build the proposed model with the deformation cost represented by a
displacement(see section 3.1.2 for details). As the model of appearance we use the derivatives
of image intensity values (see Section 3.1.1). Similarly as in the previous experiment we wrote
a mex-file for the feature map Ψq

i (I, si) computation.
Learning of the joint parameter vector w for the � = 0.01 converged to precision � = 0.01

in 6245 iterations. Overall training time (i.e. learning of the joint parameter vector w for all
�-values) took 19 days and 13 hours computed parallel in 8 threads. One iteration took about
3.5 minutes. Note that the � = 0.01 may not be optimal, we schould try learning also for the
� = 0.001. We omit this step according to the very high number of iterations of the last �-value
used. This means that this type of features is not enough discriminative and therefore it is not
very appropriate.

A.5.1. Parameters

Table A.13 shows the parameters settings for this experiment. Results of the validation depicts
Table A.14. Optimal value of the regularization term � was not found.

Base window [40, 40]T px
Base window margin [20, 20]T %

Components
[
13 13 20 13
13 13 13 13

]
px

Table A.13. Parameters settings for experiment: derivatives of image intensity values features.

Derivatives of image intensity values features
� RTRN RVAL

10−2 0.6508 0.6882
10−1 0.6648 0.6947
1 0.7220 0.7290

Table A.14. The training risk and validation risk as a function of the regularization constant � mea-
sured for the experiment derivatives of image intensity values features. The optimal � was not found.

A.5.2. Results

The derivatives of image intensity values used for computation of the feature map Ψq
i (I, si)

provides very good results, even though we do not know if the last used value of � is optimal.
These features are fast and very easy to compute. Moreover there is still room for making it
faster (more effective computation, parallelization, etc.). The main disadvantage of this features
is the very high number of iterations of the BMRM in the learning stage. The Figure A.11 shows
some randomly chosen examples from the TST set.

Table A.15 shows the normalized errors for each landmark as well as the average mean
RTST and average maximal Rmax

TST deviation. Figure A.12 shows the cumulative histograms
of the average mean and maximal deviation estimated on the test examples for the detector
with parameters set as described in this experiment. Section 4.5 summarizes results of all
experiments together.
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A.5. Features: Derivatives of image intensity values

a) b) c)

d) e) f)

Figure A.11. Image results for experiment: derivatives of image intensity values features. The red
squares are estimated landmarks. The green squares are the ground truth positions. The top row of
images shows some randomly chosen good results. The bottom row shows the worst results. Note
that image A.11e is the same as in the previous experiment A.9d, but this time the detection is much
better.

a) Average mean deviation b) Average maximal deviation

Figure A.12. Cumulative histograms of the average (a) and maximal (b) deviations estimated on the
test examples for the experiment derivatives of image intensity values features.
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A. Experimental tuning of the detector configuration

Derivatives of image intensity values features
Left eye Right eye Mouth Nose
j = 1 j = 3 j = 2 j = 0

RjTST 4.0210 3.9130 5.2195 5.9547
Rjmax

TST 76.9231 60.8229 63.2456 61.9715
Rmax

TST 9.85334
RTST 4.77704

Table A.15. Normalized errors of the experiment: derivatives of image intensity values features.
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A.6. Features: LBP histogram

A.6. Features: LBP histogram

In this experiment we build the proposed model with the deformation cost represented by a dis-
placement(see section 3.1.2 for details). As the model of appearance we use the LBP histigram
(see Section 3.1.1). Similarly as in the previous experiment we wrote a mex-file for the feature
map Ψq

i (I, si) computation.
Learning of the joint parameter vector w for the � = 10−5 converged to precision � = 0.01

in 423 iterations. Training time of the joint parameter vector w for all � ∈ {10−4, 10−3, . . . , 1}
took 19 hours computed parallel in 8 threads. One iteration took about 2 minutes. Note that
the � = 10−5 may not be optimal, we schould try learning also for the � = 10−6. We omit
this step according to results for � = 10−5 which indicates poor discriminability of this type of
features.

A.6.1. Parameters

Table A.16 shows the parameters settings for this experiment. Results of the validation depicts
Table A.17. Optimal value of the regularization term � was not found.

Base window [40, 40]T px
Base window margin [20, 20]T %

Components
[
13 13 20 13
13 13 13 13

]
px

Table A.16. Parameters settings for experiment: LBP histogram features.

LBP histogram features
� RTRN RVAL

10−5 1.9490 1.9324
10−4 2.0885 2.0812
10−3 2.5581 2.5991
10−2 3.9915 4.0315
10−1 4.4252 4.4536
1 5.3939 5.4023

Table A.17. The training risk and validation risk as a function of the regularization constant � mea-
sured for the experiment LBP histogram features. The optimal � was not found.

A.6.2. Results

LBP histogram features computed in one scale are not very useful for the purpose of facial
landmarks detection. The LBP pyramid features provides much better results. Figure A.13
shows the best (the top row of images) and the worst (the bottom row of images) classified
examples from the test set. Note the quite poor quality of the best classified images in the top
row.

Table A.18 shows the normalized errors for each landmark as well as the average mean
RTST and average maximal Rmax

TST deviation. Figure A.14 shows the cumulative histograms
of the average mean and maximal deviation estimated on the test examples for the detector
with parameters set as described in this experiment. Section 4.5 summarizes results of all
experiments together.
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A. Experimental tuning of the detector configuration

a) b) c)

d) e) f)

Figure A.13. Image results for experiment: LBP histogram features. The red squares are estimated
landmarks. The green squares are the ground truth positions. The top row of images shows the best
classified results. The bottom row shows the worst results.

a) Average mean deviation b) Average maximal deviation

Figure A.14. Cumulative histograms of the average (a) and maximal (b) deviations estimated on the
test examples for the experiment LBP histogram features.
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A.6. Features: LBP histogram

LBP histogram features
Left eye Right eye Mouth Nose
j = 1 j = 3 j = 2 j = 0

RjTST 13.4445 13.1180 13.7387 15.1231
Rjmax

TST 79.4966 105.1177 80.1623 114.3179
Rmax

TST 22.48238
RTST 13.85607

Table A.18. Normalized errors of the experiment: LBP histogram features.

59



A. Experimental tuning of the detector configuration

A.7. Features: HOG

In this experiment we build the proposed detector all the same as in previous experiments with
modification of the appearance model qi(I, si). We now use the HOG features (see 3.1.1) for
the appearance model. Similarly as in previous experiments we wrote a mex-file for computa-
tion of HOG features.

Learning of the joint parameter vector w for the � = 10−3 coverged to precision � = 0.01
in 1102 iterations. Trainig time for all � ∈ {10−3, . . . , 1} took 5 days and 8.5 hours computed
parallel in 8 threads. One iteration took about 5 minutes. Note that � = 10−3 may not be
optimal, we should also try learning with � = 10−4. Since this is the last type of features we
used for the eppearance model, we were not able to finish the � tuning of this experiment in
time.

A.7.1. Parameters

Table A.19 shows the parameters settings for this experiment. Results of the validation depicts
Table A.20. Optimal value of regularization term � was not found.

Base window [40, 40]T px
Base window margin [20, 20]T %

Components
[
13 13 20 13
13 13 13 13

]
px

Table A.19. Parameters settings for experiment: HOG features.

HOG features
� RTRN RVAL

10−3 0.87671 0.8858
10−2 0.92979 0.9370
10−1 1.03225 1.0337
1 1.38325 1.3562

Table A.20. The training risk and validation risk as a function of the regularization constant � mea-
sured for the experiment HOG features. Optimal value of � was not found.

A.7.2. Results

The HOG features gives very promising results. Figure A.15 shows some randomly chosen
image results of detector with parameter settings described in this experiment.

Table A.21 shows the normalized errors for each landmark as well as the average mean
RTST and average maximal Rmax

TST deviation. Figure A.16 shows the cumulative histograms
of the average mean and maximal deviation estimated on the test examples for the detector
with parameters set as described in this experiment. Section 4.5 summarizes results of all
experiments together.
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A.7. Features: HOG

a) b) c)

d) e) f)

Figure A.15. Image results for experiment: HOG features. The red squares are estimated landmarks.
The green squares are the ground truth positions. In the top row are randomly chosen good results, in
the bottom row are the worst results.

a) Average mean deviation b) Average maximal deviation

Figure A.16. Cumulative histograms of the average (a) and maximal (b) deviations estimated on the
test examples for the experiment HOG features.
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A. Experimental tuning of the detector configuration

HOG features
Left eye Right eye Mouth Nose
j = 1 j = 3 j = 2 j = 0

RjTST 5.2875 5.7199 6.6347 7.6876
Rjmax

TST 81.3456 96.5146 70.6510 83.1734
Rmax

TST 6.33241
RTST 12.08693

Table A.21. Normalized errors of the experiment: HOG features.
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A.8. Summary of all experiments

A.8. Summary of all experiments

In this section we summarize results of all experiments in order to choose the best detector
with optimal parameter settings. Tables A.23 and A.24 shows results of all detectors built by
instuctions of individual experiments.

In Figure A.17 you can see the cumulative histograms for all experiments, including the
baselines. For clarity we show Table A.22, where you can find the detail around 10% of relative
error of Figure A.17. Experimets results shows that the best performing detector is the detector
described in Section A.3.

a) Average mean deviation b) Average maximal deviation

Figure A.17. Cumulative histograms of the average (a) and maximal (b) deviations estimated on the
test examples for all experiments.

Detail around 10% of normalized error of relative error of Figure A.17
Average mean deviation Average maximal deviation

AAM 18.57 % 2.831 %

Binary SVMs 91.91 % 62.53 %

Oxford’s detector 71.63 % 16.20 %

structured output SVM - gtab 92.58 % 72.48 %

structured output SVM - gdisp 95.05 % 75.55 %

modification of s0 97.15 % 77.25 %

normailzed intensity values 89.19 % 63.34 %

derivatives of intensity values 95.31 % 76.36 %

LBP 2 35.71 % 8.785 %

HOG 89.69 % 59.07 %

Table A.22. Detail around 10% of relative error of Figure A.17. The values are percents of all test
examples that have error less or equal to 10 %.
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A. Experimental tuning of the detector configuration
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B. CD Contents

|-- Data Some example images with detected faces
|-- Demo Image and video demonstration of functionality

of our detector
| |-- Images
| ‘-- Video
|-- Doc This thesis in .pdf format
‘-- flandmark Open source library implementing the facial

landmark detection
|-- cpp C source files
|-- data MAT-files and some example images
| ‘-- Images
|-- Functions MATLAB functions
|-- learning MATLAB scripts for learning
| |-- gdisp
| |-- gtab
| ‘-- mod_S0
‘-- mex mex-files generated for 64bit Windows and

Linux operating systems
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