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Abstract

Global illumination algorithms form a fundamental part of the realistic image synthesis
discipline. They consider the necessary indirect illumination component, and they usually
produce highly plausible images. On the other hand, the precise evaluation of the indirect
illumination tends to be the most time consuming part of the rendering process. Huge
speedup can be achieved with the use of stochastic illumination estimators.

An example of the stochastic approach can be found in the Instant Radiosity algorithms.
We explore the family of the Instant Radiosity algorithms focusing on the Imperfect Shadow
Maps (ISM) method, which was introduced by Ritschel et al. in 2008. The subject of the
submitted thesis is the implementation of the ISM algorithm with a consideration of the
possibilities of a modern GPU (2011). Our ISM based renderer produces satisfactory images
in real-time frame rates.
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Chapter 1

Introduction

Designers of algorithms for realistic image synthesis are usually confronted with a difficult
task — the lighting evaluation. The physical principle of lighting is hard to simulate precisely,
hence we are forced to create simplified lighting models. The family of global illumination
algorithms tries to simulate the behaviour of lighting by using advanced lighting models,
that are relatively close to the physical reality.

When we speak about global illumination in computer graphics, we often distinguish
between direct illumination and indirect illumination. Direct illumination appears only on
objects which are directly visible from a light source. Indirect illumination emerges from the
repetitious light bounces. Global illumination algorithms combine direct illumination with
indirect to maximize the realism of produced synthetic images.

(a) (b) (c)

Figure 1.1: The result of a global illumination algorithm (c) is usually created as a sum of
the direct illumination part (a) and the indirect illumination part (b).

An example of global illumination breakdown is shown in the figure 1.1. The image
(a) was rendered considering only the direct illumination. The image (b) contains only the
indirect illumination and the image (c) is the sum of both parts. As can be seen in the
image (a), the areas that are not directly visible from the light source appear completely
dark. Many natural lighting effects cannot be simulated without the global illumination

1
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algorithms. One example is the color bleeding. The head of the monkey in the figure 1.1
gets imbued by the red and green walls as the bounced light carries the color of the surface.

1.1 Motivation

The direct illumination is naturally easier to evaluate, since it considers only one light bounce.
That typically involves only two visibility tests. The direct illumination is usually the ne-
cessity that has to be calculated if we want to synthesize images. However, if we want to
generate physically more accurate image, we have to evaluate the indirect illumination part
as well [Sto04].

Despite its importance, the indirect illumination is often omitted or very coarsely approx-
imated in many real-time or interactive applications. The example of a commonly used coarse
indirect illumination approximation can be found in the Phong reflection model [Pho75],
which uses an ambient term to express the indirect illumination. The problem of a correct
global illumination evaluation is its computational complexity. In contrast to the direct illu-
mination, a global illumination algorithm has to trace the light on its path, which typically
consists of many bounces. That involves the evaluation of many visibility checks.

As long as the scene remains unchanged, the light paths can be precomputed and interac-
tive frame rates can be achieved [SSKS06]. However, if the scene is completely dynamic, we
cannot simply use the precomputed paths or visibilities, and the current affordable hardware
does not allow us to precisely evaluate all the light paths if we want to keep the real-time per-
formance. Stochastic algorithms are the well-known "solution" of this problem. Monte Carlo
and Quasi-Monte Carlo estimators have a long history in the computer graphics algorithms,
and can be also used to evaluate the indirect illumination [Laf96][PH04].

1.2 Subject of this Thesis

This thesis investigates the Instant Radiosity method, introduced by Keller in 1997 [Kel97],
and research done around the Virtual Point Light (VPL) based algorithms. VPL based
algorithms usually produce a plausible global illumination approximation with a budget of
only a few milliseconds. We also implement the Imperfect Shadow Maps (ISM) algorithm,
introduced by Ritschel et al. in 2008 [RGK+08]. The implementation is designed to take a
benefit of a modern GPU hardware.

Another algorithms used for realistic image synthesis are, for instance, photon map-
ping [Jen01] or path tracing [Kaj86]. In contrast to those algorithms, Instant Radiosity and
similar approaches are mainly targeted to the real-time or interactive uses, so they typically
produce less accurate images. We implement a simple path tracing algorithm as a reference
solution and compare its output to our ISM based renderer. As discussed later, VPL based
algorithms make a really good trade-off between the render quality and the computational
time.
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1.3 Thesis Structure

We divide our thesis into ten chapters. The chapter 2 briefly recapitulates the theoretical
background of the realistic image synthesis. The thesis continues in the chapter 3, where
we describe the common rasterization techniques, since our implementation is based on the
rasterization. We review the existing Instant Radiosity methods in the chapter 4. Rendering
algorithms reviewed in the chapter 5 are not based on Instant Radiosity, but they are also
treated as a real-time global illumination solution. Our assignment is further analysed in
the chapter 6, where we discuss the choice of the ISM algorithm for our implementation.
The chapter 7 briefly describes the software and hardware technologies we have used in our
application. We go through our implementation details in the chapter 8. Our results are
presented in the chapter 9. We sum up the contribution of our thesis in the last chapter 10.
The user manual, detailed code structure and image gallery are enclosed in appendices.



4 CHAPTER 1. INTRODUCTION



Chapter 2

Theory behind the Radiosity Methods

In this chapter we briefly recapitulate the fundamental theory of the realistic image synthesis.
In following sections we describe radiometric quantities and the bidirectional reflectance
distribution function. We clarify the terms Global Illumination and Rendering Equation. We
also describe the principle of the radiosity methods and the Monte Carlo integral estimation.

2.1 Scene Representation

The majority of reviewed algorithms can deal only with the boundary representation of
the scene geometry. Also most of the described algorithms use the triangle representation.
Other representations, like CSG or volumetric data, have to be converted to triangles in a
preliminary stage. Participating media, such as fog, are usually ignored by the reviewed
algorithms.

2.2 Important Radiometric Quantities

In this section we briefly describe basic radiometric quantities which we use in this thesis.
The radiant energy is measured in joules (J). The common symbol for radiant energy is Q.
Radiant flux expresses the flow of the radiant energy Q in the time t.

Φ =
dQ

dt
[W,J, s] (2.1)

The symbol Φ denotes the radiant flux, the unit of the radiant flux is watt (W ). The most
frequently used quantity in this thesis is the radiosity. Radiosity is defined as the radiant
flux Φ coming through the area A.

E(x) =
dΦ(x)

dA
[Wm−2,W,m2] (2.2)

The radiance L expresses the radiant flux Φ per solid angle per area A.

L(x, ω) =
dΦ(x)

cosθdAdω
[Wm−2sr−1,W,m2, sr] (2.3)

The angle θ is measured between the normal of the area A and the direction ω, from where
the radiance is coming.

5
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2.3 Bidirectional Reflectance Distribution Function

As we deal with the boundary representation, we have to describe the surface material prop-
erties. The Bidirectional Reflectance Distribution Function (BRDF) expresses the fraction
of the radiance Lo outgoing from the point x when it is lit by the incoming radiance Li. For
a single light wavelength, the surface reflectance is defined by the equation (2.4).

fr(ωi, x, ωo) =
dLo(x, ωo)

dE(x, ωi)
=

dLo(x, ωo)

Li(x, ωi)cosθidωi
(2.4)

The figure 2.1 shows the meaning of variables in the definition (2.4).

x

n

Lo(ωo) Li(ωi)

dωi
θi

Figure 2.1: BRDF is defined as a fraction of outgoing radiance Lo and incoming radiance
Li times cosθi.

In a free space, the radiance Li incoming from the direction ω is equal to the outgoing
radiance Lo in the direction −ω. We can write Li(x, ω) = Lo(x,−ω) for every point x in the
free space.

2.4 Global Illumination

The fundamental equation which expresses the energy transportation within the scene was
described by Kajiya in 1986 and is called radiance equation [Kaj86].

L(x, ~ωr) = Le(x, ~ωr) +

∫
Ω
fr(~ωi, x, ~ωr)L(h(x, ~ωi),−~ωi)cosθidωi (2.5)

The radiance equation (2.5) shows that the radiance L coming from the scene point x in
the direction ~ωr, is given by a sum of two terms. The radiance emitted from the point x in
the direction ~ωr is expressed by the Le term. The integral over the hemisphere Ω sums the
reflected radiance. For each incoming direction ~ωi, the reflected radiance can be computed
as a product of the BRDF fr and the incoming radiance L(h(x, ~ωi),−~ωi)cosθi, where h is the
ray shooting function, which finds the closest scene point to the x in the direction ~ωi. The
cosθi projects the incoming radiance direction onto the surface normal vector. The radiance
equation (2.5) holds only if the light is transported through optically inactive medium like
vacuum or dry air.

The figure 2.2 shows two examples of illumination types that we distinguish for points
that are visible from the camera. The red path denotes the direct illumination, since it
leads directly from the light source, bouncing off the surface and then to the camera. The
blue path adds one more light bounce. The surface is then lit indirectly, we call global
illumination algorithms combine both direct and indirect illumination.
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Light source

Camera
Direct illumination

Indirect illumination
Scene object boundary

Figure 2.2: Direct illumination (red path) and indirect illumination (blue path)

2.5 Radiosity Methods

Assuming a constant BRDF, a.k.a. the ideal diffuse surface, the fr term can be substituted
with ρ(x)

π and the radiance equation can be simplified to the form shown in (2.6).

L(x) = Le(x) +
ρ(x)

π

∫
Ω
L(h(x, ~ωi))cosθidωi, (2.6)

where ρ(x) expresses the diffuse reflectivity (also known as albedo) of the scene point x.
Rewriting the equation to integrate over all scene elements (surfaces) instead of angles we
receive:

L(x) = Le(x) +
ρ(x)

π

∫
S
L(y, y → x)G(x, y)V (x, y)dA, (2.7)

where L(y, y → x) expresses the radiance coming from the scene point y to the point x, the
geometric factor G(x, y) expresses the mutual pose of the point x and y.

G(x, y) =
cosθxcosθy
||x− y||2

(2.8)

Visibility from the point x to the point y is expressed by the visibility factor V (x, y), which
is equal to either 0 or 1. As the radiance outgoing from the scene point x is independent of
the direction ~ωr and equal to radiosity of the point x divided by π, the radiance equation
cam be multiplied by π and rewritten to express the radiosity:

B(x) = Be(x) + ρ(x)

∫
S
B(y)

G(x, y)V (x, y)

π
dA (2.9)

If we deal with a scene which is made of a finite number of diffuse surfaces we can substitute
the integral with the sum:

B(x) = Be(x) + ρ(x)
N∑
j=1

∫
Aj

Bj
G(x, y)V (x, y)

π
dAj (2.10)
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The mean radiosity of the i-th scene element Bi can be computed as:

Bi =
1

Ai

∫
Ai

B(x)dAi = Be,i + ρi

N∑
j=1

Bj

∫
Ai

∫
Aj

G(x, y)V (x, y)

π
dAjdAi (2.11)

Introducing the form factor Fi,j =
∫
Ai

∫
Aj

G(x,y)V (x,y)
π dAjdAi we can write the classic radios-

ity equation [GCT86]:

Bi = Be,i + ρi

N∑
j=1

BjFi,j (2.12)

2.6 Quasi-Monte Carlo Estimation

In many cases, reviewed algorithms use the Quasi-Monte Carlo integration [Laf96]. Monte
Carlo methods estimate the value of integrated function by summing a finite number of
samples: ∫

Is
f(x)dx ≈ 1

N

N∑
i=1

f(xi), (2.13)

where Is is an s-dimensional interval and xi ∈ Is.
The example of a quasi-random sequence is shown in the figure 2.3. Halton sequence

is one of the favourite sources of quasi-random multidimensional vectors [Hal64]. It gained
popularity for its low discrepancy and relatively straight-forward implementation.

Figure 2.3: 256 Two-dimensional quasi random samples from Halton sequence



Chapter 3

Common Rasterization Techniques

In this chapter we briefly recapitulate some of the well-known rasterization techniques, which
are important for our implementation. We explain the basic depth-buffer based shadow
mapping. We also briefly discuss deferred rendering techniques and the idea of view frustum
culling.

3.1 Shadow Mapping

Shadow mapping is a common technique for shadow generation. It uses the fact that only
pixels which are visible from the light source are directly illuminated. Pixels not seen by
the light are in direct shadow. The algorithm uses a depth buffer rendered from the light
view to compute the visibility. When the light depth buffer texture is used for the shadow
generation, it is often called shadow map.

3.1.1 Point Light Sources

The principle of basic shadow mapping, which works only with point light sources, is shown
in the figure 3.1. The depth buffer samples as seen from the light are shown as red dots (in
this case the shadow map has the resolution of six pixels). When the direct illumination
of camera samples (blue dots) is evaluated, the pixels are translated and projected as they
would be seen by the light source L. For each camera view sample corresponding shadow
map texel is fetched and the depth value is compared to the light view depth of a current
camera view sample. In continuous domain only two scenarios can occur.

1. Depth stored in the shadow map is equal to the light view depth of a current sample.

2. Depth stored in the shadow map is lesser than the light view depth of a current
sample.

The current sample is visible from the light source in the first case. As both samples have
the same depth and light space coordinates, they were taken from the same point in the
scene. But when the depth stored in the shadow map is lesser than the light view depth of a
current sample, the current sample is occluded (there was another point in the scene closer

9
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to the light). This scenario is shown in the figure 3.1 where the light view sample Ls2 is
closer to the light than the camera view sample Cs1.

L C

Ls2

Cs1

Figure 3.1: A scene rendered from the view of the light L and the camera C. Red dots
indicate light depth buffer samples, blue dots indicate pixels visible from the camera C.

However, in the real application two major problems can occur. In the first place, the
shadow map is stored in a buffer/texture which has not unlimited numerical precision. So
we cannot rely on equal to operator during the shadow map comparison, because it would
cause artifacts due to limited numerical precision. Secondly the shadow map is stored as
a discretization of continuous world. This has to be taken into account to avoid sampling
artifacts.

Both problems can be partially solved using small bias which is added to the shadow
map samples. As shown in the figure 3.2 biasing can cause another artifacts, so the bias
value has to be carefully chosen to fit desired quality requirements.

(a) (b) (c)

Figure 3.2: Various bias settings for shadow map comparison tested on the Sponza scene.
Correct bias (a), bias set too low (b) - self shadowing artifacts occur, and bias set too hight
(c) - shadows "flow" away from occluders.

Another pitfall of shadow mapping is the limited resolution of depth buffer. If the shadow
map resolution is set too low, the shapes of actual shadow map pixels can appear in the image.
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Blurring the shadow can remove those artifacts and create more pleasant results, but the
created soft shadow is physically incorrect.

The great advantage of shadow mapping is its straight-forward implementation. Only
the mutual transformation of viewer and light is required. The depth buffer can be rendered
using common rasterization engines, such as OpenGL. Shadow mapping requires no scene
preprocessing, but acceleration data structure can be used to cull geometry and speedup
the shadow map generation. Recent papers also present smarter culling approaches, such as
Shadow Caster Culling for Efficient Shadow Mapping [BMSW11].

3.1.2 Area Light Sources

Because the basic shadow map algorithm can distinguish only lit pixels from occluded pixels,
it can handle only point lights. Area light sources require an estimation of how much is the
area of the light source visible from the current pixel. One approach is to sample the
area of the light source in Monte Carlo fashion and create one shadow map for each light
sample. Temporal coherence can be used to achieve real-time frame rates, this technique
was introduced by Scherzer et al. [SSMW09].

Other known techniques require only one shadow map per light source. They estimate
the occluded area by backprojection the shadow map pixels on the light source [GBP06]. Or
sample neighbouring shadow map pixels and average the occlusion [Fer05].

3.2 Deferred Rendering

Deferred shading redesigns the standard forward rasterization pipeline to speed up the light-
ing computation in complex scenes. In a simple forward pipeline, geometry is translated to
the camera coordinate system and then rasterized. During the rasterization process, light-
ing is evaluated (that can include complex computations). Performance problems can occur
when computed pixels are frequently overdrawn, for example by closer objects.

Deferred rendering algorithms split a geometry phase from a lighting phase, so the final
image is created in two or more stages. In the first "geometry" phase the whole scene
is rasterized, but only geometrical and material properties are evaluated and saved. The
second phase reads the geometrical properties (stored in buffers/textures) and evaluates the
lighting. This approach was introduced by Deering et al. in 1988 [DWS+88]. The concept
of geometry buffers (g-buffers) was introduced by Saito et al. in 1990 [ST90].

If the lighting evaluation creates a bottleneck in the rasterization process, it is vital to
keep the amount of evaluated pixels low. Deferred rendering elegantly solves this issue by
evaluating lighting only on visible pixels. If the scene contains complex geometry and it is
impossible to avoid overdrawing (for example by rendering closer objects first), the deferred
pipeline beats the forward pipeline as the overdrawn pixels contain only geometrical and
material properties which are much cheaper to evaluate than a complex lighting. However,
if there is no expensive lighting evaluation required, the forward approach is typically faster
as it requires lower memory bandwidth.

Deferred rendering typically requires multiple render targets (MRT) to be available as
the first stage produces more data than a four channel image. The challenge is to find
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(a) (b) (c)

Figure 3.3: Output from the geometry stage: depth buffer (a), albedo (b) and decoded
normals (c)

efficient mapping of geometrical and material properties to available buffer formats. Wasteful
mapping can cause a memory bandwidth bottleneck. The example mapping is shown in the
table 3.1. Depth is stored as four-byte value, normal is packed into two two-byte values
using sphere-map encoding [Mit09]. The last render target contains red, green and blue
color components and the specular exponent, one byte per component. The camera space
position can be later recomputed from the stored depth and screen space coordinates.

Byte
RT 0 1 2 3
0 depth
1 norm.x norm.y
2 alb.r alb.g alb.b spec

Table 3.1: Depth, normal and material properties stored in three four-byte render targets

Deferred shading also simplifies the pipeline and shader design. There is no need to
have huge number of shaders created by the combination of all geometry types with all
lighting settings. It is also much simpler to extend existing deferred engine with new features
(changing the geometry phase does not affect lighting phase and vice versa).

3.3 Geometry Culling

To reduce the number of drawn primitives per frame, rasterization engines often use some
kind of geometry culling. Graphic scenes are usually made of many stand-alone geometrical
objects. This scheme follows the real world situation where, for example, a room can contain
separate pieces of furniture. The simple approach is to distinguish between objects necessary
for the image generation and objects that do not contribute to the rendered image. If the
object is unnecessary, it can be omitted from the rendering procedure and computational
time can be spared.

For example, only objects that lie in the camera view, can be visible on the screen. The
common practice is to use simplified representations of particular objects, such as bounding
volumes, in combination with the viewing frustum intersection test. If the object bounding
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box intersects with the viewing frustum, all its geometry is drawn. Otherwise, it is culled
away. This technique is called Viewing Frustum Culling (VFC). A simple scene with a
camera and a few objects is shown in the figure 3.4.

C

V F

Figure 3.4: Viewing frustum culling; a scene with five mesh objects with their bounding
boxes, camera C and its viewing frustum V F ; boxes highlighted with a green color are
intersecting the viewing frustum and are accepted. Objects highlighted with a red color are
culled.

VFC is often used with bounding volume hierarchies. There are also advanced techniques
which employ hardware acceleration occlusion tests [BMW09].
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Chapter 4

Family of the Instant Radiosity
Algorithms

This chapter reviews the important research done around the interactive global illumination
algorithms, focusing on Instant Radiosity and similar approaches. Instant Radiosity itself
is described in the section 4.1. The Reflective Shadow Maps algorithm is discussed in the
section 4.2. The following section 4.3 reviews the Splatting Indirect Illumination approach.
Incremental Instant Radiosity is described in the section 4.4. The section 4.5 describes the
Coherent Shadow Maps and the following section 4.6 the successive Coherent Surface Shadow
Maps. So far known VPL sampling improvements are discussed in the section 4.7. The
Precomputed Radiance Map approach is reviewed in the section 4.8. The section 4.9 describes
the Implicit Visibility and Antiradiance approach. Algorithm that combines global and local
virtual point lights is reviewed in the section 4.10. The last section of this chapter 4.11
reviews the Imperfect Shadow Maps algorithm.

4.1 Instant Radiosity

The Instant Radiosity algorithm was presented by Keller in 1997 [Kel97]. He uses a quasi-
random walk through the scene, creating virtual point lights (VPL) as the ray bounces the
surface. Scene is rendered from each VPL storing the dept information in a shadow map.
After that, scene can be lit using virtual lights in same way as ordinary point lights. Shadow
maps are used to check visibility of each virtual light from the target point.

The algorithm starts with N light particles. Halton sequence is used to place N light
particles over the light sources in the scene. Particles are then shot to the scene in quasi-
random directions. To estimate which particles should be absorbed by the surface and which
continue bouncing, the mean scene reflectivity is calculated:

ρ̄ =

∑K
k=1 ρd,k|Ak|∑K
k=1 |Ak|

, (4.1)

where K stands for the number of scene elements Ak with average diffuse reflectivity ρd,k.
The mean reflectivity ρ̄ is used in fractional absorption. After first bounce ρ̄N particles

15
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Real light

Virtual lights

Figure 4.1: Four virtual point lights created on the surface after the first light bounce

should remain, ρ̄2N after second bounce and so on. The number of radiance points M
generated by the random walk is given by the equation (4.2).

M <
∞∑
i=0

ρ̄iN =
1

1− ρ̄
N (4.2)

The equation requires 0 ≤ ρ̄ < 1 which holds in all real scenes. The number of radiance
samples M is linear in N . The scene is lit by all those generated VPLs. The first imple-
mentation uses multiple render passes and accumulation buffer to sum the influences of all
generated lights together.

(a) (b) (c)

Figure 4.2: A scene rendered using the instant radiosity algorithms with parameters: N =
10,M = 20 (a), N = 32,M = 72 (b), N = 64,M = 147 (c); courtesy of Keller [Kel97]

In the figure 4.2 you can see various settings for the instant radiosity algorithm. The
low number of light samples can cause disturbing artifacts (the leftmost image). The images
show that for a smaller scene, tens to hundreds of virtual lights should be sufficient.

The great advantage of instant radiosity is that it can work without any acceleration
data structures, so it can be easily used on fully dynamic scenes. The first implementation
from Keller uses hardware accelerated rasterisation. But the idea can also be used with other
rendering techniques like ray-tracing.
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4.2 Reflective Shadow Maps

This technique extends classic shadow-maps and creates virtual light in every shadow-map
pixel [DS05]. The additional information in shadow-map is needed, so this algorithm requires
multiple render targets to be available.

(a) (b) (c) (d) (e)

Figure 4.3: Reflective shadow map components: dept (a), world-space coordinates (b),
normal (c) and flux (d), and the rendered image (e); courtesy of Dachsbacher et al. [DS05]

The algorithm first renders the scene from the light view, storing world-space position,
normal and flux for each pixel. When pixels seen by a camera are processed, the reflective
shadow map (RSM) pixels are considered as a source of indirect illumination. To avoid
evaluation from all RSM pixels (shadow-map can contain hundreds of thousands pixels), only
a random subset of RSM pixels is used for one pixel on the screen. The sampling assumes
that if two points in the scene are close to each other, their projections on the screen will
be close to each other to. This assumption cannot be used in the opposite manner. But
as the sampling does not need to be accurate, RSM samples are selected close to currently
evaluated pixel. Also the visibility check between the pixels and RSM samples is omitted.
This simplification can lead to totally wrong results.

Another speedup can be achieved when interpolating the indirect illumination where
it does not vary much. The algorithm first renders the scene (from the camera view) in
low resolution and evaluates the indirect illumination for all pixels. In the second pass the
scene is rendered in a full resolution, and where it is possible, the indirect illumination is
interpolated from the low resolution image. The variation of indirect illumination is guessed
by comparison the high resolution pixel normal and the low resolution pixel normal. Pixels
which have similar normal in low and high resolution buffers use the interpolated indirect
illumination.

4.3 Splatting Indirect Illumination

The research published by Dachsbacher et al. in 2006 [DS06] use the idea of RSM [DS05]
and creates a light source in every shadow-map pixel. But the contribution of pixel light
sources to the final camera image is not computed per camera image pixel. The approach is
reversed and for each group of virtual pixel lights the indirect illumination is splatted into
its screen space neighborhood. The shape of the light splat can be modified to approximate
BRDF. This can be used to create simple reflection and refraction effects like caustics.
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This algorithm belongs to a deferred shading family by its nature. So the scene is
rendered using multiple render targets storing the world-space position, normal and material
properties for each pixel. The direct illumination and also the splatting is done in the deferred
pass. Dachsbacher et al. use importance sampling of RSM to select pixels with higher flux.
The algorithm is combined with ambient occlusion to approximate local visibility effects like
self-shadowing.

Figure 4.4: Splatting Indirect Illumination in steps; courtesy of Dachsbacher et al. [DS06]

With the use of RSM everything can be done on GPU using rasterisation pipeline. The
splatting of indirect light can also be used together with another VPL based algorithm.

4.4 Incremental Instant Radiosity

The Incremental Instant Radiosity algorithm was presented by Laine et al. in 2007 [LSK+07].
The algorithm is based on classic instant raiosity method [Kel97], but it does not create all
the VPLs from scratch every frame. It spares time by reusing valid VPLs and their shadow-
maps from previous frames. The algorithm also iteratively improves VPL distribution over
the scene.

Figure 4.5: The Incremental Radiosity steps; in the first step, classic VPLs are created. In
the step (b) the scene is illuminated by VPLs created in the step (a). In the next frame
camera and light is moved (c). The algorithm reuses some of the VPLs previously created
in the step (a). Courtesy of Laine et al. [LSK+07]

In the beginning VPLs are created the same way as in the classic instant radiosity method.
In all other frames the algorithm detects invalid VPLs, deletes them and creates new ones.
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The VPL can become invalid if the light moves and (1) the VPL becomes occluded by
geometry, or (2) the VPL moves out of the light illumination region. The occlusion is
detected with the help of ray-tracing on CPU. For all primary light sources the algorithm
maps the directions to existing VPLs to 2D domain, where it calculates Voronoi diagram.
The new lights are placed in directions which corresponds to the biggest empty space in
the 2D domain which reduces the dispersion. The Voronoi diagram is used to find such
places. After a new direction is found, the ray is casted from the primary light source. The
intersection with the ray and the scene creates a new virtual point light which implies new
shadow-map generation.

If the primary light source moves only smoothly, the algorithm can reuse huge number
of previously created VPLs and can bring performance benefits. However, the algorithm
uses ray-tracing, so the acceleration data structure is needed. This creates limitation for
dynamic scenes. The scene can be split to static and dynamic parts. The static part is
included in the acceleration data structure and considered when tracing the light paths. But
the dynamic part cannot influence the VPL generation. So all dynamic objects just receive
global illumination.

4.5 Coherent Shadow Maps

The visibility queries are the most time consuming operations used in global illumination.
Coherent Shadow Maps (CSM) [RGKM07] and Coherent Surface Shadow Maps (CSSM)
[RGKS08] create a data structure which contains precomputed visibility information.

The hypothetical data structure should hold visibility information for each pair of points
in the scene. For example it should contain shadow-maps for all objects rendered from some
set of directions. This is however infeasible due to high storage requirements. The CSM data
structure tries to solve this problem using lossless compression and exploiting the coherence
between neighbouring shadow maps.

(a) (b)

Figure 4.6: Discretization of viewing directions (a); the space-filling curve is used to order
shadow maps (b). Courtesy of Ritschel et al. [RGKM07]

For each object in the scene the algorithm first discretizes the directions around the
object and creates N shadow maps. The compression works best if the neighbouring shadow
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maps contain similar depth values. Zig-zag or Hilbert space-filling curves are used to achieve
the coherence between shadow-maps.

The idea behind used compression is shown in the figure 4.7. The classic shadow map
contains only the closest depths (Z1 in the image). But if we test visibility along the ray
shown in the figure 4.7, any value between Z1 and Z2 will produce correct result. The graph
in the figure 4.7 shows the values of Z1 and Z2 depending on the shadow map index i. Only
three values Zavg are sufficient to compress the N shadow maps.

Figure 4.7: The average depth value Zavg used for compression; courtesy of Ritschel et
al. [RGKM07]

As the discretization creates aliasing artifacts, the CSM has to be filtered. The Coherent
Shadow Maps are created per object, so to avoid reconstruction of CSM all objects must
remain rigid. But any object can be moved in any degree of freedom. The main disadvantage
of the CSM is that they can only be used for visibility checks from points that are outside
the convex hull of the scene objects.

4.6 Coherent Surface Shadow Maps

Coherent Surface Shadow Maps (CSSM) removes the main limitation of CSM discussed in
previous section [RGKS08]. To allow in-convex hull tests CSSM are created by rendering
cube shadow maps from the object surface. The object surface is discretized and in each
point a full cube map is rendered, storing depths to all directions.

(a) (b)

Figure 4.8: Zig-zag and spiral traversal in an atlas (a); the back-projected path (b); courtesy
of Ritschel et al. [RGKS08]
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The problem is to generate coherent paths over the surface. To solve this problem, a
texture atlas can be used. The texture atlas contains unwrapped surface properties from
all objects in one big texture. The atlas usually contains material properties, normal and
position for all surface points. For the atlas generation common content creation software
can be used. With texture atlas, the path can be generated in 2D in the atlas and back-
projected to 3D. Two sample paths can be seen in the figure 4.8. The compression of CSSM
is based on the same idea as in CSM.

4.7 VPL Sampling Improvements

Many improvements have been found in the field of virtual point light (VPL) distribution
over the scene [SIMP06][REH+11]. The naive distribution of virtual lights does not produce
optimal results, especially in scene views where the illumination comes completely from
indirect bounces.

4.7.1 Simple Iterative Method

A simple iterative method has been presented by Georgiev et al. in 2010 [GS10]. The
algorithm estimates the average contribution of VPLs and uses Russian roulette to discard
unimportant VLPs. The estimate of contribution can be used from previous frames, so this
algorithm works best with multi-pass renderers.

4.7.2 Bidirectional Instant Radiosity

Bidirectional Instant Radiosity (BDIR) [SIMP06] uses the same idea as bidirectional path
tracing [LW93]. The task of BDIR is to find relevant paths from a light source to the camera.
Simple observation can be used to find out that only VPLs that are closer than two bounces
to the camera can cause visible illumination. So the algorithm uses inverse instant radiosity
to create virtual point lights by tracing rays from camera.

First N/2 VPLs are created by tracing paths (of length two) from camera. The second
half of VPLs is created normally by casting rays from the light source. For each of N lights,
the power brought to the camera is evaluated. The cumulative distribution function is built
and the set of N lights is re-sampled.

4.8 Precomputed Radiance Map

For static scenes, the radiance transfer can be precomputed. Szécsi et al. [SSKS06] use this
approach. The algorithm works with two kinds of samples. The scene is covered with a
number of "reference points" and "entry points". In the preprocessing stage the paths from
entry points to reference points are computed and stored with the probability of the path. In
the rendering stage, if an entry point receives radiance the precomputed radiance, map show
to which reference points the radiance can go. The incoming radiance between reference
points is interpolated.
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Figure 4.9: A scene with reference points (×) and entry points (•); courtesy of Szécsi et
al. [SSKS06]

4.9 Implicit Visibility and Antiradiance

Dachsbacher et al. reformulate the rendering equation to contain implicit visibility [DSDD07].
The extra illumination is compensated witch a new quantity called antiradiance.

The classic rendering equation [Kaj86] calculates the outgoing radiance by integrating
the radiance incoming from visible objects (dimmed by BRDF). In the new approach, the
visibility step is skipped and the radiance comes from all scene points. But every point also
emits incident light backwards, this quantity is called antiradiance. The algorithm discretizes
the scene to spacial and directional bins. The hierarchy is build to handle scene complexity.

An iterative solver, similar to Hierarchical Radiosity with Clustering [SAG94], is used.
Dachsbacher et al. present an efficient GPU implementation which converges in interactive
times. Moving objects and lights are handled.

4.10 Combination of Global and Local VPLs

The instant radiosity was designed to work well with diffuse surfaces. But if the scene
contains glossy or specular materials, special approach has to be used. One of the possible
solutions was presented by Davidovic et al. in 2010 [DKH+10]. Their algorithm separates
global low-rank and local high-rank components.

The global lights are clustered and all lights in one cluster share one shadow map. For
local lights, the visibility is ignored.

4.11 Imperfect Shadow Maps

Direct lighting often causes high frequency illumination changes. But it has been found
that indirect illumination alters only smoothly in most scenes [WRC88]. In contrast to
the direct illumination, which has to be precisely evaluated, indirect illumination does not
necessary have to be precise [AFO05]. The most time consuming part of indirect illumination
computation are visibility queries [RGKS08]. The indirect illumination evaluation can be
accelerated with the use of low resolution shadow maps which store only approximate depth
values [RGK+08]. Those Imperfect Shadow Maps (ISM) are used for visibility queries the
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same way as regular shadow maps are, but they are not created from the precise scene
representation.

ISM are rendered using point based scene representation which approximates the scene
geometry. The point based representation is created from boundary representation in pre-
processing stage. For each point the algorithm first selects one of the scene triangles with the
probability proportional to the area of the triangle. Then the point is placed on a random
location on the selected triangle. This leads to uniform distribution of points over the scene.
ISMs can deal with fully dynamic scenes but the points approximating the scene have to be
transformed with the moving geometry.

The depth information stored in ISM does not have to be precise, so each ISM is rendered
using only a subset of all scene points. During the ISM render stage the stream of all
scene points is split and points are randomly sent to different ISMs. This typically creates
holes in shadow maps. The holes are filled in another stage with the use of pull-push
algorithm [MKC07]. The figure 4.10 shows a scene with two virtual point lights and their
ISMs.

(a) (b)

Figure 4.10: A scene with two virtual lights and associated ISMs (a); the top and bottom
ISM textures (b) show shadow maps without and with pull-push phase respectively. Courtesy
of Ritschel et al. [RGK+08]

During the pull phase the image pyramid is built from the ISM texture by scaling the
texture down by the factor of two. But only valid depths are combined (averaged) when
computing the coarser level. In the push phase holes are filled with interpolated values from
the coarser level. ISM use outlier rejection during both pull and push phases.

As ISMs are rendered in one pass, they are stored in one big texture. This texture
typically has the resolution 4096×4096 pixels. If the resolution of one ISM is 128×128 pixels,
the big texture can contain 1024 Imperfect Shadow Maps. To cover full hemisphere, the ISM
algorithm uses parabolic mapping.
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Figure 4.11: Normalized RMS image error of the Sponza scene; the ISM resolution is varied
as well as the number of point samples; courtesy of Ritschel et al. [RGK+08]

If the ISMs are used to approximate the visibility in the scene, one major problem may
occur. As the original ISM implementation tries to distribute point samples uniformly over
the scene, for a huge and complex scene the number of point samples can become impractical.
On the other hand, if the number of point samples is kept low, visibility artifacts may occur.
The View-Adaptive Imperfect Shadow Maps (VAISM) algorithm is designed to remove this
major limitation of ISM [REH+11]. Another challenge for this algorithm is to sample VPLs
more wisely.

As Bidirectional Instant Radioisity [SIMP06], this algorithm prioritizes VPLs which con-
tribute more to the final image. The goal is to create VPLs only where they can influence
pixels of the final image. The algorithm uses reflective shadow maps, so each pixel of RSM
can potentially be a VPL. The optimal algorithm would test visibility from all pixels of RSM
to whole surface seen from the camera. However, this solution is impractical due to high
computational requirements.

Figure 4.12: Bidirectional Reflective Shadow Maps; courtesy of Ritschel et al. [REH+11]

To overcome this limitation the VAISM algorithm uses two reflective shadow maps, one
rendered from the camera, the second rendered from the light position and evaluate the
influence of VPLs stochastically. For each potential VPL only a random subset of samples
is taken into account. Visibility query is omitted to speed the evaluation up. Only mutual
position and orientation is used to estimate the influence.

To reduce the number of needed point samples over the scene, this algorithm breaks the
uniformity of the point sample distribution. In ideal case, only triangles blocking the light
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Figure 4.13: Comparison of various VPL distributions; the classic instant radiosity (2) places
samples around the light source. The Bidirectional Instant Radiosity produces much better
VPL distribution. The VAISM algorithm produces worse VPL distribution than BDIR, but
can be evaluated more effectively. Courtesy of Ritschel et al. [REH+11]

should be given some point samples. Distant triangles, which do not contribute to the ISM
texture, do not require any point samples. The problem is to estimate which triangle does
influence the viewable light transport in the scene. The VAISM algorithm estimates the
influence by computing the solid angle between the visible scene point and the triangle.

Correct solution would compute the solid angle between all triangles and all visible scene
points, but this is also impractical. The algorithm uses stochastic sampling and selects
several visible points for each scene triangle. The triangles with bigger solid angles receive
more point samples from those with lesser solid angles. To avoid flickering only a subset of
scene points is updated every frame. This leads to temporal inaccuracy, but it seems not to
be disturbing for human observers [REH+11].
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Chapter 5

Other Interactive Global Illumination
Algorithms

In this chapter we mainly discuss algorithms that are not based on the Instant Radiosity
approach. However, they share many characteristic properties with the Instant Radiosity
algorithms. The biggest similarity is the targeted segment of graphical applications. All
algorithms reviewed in this chapter are optimized for fast rendering, the physical correctness
is inferior.

In the section 5.1 we review the Cascaded Light Propagation Volumes algorithm. The
rest of this chapter investigates the screen space illumination approximations.

5.1 Cascaded Light Propagation Volumes

Cascaded Light Propagation Volumes (LPV) were developed by Kaplanyan et al. in 2010 [KD10].
They are targeting interactive applications, so the algorithm is not physically correct. LPV
works best on low-frequency indirect shading. The direct illumination is computed separately
with the help of classic shadow maps.

(a) (b) (c)

Figure 5.1: The "Crytek Sponza" scene rendered using LPV (a) (b); the image (c) shows a
simple participating media scattering. Courtesy of Kaplanyan et al. [KD10]

The basic idea is similar to grid based fluid advection simulations. The algorithm creates
two grids, one for geometry approximation and one for indirect light intensity. Both grids are
filled every frame from scratch. The geometry grid is initialized from the camera geometry
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buffer (g-buffer) and from the light reflective shadow maps. To speed this step up, static
geometry samples can be reused from the last frame. The light intensity grid is filled with
data gained from reflective shadow maps and from low frequency light sources such as area
lights or environment maps. In each cell the intensity is discretized using low-order spherical
harmonics.

The algorithm is iterative and in each iteration the flux coming from each cell to its
neighbours is computed. The algorithm uses just the base six directions aligned to the axes
to exchange the flux. The geometry grid is used to compute the blocking factor between
adjacent cells. After heuristically determined number of iteration is reached the intensities
are used to illuminate the scene.

Figure 5.2: The propagation scheme and the flux estimation for adjacent cells in LPV;
courtesy of Kaplanyan et al. [KD10]

The algorithm creates nested grids to catch more detail in parts closer to the viewer. As
the algorithm recreates the grid every frame, the nested parts are dynamically adapted as
the camera and scene objects move. The algorithm can easily be extended to capture some
participating media effects, as shown in the figure 5.1.

5.2 Screen-Space Illumination Approximations

Fast global illumination estimation over the scene is still challenging even with the current
hardware. One of the popular approximations of global illumination effects is ambient oc-
clusion (AO). This method basically just darkens holes and corners because it assumes lower
indirect illumination coming to such places. In static scenes AO darkening term can be
precomputed and stored as per vertex attribute or in texture. But if we deal with dynamic
geometry, the precomputed AO can easily become inaccurate.

One example of real-time AO for dynamic scenes was presented by Kontkanen and Aila
in 2006 [KA06]. They present new AO algorithm for animated models, typically characters.
The AO is precomputed for several key poses of the model. Later the algorithm interpolates
the precomputed references and creates AO for the animated model in real-time.

5.2.1 Screen-Space Ambient Occlusion

The full-scene ambient occlusion evaluation typically involves ray tracing which currently
does not scale well to the full dynamic scenes used in applications like computer games. But
recent research shows that screen-space approximation of AO can produce pleasant results
in real-time frame rates [RGS09] [BS09].



5.2. SCREEN-SPACE ILLUMINATION APPROXIMATIONS 29

The principle of SSAO is shown in the figure 5.3. The depth map samples (green and
blue) are used as a heightfield. The AO is approximated by ray-marching several rays from
the actual point P in the direction randomly chosen on hemisphere given by normal of the
surface point P . If the depth stored in the buffer is greater, the ray continues. But in the
other case (the rightmost sample in the figure 5.3) the ray intersects the surface and the
occlusion is accumulated. The number of samples the same as well as the length of rays can
be varied to meet performance and quality requirements. The noise generated by random
samples is often filtered out using geometry aware blur [SIP06].

P

r1

r2

Eye
Projection plane

Figure 5.3: Computation of SSAO for the point P (green) with two sample rays r1 and r2.

Figure 5.4: Ambient occlusion in the Sibenik Cathedral scene computed on-line using the
screen space approach; the image was rendered in the resolution of 1280 × 720 pixels in
1.39 ms.
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The SSAO algorithm suffers from several shortcomings. The biggest problem occurs
when the depth map does not contain needed surface information. This scenario occur for
example when the occluder samples are overdrawn by much nearer object. In this case
AO cannot be correctly evaluated. There are several workarounds used to overcome this
problem. Multiple depth layers can be created and sampled [BS09]. Or multiple views can
be rendered [RGS09].

The SSAO gives us several great features. As it is computed in image space, it does not
depend on the scene complexity. SSAO only requires normal and depth images, so it can be
used with almost any kind of the rendering algorithm. It also works very well with normal
mapping and all displacements techniques. The implementation of SSAO is straightforward
and it only has to be added as a post-processing stage or a deferred stage.

5.2.2 Screen-Space Directional Occlusion

The standard AO techniques usually separate the AO step from the other illumination steps
(like direct illumination). So the AO map usually contains only gray-scale values and does
not distinguish various illumination sources which were occluded. The final image is often
created as a product of AO gray-scale map with the illuminated scene (without AO). The
algorithm tries to merge those steps together. During the evaluation of AO for the point P
if any occluder is found, the radiance incoming from the same direction as the occluder is
blocked. The Directional Occlusion can be used with many types of known illumination
sources; like environment map or point lights.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.5: Comparison of image without AO (a), standard SSAO (b), SSDO (c) and SSDO
with a diffuse bounce (d); the second row shows the details of SSAO (e), SSDO (f) and (g),
and SSDO (h). Courtesy of Ritschel et al. [RGS09]

Occluders detected in the AO step can also be used to cast radiance to the point P .
This approximation of one light bounce produces really pleasant images at the cost of small
computational time [RGS09]. The results of SSDO and screen space indirect bounce can be
seen in the figure 5.5.



Chapter 6

Problem Analysis

In this chapter we take a deeper look at the possibilities of state of the art global illumi-
nation algorithms for dynamic scenes. We have reviewed all major known algorithms in
the chapter 4. In this chapter we investigate the demands of our assignment, analyse so
far known instant radiosity algorithms, and we give our reasons for chosen technologies and
programming languages. We discuss the design of the application itself in the following
chapter 8.

6.1 Analysis of the Assignment

As the research shows, the indirect illumination evaluation is usually vital if we want to
produce perceptually pleasant images [Sto04]. Also it is known, that the diffuse reflections
play the most important role in the scene illumination in the most of the scenes [Sto04]. If
we want to produce interactive applications, we have to carefully choose which components
of the illumination we will take into account. The complete evaluation of physically correct
lighting model is still unconquerable in the interactive applications.

Radiosity algorithms were designed to deal mainly with the diffuse surfaces. From the
"quality versus speed" point of view, omission (or coarse approximation) of the specular
and glossy indirect lighting can be a good choice. In addition, instant radiosity can take
advantage of the hardware accelerated rasterization. GPU friendly algorithms seem to be
the right choice in general, since there is a significant boost in GPGPU technologies in recent
years.

The task is to use one of the instant radiosity algorithms to calculate the global illu-
mination. Many of the instant radiosity algorithms have the potential for rendering global
illumination in interactive frame rates. On the other hand, physical correctness often suffer
when the algorithm has to be fast.

Another big challenge is the rendering of dynamic scenes. When the scene is fully dynamic
(objects, cameras and light sources move frequently), little or no pre-computation can be
used. This fact limits many ray-tracing based algorithms as they usually require hierarchical
acceleration data structures which are difficult or impossible to update. On the other hand,
rasterization seems to work very well with dynamic scenes. Albeit it is a common practice
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to use acceleration data structures with rasterization too, however they often cover the scene
only in a coarse manner. So no fine refinements are usually needed every frame.

Last but not least requirement is the platform independence of the implementation. We
require the measurement to be done on various setups thus the code has to be portable.

Our summarized requirements are:

1. the algorithm has to handle fully dynamic scenes,

2. one frame should be rendered within the order of tens of milliseconds,

3. one indirect diffuse bounce is sufficient1,

4. the algorithm should be well parallelized and portable to GPU,

5. the implementation has to be written using only portable libraries.

6.2 Algorithm Selection

Tremendous amount of work has been done in the filed of the global illumination. If we deal
with a static scene, we can easily involve preprocessing. A typical solution pre-computes the
visibility or radiance transfer. An example of the visibility preprocessing can be found in the
Coherent Shadow Maps algorithm [RGKM07] and the successive Coherent Surface Shadow
Maps method [RGKS08]. The radiance transfer preprocessing is used in the algorithm pre-
sented by Szécsi et al. [SSKS06].

As the visibility or radiance transfer cannot be pre-computed for all pairs of the scene
points, the interpolation and filtering is usually used. If problems caused by scene dis-
cretization in the preprocessing stage are solved, these methods produce highly pleasant
images that are close to the physical reality. However, the use of pre-computation is usually
heavily limited in dynamic scenes.

Instant Radiosity elegantly solves this issue by using the Monte Carlo estimation of the
indirect illumination [Kel97]. The algorithm successfully approximates lighting in diffuse
scenes with many virtual point lights. But the original algorithm still requires a huge amount
of computational power to evaluate the visibility of created VPLs. One of the possible
improvements exploits the temporal coherence between successive frames. For example,
Incremental Instant Radiosity presented by Laine et al. in 2007 [LSK+07] reuses virtual
point lights from previous frames and it excludes dynamic objects from the visibility steps.
Thus, all scene objects (including dynamic) receive the indirect illumination, but only static
objects can contribute to it.

Another approach simplifies the visibility queries for the indirect paths. Imperfect
Shadow Maps, as presented by Ritschel in 2008 [RGK+08], substitute the scene with an
approximate representation to speedup the visibility step. ISM are improved to handle large
complex scenes by Ritschel in 2011 [REH+11]. ISM produce medium quality results with a
budget of only a few milliseconds on a modern hardware.

1One indirect bounce means two bounces total.
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We have chosen the ISM algorithm for our implementation. It creates a good trade-off
between the quality and the rendering time. It also has no problems with dynamic scenes.
As we show in the following text, the point representation can be rebuild from scratch
in every frame using the hardware accelerated tessellation. We would like to explore the
potential of combining the ISM based algorithm with a screen space global illumination
approximation, as ISM cannot handle small local light events. Ritschel et al. gained highly
pleasant results using their Screen-Space Directional Occlusion [RGS09], presented in 2009.
Screen-space methods gained big popularity in recent years, as they require no preprocessing
and successfully overcome the scene complexity.

6.3 Framework Selection

In this section we will describe the application needs one by one, with the discussion about
the individual library/language candidates. The first choice had to be made about the
programming language for the basic application. The decision was really simple here. As we
require a lot of specialised libraries to be usable with our application, we have chosen C/C++
language. The majority, if not all, of the libraries we use, is written in C/C++ language, so
we can use native bindings without the need of any wrappers. C/C++ language also gives
us adequate comfort and performance.

The biggest decision was made around the graphics programming API to use. Since
the algorithm is almost a perfect example of GPU friendly system, it would be a nonsense
to overlook the GPU acceleration possibilities. First we had to choose between a general
purpose rasterization API and a specialized hand-coded library in a GPGPU language. Also
we wanted to minimize the total number of used languages and keep the code maintain-
able. From the systematic point of view, one common language, for the rasterization and
the computations, would be ideal. However, recent research shows that hand-coded soft-
ware rasterization is at average approximately five times slower than a hardware accelerated
engine [LK11], even when written in CUDA to run on GPU.

The performance difference between the CUDA software rasterization engine written
by Laine et al. and common hardware accelerated libraries convinced us to use a general
purpose hardware accelerated API for rasterization. The biggest players in the field of
accelerated rasterization are DirectX and OpenGL libraries. DirectX comes with a bundled
general purpose language called DirectCompute. The relationship between DirectX and
DirectCompute is really close, since DirectCompute was primary designed to cooperate with
DirectX. This is surely a big advantage as the approach and design patterns are similar.

However, DirectX is strongly bound to Microsoft platforms. This does not fulfill our
portability requirement. The second mentioned API - OpenGL, has no such restrictions, in
fact it is adopted to almost all modern architectures and operating systems [Khr12c]. The
functionality provided by the OpenGL API covers our needs at ease. Also OpenGL shading
language (GLSL) can be used to run our computations. So we have chosen OpenGL as our
main graphic framework.

OpenGL does not come with two important things: resource loading subsystem and
the window and input event handling functionality. There are many OpenGL compati-
ble libraries created to simplify the window and input handling. For example GLUT li-
brary [Khr12a], which is tightly connected to OpenGL, offers this functionality. However, it
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is a really simple library with very limited GUI creation support. There was a possibility to
use more libraries for the GUI and window management. For example GLUT for window
management and FLTK [Bil12] library for the GUI creation. But it would add more com-
plexity to the whole project, so we decided to use only one complex framework which would
cover GUI creation and window management altogether.

There are several multi-platform GUI libraries that support OpenGL. We have considered
three candidates: GTK+ [GTK12], Qt [Nok11] and wxWidgets [wxW12]. All the candidates
are well-known mature GUI frameworks for C++ and other languages. We have chosen
Qt libraries as they provide really great documentation, stable and clean API, and good
performance and memory footprint.

For the scene loading, we have found the Open Asset Import Library [Ass09]. The huge
benefit from using the Assimp library is the list of supported formats. The Assimp library
supports dozens of scene formats, such as obj, ply, dae, 3ds, x and others. The library also
supports parsing material properties, for example the mat files.

For the image loading and storing, we have chosen the DevIL library [Dev12]. The other
adepts were the CImg [Tsc12] library and the FreeImage [Fre12] library. DevIL has a really
simple OpenGL-like API and supports a wide range of image formats, such as png, jpeg,
exr, hdr and many others [Dev12].

The last third party software, we use, is the GLEW library [GLE12]. We use GLEW to
simplify the OpenGL extension and version handling.



Chapter 7

Used Technologies and Libraries

Our application is built on several programming languages and supporting libraries. As the
majority of computations runs on the graphics processing unit, consequent sections focus on
GPU computing technologies such as CUDA or GLSL. We briefly introduce NVIDIA CUDA
platform, we also describe used graphics library and its shading language.

7.1 GPU Computing and CUDA

The demand for high quality realistic game rendering has pushed GPU vendors to create
high performance computing architectures. The computer graphics tasks were always char-
acterized as highly parallel, data and arithmetic intensive applications. NVIDIA CUDA is a
high level C++ like programming language and framework for writing general purpose ap-
plications that run on the GPU. CUDA has become very popular as it brings the horsepower
of modern GPUs to all kinds of highly parallel computational intensive applications, such as
ray tracing [ZH10].

7.1.1 Today’s GPU architecture

As can be seen in the figure 7.1, the GPU architecture strongly differs from the CPU archi-
tecture. The CPU typically contains only a few arithmetic units which are surrounded by
a lot of control logic and caches. This perfectly meets typical desktop application require-
ments as desktop applications usually work only with one or a few threads. Also, desktop

Figure 7.1: Comparison of typical CPU architecture (left) to the GPU architecture (right);
courtesy of nVidia [NVI10]
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applications often perform a mix of logic and arithmetic operations and jump "randomly"
over the memory which requires a lot of cache. The thread scheduling is generally done by
the operating system and that creates another complexities in the whole architecture.

Figure 7.2: One Fermi Streaming Multiprocessor;
courtesy of nVidia [NVI09]

On the other hand, graphical tasks
are usually highly parallel (there are for
example millions of pixels to evaluate
but each pixel can be evaluated indepen-
dently of the other pixels). Also, at some
point all the threads typically execute
the same code (for example all threads
are transforming a vertex to the camera
coordinate system). The memory access
pattern differs from the CPU applica-
tions too. For example, the image filter
kernel typically reads surrounding pix-
els, and if two kernel instances are ex-
ecuted on neighbouring pixels, there is
a high chance that they will read and
write similar locations in the memory.
The thread scheduling can be often re-
ally simplified, as there is no complicated
priority mechanism, much lower number
of active tasks or no complex memory
protection required.

In the figure 7.2, we can see a block
diagram of one Streaming Multiproces-
sor (SM) used in NVIDIA Fermi archi-
tecture [NVI09]. One SM usually con-
tains tens of arithmetic logic units, sev-
eral special function units and tens of
load/store units. The register file is used
as local per thread memory. Shared
memory can be used by all threads run-
ning on the same SM, but is not visible
to threads scheduled to run on the other SMs. The thread scheduling is done by The Warp
Scheduler unit. As the scheduling is implemented in hardware, it can switch threads really
fast [NVI09]. Streaming Multiprocessor usually contain only a limited size cache.

The small cache cannot be used alone to hide the latency of main memory, which is
usually hundreds of GPU cycles [NVI09]. To overcome this limitation, programmers should
use the shared memory and try to avoid random accesses to the main memory. Also The
Warp Scheduler detects memory accesses and reschedules threads waiting for the memory
operation to complete. This, however, works only if sufficient number of threads is available
to the scheduler.
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7.1.2 Sample Code

As mentioned before, CUDA programmers have to be aware of the architectural principles
and the memory layout to be able to write efficient GPU code. But the language itself offers
a high level approach to simplify kernel writing as much as possible. The kernel code (the
code which runs on GPU in many instances in parallel) is written directly into the host
code. This feature allows developers to write structures, classes and methods which are
shared across the GPU and CPU environment. CUDA compiler also extends standard C++
host code to simplify kernel invocations and serial to parallel code transitions.

In the figure 7.3 we show a simple CUDA application skeleton. The application performs
a parallel addition of arrays A and B and stores the result into the array C. The __global__
keyword denotes kernel function and the <<<>>> operator indicates kernel invocation from
the host code. Kernels can read built-in variables, such as threadIdx. The rest of the code
is written against the C++ standard.

// Kernel definition
__global__ void VecAdd(float* A, float* B, float* C)
{

int i = threadIdx.x;
C[i] = A[i] + B[i];

}
// Application entry point
int main()
{

// Memory initialization
initializeArrays(A, B, C);
// Kernel invocation with N threads
VecAdd<<<1, N>>>(A, B, C);
// resource deallocation, ...

}

Figure 7.3: Simple parallel vector addition; an example from [NVI10]

7.2 OpenGL and GLSL

OpenGL is a well known standard for hardware accelerated 2D and 3D rasterization library.
It was introduced in 1992 and has been adopted to all major platforms such as Mac OS,
Linux or MS Windows [Khr12c]. The API is written in the C programming language, but
it is extended to all major languages such as Java, Python and Perl. OpenGL is partially
object oriented, as there are functions altering the global state mixed with functions that
work purely with associated objects1.

1As C syntax does not support classes and methods directly, everything in OpenGL is a global function
or constant.
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Recent versions of OpenGL are tightly connected to their shading language, named
OpenGL Shading Language (GLSL). GLSL is a C-like language, designed to perform graph-
ical computations on parallel architectures such as today’s GPU. GLSL programmers work
on higher level of hardware abstraction than for example CUDA or OpenCL programmers
do, since the language is much more hardware independent. The language was primarily
developed to cooperate with the rest of OpenGL, so the interoperability between OpenGL
and GLSL generally works better than between OpenGL and CUDA which we discuss in the
section 7.3.

OpenGL was also used as a base of OpenGL ES, which is a modern graphics API for
embedded devices [Khr12b]. Last but not least adoption of OpenGL is the WebGL API which
brings accelerated graphics interface to the web browsers though the ECMA script [Khr12e].

7.2.1 History of OpenGL and GLSL

From the beginning OpenGL was designed to keep the backward compatibility, as it was
needed by many industrial applications. However, after almost two decades of intensive
evolution of graphics hardware, OpenGL has become too complex and hard to implement,
because it had to support all the historical features next to the modern approaches [Ope11].
To solve this issue, OpenGL 3.0 introduced a deprecation model and OpenGL profiles.

In the table 7.1 we show all OpenGL versions released until May 2012. Since OpenGL 2.0
release in 2004, the GLSL language has become an important part of OpenGL2. GLSL 1.10
created two programmable stages in the OpenGL pipeline. In all versions before the 3.1
release, shader programs were only optional fixed functionality replacement. Shaders were

Version Year Notable features
1.0 1992 first release
1.1 1992 vertex arrays
1.2 1998 3D textures
1.2.1 1998 ARB extensions
1.3 2001 cube maps, multitexturing
1.4 2002 depth textures
1.5 2003 buffer objects, occlusion queries
2.0 2004 GLSL 1.10, point sprites, MRT
2.1 2006 GLSL 1.20, PBO3

3.0 2008 GLSL 1.30, deprecation, profiles, transform feedback4

3.1 2009 GLSL 1.40, instanced rendering
3.2 2009 GLSL 1.50, geometry shaders
3.3 2010 GLSL 3.30, sampler objs., timers
4.0 2010 GLSL 4.00, tessellation, per-sample sh.
4.1 2010 GLSL 4.10, shader binaries, 64bit sh.
4.2 2011 GLSL 4.20, atomics on buffers

Table 7.1: Official OpenGL releases with some of the features they introduced

2GLSL could be used in older versions too, but only using the extension.
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usually connected to many built-in variables and interfaced frequently with the rest of fixed
function pipeline.

7.2.2 Modern OpenGL Pipeline

In the OpenGL 3.2 release, the fixed functionality was minimized and the old pipeline was
dropped [Ope11]. That introduced great flexibility to GLSL and allowed writing a general
purpose code in shaders. In later versions of OpenGL, another shading stages were added
to meet demands of 3D graphics programmers.

The actual shader pipeline is shown in the figure 7.4. The vertex data is read by a vertex
shader which typically calculates vertex transformations. In the simplest case, transformed
vertices are assembled into primitives, calculated attributes are interpolated and sent directly
to the rasterization process. If the tessellation evaluation shader is present, primitives can
be further tessellated (or discarded) depending on tessellation control shader. Geometry
shader can be used to calculate per-primitive properties or to change primitive types (and
count) just before the rasterization process. The final stage involves fragment shaders which
evaluate properties of the future pixels.

Figure 7.4: Simplified OpenGL pipeline; the programmable stages are shown as light blue
rectangles. Dashed rectangles denote optional stages.

7.2.3 OpenGL Shading Language

GLSL is a C-like high level programming language, designed mainly to perform graphical
computations with tight connection to OpenGL. The language itself has the same syntax
across all shading stages. The difference between the particular stages is only in shader
inputs and outputs and in the way which shaders are executed.

Unlike CUDA, GLSL does not provide low level data access mechanisms, such as point-
ers [Khr12d]. The data mapping is partially hidden from the programmer by the GLSL
implementation. However, reading any kind of memory was always possible using textures
and samplers. In recent GLSL versions all shader stages can read and write any part of
allocated memory buffers using image objects. Also atomic operations and synchronization
primitives were added to GLSL.

In contrast to CUDA, GLSL programmers have almost no possibility to influence the
organization of GLSL program launches. The number of threads per block/multiprocessor
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is determined automatically by the OpenGL implementation. However, the architectural
characteristics influence the GLSL environment as well. For example, the amount of shared
memory available to CUDA kernels is typically the same as the maximum size of GLSL
uniform buffers.

7.2.4 GPU Accelerated Tessellation

Functionality added to OpenGL 4.0 allows programmers to write tessellation shaders. Tes-
sellation is used to subdivide incoming primitives and create finer level of detail on the fly.
This technology was designed to spare memory bandwidth and space, as there is no need
to store (and transfer) many levels of detail of the geometry. Also shaders can finely tune
tessellation levels instead of switching several precomputed geometries for each level of detail.

Tessellation shaders interact with built-in tessellation unit which accelerates the primitive
subdivision. The tessellation level can be evaluated by the tessellation control shader5 (TC),
which is optional. If the TC shader is not present, tessellation level has to be set by the
CPU code and remains the same for the whole draw call. The built-in tessellation unit then
subdivides input primitives, the example tessellation of a triangle is shown in the figure 7.5.
TC shader can be also used for per primitive culling. Using zero (or less than zero) tessellation
level value discards the primitive.

Figure 7.5: Triangle tessellation as done by OpenGL; the triangle (a) has the tessellation
level of five, the triangle (b) has the level of four. Barycentric coordinates are written next
to their corresponding vertices. Courtesy of The Khronos Group [SA11]

Tessellation evaluation shaders (TE) receive interpolated tessellation coordinates (barycen-
tric coordinates in the case of triangle tessellation) and execute over newly created primitives.
TE shaders typically evaluate properties of new primitives, the common practise is to use
displacement mapping with online tessellation together.

5See the figure 7.4 for the details of shading pipeline.
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7.2.5 Sample Code

The first code snippet shows the body of a simple OpenGL drawing loop. The frame buffer is
cleared, shader program is selected, vertex data settings are applied and triangles are drawn.
The last line of code sample contains a platform dependent code. To hide the platform
dependent functionality, as frame buffer switches are, OpenGL library is often combined
with another supporting libraries, such as GLUT.

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glUseProgram(shaderId);
glBindVertexArray(vao);
glDrawElements(GL_TRIANGLES, nTriangles * 3, GL_UNSIGNED_INT, 0);

glXSwapBuffers(...); // platform dependent

Figure 7.6: A simple OpenGL drawing loop

The following lines of GLSL code in the figure 7.7 were taken from our implementation
(from the geometry stage of deferred rendering). The simple vertex shader translates and
projects the input position on the screen. Normal vector it transformed by the normal
matrix, texture coordinates are just written through.

#version 330
layout(location = 0) in vec3 pos;
layout(location = 1) in vec3 nor;
layout(location = 2) in vec2 tex;

uniform mat4 modelViewProjectionMatrix;
uniform mat3 normalMatrix;

smooth out vec3 nor_v;
smooth out vec2 tex_v;

void main()
{

nor_v = normalMatrix * nor;
tex_v = tex;
gl_Position = modelViewProjectionMatrix * vec4(pos, 1.0f);

}

Figure 7.7: A simple GLSL vertex shader
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7.3 CUDA and OpenGL Interoperability

If an application uses more GPU programming frameworks together, such as OpenGL/GLSL
and CUDA, mechanism for efficient sharing of resources is needed. In the worst scenario,
developers are forced to copy data to the host RAM and then write it back to the GPU. For
example, an OpenGL rendered image is downloaded and then uploaded as a CUDA array.
This approach causes stalls in the GPU as well as in the CPU execution, and it introduces
unnecessary data moves.

CUDA tries to solve this by introducing the mechanism of shared resources. The CUDA
context has to be initialized with a connection to an existing OpenGL context, then memory
buffers and textures can be shared across the CUDA and OpenGL environments. However,
we observed that not all important OpenGL image formats are supported in CUDA. This
issue is discussed in the section 8 in more detail.

7.4 Another Supporting Libraries

OpenGL itself does not provide any functionality for window and input management, it
focuses purely on graphic operations. Also graphic resources, such as models and textures,
are not loaded directly by OpenGL. To keep our application portable, we have decided to
use only platform independent libraries. For window and input management, we use the Qt
libraries. Image loading is done by the DevIL library (sometimes also called OpenIL). To
simplify model and scene loading, we have used Open Asset Import Library. The OpenGL
extensions are managed by the GLEW library.

7.4.1 Qt Libraries

Qt libraries create an advanced application creation framework for GUI and console pro-
grams. The framework itself is written in C++, but bindings to another languages exist. Qt
is popular mainly for its clean and consistent API and great documentation [Nok11]. The
most known parts of the Qt framework are the QtGUI, QtCore, QtOpenGL and QtXML
libraries. The framework is ported to many desktop and mobile architectures.

A simple Qt application is shown in the figure 7.8. Qt framework is characteristic with its
signal/slot event propagation mechanism. As C++ does not provide the needed functionality,

#include <QtGui>
int main(int argc, char *argv[])
{

QApplication a(argc, argv);
QPushButton btn("Hello World!");
btn.show();
return a.exec();

}

Figure 7.8: Simple Qt application which creates a button with the "Hello World!" sign.
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Qt authors created, as it is called, Meta Object Compiler (MOC) which pre-parses the source
code and generates a helper C++ code, which is then compiled together with the rest of
the application. The MOC also adds a higher language features to C++, such as automatic
memory management or property system.

7.4.2 DevIL

DevIL is a simple yet powerful image loading library. It is written purely in the C program-
ming language and supports a wide range of image formats [Dev12]. The library should
be easy to learn for OpenGL developers since it uses similar naming conventions. DevIL is
shipped with an utility library, which adds a basic image modification functionality, such as
scaling.

ILuint img_id;
ilGenImages(1, &img_id);
ilBindImage(img_id);
if(ilLoadImage("lenna.jpg") != IL_FALSE)
{

ILint w = ilGetInteger(IL_IMAGE_WIDTH);
ILint h = ilGetInteger(IL_IMAGE_HEIGHT);
// ...

}

Figure 7.9: Sample code that uses DevIL library to load an image from a file; if the operation
succeeds, the width and height of the image are retrieved.

7.4.3 Open Asset Import Library

The loading of models and scene descriptions in our implementation is done by The Open
Asset Import Library (Assimp). The library is capable of loading numerous scene for-
mats [Ass09]. Also all the materials, animations and a scene graph structure is parsed
and accessible after a successful import. Assimp supports various post-processing steps,
such as triangulation, normal generation or mesh optimization.

Assimp::Importer imp;
const aiScene * scn = imp.ReadFile("bunny.obj", aiProcess_Triangulate);
if(scn) {

for(unsigned m = 0; m < scn->mNumMeshes; ++m) {
// process mesh

}
}

Figure 7.10: Loading a scene with Assimp
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7.4.4 GLEW

To simplify the OpenGL extension handling, we use The OpenGL Extension Wrangler Li-
brary (GLEW). GLEW effectively hides all the tedious code which is needed to check and
load the OpenGL extensions. The usage of GLEW is really simple. After the library is ini-
tialized, developers can check the availability of certain OpenGL versions simply by testing
the corresponding variable.

if(glewInit() != GLEW_OK) {
std::cerr << "Cannot initialize GLEW!" << std::endl;
exit(1);

}
if(!GLEW_VERSION_3_3) {

std::cerr << "OpenGL 3.3 or higher not available!" << std::endl;
exit(1);

}
// continue with OpenGL 3.3 and higher

Figure 7.11: Code snippet showing GLEW usage



Chapter 8

Implementation

In this chapter we describe our implementation in detail. The application is written in
the ANSI C/C++ programming language and we employ Qt libraries for the window, GUI
and OpenGL management. Non-negligible part of the code is written in CUDA and GLSL
and runs on a GPU. The CPU code is written only against cross-platform libraries (Qt,
OpenGL, GLEW, etc.), but as we use CUDA, the application is bound to platforms with
nVidia graphics cards with compute capability 2.1 [NVI10].

The CPU code does minority of the computations during the rendering. So we have
focused on the GPU part of the code. That means, the CPU code does not contain any deep
optimizations. We do not use any vector arithmetic instructions, such as SSE. We use a
simple path-tracer as a reference solution. This module is also mostly written in the CUDA
language.

We use CMake [CMa12] as our build system. So users are free to generate project files
(or Makefiles) for their favourite development environment. Installation is described in the
section C. User manual and build instructions are included as well.

As the rendering pipeline is based on the ISM algorithm, prior knowledge of the algorithm
is important. The ISM algorithm is discussed in the section 4.11.

8.1 Application Structure

Application is written using the C++ language. The computer graphics application designs
are often object oriented, as the problem itself suggests. We have the Light class, Camera
class, etc. Our implementation follows this common practice and is mainly object oriented.
However, too deep levels of structuring and abstraction can introduce performance drops.
So we have designed our application not only with respect to the code readability, but also
with respect to the performance.

Our goal was also to follow the mode-view-controller pattern. This adds a little of
complexity to the whole design, but as a result, the resource reading and scene management
is completely independent of scene rendering. This creates the possibility of writing new
render back-ends without altering the scene reading or managing code. So our ISM renderer
and path-tracing renderer share one data source. The simplified architecture is shown in the
figure 8.1.

45
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Figure 8.1: The application is designed using the Model-View-Controller (MVC) pattern.
Blue modules work as the model, user input controls the scene and the rendering, green
modules work as the view subsystem.

8.2 Code Structure

We organize our code into a couple of smaller modules. The most of the functionality is
contained by the standalone core library. The application with a simple GUI is separated
and linked against the core library.

The core library is made of several components. The components are listed in the ta-
ble 8.1. GLSL shader kernels are separated from the C/C++ code and are loaded on-line
by the io module. Particular components are described in the following sections.

module functionality
gfx abstract rendering devices, helper classes for the graphics subsystem
io resource loading and storing
ism Imperfect Shadow Maps based renderer
math a simple mathematical library
ogl OpenGL renderer and supporting classes
pt path-tracing code
scn scene data structures and a scene manager
util timers, random number generators and utility classes

Table 8.1: Components enclosed by the core library

8.2.1 Resource Loading and Management

Resource management is done by the io module. The ResourceManager class takes care of
the resource loading and creates a cache for the loaded resources. We use abstract factories
for the resource loading itself. So it is possible to extend the functionality by adding a
new input/output back-ends. The DevILImageLoader class encapsulates the DevIL image
manipulation library. Scene loading is encapsulated by the AiSceneLoader class objects,
which uses the Assimp library. Both libraries were described in the chapter 7.

All the resources are reference counted. We use the boost::shared_ptr smart point-
ers [Boo12] to achieve the desired behaviour. We use the reference counting especially to
avoid data duplication. For example, if two objects in the scene share the same geometry,
data is not duplicated, as both objects hold only the reference to the actual data. Also the
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loading is done only once, as the ResourceManager class object caches the result of the first
loading procedure.

8.2.2 Scene Management

Scene management code is located in the scn module. After a successful load, scene object
references are stored inside the Scene class object. The Scene class contains a hierarchical
representation of the scene, called scene graph. The Scene class also offers various scene
object queries. For example, to accelerate the rendering, we use the viewing frustum culling
technique described in the section 3.3. We implement VFC as a scene query. The renderer
executes the query on the scene and iterates through returned objects. A simple code sample
is listed in the figure 8.2.

Scene::Query * vfq = scene->query(viewport->frustum(), worldToCamMat);
while(vfq->hasNextObj()) {

processObject(vfq->nextObj());
}
scene->releaseQuery(vfq);

Figure 8.2: Example usage of a view frustum query in our implementation

The Scene class also works as an interface between the model and view subsystems in the
MVC design. The class provides event generation system to notify attached views (renderers
in our case). Controlling particular scene objects can be done using the SNController and
derived classes.

8.2.3 Rendering Subsystem

There are several rendering back-ends in our application. All rendering classes inherit the
abstract SceneRenderer class, located in the gfx module. The rendering method can be
switched online (see appendix C for more details). When a new renderer is created, it
attaches itself to the Scene object and reads all the scene objects. It also listens to the
scene events and alters its state when the scene is changed (for example when a new scene
is loaded from a file).

The most important is the ISM renderer, which lies in the ism module (plus shaders).
We deeply describe the workflow of this module in the section 8.3. The ogl module contains
basic OpenGL based renderer, which we use for debugging. It only calculates the direct
illumination.

8.2.4 Path-Tracer

Our simple reference path-tracer is placed in the pt module. We use kd-tree [Ben75] as
an acceleration data structure. The tree is rebuilt on every scene change. That practically
limits the usage of this renderer to geometry-static scenes. Lights and cameras can be freely
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moved around the scene. These preferences are sufficient for us, as we use path-tracing only
as a reference solution in our quality analysis, see the section 9.4 for more details.

Path-tracing itself is done on the GPU, accelerated by CUDA. We use limited stack
traversal algorithm known as short-stack [HSHH07]. In one pass, for each ray bounce, one
shadow ray and one reflection ray is generated. Incoming radiance is sampled with respect
to the BRDF times cos(θ), see section 2.3. Successive frames use a different random number
generator seed. The result is accumulated in a frame buffer with a floating point pixel format.

We compare the camera matrix from the previous frame to the new one to detect the
movement. If the camera position does not change, image converges to the correct value
after some time. The advantage is that user can immediately see the low quality noisy image
after he moves the camera.

8.2.5 Graphical User Interface

As said before, we use Qt libraries to create our GUI. We have separated the GUI code from
the rendering core. The GUI is a part of the main application, called qtgui. The application
creates two windows, one displays the rendered result, the second contains the UI. Our UI
allows the user to change several rendering settings online (or select the rendering back-end).
The GUI look is shown in the appendix C.

8.2.6 Supporting Code and Dependencies

The implementation contains many small classes which support the main code. The utility
code is located in the util module. The table 8.2 shows all used libraries and the version we
have used. Some of the dependencies are shipped with the application to simplify the building
process. Especially on Windows platforms where the installation of particular libraries would
be uncomfortable. The listed OpenGL version denotes the "functionality version", OpenGL
vendors typically distribute their implementation with the graphics driver software or their
graphics SDK. Thus the versioning can differ. For more details of the installation process,
see the appendix C. The detailed directory listings are included in the appendix D.

Library Version Installation
Assimp 2.0 included
boost 1.46.1 required
CUDA 4.0 required
DevIL 1.7.8 included (WIN)
GLEW 1.7.0 included (WIN)
OpenGL (4.0) required

Qt 4.7.4 required
v8 3.8.9.6 included

Table 8.2: All library dependencies
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8.3 Rendering Pipeline

In this section we describe all stages of the implemented ISM renderer in detail. The im-
plementation is based upon the ISM renderer described in the section 4.11. The figure 8.3
shows the connections between particular rendering stages. The scene is rasterized from the
view of a camera, the result is stored in a geometry buffer (g-buffer). The g-buffer is read
by a couple of subsequent stages. The SSAO stages use the depth and normal component
to create a screen space ambient occlusion approximation. The discontinuity detection stage
reads the depth and normal component, and creates a bit map which indicates edges in the
rendered g-buffer. The g-buffer is also shuffled to form defined number of sub-buffers.

Figure 8.3: The architecture of our ISM implementation

From the view of a light, a geometry buffer is created as well. The light g-buffer is then
sampled and virtual point lights are created. The VPLs stored in a buffer are read by a
subsequent ISM creation stages. The point representation of the scene is splatted, creating
a ISM texture. The ISM texture is refined by a pull-push algorithm which tries to fill the
gaps in a splatted image. The pull-push stage outputs the final imperfect shadow map.

The pipeline continues in the indirect illumination evaluation by executing the ISM sam-
pling stage. This stage produces illuminated sub-buffers. The illuminated sub-buffers are
shuffled again and one illuminated buffer is created. The indirect illumination is filtered
using a geometry-aware kernel.

In the last stage the direct illumination is combined with the indirect illumination, and
SSAO is added. It is obvious that most of the stages are computed on the pixel domain. We
discuss the effects of this characteristic in the section 9.3.
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8.3.1 Preprocessing

Our application can generate point representation in two ways. The original algorithm,
described in the paper [RGK+08], generates point samples over the geometry off-line, in the
preprocessing stage. We added the possibility of on-line generation which, is described in
the section 8.3.6.

If the on-line sampling is disabled, the point representation is created preliminary to the
rendering loop. The point representation should cover the scene uniformly. We work only
with a boundary representation of the scene, stored purely as triangles. So the point density
should be constant over the whole boundary area. To achieve this, we create a probability
function with values proportional to the area of triangles, and sample triangles with respect
to their probability. The probability pi for the i-th triangle is calculated as a fraction Ai/A.
Where Ai is the area of i-th triangle and A is the sum of all triangle areas.

The sampling uses a search in a cumulative distribution function which we create from
our triangle probability function. To place a sample, we need three random numbers. The
first is used to find a triangle in the cumulative distribution function. From the second and
third number, we generate barycentric coordinates. The code shown in the figure 8.4 uses
the binary search lower_bound to find a triangle and generates the barycentric coordinates.
The created point samples are stored in a vertex array, next to the sampled geometric data.

Vec3f rvec = random_seq.next();
float * ar = lower_bound(cdf, cdf + N, rvec.z * A);
if(rvec.x + rvec.y > 1.0f)
{

rvec.x = 1.0f - rvec.x;
rvec.y = 1.0f - rvec.y;

}
Vec3f barc(rvec.x, rvec.y, 1.0f - rvec.x - rvec.y);
uint tri_id = ar - cdf;

Figure 8.4: Random placement of samples using binary search in the cumulative distri-
bution function; barycentric coordinates are generated using a method presented by Glass-
ner [Gla93].

8.3.2 Geometry Buffer Stage

Our implementation uses a deferred rendering approach. We use a three-component frame-
buffer to store the depth, normal and material properties, as it is shown in the table 3.1. The
normal is compressed into two sixteen-bit numbers, using the sphere-map encoding [Mit09].
We use textures without multisampling as our render targets, so our implementation suffers
from the aliasing issues.

The rendering is accelerated using the view frustum culling based on axis-aligned bound-
ing boxes of the scene objects. We do not use any acceleration data structures, like bounding
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volume hierarchy (BVH), the bounding boxes are stored in a linear list. Also no kind of sort-
ing or grouping is used during the rendering process.

The scene is stored in a memory of a GPU using OpenGL vertex arrays. The imple-
mentation supports textured and coloured materials. To reduce the shader complexity, we
store the colour in a one-pixel texture for the objects that do not have regular textures. As
discussed in the section 8.2.1, all graphical resources are reference-counted and shared within
the scene objects.

8.3.3 Shadow Map Generation

The direct illumination is computed using the classic shadow mapping approach as was
described in the section 3.1. For each light, we render the shadow maps to six faces of a
cube map, so our implementation supports omnidirectional lights. We render each face in a
separate pass, so we can use the viewing frustum culling (VFC) to minimize the number of
primitives drawn. The default resolution of a shadow map is set to 1024× 1024 pixels.

To avoid self-shadowing problems, we use a small offset during the shadow evaluation.
The offset value is derived from the extent of the scene. Our application can take a benefit
from the hardware accelerated shadow map filtering, as we enable the comparison mode for
shadow samplers in our shaders. We do not use any soft shadow mapping algorithm, so our
implementation supports only point lights.

8.3.4 Reflective Shadow Map Generation

We separate the reflective shadow map generation from the classic shadow map stage. We
also render reflective shadow maps to faces of a cube map, but we use a lower resolution
than in the classic shadow map stage. As the lower resolution is sufficient for the virtual
point light (VPL) sampling, we can spare the memory space and bandwidth. Our reflective
shadow maps use the same frame buffer format as we use in the deferred rendering stages.
However, the CUDA version 4.0 we use does not support sharing native depth buffers. We
have solved this issue by creating one additional render target with a four-byte float format
where we duplicate the depth values. In default, we render the reflective shadow map in the
resolution of 256× 256 pixels.

8.3.5 VPL Creation Stage

In contrast to the preceding stages, the VPL creation is done using the CUDA C language.
A quasi-random sequence is used to generate the sampling coordinates. We use the Halton
sequence [Hal64] which we pre-compute and store in the texture memory of a GPU. The
precomputed sequence should be long enough to provide sufficient number of quasi-random
numbers.

The reflective shadow map samples are fetched from the cube-mapped g-buffer. For each
sample, we evaluate the incoming radiance and calculate the future VPL intensity. The
incoming radiance is evaluated considering only the actually processed "primary" light. Our
implementation offers two sampling approaches. The first and simpler approach accepts all
samples, so the VPLs are evenly distributed over the light field of view (which can be full
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sphere in the case of omnidirectional light). The second approach uses the rejection sampling
and accepts the future VPLs with respect to their estimated importance.

The importance metric combines two factors. The first importance factor is the intensity
of the future VPL. It is wise to accept VPLs with a higher intensity, as there is a higher
chance that they will contribute to the final illumination of the scene. The second factor is
based on the position of the future VPL. Every VPL is treated as a hemispherical light. So,
if the VPL is positioned and oriented in a way that it cannot illuminate the visible part of a
scene, it is completely useless. The relationship between the position of the future VPL and
the visible part of a scene is hard to evaluate precisely. We select a random subset of scene
points visible from a camera, and evaluate the visibility from the future VPL only for this
subset of samples. The visible points are extracted from the geometry buffer created during
the scene rasterization from the view of the camera.

To keep the sampling pattern unbiased, we divide the intensities of the accepted samples
by the total number of samples taken (including the rejected samples). As the sampling runs
in many threads, we use parallel prefix sum to calculate the total number of samples taken
by all threads.

The accepted VPLs are stored in a memory buffer on the GPU. For each VPL, we have to
store its intensity and a world-space position and orientation. The straightforward approach
is to store the position as a three-dimensional vector. The orientation can be stored in
various ways. The spherical coordinate system is probably the most data-saving approach,
since it requires only two-dimensional vector of two angles. However, following stages have to
perform a transformation to the coordinate system of the VPL. This operation is performed
many times as there is a high number of fragments that calculate the contribution of each
VPL.

For spherical coordinates, the usage of goniometric functions during the coordinate sys-
tem conversion is a must. However, the frequent usage of goniometric functions can introduce
a performance drop. So, we have chosen more data consuming encoding of a position and
orientation of the VPLs that does not require the usage of goniometric functions in the later
stages. We encode the VPL position and orientation as a classic OpenGL transformation
matrix. As all transformations we need can be encoded using only the first three rows, the
fourth row would always be equal to (0 0 0 1). Using this fact, we can store the intensity of
the VPL in the fourth row.
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Figure 8.5: We store each VPL in a 4 × 4 floating point matrix. The intensity vector I is
stored in the fourth row of the matrix.

Using the VPL encoding shown in the figure 8.5, we can store each VPL as a sixteen-float
matrix. If the VPL transformation matrix is required, then only the fourth row has to be
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reseted back to the (0 0 0 1) form. There are no additional numeric operations. Also all the
VPL matrices follow the 64 B alignment that helps the GPU architecture to maximize the
memory throughput.

8.3.6 ISM Splatting

The fundamental part of the rendering process is the imperfect shadow map creation. The
ISMs are stored in one large square texture and they are created in one rendering pass. We
create one ISM for each virtual light, so it is efficient to have the number of VPLs N = M2

where M is the number of ISMs in one row of the large texture. In practice, we choose the
number of VPLs N equal to some even power of two.

The splatting algorithm has to read (or generate) the point representation of a scene
and distribute the future splats uniformly over all ISMs. For each point sample, we use
a quasi-random number to designate a targeted VPL/ISM. As all VPLs are stored as a
transformation matrix with embedded intensity, the splatting algorithm has to clear the
intensity part and multiply the actual point coordinates with the matrix to obtain the VPL-
space coordinates. We have chosen the same projection (parabolic mapping) as presented in
the original publication [RGS09].

The diameter of a splat is evaluated using a simple formula: d = k/l, where d is the
diameter, k is the precomputed constant and l is a distance between the point splat and the
targeted VPL. The precomputed constant k controls the scale of all splats. It is estimated
from the scene extent, the number of point samples and from the resolution of the ISM
texture. The diameter d is then limited by a maximum value to avoid the creation of too
large samples from points that are too close to the VPL.

We have implemented the splatting in a couple of ways. The first approach uses the
samples precomputed in the preprocessing stage and renders their splats using OpenGL
point primitives. The splat diameter d is used to control the size of rasterized point. The
second implemented method uses OpenGL geometry shaders to generate quads instead of
points. The quads have the same size as the corresponding point primitive would have.
This method was implemented mainly to explore the performance of a quad rasterization
compared to a point rasterization.

The important innovation of the ISM algorithm is the online tessellation approach. We
have used the tessellation unit, which is available in recent GPUs, to generate the point
representation during the rasterization process. The tessellation unit is primarily used to
generate a finer geometry by subdividing triangles or quads [SA11]. But the OpenGL of-
fers also so-called "point mode" tessellation that generates point primitives where the finer
geometry vertices would be. The tessellation pattern can be seen in the figure 7.5.

In this method, we do not use the preprocessed point representation. Instead, we generate
points directly from the scene triangles. The only precomputed information we use is the
sum of the areas of all triangles. For each triangle, we determine the number of wanted point
samples from its area. According to the tessellation pattern, the number of unique vertices
N , generated in a tessellation level L, is given by the equation 8.1.

N =
3(L+ 1)2

4
(8.1)
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If we invert the relationship between N and L, we can get the tessellation level L as a
function of the number of generated points N , that is shown in the equation 8.2.

L = 2

√
N

3
� 1 (8.2)

The second solution of the quadratic equation is skipped as the number of generated pointsN
is always non-negative. Both equations hold only for odd tessellation levels as even levels
create a different tessellation pattern. As the number of generated points does not have to
be precise, we generalize the formula for all levels.

If the scene objects deform, then the total area of the scene surfaces can vary. We can
use OpenGL queries to retrieve the number of point samples that were generated. This
information can be used as a feedback and the precomputed area sum can be altered.

A tessellation control shader uses the formula above and commands the hardware tessel-
lation unit to create the desired number of point samples. The rest of the process is similar
to the previous approaches, geometry shader randomly selects a targeted ISM, calculates the
projection and the splat size.

The point representation splatting can naturally create holes in the future ISM. To fill
the holes, we use the pull-push algorithm [MKC07]. The pull-push stage is implemented
in the CUDA C language and shares the ISM texture with the OpenGL environment. The
difference between the ISM with and without pull-push post processing is shown in the
figure 9.5.

8.3.7 Discontinuity Detection

As the indirect illumination is evaluated in a stochastic fashion, it usually requires additional
filtering to remove the noise. The filtering usually does not create any distinct artifacts, as
the indirect illumination often varies smoothly. We use a Gaussian kernel combined with a
discontinuity detection to avoid mixing of illumination of distant parts of the scene.

Figure 8.6: The Crytek-Sponza scene rendered with our implementation (left) and the
discontinuity buffer calculated for the same view (right)

The discontinuity detection is separated from the filtering stage. For each pixel in a
geometry buffer, we evaluate the difference between the stored depths and normals of neigh-
bouring pixels. If the difference is bigger than a configured threshold, the discontinuity flag
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is written into a discontinuity buffer. An example scene with its discontinuity buffer is shown
in the figure 8.6. Similar approach was presented by Segovia et al. in 2006 [SIP06].

8.3.8 Indirect Illumination Stage

When the VPL buffer and imperfect shadow maps are ready, the indirect illumination can
be evaluated. The exact task of this stage is to calculate the visibility and evaluate the
irradiance for all visible parts of the scene with respect to all VPLs. For each pixel in a
g-buffer we evaluate the indirect illumination by a stochastic sampling of the VPLs. Due
to memory bandwidth limits, it is impossible to evaluate the contribution of all VPLs for
all pixels when we want to keep the real-time performance. The idea used by Ritschel et
al. [RGS09] was to sample a random subset of VPLs in each pixel, and filter the result using
the geometry-aware kernel as presented in the previous section.

However, the random sampling creates a highly random memory access pattern by its
nature and creates huge performance problems. This phenomenon can be partially sup-
pressed by grouping pixels that will evaluate the same subset of VPLs. It is because they
will access the similar memory region when evaluating the visibility with the ISM sampling.
One solution is to create a number of geometry sub-buffers and evaluate the same subset of
VPLs in all pixels within a sub-buffer [SIP06].

8.3.8.1 Sub-Buffer Generation Stage

Sub-buffers are created by a re-organization of an original g-buffer. The next stage reads
the normal buffer and the depth buffer so the reorganization is performed only on those two
buffers (the third g-buffer with a material properties is omitted from this stage). We store
the created sub-buffers in a Multiple Render Targets frame buffer of the same size as the
original g-buffers. Sub-buffers are stored side-by-side in a N ×N array. Each sub-buffer is
formed by a selection of every N -th pixel. We perform the operation in a GLSL fragment
shader which is executed for all pixels in the sub-buffers. The result of this stage is shown
in the figure 8.7.

(a) (b)

Figure 8.7: Normal (a) and depth (b) sub-buffers organized in a 8× 8 pattern
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8.3.8.2 VPL Sampling

The indirect illumination is evaluated over the sub-buffers created in the previous stage. As
for the previous stage, we use the GLSL fragment shaders to perform the evaluation. For
each pixel on the screen, the algorithm firstly identifies the coordinates of a sub-buffer in
which the pixel lies. The sub-buffer coordinates are used as a random number generator seed.
The random sequence is obtained from a precomputed two-dimensional random texture by
using the sub-buffer coordinates for the texture lookup.

The random sequence is used to select the subset of VPLs whose contribution will be
evaluated. We evaluate the contribution of sixteen VPLs in each pixel by default. For each
VPL, the algorithm fetches its matrix (the format of VPL encoding was described in the
section 8.3.5), translates the actual pixel position to the coordinates of a VPL and performs
a ISM lookup. If the VPL is visible from the actual pixel, then the irradiance is calculated.
The accumulated irradiance over all sampled VPLs is stored as a result of this stage.

The imperfect shadow maps suffer from the same drawbacks as classic shadow maps
do. The biggest problem, aside the imperfection, is the self-shadowing caused by the low
resolution of an ISM. Here we use the same biasing approach as is known from the classic
shadow mapping. However, the resolution of a ISM is usually much lower than for a classic
shadow map. So the bias should be set relatively high, we use 15 % from the depth by
default.

As the indirect illumination is evaluated over the sub-buffers, we have to recreate the
original one-buffer layout. This is done by de-shuffling the sub-buffers in a process opposite
to the sub-buffer creation described in the section 8.3.8.1.

8.3.8.3 Indirect Illumination Filtering

The unfiltered irradiance can be seen in the figure 8.8. The result is rather noisy, also the
sub-buffer pattern is obvious from the image. We use a Gaussian, geometry aware kernel to
filter the noise out. The kernel reads a discontinuity buffer created in a preceding stage, and
stops the accumulation of values in directions where the discontinuity is found. Problems

(a) (b)

Figure 8.8: Unfiltered (a) and filtered (b) irradiance
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can occur with pixels that are surrounded by discontinuities. In such places, there are not
enough close pixels that can be used to filter the noise out. This usually creates small notable
artifacts in places where discontinuities are close to each other.

8.3.9 SSAO Stage

As discussed before, the ISMs cannot handle local occlusions correctly due to their limited
resolution and to the high biasing. On the other hand, an SSAO algorithm can simulate small
local effects in the lighting relatively well. We have implemented a simple SSAO algorithm
to detect the local occlusions and we combine the result of the SSAO stage with the indirect
illumination calculated with the help of ISMs.

(a) (b)

Figure 8.9: Part of the Crytek-Sponza scene illuminated only by indirect illumination;
an image rendered without (a) and with (b) the SSAO; the difference is especially notable
around the corners.

We estimate the SSAO for each pixel by a blocker search in its neighbourhood. We use a
random two-dimensional texture to enforce the stochastic SSAO evaluation. For each pixel
we march in four orthogonal directions and take four samples per direction by default. The
result is perceptually plausible and does not require any additional filtering.

8.3.10 Direct Illumination and Final Composition

The final stage has to combine the indirect illumination with direct one, and apply the
material properties of the scene. We use classic shadow mapping to detect a direct shadow.
Our implementation supports only point lights since there is no soft shadowing implemented.
To avoid self-shadowing, we use 4 % of the stored depth value as a bias with the shadow
maps for the direct lighting by default. This stage is implemented in a GLSL fragment
shader and the output is sent directly to the default frame buffer.

8.3.11 Time Measurement

We require precise time measurement for the graphic operations in our application. Using
classic CPU timers is not efficient since it requires stalling the CPU and waiting for the
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GPU operations to become finished. To avoid stalls, the timers have to work asynchronously
(CPU code should not be blocked while the measurement is in progress). OpenGL offers such
functionality with Timer Queries. The CPU code starts a query by calling the glBeginQuery
function. The query is queued into the OpenGL command list, so the function returns
instantly. The query is stopped with the glEndQuery call which is also asynchronous, so the
function returns immediately.

The query issues a time measurement of OpenGL commands executed within the query
boundaries. As the whole query mechanism works asynchronously, the query result does not
have to be available right after the query was stopped with the glEndQuery function call.
So in each frame, we read the results of queries that were issued during the last frame. That
should minimize the stalls since all drawing commands from the last frame should be done.



Chapter 9

Results

We have tested our implementation in various conditions and on various hardware setups.
We have selected five different scenes as a sample data set. The selected scenes vary in
geometrical and lighting complexities. We have also created synthetic scenes to test the
algorithm in extreme conditions. We analyse the quality of rendered images and compare
the results with our reference path-traced solutions.

9.1 Tested Scenes

Our testing scenes are listed in the table 9.1 and 9.2. The U-shaped scene was created to
test the algorithm in hard lighting conditions. The scene has a U-like shape and there is no
direct light path between the camera and the light. On the other hand, the U-shaped scene
is geometrically trivial. The Monkey Box scene is our second synthetic scene. The Monkey
Box scene consists of a box with strongly coloured side faces and two meshes1. There are
no big geometrical complexities in the Monkey Box scene, also the lighting conditions are
simple.

U-Shape Monkey Box Sibenik Cathedral

No. triangles 76 7136 75284
Geometry simple simple medium
Lighting hard simple medium

Table 9.1: Tested scenes with the number of triangles, geometrical and lighting complexities

The Sibenik scene is a well-known model of a well-known cathedral located in Sibenik,
Croatia. The scene has medium geometrical and lighting complexities. The Crytek Sponza

1The monkey mesh is generated by Blender 3D content creation suite <http://www.blender.org/>
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scene is a remake of Atrium Sponza Palace model, originally done by Marko Dabrovic. The
scene has a relatively high geometrical and lighting complexity. The last chosen scene is the
Conference Room model. It has relatively high triangle count, but the lighting conditions
are not as complex as in the Conference scene. The Sibenik Cathedral, Crytek-Sponza and
Conference Room scenes were downloaded from the McGuire Graphics Data pack, available
at <http://graphics.cs.williams.edu/data/>.

Crytek Sponza Conference Room

No. triangles 262267 331179
Geometry hard hard
Lighting hard medium

Table 9.2: Tested scenes with the number of triangles, geometrical and lighting complexities

9.2 Used Hardware Setups

We have tested our implementation on three different hardware setups. As said before, our
implementation requires CUDA-enabled graphics card. Also we require OpenGL version 4.0
features. This forces us to choose only from nVidia Fermi and newer GPUs [NVI09].

HW560 HW580 HW470
GPU GF GTX 560 Ti GF GTX 580 GF GTX 470

CUDA Cores 384 512 448
GPU Mem. 1 GB, 256 b 3 GB, 384 b 1280 MB, 320 b

CPU C2D E8300 Core i7 2600K Core i7 950
RAM 4 GB 16 GB 12 GB
OS Linux 3, 64 b Win7, 64 b Win7, 64 b

Table 9.3: Used hardware setups

9.3 Running Time Analysis

In this section we would like to present the performance of our implementation. We vary
some of the render parameters and discuss their influence on the algorithm running time. If
it is not explicitly mentioned, the measurement was done with these parameters: resolution
512 × 512 px, shadow map resolution 1024 × 1024 px, 106 point samples, 1024 VPLs, ISM
resolution 2048×2048 px, runtime tessellation enabled, pull-push enabled and SSAO enabled.

http://graphics.cs.williams.edu/data/
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The presented values are the average of ten repeated measurements. All measurements were
done using the OpenGL timer queries as discussed in the section 8.3.11.

Table 9.4 show the rendering time breakdown for the standard settings. It is obvious that
for most setups, rendering time is evenly distributed between the particular stages. Higher
times for the texture intensive operations on the HW580 and HW470 setups is probably
caused by a lower number of texture units accessible on their GPUs [NVI09].

Scene FPS D+Mix I.Flt II ISM Cam.G SM SSAO VPLS Sub-B
HW560, 512× 512 px

U-Shape 100 0.092 1.3 1.0 6.4 0.10 0.17 0.33 0.28 0.24
Monkey 34 0.130 1.3 1.1 26.0 0.17 0.33 0.30 0.34 0.24
Sibenik 15 0.130 1.3 1.1 17.0 8.00 20.00 0.34 20.00 0.25
Sponza 33 0.110 1.3 1.1 12.0 1.80 6.10 0.52 7.40 0.25
Confer. 52 0.130 1.3 1.1 10.0 0.56 3.10 0.34 2.60 0.24

HW580, 512× 512 px

U-Shape 85 0.290 3.5 3.3 3.4 0.21 0.16 0.90 0.64 0.30
Monkey 50 0.300 3.6 3.5 11.0 0.13 0.20 0.88 0.46 0.30
Sibenik 37 0.300 3.5 3.8 7.8 2.00 3.90 0.89 5.10 0.31
Sponza 54 0.290 3.5 3.8 5.9 0.60 1.80 0.91 2.20 0.31
Confer. 60 0.300 3.5 3.9 5.1 0.32 1.40 0.89 1.70 0.31

HW470, 512× 512 px

U-Shape 61 0.390 5.3 4.9 4.5 0.13 0.17 1.3 0.49 0.42
Monkey 37 0.420 5.3 5.2 15.0 0.16 0.25 1.3 0.50 0.44
Sibenik 28 0.410 5.2 5.6 10.0 2.50 5.30 1.3 6.00 0.44
Sponza 39 0.400 5.2 5.6 7.9 0.82 2.70 1.3 2.60 0.44
Confer. 43 0.420 5.2 5.8 6.7 0.43 2.10 1.3 2.40 0.44

Table 9.4: Breakdown of the rendering time for all tested scenes for all hardware setups;
the table shows frames per second (FPS), direct illumination and composite time (D+Mix),
indirect illumination filtering time (I.Flt), indirect illumination sampling time (II), imper-
fect shadow map creation time (ISM), camera geometry buffer time (Cam.G), shadow map
generation time (SM), screen space ambient occlusion time (SSAO), VPL generation time
(VPLS) and geometry sub-buffer creation time (Sub-B). All times are in milliseconds. All
scenes were rendered in the resolution of 512× 512 pixels.

Rendering on higher resolution slows the pixel-intensive operations as is shown in the
table 9.5. Times for operations like SSAO or indirect illumination filtering rise as expected.
Other stages, like ISM splatting, keep their performance.

Our next measurement shows the difference between the static and dynamic tessellation
running times. The dynamic tessellation is faster in the most cases. It is caused by a higher
memory bandwidth which is required by the static tessellation. In all cases the number of
point samples is much higher than the number of all triangles in the scene. It means that a
larger data flow is required when the precomputed point samples are drawn. The table 9.6
shows the results for all tested hardware setups.

The table 9.7 shows how geometry sub-buffer layouts influence the VPL sampling time.
The 1×1 layout means no sub-buffer creation. It involves the evaluation of different random
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Scene FPS D+Mix I.Flt II ISM Cam.G SM SSAO VPLS Sub-B
HW560, 1280× 720 px

U-Shape 62 0.29 4.3 3.5 6.4 0.19 0.15 1.2 0.28 1.05
Monkey 27 0.31 4.4 3.6 26.0 0.20 0.22 1.0 0.33 1.05
Sibenik 13 0.34 4.4 3.8 17.0 8.30 20.00 1.5 21.00 1.24
Sponza 27 0.32 4.3 3.7 12.0 2.00 5.80 1.9 7.40 1.32
Confer. 38 0.34 4.3 3.8 10.0 0.73 2.90 1.0 2.60 1.14

HW580, 1280× 720 px

U-Shape 34 0.88 12.0 12.0 3.4 0.18 0.11 3.1 0.52 1.07
Monkey 26 0.85 12.0 12.0 12.0 0.16 0.15 3.0 0.57 1.07
Sibenik 22 0.90 12.0 12.0 7.8 2.10 3.90 3.1 5.10 1.10
Sponza 27 0.90 12.0 12.0 6.0 0.77 1.70 3.2 2.20 1.10
Confer. 28 0.93 12.0 13.0 5.3 0.43 1.30 3.1 1.70 1.10

HW470, 1280× 720 px

U-Shape 23 1.30 18.0 17.0 4.5 0.23 0.17 4.5 0.49 1.52
Monkey 18 1.30 18.0 18.0 15.0 0.26 0.23 4.4 0.53 1.53
Sibenik 16 1.30 18.0 18.0 10.0 2.40 5.30 4.6 6.10 1.57
Sponza 19 1.30 18.0 18.0 8.0 1.10 2.40 4.6 2.60 1.56
Confer. 19 1.40 18.0 20.0 6.7 0.60 2.00 4.5 2.40 1.55

Table 9.5: Breakdown of the rendering time for all hardware setups; all times are in
milliseconds. The resolution was magnified to 1280× 720 pixels. The legend is the same as
for the table 9.4.

HW560 HW580 HW470
Scene Ts [ms] Td [ms] S [−] Ts [ms] Td [ms] S [−] Ts [ms] Td [ms] S [−]

U-Shape 18 6.4 2.81 8.3 3.4 2.44 10 4.5 2.22
Monkey 28 26.0 1.08 12.0 11.0 1.09 14 15.0 0.93
Sibenik 18 17.0 1.06 8.0 7.8 1.03 10 10.0 1.00
Sponza 21 12.0 1.75 9.1 5.9 1.54 11 7.9 1.39
Confer. 19 10.0 1.90 8.5 5.1 1.67 11 6.7 1.64

Table 9.6: Comparison between the point sample generation methods; for each hardware
setup we measure the time of the ISM stage when using pre-processed point samples Ts
and dynamically generated point samples Td. The speedup S shows how many times is the
dynamic method faster.

subset of VPLs for each pixel on the screen. This approach is markedly slower as we have
expected. On the other hand, grouping pixels in sub-buffers increases the performance of
the indirect illumination stage rapidly.

The following table 9.8 shows the difference between the splatting times when using
points or quads. The quads method uses a geometry shader to create a quad instead of a
point. This measurement fulfills our expectations, the quad method is slower since there is
a overhead of creating new vertices.
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Scn. 1× 1 2× 2 4× 4 8× 8 16× 16 32× 32

U-Shape 27 6.6 1.3 1.1 1.0 1.0
Monkey 27 6.6 1.4 1.1 1.1 1.1
Sibenik 27 6.6 1.6 1.2 1.1 1.1
Sponza 27 6.6 1.5 1.2 1.1 1.1

Conference 27 6.6 1.7 1.2 1.2 1.1

Table 9.7: Different geometry sub-buffer configurations and the running time of the indirect
illumination stage; all times are in milliseconds.

Scene Tpt [ms] Tq [ms] S [−]

U-Shape 18 25 1.39
Monkey 28 37 1.32
Sibenik 18 26 1.44
Sponza 20 29 1.45

Conference 19 28 1.47

Table 9.8: Comparison between the splatting time of points Tpt and quads Tq; the speedup S
shows how many times is the quad splatting method slower.

9.4 Quality Analysis

In this section we discuss how certain parameters of the ISM algorithm influence the quality of
the rendered result. The number of point samples and the VPL count are the most important
parameters to investigate. The importance of the pull-push state is also discussed. We show
the difference between our implementation and the reference path-tracer as well.

−0.36

0

0.36

(a) (b) (c)

Figure 9.1: Indirect illumination of the Crytek-Sponza scene; both images were rendered
with a close light source position, the number of VPLs was set to 16. The low number of
VPLs caused a strong flickering in the illumination. The image (c) shows the difference
between the image (a) and (b).

The figure 9.1 shows how low VPL count degrade the quality of the indirect illumination.
It also negatively influences the temporal coherence. Both rendered images in the figure 9.1
show only the indirect illumination of the Crytek-Sponza scene. The light source was slightly
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Figure 9.2: Two rendered images of the Crytek-Sponza scene with a close light source
positions; the number of VPLs was set to 1024. The difference in the indirect illumination
is only small in contrast to the results shown in the figure 9.1. This figure shows the correct
behaviour.

moved when rendering the second image. The rest of the scene remained completely static.
The indirect illumination is expected to vary only smoothly in such scenarios. However, the
insufficient number of VPL samples caused distinct changes in the indirect illumination.

A more correct behaviour of the indirect illumination is shown in the figure 9.2 where we
set the VPL count to 1024. Both images were rendered with the same light positions as in
the figure 9.1. The difference image indicates that the illumination has changed only gently
as expected.

Images 9.3 and 9.4 show how the number of point samples influences the shadow map
quality. The low number of point samples usually increases the imperfection of the generated
ISM. The situation gets ever worse when the pull-push phase is omitted. This scenario is
shown in the figure 9.4. The difference between the ISM with and without the pull-push
refinement is shown in the figure 9.5.

The figure 9.6 shows a comparison of our ISM implementation to the reference path-
tracer. The ISM algorithm generally produces a little bit brighter images. That is caused
by light leaks that emerge from the imperfection of the shadow maps. As we do not use any
anti-aliasing method, strong differences around the object and shadow contours can appear.
The figure 9.7 shows the difference between the reference image and the ISM rendered image
of the U-shaped scene. The ISM algorithm suffers from the light leaks, as discussed before,
it also fails to capture the details of the illumination on the farther wall. That is caused by
the sampling approach which places most of the VPLs around the primary light source, so
the farther parts of the scene are sampled insufficiently.
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Figure 9.3: Comparison of two images of the U-shaped scene with various number of
point samples used; the camera look is oriented at the part of the scene that is completely
shadowed. The light is placed behind the wall. The image (a) is rendered using only 105

samples, the image (b) is rendered using 106 point samples. The light "leaks" through the
wall since the low number of samples creates holes in the ISM.
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(a) (b) (c)

Figure 9.4: The U-shaped scene rendered with the same settings as in the figure 9.3 (b),
and the same view with the pull-push phase disabled (a); the difference is significant since
holes in the ISM are not filled.
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(a) (b)

Figure 9.5: One ISM that was created during the Sibenik Cathedral scene rendering process.
The image (a) shows the ISM without the pull-push phase, the image (b) shows the same
ISM with the pull-push phase enabled. The ISM phase took 3.6 ms without the pull-push
phase and 6.8 ms with the pull-push phase.
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Figure 9.6: The image of the Monkey Box scene rendered using our ISM implementation
(a) compared to the reference image, produced by our path-tracer (b); the path-length was
set to match the ISM possibilities, so it terminates the tracing after the second bounce.
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Figure 9.7: The output of our ISM implementation (a) compared to the reference image (b)
of the U-shaped scene; the ISM renderer produces much brighter image, as the light "leaks"
through the wall.
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4 64 256 1024

Figure 9.8: The indirect illumination rendered for all tested scenes; the number of VPLs
was varied from 4 to 1024. Individual shadows are distinguishable when the VPL count is
set too low. Hundreds of VPLs are usually needed to produce an acceptable result.
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103 104 105 106

Figure 9.9: The number of point samples varied from 103 to 106; larger scenes require a
higher count of point samples, otherwise the indirect shadows are lost. The images show
only the indirect illumination.
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Chapter 10

Conclusion

Global illumination algorithms have penetrated the field of the real-time applications in re-
cent years a lot. They take the necessary indirect illumination into consideration and produce
usually higher quality images, compared to the direct illumination based algorithms. How-
ever, physically correct evaluation of the indirect illumination in dynamic scenes still remains
a challenging task. Dynamic scenes usually restrict the use of pre-processing, and algorithms
designed for such instances typically have to recalculate all the illumination components in
each frame. This fact can negatively influence the rendering time.

Most of the reviewed algorithms create a trade-off between the illumination correct-
ness and the rendering time. We have implemented the Imperfect Shadow Maps algo-
rithm [RGK+08], which is based on the idea of Instant Radiosity [Kel97]. This algorithm
simplifies the visibility checks and creates an imperfect scene representation, which is later
splatted into many shadow maps. The ISM algorithm works best with the diffuse surfaces,
as it is based on the VPL approach.

10.1 Summary

Our implementation uses the possibilities of a modern GPU (2011) to improve certain parts
of the original algorithm. The hardware tessellation unit is used to generate the imperfect
point representation on the fly. That increases the performance of the ISM renderer, as it
lowers the required memory bandwidth. Also no special treatment for the dynamic objects
is required, since the point representation is created directly from the actual geometry setup.
The dynamic tessellation also simplifies the refinement of the point representation.

The ISM algorithm suffers from the limited resolution of particular imperfect shadow
maps. That means, little or no local lighting events can be captured. On the other hand,
screen-space illumination techniques are often appropriate for the evaluation of such events.
We combine the ISM renderer with the SSAO technique to enrich the result with a small
local lighting features.

Our implementation achieves real-time frame rates on today’s hardware setups. Render-
ing times are typically in terms of tens of milliseconds, depending on a scene. The quality of a
produced image does not reach the quality of a reference solution, created by our path-tracer.
On the other hand, the ISM renderer is several orders of magnitude faster.
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The created application is written as a modular rendering framework. It was tested on
several hardware setups and runs at least on Microsoft Windows and Linux platforms. Future
improvements should be easy to integrate with the existing code, since we have followed the
modern application design patterns, such as the Model-View-Controller architecture.

10.2 Future work

We have found many places where the original algorithm can be improved. The current
VPL sampling method estimates the importance of VPLs really coarsely. The challenge is to
find an efficient way how to estimate the VPL importance more precisely. The point sample
generation has a similar potential for improvements. Considering the temporal coherence,
both issues could be solved by an analysis of the previous frames.

Also the SSAO stage has an opportunity for improvements. Recent publications show
more possibilities of the local light transfer computed in screen space, such as SSDO and
SSDT [RGS09].

The implementation itself could take a benefit from several micro-optimizations. For
example, the use of lower precision floating point number formats could create another
performance improvements, without significant lost of the image quality.
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Appendix A

List of Abbreviations

AO Ambient Occlusion
API Application Programming Interface
BRDF Bidirectional Reflectance Distribution Function
BVH Bounding Volume Hierarchy
CPU Central Processing Unit
CSG Constructive Solid Geometry
CSM Coherent Shadow Maps
CSSM Coherent Surface Shadow Maps
CUDA Compute Unified Device Architecture
FPS Frames per Second
G-Buffer Geometry Buffer
GLSL OpenGL Shading Language
GPGPU General-Purpose Computing on Graphics Processing Units
GPU Graphics Processing Unit
GUI Graphical User Interface
ISM Imperfect Shadow Maps
LPV Light Propagation Volumes
MOC Meta Object Compiler
MRT Multiple Render Targets
MVC Model-View-Controller
RSM Reflective Shadow Map
SDK Software Development Kit
SM Streaming Multiprocessor
SSAO Screen Space Ambient Occlusion
SSDO Screen Space Directional Occlusion
SSDT Screen Space Diffuse Transfer
UI User Interface
VAISM View-Adaptive Imperfect Shadow Maps
VFC Viewing Frustum Culling
VPL Virtual Point Light
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Appendix B

Image Gallery
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Figure B.1: The Conference Room scene rendered with our ISM renderer (a), our reference
path-tracer (b) and the difference image (c); the images were rendered using the direct
illumination and the first diffuse bounce of indirect illumination.
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Figure B.2: The Monkey Box scene rendered with our ISM renderer (a), our reference path-
tracer (b) and the difference image (c); the images were rendered using the direct illumination
and the first diffuse bounce of indirect illumination.
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Figure B.3: The Crytek Sponza scene rendered with our ISM algorithm (top) and without
the indirect illumination (bottom)
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Figure B.4: The Sibenik scene rendered with our ISM algorithm (top) and without the
indirect illumination (bottom)
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Figure B.5: The Crytek Sponza scene passage lit mostly by the indirect illumination



Appendix C

Installation and User Manual

The application is shipped in a source code form and as a Microsoft Windows executable.
All required third-party dependencies are listed in the table 8.2.

C.1 Build Instructions

The application should be compilable by all recent versions of the GNU GCC compiler suite.
We have tested the 4.4.6 and 4.5.3 versions. On Windows platforms users should use the
compiler whipped with Visual Studio 2008 or 2010. The build is managed by CMake. CMake
can be used from a command line or with the help of its GUI.

C.1.1 Console Build on Unix-Like Platforms

If you are on a Unix-like platform and you want to build our application from a command
line, then open your terminal and issue the following commands:

cd /path/to/the/source/code/
cd build
cmake ..
make -j2

If any of the required libraries is not found, cmake command should fail and output a message
about what is missing. The make -j2 command should build our application. The -j2
argument is optional and tells the make program to build the application in two separate
processes. You can tweak this parameter to fit your hardware possibilities, correct setting
usually accelerates the build process on multi-core systems.

C.1.2 Using CMake-GUI

Another way is to use the cmake-gui application and its graphical interface. A screenshot
of this application is shown in the figure C.1. To build our application with the help of the
cmake-gui application launch the cmake-gui application. Use the GUI to set the source
directory. The build tree should be located in the build directory. If both directories are
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Figure C.1: The cmake-gui application

set correctly, press the Configure button. A list of variables should appear in the central
widget. The log similar to the console command output appears in the lower widget. If any
of the third-party dependencies is not found, appropriate error message should be shown.
If the configuration went ok, press the Generate button. CMake creates Unix Makefiles on
Unix systems by default. Read the section C.1.3 for the Windows build instructions. Open
your favourite terminal and issue following commands:

cd /where/have/you/set/the/build/directory/
make -j2

The application should compile in the same way as in with the command line cmake approach.
If your build was successful, the qtgui executable should appear in your build directory.

C.1.3 Build on Windows Platforms

After the installation of all required dependencies you should use the cmake-gui application
to generate your Visual Studio project files. Start the cmake-gui application and follow the
instructions written in the section C.1.2. Use one of the supported Visual Studio generators
and create the project files. Open the .sln file in Visual Studio and build the qtgui appli-
cation. Please note that all third-party dll files have to be reachable from your PATH system
variable.
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C.2 Usage

If you want to run the shipped executable, go to win32release directory and execute the
qtgui application. Please ensure that the working directory is set to the project directory
if you want to execute the application from the Visual Studio IDE. The application tries
to access the data opening the ../data path on Windows platforms. Execute the qtgui
application from the directory which contains the data sub-directory if you work on any
Unix-like platform.

The application creates two windows, one showing the rendered scene and one tool win-
dow. The 3D viewport reads the mouse and keyboard input which can be used to control
the camera and light movement. Drag a mouse to rotate the camera, use the W, S, A, D keys
to move the camera. Use the I, K, J, L keys to move the light. The tool window contains four
tabs and can be used to change several render settings or to select a scene to be displayed.
All tabs are shown in the figure C.2. The Stats tab shows the breakdown of the current
scene rendering time. The Measurement tab can be used to automatize the measurement
process.
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(a) The Scene tab (b) The Render tab

(c) The Stats tab (d) The Measurement tab

Figure C.2: Four tabs of the tool window of our application



Appendix D

Contents of Attached CD

baraktom-thesis/ - the project root directory
|--build/ - directory for the build tree
|--data/ - shaders and testing scenes
| |--ism/ - shaders for the ISM renderer
| |--ogl3rend/ - common shaders
| ‘--scenes/ - testing scenes
| |--uscn/ - the U-shaped scene
| ‘--monkey_box/ - the Monkey Box scene
|--dep/ - enclosed third-party libraries
| |--assimp/ - Assimp sources
| |--lib-linux-x86/ - Linux 32 libraries
| |--lib-linux-x86_64/ - Linux 64 libraries
| |--include/ - third-party includes
| ‘--lib-windows-x86/ - Win 32 libraries
|--doc/html/ - generated code documentation
|--src/ - source codes
| |--apps/ - source codes for applications
| | |--qtgui/ - the main application with GUI
| | ‘--imdiff/ - tool for generating image diffs
| ‘--libs/core/ - the most important code
|--thesis/ - this thesis sources and pdf
|--win32release/ - application compiled for Win 32
‘--README - build instructions
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