
Na tomto místě bude oficiální zadání
vaší práce

• Toto zadání je podepsané děkanem a vedoucím katedry,

• musíte si ho vyzvednout na studiijním oddělení Katedry počítačů na Karlově náměstí,

• v jedné odevzdané práci bude originál tohoto zadání (originál zůstává po obhajobě na
katedře),

• ve druhé bude na stejném místě neověřená kopie tohoto dokumentu (tato se vám vrátí
po obhajobě).

i

ii

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Computer Graphics and Interaction

Master’s Thesis

Intelligent Algorithms for Image Inpainting

Bc. Jakub Fišer

Supervisor: Ing. Daniel Sýkora, Ph.D.

Study Programme: Open Informatics

Field of Study: Computer Graphics and Interaction

May 2012

iv

v

Aknowledgements
I would like to thank to my supervisor, Daniel Sýkora, for patient guidance throughout the
whole process of creation of this thesis. Also, I would like to thank to my relatives and
especially to my girlfriend, who all were there for me when I needed them most.

vi

vii

Declaration
I hereby declare that I have completed this thesis independently and that I have listed all
the literature and publications used.
I have no objection to usage of this work in compliance with the act §60 Zákon č. 121/2000Sb.
(copyright law), and with the rights connected with the copyright act including the changes
in the act.

In Prague on May 10, 2012 .

viii

Abstract

The problem of synthesis of missing image parts represents an interesting area of image
processing with significant potential. This thesis focuses on methods addressing the image
inpainting problem using the information contained in the rest of the image. Selected
methods are discussed in more detail, implemented and tested on different data sets.

Abstrakt

Problém syntézy chybějících částí obrazu představuje zajímavou oblast na poli zpracování
obrazu se značným potenciálem. Tato práce se zabývá popisem situace na poli metod
pro řešení zmíněné problematiky s využitím informace obsažené ve viditelné části obrazu.
Vybrané metody jsou podrobněji diskutovány, implementovány a otestovány na různých
datových sadách.

ix

x

Contents

1 Introduction 1
1.1 Problem description . 1
1.2 State-of-the-art . 1
1.3 Applications . 2
1.4 Terminology . 2

2 Algorithms for fast NN search 5
2.1 Distance metrics . 5

2.1.1 Handling unknown pixels . 6
2.2 Early termination . 7
2.3 SSE . 7
2.4 Hierarchical approach . 8

2.4.1 Anti-aliasing filters . 8
2.4.2 Disadvantages . 8
2.4.3 Gaussian pyramid . 9
2.4.4 Hierarchical approaches on images with unknown pixels 9

2.5 Phase correlation . 10
2.6 Sequential overlap exploitation . 12

2.6.1 Single column processing . 13
2.6.2 Extensions . 14
2.6.3 Limitations . 14

2.7 PatchMatch . 14
2.7.1 Approximate nearest-neighbor algorithm 15

3 Selected algorithms 19
3.1 Method of Efros and Leung . 19

3.1.1 Algorithm . 19
3.1.2 Summary . 20

3.2 Method of Averbuch et al. 21
3.2.1 Algorithm . 21
3.2.2 Distance metric . 21
3.2.3 Search structure . 21
3.2.4 Summary . 23

3.3 Method of Criminisi et. al . 23
3.3.1 Key observations . 24

xi

xii CONTENTS

3.3.2 Algorithm . 24
3.3.3 Summary . 27

3.4 Method of Kwok et al. 27
3.4.1 Theoretical background . 27
3.4.2 Search structure . 30
3.4.3 Algorithm . 31
3.4.4 Parallelization on GPU . 31
3.4.5 Summary . 32

3.5 Method of Simakov et al. 32
3.5.1 Summarizing visual data using bidirectional similarity 32
3.5.2 Incorporating PatchMatch . 35

4 Implementation 37
4.1 OpenCV . 37
4.2 Framework overview . 37

4.2.1 Image class . 38
4.2.2 Input/output class . 39
4.2.3 IPaper interface . 39
4.2.4 ISampler interface . 40
4.2.5 ISearcher interface . 40
4.2.6 ISolver interface . 41
4.2.7 Matrix operations . 41

4.3 Samplers . 41
4.3.1 Scanline sampler . 41
4.3.2 Onion peel sampler . 42
4.3.3 Fill ratio sampler . 43
4.3.4 Priority sampler . 43

4.4 Searchers . 46
4.4.1 Exhaustive searcher . 47
4.4.2 Patch vector searcher . 47
4.4.3 Phase correlation searcher . 48
4.4.4 Fast query searcher . 49

4.5 PatchMatch . 49
4.6 Papers . 50

4.6.1 Simakov . 50

5 Results 53
5.1 Algorithm settings . 53
5.2 Real-world images . 54

5.2.1 Scratch-like holes . 54
5.2.2 Large holes . 55

5.3 Cartoon graphics . 58
5.4 PatchMatch . 59
5.5 Performance comparison . 59

5.5.1 SSE instruction set . 60
5.5.2 Phase correlation . 60

CONTENTS xiii

5.6 Time performance/visual quality . 60
5.6.1 Patch size . 60
5.6.2 Constrained source region . 62
5.6.3 Hierarchical approach . 62

5.7 Comparison with consumer applications . 63

6 Conclusion 75
6.1 Future work . 75

A Note on color spaces 81

B List of used abbreviations 83

C Installation manual 85

D Content of the accompanying CD 87

xiv CONTENTS

List of Figures

2.1 The example of target and source zones . 6
2.2 Illustration of Lanczos filter properties . 9
2.3 The example of Gaussian pyramid . 10
2.4 The unwanted blur effect in both image and its mask caused by direct application

of Gaussian pyramid approach . 11
2.5 Fast exact nearest patch matching using the sequential overlap 13
2.6 The principle of propagating correspondences in PatchMatch algorithm . . . 14
2.7 Phases of the PatchMatch algorithm . 15

3.1 Overview of algorithm of Efros and Leung . 20
3.2 Problems of concentric-layer filling order . 24
3.3 Structure propagation along isophote . 25
3.4 Relationship of patch and its normal and isophote 26
3.5 Comparison of different transformation methods used on highly textured

image samples . 29
3.6 The bidirectional similarity measure . 33
3.7 Notations for the update rule of the bidirectional similarity summarization

algorithm . 34

4.1 Illustration of the image handling within the framework 39
4.2 Flowchart of simple solver scheme . 41
4.3 Illustration of sampling in spiral manner . 42
4.4 Contour normal estimation using contour pixels only 44
4.5 Contour normal estimation using distance transform and robust gradient

operator . 44
4.6 . 46
4.7 Illustration of the unrolled linked list . 48
4.8 The example of patch offset mask . 50
4.9 Examples of possible patch-weighting functions 51

5.1 Test image “Interview” . 54
5.2 Test image “Beach Text” . 55
5.3 Number of elements stored in lists of proposed search structure 55
5.4 Test image “Bungee Jumper” . 56
5.5 Test image “Palace” . 57
5.6 Test image “Horse” . 57

xv

xvi LIST OF FIGURES

5.7 Test image “Fruits” . 58
5.8 Test image “Bear” . 58
5.9 Test image “Fairy Tale” . 59
5.10 Utilizing SSE instruction set . 61
5.11 Comparison of exhaustive patch search vs. phase correlation based approach 62
5.12 Test image”Elephant” . 63
5.13 Test image”Pumpkin” . 64
5.14 Test image”Battlements” . 65
5.15 Test image”Sign” . 67
5.16 Test image”Sign” . 68
5.17 Hierarchical approach, test image “Baby” . 69
5.18 Hierarchical approach, test image “Monkey” 69
5.19 Hierarchical approach, test image “Car” . 70
5.20 Hierarchical approach, test image “Ship” . 70
5.21 Comparison with reference output, test image “Chairs” 71
5.22 Comparison with reference output, test image “Elephant” 71
5.23 Comparison with reference output, test image “Sign” 72
5.24 Comparison with reference output, test image “Pumpkin” 72
5.25 Comparison with reference output, test image “Bungee Jumper” 73

A.1 Example of misleading interpretation of color distance 81

List of Tables

3.1 Initialized search data structure . 22
3.2 Query examples on the search data structure 22

5.1 Performance of different methods of NN search. 60
5.2 Time performance of selected methods with changing patch size 66
5.3 Time performance of selected methods with changing size of source region . . 66

xvii

xviii LIST OF TABLES

Chapter 1

Introduction

1.1 Problem description

Completion of missing parts in various images has become quite an interesting area and
challenging problem in computer graphics as well as in computer vision. While human eyes
can often see the visually plausible solution of missing image part using a „global insight”,
finding an algorithm capable of real-time performance with minimal user-given guidance
remains the task to be solved. In this thesis, some of the algorithms that aim to solve this
problem were implemented.

Image completion (often referred to as image inpainting) is a process of filling specified
parts in image in a visually plausible way. This, perhaps little vague, definition does not
imply any other specific requirements or conditions on the resulting image than it should
be visually coherent. However, it does not determine, e.g., which part of the image the
samples for inpainting shall be taken from or any other algorithm-dependent specification.
To formally define the problem, intuitive scheme may arise - the following scheme or notation
is widely used, e.g., in [11, 25]: The input image I is given. The user then specifies the
target region Ω, i.e., the missing, corrupted or unknown part of the image. Also a source
region may be specified (if the algorithm uses the known part of the image) as Φ = I − Ω.
However, the rest of the image might not be used as source at all like, e.g., in [17].

1.2 State-of-the-art

Current approaches can be roughly divided into two groups. The first one can be referred
to as exemplar-based techniques. Such algorithms search for patches in known area of the
image and match them locally to find best match which is then copied into the unknown
region of the image. This search of best match is performed iteratively until no missing
pixels remain.

Starting with work of Efros [13], many algorithms have been proposed to improve the
visual appearance of the resulting image or/and the time complexity required to achieve
the solution. Criminisi et al. [11] proposed a priority order to emphasize the propagation
of linear structures. Later, Ting et al. [28] and Komodakis [24] and Wexler [29] proposed
a global-optimized approach to overcome the possible visual inconsistencies that may come

1

2 CHAPTER 1. INTRODUCTION

from use of greedy algorithm. Drori et al. [12] introduced an iterative method using adaptive
example fragments, however it is relatively slow. Yang et al. [31] extended the Priority Belief
Propagation approach used by Komodakis by formulating the algorithm called Structural
Priority Belief Propagation and improved the usability of large displacement view (LDV)
completion algorithms. Averbuch [3] presented a vector-based search structure for fast
comparison of incomplete patches. Barnes et al. [4] introduced new randomized algorithm
for finding correspondences that dramatically reduced the computation time and could be
used in various image manipulation techniques. Kwok et al. [25] proposed new method to
search faster over the set of candidates and sped up the Criminisi’s scheme.

The latter group can be called inpainting. In most cases these algorithms use partial
differential equations. Inpainting itself was first introduced by Bertalmio et al. [7]. Their
method propagates image Laplacians from the known areas of the image inwards, in the
isophote direction and also treats the inpainting process as the fluid dynamics problem [6].
Chan [10] proposed the use of Euler’s elastica as a hint of processing of curved structures.
These methods usually work well for small, scratch-like holes, however, for larger missing
regions, these algorithms may tend to generate blurry artifacts.

1.3 Applications

Practical usage of image completion brings useful and interesting applications to the end-
user. Inpainting can be used in various areas, such as:

• Texture synthesis - to fill the target region with visually plausible texture from given
(usually smaller) sample

• Image restoration - to remove scratches or corrupted areas on old photos or, e.g.,
scanned paintings of old masters

• Image retouching - to erase unwanted parts from the image or even to switch positions
of certain objects in the image or their aspect ratios (image reshuffling and retargeting)

Some of these algorithms are used in commercial widely spread software applications.
Probably the most known example is the Adobe Photoshop CS5, which utilizes the work of
Barnes [4], and its content-aware fill function. Prior to the CS5 version, older versions of
Photoshop (first introduced in version 7.0) implemented tool known as “healing brush” [14]
which used iterative algorithm based on partial differential equation (PDE). Also the most
popular non-commercial software - the GNU Image Manipulation Program, known as GIMP
- provides its own implementation of image inpainting or texture generation via the plug-in
based on PhD. thesis of Harrison [16].

1.4 Terminology

Since often slightly different terminology is used in various works, the list of unified termi-
nology is presented here, to be more consistent throughout the description of theoretical
background of described algorithms and methods:

1.4. TERMINOLOGY 3

• Ω - Target/masked region/zone - area of the image that shall be replaced; the content
of its pixels must not affect the resulting image in any way

• Φ - Source/allowed region/zone - are of the image that shall serve as the source of
patches to fill the missing part of the image

• Ψp- Patch - square, centrally symmetric square neighborhood of a pixel p with this
pixel placed in the center

• Best exemplar or best matching patch - patch with minimal distance (computed using
given metric) to another - query - patch

• Patch size - size of the side of the patch; since the probed pixel is placed in the center
of the patch, the size is typically odd number

• Patch radius - half of the patch size or more precisely patchRadius = patchSize−1
2 , since

the patch size is odd number

4 CHAPTER 1. INTRODUCTION

Chapter 2

Algorithms for fast NN search

In exemplar based methods, that are in particular focus of this thesis, patch-based, respec-
tively pixel-based, comparison is needed to determine the nearest neighbor (NN) of given
patch. Lets denote the patch, for which the nearest neighbor shall be found, as Ψp (the
subscript p denotes the center pixel of the patch). Its NN patch Ψq is then obtained as
follows:

Ψq = arg min
Ψ∈Φ

d(Ψp,Ψ),

where Φ denotes the set of all potential candidates (usually the whole image minus the area
marked as to-be-synthesized) and d some perceptual distance metric.

Since the time-complexity of exhaustive search over the complete search space grows with
increasing sizes of the image and the patch window, several techniques may be employed
to speed the searching process up. Doing so can usually greatly improve the performance
of given algorithm because the patch-to-patch comparisons are, specially in exemplar-based
methods, the most frequent operations. This techniques are discussed later in this chapter.

2.1 Distance metrics

Before the nearest neighbor search methods will be discussed, let us first make a note about
the distance metrics used for patch-to-patch comparison. As already stated, patch-to-patch
comparison lie usually at the “core” of every exemplar-based approach for image synthesis.
Therefore the distance metric, evaluating the distance between two given patches, should be
fast enough yet precise to give satisfactory results. In most cases one of these metrics/norms
is used:

• Sum of Absolute Differences (SAD) - the distance of two patches/pixels is given as a
sum of absolute differences of their corresponding pixels/channels

• Sum of Squared Distances (SSD, L2) - the distance of two patches/pixels is given as
a sum of squared differences of their corresponding pixels/channels

• Maximum Norm (L∞) - the distance of two patches/pixels is given as a maximal
differences of two of their corresponding pixels/channels

5

6 CHAPTER 2. ALGORITHMS FOR FAST NN SEARCH

2.1.1 Handling unknown pixels

When dealing with incomplete images, i.e., images containing unknown pixels, the target
patch, and possibly also the source patch that are to be compared, can contain some of
these missing pixels and simply comparing pixels on corresponding positions within both
patches would compromise the error distance computation. To overcome this obstacle, two
approaches can be chosen:

By constraining the source region to only those pixels with fully known patch neighbor-
hood, one can guarantee that only the same number of pixels would be compared. In fact,
only valid (known) pixels from query patch are used and there is an assurance they will
always have corresponding pixel in such a source patch. The patches in certain distance (at
least equal to half of the patch size) from boundaries and from missing regions are simply
not taken into account - see fig. 2.1. While removing a little portion of search space, this
approach simplifies and speeds up the comparison process, since only pixels in target region
patches must be checked whether they are sources of valid information or are unknown.

The latter option is to normalize the patch distance per valid pixel couples. This method
does not restrict the source region at all because it allows even incomplete patches to be
source of information. However, there are some disadvantages. The first and most significant
is the fact that the error distance between patches must be computed as relative value (i.e.,
a per-pixel error). This situation comes from the observation that different numbers of
valid pixel-pairs (one pixel from the source patch and the other one from the target patch)
are being compared. The second disadvantage is the possibility of comparing two non-
overlapping patches (meaning there are no valid pixel-to-pixel correspondences) but this
can be avoided simply by setting and checking the minimal required number of valid pixel-
to-pixel correspondences within both patches.

a b c d

Figure 2.1: The example of target (masked) zone and source (allowed) zone. (a) The original
image to be processed. (b) The area to be removed and re-synthesized is selected. (c) The
binary mask is obtained. White color denotes masked area of the image. (d) The allowed
zone is obtained as a negation of mask and possibly (depending on the algorithm) the dilated
bounds may also be removed from being considered as valid sources of information (gray
band). White pixels are the centers of fully known patches.

2.2. EARLY TERMINATION 7

2.2 Early termination

Early termination is a method applicable in a great number of computer science problems.
This simple methods allows us for given set of candidates to terminate the computation of
some value, that is at the center of our interest, if the current value, based on some features
of currently processed candidate, loses at some point of the process of its computation the
chance to become the new best candidate. To be able to terminate such a computation,
two requirements must be met. First, we must keep track of the best score achieved so
far. Secondly, the process of computing the score for given candidate must guarantee, that
once the computed value gets over or under (depending on whether we seek for maximum
or minimum value) the so-far best value, it can never reach it again. This can be formally
written down as suggested in alg. 1.

If the early termination is to be used on source patches, which may contain unknown
pixels (and the minimal error value εmin found so far is therefore stored as a relative per-
pixel value), the estimate must be first computed as εmin · |Ψ|, where |Ψ| is the area of the
patch, i.e., simply the square of patch size. Hence, the fact, that currently examined patch
gives worse result than the so-far-minimum, can sometimes be found only at the end of the
comparison, when the absolute error is divided by number of valid pixels to get the per-pixel
value.

Algorithm 1 The scheme of early termination technique. The input parameter C denotes
the candidate and εbest the best value found so far examining the candidates prior to C.
ComputeValueε(C,εbest)
1: ε←initialization value
2: repeat
3: Update required variables
4: if the value of ε can no longer be the best value then
5: return Some specific value to notify that candidate C did not succeed
6: end if
7: until computation of ε is done
8: return ε

2.3 SSE

SSE, Streaming SIMD1 Extensions, is a instructions set to x86 architecture designed to make
use of data level parallelism. It is very helpful when the same operations shall be performed
over and over on the different data. SSE vectors are 128-bits wide, thus allowing to process
16 8-bit chars at once (only for some operations). Since the patch-to-patch comparisons
is such a data-parallel operation (large amount of single pixel values is processed the very
same way), it seems to be a good choice of use. In particular interest stands the instruction
(and its intrinsic equivalent)

PSADWB __128i _mm_sad_epu8 (__m128i a, __m128i b),
1Single Instruction, Multiple Data - different data are processed simultaneously on multiple processing

elements performing the same operations.

8 CHAPTER 2. ALGORITHMS FOR FAST NN SEARCH

Packed Sum of Absolute Differences, which computes the absolute difference of the 16
unsigned 8-bit integers from the first operand a and the 16 unsigned 8-bit integers from
the second operand b. Hence the available distance metric is the sum of absolute differences
(SAD).

To be able to make use of the intrinsic functions, the data must be placed on16-byte-
aligned memory address. Thus, all the fully patches are copied into one consecutive memory
chunk.

2.4 Hierarchical approach

Multi-resolution schemes have certainly proved useful in image processing. The principle is
simple. Instead of searching over the whole image (in possibly large resolution), the search
space is repeatedly downsampled. The lowest level - the smallest image in the so called
pyramid - is then examined and the solution is propagated up serving as an initial guess
or hint on the next level of the pyramid. This approach is used in many image-processing-
related fields of interest [2], especially in texture synthesis [18].

The downsampling process, i.e., the (possibly repetitive) reduction of the image, aims to
reduce the higher image frequencies to diminish the number of samples needed to represent
the original signal. Normally, when a signal is downsampled, the high-frequency part of the
signal is aliased with the low-frequency one. However, the desired outcome is to keep only
the low-frequency part and so the image must be preprocessed (alias-filtered) to prevent the
remove the high-frequency part and therefore to avert the occurrence of aliasing.

2.4.1 Anti-aliasing filters

The optimal filter to remove the high-frequency part of the image would be the sinc filter
with sinc function (standing for “sine cardinal”),

sinc (x) = sin (πx)
πx

,

as its impulse response in the time domain. Such filter removes all frequency components
above a given bandwidth and preserves all low-frequency ones. However, since the this
idealized filter has infinite impulse response in both positive and negative time directions, it
is not directly usable and must be approximated for real-world applications and processes.

A windowed form of the sinc filter is the Lanczos filter, which attenuates the sinc
coefficients and truncates them as the values drop to insignificance. Its impulse response
is the normalized Lanczos window (also called sinc window). The Lanczos window is the
central lobe of a horizontally-stretched sinc, sinc

(
x
a

)
for −a ≤ x ≤ a. Examples of two and

three-lobed Lanczos-windowed sinc function are presented in fig. 2.2.

2.4.2 Disadvantages

While the hierarchical approaches favor speed, there are obvious drawbacks of these methods.
Depending of how many downscaling iterations are performed, the significant amount of

2.4. HIERARCHICAL APPROACH 9

a b c

Figure 2.2: Illustration of Lanczos filter properties; image taken from <http://en.
wikipedia.org>. (a) Extent of Lanzcos windows for a = 1, 2, 3. (b) Two-lobed Lanczos-
windowed sinc function (a = 2). (c) Three-lobed Lanczos-windowed sinc function (a = 3).

details can be lost and thus the search process can be trapped in local minima and the
global optimum may never be found. Therefore, both the number of downsampling steps
and the downscale-ratio should be chosen carefully.

2.4.3 Gaussian pyramid

The Gaussian pyramid consists of set of images that are scaled down using a gaussian filter.
Starting on the top level with the original image, the next image on lower level is created
as a low-pass filtered and downsampled version of the previous image. More formally, the
Gaussian pyramid consisting of L levels l ∈ {0, . . . , L− 1} for given image I (x, y) is defined
recursively as follows:

G0(x, y) = I(x, y) on the highest level, l = 0, and

Gl (x, y) =
2∑

m=−2

2∑
n=−2

w (m,n)Gl−1 (2x+m, 2y + n) on levels l ∈ {1, . . . , L− 1} ,

where w(m,n) is the weighting function, generating kernel, that remains the same on all
levels of the pyramid and must be separable and symmetric. This kernel is an approximation
of Gaussian function (thus the name of the pyramid). An example of usable weighting
function is a 5-tap filter 1

16

(
1 4 6 4 1

)
. Fig. 2.3 shows example of Gaussian pyramid

obtained using such a kernel.

2.4.4 Hierarchical approaches on images with unknown pixels

When used on image with unknown pixels, image pyramid approaches suffer particularly
from one difficulty. Say that the unknown pixels of an input images are first, immediately
after loading, cleared with some value to assure that the context in this image area does not
affect the image synthesis in any way. Let this value be 0, i.e., the hole in the image will
appear black, see fig. 2.4a. When filtering and downsampling the image the “standard way”
as described in previous section, the edges of the unknown area both in the original image
and its mask become more and more blurry as shown on fig. 2.4f,g,h.

http://en.wikipedia.org
http://en.wikipedia.org

10 CHAPTER 2. ALGORITHMS FOR FAST NN SEARCH

a b c d e f

Figure 2.3: The example of Gaussian pyramid. From (a) to (f), the original image (the 0th
level of the pyramid) of size 600× 400 is downscaled up to the size 19× 13.

Of course, one could easily consider every pixel in the downsampled mask that is not zero
(i.e., black thus unmasked) as masked one. However, this would lead to slight yet unwanted
expansion of the mask during the pyramid creation. To overcome this obstacle, only known
pixels must be convolved and the ratio of known/unknown pixels must be maintained during
the process. When it reaches certain ratio, the pixel is accepted as valid and the mask is reset
(thus signaling the pixel is known). Otherwise, the mask is set and the pixel is considered
to be unknown.

Considering the masked pixels as a special case and excluding them from the convolution
process guarantees that boundaries between the valid and masked areas of the image stay
sharp as shown on fig. 2.4j,k,l. In fact, careful setting of the minimal ratio of valid pixels
within the convolution mask (25% is the value used in implementation) causes the gradual
ingrowth of the mask.

2.5 Phase correlation

Phase correlation is a method of image processing to check the similarity of two images (of
equal proportions) that makes use of fast frequency-domain processing. It can be used to
solve various problems such as motion estimation, object tracking or template matching.
Therefore, the idea is to try to use it in image completion process as a variant of nearest
neighbor search.

The method is based on Fourier Shift Theorem [8] and was originally proposed for
the registration of translated images. The theorem states that the Fourier transform of a
convolution is the pointwise product of Fourier transforms:

F {a ∗ b} = F {a} · F {b} .

Moreover, the convolution of a function f with the Dirac δ function leads to replication of

2.5. PHASE CORRELATION 11

c dba

e f g h

i j k l

a

Figure 2.4: The unwanted blur effect in both image and its mask caused by direct application
of Gaussian pyramid approach. The original image (a) is assigned zeros (i.e., black color)
on pixels corresponding to masked area (b). The cut of this image is shown in (c) and
corresponding cut of mask in (d). First (e) and second (f) levels of Gaussian pyramid
are created without focusing to preserve the sharp contour of the mask. This is highly
unwanted situation, as one can not consider the blurred pixels near the hole as valid, since
they are “polluted” by the color assigned to masked area (and which can be of any arbitrary
color). To resolve this, one must, when convolving, consider only valid pixels and decide
(based on the ratio of known/unknown pixels), whether the synthesized pixel in next level’s
image is valid or not. This approach is demonstrated on the same data - the first (i) and
second (j) levels of the pyramid. Both the zoomed cut of the second level’s image (k) and
its corresponding mask cut (l) show no blur between the known and unknown area of the
image.

the function on the position of the function:
∞∫
−∞

f (t) δ (t− T) dt = f (T) .

12 CHAPTER 2. ALGORITHMS FOR FAST NN SEARCH

This is known as the “sifting” property, since it “sifts” out the value of the integrand at the
point of its occurrence. To summarize it in other words, the convolution with Dirac δ shifts
the image on the position of the Dirac pulse. By applying deconvolution on the shifted
image, removing the unshifted image, will get us the position of Dirac δ, which’s offset from
the original pulse determines the shift we were looking for.

Therefore, the algorithm utilizing the aforementioned observations proceeds as follows
(without considering incompleteness of input image for now):

1. Two images are given: a, the input image to be searched in, and b, which is blank
except the patch that we search for.

2. Both images are transformed into frequency domain: A = F {a}, B = F {b}.

3. The cross-power spectrum in frequency domain is computed: R = GaG∗b
|GaGb| , where ∗

denotes the complex conjugate.

4. The result is transformed back by applying inverse Fourier transform and obtain the
normalized cross-correlation: r = F−1 {R}.

5. The offset vector is found by determining the location of the peak in r: (4x,4y) =
arg maxx,y r.

However, to be able to use this approach on image completion, few problems must be
previously solved. First, the queried image a must not contain any missing values. To use
another approach to synthesize the missing part and then only try to improve it, would be
ineffective and time-consuming. Thus, the holes in input image are filled only with some
average value or gradually computed as average value of known neighboring pixels.

The second problem is, that the correlation very likely points to the original (but useless)
patch. To overcome this, more than just one maximum must be found and from these
candidates, the final pixel value must be chosen by using some patch-to-patch distance
metric.

Although not intended for image completion, phase correlation, might prove useful.
The advantage over the non-parametric sampling is the fact that time and computational
complexity does not rely on size of the patch. Thus with increasing patch size, this approach
might show better results on scratch-like holes.

2.6 Sequential overlap exploitation

Recently, Xiao et al . [30] proposed an algorithm that makes use of exploring the sequential
overlap between patches neighboring patches. The algorithm is based on following observa-
tion: when performing the nearest patch matching (using sum of squared differences as the
distance metric) in sequential order using an exhaustive search method, the adjacent cor-
responding patch-pairs overlap to a considerable extent. By using this sequential overlap,
redundant computations may be eliminated and, therefore, the time complexity can be
reduced greatly, since the algorithm reduces the time complexity of a patch-pair of size r
(thus having r2 pixels) from O

(
r2) to O (r).

2.6. SEQUENTIAL OVERLAP EXPLOITATION 13

2.6.1 Single column processing

Let Z and X denote the source and target image, respectively, and S and P the number of
patches in each column of Z and X, respectively. Fig. 2.5 illustrates how to find the nearest
neighbor patch in the first column in the target X. Each patch slides only by one pixel
at the time. X0 and Z0 are first compared. Based on the overlap of this result, X1 and
Z1 are compared and the similarity of adjacent patch pairs is sequentially computed until
the end of first iteration, when XP−1 and Z(P−1)mod(S) are compared. Then, similarly to
the first iteration, X0 is compared with Z1 and its subsequent patches are compared with
the corresponding subsequent patches in Z until the end of the second iteration. In the
final iteration, X0 is compared with ZS−1, and the subsequent corresponding patch pairs
are compared until XP−1 finishes the comparison with Z(P+S−2)mod(S). Using this method
reduces, as mentioned, the complexity of 2D patch comparison from O

(
r2) to O (r) for each

patch. This speed up becomes quite significant with increasing size of the patch.

Z X

Z0 X0

Z X

Z1 X1

Z X

Z0

X3

Z X

Z2 X2

Z

Z1

X

X4

X0
X1

X3
X2

X4

Z1
Z2

Z0
Z1

Z2

X0

X3
X2

X4

Z2

Z0

Z2

Z0
X1 Z1

X2

Figure 2.5: Nearest patch matching for target image X (P = 5), source image Z (S = 3),
and the patch size r = 3; image taken from [30]. The first row is the first iteration (L = 0),
the d (X0, Z0) is first computed, then its consequent patches (X1, X2, X3, X4) are compared
with the corresponding consequent patches (Z1, Z2, Z0, Z1) in Z. Specially, based on the
overlap between X0 and Z0, d (X1, Z1) is computed, similarly, based on the overlap between
X1 and Z1, d (X2, Z2) is computed, then we compute d (X3, Z0), based on the overlap,
d (X4, Z1) is computed. The second row is the second iteration (L = 1), the d (X0, Z1) is first
computed, its consequent patches (X1, X2, X3, X4) are compared with the corresponding
consequent patches(Z2, Z0, Z1, Z2) in Z. Note that the overlaps are used in the distance
computation. The third row is the third iteration (L = 2), similarly, the d (X0, Z2) is first
computed, its consequent patches (X1, X2, X3, X4) are compared with the corresponding
patches (Z0, Z1, Z2, Z0) in Z.

14 CHAPTER 2. ALGORITHMS FOR FAST NN SEARCH

2.6.2 Extensions

To further improve the performance of proposed algorithm, the authors presented the
extension to single column processing routine. The nearest neighbor is being found for
N columns at once by comparing N adjacent columns of patches in source image Z. Also,
the presented approach can be extended to higher dimensions, namely to 3D for 3D “patch”
matching.

2.6.3 Limitations

As reported in [30], the results of the fast nearest patch search highly depend on the input
data. When the data shows no major sequential overlap (like, e.g., when sampling from
target region by priority as proposed in [11]), the data can not work at maximum efficiency.

2.7 PatchMatch

PatchMatch, introduced in [4] and extended in [5], represents another approach to search
the image space. In contrary to deterministic methods, it is based on random sampling
and propagation of good guesses. The idea behind PatchMatch is the approximate nearest
neighbor (NN) algorithm. Even though it does not guarantee to find the NN for a given
patch, it converges very fast and the found approximate NN almost certainly corresponds
to the NN found by the exhaustive search. However, the speed of PatchMatch outperforms
the exhaustive search approaches in one or two orders of magnitude. PatchMatch makes
great use of natural structures of the images. In real-world images, single pixel is rarely a
feature on its own but usually a part of a larger coherent area. Thus, neighboring pixels
will likely have their nearest neighbors placed abreast. This approach dramatically reduces
the required number of iterations as well as the time of computation.

a cb d

Figure 2.6: The principle of propagating correspondences; image based on video associated
with [4]. In the input image (a), the target region is selected (the dark gray oval) (b).
Random guesses for the correspondence are likely to be wrong most of the time. However,
in sufficiently large region, a few lucky guesses will be almost the correct correspondence
(c).Once a good guess for some patch is found, it is likely that many nearby patches have
similar correspondences (d).

2.7. PATCHMATCH 15

As the NN-search between image regions is the core issue of many image manipulation
algorithms, the PatchMatch has vast ways of use such as, e.g., image retargeting, image
reshuffling, texture synthesis or image completion.

a

Initialization

A

B

b

Propagation

A

B

c

Search

A

B

Figure 2.7: Phases of the PatchMatch algorithm; image taken from [4]. (a) The values of
f (x) for red, green and blue patches is initialized with random values. (b) The blue patch
checks above/green and left/red neighbors to see if they will improve the blue mapping,
hence propagating good matches. (c) The patch searches randomly for improvements in
concentric neighborhoods.

2.7.1 Approximate nearest-neighbor algorithm

Nearest-neighbor field The core element of the PatchMatch algorithm is the nearest-
neighbor-field (NNF) defined as a function f : A 7→ R2. This function is defined over all
patches within the source zone of image A, for some distance function of two patches d.
Given a patch coordinate a in image A and its corresponding nearest neighbor b in image
B, f (a) is defined simply as b 2 and values of f are stored in an array that has the same
dimensions as image A. The algorithm then proceeds in two steps.

Initialization The nearest-neighbor field can be initialized either by assigning the random
values to the field, or by using information obtained before. Prior information can be
utilized, e.g., when combined with Gaussian pyramid (see sec. 2.4.3) or any other coarse-to-
fine gradual resizing process.

Iteration After initialization, NNF is iteratively improved. There are two types of iterati-
ons that differ only by the direction of processing the image. In odd iterations, offsets are
examined in scanline order (from top-left to bottom-right corner), and in even iterations the
order is reversed. Every iteration consists of two operations, propagation and random search,
which are interleaved at patch level: if Pi and Si denote propagation and random search
phase, respectively, the algorithm proceeds in following order: P1, S1, P2, S2, . . . , Pn, Sn.

2Using notation in absolute coordinates, as used in [5], in contrary to relative coordinates used in [4].

16 CHAPTER 2. ALGORITHMS FOR FAST NN SEARCH

Propagation When trying to improve the value at f (x) during odd iteration, new
candidates are values at f (x−4p) +4p, where 4p is a unit vector (1, 0) or (0, 1). The
value of f (x) is improved if any of the candidates has smaller distance to patch located at
x with respect to given distance metric d.

As the effect of the propagation phase, the whole coherent image areas can be propagated
in a single iteration, thus it converges very quickly. However, if used alone, propagation could
end trapped in a local minimum. Therefore, it is followed by random search.

Random search In random search phase, to improve the value at f (x), the sequence
of new candidates is sampled from an exponential distribution and f (x) is improved if
any of the candidates has smaller distance to x with respect to given distance metric d.
Let v0 denotes the current nearest neighbor of x, i.e., f (x) = v0. The candidates ui
are then constructed by sampling around v0 at an exponentially decreasing distance, i.e.,
ui = v0 + ωαiRi, where Ri is a uniform random in [−1, 1] × [−1, 1], ω is the maximum
search “radius” (usually defined as maximum image dimension), and α is a fixed ratio
between search window sizes (usually α = 1

2). Patches for i = 0, 1, 2, . . . until the current
search radius ωαi is below 1 pixel. The search window must be clamped to the bounds of
image B before it can be sampled from.

Halting criteria As reported in [4], fixed number of iterations had been found to work well.
The results showed that after approximately 4 to 5 iterations, the NNF had almost always
converged.

Generalization Even though the original algorithm works well, in [5] the authors presented
a generalized form of PatchMatch to extend its functionality in three ways:

1. Finding k nearest neighbors instead of just one.

2. Arbitrary descriptors and/or distance metrics are allowed to be used in opposite to
using only sum of squared differences on colors in [4].

3. Searching across rotations and scales, not only the translations.

Finding k nearest neighbors can be used for tasks such as denoising, symmetry detection
or object/clone detection. However, for image synthesis, finding only the best matching
patch is sufficient and practice shows that extending the PatchMatch in this way has almost
no influence on the result image for this type of application. Also point (3) is not in particular
concern of this thesis. However, extending the search space on more patch transformations
might improve the result image.

Rotations and scale To search a range of rotations θ ∈ [θ1, θ2] and a range of scales
s ∈ [s1, s2], the search space of the original PatchMatch algorithm must be extended
from (x, y) to (x, y, θ, s), extending the definition of the NNF to a mapping f : R2 7→
R4. Assignment f is initialized by uniformly sampling from a range of possible positions,
orientations and scales. In the propagation phase, adjacent patches are no longer related

2.7. PATCHMATCH 17

by a simple translation, thus the relative offsets must by transformed. Let T (f (x)) be the
full transformation defined by (x, y, θ, s). The candidates are then defined as f (x−4p) +
T
′ (f (x−4p))4p. In random search phase, the search window is extended to all 4 dimen-

sions. As documented in [5], in spite of searching over 4 dimensions instead of just one, the
combination of propagation and random search successfully samples the search space and
efficiently propagates good matches between patches.

18 CHAPTER 2. ALGORITHMS FOR FAST NN SEARCH

Chapter 3

Selected algorithms

In this section, more detailed description of theoretical base of selected algorithms will be
given.

3.1 Method of Efros and Leung

Efros and Leung [13] proposed an algorithm for texture generation based on model of the
texture as a Markov Random Field (MRF). To be more specific, they assume that the
probability distribution of brightness (or color) values for a pixel given the brightness values
of its spatial neighborhood is independent of the rest of the image. The only adjustable
parameter to control the degree of the randomness is the size of the pixel’s neighborhood,
i.e., the patch size.

The missing part of the image is generated in scanline order pixel by pixel. When pixel
p is chosen to be the next one to synthesize, all known pixels in the patch around pixel p
are take as context. No probability distribution table or model is being constructed and
instead, for each new context the image (or more specifically, the source region of the image)
is queried and the distribution of p is constructed as a histogram of all possible values that
occurred in the image.

3.1.1 Algorithm

As stated previously, the texture (image) is modeled as MRF, thus the probability distribu-
tion of color values for a pixel given the color values of its spatial neighborhood is assumed
to be independent of the rest of the image. The neighborhood of the pixel is represented by
the patch around it. The size of this patch is recommended to be on the scale of the biggest
regular image feature.

We will explain, how the algorithm works but first, let me declare some definitions. Let
p be the aforementioned pixel, ω(p) its patch neighborhood and d(ω1, ω2) some perceptual
distance metric between two patches. Moreover, suppose that the image, from which the
samples are taken, Isample is a part of the real infinite texture Ireal. Then if a set of all
occurrences of ω(p) within Ireal was known,

Ω(p) =
{
ω′ ⊂ Ireal : d(ω′, ω(p)) = 0

}
,

19

20 CHAPTER 3. SELECTED ALGORITHMS

then the conditional probability distribution function of p, P (p|ω(p)), could be estimated
with a histogram of all center pixels’ color values in it.

Since only the Isample is known, the approximate candidate set Ω′(p) ≈ Ω(p) must be
found. The authors propose k-nearest neighbor technique when first the closest sample ωbest
from Isample is found as ωbest = arg minω d(ω, ω(p)) ⊂ Isample and then set Ω′ of all patches
ω′, that satisfy the patch-to-patch distance condition d(ωbest, ω′) < ε, where ε is a threshold
value, is obtained. Values of center pixels of patches in Ω′ give the histogram of values for
pixel p, from which the values can be sample either uniformly or weighted by the distance
metric d.

Figure 3.1: Algorithm overview: to synthesize color of the examined pixel (blue), the rest
of the image is scanned and then, the center pixel value of one the best matching sample
patches (yellow) is used to be the newly synthesized pixel.

The proposed distance metric to be used to sample is sum of squared differences (SSD)
convolved with two-dimensional Gaussian kernel to emphasize the local structure of the
texture, i.e., d = dSSD ∗G.

When using this approach to synthesize missing image parts, for each processed pixel,
not all of its neighboring pixels are known. To overcome this, distance metric must be
slightly modified. One of the methods mentioned in sec. 2.1.1 is used.

3.1.2 Summary

Despite its simplicity, this algorithm proved to produce quite plausible results. Its main
disadvantage, however resides in the need of exhaustive search. Scanning for best patch
correspondences over the entire image is simply quite time-consuming process even when
early termination is incorporated. The other considerable drawback is that it does not
handle the propagation of linear structures in any way and the results may vary by the
selected sampling method. This is also the key observation and main contribution of the
work of Criminisi et. al [11].

3.2. METHOD OF AVERBUCH ET AL. 21

3.2 Method of Averbuch et al.

The slowest part of many exemplar-base image completion algorithms is the exhaustive
search over the whole image again and again. To speed this process up, some search structure
could be used and this is also the contribution of presented paper.

3.2.1 Algorithm

The algorithm proceeds in two main steps: First, the image is scanned and the information
about pixel color values is inserted into the search data structure. In the latter phase, for each
pixel marked as unknown, the search data structure is queried and the best corresponding
pixel (or set of pixel candidates) is obtained.

Learning phase In this phase, the search data structure is created. The patch ω(p) of
size α around each pixel p is represented by a vector v(p) of integer numbers in the range
from 0 to 255. Thus this vector contains α2 entries for grayscale image and 3α2 entries for
color image. The authors advise to use the YUV color space. The pixel values are taken in
row-major order in a consecutive manner.

Synthesis phase In this step, the search data structure is repeatedly queried and the image
hole is gradually filled. The missing area is traversed in a spiral order (also called onion-
peel order) and new pixel values for unknown pixels are assigned. The patch around each
processed pixel p̃ is again modeled as a vector v(p̃). However, one or more pixels around
processed pixel (at least the the point being processed itself) is unknown. Therefore, another
vector m(p̃) is used as a mask for vector v. This mask vector contains ones on places of
valid pixels and zeros on places of unknown pixels.

After the query vector is compared to the vectors stored in the search data structure,
on or more best candidates are retrieved. The final pixel value to be assigned to unknown
pixel p̃ is then selected among them.

3.2.2 Distance metric

The distance metric the authors used in the search data structure is L∞. The distance
between two vectors v and u of size α2 is given by ‖v − u‖∞ = max1≤i≤α2 |v(i)−u(i)| where
v(i) and u(i) denote the ith coordinate of v and u, respectively.

3.2.3 Search structure

For clarity, the principle of search data structure will be shown on the case of monochromatic
image. The size α2 of vector v will be denoted as d from now on.

Let V = {vi}Ki=1 ⊆ [0..β]d ⊆ Nd be a set of K vectors to be inserted into the data
structure, where d is the dimension of the vectors and i is the index of the vector in the
data structure. The jth element of vector vi will be denoted vi(j).

The search data structure consists of d arrays {Ai}di=1 of β + 1 elements, where Ai(j)
denotes the jth element of the array Ai. Each of this elements contains a set of vector indices
I ⊆ {1, . . . ,K}.

22 CHAPTER 3. SELECTED ALGORITHMS

Insertion into the structure In the learning phase, the vectors of pixels from allowed zone
(i.e., those, whose patch neighborhood is fully known) are inserted into the data structure.
When inserting vector vl, its index l is inserted in the sets in Ai(vl(i)) for every 1 ≤ i ≤ d.
Following example demonstrates the insertion process.

Let the set V contain vectors v1 = (2, 0, 1, 3), v2 = (3, 0, 4, 4,) and v3 = (3, 0, 1, 3).
Clearly K = 3, d = 4 and β = 4. Table 3.1 shows the data structure after insertion of
vectors from set V .

A1 A2 A3 A4

0 1,2,3
1 1,3
2 1
3 2,3 1,3
4 2 2

Table 3.1: Search data structure constructed for parameters K = 3, d = 3 and β = 4 after
insertions of vectors vectors v1 = (2, 0, 1, 3), v2 = (3, 0, 4, 4,) and v3 = (3, 0, 1, 3).

When a vector is added into the data structure, its number i is inserted element once in
each search array A. For example, since v1(1) = 2, we insert the number 1 to the set A1(2).
Next element of v1(2) = 0, thus A2(0) = 2 and so on.

Querying the data structure Queries to the data structure return a set of candidate vectors
and are parameterizable by parameters E and C, where 0 ≤ E ≤ β is the upper bound of
maximal error distance between the vectors in result set and the query vector, and C is the
number of candidate vectors that shall be found. This means that every vector in the result
set R = {ri}Ci=1 ⊆ V must satisfy ‖ri − q‖∞ ≤ E for the given query vector q. The run of
one query is depicted in algorithm 2.

A1 A2 A3 A4

0 1,2,3
1 1,3
2 1
3 2,3 1,3
4 2 2

a

A1 A2 A3 A4

0 1,2,3 Ø
1 Ø 1,3
2 1 Ø Ø
3 2,3 1,3
4 Ø 2 2

b

A1 A2 A3 A4

0 1,2,3
1 1,3
2 1
3 2,3 1,3
4 2 2

c

Table 3.2: Query examples on the data structure shown in tab. 3.1. Visited array elements
are highlighted in bold typeface. (a) The data structure is queried for an exact match
(E = 0) for the vector q1 = (2, 0, 1, 3). Query mask m1 = (1, 1, 1,) indicates that the query
vector contains no missing elements. The only matching vector stored in data structure is
v1. (b) An approximate match (E = 1) for query vector q2 = (2, 0, 1, 3); m2 = (1, 1, 1,).
Vectors v1 and v3 are within the L∞ distance 1 from query vector q2. (c) Querying the data
structure for an exact match for partially incomplete vector q3 = (3, 0, ?, 4); m = (1, 1, 0, 1).
Only vector v2 matches the given query.

3.3. METHOD OF CRIMINISI ET. AL 23

Algorithm 2 The query algorithm to the search data structure as presented in [3].
Query({Ai},q,m,E,C)
1: R← φ, N ←Number of zero elements in q
2: for e = 0→ E do
3: for i = 1→ d do
4: if m(i) 6= 0 then
5: R← R ∪Ai(q(i)− e) ∪Ai(q(i) + e)
6: end if
7: end for
8: if there are C elements in R that each appear at least d−N times then
9: return R

10: end if
11: end for
12: if e ≥ E then
13: return all elements that appear d−N times and indicate that |R| < C
14: end if

3.2.4 Summary

The proposed data structure can speed up the synthesis process, however the major drawback
of used distance metric is that for some images, that hardly contain good guesses for missing
pixels, no solution within the given error bound E might be found. Such situations can be
handled by either extending the error bound and query the data structure until some results
are obtained, or by selecting C best candidates and test them using another distance metric.

Also the memory-complexity of the search data structure grows rapidly with increasing
image and patch sizes which further increases the time needed to perform the union operation
(see alg. 2, line 5). This is the subject to study and the result will be presented in further
sections.

3.3 Method of Criminisi et. al

By comparing and studying large amount of image-completion-related work, Criminisi et.
al proposed a new algorithm that combined the advantages of both exemplar-based and
inpainting-based methods. The contribution of inpainting-driven is the ability to encourage
the propagation of linear structures prior to the textures. In inpainting, linear structures
(called also isophotes) are propagated via diffusion and the process resembles the heat flow
spreading, which is actually true due to use of partial differential equations. This works well
for smaller holes but for larger ones, blurry artifacts.

The exemplar-based techniques, on the other hand, do not suffer from these problems,
since they cheaply copy existing parts of the image from one area to another. On consistent
textures, these methods work quite effectively. However, real-world scenes often consist of
mixture of linear structures and multiple textures interacting spatially [32].

As will be explained, the described algorithm solves the problem of texture by priority
sampling, i. e. the linear structures are given greater priority and they are propagated

24 CHAPTER 3. SELECTED ALGORITHMS

sooner.

3.3.1 Key observations

The presented algorithm is based on two observations.
Exemplar-based synthesis suffices - both structure and structure can be propagated via

exemplar-based approaches, i.e., there is no need for separate mechanism to handle the
isophotes.

The filling order is crucial - as observed, the quality of the output image is highly
dependent on the order in which the filling process proceeds. As shown in fig. 3.2, the
filling in spiral order (onion peel) may introduce undesired artifacts and the horizontal edge
between two regions might be reconstructed as a curve in a case of filling concave regions.
The very similar situation may occur when scanline order is used.

Thus an ideal algorithm must give higher priority to those areas of the image that lie on
the continuation of image’s linear structures. The goal is to find the balance, i.e., when to
propagate the structure and when the texture.

a b c d

Figure 3.2: Problems of concentric-layer filling order (anti-clockwise); image taken from
[11]. (a) Image with selected target region. Exemplar patches are taken from the rest of the
image. (b,c) Different stages during the filling process. (d) Result image - the horizontal
line from the original image was reconstructed as a curved structure.

3.3.2 Algorithm

The notation is as follows: Given an input image, target region Ω is selected. The source
region Φ may be either specifically selected or may be taken as the rest of the image Φ = I−Ω
(note that a band of at least size of patch radius pixels must be stripped from source zone
to consider only patches entirely contained in Φ; for illustration see fig. 4.1).

The size of the patch window Ψ is then specified. Results presented by authors were
obtained using mostly patches of size 9 × 9 pixels. Fig. 3.3a illustrates the used notation.
After determining the size of patch window, the algorithm proceeds automatically, i.e., no
user guidance is needed. Pixel on the contour line of the target region (called also fill front)
with highest priority is selected and best candidate to fill its unknown pixels is found. This
process repeats until the image is complete.

3.3. METHOD OF CRIMINISI ET. AL 25

a

Φ Source region

Ω Target region

δΩ

b

Φ

Ω

δΩ
p

Ψp

c

Ω

p

Ψp

q’q’Ψq’Ψq’

q’’Ψq’’ q’’Ψq’’

δΩ

d

Φ

Ω

δΩ

Ψp

Figure 3.3: Structure propagation along isophote; image taken from [11]. (a) The input
image with labeled target region Ω, its contour δΩ and the source region Φ. (b) Patch
Ψp around pixel p ∈ δΩ is selected to be synthesized in the next iteration. Selection of
this contour point is based on its priority. (c) The best matching candidates lie along
the boundary between the yellow and blue texture, e.g., Ψq′ or Ψq′′ . (d) Best matching
candidate is selected and pixels on positions corresponding to unknown pixels within patch
Ψp are copied. Both texture and structure have been propagated.

Each pixel has assigned a property called confidence. This non-zero number, as the
name suggests, indicates how much we are sure about the value the pixel has. This value
is initialized when the algorithm starts and when the pixel is filled (i.e., only pixels from
target region change their confidence value during the course of the algorithm).

Selecting patch with highest priority In each iteration the algorithm performs selection
of a patch-to-be-processed based solely on its priority. High-priority pixels are:

• pixels on the continuation of linear structures (edges between textures)

• pixels that are surrounded by other pixels with high confidence

Priority is computed for all patches centered on pixels on current δΩ. The priority P (p)
of the patch Ψp centered at some point p ∈ δΩ is defined as follows:

P (p) = C(p)D(p),

where C(p) is the confidence term and D(p) is the data term and they are defined as follows:

C(p) =
∑
q∈Ψp∩(I−Ω)C(q)

|Ψp|

D(p) =
|∇I⊥p · np|

α
.

The meaning of used notation is this: α is a normalization factor (e.g. α = 255 for
grayscale image, but can be used even for color ones), |Ψp| is the area of patch Ψp, np is a
unit vector orthogonal to the fill front δΩ at point p, ∇Ip is the gradient (computed as the
maximum value of gradient in Ψp ∩ (I − Ω)) and ⊥ denotes the orthogonal operator (i.e.,
the isophote is simple the gradient rotated by 90 degrees). The notation is shown in fig. 3.4.

26 CHAPTER 3. SELECTED ALGORITHMS

Φ

Ω

δΩ
p

∆

Ip
np

Figure 3.4: Relationship of patch and its
normal and isophote; image taken from [11].
For patch Ψp, np denotes the unit normal
vector to the contour line δΩ and ∇I⊥p the
isophote.

As presented, the priority P (p) is
computed for every patch that have its
center pixel placed on the contour line of
the target region δΩ.

Before the iterative process, the confi-
dence must be set. C(p) = 0 ∀p ∈ Ω and
C(p) = 1 ∀p ∈ I − Ω.

Confidence term The confidence term,
denoted C(p), provides information about
the surrounding pixels of pixel p. It
gives higher priority to those patches that
have already filled more of their pixels.
As the synthesis progresses, the confidence
term values begin to degrade, as less and
less information from the source region is
propagated to the pixels nearer to the center
of target region. Roughly speaking, the con-
fidence term favors the patches with more
pixels already filled in, since these patches
provide more valid information to match
against. Using only confidence term to
determine the priority of the pixel P (p),
the fill order would roughly resemble the

concentric onion-peel order.

Data term The data term reflects the strength of isophotes that cross the contour line
δΩ in given iteration. It gives higher priority to patches that contain “stronger” isophotes
(since isophote is not a unit vector like the normal vector np). In fact, it is the data term
that takes care the linear structures are propagated first.

Finding best exemplar After the priorities of all patches centered along the fill front δΩ
have been computed, the patch Ψp̂ with highest priority is selected to be filled in current
iteration. As in [13], the source region is then scanned for patch that is most similar to Ψp̂,
i.e., Ψq̂ = arg minΨq∈Φ d(Ψp̂,Ψq). The used distance metric is sum of squared differences
and the color comparison is done in CIE Lab color space. Pixels from the best candidate
Ψq are than copied on corresponding positions into patch Ψp̂ and the algorithm proceeds to
the next step which is the update of confidence values of pixels within processed patch.

Updating confidence values After the best exemplar patch Ψq has been found, confidence
term of pixels within the patch Ψp̂ are updated as follows:

C(p) = C(p̂) ∀p ∈ Ψp̂ ∩ Ω.

3.4. METHOD OF KWOK ET AL. 27

Algorithm 3 Pseudocode of exemplar-based image inpainting algorithm as proposed in
[11]. The superscript t denotes current iteration.
1: Extract the manually selected initial front δΩ0

2: repeat
3: Identify the fill front δΩt

4: if δΩt = Ø then
5: return
6: end if
7: Compute priorities P (p) ∀p ∈ δΩt

8: Find the patch Ψp̂ with the maximum priority
9: Find the exemplar Ψq̂ that minimizes d(Ψp̂,Ψq)

10: Copy image data from Ψq̂ to Ψp̂ ∀p ∈ Ψp̂ ∩ Ω
11: Update C(p) ∀p ∈ Ψp̂ ∩ Ω
12: until done

3.3.3 Summary

A new approach for exemplar-based-driven algorithms has been proposed in [11]. As
observed and demonstrated, the fill order is critical to successfully propagate linear structures.
The proposed algorithm provides a way to control it by introducing confidence and data
terms that both control the priority by which the next patch to be processed is chosen.

The major drawback of this algorithm is the use of exhaustive search to determine the
best exemplar Ψq̂.

3.4 Method of Kwok et al.

Since the method of Criminisi et al. [11] proved itself quite useful, attempts to further
improve it had been made. The bottleneck of mentioned approach is clearly the exhaustive
search over the whole image space. Therefore, a fast query to find the best matching
exemplar is essential to speed the scheme of [11] up. Kwok et al. [25] developed such a
method based on application of Discrete Cosine Transformation (DCT) and the reduction
of compared coefficients.

3.4.1 Theoretical background

Trying to improve the exhaustive search, the authors first try to employ the Approximate
Nearest Neighbor (ANN) library [26] which is implemented by KD-tree. However, the
dimension of such a tree can not be fixed, since the ratio of known and unknown pixels
within the to-be-completed patches is not fixed as well. Therefore, the initial attempt was
to fill these missing pixels with average color so that the dimension of KD-tree could be
fixed. Surprisingly, same results were obtained with similar lengths of time. Further study
showed that when extending the dimension of KD-tree from 20 to more than 200 (e.g. a
trichromatic patch of size 9 is a point in the space with a dimension of 9× 9× 3 = 243), the
performance of KD-tree drops significantly. Thus, to improve the speed end efficiency, the
method to approximate the patch with fewer coefficients than all its pixel colors is needed.

28 CHAPTER 3. SELECTED ALGORITHMS

To reduce the dimensionality of the search query, different methods are taken into
account in [25], namely: Principal Component Analysis (PCA), Fast Fourier Transform
(FFT), Discrete Cosine Transformation (DCT) and standard and non-standard Haar wavelet
decomposition. The target is to keep 10% or fewer coefficients of the whole patch, while
keeping the accuracy of the backward transformation (with respect to the given input) as
high as possible (around 90%).

Therefore, PCA is discarded due to the larger fraction of coefficients needed to keep the
desired accuracy. FFT is not considered as well because the imaginary part is not useful in
image querying. Thus the remaining transformations - two-dimensional type-II DCT and
standard and non-standard Haar wavelet decomposition - are taken as candidates. Since
they are all linear and their basic functions are orthonormal, the distance can between two
image patches can be measured by the difference in their transformed coefficients (see the
following lemma).

Lemma If the basic functions of transformation are orthonormal, squared L2 error of the
transformed coefficient differences between two image blocks ΨP and Ψq are the same as
the squared L2-norm difference between two images on pixel values.

Selection of coefficients to be kept Two approaches to which coefficients of the transfor-
med image patch keep and which to discard is discussed (as shown in fig. 3.5):

1. First, keeping m coefficients at the top-left corner of the transformed image patch is
proposed. The idea behind this is based on the reason that human eyes are more
sensitive to noises in low frequency components than in high frequency ones [20].
The remaining coefficients are truncated to zero. However, as shown in fig. 3.5b,c,d,
the image patches reconstructed from these kept coefficients using Inverse DCT and
the standard and non-standard Haar wavelet reconstruction are dramatically different
from the input, especially on highly textured images.

2. Second suggested method is to keep m significant coefficients (i.e., the m coefficients
with largest magnitude). Using this approach, the result of the backward recons-
truction from the m retained coefficients gives clearly better results, as shown in
fig. 3.5b’,c’,d’, with DCT being the best candidate as a patch transformation routine
(fig. 3.5b’).

Gradient-based filling Before the DCT can be applied to image query patches, all unknown
pixels must be assigned new value. As observed in [25], using average color value is not a
good option. For a smooth image, the gradient at pixels will be approximately equal to zero.
Thus, a gradient-based filling method is suggested to determine the values of unknown pixels
before the computation of its DCT.

Each unknown pixel pi,j within the image patch is bound to its left/right and top/bottom
neighbors using the forward or backward difference, respectively. Therefore, for l unknown
pixels, at least k linear equations is given, with k > l, which is actually an overdetermined
system. The optimal values of unknown pixels are then compute by using the least squares

3.4. METHOD OF KWOK ET AL. 29

d b’b c c’ d’a

Figure 3.5: Comparison of different transformation methods on differently chosen m
coefficients on highly textured image samples; image taken from [25]. The better the
original image is reconstructed, the more accurate the image difference error is reflected
by these m coefficients. (a) The input patch. (b,c,d) The performance of DCT, standard
and non-standard Haar wavelet transformation, respectively, using m coefficients at top-
left corner. (b’,c’,d’) The performance of DCT, standard and non-standard Haar wavelet
transformation, respectively, using m significant coefficients. One can clearly confirm that
using m significant coefficients of DCT (b’) gives the best results.

method. Then, the nearest neighbor is then found using the SSD distance metric on
truncated m-dominant DCT coefficients.

However, as a drawback reported by authors, the gradient filling may generate smoother
images at unknown pixels while the known patch area is highly textured. This complication
is overcome by selecting more than just one best matching candidate using the proposed
method. Instead, best 0.1% of total exemplars is selected and the final best exemplar is
selected among them using the SSD distance metric on known pixels.

30 CHAPTER 3. SELECTED ALGORITHMS

3.4.2 Search structure

As suggested in previous sections, before the inpainting process can start, the source patches
(i.e., the patches with all pixels known) must be transformed and inserted into a search
structure. This search structure must provide fast way to compare stored patches with
query patches (i.e., the patches for which the best matching exemplar shall be found). This
search structure must take care of storing and accessing those m retained coefficients of each
source patch.

Since the positions of m significant coefficients is not fixed, no structure based on KD-
trees can be a good option (it would still need to have as many dimension as if no coefficients
were truncated). Instead, a structure similar to one proposed in [3] is used. Let p̂ti,j denotes
the DCT coefficient at (i, j) in the to-be-filled patch Ψp̂, where t denotes the color channel
of CIE Lab space (i.e., t = L, a, b). Best exemplarΨq̂ minimizing the Euclidean distance
from the query patch Ψp̂ is then given as:

d̃ (Ψp̂,Ψq̂) =
∑
t

∑
(i,j)

(
p̂ti,j , q̂

t
i,j

)2
.

By expanding and eliminating the zero terms, the previous equation can be formulated as:

d̃ (Ψp̂,Ψq̂) = d̃p̂ + d̃q̂ − 2d̃p̂q̂ , where

d̃p̂ =
∑
t

∑
p̂t

i,j 6=0

(
p̂ti,j

)2
,

d̃q̂ =
∑
t

∑
q̂t

i,j 6=0

(
q̂ti,j

)2
and

d̃p̂q̂ =
∑
t

∑
p̂t

i,j 6=0,q̂t
i,j 6=0

p̂ti,j q̂
t
i,j .

Furthermore, the value of d̃p̂ for a given query patch does not change during the computation
and can be omitted, so the scoring metric for comparing similarity between patches Ψp̂ and
Ψq̂ can be further simplified to

S (Ψp̂,Ψq̂) = d̃q̂ − d̃p̂q̂.

The smaller the value of S for given patch pair is, the more they are similar one to each
other.

Given a query patch of size n×n pixels with m significant DCT coefficients, to evaluate
S (Ψp̂,Ψq̂) only 2m + 1 multiplications plus one subtractions for each color channel are
needed in the worst case scenario, while up to n2 multiplications plus n2 subtractions are
needed to obtain the value of SSD on all corresponding pixels of given patch pair. In fact, the
aforementioned count of operations (2m+1) is only performed, when the nonzero coefficients
of both patches Ψp̂ and Ψq̂are placed on the same patch coordinates. In general, however,
there are fewer overlapped coefficients. Besides, the values of d̃q̂ can be precomputed and
so only d̃p̂q̂ must be evaluated on the fly.

3.4. METHOD OF KWOK ET AL. 31

While computing d̃p̂q̂, one first has to check if neither p̂ti,j nor q̂ti,j are zero. To do this,
the authors propose a search array data structure similar to ones used in [22] or [3]. For
each color channel t, separate search array Dt is constructed. Each point of this array,
Dt [i, j] then contains a list pointing to all source patches that have the DCT coefficient at
(i, j) in color channel t nonzero. More specifically, the record stored in Dt [i, j] [k] (with k
representing the k-th source patch having nonzero DCT coefficient at (i, j)) contains two
values:

• Dt [i, j] [k] .ID - the global index of associated source patch

• Dt [i, j] [k] .α - the actual value of nonzero DCT coefficient

3.4.3 Algorithm

Search arrays for all channels are constructed before the actual image synthesis starts -
in the initialization phase. All source patches from the source region Φ (see notation in
section 3.3.2) are decomposed into the frequency domain by using the DCT. Obtained DCT
coefficients are truncated with only m most significant coefficients left. These coefficients
are then inserted into the search arrays and during the scoring process (the selection of
best exemplar for given query patch) serve as the values of d̃p̂q̂ term. Also, during the
initialization step, another array, denoted as B (meaning base-score array), is created to
store the precomputed values of the d̃q̂ term. The element B [k] stores the value of d̃q̂ of the
k-th source patch. Both arrays B and D are then used to score the stored exemplars and
to choose the best matching one. More detailed description of the algorithm is given in alg.
FindBestMatch 4.

Algorithm 4 Pseudocode of selection of the best matching exemplar as proposed in [25].
FindBestMatch
1: scores[k]← B[k]
2: for each color channel t do
3: for each nonzero DCT coefficient p̂ti∗,j∗ do
4: for each element e of Dt [i∗, j∗] do
5: K ← Dt [i∗, j∗] [e] .ID
6: scores[k]← scores[k]− 2

(
Dt [i∗, j∗] [e] .α · p̂ti∗,j∗

)
7: end for
8: end for
9: end for
10: kmin ← arg mink scores [k]

3.4.4 Parallelization on GPU

In [25] a parallel version of proposed algorithm is also presented, which gains most of the
speedup of the presented results. All the steps of suggested algorithm can be rewritten to
be able to run on GPU.

32 CHAPTER 3. SELECTED ALGORITHMS

3.4.5 Summary

The approach presented in [25] improves the bottleneck of [11] - the exhaustive search of
best matching exemplars for given queries. This is done by transforming the patches into the
frequency domain (using DCT) and truncating larger fraction of resulting coefficients, thus
reducing the search space. A search array-like structure is presented to efficiently score the
examined stored exemplars during the synthesize phase. By this approach, the algorithm
significantly reduces the time complexity of image completion of given image.

3.5 Method of Simakov et al.

The idea behind randomized correspondence algorithm (PatchMatch) was already described
in sec. 2.7. As noted, PatchMatch itself can not be used for image completion (or other
image maniuplation technique) task directly but rather serve as a fast method to search
for nearest neighbors for the particular method. More specifically, an image completion
algorithm that relies on search of dense correspondences (i.e., finding nearest neighboring
patches for all patches) would be an ideal candidate for incorporation of PatchMatch. The
one, also mentioned by authors of [4], is presented in [27].

3.5.1 Summarizing visual data using bidirectional similarity

Simakov et al. proposed a method of summarization of visual data based on a bi-directional
similarity measure that aims to provide a metric for classifying the similarity between two
images or videos (of possibly different sizes).

The Bidirectional Similarity Measure The measure is given by the following definition:
two visual signals S and T are considered “visually similar” if as many as possible patches
of S (at multiple scales) are contained in T , and vice versa. The signals S and T are of the
same type (i.e., images in case of inpainting) and do not need to be of the same size. The
measure is formally defined as follows:

d (S, T) = dcomplete (S, T) + dcohere (S, T) , where (3.1)

dcomplete (S, T) = 1
NS

∑
P⊂S

min
Q⊂T

D (P,Q) ,

dcohere (S, T) = 1
NT

∑
Q⊂T

min
P⊂S

D (Q,P) and

P and Q denote the patches in S and T , respectively, NS and NT denote the number of
patches in S and T , respectively, and D (,) denotes is any distance metric between two
patches (SSD measured in CIE Lab color space is used in [27]) and which is the better
the smaller. Illustration of completeness and coherence terms is presented in fig. 3.6. The
similarity measure defined above captures two requirements and suggests how “good” visual
summary of source image S is the target image T . The completeness term indicates how
much is T visually complete w.r.t. S (i.e., how much visual data of S is represented in T

3.5. METHOD OF SIMAKOV ET AL. 33

) and the coherence term whether T is visually coherent w.r.t. S (i.e., whether T does not
introduce new visual artifacts that were not observed in S).

Input image
(source)

Output image
(target)

Input image
(source)

Output image
(target)

a b

Figure 3.6: The bidirectional similarity measure; image taken from [27]. Two signals are
considered visually similar if all patches of one signal are contained in the other signal, and
vice versa. The patches are taken at multiple spatial scales. (a) The illustration of the
completeness term (dcomplete). (b) The depiction of the coherence term (dcohere).

From the definition of d (S, T), it is obvious that dense patch correspondence is needed,
since for every patch Q ⊂ T , the most similar patch P ⊂ S has to be found. Thus, the
spatial geometric relations are implicitly captured by treating images as unordered sets of
all their overlapping patches.

Weighted similarity measure The similarity metric can further be modified so the
relative weight of both terms may be used: d (S, T) = αdcomplete (S, T)+(1− α) dcohere (S, T),
where α ranges from 0 to 1. This adjustment can be used to emphasize one of the two
incorporated terms to better fit needs of desired purpose (as, e.g., image completion).

Summarization (Retargeting) Algorithm With bi-directional (dis)similarity measure defi-
ned, the iterative algorithm is proposed to iteratively minimize it. I.e., given a source image
S, the task is to reconstruct a target image T that optimizes the similarity measure. Such
a output, denoted as Toutput, is defined as follows:

Toutput = arg min
T
d (S, T) .

Two key points of this optimization problem must be stressed out. The iterative update
rule and the use of iterative (coarse-to-fine) gradual resizing algorithm.

Iterative update rule The algorithm that minimizes the metric is an iterative process.
All pixels in T contribute some error value both to dcohere and dcomplete. Let q ∈ T denote
a pixel in T and T (q) its color. Then these contributions are defined as follows:

Contribution of pixel q to dcohere term: Let Qi=1...m denote all patches in T that
contain pixel q (see illustration in fig. 3.7) and Pi=1...m the nearest neighbors (most similar)

34 CHAPTER 3. SELECTED ALGORITHMS

Qi=1

Qi=m=25

Qj

q

T - Target image S - Source image

P1

Pm

p1

pj

pm

Pj

Figure 3.7: Notations for the update rule; image based on image taken from [27]. For all
patches Q1...m (blue) from target image T containing processed pixel q (black), their nearest
neighboring patches P1...m are found in the source image S and pixels p1...m corresponding to
q are processed to evaluate the value dcohere. Also, for all patches P̂j (red) from source image
S, whose nearest neighbor patches Q̂j contain pixel q, pixels p̂j are processed to obtain the
contribution of processed pixel q to dcomplete term.

patches in S. Let pi=1...m be the pixels in patches Pi=1...m corresponding to the positions of
pixel q within Qi=1...m.Then 1

NT

∑m
i=1 (S (pi)− T (q))2 is the contribution of pixel q to the

coherence term.
Contribution of pixel q to dcomplete term: Let Q̂j=1...n denote all patches in T

that contain pixel q and are nearest neighbors for some patches in S. Unlike m, which
is fixed for all pixels, the value of n varies from pixel to pixel and may also be zero.
Furthermore, let p̂j=1...n be the pixels in patches P̂j=1...n corresponding to the positions
of pixel q within Q̂j=1...n. Then the contribution of pixel q to the completeness term is
defined as 1

NS

∑n
j=1 (S (p̂j)− T (q))2.

Having the contribution of a single pixel to both terms, the update rule (for a pixel q)
may be defined as follows:

T (q) =
1
NS

∑n
j=1 S (p̂j) + 1

NT

∑m
i=1 S (pi)

n
NS

+ m
NT

.

The iterative algorithm that minimizes the global error can be then summarized in the
following way (also see fig. 3.7):

1. For each target patch Q ⊂ T l (where T l denotes the target image refined in l-th
iteration) find its nearest neighboring patch P ⊂ S. Colors of pixels in P are votes for
pixels in Q with weight 1

NT
.

2. For each source patch P̂ ⊂ S find its nearest neighboring patch Q ⊂ T l. Colors of
pixels in P̂ are votes for pixels in Q̂ with weight 1

NS
.

3.5. METHOD OF SIMAKOV ET AL. 35

3. For each target pixel q update the color and set the new value in the next target T l+1

as a weighted average of all its votes obtained in steps 1 and 2.

Gradual resizing In [27], a gradual resizing algorithm is suggested. However, since the
purpose of the original algorithm is slightly different than just image inpainting, it is not
necessary to describe it here in full extent. Briefly, it is used to overcome the problem of
possibly large differences in size between the source image S and the target image T , since
the local refinement process converges to a good solution only if the initial guess is “close
enough” to the solution. Therefore, if the initial target was obtained simply as a resized
source, the update algorithm could get trapped in local minima and the output could be
unsound. Instead, to avoid this problem, the initial target is resized gradually and on each
level of the pyramid the intermediate target is first iteratively improved before the process
may continue.

3.5.2 Incorporating PatchMatch

In section 3.5.1, the algorithm proposed in [27] was described. To be able to use it for
purpose of image completion, few changes of the default scheme must be made.

Non-uniform importance The (dis)similarity measure, given by eq. 3.1, supposes that all
patches are equally important. In case of image inpainting, however, this could be a wrong
assumption. In fact, the patch-to-patch distance (i.e., the distance between the patch an its
nearest neighbor) should be incorporated in some way. Therefore, a weighting parameter is
introduced to eq. 3.1:

d (S, T) =
∑
P⊂S ωP minQ⊂T D (P,Q)∑

P⊂S ωP
+
∑
Q⊂T ωP̂ minP⊂S D (Q,P)∑

Q⊂T ωP̂

where ωP is the patch importance and P̂ = arg minP⊂S D (Q,P). The weights are defined
over the source image.

Omitting the completeness term So far, the bidirectional similarity measurement was
based on two terms - completeness term dcomplete and coherence term dcohere. As defined,
the completeness term makes the requirements on the target image T in the way that it
should contain as many patches from source image S as possible. However, when using
the scheme, where the rest of the image except the hole (the unknown pixels) serves as the
source region, this condition is automatically fully satisfied (since the desired target Toutput
is the exact copy of source plus some new pixel values on positions marked as unknown).
Therefore, the completeness term can be omitted by setting the parameter α to 0. In fact,
this operation reduces the similarity measure to the very same algorithm as used in [29].

Gradual resizing To avoid getting stuck in bad local minima, a multi-scale gradual scaling
process is used. The image is repeatedly downscaled (using the Gaussian pyramid technique
as described in sec. 2.4.3). Then at the lowest resolution, several iterations of the bidirectional
similarity algorithm are run using PatchMatch as the “provider” of nearest neighbor pairing

36 CHAPTER 3. SELECTED ALGORITHMS

(with random initial assignment). The final target output Toutput is then upsampled and is
used as a initial guess or hint in the next level. The number of iterations of both bidirectional
similarity measure refinement and the PatchMatch varies from level to level.

Chapter 4

Implementation

The implementation section covers the interesting points of implementation parts of algo-
rithms described in chapter 3. The full source code listing can be reviewed on accompanied
CD.

4.1 OpenCV

Prior the description of selected parts, the chosen framework must be briefly introduced.
OpenCV (Open Source Computer Vision Library) [9] is a multiplatform open source library
mainly aimed at computer vision and image processing. It is originally written in C with
wrappers in many others programming languages. Moreover, since version 2.0 the C++
interface is also provided.

Thus, the OpenCV library was used during implementation extensively since it already
has written many both essential and non-essential image processing algorithms as well as,
e.g., matrix handling and is optimized at high-level.

4.2 Framework overview

Since the implemented algorithms are all exemplar-based, they share many common pro-
perties and concepts. E.g., they all use the known part of the image (or its subset) as the
source zone, they all use similar distance metric (with the exception of [3], all the algorithms
use SSD as the distance metric) and some others. Thus, some of these common properties
could (and should) be extracted to exploit the refactorization of code. The core of the
implementation concept tends to be interface-based (even though there is no such thing
like in C++). The following overview of important class will be briefly introduced before
describing some of them in more detail:

• IPaper - an interface encapsulating the methods of a paper implementation. All imple-
mented image completion algorithms must extend this class. Since slightly different
parameters for each algorithm may be needed, the common input/output class is
required.

37

38 CHAPTER 4. IMPLEMENTATION

• IO - an input/output class. Provides method to store and pass variables of different
primitive data types such as numbers, strings or pointers.

• ISampler - an interface providing the basic sampling operations to sample from target
zone. Not all papers may take advantage of this (e.g. the PatchMatch since it aims
to find dense correspondences) but nevertheless it has proven useful.

• ISearcher - the other similar concept to sampler is the searcher. Object implementing
the searcher interface finds for given point or patch from target zone the best matching
point or patch, respectively, in source zone.

• ISolver - since several algorithms use a repetitive scheme “sample from target →
search for best match” until the missing part is re-synthesized, this interface and its
default implementation SimpleSolver provide methods to encapsulate it.

• DistanceMetrics - the class providing various distance metric to compare two pixels
or, more precisely, their patches.

• SimpleImage - possibly the very heart of the framework. Encapsulates the basic image
instance handling, pixel access, target and source zone management and others as well
as some image-processing-related methods such as the creation of Gaussian pyramid
with clever mask handling as described in sec. 2.4.3. and illustrated in fig. 2.4.

• Matrix operations - set of functions (not occupying one common class) providing useful
tools (like, e.g., gradient based filling described in sec. 3.4.1).

The aforementioned classes form the basis of the whole implementation, wrapped in
namespace hfl (Hole Filling Library). More detailed description of some of these classes
will be given in the following sections of this chapter.

4.2.1 Image class

The image class is the common and connecting element of the rest classes and functions
in the hfl namespace. Almost all other instances like searchers, samplers or input/output
processing have something to do with the SimpleImage class. The input image might be
created either by passing image filenames or the cv::Mat objects (which is the 2D matrix
class in OpenCV library). The image instance takes care of the image data, stores the
information about source and target zones, patch size etc. It can be basically imagined as a
3-layered image as shown in fig. 4.1b. These layers are of the same size and, as can be seen
in fig. 4.1a, the image, as well as the target and source zones, is padded by certain distance,
usually set as patch radius (see sec. 1.4). Thanks to this simple modification of original
data, no boundary checking is required while comparing the patches near the boundaries,
which gives the algorithms some extra performance.

The image is by default stored as set of triplets of 8-bit unsigned characters defining the
colors in BGR space (which is the same as RGB except the order of channels is reversed) to
make use of memory coherence. However, some of the algorithms may need to process the
image in different precision. Therefore, all three layers are accessible to the user without no
restrictions. On the other hand, the framework is not responsible for any incompatibilities

4.2. FRAMEWORK OVERVIEW 39

c d e
Patch size

Pa
tc

h
ra

di
us

ba

Figure 4.1: The illustration of how the image is being handled in the described framework.
(a) The explanation of the patch size (which is odd number) and patch radius. By setting the
padding at least to the value of patch radius, the boundary checking (i.e., testing whether
the patch does not span out of the image) can be omitted. (b) The depiction of the 3-layered
concept. (c) The input image plus the padding area (shaded). Only the area corresponding
to the original image (without padding) is processed. (d) The mask corresponding to the
input image. The white areas mark the pixels where the mask is set. The padding is by
default also set to true. (e) The allowed zone (source region). The source region is by
default set as the inverse of the mask minus a dilated band near the boundaries between
masked/known regions.

incurred by inappropriate use. The target (also referred to as masked) and the source
(allowed) zones are by default binary images with ones placed on pixels where the specific
property is true (e.g. where the the pixel is masked) and zeros where the property is set to
false. The image instance also stores the data related to patch size such as patch size or
patch radius.

To summarize, the SimpleImage class encapsulates all the needed data and methods to
efficiently handle the image data during image completion process.

4.2.2 Input/output class

Despite all being based on exemplar-based approaches, the different implemented methods
may require slightly different parameters. Thus, a unifying point for passing information
to every single one of them is highly required. The IO class represents such a class for
exchanging information via one encapsulating instance. The class provides methods to:

• store the information of different primitive data types

• loading stored information - the popped information can be converted to any supported
data type if it is possible (e.g. one numerical data type can be converted to another)

• checking whether the parameter exists and is stored within the class instance

4.2.3 IPaper interface

The IPaper interface serves as an entry point for a custom paper image-completion-related
implementation. As all classes or functions of this project, it is contained within the hfl
namespace. The interface is particularly simple and besides the methods for image synthesis,

40 CHAPTER 4. IMPLEMENTATION

it provides the basic info about the implemented paper. In more detail, there are methods
for:

• providing the basic information about the implemented algorithm, namely the title,
abstract text and the names of the authors

• synthesis of the image - the parameters are passed via an instance of the IO class

• time measuring, more specifically the method that returns the elapsed time of the last
image completion

No additional constraints are placed on any implemented algorithm, thus making their
use by the end-user substantially easy. Also, adding newly implemented papers into the
framework would be quite simple.

4.2.4 ISampler interface

The sampler is a common concept among the implemented algorithms. With exception of
the PatchMatch, the rest of the algorithms uses some kind of sampling from the target zone.
An example would be basic scanline sampling, when the samples are obtained by iterating
through the image in row-major order, or the spiral (onion) sampling, when the unknown
area is traversed in concentric spiral manner. To separate the sampling from the rest of the
algorithm, and to provide a way to quickly change the sampling method to compare results,
the ISampler interface is important. It separates the implementation and thus gives the
possibility of design rapid changes that would otherwise mean replacing large parts of code.
Giving an example, if one had wanted to change the sampling method in the algorithm
stated in [13], the whole blocks of code responsible for sampling would have had to rewrite
almost the whole part. In contrary, by using a sampler instance implementing ISampler
interface, this can be done instantly. Thus, the required functionality is:

• sampling from the target zone of given SimpleImage instance or from another, specifi-
cally passed, binary image (respecting the notation of masked/known pixels as stated
in sec. 4.2.1)

• updating the the image after a best match is found (using the searches, see sec. 4.2.5) -
usually, some post-processing must be done before next sample can be generated and,
therefore, the interface provides a method to do it

4.2.5 ISearcher interface

As with the sampler, the searcher is another common concept. Given a masked pixel with
partially unknown patch, the task is to find its nearest neighbor, i.e., the most similar
patch, with respect to some predefined criteria. Moreover. although the methods to achieve
this do differ significantly, they all share the input/output point and are, therefore, the
candidates for another encapsulating interface. The ISearcher interface provides the desired
functionality plus contains methods for possible parallel processing within each searcher.

4.3. SAMPLERS 41

4.2.6 ISolver interface

As mentioned, the very core concept of several exemplar-based image synthesis algorithms
can be summarized as the repetitive loop of sampling and searching, as illustrated in fig. 4.2.
Therefore, a solver instance utilizing both given sampler and solver is implemented with the
SimpleSolver class as its basic implementation.

Image complete

Any
more masked

pixels?

Find best
match for

given sample

Sample pixel
from masked

zone
Hole in the image

Yes

No

Figure 4.2: Flowchart of simple solver scheme.

4.2.7 Matrix operations

Although the majority of implemented work is sorted in different class, few common func-
tionality have been separated and are implemented as global within the hfl namespace
scope.

Selected parts

Describing the whole implementation, class by class, is surely unnecessary. Therefore, only
a selection of interesting classes will be given in this section, with more detailed description.

4.3 Samplers

4.3.1 Scanline sampler

Starting with basic sampler, the instance ScanlineSampler proceeds as follows: Given an
input SimpleImage class instance, the sampler first examines its masked zone (ignoring the
optional padding) and initializes the internal pointer to the first element of the list. When
a request for next sample is made by calling the method

boolsample(cv :: Pointcenter),

the sampler first checks whether the internal pointer points to a valid element. If so, the
given point parameter is assigned the sample value and a boolean true is returned to
signalize that the sample was successfully passed. Otherwise, if all points from masked zone
were already sampled, no value is assigned to the parameter center and the sampler return
false to signalize that the sampling has finished.

42 CHAPTER 4. IMPLEMENTATION

If true is returned, the last generated sample is stored to be processed in the update
phase of the iteration, and after its nearest neighbor is obtained (outside the sampler),
method

voidupdate(cv :: PointbestExemplar)

must be called to update the image instance for which the sampler was created.

Settings For its simplicity, this sampler implementation provides only a little space for
any adjustable behavior:

• Sampling order - the order of sampling can be set either to scanline (from top-left
corner to the bottom-right one) or reverse scanline

• Fill mode - whether to fill the whole patch around the last sample with the data
from patch around the best exemplar or only the pixel value itself

4.3.2 Onion peel sampler

As demanded in [3] or mentioned in [11], the spiral order is used in many hole filling
approaches to produce smoother and more coherent result. The implementation of spiral
iterator, class OnionPeelSampler, makes use of the cv::findContours function provided
by the OpenCV library. As in case of ScanlineSampler, the list of points is initialized
before the sampling starts. This is possible due to the fact that the order of sampled points
can be predetermined in advance (in contrary to, e.g., the ImportanceSampler). Note that
in the case of more separated holes present in the target region, the concentric layers are
taken across all holes before processing the next contour (see fig. 4.3 for clearer idea).

a b

Figure 4.3: Illustration of sampling in spiral manner. (a) The mask of the image. White
areas are marked as to-be-synthesized pixels. (b) Order of sampling. Each color band
represents a one-pixel thin contour. The samples are generated from the outermost contour
of the target region and proceed inwards in a process resembling the peeling of onions, hence
the name. The order of processed contours is also emphasized by the color scale ranging
from red (outermost contour) to yellow.

Settings Similar to the previously described sampler, the onion peel sampler only have
two changeable parameters:

4.3. SAMPLERS 43

• Sampling order - the default order is clockwise and can be changed to counter-
clockwise

• Fill mode - whether to fill the whole patch around the last sample with the data
from patch around the best exemplar or only the pixel value itself

4.3.3 Fill ratio sampler

Inspired by the confidence term introduced in [11] and described in sec. 3.3.2, the idea behind
the FillRatioSampler class is to fill first those unknown pixels, whose patches contain
more valid pixels, since these pixels contain more pixels against which the candidates for
best exemplar can be matched. As showed in [11], this assumption itself does not guarantee
the sufficient propagation of linear structure, however, represents more reasonable approach
than the basic scanline sampling that does not reflect the shape of the masked areas at all.
In contrary to previously described samplers, the FillRatioSampler can not precompute
and store the order of outgoing samples since the order is determined by the found best
exemplars and which is determined outside the sampler.

Settings

• Fill mode - whether to fill the whole patch around the last sample with the data
from patch around the best exemplar or only the pixel value itself

4.3.4 Priority sampler

The priority sampling, as it is presented in [11], represents an advanced method to generate
samples. Unlike ScanlineSampler or OnionPeelSampler, the algorithm implemented in
PrioritySampler class does reflect the actual state of the image and generates next sample
by using it. According to the algorithm described in 3.3.2, the priority of the patch is
determined by evaluating its confidence and data terms. While computation of the confi-
dence term is relatively simple, the evaluation of the data term will be described in more
detail.

Boundary normal estimation In the original paper, the estimation of normal vector np
to the contour line is obtained as follows: Once the contour line δΩ has been found, for
currently processed point p ∈ δΩ the normal is estimated as the unit vector orthogonal to
the line through the preceding and the successive points in the contour. However, this only
gives a rough approximation since there are only a fixed number of combinations resulting
only in limited set of possible angles (see fig. 4.4). Therefore, the accuracy of the normal
estimation should be increased.

To improve it, different method must be incorporated. More specifically, at first, the
distance transform of the image mask must be obtained. Note, that the distance map must
be recreated every iteration, since the mask of the image changes during the course of image
synthesis. The example of such distance transform is illustrated in fig. . Then, the boundary
normals are computed using the distance map as a gradient. To improve the results, robust
gradient operator should be used.

44 CHAPTER 4. IMPLEMENTATION

0° arctan(0.5)≈26.6° 45° arctan(2)≈63.4°

90° ≈116.6° 135° ≈153.4°

180° ≈206.6° 225° ≈243.4°

270° ≈296.6° 315° ≈333.4°

Figure 4.4: Contour normal estimation using contour pixels only. The unique angle values
that can be obtained when using the contour normal estimation method mentioned in [11].
The shaded area determines the known part of the image Φ while the white one represents
the image hole Ω and red pixels denote its δΩ. The symmetry is clearly visible.

a b

Figure 4.5: Contour normal estimation using distance transform (L2-norm). (a) The image
mask. (b) The distance transform with the contour δΩ marked in red. The contour is a
8-connected line.

Isophote estimation According to the proposed algorithm, the isophote is computed as
the as the maximum value of the gradient ∇IP in Ψp ∩ Φ rotated by 90◦. The gradient
is computed on the grayscale version of the processed image (which must also be updated

4.3. SAMPLERS 45

after retrieval of the best exemplar). Since the simple numerical gradient is not sufficient,
another robust operator, such as Scharr operator or the ones proposed in [19], should be
used. However, the pixels marked as unknown could obviously affect the resulting gradient.
In fact, since the target region is filled with zeros (thus appearing as black color), there
would likely be a significant gradient magnitude between the blackened holes Ω and the rest
of the image Φ as illustrated in fig. 4.6c.

To overcome this, similar approach to the one described in fig. 2.4 could be used.
However, since the OpenCV image routines are highly optimized, rewriting the convolution
algorithm could lead to potential loss of performance (which does not matter in case of
creating the image pyramid since there are only several iterations in contrary to approxi-
mately two orders of magnitude larger count of gradient computation during the course of
the inpainting process).

Instead, since the gradient is computed in a floating point format, one can make use
of incorporating the NaN (Not A Number) value, introduced by the IEEE 754 floating-
point standard [21]. NaN is a numeric data type value that represents an undefined or
unrepresentable value, especially in floating point calculations (note that NaN is not the
same as the infinity value, although both are typically handled as special cases).

There are three kinds of operations that can return NaN: [15]

1. Operations with a NaN as at least one operand.

2. Indeterminate forms

• The divisions 0
0 and ±∞±∞ .

• The multiplications 0 · ±∞ and ±∞ · 0.
• The additions ∞+ (−∞), (−∞) +∞ and equivalent subtractions.
• The standard has alternative functions for powers:

– The standard pow function and the integer exponent pown function define 00,
1∞, and ∞0 as 1.

– The powr function defines all three indeterminate forms as invalid operations
and so returns NaN.

3. Real operations with complex results, e.g:

• The square root of a negative number.
• The logarithm of a negative number.
• The inverse sine or cosine of a number that is less than −1 or greater than +1.

There are also two kind of NaNs:

1. Signaling NaN (sNaN) - the type of NaN that, being processed by most operations,
should raise an invalid exception and then, if appropriate, be "quieted" into a qNaN.

2. Quiet NaN (qNaN) - the type of NaN that does not raise any additional exceptions as
they propagate through most operations.

46 CHAPTER 4. IMPLEMENTATION

a b c d

Figure 4.6: The example of using qNaN value to remove the unwanted raise of gradient
magnitude at boundaries between the source and target region. (a) The original image.
(b) The portion of the image that is to be removed is selected by the user. The red line
denotes the initial contour line δΩ and the hole Ω is by default filled with zeros. (c) The
gradient magnitude on the untreated image hole (and padding) creates undesired artifacts
thus compromises the evaluation of the data term. (d) The gradient magnitude on the image
in which the zero values on missing pixels were substituted by qNaN values.

In particular interest is the fact that the NaN is returned when at least one of the operands
is NaN. Therefore, if we fill the holes with qNaN values, they will not be treated as if they
have any valid color at all and the gradient near the boundaries will not be affected by the
content of the missing part of the image. There is, however, one minor disadvantage - some
values within certain distance from outside of the image holes will be lost. Fortunately, since
the Scharr operators in the implementation use kernels of size 3× 3, namely −3 −10 −3

0 0 0
+3 +10 +3

 and

 −3 0 +3
−10 0 +10
−3 0 +3

 ,

this distance will only be one or two pixels at maximum and since the single pixel is rarely
a feature on itself, this operation can be processed without a significant loss of the quality
of the output image.

4.4 Searchers

The searcher classes, as the name suggests, are responsible for finding the nearest neighbor
(or best exemplar) of given pixel, respectively its surrounding patch. They examine the
given part of the image and find the solution using of the algorithms described in chap. 3.By
implementing the ISearcher interface, the searcher can be used (as in case of samplers
implementing the ISampler interface) as a modular “box” that can be easily changed in the
synthesis process. In this section, the implemented searchers will be described.

4.4. SEARCHERS 47

4.4.1 Exhaustive searcher

ExhaustiveSearcher is the basic searcher class designed mainly for purpose of [13]. For a
given image part specified by target region matrix (see fig. 4.1e), the area is first preprocessed
and structures that are used repeatedly (e.g., the matrix headers or patch centers) are stored
to spare some processing time. Since ExhaustiveSearcher supports the parallel processing,
the image may be tiled into several horizontal regions based on the number of required
threads. I such case, the pre-prepared structures are initialized per image tile.

The rest of the processing is simple. When the searcher is requested to find the best
exemplar for given image point, it iterates through the precomputed data structures and
selects the best matching one based using the comparison of a distance metric, which is, by
default, sum of squared differences (SSD).

Modes The exhaustive searcher can be run in three modes:

• Linear - the basic single-core mode

• Parallel - the multi-core routine; note, however, that the speedup is not linear since
the threads must by synchronized just before the final nearest neighbor value for the
queried pixel can be assigned.

• SSD - single-core implementation using the PSADBW instruction; the distance metric
is thus changed to sum of absolute differences (SAD) and the results may vary from
results obtained using the other modes

Sometimes (like in [25] when the set of 0.1% best candidates is probed to determine
the overall nearest neighbor), there is a need for selection the best exemplar from the set
that changes every iteration. Preprocessing the data would be useless in such occasion
and, therefore, another method (besides the ISearcher interface) is implemented in the
exhaustive searcher class for this particular case.

4.4.2 Patch vector searcher

The search data structure described in [3] is implemented within the PatchVectorSearcher
class. Having the image instance, maximal error distance and minimal candidates count as
the input parameters, it initializes the search data structure.

The structure consists of several arrays. For each image channel the data array is
created. This array has dimensions of 256 × |Ψp|, where 256 is to represent all values of
8-bit color channel and |Ψp| denotes the area of the patch, i.e., the square of patch size. In
each cell, a list to store the identifiers of patches having the specific value on given patch
position is needed. The choice of this list gets more and more important with the increasing
size of the search space. Using std::vector class satisfies good cache performance, but
with increasing image size, the re-allocation of the data will consume significant time.Using
a std::list is also not a good option. Although it lacks the need of re-allocating the data,
it breaks the principle of locality and impose additional memory overhead associated with
storing list metadata such as references.

48 CHAPTER 4. IMPLEMENTATION

Therefore, an optimal structure would be a combination of both aforementioned ones
- the unrolled linked list. An unrolled linked list consists of nodes that all contain fixed
number n of elements, thus exploiting the spatial locality. Also the memory overhead is
reduced since there is only one pointer needed per n elements (see fig. 4.7). Setting the
value of n must be then made considering the proportions of both the given image and the
patch size.

1 8 2 2 3 7 4 6 1 4 9 0

Figure 4.7: Illustration of the unrolled linked list consisting of three nodes capable to contain
up to five elements per node.

The last array used within the searcher is the occurrence array. As its name suggests,
it simply counts the occurrence of patch identifiers. On every iteration, the array must be
first cleared. Then, as the patch around the query pixel is being examined and the lists
in all channels’ data arrays are being traversed, the occurrence counter is incremented on
corresponding position. After all lists are processed, the occurrence array is examined and
if it contains enough candidates to criteria the rule described in alg. 2, the set of potential
candidates is returned. Otherwise, next iteration is performed testing the data structure
with increased error value (see alg. 2 for details). If not enoughcandidates is found after the
last iteration, the set of so-far-best candidates is outputted.

Among the returned candidate, the overall best match is selected by using the instance
of ExhaustiveSearcher.

4.4.3 Phase correlation searcher

The PhaseCorrelationSearcher class utilizes the phase correlation to find the nearest
neighbors of the given query pixel/patch as described in sec. 2.5. After the input image is
provided, it must first be preprocessed - the missing part must “pre-synthesized”, i.e., filled
with some initial information. This operation must be as less time-consuming as possible.
Therefore, the missing pixels in the holes are assigned the values obtained by averaging the
known pixels from their neighborhood, resulting in blurred area. The iteration over the
missing pixels can be done in scanline or spiral manner. After this operation is done, the
grayscale copy of the image is made for the purpose of Fourier transform.

The searcher then proceeds in simple iterations until the content of the missing area is
re-synthesized. First, the grayscale query patch is placed in the center of otherwise black
image A (thus creating the impulse) and the whole input image (also grayscale) is placed
into the image B. Note that both images have the proportions of the input SimpleImage
instance minus the padding. Then, the phase correlation is performed on mentioned images
and the locations of peaks are examined. The position of n highest values placed within the
source zone form a candidate set of exemplars, from which the best match is selected by an
exhaustive search routine.

After the best exemplar is found the grayscale image must be updated (note that for
updating the original image is responsible the sampler instance).

4.5. PATCHMATCH 49

4.4.4 Fast query searcher

Similar to PatchVectorSearcher, the FastQuerySearcher class utilizes a precomputed
search structure to speed up the search process. The main difference, comparing to the
one proposed in [3] is the fact that the number of stored coefficients (thus the number an
length of lists that must be traversed) is significantly reduced while the structure is being
created. The arrays themselves are also very similar. The data array has dimensions of
a patch (which is few orders of magnitude less than in case of the structure suggested in
[3]) having a list, storing identifiers of patches that have the non-truncated DCT coefficient
on corresponding patch position, in each cell. The data array is again created per image
channel. Another array, the baseScore array, is initialized to contain the precomputed
values of one of the d̃q̂ term described in [25]. This array serves during every iteration as an
initial score for every patch. Note, however, that the method of [25] was implemented only
on CPU and thus the result run times of the algorithm might be more or less slower than
the result documented in the original paper.

Gradient-based filling The gradient fill method that performs the gradient-based filling of
examined incomplete patches (see description in sec. 3.4.1) proceeds in two iterations. In
first iteration, the number of variables and the number of equations of the overdetermined
linear system is found. In the second pass, the matrix A and the right side vector b of the
equation Ax = b are assembled. Each row of the matrix represents a single equation that
bounds the single unknown pixel from the patch to one of its top or right neighbor assuming
the discrete gradient to be zero. After the data structures are assembled, the solution of the
system is found by using the OpenCV built-in least squares method.

4.5 PatchMatch

The PatchMatch, proposed in [4] and described in sec. 2.7, can not be simply assigned to
the searchers since it proceeds in a different way. Instead of finding a single nearest neighbor
per iteration, it searches for best matching across the whole image and iteratively improves
the initial guess during the course of next iterations. Thus, it can not be implemented as a
derived class of ISearcher interface.

The PatchMatch class provides convenient methods for initialization (either by randomly
assigned values or by another, possibly downscaled, nearest neighbor field, NNF) and ite-
rations. It must also be pointed out that since the PatchMatch is applied in the gradual
resizing process, the target region is constructed ass the whole image minus the target zone,
i.e., the source patches may contain missing pixels as well (as long as as the central pixel of
the patch is known). This modification must be done because in smaller resolutions, it is
not desired to further reduce the search space.

Handling rotations The rotations, introduced to PatchMatch scheme in [5], extend the
search space to the another dimension examining the matching also across the predefined
range of angles. To efficiently handle the rotations, the patch offset mask must be precomputed
for all possible angle values. This matrix of size of the patch stores the values of the relative
offset of each patch element as illustrated in fig. 4.8.

50 CHAPTER 4. IMPLEMENTATION

(2,-1) (2,0) (1,1) (1,1) (1,2)

(1,-1) (1,0) (1,0) (0,1) (0,2)

(1,-1) (0,-1) (0,0) (0,1) (-1,1)

(0,-2) (0,-1) (-1,0) (-1,0) (-1,1)

(-1,-2) (-1,-1) (-1,-1) (-2,0) (-2,1)

X

Y

Figure 4.8: The example of patch offset mask for angle of 45◦. The original pixel (red) and
its patch of size 5 (black) is rotated and the relative offsets (blue table on the right) are
taken as using nearest-neighbor interpolation method.

4.6 Papers

Having the image synthesis logic disassembled into the sampling and searching units, the
papers themselves consist usually only from these two blocks and therefore, there is no need
to specify them in more detail. There is, however, one exception - the PatchMatch and the
Bidirectional similarity measure introduced by Simakov et. al [27] and described in sec. 3.5.1.

4.6.1 Simakov

The code is implemented in class Simakov implementing the IPaper interface. After extracting
the input data from parameter of input/output class IO, the algorithm proceeds as follows:

1. The gaussian pyramid, utilizing technique mentioned in sec. 2.4.3 and illustrated in
fig. 2.4, is created. The number of levels depends on the specific image and the size
of its missing region since new levels of the pyramid are constructed until either the
size of the downscaled image is larger than a single patch size or the hole “grows in”
as the downsampling continues.

2. The initial target (the smallest image in the pyramid) is then unmasked, i.e. all pixels
are explicitly declared as known (the initial source, which is actually the same image,
remains untouched). The iterative processing of the levels of the pyramid from the
smallest image up to the original one then proceeds as follows:

(a) The nearest neighbor field of the PatchMatch class is initialized, either randomly
(if the currently processed image is the initial one) or using previous iteration’s
solution as the hint.

(b) Several iterations of the summarization algorithm are run. In each iteration,
another several iterations of PatchMatch algorithm are performed (with more
iterations on the coarse level) followed by the application of iterative update rule
(see sec. 3.5.1). The PatchMatch is used as a tool to find dense correspondences
before the update rule can be applied. Contribution of pixels is weighted to
emphasize the effect of correctly mapped image areas.

4.6. PAPERS 51

Weighting function As suggested in [27], the optional weighting function can be incorporated
to control the update process. In [1], the weight of the pixels is fixedly computed as the
inverse of the patch distance between the given patch and its nearest neighbor. However, for
better modularity, it would be optimal if the patch distances were first mapped into a certain
range of values from 0 to N . Then, a weighting function can be created for the same range,
thus providing an easy way to test various patch weighting. Currently, three weighting
functions are implemented as the lookup table generating methods in the framework: the
distance inverse, linear decrease and the hyperbolic tangent, as illustrated in fig. 4.9.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

distance inverse
linear
hyperbolic tangent

Figure 4.9: Examples of possible patch-weighting functions. The patch distance (to its
nearest neighbor) is first scaled in the given range (in this example 0 . . . 99). Then the
weight of the patch is selected from the discretely sampled weighting function. The values
can be also possibly scaled along X-axis moving the zero towards the origin

52 CHAPTER 4. IMPLEMENTATION

Chapter 5

Results

In this chapter, the achieved results will be presented. Although the image inpainting
algorithms described in chap. 3 share the property of being patch-based, the can not be
simply compared in the sense of computation time since some of them are pixel-based (one
pixel at the time is synthesized) while the others are patch-based (all uknown pixels in the
patch around currently processed pixel are filled at once). Therefore, a visual comparision
will be given as well as some performance comparisons where the make sense.

5.1 Algorithm settings

Unless stated otherwise, the presented results were obtained running the algorithms with
following settings:

• The method of Averbuch et al. [3] - size of the patch 7, maximal error distance
10, minimal number of candidates 10

• The method of Criminisi et al. [11] - size of the patch 9

• The method of Efros and Leung [13] - size of the patch 7

• The method of Kwok et al. [25] - size of the patch 9, number of kept coefficients
9, number candidates 0.1% of total exemplars

• The method of Simakov et al. [27] using work of Barnes et al. [4] - size of
the patch 7

All tests were run on an Intel Core i5 CPU, 2.53 GHz and with 64-bit Windows 7 as
an operating system. Also, an early termination 2.2 method was used on SSD calculation
wherever possible.

53

54 CHAPTER 5. RESULTS

5.2 Real-world images

5.2.1 Scratch-like holes

Scratch-like holes represent usually an easier task for an image inpainting algorithm than
the situation when larger part of the image has to be re-synthesized. However, this type
of image synthesis is also required in many cases, when, e.g., an overlaying text must be
removed or scratches in an old photography or painting is to be repaired.

a b c d

e f g h

Figure 5.1: Test image “Interview”. (a) The original image of size 334× 250. (b) The mask
covering 0.85% of the image. (c) The input image with emphasized masked areas. (d) The
output of [3], 20.049 sec. (e) The output of [11], 0.891 sec. (f) The output of [13], 2.763
sec. (g) The output of [25], 4.021 sec. (h) The output of [27, 4], 0.477 sec.

As can be clearly deduced from the running times, building a search structure for images
with only little missing pixels is not efficient. Especially the search structure of [3] does not
seem to work very well. To further investigate this observation, the structure must be
further examined. Its major drawback is clearly the significant memory footprint which
makes the process of its iteration very time-consuming. With increasing patch size and
image proportions, the size needed to store the search structure grows rapidly. Fig. 5.3
shows as the number of stored data in lists of search structure grows with increasing size of
patch window. In addition, the even more time-consuming operation than the creation of
the structure is its iteration. Without possible parallel processing, this operation is simple
the bottleneck of the approach of [3].

When synthesizing only few pixels wide holes in rapidly changing area (like in fig. 5.1),
the careful setting of the size of patch in case of patch-filling methods (methods that fills
the whole patch instead of setting only the single pixel) becomes more important because
small artifacts can easily occur (see fig. 5.1e,g).

Comparing all the aforementioned in matter of computational time, the PatchMatch-
supported [4] method of Simakov et. al. [27] outperforms the rest of the algorithms by one
to two orders of magnitude, as documented in [4].

5.2. REAL-WORLD IMAGES 55

a b c d

e f g h

Figure 5.2: Test image “Beach Text”. (a) The original image of size 400×300. (b) The mask
covering 5.05% of the image. (c) The input image with emphasized masked areas. (d) The
output of [3], 85.433 sec. (e) The output of [11], 42.336 sec. (f) The output of [13], 49.693
sec. (g) The output of [25], 27.093 sec. (h) The output of [27, 4], 0.714 sec.

3 4 5 6 7 8 9 10 11
0

0.5

1

1.5

2

2.5

3
x 10

7

Patch window size

N
u
m

b
e
r

o
f
st

o
re

d
 e

le
m

e
n
ts

Figure 5.3: The number of elements stored in lists of search structure proposed in [3] for
image in fig. 5.2. For example, having the patch of size 9, every patch contributes with
9 × 9 × 3 integer values, giving (assuming 4 bytes per integer variable) 243 × 4 bytes per
single valid patch center. In case of fig. 5.2 and patch size 9, there are 82528 such patches
centers (pixels).

5.2.2 Large holes

Completing larger holes is a more difficult task then completing the scratch-like ones. While
to synthesize the few pixels wide area, the sufficient information is often located within the

56 CHAPTER 5. RESULTS

immediate proximity of the holes, in case of reconstructing larger missing region, the best
fitting exemplars may be located almost anywhere in the image.

a b c d

e f g h

Figure 5.4: Test image “Bungee Jumper”. (a) The original image of size 206× 308. (b) The
mask covering 13.86% of the image. (c) The input image with emphasized masked areas.
(d) The output of [3], 65.754 sec. (e) The output of [11], size of the patch 7, 7.647 sec.
(f) The output of [13], 21.585 sec. (g) The output of [25], size of the patch 7, 6.404 sec.
(h) The output of [27, 4], size of the patch 5, 0.431 sec.

As can be seen, the gradual resizing process used in [27] leads to the loss of details as
they get lost when the image is iteratively downsampled. See the fig. 5.4h. In contrary
to the borderline between the ground and the river, which is reconstructed well within the
missing part of the image, the roof part is synthesized in an inaccurate manner. This fact
is the tradeoff between the outstanding speed of the algorithm and its accuracy.

With increasing size of the image, the time of computation of [3] (fig. 5.5d) becomes very
unsatisfactory. Also, as greedy-based method, the method of [13], processing the missing
pixels in scanline order, may get trapped into a loop when certain patch is repeatedly
identified as the best exemplar (fig. 5.5f).

In highly textured images with many different features, such as in fig. 5.7, all methods

5.3. CARTOON GRAPHICS 57

a b c d

e f g h

Figure 5.5: Test image “Palace”. (a) The original image of size 638 × 478. (b) The mask
covering 3.72% of the image. (c) The input image with emphasized masked areas. (d) The
output of [3], 630.170 sec. (e) The output of [11], 25.343 sec. (f) The output of [13], 149.663
sec. (g) The output of [25], 31.336 sec. (h) The output of [27, 4], 2.328 sec.

a b c d

e f g h

Figure 5.6: Test image “Horse”. (a) The original image of size 420 × 315. (b) The mask
covering 14.58% of the image. (c) The input image with emphasized masked areas. (d) The
output of [3], 227.459 sec. (e) The output of [11], 25.442 sec. (f) The output of [13], 106.167
sec. (g) The output of [25], 19.176 sec. (h) The output of [27, 4], 1.044 sec.

give visually more or less unpleasant output.

58 CHAPTER 5. RESULTS

a b c d

e f g h

Figure 5.7: Test image “Fruits”. (a) The original image of size 200 × 150. (b) The mask
covering 12.55% of the image. (c) The input image with emphasized masked areas. (d) The
output of [3], 12.316 sec. (e) The output of [11], 1.204 sec. (f) The output of [13], 3.905
sec. (g) The output of [25], 2.269 sec. (h) The output of [27, 4], 0.241 sec.

a b c d

e f g h

Figure 5.8: Test image “Bear”. (a) The original image of size 400 × 250. (b) The mask
covering 6.01% of the image. (c) The input image with emphasized masked areas. (d) The
output of [3], 111.977 sec. (e) The output of [11], size of the patch 7, 6.215 sec. (f) The
output of [13], 25.855 sec. (g) The output of [25], size of the patch 7, 6.083 sec. (h) The
output of [27, 4], 0.721 sec.

5.3 Cartoon graphics

Cartoon graphics represents completely different type of images. With sharp borders between
regions, more or less thick contours and uniformly colored image areas, human eyes are much
more sensitive to the potential visual inconsistencies. The gradual resizing process may give

5.4. PATCHMATCH 59

better results here, as shown in fig. 5.8, since it can better capture the local context of larger
area.

5.4 PatchMatch

As obvious from the running times, the PatchMatch-supported algorithm proved to give
good results and incomparable speed. Therefore, we will give some additional test and
comparisons. One of the main advantages of the algorithm is the fact that its practically
independent of the size of the unknown areas since the correspondences are computed for all
image patches. However, the number of comparisons per patch is significantly smaller than
in methods that utilize the exhaustive search over the whole set of exemplar candidates per
every query patch, such as [13, 11, 3, 25].

a b

c d

Figure 5.9: Test image “Fairy Tale”. (a) The original image of size 900× 540. (b) The mask
covering 5.25% of the image. (c) The input image with emphasized masked areas. (d) The
output of [27, 4], 3.774 sec.

5.5 Performance comparison

Given the comparison of the algorithms in terms of both performance speed and visual
quality of the output, we now focus on some points to emphasize certain aspects of image

60 CHAPTER 5. RESULTS

completion problem.

5.5.1 SSE instruction set

The use of SSE instruction set (more specifically instruction PSADBW) was described in
sec. 2.3. Using it, we are able to process multiple pixels at once, although the used metric
must be changed sum of absolute differences (SAD) instead of sum of squared differences
(SSD). When the early termination is incorporated, usually more comparisons must be
performed before the current candidate for optimum may be discarded as unpromising.
Also, when the simple brute force method is used, the comparisons of masked pixels within
the target patch can be simply skipped by checking a single condition. However, since
the adjustment of once pre-prepared SSE data (containing information about all source
patches) for every target patch would be inefficient, those pixels must be compared as well,
even though they do not contribute to the error some with any value. Still, utilizing SSE
provides the speed up as shown in fig. 5.10 and table 5.1.

Size of the hole
20×15
(0.44%)

40×30
(1.77%)

80×60
(7.11%)

120×90
(16.00%)

160×120
(28.44%)

Brute force 3.586 13.738 50.469 97.898 152.919
Early termination 0.973 3.630 13.362 25.823 36.678
SSE brute force 0.966 3.667 13.076 26.506 42.162

SSE with early term. 0.667 2.612 9.723 19.354 29.614

Table 5.1: Performance of different methods of NN search.

5.5.2 Phase correlation

As mentioned in sec. 2.5, the phase correlation, used as method to search for nearest
neighbors of given patches, is practically independent on the size of the patch window
(the small set of best candidates must be probed in traditional manner). Although giving
visually different results on incomplete patch search queries, it can be used when the size of
the patch window grows over some value as shown in fig. 5.11.

5.6 Time performance/visual quality

5.6.1 Patch size

All the described and implemented methods (as well as most of the methods mentioned in
sec. 1.2) share the patch size property as often one of the few adjustable parameters to control
the image synthesis process. Therefore, we tested how this parameter visually influences the
output image with respect to the processing time. On selected algorithms ([11], [13] and
[27, 4]), the size of the patch was scaled from 5 to 13 pixels and the results are presented in
fig. 5.12, 5.13 and 5.14 and summarized in tab. 5.2. As can be deduced, for methods that
fill the whole patch in every iteration step, the growth of the patch size parameter actually

5.6. TIME PERFORMANCE/VISUAL QUALITY 61

0 5 10 15 20 25 30
0

20

40

60

80

100

120

140

160

Ratio of masked/known pixels [%]

T
im

e
 o

f
co

m
p

u
ta

tio
n

 [
s]

brute force (SSD)
early termination (SSD)
SSE (SAD)
SSE with early termination (SAD)

b

a

c d e f

b’ c’ d’ e’ f’

b’’ c’’ d’’ e’’ f’’

Figure 5.10: Utilizing SSE instruction set. The input image “Fruits” with size 300× 225 is
scanned with patch window of size 7 to complete missing areas of various sizes from 20×15 to
160×120. (a) The original image. (b,c,d,e,f) Masks of different sizes are placed into center of
the image. (b’,c’,d’,e’,f’) The results obtained using the SSD metric. (b”,c”,d”,e”,f”’) The
results obtained using the SAD metric (together with SSE instruction set). Use of early
termination and/or SSE instruction set brings significant speedup in contrary to simple
brute force approach.

reduces the computation time. However, more inconsistencies may occur when a bad patch
is selected as the nearest neighbor. In contrary, pixel-synthesis-based methods show less
tendency to introduce new unintended image edges since a single pixel is rarely a feature

62 CHAPTER 5. RESULTS

6 8 10 12 14 16 18 20 22 24 26
0

2

4

6

8

10

12

Size of patch [px/side]

T
im

e
 o

f
c
o

m
p

u
ta

tio
n

 [
s]

brute force
phase correlation

Figure 5.11: Comparison of exhaustive patch search vs. phase correlation based approach.
The brute force (blue) uses also the early termination technique. While the computation
time of phase correlation search remains stable with increasing patch size, the exhaustive
search reflects this change of this parameter by longer computation time. The data was
measured on fig. 5.10a using mask of fig. 5.10b.

itself. Nevertheless, the size of patch window dramatically increases the computation time
of these methods, especially when a large image part has to be synthesized.

5.6.2 Constrained source region

As mentioned in 2.1.1, the size of the source zone does not always have to correspond to
the whole rest of the image. In fact, the sufficient information is often presented within
the imminent distance from the hole in a coherent pixel band. Depending of the size of
this constrained area, the search of nearest neighbors can be sped up in varying degrees.
Therefore, we tested several of the implemented algorithms to reflect this property. Since
method of [27, 4] propagates the correspondences through the whole image, methods of [3],
[11] and [13] were tested to examine this property. The result images are shown in fig. 5.15
and 5.16, respectively, and the time measurements can be found in tab. 5.3. All tests were
run with patch size 7.

The results suggest that in most cases the constrained source zone gives approxima-
tely same results as searching over the whole image while the time of computation drops.
Therefore, to probe only patches within the near distance from missing region suffices to
synthesize the desired image.

5.6.3 Hierarchical approach

When image synthesis in larger image must be performed, or the missing area spans large
portion of the input image, great amount of patch-to-patch comparisons must be computed.

5.7. COMPARISON WITH CONSUMER APPLICATIONS 63

a b c

d e f g h

d’ e’ f’ g’ h’

d’’ e’’ f’’ g’’ h’’

Figure 5.12: Test image”Elephant”. (a) The original image of size 384× 256. (b) The mask
covering 13.27% of the image. (c) The input image with emphasized mask. (d,e,f,g,h) The
output of [11] using patch of sizes 5 . . . 13. (d’,e’,f’,g’,h’) The output of [13] using patch of
sizes 5 . . . 13. (d”,e”,f”,g”,h”) The output of [27, 4] using patch of sizes 5 . . . 13.

By using the brute force alone, the time of computation can easily rise up to few hundreds of
seconds. A method that addresses this problem, and deals with it by resampling the image
into lower resolution, is the hierarchical approach that makes use of creation of an image
pyramid (see sec. 2.4). By downscaling the image in much lower resolution (preferably to
half resolution at each step), the performed count of patch comparisons can be significantly
lowered. However, the solution (more precisely the solution hint) propagated from the
smallest resolution upwards might get trapped in the local minima and the final visual
output may differ significantly. To observe and further evaluate the tradeoff between speed
and visual quality, fig. 5.17, 5.18, 5.19 and 5.20 are presented along with comparison with
results of [27, 4] that also utilize hierarchical approach.

5.7 Comparison with consumer applications

The probably most widespread mainstream image editing tool, the Adobe Photoshop,
introduces in version CS5, as mentioned in sec. 1.3, new feature called Content Aware

64 CHAPTER 5. RESULTS

a b c

d e f g h

d’ e’ f’ g’ h’

d’’ e’’ f’’ g’’ h’’

Figure 5.13: Test image”Pumpkin”. (a) The original image of size 473× 334. (b) The mask
covering 4.47% of the image. (c) The input image with emphasized mask. (d,e,f,g,h) The
output of [11] using patch of sizes 5 . . . 13. (d’,e’,f’,g’,h’) The output of [13] using patch of
sizes 5 . . . 13. (d”,e”,f”,g”,h”) The output of [27, 4] using patch of sizes 5 . . . 13.

Fill. Based on PatchMatch-supported [4] method of Wexler. et al. [29], it is able to quickly
retouch the desired portion of the image. The utilization of PatchMatch algorithm reduces
the computation time of [29] by several degrees of magnitude. Therefore, we would like to
compare the results of implemented algorithms with the visual output of both the Adobe
Photoshop CS5 and the original algorithm of Wexler et al. [29]. Since both algorithms are
not implemented within the same framework, we can not give the precise time measurement
but note that in practice, the time needed by the first mentioned method (Content Aware
Fill) tends to be only few milliseconds, while the latter one [29] usually requires several tens
of seconds. The comparison results are shown from fig. 5.21 to fig. 5.25.

5.7. COMPARISON WITH CONSUMER APPLICATIONS 65

a b c

d e f g h

d’ e’ f’ g’ h’

d’’ e’’ f’’ g’’ h’’

Figure 5.14: Test image”Battlements”. (a) The original image of size 400×300. (b) The mask
covering 4.47% of the image. (c) The input image with emphasized mask. (d,e,f,g,h) The
output of [11] using patch of sizes 5 . . . 13. (d’,e’,f’,g’,h’) The output of [13] using patch of
sizes 5 . . . 13. (d”,e”,f”,g”,h”) The output of [27, 4] using patch of sizes 5 . . . 13.

66 CHAPTER 5. RESULTS

Criminisi [11]
5 7 9 11 13

Elephant 19.053 14.716 13.762 13.603 13.453
Pumpkin 12.591 9.517 8.618 8.297 8.313

Battlements 61.042 47.706 41.567 37.008 35.317

Efros [13]
5 7 9 11 13

Elephant 38.345 52.315 71.227 101.009 136.591
Pumpkin 36.376 47.119 59.386 77.029 97.570

Battlements 112.816 157.171 216.792 282.388 373.309

Simakov/Barnes [27, 4]
5 7 9 11 13

Elephant 0.673 0.783 0.942 1.180 1.495
Pumpkin 0.988 1.105 1.257 1.447 1.723

Battlements 0.940 1.122 1.409 1.830 2.304

Table 5.2: Time performance of selected methods with changing patch size from 5 to 13.
Images “Elephant”, “Pumpkin” and “Battlements” are shown in fig. 5.12, 5.13 and 5.14,
respectively.

Averbuch [3]
10 20 30 40 50 full

Sign 7.314 12.095 17.983 25.651 35.187 92.238
Crossroads 12.975 26.457 39.711 49.729 57.769 82.957

Criminisi [11]
10 20 30 40 50 full

Sign 3.597 4.569 4.951 5.516 5.986 20.216
Crossroads 8.541 11.504 13.279 14.518 15.394 16.796

Efros [13]
10 20 30 40 50 full

Sign 2.811 5.956 8.660 10.934 12.641 40.407
Crossroads 9.540 22.140 31.791 38.279 42.955 54.663

Table 5.3: Time performance of selected methods with changing size of source region. Images
“Sign” and “Crossroads” are shown in fig. 5.15, 5.16 and 5.14, respectively.

5.7. COMPARISON WITH CONSUMER APPLICATIONS 67

a b c

d e f g ih

d’ e’ f’ g’ i’h’

d’’ e’’ f’’ g’’ i’’h’’

d’’’ e’’’ f’’’ g’’’ i’’’h’’’

Figure 5.15: Test image”Sign”. (a) The original image of size 400 × 266. (b) The mask
covering 8.40% of the image. (c) The input image with emphasized mask. (d,e,f,g,h) The
source region (containing only pixels with full patches) constructed as a dilated band of
n = (10, 20, 30, 40, 50) pixels. (i) The maximal possible source region (discarding only
incomplete source patches). (d’,e’,f’,g’,h’,i’) The output of [3]. (d”,e”,f”,g”,h”,i”) The output
of [11]. (d”’,e”’,f”’,g”’,h”’,i”’) The output of [13]. All results were obtained using patch size
of 7.

68 CHAPTER 5. RESULTS

a b c

d e f g ih

d’ e’ f’ g’ i’h’

d’’ e’’ f’’ g’’ i’’h’’

d’’’ e’’’ f’’’ g’’’ i’’’h’’’

Figure 5.16: Test image”Sign”. (a) The original image of size 243 × 368. (b) The mask
covering 15.05% of the image. (c) The input image with emphasized mask. (d,e,f,g,h) The
source region (containing only pixels with full patches) constructed as a dilated band of
n = (10, 20, 30, 40, 50) pixels. (i) The maximal possible source region (discarding only
incomplete source patches). (d’,e’,f’,g’,h’,i’) The output of [3]. (d”,e”,f”,g”,h”,i”) The output
of [11]. (d”’,e”’,f”’,g”’,h”’,i”’) The output of [13]. All results were obtained using patch size
of 7.

5.7. COMPARISON WITH CONSUMER APPLICATIONS 69

a b c

d e f g h

Figure 5.17: Hierarchical approach, test image “Baby”. (a) The original image of size
350×265. (b) The mask covering 26.01% of the image. (c) The input image with emphasized
mask. (d) The result of exhaustive search over the original image, 77.066 sec. (e) Using 1
pyramid step, 19.759 sec. (f) Using 2 pyramid steps, 5.025 sec. (g) Using 3 pyramid steps,
3.760 sec. (h) The result of [27, 4], 0.854 sec.

a b c

d e f g h

Figure 5.18: Hierarchical approach, test image “Monkey”. (a) The original image of size
400×262. (b) The mask covering 7.33% of the image. (c) The input image with emphasized
mask. (d) The result of exhaustive search over the original image, 32.686 sec. (e) Using 1
pyramid step, 7.449 sec. (f) Using 2 pyramid steps, 1.486 sec. (g) Using 3 pyramid steps,
1.132 sec. (h) The result of [27, 4], 0.771 sec.

70 CHAPTER 5. RESULTS

a b c

d e f g h

Figure 5.19: Hierarchical approach, test image “Car”. (a) The original image of size 400×265.
(b) The mask covering 23.78% of the image. (c) The input image with emphasized mask.
(d) The result of exhaustive search over the original image, 81.405 sec. (e) Using 1 pyramid
step, 17.148 sec. (f) Using 2 pyramid steps, 4.421 sec. (g) Using 3 pyramid steps, 3.588 sec.
(h) The result of [27, 4], 0.921 sec.

a b c

d e f g h

Figure 5.20: Hierarchical approach, test image “Ship”. (a) The original image of size 400×
249. (b) The mask covering 11.95% of the image. (c) The input image with emphasized
mask. (d) The result of exhaustive search over the original image, 49.031 sec. (e) Using 1
pyramid step, 11.446 sec. (f) Using 2 pyramid steps, 2.613 sec. (g) Using 3 pyramid steps,
1.694 sec. (h) The result of [27, 4], 0.799 sec.

5.7. COMPARISON WITH CONSUMER APPLICATIONS 71

a d eb c

Input data Reference output

f g h i j

Output of implemented methods

Figure 5.21: Comparison with reference output, test image “Chairs”. (a) The original image
of size 400 × 266. (b) The mask covering 4.60% of the image. (c) The input image with
emphasized mask. (d) The result from Photoshop. (e) The result of [29]. (f) The result
of [3]. (g) The result of [11]. (h) The result of [13]. (i) The result of [25]. (j) The result
of [27, 4].

a b c d e

Input data Reference output

f g h i j

Output of implemented methods

Figure 5.22: Comparison with reference output, test image “Elephant”. (a) The original
image of size 384× 256. (b) The mask covering 13.27% of the image. (c) The input image
with emphasized mask. (d) The result from Photoshop. (e) The result of [29]. (f) The result
of [3]. (g) The result of [11]. (h) The result of [13]. (i) The result of [25]. (j) The result
of [27, 4].

72 CHAPTER 5. RESULTS

a d eb c

Input data Reference output

f g h i j

Output of implemented methods

Figure 5.23: Comparison with reference output, test image “Sign”. (a) The original image
of size 400 × 266. (b) The mask covering 8.40% of the image. (c) The input image with
emphasized mask. (d) The result from Photoshop. (e) The result of [29]. (f) The result
of [3]. (g) The result of [11]. (h) The result of [13]. (i) The result of [25]. (j) The result
of [27, 4].

a d e

Input data

b c

Reference output

f g h i j

Output of implemented methods

Figure 5.24: Comparison with reference output, test image “Pumpkin”. (a) The original
image of size 473 × 334. (b) The mask covering 4.47% of the image. (c) The input image
with emphasized mask. (d) The result from Photoshop. (e) The result of [29]. (f) The result
of [3]. (g) The result of [11]. (h) The result of [13]. (i) The result of [25]. (j) The result
of [27, 4].

5.7. COMPARISON WITH CONSUMER APPLICATIONS 73

a b c d e

f g h i j

Input data Reference output

Output of implemented methods

Figure 5.25: Comparison with reference output, test image “Bungee Jumper”. (a) The
original image of size 206× 308. (b) The mask covering 13.86% of the image. (c) The input
image with emphasized mask. (d) The result from Photoshop. (e) The result of [29]. (f) The
result of [3]. (g) The result of [11]. (h) The result of [13]. (i) The result of [25]. (j) The
result of [27, 4].

74 CHAPTER 5. RESULTS

Chapter 6

Conclusion

The goal of this thesis was to examine, describe and implement several image inpainting
algorithms constituted on examplar-based approach using the rest of the image as the source
of information to perform given task. The brief introduction was given with emphasis on
both state-of-the-art methods and examples of practical usage. Also, the short theoretic
introduction into the exemplar-based synthesis was presented.

The problem of finding nearest neighbors of given patches was described in more detail in
chap. 2 since the problem of finding nearest neighbors plays one of the key roles in exemplar-
based image completion area. Also, the description of selected image completion methods
was given in chap. 3.

In the second part of this thesis, the implementation of selected methods was proposed,
providing the unified framework to reuse the parts which the implemented algorithms share
in common, thus making it easy to possibly add more image inpainting algorithms in the
future. The algorithms of [3], [11], [13], [25] and [27, 4] were implemented in C++ language
using the features of the advanced image processing library OpenCV [9].

Finally, the implemented algorithms and selected NN-search methods were tested and
compared in terms of time complexity and visual quality of the output. Furthermore, the
comparison with currently well-established consumer image editing software, the Adobe
Photoshop, and its underlying algorithm [29] was given to compare the quality of output
images.

6.1 Future work

More methods targeting the image completion problem could be included into the imple-
mented framework in future, making use of pre-prepared structures shared also by majority
of already implemented algorithms. Also, porting the presented methods to GPU could be
a important task for future development, since most of them can be parallelized. Lastly, a
simple graphical user interface could be created to simplify the manipulation with the image
as well as bring the option to step the algorithms and see the "live" updates, as the missing
portion of the image is being synthesized. This feature could also serve as an instructional
or educative tool to explain the mechanism of implemented algorithms.

75

76 CHAPTER 6. CONCLUSION

Bibliography

[1] Andrew Adams. ImageStack - a command-line stack calculator for images. <http:
//code.google.com/p/imagestack/>, 2012. Accessed: 01/05/2012.

[2] E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt, and J. M. Ogden. Pyramid
methods in image processing. RCA Engineer, 29(6):33–41, 1984.

[3] A. Averbuch, G. Gelles, and A. Schclar. Fast hole-filling in images via fast comparison
of incomplete patches. In Proceedings of the International conference on Multimedia
Content Representation, Classification and Security, pages 738–744, 2006.

[4] Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan B Goldman. Patchmatch:
a randomized correspondence algorithm for structural image editing. ACM Transactions
on Graphics, 28(3):24, 2009.

[5] Connelly Barnes, Eli Shechtman, Dan B. Goldman, and Adam Finkelstein. The
generalized patchmatch correspondence algorithm. In Proceedings of the 11th European
Conference on Computer Vision, pages 29–43, 2010.

[6] M. Bertalmio, A. L. Bertozzi, and G. Sapiro. Navier-stokes, fluid dynamics, and image
and video inpainting. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 355–362, 2001.

[7] Marcelo Bertalmio, Guillermo Sapiro, Vincent Caselles, and Coloma Ballester. Image
inpainting. In Proceedings of the 27th annual conference on Computer graphics and
interactive techniques, pages 417–424, 2000.

[8] Ronald N. Bracewell. The Fourier transform and its applications. 2d ed. edition, 1978.

[9] G. Bradski. The opencv library. Dr. Dobb’s Journal of Software Tools, 2000.

[10] Tony F. Chan and Jianhong Shen. Non-texture inpainting by curvature-driven
diffusions (cdd). Journal of Visual Communication and Image Representation, 12:
436–449, 2001.

[11] A. Criminisi, P. Perez, and K. Toyama. Region filling and object removal by exemplar-
based image inpainting. IEEE Transactions on Image Processing, 13(9):1200–1212,
2004.

[12] Iddo Drori, Daniel Cohen-Or, and Hezy Yeshurun. Fragment-based image completion.
ACM Transactions on Graphics, 22(3):303–312, 2003.

77

http://code.google.com/p/imagestack/
http://code.google.com/p/imagestack/

78 BIBLIOGRAPHY

[13] Alexei A. Efros and Thomas K. Leung. Texture synthesis by non-parametric sampling.
In Proceedings of the International Conference on Computer Vision, pages 1033–1038,
1999.

[14] Todor Georgiev. Photoshop healing brush: a tool for seamless cloning, 2004.

[15] David Goldberg. What every computer scientist should know about floating-point
arithmetic. ACM Computing Surveys, 23(1):5–48, 1991.

[16] Paul Harrison. Image Texture Tools. PhD thesis, Monash University, 2005.

[17] James Hays and Alexei A. Efros. Scene completion using millions of photographs. ACM
Transactions on Graphics, 26(3):4, 2007.

[18] David J. Heeger and James R. Bergen. Pyramid-based texture analysis/synthesis.
In Proceedings of the 22nd annual conference on Computer graphics and interactive
techniques, pages 229–238, 1995.

[19] Pavel Holoborodko. Noise robust gradient operators. <http://www.holoborodko.
com/pavel/image-processing/edge-detection/>, 2009.

[20] Chiou-Ting Hsu and Ja-Ling Wu. Hidden digital watermarks in images. IEEE
Transactions on Image Processing, 8(1):58–68, 1999.

[21] IEEE. IEEE standard for floating-point arithmetic. IEEE Std 754-2008, pages 1–58,
2008.

[22] Charles E. Jacobs, Adam Finkelstein, and David H. Salesin. Fast multiresolution image
querying. In Proceedings of the 22nd annual conference on Computer graphics and
interactive techniques, pages 277–286, 1995.

[23] James M. Kasson and Wil Plouffe. An analysis of selected computer interchange color
spaces. ACM Transactions on Graphics, 11(4):373–405, 1992.

[24] Nikos Komodakis. Image completion using global optimization. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 442–452, 2006.

[25] Tsz-Ho Kwok, Hoi Sheung, and Charlie C. L. Wang. Fast query for exemplar-based
image completion. IEEE Transactions on Image Processing, 19(12):3106–3115, 2010.

[26] David Mount and Sunil Arya. ANN: A library for approximate nearest neighbor
searching. 1997.

[27] Denis Simakov, Yaron Caspi, Eli Shechtman, and Michal Irani. Summarizing visual
data using bidirectional similarity. 2008.

[28] Huang Ting, Shifeng Chen, Jianzhuang Liu, and Xiaoou Tang. Image inpainting by
global structure and texture propagation. In Proceedings of the 15th international
conference on Multimedia, pages 517–520, 2007.

[29] Yonatan Wexler, Eli Shechtman, and Michal Irani. Space-time completion of video.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(3):463–476, 2007.

http://www.holoborodko.com/pavel/image-processing/edge-detection/
http://www.holoborodko.com/pavel/image-processing/edge-detection/

BIBLIOGRAPHY 79

[30] Chunxia Xiao, Meng Liu, Nie Yongwei, and Zhao Dong. Fast exact nearest patch
matching for patch-based image editing and processing. IEEE Transactions on
Visualization and Computer Graphics, 17(8):1122–1134, 2011.

[31] Yingzhen Yang, Yin Zhu, and Qunsheng Peng. Image completion using structural
priority belief propagation. In Proceedings of the 17th ACM international conference
on Multimedia, pages 717–720, 2009.

[32] A. Zalesny, V. Ferrari, G. Caenen, and L. Van Gool. Parallel composite texture
synthesis. In Texture 2002 Workshop in conjunction with ECCV 2002, pages 151–155,
2002.

80 BIBLIOGRAPHY

Appendix A

Note on color spaces

Comparing grayscale images, using on of the metrics mentioned before, is an easy job, since
the pixel is represented by only a single value. However, extending the comparison into
non-monochromatic color spaces brings new questions. In most color spaces the computer
images are represented as triplet of values.

The most common color space to store color images is the RGB (or BGR) model.
Although this model is based on model of human eye and its possession of three types
of cone cells (trichromacy), measuring the distances between two colors from RGB space
can produce ambiguous results. Consider this simple example. Lets have three RGB colors
with 8-bit per channel: a = (135, 20, 20), b = (255, 0, 65) and c = (122, 149, 20). The SSD
difference between colors a and b is 16825 and the difference between colors a and c is 16810,
thus they should be slightly more similar one to each other than a to b. However, as shown
in fig. A.1, the first two couple appears to be much more visually coherent to human eyes.

Figure A.1: Example of misleading interpretation of color distance in RGB color space.

Therefore, as suggested in number of image-completion-related works, CIE Lab [23, 11,
25] or YUV [3] color space are more meaningful choice, since these models take the human
perception of color more into account and separate the information about lightness from the
color. For example, in Lab color space the colors a and b would have distance 1965, while
between colors a and c the distance would be 6131.

81

82 APPENDIX A. NOTE ON COLOR SPACES

Appendix B

List of used abbreviations

ANN Approximate Nearest Neighbor

CIE Commission internationale de l’éclairage (International Commission on Illumination)

DCT Discrete Cosine Transform

FFT Fast Fourier Transform

GIMP GNU Image Manipulation Program

GNU GNU’s Not Unix!

LDV Large Displacement View

MRF Markov Random Field

NNF Nearest Neighbor Field

PCA Principal Component Analysis

PDE Partial Differential Equation

SAD Sum of Absolute Differences

SIMD Single Instruction, Multiple Data

SSD Sum of Squared Differences

SSE Streaming SIMD Extensions

83

84 APPENDIX B. LIST OF USED ABBREVIATIONS

Appendix C

Installation manual

The thesis was programmed on Microsoft Windows 7 64-bit using Microsoft Visual Studio
2010 with OpenCV 2.3 and FFTW libraries. In order to be able to run the code, the
followings requirements must be met:

1. The OpenCV library must be present on the host computer. It can be downloaded
from <http://sourceforge.net/projects/opencvlibrary/files/opencv-win/2.
4.0/>. Also download the last release of FFTW library from <http://www.fftw.
org/download.html>.

2. The paths in Visual Studio must be correctly set. Go to Project > Properties >
Configuration Properties > Linker > General and change the Additional Library
Directories input field to the correct value.

3. Go to Project > Properties > Configuration Properties > Linker > Input and check
that includes for OpenCV and FFTW are set.

4. Go to Project > Properties > Configuration Properties > C++ > General and change
the directories to correct value.

5. Make sure that the aforementioned changes are made both in Debug and Release
modes.

85

http://sourceforge.net/projects/opencvlibrary/files/opencv-win/2.4.0/
http://sourceforge.net/projects/opencvlibrary/files/opencv-win/2.4.0/
http://www.fftw.org/download.html
http://www.fftw.org/download.html

86 APPENDIX C. INSTALLATION MANUAL

Appendix D

Content of the accompanying CD

CD
|-- demo - Executable dmonstration binaries
|-- doc - Doxygen documentation
|-- img - Test images
| \--results - Result images presented
| in the chapter "Results"
|-- src - Source files of the implementation
|-- text
| |--latex - Source files of this thesis’ text
| \--thesis.pdf - PDF version of this thesis’ text
\-- README.txt - The short resume information

87

	Introduction
	Problem description
	State-of-the-art
	Applications
	Terminology

	Algorithms for fast NN search
	Distance metrics
	Handling unknown pixels

	Early termination
	SSE
	Hierarchical approach
	Anti-aliasing filters
	Disadvantages
	Gaussian pyramid
	Hierarchical approaches on images with unknown pixels

	Phase correlation
	Sequential overlap exploitation
	Single column processing
	Extensions
	Limitations

	PatchMatch
	Approximate nearest-neighbor algorithm

	Selected algorithms
	Method of Efros and Leung
	Algorithm
	Summary

	Method of Averbuch et al.
	Algorithm
	Distance metric
	Search structure
	Summary

	Method of Criminisi et. al
	Key observations
	Algorithm
	Summary

	Method of Kwok et al.
	Theoretical background
	Search structure
	Algorithm
	Parallelization on GPU
	Summary

	Method of Simakov et al.
	Summarizing visual data using bidirectional similarity
	Incorporating PatchMatch

	Implementation
	OpenCV
	Framework overview
	Image class
	Input/output class
	IPaper interface
	ISampler interface
	ISearcher interface
	ISolver interface
	Matrix operations

	Samplers
	Scanline sampler
	Onion peel sampler
	Fill ratio sampler
	Priority sampler

	Searchers
	Exhaustive searcher
	Patch vector searcher
	Phase correlation searcher
	Fast query searcher

	PatchMatch
	Papers
	Simakov

	Results
	Algorithm settings
	Real-world images
	Scratch-like holes
	Large holes

	Cartoon graphics
	PatchMatch
	Performance comparison
	SSE instruction set
	Phase correlation

	Time performance/visual quality
	Patch size
	Constrained source region
	Hierarchical approach

	Comparison with consumer applications

	Conclusion
	Future work

	Note on color spaces
	List of used abbreviations
	Installation manual
	Content of the accompanying CD

