
Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Computer Graphics and Interaction

Master's Thesis

Global Illumination Computation for Augmented Reality

Bc. Tomá² Nikodým

Supervisor: doc. Ing. Vlastimil Havran, Ph.D.

Study Programme: Open Informatics

Field of Study: Computer Graphics and Interaction

May 10, 2012

iv

v

Acknowledgements

I would like to thank to the supervisor of my thesis, doc. Ing. Vlastimil Havran, Ph.D. for
his advices and for pointing me in the right direction. To my parents, my girlfriend, and to
everyone who positively in�uenced my life.

vi

vii

Declaration

I hereby declare that I have completed this thesis independently and that I have listed all
the literature and publications used.
I have no objection to usage of this work in compliance with the act �60 Zákon £. 121/2000Sb.
(copyright law), and with the rights connected with the copyright act including the changes
in the act.

In Prague on April 15, 2012 .

viii

Abstract

In order to merge virtual objects into a real scene seamlessly, it is important to maintain
consistent common illumination. In this thesis, we propose a framework that captures high
dynamic range light probes and decomposes them into sets of directional light sources in
real-time. The light sources, captured and processed on a dedicated device, are than made
available to rendering engines via a server that provides wireless access. We implement
three di�erent importance sampling techniques and compare them in terms of the quality of
sampling pattern, temporal coherence, and performance.

Contents

1 Introduction 1

1.1 Overview . 1

1.2 Related Work . 1

1.3 Structure of this thesis . 2

2 Theoretical background 3

2.1 Optics . 3

2.1.1 Radiometry and photometry . 3

2.1.2 Surface re�ectance . 3

2.2 Ray shooting algorithm and data structures 5

2.3 Global illumination . 5

2.3.1 Rendering equation . 6

2.3.2 Path tracing based algorithms . 7

2.3.2.1 Path tracing . 8

2.3.2.2 Bidirectional path tracing . 8

2.3.2.3 Metropolis light transport . 9

2.3.3 Radiosity . 10

2.3.4 Photon mapping . 11

2.3.4.1 Construction of photon map 12

2.3.4.2 Rendering . 13

2.3.4.3 Irradiance caching . 13

2.3.4.4 E�ects . 14

2.4 Image-based lighting . 16

2.4.1 Environment map representation . 17

2.4.2 Environment map capture . 17

2.4.2.1 Mirrored spheres . 17

2.4.2.2 Tiled photographs . 18

2.4.2.3 Fish-eye lenses . 18

2.4.3 Use of environment maps in rendering 18

2.4.3.1 Light source identi�cation . 19

2.4.3.2 Light source constellation . 19

2.4.3.3 Importance sampling . 19

2.5 Image-based lighting using dynamic environment sequences 21

2.5.1 High dynamic range light probe acquisition 22

2.5.2 Importance sampling of video environment maps 22

ix

x CONTENTS

2.5.2.1 Requirements . 23

2.5.2.2 Existing methods for sampling of static environment maps . 23

2.5.2.3 Existing methods for sampling of dynamic environment maps 24

2.5.2.4 Probability distribution function based importance sampling
methods . 25

2.5.2.5 Spherical Q2-tree for sampling dynamic environment sequences 26

2.6 Illumination methods for augmented reality 30

2.6.1 Classi�cation of illumination methods 30

2.6.2 Common illumination based on di�erential rendering 32

2.6.3 Shadow detection and generation . 33

2.6.4 Di�erential instant radiosity . 35

3 Analysis and design 39

3.1 Problem statement and analysis of solution 39

3.2 Framework design . 40

3.2.1 Concepts . 40

3.2.2 Software architecture . 40

3.2.3 Technologies . 41

4 Implementation 43

4.1 Hardware description . 43

4.2 Camera calibration . 44

4.2.1 Geometric camera calibration . 44

4.2.2 Photometric camera calibration . 46

4.3 Software architecture . 46

4.3.1 Concept . 47

4.3.2 Server side . 48

4.3.3 Client side . 49

4.3.4 Communication protocol . 49

4.4 Implemented importance sampling methods 49

5 Results 51

5.1 Comparison of implemented methods . 51

5.1.1 Quality of sampling pattern . 51

5.1.2 Temporal coherence . 54

5.1.3 Performance . 55

5.1.4 Conclusion of the comparison . 57

5.2 Veri�cation and testing . 57

5.2.1 Stability testing . 57

5.2.2 Correctness of sampling pattern and photometric calibration 58

5.2.3 Renderer testing . 59

5.2.4 Software integration . 60

6 Conclusion 63

Bibliography 65

CONTENTS xi

A User manual 71

A.1 Communication protocol . 71
A.1.1 Information request . 71
A.1.2 Change requests . 71
A.1.3 Data requests . 72
A.1.4 Image requests . 72
A.1.5 Screenshot requests . 73
A.1.6 Example . 73

A.2 Con�guration . 73

B Installation guide 75

C Additional results 77

D Contents of the data media 81

xii CONTENTS

List of Figures

2.1 Photopic (daytime-adapted, black curve) and scotopic (darkness-adapted, green
curve) luminosity functions. The solid black curve is the CIE 1931 standard
[21]. The horizontal axis is wavelength in nm. 4

2.2 Diagram illustrating the bidirectional re�ectance distribution function (BRDF). 5

2.3 A simple scene rendered with path tracing (courtesy of John Carter). 7

2.4 Illustration of the path tracing algorithm. 8

2.5 Illustration of bidirectional path tracing. 10

2.6 Progress of the radiosity algorithm (courtesy of Hugo Elias). 10

2.7 Photon mapping produces global illumination e�ects such as caustics and color
bleeding, as illustrated in this image (courtesy of Zack Waters [33]). 13

2.8 Photograph (a) shows caustics produced by a glass of water, photograph (b)
shows caustics produced by an ice cube and photograph (c) shows caustics
projected onto see �oor, produced by waves at the surface of the water. . . . 15

2.9 Schematic depiction of BRDF vs. BSSRDF. 15

2.10 Model of a microscope illuminated by light captured in a kitchen, rendered
using IBL techniques (courtesy of Paul Debevec [37]). 16

2.11 The globe and its latitude-longitude projection. 17

2.12 Capturing environment map with a light probe. Images (a) and (b) show the
photographs of the sphere. Images (c) and (d) show a latitude-longitude map
obtained by projection of the respective images (courtesy of Erik Reinhard
[10]). 18

2.13 The Grace Cathedral light probe subdivided into 64 regions of equal light en-
ergy using the median cut algorithm. The small circles represent the positions
of the light sources placed at the centroids of each region (courtesy of Paul
Debevec [14]). 20

2.14 Comparison of results for a scene lighted with the above Grace Cathedral
environment map. Images (a,b,c) were rendered with 16, 64, and 256 direct
light sources. Image (d) was rendered with Monte Carlo integration using
4096 random rays per pixel (courtesy of Paul Debevec [14]). 21

2.15 Sampling via standard inversion procedure. From left to right: 1D PDF,
corresponding CDF, transformed samples (courtesy of Secord et al. [48]). . . . 26

2.16 The HEALPix projection. Sphere (depicted on the left) unrolled into a
latitude-longitude map (depicted on the right). The number of quads multi-
plies by four at every level of subdivision (courtesy of Tien-Tsin Wong [15]). . 27

xiii

xiv LIST OF FIGURES

2.17 Diagram illustrating the progress of Q2 tree construction. (a) unrolled envi-
ronment map, (b) Q2 tree, (c) importance-sorted list (courtesy of Tien-Tsin
Wong [15]). 29

2.18 Snapshots from a rendering sequence obtained by the Q2-tree sampling algo-
rithm. The shadow underneath the honey bee remains relatively unchanged
due to a good temporal coherence of this algorithm (courtesy of Tien-Tsin
Wong [15]). 30

2.19 Reality-virtuality continuum. 31

2.20 Results of global common illumination computation. Left: input images.
Right: images augmented with virtual objects (courtesy of Sato et al. [50]). . 31

2.21 Results of relighting. Left: real-scene. Right: synthesised image after light
removal and insertion of a new light source. Global common illumination
computed at interactive frame-rates (courtesy of Loscos et al. [51]). 32

2.22 A schematic overview of the three steps involved in the generation of consistent
shadows as proposed by Jacobs et al. (courtesy of Jacobs et al. [6]). 34

2.23 Figure (a): a mixed reality scenario rendered by the Di�erential Instant Ra-
diosity method proposed by Knecht et al. Figure (b): illustration of limita-
tions of the proposed method (courtesy of Knecht et al. [7]). 35

2.24 Algorithm outline of the rendering system proposed by Knecht et al. (courtesy
of Knecht et al. [7]). 36

4.1 Photographs of the Nokia N900 smartphone and the �sh-eye lens. 43

4.2 A checkerboard pattern that can be used in geometric camera calibration. . . 45

4.3 Geometric camera calibration using a checkerboard. Multiple views are re-
quired to compute the camera model. In this particular case, all corners have
been successfully detected. 45

4.4 Conceptual diagram of our framework. The device running the sampling
algorithm communicates with multiple clients over network. 47

4.5 A �owchart diagram of the server side. The HTTP Daemon receives requests
from the clients. When the processing of a frame is �nished, the results are
sent to the clients requesting them. 48

5.1 The upper row shows the sampling patterns produced by the three algorithms
for an environment map of resolution 360×90, 16 samples; a render of a bunny
lit by each respective set of light sources is given below. From left to right:
Pharr, Hemigon, Q2-Tree. 52

5.2 An arti�cial environment map sampled using the Q2-Tree sampling algorithm
with (a) 100 and (b) 1000 samples. 53

5.3 Snapshots of the sampling patterns produced by the three implemented sam-
pling algorithms. From left to right: Pharr, Hemigon, Q2-Tree. Vertically:
environment maps of varying lighting conditions. 54

5.4 Execution time versus number of samples. 57

LIST OF FIGURES xv

5.5 Photographs of the Nokia N900 display while the device is running in debug
mode. Photograph (a): display of the phone and a visualization running on a
laptop, displaying the same results in a di�erent coordinate system; (b) and
(c): display of the phone in di�erent settings. Note that the samples are more
concentrated in brighter regions, as expected. 58

5.6 Sampling pattern produced by the three algorithms. The screenshots were
captured during a live operation of the device, so the lighting conditions might
not be exactly the same in all three images. 59

5.7 Photographs of a testing setup. The user moves a �ashlight around the cam-
era. Changes of the light source positions are immediately observed in the
renderer. 60

5.8 Virtual scene lit by light sources decomposed from a light probe of a real
environment. Our framework has been integrated into the rendering engine
developed by Tomas Barak [64] to produce these screenshots (courtesy of
Tomas Barak [64]). 61

A.1 A set of screenshots from the web based con�guration of the server. 74

C.1 The two upper rows show the sampling patterns produced by the three algo-
rithms for two consecutive frames; a render of a bunny lit by each respective
set of light sources is given below. From left to right: Pharr, Hemigon, Q2-
Tree. 78

C.2 A burst of three images of varying exposures taken with the Nokia N900
smartphone. These images were taken in the same environment as Figure C.1. 78

C.3 A photograph of the Nokia N900 smartphone placed in a testing environment.
The smartphone captures and processes light probes of the environment; po-
sitions of samples are sent over WiFi. 79

C.4 A burst of three images of varying exposures taken with the Nokia N900
smartphone. The gain remained unchanged for all three images (gain = 17). . 79

xvi LIST OF FIGURES

List of Tables

5.1 Comparison of performance of the three implemented methods. HDR image
captured at resolution of 640× 480 pixels and mapped into polar coordinates
at 360× 90. 200 samples. All times are in milliseconds. 56

C.1 Pharr; processing time versus number of samples. The time is in milliseconds. 79
C.2 Hemigon; processing time versus number of samples. The time is in milliseconds. 80
C.3 Q2-Tree; processing time versus number of samples. The time is in milliseconds. 80

xvii

xviii LIST OF TABLES

Chapter 1

Introduction

This chapter gives an overview of this thesis and reviews related work. In Chapter 2, we take
a closer look at the related work and provide background knowledge about the problems and
techniques related to our project.

1.1 Overview

This thesis gives an overview of problems and techniques related to augmented reality. In
particular, we focus on image-based lighting techniques and their use for real-time rendering
with online light probe acquisition. We discuss existing importance sampling techniques and
their suitability for dynamic environment sequences. We then implement three of these tech-
niques and compare them in terms of the quality of sampling pattern, temporal coherence
and performance. We also propose a framework based on a client-server architecture that
attempts to simplify the integration of dynamic image-based lighting into existing render-
ing engines. We test our implementation on several testing applications and on the Zora
augmented reality platform.

Our framework is of bene�t in particular to augmented reality applications. The ability
to lit virtual objects based on the lighting conditions of the surrounding environment adds
realism to the augmented scene and enhances the user experience.

1.2 Related Work

An in-depth overview of augmented reality techniques is given in Bimber et al. [1]. Back-
ground information from optics and geometry, as well as an overview of stereoscopic displays
and augmented reality platforms are presented in his book. A classi�cation and survey of
illumination methods for mixed reality is presented in Jacobs and Loscos [2]. A pioneer
research on common illumination between real and computer generated images is presented

1

2 CHAPTER 1. INTRODUCTION

in Fournier et al. [3]. A more modern approach to common illumination using global il-
lumination computation and high dynamic range imaging was proposed by Debevec et al.
[4]. Their method is based on Fournier's di�erential rendering algorithm. An algorithm to
rapidly generate shadows in augmented reality settings is presented in Gibson et al. [5].
A real-time algorithm to detect shadows based on edge detection and to generate virtual
shadows consistent with the real scene was proposed by Jacobs et al. [6]. A method based
on Fournier's di�erential rendering algorithm and Debevec's extension of this algorithm was
proposed by Knecht et al. [7]. Their method uses instant radiosity introduced by Keller et
al. [8] with imperfect shadow maps proposed by Ritschel et al. [9] to approximate global
illumination in real-time.

Image-based lighting techniques are overviewed in Reinhard's book [10]. High dynamic
range acquisition and display techniques are explained in detail and basic principles of image-
based lighting are presented. Many importance sampling techniques for static environment
mapping have been proposed over past years. The most in�uential of these methods include
structured importance sampling proposed by Agarwal et al. [11], an algorithm based on
Lloyd's relaxation proposed by Kollig et al. [12], hierarchical importance sampling algorithm,
based on Penrose tiling, proposed by Ostromoukhov [13], and median cut sampling algorithm
proposed by Debevec [14]. Unfortunately, these methods does not work so well for dynamic
environment sequences due to poor temporal coherence. An importance sampling method
for dynamic environment maps was proposed by Wong et al. [15]. Their method exhibits
strong temporal coherence, provides control over the number of samples taken for each
frame and operates at real-time frame rates. A probability distribution function based
importance sampling method for dynamic environment maps was proposed by Havran et
al. [16]. In order to improve the temporal coherence of consecutive frames, they use two low
pass �lters to normalize the intensity of light sources and suppress high frequency movements.
Their method achieves real-time performance and the number of samples can be adaptively
changed.

Scalable parallel programming and optimization techniques for GPU using CUDA are
discussed in the following articles: Nickolls et al. [17], Ryoo et al. [18] and Luebke et al.
[19].

Description of the Spinnstube's hardware, an augmented reality platform similar to Zora,
can be found in Wind et al. [20].

1.3 Structure of this thesis

In Chapter 2, we review the related work and give theoretical background of global illumina-
tion and augmented reality techniques. In Chapter 3 we analyse the problems and propose
a solution. In Chapter 4 we take a look at the details of our implementation. Finally, in
Chapter 5, we present the results of our work.

Chapter 2

Theoretical background

In this section, we review the related work and provide theoretical background about related
problems and techniques. Firstly, we take a brief look at optics and ray shooting. We then
describe some of the most common global illumination techniques. Then, we discuss image-
based lighting for static and dynamic environments. Finally, we review illumination methods
for augmented reality.

2.1 Optics

In this section, we give an introduction into optics. Firstly, we recall very brie�y radiometry
and photometry. We then discuss various surface re�ectance models. In particular, we look
at the bidirectional re�ectance distribution function.

2.1.1 Radiometry and photometry

Radiometry is the science of measurement of radiant energy, including visible light. Radio-
metric techniques measure the radiant power in watts, as opposed to photometric techniques
that measure the perceived brightness of light to the human visual system. In photome-
try, the radiant energy is weighted by a visual sensitivity function (depicted in Figure 2.1).
The luminous power is measured in lumens. The SI base unit of photometry is candela, a
unit of luminous intensity that measures the luminous �ux per unit solid angle (lumen per
steradian).

2.1.2 Surface re�ectance

In computer graphics, the surface re�ectance is usually described by a bidirectional re-
�ectance distribution function (BRDF). It gives a ratio of the re�ected radiance in direction
ωo to the incident radiance from direction ωi. Because the directions ωo and ωi itself are

3

4 CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.1: Photopic (daytime-adapted, black curve) and scotopic (darkness-adapted, green
curve) luminosity functions. The solid black curve is the CIE 1931 standard [21]. The
horizontal axis is wavelength in nm.

two-dimensional (azimuth angle φ and zenith angle θ), a BRDF is a four-dimensional func-
tion. It was �rst de�ned by Fred Nicodemus in 1965 [22]. A modern de�nition of BRDF is
given in equation 2.1. An illustration is given in Figure 2.2.

fr(ωi, ωo) =
dLr(ωo)

dEi(ωi)
=

dLr(ωo)

Li(ωi)cosθidωi
(2.1)

where:

ωi is the incident angle,

ωo is the outgoing angle,

L is the radiance,

E is the irradiance,

θi is the angle between ωi and the surface normal.

Several more general surface re�ectance models exist. For example, the bidirectional
surface scattering re�ectance distribution function (BSSRDF) takes into account internal
scattering of light known as the subsurface scattering. For transparent surfaces, the light
refraction is often describe by the bidirectional transmittance distribution function (BTDF).
To account for e�ects such as luminescence, the re�ectance functions need to be further
extended by two dimensions - the wavelength of incident and outgoing light.

2.2. RAY SHOOTING ALGORITHM AND DATA STRUCTURES 5

n

ωo(θ, φ)

ωi(θ, φ)

Figure 2.2: Diagram illustrating the bidirectional re�ectance distribution function (BRDF).

2.2 Ray shooting algorithm and data structures

Ray shooting is a vital algorithm used in many computer graphics applications and beyond.
For example, image synthesis algorithms use ray shooting to simulate the propagation of
light. The ray shooting algorithm is also often used for visibility testing (e.g. in radiosity,
refer to Section 2.3.3 for more details). It can also be used to �nd pixel-surface correlation
in common illumination computation for augmented reality (refer to Section 2.6.2).

Given a ray and a set of objects, the task of a ray shooting algorithm is to determine the
�rst ray-object intersection, or conclude that none exists. Naive implementation, processing
all existing objects, would require O(N) time. Given the number of objects is generally huge,
linear time complexity is unacceptably high. A wide range of acceleration data structures
exist, reducing the time complexity signi�cantly. The average-case time complexity of a single
query for most hierarchical data structures is O(log2N). The two most popular acceleration
data structures for ray shooting are kd-trees (generally best performance for static scenes,
although the object distribution can have a huge impact on performance) and bounding

volume hierarchies (more suitable for dynamic scenes, as they are easier to update - often
used for collision detection). Other acceleration data structures to consider are uniform and
hierarchical grids (suitable for scenes with uniform distribution of objects, poor performance
if the distribution is skewed), and octrees (special case of binary space partitioning structures,
but performance usually worse than kd-trees).

A detailed discussion of ray shooting is given in Havran's thesis [23]. For further read-
ing about ray shooting and the various acceleration data structures, refer to the following
publications [24, 23, 25, 26].

2.3 Global illumination

Global illumination adds realism to computer generated images by considering indirect il-
lumination. As opposed to direct illumination, that is, illumination coming directly from a

6 CHAPTER 2. THEORETICAL BACKGROUND

light source, indirect illumination is any incident of light bouncing from other surfaces in the
scene, not directly emitted by the surface. Although theoretically light re�ection, refraction
and shadows are e�ects of global illumination, in practice these are usually considered local
e�ects. Throughout this paper, we will follow this practice and consider global illumination
to refer only to the simulation of di�use inter-re�ections and caustics.

In this section, we describe the major global illumination algorithms. Radiosity is de-
scribed in Section 2.3.3. In Section 2.3.4, photon mapping is described. Finally, path tracing
is described in Section 2.3.2. All of these techniques, to some extent, use ray shooting and
associated data structures discussed in Section 2.2. Many rendering systems based on global
illumination also use image-based lighting, discussed in Section 2.4.

It should be pointed out that the algorithms discussed in this section generally do not
achieve interactive frame rates and are thus of little use in real-time augmented reality
applications. Illumination methods for augmented reality are discussed in Section 2.6. Nev-
ertheless, the readers are encouraged to read this section to gain better understanding of the
general concepts of global illumination.

2.3.1 Rendering equation

The rendering equation [27] is an integral equation that describes the equilibrium radiance
in a scene. At each particular point the outgoing light is given as a sum of the emitted light
and the re�ected light. The re�ected light is given as the sum of all incoming light multiplied
by the surface re�ection and the cosine of the incident angle. The rendering equation is given
in equation 2.2.

Lo(x, ω, λ) = Le(x, ω, λ) +

∫
Ω
fr(x, ω

′, ω, λ)Li(x, ω
′, λ)(−ω′ · n)dω′ (2.2)

where:

x is a particular position,

ω is a particular outgoing direction,

λ is a particular wavelength,

Lo(x, ω, λ) is outgoing light,

Le(x, ω, λ) is emitted light,∫
Ω . . . dω

′ is an integral over a hemisphere of incoming directions,

fr(x, ω
′, ω, λ) is the bidirectional re�ectance distribution function (BRDF),

Li(x, ω
′, λ) is incoming light,

−ω′ · n is the attenuation of incoming light due to incident angle.

The rendering equation generalizes a variety of realistic rendering algorithms. For exam-
ple, �nite element methods such as the radiosity algorithm (described in Section 2.3.3), as

2.3. GLOBAL ILLUMINATION 7

well as Monte Carlo methods such as photon mapping (Section 2.3.4), path tracing (Section
2.3.2) and Metropolis light transport (Section 2.3.2.3) all attempt to solve the rendering
equation. These methods are described in the following paragraphs of this section.

The rendering equation was �rst introduced to the computer graphics community in 1986
at a Siggraph conference simultaneously by Kajiya et al. [27], who coined the term rendering
equation, and by Immel et al. [28]. Although the rendering equation is very general, there
are some phenomena that it fails to capture. These are, for example, subsurface scattering,
phosphorescence, and �uorescence [29].

2.3.2 Path tracing based algorithms

Path tracing algorithm simulates the physical behaviour of light very closely. Rays cast from
camera or light source represent a patch of photons. At every interaction with a surface,
only one secondary ray is emitted and recursively traced.

Figure 2.3: A simple scene rendered with path tracing (courtesy of John Carter).

The physical nature of path tracing produces many e�ects that would have to be specif-
ically added into other rendering algorithms (such as scanline, or even conventional ray
tracing). These e�ects include soft shadows, indirect lighting, color bleeding, caustics and
depth of �eld. The implementation is relatively simple, compared to other methods that
would produce the same results. A disadvantage of path tracing is that it is computationally
very expensive. Unless a large number of samples per pixel is traced, the resulting image
is noisy. The noise is especially disturbing in animated sequences, as it produces a random
speckling.

Path tracing is an unbiased algorithm and the accuracy can be improved by increasing
the number of samples. It is often used to generate reference images for testing the quality
of other rendering algorithms.

8 CHAPTER 2. THEORETICAL BACKGROUND

Camera

Light source

Figure 2.4: Illustration of the path tracing algorithm.

2.3.2.1 Path tracing

In real-world, light sources emit photons, which bounce o� surfaces until they are absorbed.
The direction of the bounces is random, with probability distribution given by surface mate-
rial properties. Only a small fraction of photons emitted actually hit the photoreceptors at
the retina of human eye, or the chip of a camera. But with the enormous number of photons
being emitted, even this small fraction makes a huge number.

It would be computationally infeasible to trace such a large number of rays. To com-
pensate for the lower number of rays, some modi�cations must be incorporated into the
algorithm to minimize the noise. First of all, the rays are traced in the reverse direction,
from camera to light sources. Given the relatively small area of light sources, the probability
of a ray hitting a light source is still very small. To speed up the convergence, a shadow ray is
cast from every interaction of a primary or secondary ray with a di�use surface to a random
point at a random light source (probabilities given by intensity and emission characteristics).
This algorithm is outlined in algorithm 1. In practice, much quicker convergence is achieved
with bidirectional path tracing algorithm, described in Section 2.3.2.2.

In contrast to conventional ray tracing, only one ray is traced recursively for every ray-
surface interaction. The secondary ray is traced regardless of the material properties, unlike
in conventional ray tracing which traces secondary rays only if the surface is re�ective or
refractive.

2.3.2.2 Bidirectional path tracing

Tracing the paths in only one direction would require computing a very large number of
bounces to get any useful information. If the ray bounces randomly across the scene, the
probability of it hitting a light source is very low or zero for point light sources.

This problem is compensated for by bidirectional path tracing. Rays are traced in both

2.3. GLOBAL ILLUMINATION 9

Algorithm 1 Path tracing

TracePath(Ray, depth)

{

if(depth >= MaxDepth)

return Black

X = FindNearestIntersection(Ray, Scene)

if(NoIntersectionExists)

return EnvironmentMap(Ray)

Emission = IntersectedObject.Material.Emission

RandomDirection = ImportanceSampling(X)

SecondaryRay = (X, RandomDirection)

RandomLightSource = ImportanceSampling(LightSources)

RandomSample = ImportanceSampling(RandomLightSource)

ShadowRay = (X, RandomSample)

if(NoIntersectionExists(ShadowRay))

Emission += EmittedLight(RandomLightSource, RandomSample)

return Emission + TracePath(SecondaryRay, depth+1)

}

directions, from camera and from light sources. At every interaction with a surface, the
paths are combined, joining the pre�x of every path from camera with the su�x of every
path from light sources.

This process is illustrated in Figure 2.5. In this example, only one bounce was computed
in both directions. By joining these two paths, four distinct paths were created, each starting
at the camera and ending at a light source.

2.3.2.3 Metropolis light transport

Metropolis light transport algorithm is an extension to bidirectional path tracing, which in
some cases converges to the solution of the rendering equation quicker than if using the
bidirectional path tracing method on its own.

The algorithm constructs paths from camera to light sources in the same way as bidirec-
tional path tracing. The nodes of the path are stored in a list. The algorithm then uses some
statistical calculations to modify the path by adding extra nodes to create new paths. Each

10 CHAPTER 2. THEORETICAL BACKGROUND

Camera

Light source

Light path

Camera path
Shadow rays

Figure 2.5: Illustration of bidirectional path tracing.

such mutation of the path is either accepted or rejected with a certain probability, ensuring
that the paths are sampled according to the contribution they make to the ideal image [30].

By exploring the path space locally with modi�cations to the already found paths, the
cost per sample is reduced. It also helps to reduce noise. On the other hand, even though
the modi�cations are chosen in a way to improve the convergence of the solution, in some
cases other unbiased methods provide quicker convergence.

2.3.3 Radiosity

Figure 2.6: Progress of the radiosity algorithm (courtesy of Hugo Elias).

Radiosity algorithm attempts to solve the rendering equation with the �nite element
method [31]. The scene is divided into a number of patches (small geometric primitives).
Then, form factors are computed for each pair of patches. A form factor represents the
fraction of light leaving one patch that hits the other. It consists of two parts multiplied
together: visibility factor and geometry factor. The visibility factor can have value of either
zero (if there is an obstruction between the two surfaces) or one (if the two surfaces can see
each other). Usually, a ray shooting algorithm is used to determine the visibility (see Section
2.2). The geometry factor (ranging between zero and one) is a coe�cient describing how

2.3. GLOBAL ILLUMINATION 11

well the two patches can see each other. If they are oriented in di�erent directions or far
away from each other, then the geometry factor, and thus the form factor becomes small.

The form factors are used as coe�cients in a set of linear equations. The solution of this
N ×N set of linear equations gives the radiosity of each patch.

Bi = Be,i + ρi

N∑
i=1

BjFij (2.3)

where:

Bi is radiosity of surface i,

Be,i is emissivity of surface i,

ρi is re�ectivity of surface i, and

Fij is form factor of surface j relative to surface i.

Solving this set of n equations with a direct method (e.g. Gauss elimination) would take
O(n3) time, which is unacceptable considering the number of elements can be large. There-
fore in practice, iteration methods are used, reducing the time complexity to O(n2). There
are two types of iteration methods: energy gathering (Jacob iteration, Gauss-Siedel itera-
tion) and energy shooting (Southwell iteration, known also as progressive radiosity). Due
to the fact that most of the energy is usually distributed over a small fraction of patches,
progressive radiosity has signi�cantly faster convergence. After each iteration we have im-
mediate radiosity values for every patch for the corresponding bounce level. The pseudocode
for progressive radiosity method is given in algorithm 2. The progress of the algorithm is
illustrated in Figure 2.6.

An advantage of the radiosity method is that the solution is independent of the viewpoint.
For static scenes, the radiosity can be precomputed and then used for each frame of an
animated sequence. A disadvantage is that only di�use surfaces are considered. Thus,
phenomena such as caustics cannot be simulated with this method.

Further details about radiosity can be found in Cohen [31]. Stochastic radiosity is ex-
plained in Dutre et al. [32].

2.3.4 Photon mapping

Photon mapping is a global illumination algorithm solving the rendering equation in two
steps. In the �rst step, rays are cast from light sources to create a photon map. The second
step is where the actual rendering takes place, using the photon map to compute the radiance
values.

The photon mapping algorithm is capable of producing multiple global illumination ef-
fects, such as refraction of light travelling through transparent objects, interre�ection be-
tween di�use surfaces, subsurface scattering, and some e�ects caused by rays of light trav-
elling through participating media (e.g. smoke). These properties of the algorithm enable
simulation of phenomena such as caustics and color bleeding [34].

12 CHAPTER 2. THEORETICAL BACKGROUND

Algorithm 2 Progressive Radiosity

for(i=0; i<N; i++)

{

B[i] = dB[i] = Be[i];

while(!converged())

{

// pick i with maximal energy dB[i]

i := argmax(dB);

// shoot accumulated energy from i

for(j=0; j<n; j++)

{

db = rho[j]*F[j][i]*dB[i];

dB[j] += db;

B[j] += db;

}

// accumulated energy of i is now zero

dB[i]=0;

}

}

Photon mapping is a consistent method so convergence to the correct solution of render-
ing equation can be achieved by increasing the number of rays. Unlike some other global
illumination methods (most notably path tracing - see Section 2.3.2) it is a consistent render-
ing algorithm, so average of many rendering iterations does not converge to correct solution.

2.3.4.1 Construction of photon map

The �rst step of the photon mapping algorithm is to create a photon map. Rays are cast
from light sources and traced in the same way as in the path tracing algorithm (due to
reciprocity of the BRDF function) [35]. Light source and direction is selected randomly
(based on a probability function). On every ray-surface interaction (unless the surface is a
perfect mirror) an entry is added to the photon map, storing intersection point and incoming
direction. Then, it is randomly decided (probability based on surface properties) whether
the ray is absorbed, re�ected or refracted.

Usually, two distinct photon maps are constructed during this phase. The global map
(L[S|D]∗D) contains both direct and indirect lighting. The map of caustics (LS+D) contains
only indirect lighting [36]. During the process of photon map construction, the photon map
is stored as a linear list. When the list is �nished, a data structure more e�cient for k-nearest
neighbour (kNN) search is constructed. The most popular data structure for this purpose is
a kd-tree (see Section 2.2 for more details).

2.3. GLOBAL ILLUMINATION 13

Figure 2.7: Photon mapping produces global illumination e�ects such as caustics and color
bleeding, as illustrated in this image (courtesy of Zack Waters [33]).

2.3.4.2 Rendering

In the second pass of the algorithm, the scene is rendered using the photon map created in
the �rst pass. A distributed ray tracing algorithm is used. For e�ciency reasons, the render-
ing equation is decomposed into four terms: direct illumination, ideal re�ection/refraction,
caustics, and indirect illumination. The �rst two do not require the use of a photon map.
Direct illumination is computed by sampling of light sources and casting shadow rays. Re-
�ection and refraction is handled by recursive tracing of deterministic secondary rays. For
estimation of caustics, a special photon map is used both for primary rays and for secondary
rays produced by perfect re�ection or refraction. To e�ciently compute indirect illumina-
tion, a method known as �nal gathering is used. One level of recursion is executed in the
distributed ray tracing. For each secondary ray, the illumination is estimated from global
photon map [36].

2.3.4.3 Irradiance caching

Irradiance caching is an optimization technique used to compute the indirect illumination
more e�ciently. Sampling the hemisphere in �nal gathering is a costly operation. The
idea behind irradiance caching is that there is a strong spatial coherence in the lighting at
di�use surfaces. Thus, some of the computation can be avoided by reusing the data already
computed and interpolating between them. When the �nal gathering is evaluated, the result
is stored in a cache. If the point to evaluate can be interpolated from the cached samples
with an error below a threshold, the costly process of sampling the hemisphere is avoided.
Algorithm 3 illustrates this idea.

14 CHAPTER 2. THEORETICAL BACKGROUND

Algorithm 3 Irradiance caching

GetIrradiance(X)

{

if(irradiance can be interpolated from cache)

{

IRRADIANCE = InterpolateFromCache(X)

}

else

{

IRRADIANCE = SampleHemisphere(X)

InsertIntoCache(X, IRRADIANCE)

}

return IRRADIANCE

}

2.3.4.4 E�ects

This section describes some of the phenomena that can be simulated with photon mapping.
Figure 2.7 illustrates the capabilities of the photon mapping algorithm.

Caustics. Caustics are patterns caused by re�ected or refracted light. Curved highly
re�ective or refractive surfaces focus incoming light into speci�c spots, increasing the intensity
of light hitting di�use surfaces at these regions. Figure 2.8 illustrates the caustics created
by light refracted at the wavy surface of water (image on the right). The shape of the waves
causes the light to concentrate at some places, while reducing the amount of light hitting
other places. The other two images in the �gure show caustics produced by a glass of water
and an ice cube.

Photon mapping can simulate this artifact of real world by tracing photons and recording
the locations where photons hit di�use surfaces after interaction with re�ective and refractive
surfaces.

Di�use interre�ection. Di�use interre�ection refers to the process of light re�ecting o�
di�use surfaces and hitting other di�use surfaces. This becomes especially noticeable when
the two surfaces involved have di�erent color. For example, if the light bounces of a red
surface, only a speci�c part of the original spectrum of the light inciding the surface is
re�ected, the rest is absorbed. The other surface then receives only this part of the color
spectrum. This e�ect is known as color bleeding [36]. Suppose we have a red and a white
surface next to each other. The part of the white surface nearest the red surface receives
light re�ected o� the red surface, changing it apparent color to red. The color of one surface
seems to bleed onto the other surface. This e�ect is well illustrated in Figure 2.3 (rendered

2.3. GLOBAL ILLUMINATION 15

(a) (b) (c)

Figure 2.8: Photograph (a) shows caustics produced by a glass of water, photograph (b)
shows caustics produced by an ice cube and photograph (c) shows caustics projected onto
see �oor, produced by waves at the surface of the water.

with path tracing). Another example showing the e�ect of di�use interre�ection is given in
Figure 2.7 (rendered with photon mapping).

BRDF BSSRDF

Figure 2.9: Schematic depiction of BRDF vs. BSSRDF.

Subsurface scattering. Subsurface scattering is the e�ect of light scattering inside the
surface of a material before it is re�ected [34]. Due to this property of a material, the
light leaves the surface at a di�erent position than where it enters. The e�ect is evident in
materials such as human skin, milk, etc. It is especially important in the rendering of human
faces, as human visual system is very critical and sensitive to details when evaluating the
features of faces of other human beings.

Although photon mapping algorithm is capable of modelling this phenomenon, it becomes
computationally expensive for highly scattering materials. Generally, it is preferable to use
bidirectional surface scattering re�ectance distribution functions (BSSRDFs) as their use

16 CHAPTER 2. THEORETICAL BACKGROUND

is more e�cient and produces results visually not too far from reality. The principle of
subsurface scattering is depicted in Figure 2.9.

2.4 Image-based lighting

Image-based lighting is a process of using images of real-world as light sources [10]. These
are usually high dynamic range images (HDR), attempting to capture the full range of
illumination of a real scene. Rendering of computer generated objects with the use of IBL
produces realistic appearance of the virtual objects, as if they were placed in the environment
where the environment map was captured.

This is particularly useful in augmented reality applications, where we attempt to merge
real and virtual objects seamlessly. Image-based lighting also adds realism to virtual scenes
and is often used in commercial renderers, including game engines. Recent advances in
hardware allow computation of IBL in real-time.

Figure 2.10: Model of a microscope illuminated by light captured in a kitchen, rendered
using IBL techniques (courtesy of Paul Debevec [37]).

Figure 2.10 shows a computer generated scene rendered with image-based lighting tech-
niques. The smooth shiny surface of the bottles re�ects light coming from the environment
map, revealing the appearance of the real environment where the map was captured. In-
terre�ections of the virtual objects are also noticeable, due to the ray-tracing based global
illumination techniques that were used to render the image (refer to Section 2.3 for more
details on global illumination).

2.4. IMAGE-BASED LIGHTING 17

2.4.1 Environment map representation

An environment map stores information about the illumination coming from the surrounding
environment. Several techniques to encode this information are used in computer graphics.
A very common way of storing this information is the latitude-longitude map [10]. Using this
representation, the amount of light coming from a direction ω(θ, φ) can be trivially retrieved
by a texture look-up at index (θ, φ).

(a) The globe. (b) A latitude-longitude map of the
globe.

Figure 2.11: The globe and its latitude-longitude projection.

The latitude-longitude mapping is also commonly used in cartography. In order to project
the entire globe onto a 2D plane, latitude-longitude maps are commonly used. Figure 2.11
shows the globe and its projection into a latitude-longitude map. Note the straight lines in
the picture on the right; each line corresponds to a particular altitude θ or azimuth φ angle,
respectively.

2.4.2 Environment map capture

The light probe images can be captured in several di�erent ways. Popular techniques use
mirrored spheres, tiled photographs or �sh-eye lenses. In this section, we discuss each one
of these three techniques.

2.4.2.1 Mirrored spheres

Photographs of a sphere with highly re�ective surface capture a �eld of view of 360 degrees.
Part of the visual �eld is obstructed by the camera and the parts near the edges are poorly
sampled. To properly capture incident illumination in all directions, two images need to
be taken, usually rotated by 90 degrees. Where one of the images has artifacts, the other
yields good quality and combining the two images produces a relatively good light probe of
the environment [10]. Figure 2.12 illustrates the process of light probe acquisition with a
mirrored sphere.

18 CHAPTER 2. THEORETICAL BACKGROUND

(a) (b)

(c) (d)

Figure 2.12: Capturing environment map with a light probe. Images (a) and (b) show the
photographs of the sphere. Images (c) and (d) show a latitude-longitude map obtained by
projection of the respective images (courtesy of Erik Reinhard [10]).

2.4.2.2 Tiled photographs

The light probe of the environment can also be reconstructed from a set of images taken
from the same position, facing di�erent directions [10]. This technique, known as stitching,
is often used in the production of panoramatic pictures. An advantage of this technique is
that it is possible to produce high-resolution images with a standard camera. To prevent the
problems of stitching together poorly aligned images, it is important to maintain the same
camera position for each frame.

2.4.2.3 Fish-eye lenses

Fish-eye lens cameras provide �eld of view of 180 degrees or more. It is thus possible to
capture omnidirectional light probes by taking two images with such cameras. As most of
the light usually comes from the sky, for some applications it is su�cient to capture one
180 degree image facing upwards. Fish-eye lenses are particularly useful for acquisition of
video environment maps. Video environment maps and dynamic image-based lighting are
discussed in Section 2.5.

2.4.3 Use of environment maps in rendering

In this section we discuss techniques used for sampling of light probe images. Firstly, we
explain the terms light source identi�cation and light source constellation. Secondly, we

2.4. IMAGE-BASED LIGHTING 19

describe major importance sampling methods and discuss their advantages and drawback in
context of environment map sampling.

2.4.3.1 Light source identi�cation

The global illumination algorithms described earlier in Section 2.3 compute direct illumina-
tion by casting shadow rays directly to light sources. Random sampling of hemisphere is
used only for indirect illumination. It is thus important to know the position of light sources.
Sampling the environment map as a source of indirect illumination requires a large number
of ray samples and is thus ine�cient. The environment often contains spots of concentrated
illumination such as the sun in the sky and if the sampling algorithm does not know position
of these spots, the visual quality of the results is very low unless a huge number of random
samples is taken to adequately sample these areas.

The idea of light source identi�cation is that if the spots where illumination is concen-
trated are identi�ed, they can be sampled more thoroughly or used directly as light sources.
Corresponding areas of the environment map are then either removed and the modi�ed envi-
ronment map is sampled in the indirect lighting computation [10], or the entire environment
map is transformed into a sequence of directional light sources, as described in the following
section (2.4.3.2).

2.4.3.2 Light source constellation

The idea of light source identi�cation, discussed in previous section (2.4.3.1), can be taken
further so that the entire environment map is transformed into a constellation of light sources.
Care needs to be taken to select a representative sequence of light sources, so that the
aliasing and artifacts caused by these approximations are minimized. If a suitable importance
sampling algorithm is used, a good approximation can be achieved with a manageable number
of light sources. These light sources can be used in either traditional scanline algorithm or in
global illumination computation. Some of the importance sampling techniques are discussed
in the following section (2.4.3.3). The environment map is still sampled directly in the
computation of mirror-like re�ection and refraction.

2.4.3.3 Importance sampling

In this section, we discuss importance sampling techniques in the context of environment map
sampling. Most of these techniques can be used in general to sample any two-dimensional
domain and are useful in many di�erent applications.

The process of converting an environment map into a set of light sources often involves
dividing the environment map into a number of regions. Each of these regions is represented
by a light source with intensity and color corresponding to the region of the EM. Either

20 CHAPTER 2. THEORETICAL BACKGROUND

directional or area light sources can be used. Alternatively, the environment map can be
sampled based on a probability distribution function.

A naive method, using a uniform division of the environment map, would oversample
dark regions and undersample bright regions, leading to ine�cient and aliased computation.
Generally, it is desirable to represent regions of high intensity of illumination with more
light sources than low intensity regions. A simple yet e�cient solution uses a hierarchical
subdivision based on the median cut algorithm. An algorithm proposed by Debevec [14]
and inspired by Heckbert's median cut color quantization algorithm [38] constructs 2n light
sources from a light probe image in latitude-longitude format in the following way:

1. Add the entire light probe image to the region list as a single region.

2. For each region in the list, subdivide along the longest dimension such that its light
energy is divided evenly.

3. If the number of iterations is less than n, return to step 2.

4. Place a light source at the center or centroid of each region, and set the light source
color to the sum of pixel values within the region.

Figure 2.13: The Grace Cathedral light probe subdivided into 64 regions of equal light energy
using the median cut algorithm. The small circles represent the positions of the light sources
placed at the centroids of each region (courtesy of Paul Debevec [14]).

This method is very fast compared to most importance sampling techniques. A drawback
of this approach is that angular extent is not taken into account. Small regions of concen-
trated illumination that could be well approximated with a small number of light sources
are oversampled. Dark areas are not sampled su�ciently, which leads to visible artifacts in
rendering, particularly when bright light sources are occluded. A light probe image subdi-
vided into 64 regions using this algorithm is given in Figure 2.13. Figure 2.14 presents the
results of using various numbers of samples compared to Monte Carlo integration.

Ostromoukhov et al. [13] proposed a fast hierarchical importance sampling algorithm that
takes into account area of regions as well as intensity of illumination. Their method, based

2.5. IMAGE-BASED LIGHTING USING DYNAMIC ENVIRONMENT SEQUENCES 21

Figure 2.14: Comparison of results for a scene lighted with the above Grace Cathedral
environment map. Images (a,b,c) were rendered with 16, 64, and 256 direct light sources.
Image (d) was rendered with Monte Carlo integration using 4096 random rays per pixel
(courtesy of Paul Debevec [14]).

on Penrose tiling, exhibits blue noise properties. The sampling pattern produced with this
method have more appropriate spatial distribution than the median cut algorithm described
earlier in this section. This technique is also very fast and the sampling time grows linearly
with the number of samples. A light probe image can be sampled with hundreds of samples
(light sources) in just a few milliseconds. This is very attractive for dynamic scene lighting,
where light probe images need to be sampled at interactive frame rates. The technique
is also deterministic and for consecutive frames exhibit quite good temporal coherence. A
more thorough discussion of importance sampling methods and their suitability for static
and dynamic environment mapping is given in sections 2.5.2.2 and 2.5.2.3.

2.5 Image-based lighting using dynamic environment sequences

Existing importance sampling techniques mainly focus on static environment maps. Little
e�ort has been put to design sampling algorithms exhibiting strong temporal coherence.
Even local changes often lead to global di�erences in positions of samples. This results in
unwanted �ickering artifacts in animated sequences. Many existing methods also assume
o�ine processing and do not attempt to achieve interactive frame rates.

The rationale behind decomposing environment maps into a set of directional light sources
have been discussed in Section 2.4. In this section, we focus on problems related to video
environment maps (VEM). We start by introducing techniques of HDR image acquisition
(Section 2.5.1). Then, in Section 2.5.2, we discuss the requirements on importance sampling
techniques that need to be met in order for them to be useful in dynamic settings. We
also explore algorithms proposed for static scene lighting and evaluate their suitability for

22 CHAPTER 2. THEORETICAL BACKGROUND

dynamic scenes. Finally, we take a close look at some importance sampling algorithms for
dynamic scenes.

2.5.1 High dynamic range light probe acquisition

The human eye is capable of capturing a dynamic range of luminance of more than 9 orders
of magnitude. The luminance of a typical outdoor scene ranges from less than 10−4 lux
(moonless overcast night sky) to more than 105 lux (direct sunlight) [10]. Standard cameras
are incapable of capturing this range of luminances in a single shot.

Traditionally HDR images are captured with standard LDR cameras by taking multiple
images from the same viewpoint with varying exposure times. If the exposure time of every
successive image taken doubles, the full range of illumination in the scene can be captured
with about 6 to 9 images, depending on the scene [10]. This set of images is then aligned and
merged together. Pixels that are saturated in slow shutter images are exposed properly in
images taken with lower exposure time and vice versa. If the scene contains moving objects,
than the process of fusing is more challenging, although some techniques, known as ghost
removal, exist [10].

Modern cameras have su�cient computational resources to perform exposure fusion on-
chip. A problem is that most of the manufacturers do not provide a programmable interface
to fully exploit the functionality of the device. Recently, an API have been developed for
the Nokia N900 smartphone [39] that allows the programmer to fully control the camera
processing pipeline. It has been shown that the device can be programmed to capture
multiple exposure image and fuse them into a high dynamic range image in real-time [40].

Recently, HDR video sensors have been developed that are capable of capturing HDR
images directly. These sensors are very attractive for video environment map acquisition.
Their rapidly dropping cost suggests that they will soon be used in many image-based lighting
applications. Examples of HDR video sensors are Digital Pixel System (Pixim), Autobrite
and HDRC [41].

2.5.2 Importance sampling of video environment maps

Firstly, in Section 2.5.2.1, we highlight the features that are important for e�cient VEM
sampling, as opposed to sampling of static EMs. Secondly, in Section 2.5.2.2, we review
existing methods for static environment mapping and evaluate them based on these require-
ments. Methods designed to work well for dynamic environment mapping are reviewed in
Section 2.5.2.3. The importance sampling algorithms for static environment mapping are
described in more details in Section 2.4.3.3. Finally, in Section 2.5.2.4, we describe the PDF-
based importance sampling methods in detail and in Section 2.5.2.5 we look at the Q2-Tree
importance sampling method in detail.

2.5. IMAGE-BASED LIGHTING USING DYNAMIC ENVIRONMENT SEQUENCES 23

2.5.2.1 Requirements

Apart from features desirable in static image-based lighting, such as a sampling pattern that
well represents the environment, a good importance sampling algorithm for dynamic scene
lighting should have the following properties [16]:

• Temporal coherence. The algorithm should produce similar sampling patterns for con-
secutive frames. If local changes in the environment map lead to global changes in the
entire sampling pattern, it will cause popping artifacts and jumping of shadows in the
rendered sequence.

• Fast computation. Acquisition of HDR environment map as well as decomposition of
the map into directional light sources need to be computed in time of order of millisec-
onds. Clearly, if the EM processing algorithm is to be used in real-time rendering, it
needs to run in real-time as well.

• Control over number of samples. To maintain constant frame rate of the animation
while maximizing visual quality, it is useful to adaptively change the number of light
sources. For simple scenes, it is desirable to add more light sources to enhance the
quality while for complex scenes it might be necessary to reduce the number of light
sources to maintain real-time performance.

2.5.2.2 Existing methods for sampling of static environment maps

Structured importance sampling proposed by Agarwal et al. [11] combines strati�ed and
importance sampling. They proposed an importance metric that takes into account both
surface area and integrated illumination of a region (refer to equation 2.7). The number of
samples can be easily controlled. For dynamic sequences, temporal coherence of sampling
pattern is poor. The algorithm places samples based on a threshold which may change from
frame to frame due to local changes, leading to global changes of sampling pattern in the
entire map. The computation time, dozens of seconds for a single environment map, is far
from interactive.

Kollig et al. [12] proposed an algorithm based on Lloyd's relaxation. Their method yields
good results for static environment maps. The number of samples can be easily controlled.
The time to process single EM is dozens of seconds; too high for real-time applications. Also,
the algorithm exhibits very poor temporal coherence as even local changes can cause global
changes in the sampling pattern of the entire EM.

The hierarchical importance sampling algorithm proposed by Ostromoukhov [13], based
on Penrose tiling, can operate at interactive frame rates. Furthermore, the sampling pattern
produced by this algorithm exhibits relatively good temporal coherence. A problem with
this method lies in the di�culty to control the number of samples, which is dependent on
the environment map being sampled.

24 CHAPTER 2. THEORETICAL BACKGROUND

The median cut sampling algorithm proposed by Debevec [14] is fast enough to be used in
interactive systems. A problem with this method is that it exhibits poor temporal coherence
between consecutive frames of animation. Localized changes in illumination e�ect the entire
sampling pattern. Another drawback of this algorithm is that the control over the number
of samples is limited. At each level of subdivision the region is further subdivided into two
regions of the same total illumination so the number of samples taken is 2n, where n is the
chosen depth of subdivision.

2.5.2.3 Existing methods for sampling of dynamic environment maps

Havran et al. [16] proposed a probability distribution function (PDF) based importance
sampling method for dynamic environments. They use an inverse transform method for
hemispheres proposed by Havran et al. [42]. It is similar to the standard inversion procedure,
used for importance sampling of static environment maps by Pharr [43] and Burke [44].
However, the inverse transform method proposed by Havran et al. exhibits better continuity
and uniformity, which leads to better strati�cation of the resulting sample positions. To
handle dynamic environments, Havran et al. use two low pass �lters to improve temporal
coherence. The �rst �lter normalizes the intensity of light sources to preserve total energy of
the system. The second �lter suppresses high frequency movements of light sources. Invisible
light sources elimination and light source clustering methods are used to improve rendering
performance. Their method exhibits good temporal coherence, real-time performance and
the number of light sources can be adaptively changed. The method is described in detail
in Section 2.5.2.4.

Wong et al. [15] proposed an importance sampling method for dynamic environments.
Their method is based on quadrilateral subdivision of a sphere. Firstly, the sphere is mapped
into 2D space using the HEALPix mapping [45, 46]. A quad tree is adaptively constructed
over the quadrilaterals (referred to as quads). At every step, the region with highest impor-
tance is further subdivided into four quads. This process is repeated until required number
of samples is reached. Adaptive changes of the number of samples are made very easy.
The method is fast and the results for static scenes are comparable with methods such as
structured sampling [11] and Penrose-based sampling [13]. It exhibits very good temporal
coherence, which makes this method well suited for dynamic scene lighting. The algorithm
is explained in details in Section 2.5.2.5.

Spatio-temporal sampling proposed by Wong et al. [47], based on Q2-tree sampling pro-
posed by Wong et al. [15] six years earlier, further exploits temporal and spatial coherence
of environment sequences. Their method treats an environment sequence as a volume con-
structed by stacking up all the frames in the chronological order. At each iteration of the
algorithm, it is decided whether to perform a binary split in the time domain or a quad
split in the spatial domain. The cost of such split is determined based on a novel impor-
tance metric. The proposed method produces a temporally coherent sampling pattern with
slightly better characteristics than the original Q2-tree sampling algorithm. A limitation of
this method is that the entire environment sequence needs to be known in advance. For this
reason, the method cannot be adopted for augmented reality applications requiring online
processing of video frames in real-time.

2.5. IMAGE-BASED LIGHTING USING DYNAMIC ENVIRONMENT SEQUENCES 25

2.5.2.4 Probability distribution function based importance sampling methods

In this section, we discuss in detail the importance sampling methods based on probability
distribution functions (PDF).

A common approach to PDF sampling is via the standard inversion procedure. Below,
we illustrate the procedure on a 1D function. Firstly, a cumulative distribution function
(CDF) is constructed. Given a discrete PDF, the value of the corresponding CDF for any
element i is given by the Equation 2.4.

CDFi =

i∑
j=0

PDFj (2.4)

The construction of a CDF can be performed in linear time using an iterative formulation,
as shown in Equation 2.5.

CDFi = CDFi−1 + PDFi (2.5)

Then, a serious of random numbers is drawn with uniform probability. Each of these
numbers is projected via the CDF. The projection is often implemented as a binary search,
so the projection of a single sample takes logarithmic time (note that no extra steps need
to be taken to sort the CDF, because the ascending order of elements is ensured by the
de�nition of the CDF). Equation 2.6 illustrates the projection, where y is a random number
drawn with uniform distribution and x is the position of the sample.

x = CDF−1(y) (2.6)

Note that because the CDF function has a lower �rst derivative for elements that cor-
respond to the PDF elements of lower values, the samples x are drawn with a probability
distribution proportional to the PDF. The procedure is illustrated in Figure 2.15.

Sampling of an environment map is in principle sampling of a 2D discrete function.
The standard inversion procedure described above can be used for importance sampling
of environment maps. A 2D PDF is constructed from the brightness of the pixels of the
environment map. Supposing the environment map is in a latitude-longitude format, the
intensity of each pixel needs to be multiplied by sin(θ) to account for smaller angular extent
near the poles, where θ is the altitude angle. In practice, quasi-random number generators
with uniform distribution, such as Halton, are often used. The 2D random vectors are then
mapped via the CDFs as follows. Firstly, an altitude angle θ is selected. Then, azimuth
angle φ is selected for the particular scanline corresponding to the altitude angle selected in
the previous step. This method has been successfully applied for importance sampling of
static environment maps by Pharr [43] and Burke [44].

26 CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.15: Sampling via standard inversion procedure. From left to right: 1D PDF,
corresponding CDF, transformed samples (courtesy of Secord et al. [48]).

Havran et al. [16] proposed an extension of this method to improve the temporal coher-
ence for dynamic environment mapping. They uses an inverse transform method proposed
by Havran et al. [42]. It exhibits better continuity and uniformity properties than the stan-
dard inversion procedure describe earlier in this section. Most importantly, it removes the
discontinuity for φ = 0. During the sampling of a dynamic environment sequence, a history
of the sampling patterns for a past few frames is kept. After mapping of the samples drawn
with uniform probability via the CDFs, two low pass �lter are applied.

The �rst low pass �lter operates on the total energy of the light sources. Some types
of light sources, such as �uorescent tubes, emit light of intensity proportional to the phase
of the power supply. In the European power supply network, the voltage changes with a
frequency of 50 Hz. Although the frequency is high enough to be ignored by the human
visual system, it might cause changes in the total brightness of an image captured by a
camera from frame to frame, if the shutter exposure time is in order of milliseconds or less.
This source of �ickering is prevented by the �rst �lter.

The second low pass �lter operates on the trajectories of the samples. Local changes in
the illumination result in global changes of the CDFs. Thus, the samples are mapped into
di�erent positions than in the previous frame, even though they are placed in regions where
the illumination is stable. In order to prevent �ickering artifacts caused by this property of
the CDFs, the second �lter suppresses high frequency movements of the samples.

2.5.2.5 Spherical Q2-tree for sampling dynamic environment sequences

In this section, we are going to explore in more detail the method proposed by Wong et al.
[15] and briefed in the previous section (2.5.2.2). The method is based on mapping a sphere
to rectangles and further subdividing these rectangles.

Firstly, the sphere is subdivided into 12 quadrilaterals (or quads for short) using the
HEALPix mapping [45, 46] (depicted in Figure 2.16). Each of these quads has equal surface

2.5. IMAGE-BASED LIGHTING USING DYNAMIC ENVIRONMENT SEQUENCES 27

area, and thus equal solid angle. Each of the quads is then adaptively subdivided to four
quads, with each sub-quad maintaining the equal solid angle property - each sub-quad has
equal solid angle to all other quads at the same level in the hierarchy and four times less
than quads one level up. By repeating the subdivision step until a termination criteria is
met, a tree is constructed. Strictly speaking, it is a forest of 12 quad trees.

(a) HEALPix, 12 quads (level 0).

(b) HEALPix, 48 quads (level 1).

Figure 2.16: The HEALPix projection. Sphere (depicted on the left) unrolled into a latitude-
longitude map (depicted on the right). The number of quads multiplies by four at every level
of subdivision (courtesy of Tien-Tsin Wong [15]).

The algorithm for Q2-tree construction, given in pseudo-code in algorithm 4, maintains
a sorted list of interior and leaf nodes. The nodes are sorted in decreasing order according
to their importance. The importance metric is described in the next paragraph; basically it
is based on the radiance and solid angle of the quad. At each iteration, the left most leaf
node (highest importance) is subdivided into four quads. It is then moved to interior nodes
and the new for leaf nodes are added to the sorted list. This process stops when required
number of nodes is reached. The progress of the algorithm is illustrated in Figure 2.17.

During the sampling process, it is desirable to sample more densely bright regions and
less densely dark regions. On the other hand, we want to avoid oversampling small bright
regions as they can be well approximated with fewer samples due to their small solid angle.
The Q2-tree sampling method uses importance metric proposed by Agarwal et al [11]. It
combines both of these requirements, good strati�cation and higher density in bright areas.
The importance is given by the following equation (2.7).

p = (L)a · (∆ω)b (2.7)

L is the total illumination of the region and ∆ω is the solid angle. Parameters a and
b are non-negative constants that are used to favor illumination (large value of a) or solid

28 CHAPTER 2. THEORETICAL BACKGROUND

Algorithm 4 Sampling dynamic environment map with a Q2-tree

Input:

EnvironmentMap: Spherical light probe of the environment

RequiredNumberOfSamples: Integer

Output:

LightSources: List of directional light sources

Algorithm:

Q2TREE = HEALPixMappingTo12Quads(EnvironmentMap)

EvaluateImportance(Q2TREE.Nodes)

while(Q2TREE.NumberOfNodes < RequiredNumberOfSamples)

{

NewNodes = Subdivide(Q2TREE.LeafNodes[0])

EvaluateImportance(NewNodes)

Q2TREE.MoveToInterior(Q2TREE.LeafNodes[0])

Q2TREE.AddLeafNodes(NewNodes)

}

LightSources = CreateLightSources (Q2TREE.LeafNodes)

return LightSources

angle (large value of b) component. The result, p in the above equation, is the importance
of the region.

In the paper on Q2-tree sampling [15], Wong et al. use constants of a = 1 and b = 1
4 .

Their importance metric is given by equation 2.8.

p = L ·∆ω
1
4 (2.8)

A nice property of the equal-solid-angle subdivision proposed by Wong et al. is that both
terms of the importance metric can be computed in constant time. The solid angle of quad
at level i can be directly computed as

∆ω =
π

3 · 4i
. (2.9)

The illumination term is computed using a technique commonly used for texture pre�ltering,
known as summed area tables [49].

Once we obtain the desirable number of subdivided regions, we can construct a directional
light source for each quad. The color and intensity of the light source is given by summed
illumination of each corresponding pixel. The light is positioned inside the quad. Wong et
al. propose that the light source should be jittered deterministically around the centroid of
the region to avoid regularity and maintain determinism at the same time.

2.5. IMAGE-BASED LIGHTING USING DYNAMIC ENVIRONMENT SEQUENCES 29

Figure 2.17: Diagram illustrating the progress of Q2 tree construction. (a) unrolled environ-
ment map, (b) Q2 tree, (c) importance-sorted list (courtesy of Tien-Tsin Wong [15]).

For dynamic sequences of environment maps, the sampling pattern could be computed
independently for each frame. But due to small di�erences between consecutive frames, it is
more e�cient to keep the Q2-tree from the previous frame and apply some update operations.
It also gives us more control over temporal coherency.

The Q2-tree update is based on merge-and-split operations. Firstly, the importance
of each region is recomputed. After this operation, there is some inconsistency in the
importance-sorted list due to changes in the environment (it is no longer sorted). To adjust
the Q2-tree, a series of merge and split operations is performed. A merge operation picks
the right most interior node (lowest importance) and combines it and its children into a
single leaf node. A split operation picks the left most leaf node (highest importance) and
subdivides it into four regions (creating four leaf nodes and converting the node into interior
node). Performing one merge operation reduces the number of samples by three. Performing
a split operation increases the number of samples by tree. Thus, a combined merge-and-split
operation does not change the number of samples.

Merge-and-split operations are performed either until the sorted order of the list is re-
covered (producing the same Q2-tree as building from scratch would), or until the di�erence
between the left most leaf node and the right most interior node is less than a threshold.
Setting this threshold to a value above zero creates a temporal blur, improving temporal
coherence of the sampling pattern but reducing the quality of sampling.

Advantages of this algorithm are good temporal coherence and control over the number
of samples. The quality of sampling is similar to that of other algorithms [11, 13]. A
drawback of this method is that the number of samples needs to be relatively high. The
Q2-tree construction starts with uniform subdivision into 12 regions. Using a small number
of samples does not allow the algorithm to properly sample bright regions. The results of
image-based lighting with dynamic environment map using this algorithm are given in Figure
2.18.

30 CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.18: Snapshots from a rendering sequence obtained by the Q2-tree sampling algo-
rithm. The shadow underneath the honey bee remains relatively unchanged due to a good
temporal coherence of this algorithm (courtesy of Tien-Tsin Wong [15]).

2.6 Illumination methods for augmented reality

In order to blend real and computer generated images seamlessly, it is important to establish
common viewing parameters, common visibility and common illumination. In this section,
we review several illumination methods for augmented reality.

Firstly, a classi�cation of illumination methods, proposed by Jacobs and Loscos [2], is
presented in Section 2.6.1. In Section 2.6.2, we start the discussion of common illumination
methods with a pioneer work of Fournier et al. [3], who were the �rst to introduce di�erential
rendering. In Section 2.6.3, we look at a di�erent approach to common illumination. A
method proposed by Jacobs et al. [6] precisely detects real shadows using edge detection
and approximate shadow contours estimated from the scene geometry and the light source
position. They use shadow mapping or shadow volumes to render virtual shadows, while the
regions identi�ed as real shadows are protected from further modi�cation. In Section 2.6.4,
we examine the method proposed by Knecht et al. [7]. Their method, known as Di�erential
Instant Radiosity, is based on di�erential rendering proposed by Fournier et al. [3] and
described earlier in Section 2.6.2. The global illumination computation in this method is
based on Instant Radiosity introduced by Keller et al. [8] with Imperfect Shadow Maps
proposed by Ritschel et al. [9].

2.6.1 Classi�cation of illumination methods

Mixed reality refers to environments consisting of both real and virtual objects, as illustrated
in Figure 2.19. To make the environment look realistic, illumination and shadows need to
be consistent. Jacobs and Loscos [2] propose a classi�cation of illumination methods for
mixed reality. Three di�erent illumination methods are identi�ed: common illumination,
relighting and inverse illumination. The methods can also be classi�ed based on the amount
of geometry and radiance information that needs to be known about the real environment.
Generally, the more input information is available, the more realistic results can be obtain.
On the other hand, the need to gather this extra information about the real-scene decreases
the usability of the particular method.

2.6. ILLUMINATION METHODS FOR AUGMENTED REALITY 31

Mixed reality (MR)

Augmented reality (AR) Augmented virtuality (AV)

Virtual
environment

Real
environment

Reality-virtuality continuum

Figure 2.19: Reality-virtuality continuum.

Common illumination refers to those methods providing certain level of illumination
blending [2]. This includes shadows projected from virtual objects onto real objects and
vice versa, color bleeding, caustics and more. These techniques are limited to preserving
the illumination of the real scene; no modi�cations such as adding or removing light sources
or changing light source intensity are allowed. For global illumination computation, it is
often important to know approximate BRDF of the materials of real objects. Precision of
the BRDF estimate is re�ected in the realism of the resulting images. An example of global
common illumination is given in Figure 2.20. Techniques used for generation of these images
are described in Sato et al. [50].

Figure 2.20: Results of global common illumination computation. Left: input images. Right:
images augmented with virtual objects (courtesy of Sato et al. [50]).

Relighting techniques allow modi�cation of the lighting pattern of the environment [2].
Usually, this is done in two steps. Firstly, the illumination of the real scene is analysed. Sec-
ondly, new illumination is computed. Changes are introduced into the illumination pattern
(addition/removal of light sources, intensity modi�cation, etc.) and the scene is rendered

32 CHAPTER 2. THEORETICAL BACKGROUND

with the new illumination. In order to obtain these changes in illumination pattern while
keeping the realism of the real scene, it is important to have a geometric model of the real
scene. Also, an estimate of the BRDF of the real objects in the scene is required, although
the exact knowledge is not necessary if we are only concerned with producing a result that
looks realistic to human visual perception rather than being physically accurate. The results
of relighting computation are illustrated in Figure 2.21.

Figure 2.21: Results of relighting. Left: real-scene. Right: synthesised image after light
removal and insertion of a new light source. Global common illumination computed at
interactive frame-rates (courtesy of Loscos et al. [51]).

Inverse illumination, also known as physically-based illumination, is a set of methods
attempting to compute the BRDF functions of all materials in the scene, as well as positions
and intensities of light sources [2]. Once computed, this information can be used for both
common illumination and relighting. An in-depth overview of inverse illumination techniques
can be found in Patow and Pueyo [52].

2.6.2 Common illumination based on di�erential rendering

Fournier et al. [3] proposed a common illumination method based on di�erential rendering.
They use a simpli�ed model of the real-scene. It is used for global illumination computa-
tion as well as to determine visibility and viewing parameters. Only di�use surfaces are
considered. Thus, this algorithm is not capable of computing phenomena such as specular
highlights, caustics, etc. Also, if this phenomena are present in the input image, the precision
of the estimated radiosity decreases.

The estimation of total power of light sources present in the scene is based on the radiosity
equation (see equation 2.10).

Bi = Be,i + ρi

N∑
i=1

BjFij (2.10)

where Bi refers to the radiosity of surface i, Ei is the emissivity of surface i, ρi is the
re�ectivity of surface i, and Fij is the form factor of surface j relative to surface i.

2.6. ILLUMINATION METHODS FOR AUGMENTED REALITY 33

The relationship between surface elements and pixels is determined using ray-tracing.
Once the mapping is complete, the radiosity of each surface element is approximated with
the average intensity of the pixels corresponding to it. The re�exivity is estimated using
a heuristic based on the ratio of radiosity of the element being estimated to the average
radiosity of neighbouring pixels. The idea behind this heuristic is that if an object in a dark
part of the scene appears bright, it is likely to be a result of its relatively high re�exivity.
Obviously, there are many other factors a�ecting the brightness of an object and this heuristic
might not always give good results, but in most cases, it gives a reasonable estimate.

It is assumed that the position and intensity of light sources is known. After modelling
of the light sources, we can compute the global radiosity. The solution gives us an estimate
of radiosity value for each element in real-scene.

A di�erential rendering method is used to compute corrections for shadows and inter-
re�ections coming from computer generated objects. A global illumination computation is
performed to get approximate radiosity for the real-scene and the augmented scene. The
ratio between these two radiosity values (with and without CG objects) represents the atten-
uation or gain that needs to be applied to the real image. If, for example, the pixel is darker
after insertion of CG objects, it means that a shadow is cast on the corresponding region
of the real-scene and its value needs to be decreased. This way, the impact of inaccurate
estimates made in previous steps on the output image quality is minimized, as long as the
error is systematic in both GI computations.

The global illumination is computed using a method known as progressive radiosity (see
Section 2.3.3) and the visibility is tested by ray-casting (Section 2.2). Re-rendering of the
scene is done by the ray-casting algorithm. If the pixel corresponds to a computer generated
object, then pixel intensity is determined based on radiosity of the surface and material
properties (color, texture, etc.). Otherwise, the intensity of a corresponding pixel from the
real image is used, multiplied by the attenuation coe�cient computed in the previous step
(ratio between estimated radiosity with and without CG objects).

2.6.3 Shadow detection and generation

Jacobs et al. [6] proposed a real-time solution to common illumination based on shadow
detection and shadow generation. Their method works in three steps. Firstly, real shadows
in the real scene are detected. Then, a shadow protection mask is generated based on the
shadow regions identi�ed in the previous step. Finally, shadows cast by virtual objects are
generated. Only the regions of real scene not protected by the shadow protection mask com-
puted in the previous step are modi�ed to maintain consistency. The algorithm is depicted
in Figure 2.22 and explained in detail in the next paragraphs.

Although the results are promising, the method works well only on limited type of scenes.
The method can handle only a single light source. Also, it is restricted to hard shadows
(although pseudo-soft shadows are approximated reasonably well for scenes with a small
bright light source). Approximate geometric model of the real scene and the position of the
light source need to be known.

34 CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.22: A schematic overview of the three steps involved in the generation of consistent
shadows as proposed by Jacobs et al. (courtesy of Jacobs et al. [6]).

Shadow detection. The shadow detection steps aims at identi�cation of the real shadows
in the scene and computation of the scaling factor for each material. Firstly, the shadow
contour is estimated from the scene geometry and light position. Because we only have
approximations of the scene geometry and light position, the result does not precisely conform
to the real shadows. The estimate of shadow contours is then used together with the texture
of the real scene to compute the exact contour of the shadows. The exact shadow contour
is extracted using an edge detector (Jacobs et al. use the Canny edge detector [53] in their
paper [6]). The scaling factor is de�ned as a ratio of colour between shadow regions and
non shadow regions. An average pixel value is computed for both regions for each material
separately to get the scaling factors.

Shadow protection. In the shadow protection step, a shadow mask is constructed from
the shadow regions identi�ed in the previous step. To ensure consistency between real and
virtual shadow, it is important to align the shadow mask with the real shadows as precisely
as possible. A gray scale shadow mask with gradients at the edges instead of binary shadow
mask can be used to account for soft shadows. The shadow mask is used in the next step to
prevent modi�cation of the regions that are already in shadow.

Shadow generation. In the shadow generation step, virtual shadows are computed. A
real-time method such as shadow volumes or shadow maps is used. Only the regions of
virtual shadows that do not overlap with real shadows are modi�ed. The modi�ed pixel
intensity is obtained by multiplying the pixel value by the scaling factor computed in the
�rst steps.

2.6. ILLUMINATION METHODS FOR AUGMENTED REALITY 35

2.6.4 Di�erential instant radiosity

Knecht et al. [7] proposed a global illumination rendering system for mixed reality based
on instant radiosity [8] and di�erential rendering [3]. Their method calculates common
illumination between real and virtual objects at real-time frame rates.

(a) (b)

Figure 2.23: Figure (a): a mixed reality scenario rendered by the Di�erential Instant Radios-
ity method proposed by Knecht et al. Figure (b): illustration of limitations of the proposed
method (courtesy of Knecht et al. [7]).

They proposed several improvements of the techniques. Firstly, they proposed a modi�ed
Instant Radiosity approach that can be used to perform Di�erential Rendering in a single
pass. As opposed to two-pass di�erential rendering, this improves the e�ciency as well as
reduces the error caused by inconsistent sampling in the two passes. Furthermore, they use
a new approach to imperfect shadow maps, in which the splats are aligned to the surface
normal. They also proposed a novel method to assign virtual point lights (VPLs) to mul-
tiple primary light sources. Finally, the reduced temporal �ickering artifacts by exploiting
temporal coherence.

There are some limitations and imprecisions resulting from the way indirect illumination
is handled. Most noticeable is the e�ect of double shadowing. This is because the re�ective
shadow map (RSM) generated from the viewpoint of a light provides information only about
the front most objects. Another limitation of their approach is the inability to cancel out
color bleeding artifacts in virtual shadows. These problems are illustrated in Figure 2.23.

Algorithm outline

It is assumed that a geometric model of the real scene is known and correctly registered to
the virtual scene. BRDFs of the real materials are estimated. Since the estimate is usually
not very accurate, direct rendering produces strong visual artifacts. As explained in Section

36 CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.24: Algorithm outline of the rendering system proposed by Knecht et al. (courtesy
of Knecht et al. [7]).

2.6.2, these artifacts can be minimized with Di�erential Rendering [3]. The idea is to render
the scene twice; in one pass, both real and virtual objects are considered, while in the other
pass, only real objects are considered. Only the di�erence is added to the original value of
each pixel.

Knecht et al. modi�ed this method to work in a single pass. The same paths are generated
for both rendering targets, but the pixel value is added only to the appropriate bu�er. This
is achieved by associating a �ag to each element (light source, point to be shaded, ...) to
distinguish between real and virtual path. If a path contains any virtual elements, it only
contributes to the combined (real and virtual) bu�er but not the real bu�er.

To approximate global illumination in real-time, Knecht et al. use Instant Radiosity. For
each primary light source, a number of virtual point lights (VPLs) is created. The scene is
rendered from the viewpoint of the light source to create a re�ective shadow map (RSM)
and the RSM is then sampled using importance sampling.

An environment map (in the system proposed by Knecht et al. captured with a �sh-eye
lens camera) can be transformed into a set of light sources using importance sampling the
same way as if sampling the RSMs.

2.6. ILLUMINATION METHODS FOR AUGMENTED REALITY 37

The Instant Radiosity method they use is based on Imperfect Shadow Maps (ISM) pro-
posed by Ritschel et al. [9]. A low resolution shadow map is created for each virtual point
light, using a subsampled version of the scene, represented as a point cloud.

38 CHAPTER 2. THEORETICAL BACKGROUND

Chapter 3

Analysis and design

In this chapter, we analyse the requirements on our framework and propose a solution. This
chapter deals quite abstractly with our design goals and decisions, while in Chapter 4, we
present our implementation in more details.

3.1 Problem statement and analysis of solution

In this section, we state the desired features of our framework. In the rest of this chapter,
we will discuss possible solutions and propose a framework that suits our needs.

We plan to use the proposed framework in an augmented reality platform, known as
Zora [54]. It is a portable platform similar to the Spinnstube [20]. It uses a 3D Ready TV
mounted above a half-silvered mirror. The half-silvered mirror serves as an optical combiner.
By attaching the platform to a table the user creates a workspace where ideally, real and
virtual objects are merged seamlessly.

It is known that establishing common illumination between the real and virtual objects
greatly improves the level of realism. In order to record and reproduce the illumination of
the real environment, we need to capture a high dynamic range light probe of the upper
hemisphere. Capturing as well as processing of the light probe should happen at real-time
framerates. To use the recorded illumination in the renderer, we need to implement an
importance sampling algorithm with strong temporal coherence to avoid frame to frame
�ickering.

We decided that it would be more cost e�cient and �exible to use a universal device that
is already available on the market than developing our own platform to capture and process
the light probes. We used the Nokia N900 smartphone with a linux-based operating system.
The device has a built-in camera of su�cient resolution, framerate and quality to capture
the light probe. It can be programmed to capture a burst of varying exposure images
that are fused into a single high dynamic range image [55]. The device provides wireless
connectivity such as WLAN IEEE 802.11, Bluetooth and GPRS. It makes a suitable light

39

40 CHAPTER 3. ANALYSIS AND DESIGN

probe acquisition platform as it can be easily placed anywhere in the scene to capture the
light probe of the environment and send the results to the computer wirelessly. The device
comes with su�cient computational power to perform the importance sampling on-chip and
distribute over network the positions of the light sources, which signi�cantly reduces the
network bandwidth. More details on the particular device we used can be found in Section
4.1.

For e�cient illumination of the scene using the light probe of the environment, it is
necessary to decompose the light probe into a set of directional light sources. Several criteria
should be considered when choosing a proper sampling algorithm. These include the quality
of sampling pattern, temporal coherence and performance. Section 2.5.2 gives a discussion
of existing importance sampling algorithm.

The following section gives an overview of our framework design and the technologies
and algorithms to be used.

3.2 Framework design

In this section, we state our design goals. We then propose a framework that makes it
easy to integrate our algorithm into existing projects. We also discuss the technologies and
algorithms to be used in our implementation.

3.2.1 Concepts

The design goals of our project were to develop a framework that is easy to integrate into
existing platforms and that can be easily maintained and extended. We used a client-server
architecture to separate the image capture and processing logic from the user code. Both
the server side and client side use a layered architecture. We designed a communication pro-
tocol that is compliant with standard norms and protocols. Apart from that, we attempted
developing a communication protocol that provides both fast machine readability as well as
human readability. The next sections present and explain our design choices.

3.2.2 Software architecture

We designed a client-server architecture where all processing, including image capture and
importance sampling, is done on a server. In our testing scenario this is a portable device
equipped with wireless connectivity. Results of the processing are then sent on request to
clients via standard protocols. The server also provides interface for the clients to change
the settings of the server.

The design of the server itself is based on the layered architecture. A network daemon
provides interface for the clients to connect to and to send requests to and receive replies.

3.2. FRAMEWORK DESIGN 41

Change requests are passed to the processing core via a message queue. Results of processing
are passed to the server via shared memory using double bu�ering, mutexes and signals.

The design of the client framework is in principle similar to the server. A network client
encapsulates all the communication with the server. This client provides a signal that is
emitted every time new data are received from the server. A double bu�ering mechanism
with mutexes then provides the means to transfer the data into a processing thread. The user
program should hook to this signal and read the updated data when the signal is emitted.

3.2.3 Technologies

Our communication protocol complies with the Hypertext Transfer Protocol (HTTP). Replies
are encoded in Hypertext Markup Language (HTML), Extensible Markup Language (XML),
or plain text, depending on the nature of the data. This compatibility with standard tech-
nologies gives a great �exibility to the framework and assures interoperability with existing
applications. For example, any web browser can be used to con�gure the server because
it acts as a standard web server. In fact, any request to the server can be sent via a web
browser and the reply can be displayed in a web browser. Apart from ful�lling our main
design goals, this concept also proved to be useful during the implementation, as it provides
means of debugging the framework using existing third party client programs.

Our application is based on the Qt framework [56]. It solves the portability issues as
the same code can be compiled for both embedded systems as well as desktop computers.
Another advantage is that there is a good support for developing in Qt on our targeted
device that runs the server side, the Nokia N900 smartphone, as both the device patent and
the framework are owned by the same company [56].

The core parts of our application, on both client and server side are written in C++.
Demo applications, such as the renderer, use OpenGL graphics library and the GLSL shading
language.

42 CHAPTER 3. ANALYSIS AND DESIGN

Chapter 4

Implementation

In this chapter, we present our implementation. Firstly, we brie�y describe the hardware that
we worked with and discuss the calibration of a camera. Then, we describe the architecture
of our framework. Finally, we give an overview of the importance sampling algorithms that
we have implemented.

4.1 Hardware description

In this section, we brie�y describe the hardware that we use to capture and process the light
probes.

(a) Nokia N900; front view. (b) Nokia N900; back view.

Figure 4.1: Photographs of the Nokia N900 smartphone and the �sh-eye lens.

The server program runs on Nokia N900 smartphone equipped with a �sheye lens camera.
Its operating system is Maemo 5, a Linux-based OS. It has a Texas Instruments OMAP3
microprocessor with the ARM Cortex-A8 core, clock rate 600 MHz. The processor features
a 128-bit single instruction multiple data (SIMD) instruction set. The phone has a PowerVR
SGX 530 GPU, that supports OpenGL ES 2.0. It provides a wide range of connectivity, such
as WLAN IEEE 802.11 b/g, Bluetooth, and GPRS [39].

43

44 CHAPTER 4. IMPLEMENTATION

The phone has a built-in camera of 5 MPx resolution (2584 × 1938). We attached a
�sheye lens to the camera that provides a �eld of view of about 160 degrees horizontally and
140 degrees vertically. A photograph of the device is shown in Figure 4.1.

4.2 Camera calibration

In order to provide mapping of the captured image into polar coordinate system properly,
it is necessary to know a geometric model of the camera. This model can be computed by
geometric calibration, described in Section 4.2.1. In some applications, it is also important
to know the intensity of light sources in physical units. Photometric calibration is explained
in Section 4.2.2.

4.2.1 Geometric camera calibration

A common method of geometric camera calibration uses a set of images of a checkerboard,
taken from di�erent perspectives [57]. Cameras having a �eld of view less than 180 degree
can be modeled by an intrinsics matrix and several radial distortion coe�cients. We used
two distortion coe�cients (k0, k1) and an intrinsics matrix containing the principal point
(u0, v0), skew (γ) and focal length in pixels (α, β). Equation 4.1 projects 3D points (x, y, z)
to 2D camera space (ufinal, vfinal). Extrinsics is a 3×4 matrix that de�nes the perspective
of the camera.

[
u v w

]T
=

α γ u0

β v0

1

× [extrinsics]× [x y z 1
]T

u′ =
u

w

v′ =
v

w

unorm =
(u′ − u0)

α

vnorm =
(v′ − v0)

β

d1 = u2
norm + v2

norm

d2 = d2
1

ufinal = u′ + (u′ − u0)(k0 · d1 + k1 · d2)

vfinal = v′ + (v′ − v0)(k0 · d1 + k1 · d2)

(4.1)

The intrinsics matrix and distortion coe�cients are computed from a set of images of a
checkerboard (shown in Figure 4.2) by detecting the corners of the black and white squares
and �nding a correlation among the pairs of images. There are several open source programs

4.2. CAMERA CALIBRATION 45

to perform the geometric calibration automatically. We experimented with CamChecker
[58] and OCamCalib [59]. CamChecker is implemented in C++ language and computes the
camera model described above. A problem of this tool that we found is that it fails to detect
corners in the border regions of the image, which leads to imprecisions of the calibration.
OCamCalib implements a more robust corner detection algorithm in the C language. Other
parts of the tool are implemented in Matlab. It is a semi-automatic calibration tool, requiring
some user interaction. Another possible way to calibrate the camera is to use the OpenCV
library [60], which makes it quite easy to implement an automatic calibration tool in a
compiled language from scratch. It is possible to run the calibration tool directly on the
camera device.

Figure 4.2: A checkerboard pattern that can be used in geometric camera calibration.

We used the CamChecker tool to perform automatic camera calibration. Due to the
corner detection problem described in the previous paragraph, the camera model it produced
has a signi�cant imprecision in the outer regions of the image, up to 10 degrees. We plan
to integrate the corner detection algorithm of OCamCalib into CamChecker, which should
solve this issue. Some of the steps involved in automatic camera calibration are illustrated
in Figure 4.3.

(a) Photograph of a checkerboard (b) Thresholded photograph (c) Detected corners

Figure 4.3: Geometric camera calibration using a checkerboard. Multiple views are required
to compute the camera model. In this particular case, all corners have been successfully
detected.

46 CHAPTER 4. IMPLEMENTATION

4.2.2 Photometric camera calibration

We experimented with two photometric calibration techniques: direct and indirect. In the
direct method, the illuminance of a surface is �rst measured by an illuminance meter. Then,
the illuminance meter is replaced by the camera to be calibrated, positioned in a way that
the amount of light entering the camera lens is the same as the amount of light measured by
the illuminance meter. The lighting conditions of the environment are kept unchanged. If
the camera uses a physically based HDR image representation, independent of the exposure
and gain, then the ratio of the measured illuminance to the sum of luminances of all pixels
should be the same for every environment. Multiplying pixel intensities by this ratio gives
pixel luminances in physical units (lux), as measured by the illuminance meter.

A problem of this method is when the solid angle of the camera di�ers from that of the
illuminance meter, as in our case. The visible angle of the �sheye lens we use is about 160
degrees in horizontal direction and 140 degrees in vertical. Because the illuminance meter
records light coming from the entire hemisphere, the measured ratio is imprecise. The error
can be decreased if we perform the calibration in a controlled environment, minimizing the
amount of light coming from the directions that are not visible by the camera.

An indirect approach solves this issue. A photograph is taken of a surface of known
re�ectance. The illumination of a small area on this surface is measured by an illuminance
meter. Knowing the area of a pixel projected onto this surface, and the illuminance of the
surface, one can compute the outgoing luminous �ux. The area covered by one pixel can
be computed from the solid angle of the pixel and the distance between the camera and the
surface. The solid angle of a particular pixel can be computed from geometric calibration,
or estimated from the total solid angle of the lens and camera resolution. Knowing the
luminous �ux of a single pixel and the value of that pixel in a physically based HDR image
representation, the ratio of pixel values to the physical energy can be computed.

A disadvantage of the indirect method is that the noise of the camera sensor leads to
signi�cant errors in the computation of a single pixel value. This error can be minimized by
averaging the values of multiple pixels, weighted by a gauss curve.

In our implementation, we use the results obtained by the direct calibration method.
Due to camera sensor noise, imprecise geometric calibration and estimation of the surface
re�ectance, values obtained for various scenarios di�ered more signi�cantly for the indirect
method than for the direct method. The results of our photometric calibration of the Nokia
N900 smartphones's camera are discussed in Section 5.2.2.

4.3 Software architecture

In this section, we describe the architecture of the implemented system. Firstly, in Section
4.3.1, we discuss the general concept of the proposed framework. Then, in Section 4.3.2, we
go into more detail about the architecture of the server. In Section 4.3.3, we discuss the
architecture of the clients and how it can be integrated into existing systems. Finally, in
Section 4.3.4, we brie�y overview the communication protocol.

4.3. SOFTWARE ARCHITECTURE 47

4.3.1 Concept

As mentioned in the previous sections, the light probes are being captured on a dedicated
device that is capable of wireless communication. Because the processing power of the device
is su�cient to perform the importance sampling in real-time, we decided to process the light
probes on the device. This saves a signi�cant amount of bandwidth. Instead of sending a
full light probe image, we send only a list of light sources. It also conserves computational
resources of client devices.

Server

Web Browser

Configuration

C++/OpenGL Application

Renderer

Zora platform

Augmented reality

C++ Application

Visualization

Any

other clients...

HTTP Communication
(e.g. over WiFi)

Camera thread

Server side
(N900)

Client side
(multiple devices)

Figure 4.4: Conceptual diagram of our framework. The device running the sampling algo-
rithm communicates with multiple clients over network.

Diagram 4.4 illustrates this concept. The server provides interface compliant with the
HTTP protocol. Multiple clients can connect to the server at a time and request sampling
results, or change the con�guration of the importance sampling algorithm. The server also
provides con�guration interface based on HTML, so any web browser can be used to con�gure
the device. The device also runs a processing thread that communicates with the HTTP
daemon thread via message passing and shared memory with mutexes, and performs the
importance sampling.

48 CHAPTER 4. IMPLEMENTATION

4.3.2 Server side

The server runs on a mobile device. We used the Nokia N900 smartphone, as described
in Section 4.1. The device runs a linux operating system and supports the Qt framework,
including network module and multithreading.

We designed a layered architecture that separates the network interface from the core
processing and makes maintenance and future development of the software simpler. The
architecture is illustrated in Figure 4.5. The following paragraphs describe our design.

Http Daemon

Camera ThreadEvent Loop

Front

Back

Capture HDR Image Fusion Processing Write results Signal 'DataReady'

Event Loop

Swap buffers
(Front/Back)

Send data to clients
'WaitingForData'

HTTP

Mutex /
Shared Memory

Listen

Create Socket

Incomming
connection

Handle request

Add socket to queue
'WaitingForData' Parse change request Send reply ...

Execute change request

'Data' 'Change' 'Info' 'Capture', etc.

HTTP

'WaitingForData'

Socket queue

Buffers

Camera Threads

Server Threads

Network connection

Worker loop

On 'DataReady'

Signal 'DataReady'

Signal 'Change(params)'

Figure 4.5: A �owchart diagram of the server side. The HTTP Daemon receives requests
from the clients. When the processing of a frame is �nished, the results are sent to the clients
requesting them.

The HTTP Daemon listens for new incoming connections and either handles them imme-
diately, passing information to the Camera Thread if necessary, or adds the client socket to a
queue if the requested resources are not yet available. Change requests, altering the con�g-
uration of the importance sampling algorithm, are passed to the Camera Thread through an
event loop. The Camera Thread itself is executing an in�nite loop of light probe acquisition
and sampling. When a new frame is processed and the results are ready to be sent, the
Camera Thread moves them into the front bu�er of the HTTP Daemon and �res a signal
'DataReady'. When the event loop of the HTTP Daemon receives this signal, it moves the

4.4. IMPLEMENTED IMPORTANCE SAMPLING METHODS 49

data to a back bu�er and starts sending them to the clients that are waiting for data. In the
meantime, the Camera Thread continues processing the next frame.

The execution loop of the Camera Thread consists of �ve steps. Firstly, a set of captured
images is read from the sensor and the sensor is con�gured to asynchronously start capturing
a new burst of images. The captured burst of images with varying exposures is then fused
into a single high dynamic range image. In the processing step, the image is mapped into
polar coordinates and a selected importance sampling algorithm is executed, as described in
Section 4.4. Finally, results are copied to the front bu�er of the HTTP Daemon via shared
memory protected with a mutex and a 'DataReady' signal is emitted. Following that, the
loop starts again from the beginning to process the next frame.

4.3.3 Client side

We implemented a client module that handles the communication with the server and parses
the results. It provides a simple interface that can be used to plug it into existing systems. A
signal is emitted every time the client module receives new sampling data from the server. It
provides a method to get the processed sampling data (positions and colours of light sources)
that should be called from the event handler that is executed on emission of this signal.

4.3.4 Communication protocol

The protocol we designed for the communication between the server and clients is based
on HTTP. The client sends a GET requests and receives a reply. The server uses regular
expressions to parse the request and performs an appropriate action. A complete list of
supported requests and their syntax is provided in Appendix A.1. The clients can, for
example, request the sampling data in XML or plain text format, request change of the
importance sampling settings, such as the number of samples or the algorithm being used,
or request information about current settings.

As the protocol is fully compliant with standard web technologies and protocols, any web
browser can be used to send requests and read the replies in a human readable format. The
format of results is also designed to be easily processed by machines.

4.4 Implemented importance sampling methods

We have implemented three di�erent importance sampling algorithms. While the �rst of
them targets static environment map sampling, the later two have been speci�cally designed
for dynamic environment sequences.

The simplest of them, which we will refer to as Pharr in the rest of this paper, is based on
the standard inverse procedure [61]. It was �rst used for static environment map sampling
by Pharr et al. [43] and Burke et al. [44] in 2004.

50 CHAPTER 4. IMPLEMENTATION

The second method we have implemented was proposed by Havran et al. [16] in 2005. In
principle, it is similar to the method described earlier. The environment map sampling is also
based on a probability distribution function (PDF). However, instead of the standard inverse
procedure, the inverse transform method proposed by Havran et al. [42] is used. Apart from
that, an attempt has been made to improve the temporal coherence of the sampling pattern.
This is done by temporal �ltering of the light source energy and position. Captured light
source power may change from frame to frame due to �uorescent lamps, for example. To
suppress these changes, a �lter operates on the total luminance of the environment map.
Another source of �ickering and jumpy shadow changes is caused by the global nature of the
PDF-based algorithm. An abrupt change of the illumination in one part of the scene causes
a change in the entire sampling pattern. To limit the light source movements, another �lter
operates on the trajectories of the samples. In the rest of this paper, we will refer to this
method as Hemigon.

The third method, known as the Q2-Tree, comes from a completely di�erent approach.
Proposed by Wong et al. [15] in 2005, this method builds an adaptive quad tree over the
sphere projected onto the Euclidean plane. It uses the HEALPix projection [45], widely used
for all sky mapping by astrophysicists. Details about the HEALPix projection, including
implementation in several languages, can be found on the NASA web pages [46]. In the
process of quad tree construction, the algorithm maintains a sorted list of quadrilateral in
order of their importance. As Wong et al. [15] proposes, we evaluated the importance of
quadrilaterals as a product of their angular extend and brightness. These two values are
raised to a prede�ned exponent, which regulates their in�uence of the resulting importance
value. It can be used to alternate the sampling pattern, giving more favor to either the
angular extend or brightness of the quadrilaterals. The algorithm is explained in detail in
Section 2.5.2.5.

For a detailed discussion of importance sampling algorithms for dynamic sequences, see
Section 2.5. In Section 5.1, we compare the implemented methods in terms of the quality of
the sampling pattern, temporal coherence, artifacts and performance.

Chapter 5

Results

In this chapter, we present the results of our work. Firstly, we compare the importance
sampling methods in terms of sampling pattern quality, temporal coherence and perfor-
mance. We then discuss the correctness and veri�cation of our implementation. Additional
information, including screenshots and photographs are given in Appendix C.

5.1 Comparison of implemented methods

in Section 4.4, we described the three importance sampling methods that we have imple-
mented. In this section, we compare these methods based on several criteria. The �rst cri-
terion is how well the sampling pattern approximates the light distribution in the captured
environment. Secondly, we discuss the temporal coherence of the pattern. This includes
suppression of any unwanted frame to frame �ickering as well as other artifacts produced
by abrupt lighting changes. Apart from sampling pattern and its temporal coherence, an
important aspect for real-time use of the algorithms is the performance. A comparison of
the three implementations in terms of processing time will be given.

5.1.1 Quality of sampling pattern

Both of the two PDF-based sampling algorithms produce equal energy samples. That means
that the distribution of the samples is proportional solely to the distribution of the energy
in the captured environment. While in general such a sampling pattern makes a good
approximation of the environment, in some cases undersampling of relatively dark regions
might be a problem. Suppose we have an environment that contains one very bright source
of light and several much dimmer light sources. This setting is quite typical for both day
outdoor scenes, where the brightest light source is the sun, as well as for night scenes with
arti�cial lighting. A sampling pattern that puts almost all of the samples in the small
bright region would be reasonable for most views of the rendered scene. But when the main
light source gets obstructed and the view being rendered is in a shadow, then the dim light

51

52 CHAPTER 5. RESULTS

(d) Pharr (e) Hemigon (f) Q2-Tree

Figure 5.1: The upper row shows the sampling patterns produced by the three algorithms
for an environment map of resolution 360× 90, 16 samples; a render of a bunny lit by each
respective set of light sources is given below. From left to right: Pharr, Hemigon, Q2-Tree.

sources come in play. Sampling a small bright region very thoroughly and undersampling
the rest produces poor results in such cases. This is where the strength of the Q2-Tree
sampling algorithm lies. Spreading the samples according to an importance metric based
not only on the brightness, but also in�uenced by the angular extent produces better results
in such situations. Each sample can carry a di�erent amount of energy, so the overall energy
distribution represented by the sampling pattern approximates the environment just as well
as the sampling patterns produced by PDF-based methods. But the idea is that it is su�cient
to approximate the small bright regions with fewer samples than vast areas of the same total
brightness.

On the other hand, the Q2-Tree algorithm su�ers a limitation to its usability in real-
time systems. It requires relatively many samples to approximate an environment well. The
�rst 12 samples is distributed uniformly and a few dozens more is placed in spots that do
not match well the light source positions. If we take only a few dozens of samples, the
positions of light sources and thus the shadows cast in the renderer do not match the real
environment and cause strong artifacts, especially in augmented reality. Furthermore, for
subtle movements of light sources, the sampling pattern does not change, only the energy
of each sample changes. Suppose a scene with a light bulb swinging on a cord. If the
number of samples is not su�ciently high, we obtain the same sampling pattern for each
frame. When rendered, the shadows do not move as the light bulb swings, only the intensity
changes. Such scenes look very odd and diminish the overall impression of the virtual
environment, as the human visual system is very sensitive to shadow positions, providing an

5.1. COMPARISON OF IMPLEMENTED METHODS 53

important cue about the environment. This problem is overcome if the number of samples is
high enough, or if advanced rendering techniques are used to smooth out the boundaries of
individual shadows. Unfortunately, both solutions are computationally very costly and with
the hardware available at the moment, hard to achieve in real-time.

(a) Q2-Tree; 100 samples

(b) Q2-Tree; 1000 samples

Figure 5.2: An arti�cial environment map sampled using the Q2-Tree sampling algorithm
with (a) 100 and (b) 1000 samples.

Figures 5.3 and 5.6 show the sampling patterns produced by the three algorithms. Note
that while Pharr and Hemigon algorithms produced similar sampling pattern, the Q2-Tree
algorithm spreads the samples across a broader area because the importance is weighted by
angular extent as well as brightness.

Figure 5.1 shows the sampling pattern of each of the three algorithms together with a
scene renderer using the respective set of light sources. The burst of varying exposure LDR
images that produced the HDR environment map in this �gure is given in Appendix C.4 and
a photograph of the testing setup in Appendix C.3.

Figure 5.2 shows the sampling pattern of the Q2-Tree algorithm for a varying number of
samples. Note that for a relatively low number of samples (i.e. less than 100), the positions

54 CHAPTER 5. RESULTS

of samples di�er signi�cantly from the positions of the real light sources. As the number of
samples increases, the sampling is more accurate. This is caused by the adaptive nature of
the Q2-Tree sampling algorithm. The �rst 12 samples are placed uniformly and it takes a
few more dozens of samples to sample the light sources adequately. In contrast, the PDF-
based methods (such as Pharr and Hemigon) place every sample independently of the other
samples. Thus, these methods provide better approximation than the Q2-Tree if the number
of samples is low.

5.1.2 Temporal coherence

An important aspect of importance sampling algorithm for dynamic sequences is the tempo-
ral coherence of the sampling pattern. Frame to frame changes of the light source positions
and their intensity cause �ickering.

(g) (h) (i)

Figure 5.3: Snapshots of the sampling patterns produced by the three implemented sampling
algorithms. From left to right: Pharr, Hemigon, Q2-Tree. Vertically: environment maps of
varying lighting conditions.

5.1. COMPARISON OF IMPLEMENTED METHODS 55

In the implementation of the �rst algorithm, Pharr, we used a Halton generator to
generate a sequence of quasi-random numbers in two-dimensional space. These numbers are
then mapped via a cumulative probability distribution function (CDF) to obtain the �nal
sample positions. Each sample is assigned the same quasi-random vector for every frame,
which means that given two equal input images, the algorithm provides the same results for
both. Position of samples changes when the CDF changes. The problem of this algorithm
is that it does not handle local changes well. A local change in the input image produces
di�erent CDFs and thus the entire sampling pattern changes, even in the regions of the image
that stayed unchanged.

The second implemented algorithm, Hemigon, attempts to solve these issues by several
improvements. Firstly, a di�erent mapping have been used, removing the discontinuity for
φ = 0. Secondly, two �lters operating on the intensity and trajectories of samples improve
the temporal coherence. These processing steps do increase the temporal coherence, but
introduce several other problems. The most serious disadvantage of this approach is that
abrupt illumination changes are not handled well. As explained in the previous paragraph,
switching a light on or o� results in a continuous movement of samples from their original
position to the new position, even though in the real environment, the change was abrupt.
Despite these issues, for a typical scene with subtle frame to frame illumination changes, this
method produces best results of the three methods that we have tested.

The Q2-Tree sampling method exhibits di�erent temporal coherence issues than the
previously discussed two methods. An advantage of this method is the local nature of the
quad tree subdivision. Local changes in the illumination do not a�ect the sampling pattern
in the unchanged regions. But using this kind of subdivision introduces some unwanted
artifacts as well. Firstly, as described in Section 5.1.1, subtle movements of light sources
in the real environment are not re�ected by changing the position of samples. Secondly, if
the total number of samples is kept constant, local changes of illumination lead to adding
or removing samples in other regions. Although the energy distribution represented by the
samples is not changed, as the sum of sample energy in a particular region is kept constant
(removing samples is implemented by merging four samples into one and summing their
energy), abruptly changing the number of light sources in a particular region leads to visual
artifacts in the renderer scene.

5.1.3 Performance

Our goal was to implement a system that achieves real-time performance. In this section,
we present the performance measurements of our implementation and compare the three
importance sampling methods in terms of processing time.

Please note that the results may vary greatly depending on the implementation. Also
note that while the implementation of the Hemigon algorithm was provided by the author
of the algorithm [16], the other two algorithms, Pharr and Q2-Tree, were implemented by
the author of this thesis.

The measurements were performed on a Nokia N900 smartphone, as described in Section

56 CHAPTER 5. RESULTS

4.1. Three images of varying exposure were fused into one high dynamic range image.
The images were captured at resolution 640 × 480 pixels and mapped to a polar image of
resolution one pixel per degree (i.e. 360×90 for a hemisphere). The Q2-Tree algorithm used
a HEALPix mapping of resolution 12× 100× 100 pixels. The source code was compiled in
GCC compiler, version 3.4.4, with the -O3 option enabled.

The asymptotic time complexity is O(w × h + n), where w × h is the resolution of the
environment map and n is the number of samples. The �rst term, O(w × h), accounts for
the processing of the environment map prior to placement of samples. This includes, for
example, construction of the CDFs in PDF-based sampling algorithms and construction of
the summed area table in the Q2-Tree sampling algorithm. The second term, O(n), accounts
for the post-processing of samples. This includes computation of the colour of a particular
sample. In the Q2-Tree sampling algorithm, the construction and update of a Q2-Tree is
also dependent on the number of samples.

The table 5.1 lists the processing times for each algorithm and their overall sampling
performance. The �rst column lists the processing times of importance sampling, assuming
a HDR polar image is available. The second column lists processing times including the tasks
that are common for all the three algorithms, such as image capture, HDR exposure fusion,
mapping to polar coordinates, etc. These tasks took in total 120 ms in this particular case.
The measurements were performed with the debugging mode disabled. In debug mode, this
stage takes 30 ms more to complete tasks such as tone mapping of the HDR image to be
displayed on the Nokia N900 display. All times shown here are in milliseconds. The number
of samples was set to 200.

Algorithm Sampling time Overall time

Pharr 10 130

Hemigon 340 460

Q2-Tree 30 150

Table 5.1: Comparison of performance of the three implemented methods. HDR image
captured at resolution of 640 × 480 pixels and mapped into polar coordinates at 360 × 90.
200 samples. All times are in milliseconds.

Figure 5.4 shows a plot of the execution time versus the number of sample for the three
sampling algorithms. Note that for a reasonable number of samples (i.e. up to several
thousands) the execution time is almost constant, because the environment map processing
dominates the sample processing. As the number of samples increases, the time to process
the samples, linear in the number of samples, becomes signi�cant and the overall processing
time increases linearly. For the Q2-Tree sampling algorithm, a huge number of samples
makes the size of the Q2-Tree become an issue and due to a limited size of the cache, the
time complexity even exceeds linear growth. For the Hemigon sampling algorithm, we were
provided a set 5000 precomputed quasi-random vectors by the author, so our implementation
of this algorithm is limited to 5000 samples. Details, including the data that were used to
construct this plot, are given in Appendix C.

5.2. VERIFICATION AND TESTING 57

Figure 5.4: Execution time versus number of samples.

5.1.4 Conclusion of the comparison

No single method can be voted to be the best. Each of the tested methods produces better
results then the other methods for a particular environment, but has problems to handle
situations that are handled successfully by other algorithms. This section should point out
the problems of each of the tested methods and �nd a space for improvements, rather than
guide the reader to pick a particular method.

To sum up the discussion of comparing the three importance sampling algorithms, there
are some patterns that we have observed. The PDF-based methods produce good results
for environment sequences where the frame to frame changes of illumination are subtle.
Filtering of sample trajectories and intensities improves the temporal coherence but causes
unwanted e�ects if the changes are abrupt. On the other hand, the sampling method based
on spherical Q2-tree handles successfully abrupt changes, especially if the changes are local,
but has problems handling minor light source movements.

5.2 Veri�cation and testing

In this section, we describe some of the tests that we performed to ensure correctness of results
and to debug potential problems. We also present photographs of our system in use and
screenshots illustrating sampling patterns produced by the three implemented algorithms.

5.2.1 Stability testing

In order to test the stability of the implemented software, we kept the program running for
24h and logged all exceptional events. During the testing, we changed the con�guration of
the server and the importance sampling algorithm occasionally. The lighting conditions of
the environment were changing from darkness to bright light throughout the testing period.

58 CHAPTER 5. RESULTS

Two clients were connected to the server for the entire period (Renderer and Visualization)
while other instances were connected and disconnected occasionally. The changes of the
con�guration were made via web browsers Mozilla Firefox and Microsoft IE.

During the testing period, no major errors occurred and the system kept operating nor-
mally. The only unexpected event that we recorded was a client not receiving a reply to
its request. This situation happened approximately once in 20 000 requests. It might be
due to some network problems that are not caused by our implementation. Anyway, the
occurrence of this error does not cause any major problems as the client automatically re-
sends the request after not receiving a reply in a speci�ed timeout period (2 seconds by
default). Resending a request if the original request was delayed but not lost does not cause
any problems neither, as such situations are handled by the server.

5.2.2 Correctness of sampling pattern and photometric calibration

In order to test the correctness of the sampling pattern, a debug mode can be turned on
via the con�guration tool. If it is enabled, the captured light probe mapped into polar
coordinates is displayed on the display of the Nokia N900 smartphone, tone mapped to
a range displayable by the device. The Sigmoid tone mapping operator is used [62, 63].
Positions of samples are visualized by red dots, as shown in photographs in Figure 5.5. It
can be observed that the density of samples corresponds to the distribution of brightness in
the image.

(a) (b) (c)

Figure 5.5: Photographs of the Nokia N900 display while the device is running in debug mode.
Photograph (a): display of the phone and a visualization running on a laptop, displaying the
same results in a di�erent coordinate system; (b) and (c): display of the phone in di�erent
settings. Note that the samples are more concentrated in brighter regions, as expected.

The regions of the hemisphere that are not covered by our �sheye lens are also visual-
ized on the display. This information gives an idea about the correctness of the geometric
calibration. We found that the blind area is slightly broader than expected. This error can
be attributed to an imprecision of the calibration matrix and distortion coe�cients. This
imprecision is due to the inability of the corner detection software that we used to detect

5.2. VERIFICATION AND TESTING 59

(a) Pharr (b) Hemigon (c) Q2-Tree

Figure 5.6: Sampling pattern produced by the three algorithms. The screenshots were
captured during a live operation of the device, so the lighting conditions might not be
exactly the same in all three images.

corners in the border regions of the image, as explained in Section 4.2.1. Section 4.2.1 sug-
gests a solution to this problem that is planned as future work. Further examination of the
geometric calibration, as described in Section 5.2.3, found that the central regions of the
view are calibrated correctly.

In order to debug and test the client and the transmission and serialization / deserializa-
tion of the sampling data, we implemented a visualization tool that connects to the server
and displays the samples. It also displays the total energy of the samples, which corresponds
to the illuminance of the place where the camera is positioned and can be used to test the
photometric calibration. The measured illuminance is close to the expected values (we mea-
sured approximately 40 lux for indoor environments with dim lighting and approximately
15 000 lux for outdoor environments on a bright day if the camera is not placed directly in
sunlight).

5.2.3 Renderer testing

In order to illustrate the use of our framework and to test the its usability, we implemented
a simple renderer in OpenGL with GLSL shaders. It renderers a scene lit by directional
light sources of positions and intensities corresponding to the samples taken by our impor-
tance sampling algorithm. The renderer runs in real-time. Changes in the lighting of the
environment where the capture device is placed immediately e�ect the lighting of the virtual
environment. Figure 5.7 shows photographs of the testing setup. In this particular case, the
user uses a �ashlight pointed at the camera. The illumination of the virtual environment
corresponds to the movements of the real �ashlight.

We also implemented a debug mode that displays the positions of directional light sources
as lines in 3D space. By moving a �ashlight around the camera it can be observed that the
virtual light sources correctly correspond to the position of the real light sources.

60 CHAPTER 5. RESULTS

(a) (b)

(c) (d)

Figure 5.7: Photographs of a testing setup. The user moves a �ashlight around the camera.
Changes of the light source positions are immediately observed in the renderer.

5.2.4 Software integration

In order to prove the concept of our design, we integrated our software into existing rendering
engines. By integrating our module into Tomas Barak's thesis [64] and the Zora platform
[54], it has been shown that our framework can be integrated into existing platforms in just
a few hours of work. The client module connects to the server and requests sampling results.
Every time the processing of a light probe is completed, the client receives the light source
positions and noti�es the rendering engine via a signal. The renderer then reads the light
source positions from the client module and uses them in the rendering.

Figure 5.8 shows screenshots from a scene illuminated by an interactive video environment
map, rendered using instant radiosity. In this particular case, the light probe was sampled
with 200 samples using the Q2-Tree sampling algorithm. The system operated at real-time
frame rates (rendering 47 frames per second; environment map capture and sampling ran
asynchronously at 6.7 frames per second).

5.2. VERIFICATION AND TESTING 61

(a) (b)

(c) (d)

Figure 5.8: Virtual scene lit by light sources decomposed from a light probe of a real envi-
ronment. Our framework has been integrated into the rendering engine developed by Tomas
Barak [64] to produce these screenshots (courtesy of Tomas Barak [64]).

62 CHAPTER 5. RESULTS

Chapter 6

Conclusion

In this thesis, we reviewed illumination methods for augmented reality. In particular, we
focused on existing methods of importance sampling for image-based lighting, and their
suitability for dynamic environments. We also discussed the importance of establishing
common illumination between real and virtual objects in augmented reality settings. We
looked at several di�erent algorithms for the computation of common illumination in mixed
reality environments where the scene geometry is approximately known.

We have implemented three di�erent importance sampling methods and compared them
in terms of the quality of sampling pattern, temporal coherence, and performance. We
proposed a software framework based on a client-server architecture that simpli�es the inte-
gration of our implementation into existing platforms. We have veri�ed our design on several
testing applications. We have also integrated our framework into two existing rendering en-
gines.

We have identi�ed the strengths and weaknesses of the three sampling algorithms. We
have veri�ed that the algorithm referred to as Pharr [43] provides a good approximation of
the environment map and has relatively low usage of computational resources, but su�ers
poor temporal coherence. We have found that although the low pass �ltering proposed by
Havran et al. [16] improves the temporal coherence, it causes artifacts if the illumination
changes are abrupt. We have also found that although the Q2-Tree sampling algorithm [15]
has a strong temporal coherence, it does not handle well subtle movements of light sources
unless the number of samples is very high.

As a future work, we suggest designing a better low pass �lter for the trajectories of
samples in the Hemigon algorithm [16]. If the �lter handled well abrupt illumination changes,
the quality of the sampling pattern for dynamic environment sequences of this algorithm
would be superior to the other two implemented algorithms.

Apart from that, a fully automated tool for the geometric calibration of the camera should
be implemented. The Nokia N900 smartphone provides su�cient computational resources to
perform the calibration on-chip. Computing the camera model directly on the phone would
simplify the calibration process.

63

64 CHAPTER 6. CONCLUSION

Bibliography

[1] O. Bimber and R. Raskar. Spatial augmented reality. AK Peters, 2005.

[2] K. Jacobs and C. Loscos. Classi�cation of illumination methods for mixed reality. In
Computer Graphics Forum, volume 25, pages 29�52. Amsterdam: North Holland, 1982,
2006.

[3] A. Fournier, A.S. Gunawan, and C. Romanzin. Common illumination between real
and computer generated scenes. In Graphics Interface, pages 254�254. CANADIAN
INFORMATION PROCESSING SOCIETY, 1993.

[4] P. Debevec. Rendering synthetic objects into real scenes: Bridging traditional and
image-based graphics with global illumination and high dynamic range photography. In
ACM SIGGRAPH 2008 classes, pages 1�10. ACM, 2008.

[5] S. Gibson, J. Cook, T. Howard, and R. Hubbold. Rapid shadow generation in real-world
lighting environments. In Proceedings of the 14th Eurographics workshop on Rendering,
pages 219�229. Citeseer, 2003.

[6] K. Jacobs, J.D. Nahmias, C. Angus, A. Reche, C. Loscos, and A. Steed. Automatic
generation of consistent shadows for augmented reality. In Proceedings of Graphics
Interface 2005, pages 113�120. Canadian Human-Computer Communications Society,
2005.

[7] M. Knecht, C. Traxler, O. Mattausch, W. Purgathofer, and M. Wimmer. Di�erential
instant radiosity for mixed reality. In Mixed and Augmented Reality (ISMAR), 2010 9th
IEEE International Symposium on, pages 99�107. IEEE, 2010.

[8] A. Keller. Instant radiosity. In Proceedings of the 24th annual conference on Computer
graphics and interactive techniques, pages 49�56. ACM Press/Addison-Wesley Publish-
ing Co., 1997.

[9] T. Ritschel, T. Grosch, M.H. Kim, H.P. Seidel, C. Dachsbacher, and J. Kautz. Imperfect
shadow maps for e�cient computation of indirect illumination. In ACM Transactions
on Graphics (TOG), volume 27, page 129. ACM, 2008.

[10] E. Reinhard. High dynamic range imaging: acquisition, display, and image-based light-
ing. Morgan Kaufmann, 2006.

65

66 BIBLIOGRAPHY

[11] S. Agarwal, R. Ramamoorthi, S. Belongie, and H.W. Jensen. Structured importance
sampling of environment maps. In ACM Transactions on Graphics (TOG), volume 22,
pages 605�612. ACM, 2003.

[12] T. Kollig and A. Keller. E�cient illumination by high dynamic range images. In
Proceedings of the 14th Eurographics workshop on Rendering, pages 45�50. Eurographics
Association, 2003.

[13] V. Ostromoukhov, C. Donohue, and P.M. Jodoin. Fast hierarchical importance sampling
with blue noise properties. In ACM Transactions on Graphics (TOG), volume 23, pages
488�495. ACM, 2004.

[14] P. Debevec. A median cut algorithm for light probe sampling. In ACM SIGGRAPH
2008 classes, pages 1�3. ACM, 2008.

[15] T.T. WONG. Spherical q2-tree for sampling dynamic environment sequences. Proceed-
ings of Rendering Techniques, 2005:21�30, 2005.

[16] V. Havran, M. Smyk, G. Krawczyk, K. Myszkowski, and H.P. Seidel. Interactive sys-
tem for dynamic scene lighting using captured video environment maps. In Proc. of
Eurographics Symposium on Rendering, pages 43�54, 2005.

[17] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable parallel programming with
cuda. Queue, 6(2):40�53, 2008.

[18] S. Ryoo, C.I. Rodrigues, S.S. Baghsorkhi, S.S. Stone, D.B. Kirk, and W.W. Hwu. Op-
timization principles and application performance evaluation of a multithreaded gpu
using cuda. In Proceedings of the 13th ACM SIGPLAN Symposium on Principles and
practice of parallel programming, pages 73�82. ACM, 2008.

[19] D. Luebke. Cuda: Scalable parallel programming for high-performance scienti�c com-
puting. In Biomedical Imaging: From Nano to Macro, 2008. ISBI 2008. 5th IEEE
International Symposium on, pages 836�838. IEEE, 2008.

[20] J. Wind, K. Riege, and M. Bogen. Spinnstube: A seated augmented reality display
system. In Proceedings of Eurographics Symposium on Virtual Environments, pages
17�23, 2007.

[21] T. Smith and J. Guild. The CIE colorimetric standards and their use. Transactions of
the Optical Society, 33:73, 1931.

[22] F.E. Nicodemus. Directional re�ectance and emissivity of an opaque surface. Applied
Optics, 4(7):767�773, 1965.

[23] V. Havran. Heuristic ray shooting algorithms. Ph.D. Thesis, Czech Technical University
in Prague, November 2000.

[24] I. Wald, W.R. Mark, J. Gunther, S. Boulos, T. Ize, W. Hunt, S.G. Parker, and P. Shirley.
State of the art in ray tracing animated scenes. Eurographics 2007 State of the Art
Reports, pages 89�116, 2007.

BIBLIOGRAPHY 67

[25] K. Su�ern. Ray tracing from the ground up. AK Peters, Ltd., 2007.

[26] A. Chalmers, T. Davis, and E. Reinhard. Practical parallel rendering. AK Peters, Ltd.,
2002.

[27] J.T. Kajiya. The rendering equation. ACM SIGGRAPH Computer Graphics, 20(4):143�
150, 1986.

[28] D.S. Immel, M.F. Cohen, and D.P. Greenberg. A radiosity method for non-di�use
environments. In ACM SIGGRAPH Computer Graphics, volume 20, pages 133�142.
ACM, 1986.

[29] Szymon Rusinkiewicz. Local Illumination, Re�ection, and BRDFs, 2002. Princeton
University [Presentation], URL: http://www.cs.princeton.edu/courses/archive/

fall02/cs526/lectures/radiometry.pdf.

[30] E. Veach and L.J. Guibas. Metropolis light transport. In Proceedings of the 24th
annual conference on Computer graphics and interactive techniques, pages 65�76. ACM
Press/Addison-Wesley Publishing Co., 1997.

[31] M.F. Cohen and J.R. Wallace. Radiosity and realistic image synthesis. Morgan Kauf-
mann, 1993.

[32] P. Dutre, K. Bala, P. Bekaert, and P. Shirley. Advanced global illumination, volume 2.
AK Peters, 2006.

[33] Zack Waters. Photon mapping - A tutorial. [Online; accessed 7-May-
2012], URL: http://web.cs.wpi.edu/~emmanuel/courses/cs563/write_ups/zackw/
photon_mapping/PhotonMapping.html.

[34] M. Pharr and G. Humphreys. Physically based rendering: From theory to implementa-
tion. Morgan Kaufmann, 2004.

[35] W. Jarosz, H.W. Jensen, and C. Donner. Advanced global illumination using photon
mapping. In ACM SIGGRAPH 2008 classes, pages 1�112. ACM, 2008.

[36] H.W. Jensen. Realistic image synthesis using photon mapping. AK Peters, Ltd., 2009.

[37] P. Debevec. Image-based lighting. IEEE Computer Graphics and Applications, 22(2):26�
34, 2002.

[38] P. Heckbert. Color image quantization for frame bu�er display. ACM Siggraph Computer
Graphics, 16(3):297�307, 1982.

[39] Nokia. Device details - Nokia N900, 2012. http://www.developer.nokia.com/

Devices/Device_specifications/N900/.

[40] J.I. Echevarria and D. Gutierrez. Mobile Computational Photography: Exposure Fusion
on the Nokia N900. Eurographics, 2011.

http://www.cs.princeton.edu/courses/archive/fall02/cs526/lectures/radiometry.pdf
http://www.cs.princeton.edu/courses/archive/fall02/cs526/lectures/radiometry.pdf
http://web.cs.wpi.edu/~emmanuel/courses/cs563/write_ups/zackw/photon_mapping/PhotonMapping.html
http://web.cs.wpi.edu/~emmanuel/courses/cs563/write_ups/zackw/photon_mapping/PhotonMapping.html
http://www.developer.nokia.com/Devices/Device_specifications/N900/
http://www.developer.nokia.com/Devices/Device_specifications/N900/

68 BIBLIOGRAPHY

[41] IMS CHIPS. HDRC � More than you can see. Technical report, HDRC Imager and
Camera Features, 2002. http://www.ims-chips.de/content/pdftext/HDRC_Imager_

Camera_Feature3.pdf.

[42] V. Havran, K. Dmitriev, and H.P. Seidel. Goniometric diagram mapping for hemisphere.
Short Presentations (Eurographics 2003), 5, 2003.

[43] M. Pharr and G. Humphreys. In�nite area light source with importance sampling. In
Physically based rendering: From theory to implementation. Morgan Kaufmann, 2004.

[44] D. Burke, A. Ghosh, and W. Heidrich. Bidirectional importance sampling for illumi-
nation from environment maps. In ACM SIGGRAPH 2004 Sketches, page 112. ACM,
2004.

[45] K.M. Górski, E. Hivon, and B.D. Wandelt. Analysis issues for large cmb data sets.
Arxiv preprint astro-ph/9812350, 1998.

[46] Górski, K.M. HEALPix. Jet Propulsion Laboratory, California Institute of Technology,
NASA, 2012. http://healpix.jpl.nasa.gov/.

[47] L. Wan, S. Mak, T. Wong, and C. Leung. Spatio-temporal sampling of dynamic en-
vironment sequences. Visualization and Computer Graphics, IEEE Transactions on,
(99):1�1, 2011.

[48] A. Secord, W. Heidrich, and L. Streit. Fast primitive distribution for illustration. In Pro-
ceedings of the 13th Eurographics workshop on Rendering, pages 215�226. Eurographics
Association, 2002.

[49] F.C. Crow. Summed-area tables for texture mapping. ACM SIGGRAPH Computer
Graphics, 18(3):207�212, 1984.

[50] I. Sato, Y. Sato, and K. Ikeuchi. Acquiring a radiance distribution to superimpose virtual
objects onto a real scene. Visualization and Computer Graphics, IEEE Transactions on,
5(1):1�12, 1999.

[51] C. Loscos, G. Drettakis, and L. Robert. Interactive virtual relighting of real scenes.
Visualization and Computer Graphics, IEEE Transactions on, 6(4):289�305, 2000.

[52] G. Patow and X. Pueyo. A survey of inverse rendering problems. In Computer graphics
forum, volume 22, pages 663�687. Wiley Online Library, 2003.

[53] J. Canny. A computational approach to edge detection. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, (6):679�698, 1986.

[54] Vlastimil Havran. Zora: architecture for augmented reality, 2011. [Personal communi-
cation].

[55] A. Adams, D.E. Jacobs, J. Dolson, M. Tico, K. Pulli, E.V. Talvala, B. Ajdin, D. Va-
quero, H. Lensch, M. Horowitz, et al. The frankencamera: an experimental platform for
computational photography. ACM Transactions on Graphics (TOG), 29(4):29, 2010.

http://www.ims-chips.de/content/pdftext/HDRC_Imager_Camera_Feature3.pdf
http://www.ims-chips.de/content/pdftext/HDRC_Imager_Camera_Feature3.pdf
http://healpix.jpl.nasa.gov/

BIBLIOGRAPHY 69

[56] Nokia. Qt - Cross-platform application and UI framework, 2012. http://qt.nokia.

com/.

[57] R. Hartley, A. Zisserman, and Inc ebrary. Multiple view geometry in computer vision,
volume 2. Cambridge Univ Press, 2003.

[58] Matt Loper. CamChecker - A Camera Calibration Tool, 2003. http://matt.loper.

org/CamChecker/.

[59] Davide Scaramuzza. OCamCalib: Omnidirectional Camera Calibration Toolbox for
Matlab, 2012. http://sites.google.com/site/scarabotix/ocamcalib-toolbox.

[60] OpenCV. Open Source Computer Vision, 2012. http://opencv.willowgarage.com/

wiki/.

[61] George S. Fishman. Monte Carlo: concepts, algorithms, and applications. Springer,
1996.

[62] E. Reinhard, T. Kunkel, Y. Marion, J. Brouillat, R. Cozot, and K. Bouatouch. Image
display algorithms for high and low dynamic range display devices. Journal of the
Society for Information Display, 15(12):997�1014, 2007.

[63] Tomá² Nikodým. Ray tracing algorithm for interactive applications. Bachelor's Thesis,
Czech Technical University in Prague, May 2010.

[64] Tomá² Barák. Global Illumination via Instant Radiosity. Master's Thesis, Czech Tech-
nical University in Prague, May 2012. [Not yet published].

[65] FCAM. FCam API - Getting started. [Online; accessed 3-May-2012], URL: http:
//fcam.garage.maemo.org/gettingStarted.html.

http://qt.nokia.com/
http://qt.nokia.com/
http://matt.loper.org/CamChecker/
http://matt.loper.org/CamChecker/
http://sites.google.com/site/scarabotix/ocamcalib-toolbox
http://opencv.willowgarage.com/wiki/
http://opencv.willowgarage.com/wiki/
http://fcam.garage.maemo.org/gettingStarted.html
http://fcam.garage.maemo.org/gettingStarted.html

70 BIBLIOGRAPHY

Appendix A

User manual

The user manual provides information about the communication protocol and the con�gu-
ration of the server.

A.1 Communication protocol

This section lists all requests supported by the server. The requests are send by requesting
the following url:

http://ADDRESS:PORT/REQUEST

where ADDRESS is the IP address of the device and PORT is the port (by default 8080).
Options for the REQUEST are listed below.

A.1.1 Information request

Request: info
Format of reply: HTML
Description: requests information about current application settings.

A.1.2 Change requests

Request: change?[param]=[value]
Description: requests a change of the server con�guration.

Supported parameters and their values are listed below. If the request is sent without
any parameters, the server sends a list of supported requests and an HTML form to change

71

72 APPENDIX A. USER MANUAL

the con�guration. For any other change request, the server responds with an HTML page
con�rming the change.

Request: change?algorithm=[value]
Values: hemigon, q2tree, pharr
Description: requests a change of the sampling algorithm being used.

Request: change?gui=[value]
Values: on, off
Description: turns on or o� the debug mode. In debug mode, the tone-mapped polar image
and sample positions are displayed on the N900 display.

Request: change?extrapolation=[value]
Values: none, average
Description: changes the extrapolation method being used. If the value is none, the regions
outside of the camera's �eld of view contribute no illumination. If the value is average, then
the average pixel color and intensity are used for the pixels outside of the camera's �eld of
view.

Request: change?samples=[value]
Value: number of samples (integer)
Description: changes the number of samples (light sources).

A.1.3 Data requests

If the client requests data, the server adds the client socket to a queue and send back the
requested data when a new frame is processed. That means that the request can be sent
again on receiving a reply to the previous data request if we want to receive the positions of
light sources for every frame. Two distinct formats of data are supported: XML and plain
text.

Request: xml
Format of reply: XML
Description: requests the sampling data in the XML format.

Request: data
Format of reply: plain text
Description: requests the sampling data in the plain text format.

A.1.4 Image requests

Request: image?[value]
Value: index of the image in a burst of images with varying exposures. Ranges from 0
(shortest exposure) to 2 (longest exposure). If no value is specify, it defaults to 2.
Format of reply: JPEG

A.2. CONFIGURATION 73

Description: reads one of the images captured in a burst of images of varying exposures.
The images are captured by pressing the shutter button on the phone.

Request: capture
Format of reply: JPEG
Description: captures a single shot image and sends it back to the client.

A.1.5 Screenshot requests

Request: screenshot
Format of reply: HTML
Description: captures a screenshots of the Nokia N900 display (only the image widget is
captured, containing the environment map and positions of samples, but excluding any GUI
components such as buttons).
Remarks: the screenshot is assigned a unique name and is stored in a PNG format on the
server device (Nokia N900).

A.1.6 Example

If the device is connected via USB, the default IP address if 192.168.2.15. The following
request changes the sampling algorithm being used to the Q2-Tree sampling algorithm.

http://192.168.2.15:8080/change?algorithm=q2tree

A.2 Con�guration

Because the communication protocol is fully compliant with standard web technologies,
the con�guration of the server can be done in a web browser. Figure A.1 shows a set of
screenshots from the con�guration. Details about the protocol are given in Section A.1.

74 APPENDIX A. USER MANUAL

(a) (b)

(c) (d)

Figure A.1: A set of screenshots from the web based con�guration of the server.

Appendix B

Installation guide

In this section, we describe the installation and con�guration of tools that are required to
compile the application from source code. The compilation of client applications is trivial;
we provide the .pro project �les so the projects can be compiled in Qt Creator without any
di�culties. A bit more tricky is the compilation of the server application for the Nokia N900
smartphone. It the following paragraphs, we brie�y describe the setup that needs to be done
prior to the �rst deployment. Note that this is required only if you want to enable features
such as debugging on the target machine; for the deployment of binary packages, this setup
is not required.

First of all you need to download the Nokia Suite and install it on your PC. Then you
will need to install the MAD developer tool on your Nokia N900 smartphone. By default, the
smartphone uses Unix Networking, so if you use Windows, then every time you restart the
phone, you will need to run the MAD developer and set the networking mode to Windows
Networking. You should also click the Con�guration button and make sure the IP address is
set to 192.168.2.15. When you connect the phone or change the networking mode, a dialog
box should appear; select PC Suite Mode every time you see this dialog. Now switch back to
your desktop computer. In the network con�guration, you should now see a new Local Area
Network with no internet access. In the properties dialog, select IPv4, click properties and
set the IP address manually to 192.168.2.14, subnet mask 255.255.255.0. The connection is
now set up. When you connect the smartphone via a USB cable and set the networking mode
in the MAD developer, you should be able to connect to the phone on address 192.168.2.14.
If for some reason you fail to con�gure the connection via USB, it is still possible to connect
to the phone using WiFi.

To setup the Qt Creator, open the Options dialog and select Linux Devices. Follow
the instructions in the dialog. To connect to the device for the �rst time, you will need
a password. The generate the password, click on the Developer Password button in MAD
developer. You are advised to generate a pair of SSH keys and deploy your public key to the
smartphone, so that the Qt Creator can connect to the device without a password.

The con�guration is explained in more details here [65].

75

76 APPENDIX B. INSTALLATION GUIDE

Appendix C

Additional results

The results are presented in Chapter 5. In this appendix, we provide some additional infor-
mation and �gures that did not �t the results chapter.

Figure C.1 shows the results for an outdoor scene. Each column corresponds to one of the
three implemented algorithms. In the �rst two rows, two frames of a sampled environment
map are shown. These were captured in a live environment, one second apart, so the position
of clouds changed slightly. It can be observed that while the Q2-Tree sampling algorithms
maintains the same sampling pattern (only the intensity of light sources changes), the two
PDF-based sampling algorithms changed the sampling pattern slightly. In the bottom row, a
render of a bunny lit by the directional light sources obtained by sampling the environment
map is shown. Note that this experiment was performed in a live environment, so the
lighting conditions might not be exactly the same for all three sampling algorithms, as they
were captured several seconds apart. Figure C.2 shows a burst of three images of varying
exposures taken by the camera during this experiment.

Figure C.3 shows a photograph of the testing setup that was used to capture the data
in Figure 5.1. Figure C.4 gives a bust of LDR images that was fused into a HDR image and
mapped into polar coordinates to produce the environment map in Figure 5.1. The tests
were performed in a dark room with one relatively bright light source - a desk lamp. The
illumination at the spot where the camera was positioned during the experiments was about
21 lux (measured by the Nokia N900, as described in Section 4.2.2).

Tables C.1, C.2, and C.3 provide detailed results of the performance testing described in
Section 5.1.3. For more information, refer to Section 5.1.3.

77

78 APPENDIX C. ADDITIONAL RESULTS

(g) Pharr (h) Hemigon (i) Q2-Tree

Figure C.1: The two upper rows show the sampling patterns produced by the three algo-
rithms for two consecutive frames; a render of a bunny lit by each respective set of light
sources is given below. From left to right: Pharr, Hemigon, Q2-Tree.

(a) (b) (c)

Figure C.2: A burst of three images of varying exposures taken with the Nokia N900 smart-
phone. These images were taken in the same environment as Figure C.1.

79

Figure C.3: A photograph of the Nokia N900 smartphone placed in a testing environment.
The smartphone captures and processes light probes of the environment; positions of samples
are sent over WiFi.

(a) Exposure = 0.926 ms (b) Exposure = 5.555 ms (c) Exposure = 33.333 ms

Figure C.4: A burst of three images of varying exposures taken with the Nokia N900 smart-
phone. The gain remained unchanged for all three images (gain = 17).

Number of samples Overall processing time

100 130

1000 130

10000 200

20000 280

50000 440

Table C.1: Pharr; processing time versus number of samples. The time is in milliseconds.

80 APPENDIX C. ADDITIONAL RESULTS

Number of samples Overall processing time

100 460

1000 460

5000 480

Table C.2: Hemigon; processing time versus number of samples. The time is in milliseconds.

Number of samples Overall processing time

100 150

1000 170

10000 1250

20000 4100

30000 13000

40000 31000

50000 61000

Table C.3: Q2-Tree; processing time versus number of samples. The time is in milliseconds.

Appendix D

Contents of the data media

.git: git repository

docs: documentation

data: �gures, results, etc.

diagrams: diagrams in source format

literature review: text of the semester project (LATEX)

release: text of the master thesis (PDF)

thesis: text of the master thesis (LATEX)

exe: executables

ext: 3rd-party open source tools (source code)

src: source code

HttpClient: client module

N900: application for the Nokia N900 device

Renderer: OpenGL renderer

Visualization: visualization application

intrinsics.txt: camera intrinsics matrix and distortion coe�cients

tools: 3rd-party open source tools (binary)

81

	Introduction
	Overview
	Related Work
	Structure of this thesis

	Theoretical background
	Optics
	Radiometry and photometry
	Surface reflectance

	Ray shooting algorithm and data structures
	Global illumination
	Rendering equation
	Path tracing based algorithms
	Path tracing
	Bidirectional path tracing
	Metropolis light transport

	Radiosity
	Photon mapping
	Construction of photon map
	Rendering
	Irradiance caching
	Effects

	Image-based lighting
	Environment map representation
	Environment map capture
	Mirrored spheres
	Tiled photographs
	Fish-eye lenses

	Use of environment maps in rendering
	Light source identification
	Light source constellation
	Importance sampling

	Image-based lighting using dynamic environment sequences
	High dynamic range light probe acquisition
	Importance sampling of video environment maps
	Requirements
	Existing methods for sampling of static environment maps
	Existing methods for sampling of dynamic environment maps
	Probability distribution function based importance sampling methods
	Spherical Q2-tree for sampling dynamic environment sequences

	Illumination methods for augmented reality
	Classification of illumination methods
	Common illumination based on differential rendering
	Shadow detection and generation
	Differential instant radiosity

	Analysis and design
	Problem statement and analysis of solution
	Framework design
	Concepts
	Software architecture
	Technologies

	Implementation
	Hardware description
	Camera calibration
	Geometric camera calibration
	Photometric camera calibration

	Software architecture
	Concept
	Server side
	Client side
	Communication protocol

	Implemented importance sampling methods

	Results
	Comparison of implemented methods
	Quality of sampling pattern
	Temporal coherence
	Performance
	Conclusion of the comparison

	Verification and testing
	Stability testing
	Correctness of sampling pattern and photometric calibration
	Renderer testing
	Software integration

	Conclusion
	Bibliography
	User manual
	Communication protocol
	Information request
	Change requests
	Data requests
	Image requests
	Screenshot requests
	Example

	Configuration

	Installation guide
	Additional results
	Contents of the data media

