
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Computer Graphics

Diploma Thesis

Voxel Cone Tracing for Indirect
Illumination

Author: Bc. Tomáš Dř́ınovský
Supervisor: Ing. Tomáš Barák
Study Programme: Open Informatics
Field of Study: Computer Graphics and Interaction

May 8, 2013

Acknowledgements

I would like to thank to the supervisor of this work Ing. Tomáš Barák for his insight and numerous
helpful advices. Another thanks belong to my parents and my brother for their support during whole
my studies and to my girlfriend for keeping me sane.

Declaration

I hereby declare that I have completed this thesis independently and that I have listed all the literature
and publications used. I have no objection to usage of this work in compliance with the act §60 Zákon c.
121/2000Sb. (copyright law), and with the rights connected with the copyright act including the changes
in the act.

In Prague on May 8, 2013 Tomáš Dř́ınovský

.....................................

Abstract

Indirect illumination is the fundamental part of realistic image synthesis. Its evaluation is computation-
ally expansive and usually highly dependent on geometrical complexity of the scene.

�is thesis deals with the real-time indirect illumination. We examine the state of the art algorithms
in this �eld and one of them, the Voxel Cone Tracing introduced by Crassin et al. in 2011, is imple-
mented. �e implementation uses capabilities of a modern GPU and is capable to render di�use indirect
illumination, glossy surfaces and ambient occlusion. �is implementation is tested on �ve di�erent
scenes and produces satisfactory approximation of indirect illumination in interactive frame rates.

Keywords: global illumination, indirect illumination, cone-tracing, voxel, octree, GPU, real-time
rendering

Contents

Contents i

List of Figures ii

List of Tables iii

1 Introduction 1
1.1 Subject of this thesis . 2
1.2 �esis structure . 2

2 �eoretical background 3
2.1 Radiometry . 3
2.2 Surface representation . 3

2.2.1 Bidirectional Re�ectance Distribution Function 3
2.2.2 Bidirectional Transmittance Distribution Function 4
2.2.3 Normal Distribution Function . 4

2.3 Rendering equation . 6
2.4 Common rendering techniques . 7

2.4.1 Normal mapping . 7
2.4.2 Shadow mapping . 8
2.4.3 Octree . 8
2.4.4 Deferred rendering . 10

3 Interactive Global Illumination Algorithms 11
3.1 Virtual Point Lights . 11
3.2 Re�ective Shadow Map . 12
3.3 Cascaded Light Propagation Volumes . 13
3.4 Hardware-Accelerated Image Space Photon Mapping 14

3.4.1 Initial Bounce . 14
3.4.2 Secondary Bounces . 15
3.4.3 Radiance estimate . 15

3.5 Imperfect Shadow Maps . 15
3.6 Indirect Illumination using Voxel Cone Tracing . 17

3.6.1 Voxel-Octree building . 17
3.6.2 Voxel representation . 18
3.6.3 MIP-mapping . 18
3.6.4 Voxel Cone Tracing . 19

4 Problem Analysis 21
4.1 Algorithm selection . 21
4.2 Technology selection . 21

5 Implementation 23

i

Contents

5.1 Application structure . 23
5.2 Voxel-Octree building . 24

5.2.1 Voxel-fragments generation . 24
5.2.2 Octree structure . 27
5.2.3 Octree construction . 27

5.3 Voxel representation . 28
5.4 Brick �lling . 29

5.4.1 Gathering values from voxel fragments . 30
5.4.2 Brick edge copy . 30
5.4.3 Brick averaging . 31

5.5 Light injection . 32
5.6 Voxel Cone Tracing . 34
5.7 Dynamic scenes . 36

6 Results 39
6.1 Tested scenes . 39
6.2 Performance analysis . 39
6.3 Quality analysis . 45

7 Conclusion 53
7.1 Summary . 53
7.2 Future work . 53

Bibliography 55

A List of Abbreviations 59

B Additional images 61

C User manual and installation 65
C.1 Compilation . 65
C.2 Usage . 66

D CD content 69

ii

List of Figures

1.1 Decomposition of illumination; Courtesy of Ritschel [Rit+12] 1
1.2 �e di�erence between images rendered with direct illumination (on the le�) and with

global illumination (on the right) . 2

2.1 �e BRDF describes how much of the incident light along the direction ωi is scattered from
the surface in the direction ωr . 4

2.2 �e BTDF describes how much of the incident light along the direction ωi is refracted
through the surface in the direction ωt . 5

2.3 �e graph of the gaussian functions with di�erent deviations σ2 5
2.4 �e shape of the gaussian lobe changes with angle between the vectors. 6
2.5 Gaussian lobes on the le� and on the right have same shape, although they were derived

from di�erent vector sets. 6
2.6 �e normals of the high resolution mesh are projected onto the low resolution mesh and are

stored in the normal map (a). During the rendering, the normal of a point on low resolution
mesh is altered by the normal acquired from normal map (b). 7

2.7 �e depth stored in the shadow map (yellow) is compared with the distance of the surface
from the light (red). If the distance from the light is greater than the depth from the shadow
map, then the surface lies in a shadow. 8

2.8 �e shadow mapping with no bias added to the shadow map depth is causing sampling
artefacts . 9

2.9 Building of an octree around the mesh surface; Courtesy of Lefebvre et al. [LHN05] 9
2.10 Each inner node of the octree divide the space it represents into 8 sections. 10
2.11 �e content of the geometry bu�er: depth of the scene (a), albedo (b) and decoded normals

(c) . 10

3.1 �e rendered image of the conference room using 128 virtual point lights; Courtesy of Keller
[Kel97] . 11

3.2 �e content of the RSM. From le� to right: depth, world space position, normal, �ux. On
the right there is the image rendered with global illumination using RSM; Courtesy of
Dachsbacher et al. [DS05] . 12

3.3 �e Sponza scene rendered using the Cascaded Light Propagation Volumes; the LPV allows
to render participating media such are fog, water or smoke (c); Courtesy of Kaplanyan et
al.[KD10] . 13

3.4 �e grids are overlapping. �e �ner grids are translated according to camera position and
direction. Courtesy of Kaplanyan et al. [KD10] . 13

3.5 Propagation of the light intensity is performed between axial neighbours (a); Incident �ux
is computed for each of the destination cell’s face (b); GV cell centers are located in the
corners of LPV cells (c); Courtesy of Kaplanyan [KD10] . 14

3.6 Image rendered with direct illumination (a), image rendered with direct illumination and
constant ambient light (b), image rendered using ISPM (c) (the intensity of ambient and
indirect illumination are ampli�ed); Courtesy of McGuire et al. [ML09] 15

iii

List of Figures

3.7 Spherical shape of the kernel can lead to illumination artifacts. �e heuristic solution by
Jensen [Jen96] compresses the kernel along the the normal to the shading surface, ISPM
compresses the kernel along the normal of a surface hit by photon. Courtesy of McGuire
[ML09] . 16

3.8 Geometry point samples are scattered randomly into two ISMs (a). Texture atlas composed
of ISMs.(b); Courtesy of Ritschel [Rit+08] . 16

3.9 Images rendered using View-Adaptive Imperfect Shadow Maps; Courtesy of Ritschel [Rit+11] 17
3.10 Image rendered using Voxel Cone Tracing; courtesy of Crassin et al. [Cra+11] 18
3.11 Brick values are located in the corners of the node’s children. Courtesy of Crassin et al.

[Cra+11] . 19
3.12 �e process of value transfer to neighbouring brick along the x-axis; Courtesy of Crassin et

al. [Cra+11] . 19
3.13 Visualisation of Phong BRDF; Specular highlight is located along the re�ected direction R. 20
3.14 �e sample radius corresponds to the depth of the octree. Courtesy of Crassin et al. [Cra+11] 20

5.1 Rendering pipeline of our implementation . 24
5.2 Octree generation process . 25
5.3 Both voxel-fragments (on the le�) and octree nodes (on the right) are stored in 2D textures. 25
5.4 �e Sponza scene rendered with direct illumination (on the le�) and with the visualization

of the generated voxel-fragments (on the right) . 26
5.5 �e octree visualization; the depth of the octree, from le� to right, is: 6, 7, 8 28
5.6 �e node and its children (a); brick values are located in the corners of node’s children (b);

a brick is represented by 33 values (or 32 values for 2D case) (c) 29
5.7 �e color of the voxel mapped to the surface of the geometry; the color is represented by

single value per voxel (on the le�); the color of the voxel is represented by brick of 33 values
(on the right) . 29

5.8 �e value of the voxel fragment is stored in le� top most position in the brick (a), then the
values are copied in main axial directions inside the brick and averaged (b). 30

5.9 �e illustration of the brick edge copy process . 31
5.10 If one of the neighbour is missing, the discontinuity, marked in the image by red rectangle,

occurs. 31
5.11 �e correct value of higher level brick is average of the 33 values from deeper level bricks

(on the le�). �e actual value is averaged only from the values of the node’s children (on
the right). 32

5.12 �e opacity is represented directionally. 32
5.13 In each direction themaximum opacity values are obtained from children bricks, the opacity

value is then composed from the average of these maximums. 33
5.14 �e illustration of the cone placement in 2D; �e Phong shading model(on the le�) is

approximated with several wide di�use cones and one tight specular cone (on the right). . 34
5.15 �e diameter of the cone at the sample position is equal to the depth of the lookup to the

octree (the 2D case with a quadtree). 35

6.1 �e normals stored in the bricks can form splodges on thin walls (on the le�) and thus
created indirect illumination artefacts (on the right) . 47

B.1 Sponza scene without indirect illumination(on the le�) and with indirect illumination(on
the right) . 61

iv

List of Figures

B.2 Sponza scene without indirect illumination(on the le�) and with indirect illumination(on
the right) . 61

B.3 Sponza scene without indirect illumination(on the le�) and with indirect illumination(on
the right) . 61

B.4 Sponza scene without indirect illumination(on the le�) and with indirect illumination(on
the right) . 62

B.5 Conference scene without indirect illumination(on the le�) and with indirect illumina-
tion(on the right) . 62

B.6 Sibenik scene without indirect illumination(on the le�) and with indirect illumination(on
the right) . 62

B.7 Sibenik scene without indirect illumination(on the le�) and with indirect illumination(on
the right) . 63

B.8 Cornell box scene without indirect illumination(on the le�) and with indirect illumina-
tion(on the right) . 63

C.1 �e cmake-gui application (on the le�); Cmake lets user to choose a compiler (on the right) 65
C.2 �e GUI of the program . 67

v

List of Tables

5.1 List of the libraries and their versions used in our implementation 23
5.2 Maximal size of textures allowed by graphic cards . 26

6.1 Tested scenes with number of triangles, material de�nition, geometrical and lighting com-
plexities . 40

6.2 Tested scenes with number of triangles, material de�nition, geometrical and lighting com-
plexities . 40

6.3 �e speci�cations of computers used for testing. 41
6.4 Performance of the VCT steps tested on 3 HW setups 6.3; All times are in milliseconds. . . 41
6.5 Performance of the VCT with the representation using 6 intensity values and with the

representation using gaussian lobes; All times are in milliseconds. 42
6.6 �e memory requirements of brick bu�er in MB . 42
6.7 Performance of the VCT varies with the resolution of �nal image; �e resolution a�ects

only the �nal step of the algorithm - the cone tracing. All times are in milliseconds. 42
6.8 Performance of the VCT with changes with shadow map resolution; �e shadow map

resolution a�ects only the rendering of a shadowmap and the traversation of a shadowmap;
All times are in milliseconds. 43

6.9 Performance of the VCT varies with the depth of the voxel octree. All times are inmilliseconds. 43
6.10 Performace of di�use indirect illumination for various count of di�use cones; All times are

in milliseconds. 43
6.11 Duration of the steps performed during the voxelization of the static part of the scene; All

times are in milliseconds. 44
6.12 Duration of the steps performed during the voxelization of the dynamic part of the scene;

All times are in milliseconds. 44
6.13 Duration of the steps involved in light parameters injection; All times are in milliseconds. 45
6.14 �e di�erence of the brightness between Imperfect ShadowMaps algorithm with 1024 lights

and our VCT implementation . 46
6.15 �e Sponza scene rendered using LPV and VCT . 47
6.16 �e tested scenes rendered with direct illumination (on the le�), global illumination with

ambient occlusion (in the middle) and with ambient occlusion (on the right) 48
6.17 �e comparison of the images rendered with VCT using two type of voxel representation 49
6.18 �e tested scenes rendered with global illumination and ambient occlusion with the various

depth of the octree . 50
6.19 �e tested scenes rendered with global illumination with the various number of di�use cones 51
6.20 �e tested scenes rendered with ambient occlusion and with the various depth of the octree 52

C.1 List of the libraries needed for the compilation . 65
C.2 �e command line parameters of the program. 66

vi

1. Introduction

Image synthesis is rapidly developing �eld. Synthesis of realistic images became crucial in movie e�ects,
animated movies, architecture visualization or video games. Simulation of physically correct light
behavior is a complex task. In 1986, Kajiya published the work�e Rendering Equation [Kaj86], where
themathematical de�nition of this complex task has been given. In the following decades, manymethods
solving this equation emerged, such as the radiosity method, described in the article A radiosity method
for non-di�use environments [ICG86] by Immel et al., the photon maps described by Jansen in the article
Global illumination using photon maps [Jen96] and the path tracing desciber by Lafortune in the work
Mathematical models and Monte Carlo algorithms for physically based rendering [Laf96].
Illumination of the scene can be decomposed into several integral parts as seen in the �gure 1.1. �e

light bounced from the surface directly to the eye is called direct light. �e light energy could be also
bounced several times from the surfaces before it gets into the eye. �is is called indirect light. Indirect
illumination is an inseparable part of physically correct light simulation and proved to be signi�cant
for perception of the image quality, as was shown in the work by Stokes et al. [Sto+04]. �e di�erence
between the images rendered with direct illumination and with global illumination, which is composed
by the direct and the indirect illumination, can be seen in the �gure 1.2

Figure 1.1: Decomposition of illumination; Courtesy of Ritschel [Rit+12]

Although the computation power of personal computers has signi�cantly increased in the past
decades, following the Moore’s law, the computation of the indirect illumination, by the aforementioned
methods, is still not suitable for real-time rendering of dynamic scenes.
Several methods for real-time global illumination has lately emerged. �ese methods usually use

parallel computation on graphics processing unit (GPU).�ey o�en presents a trade-o� a�ecting quality
or/and use some sort of precomputation. �is precomputation o�en leads to losing or a�ecting the
dynamic property.

1

1. Introduction

Figure 1.2: The difference between images rendered with direct illumination (on the left) and with global
illumination (on the right)

1.1 Subject of this thesis

�is thesis reviews several algorithms used for the real-time indirect illumination computation. �e
voxel cone tracing (VCT), presented by Crassin et al. in 2011 [Cra+11], is thoroughly examined and
implemented. �is method is designed to render second bounce of the light. It supports di�use indirect
illumination, specular indirect illumination and ambient occlusion. �e light energy is stored and
precomputed inside hierarchical structure. �e rendering relies on the �nal gathering of the values from
this structure. �e method is capable to update this structure and thus dynamic scenes are supported.
�e implementation is designed to exploit capabilities of the current GPU hardware and aims for real-
time rendering frame rates. �e implementation is properly tested on �ve di�erent scenes. �e results
are compared to the other algorithm designed for real-time global illumination - instant radiosity with
imperfect shadow maps [Rit+11].

1.2 Thesis structure

�is thesis is divided into 7 chapters. In chapter 2 we explain the theory behind the global illumination
and common rendering techniques used in our implementation. Next, in chapter 3 we deliver the review
of the current indirect illumination algorithms for the real-time rendering. In chapter 4 we explain why
we chose voxel cone tracing and also we state the technology used for our implementation. �e chapter
5 is dedicated to the detailed description of the implementation. We present several hurdles associated
with the voxel cone tracing and then we present the techniques used to overcome them. In chapter 6 we
present various measurements from the testing of our implementation on the several scenes and we
compare the quality of the images produced by our implementation with the images produced by other
algorithms. In chapter 7 we sum up the attributes of the method and our implementation and we also
propose several possible improvements for a future work. �e image gallery and the user manual can be
found in the appendices.

2

2. Theoretical background

In this chapter we �rst explain important radiometry quantities used in global illumination calculations.
We clarify the Bidirectional Re�ectance Distribution Function used for shading of the surface and we
examine Rendering equation. In the last part of this chapter we describe the common techniques used
in computer graphics, that are related to the subject of this thesis.

2.1 Radiometry

Radiometry is the �eld studying and measuring electromagnetic radiation. For the illumination compu-
tations there are several important quantities: �ux, irradiance, radiant intensity and radiance.
Flux Φ is de�ned as radient energy �owing through a surface per unit time. It’s unit is Watt.

Φ =
dQ
dt

[W] (2.1)

Irradiance E is de�ned as incident �ux per unit surface area. It’s unit is Watt/m2.

E =
dΦ
dA

[
W
m2

] (2.2)

Radiant intensity I is de�ned as �ux per solid angle. It’s unit is Watt/sr.

I =
dΦ
dω

[
W
sr

] (2.3)

Radiance L is de�ned as �ux per solid angle per unit projected area. It’s unit is Watt/m2sr.

L =
dE
dω

=
d2Φ

dωdA�
=

d2Φ
dωdAcosΘ

[
W
m2sr

] (2.4)

2.2 Surface representation

We perceive all the objects around us by the light re�ected or refracted from these objects. We can
distinguish the materials like wood,concrete or metal by the amount of the re�ected light in a direction.
�e functions like BRDF and BTDF are used to describe this material behaviour.

2.2.1 Bidirectional Reflectance Distribution Function

Bidirectional Re�ectance Distribution Function, shown in equation (2.5), is based on work of Nicodemus
from 1965 [Nic65]. BRDF is used to describe the re�ected light and is de�ned is a ratio of di�erential
radiance re�ected into the direction ωr to the di�erential irradiance coming from a direction ωi . �e
involved parameters are shown in �gure 2.1.

fr (x ,ωi ,ωr) =
dLr (x ,ωr)

dEi (x ,ωi)
=

dLr (x ,ωr)

Li (x ,ωi) cosθ idωi
[
1
sr

] (2.5)

3

2. Theoretical background

Figure 2.1: The BRDF describes howmuch of the incident light along the direction ω i is scattered from the
surface in the direction ωr .

�e physically based BRDF must conserve energy [PH10]. �e total energy of light re�ected is less
than or equal to the energy of incident light, as is shown in equation (2.6). �e another condition of
the physically based BRDF is reciprocity. For all pairs of directions ωi and ωr apply fr (x ,ωi ,ωr) =

fr (x ,ωr ,ωi)

∫
Ω
fr (x ,ωi ,ωr) cosθ idωi ≤ 1 (2.6)

2.2.2 Bidirectional Transmittance Distribution Function

�e BRDF is used only to describe the amount of re�ected light. �e transparent materials such as
glass or water also refract light. �e Bidirectional transmittance distribution function (BTDF) is used to
describe this phenomena. It is de�ned in similar manner to that of the BRDF and is generally denoted
by ft (x ,ωi ,ωt), where the directions ωi and ωt are heading in opposite hemispheres around a surface
point. �e parameters used in BTDF are shown in �gure 2.1.

2.2.3 Normal Distribution Function

Normal Distribution Function (NDF) was introduced by Alain Fournier in 1992 [Fou92]. �e function
expresses the density of the normals as a function of direction. Recently theNDF is used formip-mapping
normal maps [Tok05].
Gaussian function, shown in equation (2.7), is one of the possible forms of NDF.

f (x) =
1

σ
√
2π

e−
(x−µ)2

2σ2 (2.7)

�e gausian function’s term σ2 is called deviation and the term µ is calledmean. �e impact of the
deviation to shape of gaussian function is shown in �gure 2.3.

�e product, as well as convolution, of two gaussian distributions is also a gaussian distribution
[Bro03]. �e mean and deviation of the product Cp, made from gaussian distributions A and B, are cal-
culated by equations (2.8). �e mean and deviation of convolution Cc , made from gaussian distributions
A and B, are calculated by equations (2.9).

4

2.2. Surface representation

Figure 2.2: The BTDF describes howmuch of the incident light along the direction ω i is refracted through
the surface in the direction ωt .

−3.1416 −2.3562 −1.5708 −0.7854 0 0.7854 1.5708 2.3562 3.1416
0

0.25

0.5

0.75

1

2σ = 0.2
2σ = 0.4
2σ = 0.6
2σ = 0.8
2

σ = 1.0

Figure 2.3: The graph of the gaussian functions with different deviations σ 2

µCp =
µAσ2B + µBσ2A

σ2A + σ2B
σ2Cp =

¿
Á
ÁÀ σ2Aσ2B

σ2A + σ2B
(2.8)

µCc = µA + µB σ2Cc =

√

σ2A + σ2B (2.9)

�e gaussian function can be used as directional representation. In that case, the mean is an average
vector D of the gaussian lobe. As described in theMipmapping normal map by Toksvig [Tok05], the
value σ can be computed from the length of average vector D using the equation (2.10). �at allows
to create gaussian lobes from 2 or more vector to represent their common direction. �e examples
of the gaussian lobes created from various vectors in 2D are shown in �gure 2.4. �e gaussion lobe is
determined by the vectors used for its computation. On the other hand, the gaussian lobe does not
determine these vectors. In 3D space, the identical gaussian lobe can be made from any number of
vectors as is shown in �gure 2.5.

5

2. Theoretical background

σ =

¿
Á
ÁÀ1 − ∣D∣

∣D∣
(2.10)

−1 0 1
−1

0

1

−1 0 1
−1

0

1

−1 0 1
−1

0

1

Gaussian Lobe of vectors A and B
Vector A
Vector B

Figure 2.4: The shape of the gaussian lobe changes with angle between the vectors.

Figure 2.5: Gaussian lobes on the left and on the right have same shape, although they were derived from
different vector sets.

2.3 Rendering equation

�e recursive rendering equation (2.11), introduced by Kajiya [Kaj86], express the outgoing radiance of
the point x in directionÐ→ω r .

L (x ,Ð→ω r) = Le (x ,Ð→ω r) + ∫
Ω
fr (x ,Ð→ω i ,Ð→ω r) L (h (x ,Ð→ω i) ,−Ð→ω i) cosΘidωi (2.11)

�e radiance is a sum of the light emitted by the surface itself Le and the re�ected radiance. �e
function h (x ,Ð→ω) returns the position of the �rst hit when shooting a ray from position x into direction

6

2.4. Common rendering techniques

Ð→ω . �e function fr expresses the surface properties. �is function is the BRDF, explained in section
2.2.1. �e θ i stands for the angle between theÐ→ω i and the normal of the surface. As the angle increases,
the projected area, expressed as cosθ i , decreases.

�e result of the BRDF function fr in the rendering equation (2.11) depends on incident direction
Ð→ω i and the re�ection directionÐ→ω r . In the radiosity setting the fr function is restricted only to di�use
re�ection fr =

ρd(x)
π . �e rendering equation then becomes isotropic (2.12). �e term ρd (x) is called

albedo. Albedo is de�ned as the ratio of re�ected radiance from the surface to incident radiance upon it.

L (x) = Le (x) +
ρd (x)

π ∫
Ω
L (h (x ,Ð→ω i)) cosΘidωi (2.12)

2.4 Common rendering techniques

In this section we explain common techniques used in image synthesis that are used in our implemen-
tation. First we explain normal mapping, which allows to keep shading details of the high resolution
mesh on a low resolution mesh. Next we will describe the shadow mapping and then we describe the
octree, which is the essential structure for the implemented algorithm. Another important technique
for our implementation is deferred rendering.

2.4.1 Normal mapping

As was shown in section 2.2.1, the illumination of a single surface point is dependent on the surface
normal. �e triangle can have either one normal for the whole it’s surface, or three normals, one for
each vertex. In the second case the normal of a surface point on the triangle is tri-linearly interpolated
from these 3 vertex normals.

(a) (b)

Figure 2.6: The normals of the high resolution mesh are projected onto the low resolution mesh and are
stored in the normal map (a). During the rendering, the normal of a point on low resolution mesh
is altered by the normal acquired from normal map (b).

In real-time computer graphics there is the need to keep triangle count of 3D objects as low as
possible, to reduce the cost of vertex transformations. �e normal mapping, based on the work of
Krishnamurthy et al. from 1996 [KL96] and introduced by Cohen et al. in 1998 [COM98], is used
to mimic the shading behaviour of a high resolution object with low resolution object, which has
signi�cantly lower count of triangles, and a texture. �is texture is called normal map. Each pixel of the
normal map corresponds with a surface point of the low resolution object. �e high resolution object’s
surface is projected onto the low resolution object and for each pixel of the normal map, the normal of
high resolution mesh is stored. During the rendering, the normal of a triangle is altered or completely

7

2. Theoretical background

replaced by a normal acquired from the normal map. �e illustration of normal mapping is shown in
�gure 2.6.

2.4.2 Shadowmapping

To solve the rendering equation, which is explained in section 2.3 it is necessary to compute many
visibility tests between a surface point and a light. �e ShadowMaps, presented in 1978 in Casting curved
shadows on curved surfaces by Williams [Wil78], presents a simple solution of such visibility tests.

Figure 2.7: The depth stored in the shadowmap (yellow) is compared with the distance of the surface from
the light (red). If the distance from the light is greater than the depth from the shadowmap, then
the surface lies in a shadow.

�e scene is projected to a texture from the position and the direction of a light. �e projection is
computed using a projection matrix Pl . For each pixel of a texture the depth of the front most surface
(in the meaning of projection direction) is stored.
Once the image is being rendered from the view of a camera, for each rendered surface point with

world space position pws, the position in the shadow map psh is computed using equation (2.13). If the
distance of the surface point from the light is greater than the value stored in the shadow map, than the
surface point lies in the shadow. �e illustration of shadow mapping is shown in �gure 2.7.

psh = Pl ∗ pws (2.13)
�e shadow mapping is simple and e�ective solution but it has two big issues. �e resolution of

shadow maps is limited. When this resolution is small or the shadow map is projected on large area,
the shape of the pixels is visible. Percentage Closer Filtering (PCF), introduced by Reeves et al. in
1987[RSC87], addresses this issue and signi�cantly improves the quality of the shadow mapping. When
the PCF is used, the occlusion of a surface point is computed from N samples acquired from a shadow
map. �e total occlusion is the average of these sample values.

�e limited resolution of a shadow map means that it stores a discretization of the scene depth.
Moreover the depth value is stored in limited precision. Both these facts cause shadowing artefacts
shown in �gure 2.8. �is issue can be solved with careful choose of the bias that is used when the distance
from shadow map is compared with surface distance.

2.4.3 Octree

In real-time computer graphics, the most common representation of the 3D object is a set of triangles.
�e 3D models represented in other means, for example as a point set or by curved surfaces, are o�en
converted to set of triangles before they are rasterized.

8

2.4. Common rendering techniques

Figure 2.8: The shadowmapping with no bias added to the shadowmap depth is causing sampling artefacts

In order to decrease the computational complexity of the processes like a ray-tracing or a frustum
culling, the scene elements are o�en arranged in a hierarchical structure. One of the hierarchical
structures is the octree. �e octree structure, which was introduced by D. Meagher in 1980 [Mea80], is a
spatially dividing tree structure. Example of a octree build around the mesh is given in �gure 2.9.

Figure 2.9: Building of an octree around the mesh surface; Courtesy of Lefebvre et al. [LHN05]

Each internal node has exactly 8 children or leaves, and is dividing the space, it represents, into 8
octants. �e space with no elements is not further divided. �e illustration of the octree is shown in
�gure 2.10.
If an octree is used to represent a scene composed by triangles, then these triangle are stored in the

leaves of the octree. When we use this octree to perform ray-triangle intersection test, then the nodes
hit by the ray are visited in depth-�rst search (DFS) manner. �e triangles located in the nodes not hit
by a ray are discarded from computation.
In current real-time applications a object’s surface is o�en described using several texture maps.

Even the geometry of the object is altered using displacement maps. As the memory requirements of
this representation increase, the other representations are becoming more pro�table.

�e octree structure can be also used as a representation of the scene. Such octree is called sparse
voxel octree [LK10]. Each node of such octree is a voxel with its own parameters such are color, normal
or opacity. Time complexity of rendering a single pixel of an image with such representation is O(logN),
where the N denotes the number of voxels.

9

2. Theoretical background

Figure 2.10: Each inner node of the octree divide the space it represents into 8 sections.

2.4.4 Deferred rendering

In traditional forward rendering the scene geometry is rasterized and per-pixel operations, such is
shading and lighting, are performed on each fragment generated during this rasterization. �is concept
is infective when the part of the scene is frequently overdrawn by the objects closer to a camera.
It is o�en appropriate to compute majority of the computations only on the visible fragments of

the scene. It is possible by the concept called deferred rendering, based on the work by Deering et al.
from 1988 [Dee+88]. �e scene is rendered only once and various attributes of the scene are stored
in a bu�er. �is bu�er is called Geometry bu�er (g-bu�er) and was introduced by Saito et al. in 1990
[ST90]. �e typical content of the g-bu�er is the depth of the scene, albedo, and normal. �e example of
such g-bu�er content is given in �gure 2.11. �en, in another pass, the values from g-bu�er are used to
compute shading, lighting and possibly another computation on visible fragments only.

(a) (b) (c)

Figure 2.11: The content of the geometry buffer: depth of the scene (a), albedo (b) and decoded normals (c)

�e deferred rendering has several drawbacks. �e geometry bu�er consumes great amount of
GPU memory and memory bandwidth. To minimize this issue it is necessary to pack and compress
g-bu�er attributes, so they use less memory. �is issue is becoming less relevant with the increasing size
of current GPU’s memory.
As all Z-bu�er rendering algorithms the deferred rendering is not capable of correct rendering of

transparent objects. �e order independent transparency is o�en solved using depth peeling technique,
introduced by Everitt in 2001 [Eve01].

10

3. Interactive Global Illumination
Algorithms

In this chapter we review several algorithms designed for real-time rendering. �e last reviewed
algorithm, Indirect Illumination using Voxel Cone tracing, is described in detail. �e implementation
details of this algorithm are to be found in chapter 5.

3.1 Virtual Point Lights

Many global illumination algorithms use concept of Virtual Point Light (VPL). �is concept was �rst
introduced by Keller in Instant Radiosity [Kel97].

Figure 3.1: The rendered image of the conference room using 128 virtual point lights; Courtesy of Keller
[Kel97]

Using this radiosity setting shown in equation (2.12) and the quasi-Monte Carlo integration, they
approximate radiance in the scene by a set of virtual lights. Radiance coming to a point y is approxi-
mated by the radiance coming from the virtual point lights. �e visibility tests for each such light are
performed using common shadowing techniques and the radiance coming from them is accumulated
in a accumulation bu�er.
Virtual point lights are generated from particles shot by the primary lights using Halton sequence

sampling. At �rst, N particles are generated. Since not 100% of the radiance is absorbed, some particles
are re�ected. A�er the �rst hit, ρN particles are re�ected. A�er j − 1 re�ections ρ jN particles are
re�ected. �e ρ is de�ned according to equation 3.1, where the scene is composed of K surface elements
Ak with average re�ectivity ρd ,k .

11

3. Interactive Global Illumination Algorithms

ρ ∶=

K
∑
k=1

ρd ,k ∣Ak ∣

K
∑
k=1

∣Ak ∣

(3.1)

�e number of all generated particlesM is linear in N, as shown in equation 3.2.

M <
∞

∑
j=0

ρ jN =
1
1 − ρ

N =∶ lN (3.2)

�e image rendered with above described method is shown in �gure 3.1.

3.2 Reflective ShadowMap

Another concept used in some global illumination algorithms is Re�ective Shadow Map. Re�ective
Shadow Maps (RSM) were introduced in 2005 by Dachsbacher et al. [DS05]. �e idea is based on using
shadow maps as the source of the �rst bounce of the indirect light. Shadow maps are used to determine
the visibility of a light source from a surface point. To obtain a shadow map, they render visible surfaces
of the scene from the light source. �ese visible surfaces are in fact the only surfaces involved in the
second light bounce. In Re�ective Shadow Map each pixel is considered to be a source of the light. For
each pixel p we need to store depth dp, position xp, normal np and the re�ected radiant �ux Φp. To
archive this RSM uses multiple render targets. �e content of these render targets is shown in �gure 3.2.

Figure 3.2: The content of the RSM. From left to right: depth, world space position, normal, flux. On the right
there is the image rendered with global illumination using RSM; Courtesy of Dachsbacher et al.
[DS05]

If we assume that all surfaces are di�use re�ectors, the radiant intensity emitted into direction ω
from a pixel of RSM is described by equation (3.3). Where Φp is the �ux of the pixel and np is the normal
of the pixel.

Ip (ω) = Φpmax {0, np ⋅ ω} (3.3)

�e original article from 2005 [DS05] also describes how to use such RSM to illuminate a surface.
�e indirect illumination of surface point is computed from the sum of intensities of all visible RSM pixel
lights. It is computationally expensive to compute this even for RSM of resolution 512×512 pixels. Instead
the indirect illumination is computed only from several samples of RSM.�e position of illuminated
surface xp is projected into RSM.�e samples are selected around this projected position. �e density
of the samples is decreasing with square distance to the projected position. �is assumes that two near

12

3.3. Cascaded Light Propagation Volumes

projected surfaces in RSM are also near in RSM. Another assumption is that the sample is directly visible
from illuminated surface. �is two assumptions can lead to wrong results in indirect illumination.

3.3 Cascaded Light Propagation Volumes

Cascaded Light Propagation Volumes, presented by Kaplanyan et al. in 2010 [KD10], is another real-time
indirect illumination algorithm. �e examples of image rendered using Cascaded Light Propagation
Volumes are given in �gure 3.3.

(a) (b) (c)

Figure 3.3: The Sponza scene rendered using the Cascaded Light Propagation Volumes; the LPV allows to
render participating media such are fog, water or smoke (c); Courtesy of Kaplanyan et al.[KD10]

�emethod simulates the light transport using techniques similar to grid-based �uid simulation
algorithms [CLT07]. �e light intensity is stored inside a grid and iteratively, each cell transfers light
intensity to its neighbours. �is grid is called Light Propagation Volumes (LPV). �e light is blocked
by the geometry of the scene, which is sampled and stored in another grid called Geometry Volumes
(GV). To archive better performance and lower memory consumption, the set of nested grids is used.
For objects closer to the eye the indirect illumination is computed using �ner grid. Illustration of the
nested grids is shown in �gure 3.4.

Figure 3.4: The grids are overlapping. The finer grids are translated according to camera position and
direction. Courtesy of Kaplanyan et al. [KD10]

First, for every light source, they render a re�ective shadowmap. Each texel of the RSM is considered
a VPL. �e VPL’s intensity is accumulated and stored as spherical harmonics (SH) inside the cells of the
grid.
For correct light propagation, the algorithm needs convenient access to scene geometry. Similarly to

the light intensity, they store volumetric representation of the scene in the grids. �is representation
is stored in Geometry Volumes (GV). GV are displaced by half the cell size with respect to the LPV.

13

3. Interactive Global Illumination Algorithms

�is ensures that the GV cell centers are in the corners of the LPV cells. For acquiring scene samples,
they utilizes the geometry bu�er from a camera view and the light source’s RSMs. It is also possible to
reuse valid samples from previous frames. Samples’ normals are stored the same way as light intensity,
as spherical harmonics.
Light propagation is implemented as an iterative process. �e light intensity is in each iteration

propagated to its 6 neighbours along main axial directions. First, for each adjacent cell, the �ux incident
to each of the cell’s faces is computed. Figure 3.5 illustrates a 2D example of this process. As a next step,
the incident �ux of each cell is transformed into outgoing intensity. �ey archived this by creating VPLs,
each facing one face of the cell and emitting �ux equal to the �ux of the face. Subsequently, these VPLs
are accumulated into the intensity grid and stored as new spherical harmonics, using same process as in
initial light injection step. Whenever the light is propagated from the source cell to the destination cell,
the light is attenuated by a occlusion computed from bi-linearly interpolated SH-coe�cients of the GV.

(a) (b) (c)

Figure 3.5: Propagation of the light intensity is performed between axial neighbours (a); Incident flux is
computed for each of the destination cell’s face (b); GV cell centers are located in the corners of
LPV cells (c); Courtesy of Kaplanyan [KD10]

A�er ι iteration of the light propagation step, the LPV represents light distribution in the scene.
For illuminating a surface point, they obtain the light intensity by tri-linear interpolation of the SH
coe�cients from nearest grid cells. �e intensity must be then converted into incident radiance.

3.4 Hardware-Accelerated Image Space PhotonMapping

Image Space PhotonMapping was developed byMcGuire et al. in 2009 [ML09]. �ey accelerates certain
steps of traditional photon mapping [Jen96] by GPU. �e example of image rendered using ISPM is
given in �gure 3.6.

3.4.1 Initial Bounce

�e initial tracing of photons from the light source to the �rst surface hit is expensive, since the most
photons must be traced during this step. �e rays used to trace these photons are coherent, they have
common origin. �is initial tracing can be implemented as a projection and this projection can be
e�ciently computed usingGPU rasterization. Omni-directional lights are rendered into bounce cubemap.
A fragment shader scatters the photon travelling through each pixel of the bounce cubemap by surface
properties. �e properties of the surface are world-space position, normal and possibly parameters of
bidirectional scattering distribution function (BSDF). BSDF is the combination of the BRDF and BTDF
and is used to describe the re�ected and refracted light.

14

3.5. Imperfect ShadowMaps

(a) (b) (c)

Figure 3.6: Image rendered with direct illumination (a), image rendered with direct illumination and
constant ambient light (b), image rendered using ISPM (c) (the intensity of ambient and indirect
illumination are amplified); Courtesy of McGuire et al. [ML09]

3.4.2 Secondary Bounces

Secondary bounces of the photons, unlike the initial bounce, does not have common projection center.
Each photon from bounce cubemap is bounced into the scene in the direction de�ned by surface BSDF.
Using rasterization pipeline of the GPU is in this case unsuitable. �ey rely on CPU-based approach
instead.
Each photon is traced using ray-tracing. Since ray-tracing involves many ray-triangle intersection

tests, it’s necessary to use a accelerating structure. �ey propose a hybrid structure combining kd-tree
and bounding sphere hierarchy (BSH), which is a special case of bounding volume hierarchy (BVH).
�e kd-tree for static part of the scene is computed once in preprocess. �e dynamic part of the scene is
approximated with the BSH composed entirely from spheres each frame. Such hybrid structure is well
suited for partially dynamic scenes. �e coarse dynamic part approximation a�ects only the secondary
and higher bounces, which are o�en di�use. �us the impact on the indirect illumination quality of
such approximation is o�en imperceptible.

3.4.3 Radiance estimate

To estimate the radiance of the surface point it is necessary to obtain nearby photons. �eir energy is then
weighted by a �lter kernel κ. Traditionally it is expensive, since for each surface point the neighbours in
the diameter d have to be found. In ISPM they use di�erent approach. �e radiance is scattered from
the photons to the nearby surface. �e scattered radiance is weighted by the same �lter kernel κ.
For each photon they generate a photon volume. �is volume bounds non-zero portion of the kernel

κ. All these photon volumes are rendered using GPU rasterization and contribution of photons radiance
is additively blended with direct illumination image. �e photon volumes and its contribution to surface
illumination are shown in �gure 3.7.

3.5 Imperfect ShadowMaps

In 2008 Ritschel introduced Imperfect Shadow Maps for E�cient Computation of Indirect Illumination
[Rit+08]. �e method is used to speed up Instant Radiosity visibility computations. Commonly, the

15

3. Interactive Global Illumination Algorithms

Figure 3.7: Spherical shape of the kernel can lead to illumination artifacts. The heuristic solution by Jensen
[Jen96] compresses the kernel along the the normal to the shading surface, ISPM compresses the
kernel along the normal of a surface hit by photon. Courtesy of McGuire [ML09]

mutual visibility of a point and a light source is computed accurately by ray-casting or traditional shadow
map. Imperfect shadow maps (ISM) are small shadow maps, e.g. 32×32 pixel, that solve otherwise
expensive visibility tests for Virtual Point Lights.
First, the RSM is generated from all sources of light. Each texel of the RSM is potential VPL (pVPL).

A pVPL is selected to be VPL using a importance sampling based on outcoming radiance. For each of
these VPLs the ISM is rendered.
Rendering of the whole scene is needless and expensive for ISM.�ey approximate the scene by a

point cloud. Each point is created by a random selection of a triangle, with a probability proportional to
the triangle area, and then by selecting a random position on that triangle.

�ese points are scattered to random ISM’s depth bu�er during ISM rendering. Non-continuous
point representation, as well as the scattering of the points, lead to holes in the ISMs. �ese holes are �lled
using a push-pull post-processing introduced by R. Marroquim et al. [MKC07]. �ese imperfections
as well as the low resolution of ISMs lead to inaccurate visibility information. �is inaccuracy is not
noticeable when a large number of the VPLs is used. �e ISMs are packed into texture atlas. �is allows
the ISM rendering to be computed using single draw call on GPU. Point scattering and the texture atlas
of ISMs is shown in �gure 3.8.

(a) (b)

Figure 3.8: Geometry point samples are scattered randomly into two ISMs (a). Texture atlas composed of
ISMs.(b); Courtesy of Ritschel [Rit+08]

16

3.6. Indirect Illumination using Voxel Cone Tracing

Ritschel et al. indroduced View-Adaptive Imperfect Shadow Maps in 2011[Rit+11]. Images rendered
using View-Adaptive Imperfect Shadow Maps are shown in �gure 3.9.

Figure 3.9: Images rendered using View-Adaptive Imperfect ShadowMaps; Courtesy of Ritschel [Rit+11]

View-Adaptive Imperfect Shadow Maps are improvement of the original Imperfect Shadow Map
algorithm, which has two shortcomings. To produce plausible indirect illumination, it is necessary to
create many VPLs. �ese VPLs are selected without considering the contribution on the �nal image.
To overcome this, they use Bi-directional Re�ective Shadow Map (BRSM). For each texel of this RSM,
which is in fact potential VPL, they evaluate the contribution on the view. �is impact is evaluated from
a few randomly-chosen view-samples. �e visibility test during this evaluation is neglected. Each pVPL’s
average contribution is stored in BRSM.�e VPL set is then chosen using importance sampling based
on this bi-directional importance.
Another shortcoming of the original ISM is that a regular point-based geometry representation

could be too coarse in large scenes and it can lead to worse ISM artefacts. In Adaptive ISM the geometry
point samples density is dependent on the projection of the geometry to the view samples. For each
triangle this projection is tested with few random view samples. �e geometry further from the view
has o�en small impact on the �nal image and therefore is sampled roughly. �e geometry closer to the
view has o�en large impact on the �nal image is sampled densely.

3.6 Indirect Illumination using Voxel Cone Tracing

Indirect Illumination using Voxel Cone Tracing was introduced by Crassin et al. in 2011 [Cra+11]. �ey
use a sparse octree structure of voxels to pre-�lter values used for indirect illumination. �e sparse
octree structure requires less memory because only the actually used voxels are stored.

�e algorithm consists of 3 steps. First, the light and scene parameters are stored inside the leaves of
the voxel octree. Next, these parameters are �ltered inside the octree. In the last step, for each visible
surface point, these values are gathered over a hemisphere. �is gathering is o�en made by ray-tracing
of many rays. �e traced rays over the hemisphere are directionally and spatially coherent. �e Voxel
Cone Tracing (VCT), which they have used for gathering the light parameters, is designed to exploit
this coherency.

3.6.1 Voxel-Octree building

�e algoritm is designed for use with dynamic scenes. Although the scene is divided into static and
dynamic part, the voxelization process must be fast, because the dynamic part of the scene is updated in
each frame. �e method they proposed for the voxelization exploits hardware rasterization pipeline and
is fast enough to handle voxelization of the dynamic part of the scene in real-time frame rates.

17

3. Interactive Global Illumination Algorithms

Figure 3.10: Image rendered using Voxel Cone Tracing; courtesy of Crassin et al. [Cra+11]

At �rst, the scene is rendered using orthographic projection and without using Z-bu�er. Each
triangle is projected using one of three main axis according its normal. Each fragment produced with
such projection is inserted into a voxel-fragment list with its parameters like a world-space position,
normal and texture color.
In the next step, they generate a thread for each of the fragments in the voxel-fragment list. �e

fragments are traversed down the octree, which is initially only a root node. Every time the leaf needs
to be subdivided, new node is created and stored in pre-allocated video memory. �e position of the
created node in the video-memory is determined by an atomic counter, which is incremented with each
new node. Many threads can be involved in subdividing a node, especially in shallow depths of the
octree. To avoid con�icts between the threads, each node is associated with a mutex. �e subdivision is
performed only by the �rst thread, while other threads are interrupted. To avoid an active waiting loop
in GPU threads, which would be expensive, the interrupted threads are placed in global thread list. At
the end of the each division step, the threads inside global thread list are re-run. �e octree construction
is complete once the global thread list is empty.

3.6.2 Voxel representation

�e algorithm is designed to exploit hardware tri-linear �ltering. Since two adjacent nodes of a sparse
octree are generally not located consequently in the memory, the hardware tri-linear �ltering would not
be possible to use with a single value per parameter of the node. Instead the node contains a brick. Brick
is the lattice of 33 cell, where the cells are located in the corners of the node’s children as shown in the
�gure 3.11. �e border cells of the neighbours are identical.

�e voxel is represented by several parameters. �ese parameters are di�use color, opacity, normal,
light direction and light intensity. Light direction and normal are stored as isotropic Gaussian lobe.

3.6.3 MIP-mapping

Each of this parameters is initially stored inside the leaves and then iteratively MIP-mapped from the
lower levels to the higher levels of the octree. Each cell of the brick is �ltered from 33 cell from the lower
bricks. In order to prevent duplicitous computation, they perform this �ltering in 2 steps.

18

3.6. Indirect Illumination using Voxel Cone Tracing

Figure 3.11: Brick values are located in the corners of the node’s children. Courtesy of Crassin et al. [Cra+11]

First, for each cell they sum up the values, coming from the sub nodes of the current level node. �e
summed values must be weighted with the inverse of its multiplicity. �is leads to 33 Gaussian weighting
kernel, which is shown in �gure 3.12.
Next, in the second step, the border cell values are transferred and averaged to neighbouring bricks.

�ey perform this transfer in six passes. First pass will add border values to corresponding values
of the negative x neighbour. Second pass will copy border cell values, now containing the sum, to
corresponding values of the positive x neighbour. Same process is repeated for y and z-axis. Value
transfer is illustrated in the �gure 3.12.

Figure 3.12: The process of value transfer to neighbouring brick along the x-axis; Courtesy of Crassin et al.
[Cra+11]

3.6.4 Voxel Cone Tracing

Once the sparse voxel octree is constructed and �lled with the scene and light parameters, it is used to
compute the indirect illumination. Using a deferred renderer they obtain a set of visible fragments. For
each such fragment, a set of cones is generated. Cone directions and apertures are determined by the
BRDF of the rendered material. �e Phong BRDF can be decomposed into wide di�use lobes and a
specular lobe. �e visualization of Phong BRDF is shown in �gure 3.13. For the di�use lobe, several wide
cones are generated over a hemisphere and for the specular lobe, the tight cone is generated. Specular
cone is directed in re�ected direction R.

�e algorithm uses approximate voxel cone tracing for the gathering of incoming light intensity.
Instead of true tracing, the values are gathered from several samples along the cone direction. For each
sample a lookup into the voxel octree is made. �e level of the octree used for the lookup is determined
by the radius of the cone in sample location. Illustration of this process is shown in �gure 3.14.

19

3. Interactive Global Illumination Algorithms

Figure 3.13: Visualisation of Phong BRDF; Specular highlight is located along the reflected direction R.

Figure 3.14: The sample radius corresponds to the depth of the octree. Courtesy of Crassin et al. [Cra+11]

20

4. Problem Analysis

In this chapter, we will �rst discuss some of the algorithms explained in chapter 3 and we will explain
the reasons, why we have chosen the Voxel Cone Tracing. �en, in the section 4.2, we will discuss the
technology choices we have made.

4.1 Algorithm selection

�e indirect illumination is a computationally expensive task. Many researchers have come with di�erent
solutions to compute it. Each of this solutions has a set of positive and negative features. �is set of
features o�en predetermine the usage of such a solution. For our solution we need a fast method, capable
of rendering dynamic scenes.
Image Space PhotongMapping [ML09], unlike the othermentioned indirect illumination algorithms,

is able to render not only the re�ected light, but also the refracted light. �is is very bene�cial for the
scenes containing water, where the refracted light can form caustics. �e disadvantage of this method is
a need to traverse the multiple bounces of the photons. �is is computationally expensive step, which
needs to be accelerated by a hierarchical structure. �is structure must be both e�cient and easy to
rebuild/update, since one of our requirements is the support for dynamic scenes.
Imperfect Shadow Maps [Rit+08], as one of the algorithms used with Instant Radiosity, does not

need any additional hierarchical structure for the scene. Instant Radiosity quality increases and the
performance decreases with the increasing number of the generated VPLs. Visibility tests for these
lights are approximated by imperfect shadow maps. �is may lead to leaking of the light through walls.
Instant Radiosity produces plausible static images even for lower count of the VPLs. �e disadvantage
of the ISM is its poor temporal stability. When the primary light moves, the VPLs are replaced and a
�ickering of the indirect illumination appears. Another disadvantage of all the algorithms of Instant
Radiosity family is that they are able to render only the di�use indirect illumination.

�e Light Propagadition Volumes [KD10] is an unorthodox method of computing indirect illumina-
tion by light transfer, computed localy between the cells of the grid. �e method is very fast and was
proven to be suited for realtime rendering. �e main factor a�ecting the performance of this method
is number of local light transfer iterations. �is method was implemented in CryEngine 3 [Kap09]
made by Crytek. �is method produces the di�use indirect illumination only. �e indirect illumination
produced by this method is very coarse approximation and may produce leaking of the light.
For our solution of indirect illumination, we have chosen the Voxel Cone Tracing. �e Voxel Cone

Tracing, in addition to the di�use indirect illumination, facilitates the rendering of glossy surfaces.
�e big advantage of this method is that the light intensity values are pre-�ltered and stored in the
octree. �is makes the rendering of a single pixel of the �nal image fast. It is very scalable method. �e
performance can be tuned by scaling the level of the voxel octree or by adjusting the properties of the
cone tracing. All the steps of the algorithm are suitable for GPU computing. It also supports dynamic
scenes and therefore the Voxel Cone Tracing ful�ls all our requirements.

4.2 Technology selection

�e current GPU hardware o�ers many uni�ed cores, which are suited for parallel tasks. Although
the GPU cores have a limited functionality (in comparison with the current CPU’s), the combined

21

4. Problem Analysis

computational power they o�er is immense. Many processes of the selected algorithm are suited for
parallel computation and it is bene�cial to use the power of GPU computing.
For real-time rasterized computer graphics, there are 2 widely used application interfaces - OpenGL

and Microso� DirectX. For our implementation it is essential to read from and write to random place in
the GPU memory.
OpenGL [OGL4], maintained by the Khronos Group, is the cross-platform graphics library. It o�ers

functionality strictly related to rasterized 3d computer graphics. OpenGL in version 4.2 allows direct
access to memory by the imageStore, imageLoad and others image related functions.
Microso� DirectX [DX13] is a collection of APIs to provide functionality useful for creating multime-

dia programs. DirectX contains APIs for handling 3D graphics, mathematical operations, sound, input
and others. DirectCompute, present in DirectX 11, provide functions to perform parallel computations
on GPU which is bene�tial for selected algorithm. �e disadvantage of DirectX is that it is strictly bound
to Microso� Windows.
Other possibility is CUDA platform [CUDA13]. CUDA is parallel computing platform created by

NVIDIA. It allows to write the parallel programs/kernels in C/C++ language. In CUDA, a programmer
has better access to the memory of the GPU. A kernel can use both the global memory and the shared
memory, which is shared amongst the threads in a block of the threads. �e disadvantage of the CUDA
is that it is supported only by NVIDIA graphics cards. Some of the steps of VCT rely on the rasterization
of the scene. Although it is possible to program the rasterization on the CUDA platform, the special
libraries such are DirectX and OpenGL or are the better choice. �e CUDA is the possibility only for
the non-rasterization steps of the VCT.
For our implementation we have chosen the OpenGL, due to its capabilities and multi-platformness.

To produce multi-platform implementation, we have chosen the C++ programming language. C++
o�ers great performance, which is essential in real-time computer graphics. Many of the libraries, related
to realtime computer graphics, are written in C or C++ and it is possible to use them without any
additional wrapper.

�e OpenGL is used to render the image into the framebu�er of the window. �e creation and
handling of this window is platform speci�c and is not provided by OpenGL. GLFW [GLFW13] and
GLUT [GLUT13] are one of the libraries commonly used for this task. We have chosen the GLFW library.
It provides provide all the necessary mechanisms for creating the OpenGL context, managing windows,
user input, loading TGA images, timing and other support functions.

�ere are many formats to store 3D models, as well as there are many libraries to load and handle
these di�erent formats. One of the most widely used format for interchange of 3D models is obj format.
We have chosen to use this format, because it easy to load, it supports material de�nition, many testing
scenes are available in this format and there are many libraries capable of reading it. We have considered
3 loading libraries: kixor [KIX12], libObj [LOBJ13]and Assimp [ASS13]. For our implementatin we have
choosed the Assimp library. It is capable of loading more then 30 formats and provide several functions
for preprocessing the mesh.

22

5. Implementation

In this chapter we provide the description of our implementation. First, in the section Application
structure 5.1, the general architecture of the program and rendering pipeline is shown. In the following
sections, we describe each part of the rendering pipeline in detail. Please note that many illustrations
show the 2D simpli�cation of explained topic for better understanding.

5.1 Application structure

We have implemented Voxel Cone Tracing for Indirect Illumination using GLSL [GLSL] and C++ pro-
gramming language. �e implementation is built on OpenGL version 4.2 [OGL4]. OpenGL 4.2 features,
including atomic counters and imageStore/imageLoad functions, are essential for our implementation.
For the window handling and the OpenGL integration we have used the GLFW library [GLFW13]. �e
OpenGL extensions are handled using the GLEW library [GLEW13]. Matrix and vector operations, as
well as related mathematics functions, are computed using the GLM library [GLM13], and the Boost
library [Boo13] is used for various support functions, like type conversions or timers. �e scene loading
is handled using the ASSIMP library. All of the used libraries are cross-platform and the versions used
in our implementation are shown in the table 5.1.

Library Version
OpenGL 4.2
ASSIMP 3.0.1270
GLEW 1.9.0
GLFW 2.7.6
GLM 0.9.3.4
Boost 1.5.2

Table 5.1: List of the libraries and their versions used in our implementation

Application source is divided into several classes covering scene management and shader programs
management, texture management, user interface and the rendering.

�e application structure is adapted to the rendering pipeline of the voxel cone tracing. In the �gure
5.1 we can see this pipeline. �e sections of this pipeline are divided into several classes.

�e scene is rasterized for the �rst time during octree generation process. During this rasterization
a bu�er of voxel-fragments is created. �e voxel-fragments stored in this bu�er are used for the octree
generation. �e functions and structures handling the voxel octree are contained in the class called
VoxelizationPass.
Next, the scene is rasterized from the position of each light. Depth bu�ers created from the light

serve as a visibility information for direct illumination. Light values are written to the the voxels lit by
the lights. �e functions and structures handling the direct illumination are contained in the class called
LightPass.

�e algorithm is designed for use with deferred renderer. In the last section of the rendering pipeline,
the scene is rasterized from the view of a camera and the geometry bu�er is stored. �is geometry bu�er
is created using the class called ExtractComponentPass.

23

5. Implementation

�e geometry bu�er produced by ExtractComponentPass is used by a class called VCTPass. �is
class handles actual Voxel Cone Tracing. For each pixel, visible from a camera, indirect illumination,
specular highlights and ambient occlusion are computed. �e results are stored in another bu�ers. �e
class calledMergeComponentPass is handling the composition of �nal image. It uses bu�ers generated
from ExtractComponentPass, LightPass and VCTPass and assembles them into the �nal image.

Figure 5.1: Rendering pipeline of our implementation

5.2 Voxel-Octree building

�e octree structure, used for the rendering of indirect illumination and described in the chapter 2, is
composed from the static and the dynamic part. �e following description is focused on the static part
of the octree. �e di�erences for the dynamic part are discussed in the section 5.7.

�e octree is used as a simpli�ed representation of the scene. In order to get this representation
most accurate, with limited depth, the bounding box of this octree must tightly encase the scene. In our
implementation, we rely on cube-shaped voxels. In order to archive this, the octree bounding box is
scaled, so in all dimensions, the size of the octree is the same.

�e construction of the octree consists of several passes, which are shown in �gure 5.2.

5.2.1 Voxel-fragments generation

�eoctree structure is built from the scene before the rendering phase. �e octree is build by inserting the
voxel-fragments, which are generated in voxel generation pass. In order to obtain these voxel-fragments

24

5.2. Voxel-Octree building

Figure 5.2:Octree generation process

from the scene, we render the scene with a orthographic projection. �e orthographic volume of the
projection is set to the size of the octree. �e scene is projected into a framebu�er with resolution 2d ×2d ,
where d stands for the voxelization depth.
To get 3D distribution of the voxel-fragments, this projection must be performed in the 3 main

axes. In our implementation the scene is projected only once, but each triangle is rotated according its
normal in geometry shader. �e geometry shaders have access to whole primitive, which is in this case
a triangle. �e normal of the triangle is determined from the position of the triangle’s vertices. If the y
or x components of the normal are dominant, the triangle is rotated by 90○ in y-axis or x-axis.

�e choose of the resolution, rotationmatrix and projection volume causes, that the 2 of 3 coordinates
in fragment’s position, generated during rasterization process, correspond with the centres of the octree
nodes in depth d.
A�er the rasterization, the inputs for the fragment shader are the fragment’s position, normal and

texture coordinates. In order to get the voxel-fragment’s color, we perform a look up into the di�use
texture. �e color must represent the color of all surface covered in a future octree voxel of depth d. To
acquire such color, the lookup is performed using the function textureLod [OGL4], which allows to
specify the mip-map level of the texture. �is level is chosen uniformly for all objects in the scene and
is one of the input parameters of the application. All the above mentioned attributes are inserted into
voxel-fragment list for each fragment processed in the fragment shader.

Figure 5.3: Both voxel-fragments (on the left) and octree nodes (on the right) are stored in 2D textures.

�is list is composed of a bu�er and an index pointing to the next free space in the bu�er. �e index
is implemented using a atomic counter. �e atomic counters were included in the core speci�cations in
OpenGL version 4.2 [OGL4]. �ese counters presents a way of accessing, incrementing or swapping
a variable in a coherent manner by many shader invocations. �e bu�er is, in fact, a texture. Each
graphics card has a limited resolution of textures. �e number of generated voxel-fragments is < 2d

3

and, in most cases, higher than this limit for 1D texture. Table 5.2.1 shows these limits for 3 graphics card
used for the testing. In our implementation we store the attributes of voxel-fragments in 2D texture and
1-dimensional index is mapped into 2-dimensional space. �e code sample 5.1 shows how the single

25

5. Implementation

//snippet from voxelization_genFragments.frag
layout(binding = 0, offset = 0) uniform atomic_uint fragID;
coherent uniform layout(binding = 0, rgba16f) image2D fragList;

in vec4 oPos;

ivec2 get2Dcoords(uint index){
ivec2 coords;
coords.x = int(index)%MAX_TEX_SIZE;
coords.y = int(index)/MAX_TEX_SIZE;
return coords;

}

void main()
{

uint index = atomicCounterIncrement(fragID);
ivec2 posIndex = get2Dcoords(index*VOXFRAG_STRIDE+FRAG_VALUEINDEX_POS);
imageStore(fragList,posIndex,oPos);

}

Listing 5.1: The index of the voxel-fragment is obtained from an atomic counter. Values are saved in
image2D.

value of voxel fragment is stored. For accessing the texture we use imageStore and imageLoad functions.
�ese functions are operating on special data types image1D, image2D and image3D. �ese types are
encapsulating data stored in one of the supported layouts. �e layout used for the voxel-fragment list is
rgba32f.

Attribute GeForce GTX 660 GeForce 550M GeForce GTX 580
GL MAX TEXTURE SIZE 16384 16384 16384
GL MAX 3D TEXTURE SIZE 2048 2048 2048

Table 5.2:Maximal size of textures allowed by graphic cards

A�er the projection, each fragment generated in the voxel generation pass presents one voxel-
fragment with position, normal and color. �e visualisation of such voxel-fragments is shown in
�gure 5.4.

Figure 5.4: The Sponza scene rendered with direct illumination (on the left) and with the visualization of the
generated voxel-fragments (on the right)

26

5.2. Voxel-Octree building

5.2.2 Octree structure

In our implementation we have chosen an approach where each node consist of 16 values. A node
contains 8 pointers to a child node or leaf, a pointer to the parent of the node, 6 pointers to the neighbours
of the node and a �ag. All of these values are stored as 32-bit integer. �e GLSL language does not
support pointers to a memory. Instead we use the o�set from the beginning of a bu�er. We call these
o�sets the pointers in further text. Using this structure we do store only non-empty nodes. Another
advantage of this approach is that leafs of the octree can point to a voxel-fragment in the voxel-fragment
list. �is means we do not have to create nodes for the last level of the octree.
All the nodes are stored in a node bu�er. In our implementation this bu�er is created as the 2D

texture with the R32I format as shown in the �gure 5.3. �e number of the nodes is not known before
the actual octree construction is �nished. �erefore, the texture resolution of the node bu�er is set by
the parameter NODEBUFFER MAX SIZE. �e node bu�er values are pre-set to the value -1 since the
value 0 is used for the pointer to the root node. �e top of the bu�er is implemented by another atomic
counter.

5.2.3 Octree construction

For the octree construction we have decided to implement the algorithm described by Cyril Crassin
and Simon Green from 2012[CG12]. �e advantage of this algorithm, over the one mentioned in article
Indirect Illumination using Voxel Cone Tracing [Cra+11] is, that the octree is constructed in a level by
level way. �is ensures, that the nodes on the same level of the octree are located consecutively in video
memory. �e advantages of this ordering are discussed in section 5.4

�e algorithm, we have implemented, builds the octree iteratively from the top. Each iteration
consist of three passes, shown in �gure 5.2. All these passes are performed by executing shader programs
on known number of elements - nodes and voxel-fragments.
To run a speci�c count of threads n in OpenGL 4.2, we draw n vertices. �e rasterization is disabled

as we rely only on vertex shaders. In the GLSL, the in-build variable glVertexID serves as a identi�er for
the thread. For actual drawing, we use function glDrawArrays, which is used with an empty vertex array
object. �e element count is set to the number of the threads.
In the �rst pass, we execute a thread for each fragment in the voxel-fragment list. �e fragment is

traversed through the octree, which is initially only the root node. �e function for determining the
position of voxel fragment in the octree is given in code sample 5.2. Once the deepest level of the current
iteration’s octree is reached, the leaf is �agged. To �ag a leaf, we set it’s value to 1.
In the second pass, all the �agged nodes are subdivided. We execute a thread for each leaf of the

currently build octree. If the leaf is �agged, the shader program obtain the address of the free space
in the node bu�er from the atomic counter. �e leaf is set to point on the newly created node. �is
two-step approach is chosen to prevents con�icts, which would appear if one leaf is being subdivided by
two or more fragments.

�e third pass of the octree construction is used to determine the neighbours of the nodes. We have
implemented this process in separate pass to prevent con�icts. All the leaves �agged during an iteration
must be divided before the neighbours are determined.
In the last iteration, only the �rst step is performed. �e leaf is not �agged this time, instead, we

store the pointer to the voxel-fragment, which lies within the leaf. A�er d iterations the octree with
depth d is built. �e examples of the approximation of the scene by the octrees with various depth is
shown in �gure 5.5.

27

5. Implementation

//snippet from voxelization_flagNodes.vert
int traverseOctree(vec3 pos){

vec3 minBB = sceneMinBB;
vec3 maxBB = sceneMaxBB;
int nodeIndex = 0;
int nodeBase = 0;
for(int d=0;d<MAX_DEPTH;++d){

vec3 halfSize = (maxBB-minBB)/2;
vec3 relativePosition = pos - (minBB+halfSize);
vec3 mask = clamp(sign(relativePosition),0,1);
int offset = (int(mask.z)<<2)+(int(mask.y)<<1)+int(mask.x);
maxBB = minBB+halfSize+(halfSize*mask);
minBB = minBB+(halfSize*mask);
nodeIndex=nodeBase+offset;
nodeBase = imageLoad(nodeBuffer,get2Dcoords(nodeIndex,NODEBUFFER_MAX_SIZE)).r;

}
return nodeIndex;

}

Listing 5.2: Traversation function used in node flagging pass

6 7 8

Figure 5.5: The octree visualization; the depth of the octree, from left to right, is: 6, 7, 8

5.3 Voxel representation

Our implementation supports 2 models of voxel’s light information.
�e �rst model stores the outgoing radiant intensity for each one of the six main axes. �e voxel is

represented by 8 variables. �ese variables are color, opacity and outgoing radiant intensity in the 6 axes.
All these variables are stored as a 3D vector.

�e second model stores the incoming radiant intensity to the voxel and the direction to the light
source. �e variables stored for this model are color, opacity, normal of the surface, direction to the
light and incoming intensity. Normal and the direction to the light are interpreted as gaussian lobes.
�e shading of the voxel is computed from these variables.
If we store only one value per variable, the discontinuity of the surface parameters will negatively

a�ect the rendering quality. In order to improve this quality a value must be interpolated for each sample
from adjacent nodes. �is method utilizes hardware tri-linear interpolation to get smooth transition
between the values. To allow this interpolation, each variables of the voxel is represented by a brick. �e
brick is a matrix of 33 cells as is shown in the �gure 5.6. �ese cells are not located in the middle of the
node children’s area, but they are located on the edges of the children nodes. �e cells on the edge of the
brick are duplicated in the adjacent nodes. �e bricks are stored in a 3D texture and each brick has a
block of 33 values in this texture. �e di�erence between this representation and the one, where the
variable is stored as single value is shown in the �gure 5.7.

�e bricks are stored in a brick bu�er, which is a 3D texture with a compact OpenGL speci�c format

28

5.4. Brick filling

(a) (b) (c)

Figure 5.6: The node and its children (a); brick values are located in the corners of node’s children (b); a brick
is represented by 33 values (or 32 values for 2D case) (c)

r11f g11f b10f [OGL4]. �is format stores 3-channel color in 32bits, and usage of this format signi�cantly
reduce the memory consumption of the brick bu�er. �is format doesn’t support negative values and
therefore normalized vectors must be transferred to range [0, 1].

Figure 5.7: The color of the voxel mapped to the surface of the geometry; the color is represented by single
value per voxel (on the left); the color of the voxel is represented by brick of 33 values (on the
right)

5.4 Brick filling

Some of the voxel’s parameters are acquired during the light pass. Other parameters do not change, and
are acquired a�er the voxel octree is build. �ese static parameters are color, normal and opacity.
In order to �ll all the bricks with the right values, we perform several steps. Initially, all the brick’s

values are set to (0,0,0). Next, the bricks of the deepest level of the octree must be �lled with the values
acquired from the voxel-fragments. �en, iteratively from the deepest level of the octree up to the root,
the values are acquired from the children bricks and the edge values are transferred between neighbours.
All these steps are implemented as a separated shader programs and these programs are executed

on a speci�c number of bricks. In order to run a speci�c number of threads we use the same approach
as was used for passes involved in the octree construction 5.2.3.
As mentioned in section 5.2.3, the nodes of the same level are located consequently in memory. �e

29

5. Implementation

//pseudocode - fillings of the brick
void fillBricks(){

clearBrickValues();
gatherValuesFromVoxFragments();
copyValuesInside();
copyToNeighbours(VOXELIZATION_DEPTH);
for(int vd=VOXELIZATION_DEPTH-1;vd>0;--vd){

gatherValuesFromChildren(vd);
copyToNeighbours(vd);

}
}

Listing 5.3: Pseodocode of the brick filling process

same applies to the bricks. �e brick index corresponds with the node index. �is memory arrangement
allows us to access the bricks of speci�c level easily, without the need for traversing the octree.

5.4.1 Gathering values from voxel fragments

�e last level of the octree is composed by the pointers to voxel-fragments. �e location of a pointer
determine one of 8 overlapping sections of the brick, which is to be �lled with the voxel fragment values.
�e bricks are �lled with these values in 2 passes.
In the �rst pass of the process, a value of the voxel fragment, is stored in le� front top most position

in the appropriate section of the brick.
�e second pass is used to spread the initial values inside the brick. First, the values inside the brick

are added to the values on next position in the positive x-axis direction. �e same process is repeated
for y-axis and z-axis. �e two passes, used to �ll the bricks with voxel fragments values, are illustrated
in the �gure 5.8.

(a) (b)

Figure 5.8: The value of the voxel fragment is stored in left top most position in the brick (a), then the values
are copied in main axial directions inside the brick and averaged (b).

5.4.2 Brick edge copy

Abrick’s location in amemory does not correspondwith the location of the voxel in a space. Two adjacent
voxels are generally not adjacent in the memory. To overcome this fact and to get continuity between two
voxels, the edge values of the bricks are duplicated in two bricks of adjacent voxels. Generally, a�er the
gathering of the values from either voxel fragment or children’s bricks, the edge values of two adjacent
voxels may di�er. In order to get smooth transition over the voxels, these edge values must be averaged.

�is edge averaging is performed in a new pass. In order to average the edge values in x-axis direction,
for each node, we add the edge values of the neighbour brick on negative-x side to appropriate values in

30

5.4. Brick filling

the current node. �ese values are divided by 2, to get the average. In the second step, the edge values
from neighbour brick on positive-x side, which now contains the average computed from a di�erent
thread, are just copied. �e illustration of this process is shown in �gure 5.9. �e very same process is
repeated for y-axis and z-axis.

Figure 5.9: The illustration of the brick edge copy process

Once we use this process on the sparse voxel octree, continuity errors appears. �e example of origin
of these errors is given in �gure 5.10.

Figure 5.10: If one of the neighbour is missing, the discontinuity, marked in the image by red rectangle,
occurs.

5.4.3 Brick averaging

Once a level of the octree is �lled with the correct values, we use this values to compute content of the
bricks from the higher level of the voxel octree.
One value of a higher level node’s brick is computed as a average of 33 values, acquired from the 8

bricks of the node’s children. �ese 8 brick may not be direct children of the higher level brick, as is
shown in �gure 5.11. �e node have access only to it’s children. To overcome this limited access, the
values of children’s bricks are used to compute incomplete average of the brick values. According to the
value’s position in the brick, from 8 up to 27 values must be acquired from the children to compute this
incomplete average. �e process is then completed by the edge copy pass described in the section 5.4.2.
In our implementation we execute a thread for each of 33 brick’s values. �e shader program is

common for all the values in a brick and according to the position of a brick value, it gathers 0 or 8

31

5. Implementation

Figure 5.11: The correct value of higher level brick is average of the 33 values from deeper level bricks (on
the left). The actual value is averaged only from the values of the node’s children (on the right).

values from each of the children bricks. �e �nal averaged value is computed as weighted average, where
the opacity of the value is used as the weight.
In our implementation we store the opacity as a 3D vector. �e opacity represent the percentage

of blocked light in one of 3 main axial directions. �e illustration of directional opacity is shown in
�gure 5.12.

(a) (b) (c)

Figure 5.12: The opacity is represented directionally.

For the opacity value, the brick averaging pass is modi�ed. When we are computing the opacity, we
�rst compute the maximum opacity in 3 directions for all these values. �e higher brick value is then
averaged from 32 values of maximums for each direction, as is illustrated in �gure 5.13.

5.5 Light injection

In our implementation, all the lights are omnidirectional. For each light we store it’s position and
intensity. �e direct illumination is implemented using the shadow mapping technique [Wil78]. To
render a shadow map, a scene is rasterized from the position of a light. We store the depth of each
fragment, generated during this rasterization. �e shadow maps are stored in a texture array. A single
texture from this array has resolution determined by a parameter, chosen by a user. It is one of the
performance relevant parameters of the implementation. For purpose of the shadow map rendering, the
omnidirectional light is divided into 6 orthogonal frustums with the �eld of view of 90○. Each frustum
of the light is rendered into it’s own texture layer.

32

5.5. Light injection

Figure 5.13: In each direction the maximum opacity values are obtained from children bricks, the opacity
value is then composed from the average of these maximums.

To �ll the voxel octree with the light information, we perform several steps. First, in a new pass,
we convert the depth information of each texel of the shadow map into the index of the brick and the
section of the brick. To achieve that, the texel position, computed from the depth of the texel, is traversed
through the octree using a similar function to one shown in code sample 5.2. �e relative position
acquired during this traversation is used to determine one of the 8 subsections of the brick.

�e traversation function, used in this pass, also �ags all the nodes, which are visited. �is �ag is
used to create an update list, which is used to reduce the number of �ltered nodes and is explained
further in this section. Both the brick index and the brick section are integer variables and are stored in
2 bu�ers. �ese bu�ers are 2D textures of format R32I. �e resolution o� these bu�ers is the same as the
resolution of the shadow map.

�e brick index and section determine the location in the brick bu�er, where the light information is
to be written. In another pass, for each texel, the shader program checks the value of brick index and the
section of the brick processed by adjacent (in the meaning of the gl FragCoord value) threads. If two or
more threads are processing the same section of the same brick, only the top le� most thread continues.
�e other threads are terminated. �is solution was chosen to reduce the amount of concurrent memory
accesses.
As described in the section 5.3, our implementation supports 2 representations of the voxel light.

�e �rst model stores the radiant intensity outgoing from the voxel. �is intensity is stored for 6 main
axes. �e intensity for an axis is computed as light intesity × voxel color × quadratic attenuation × cos θ.
Where the θ is the angle between the light direction and the axis.

�e second model stores incoming radiant intensity and the direction to the light source, expressed
as gaussian lobe. �e direction to the light source is stored as the normalized vector. �e incoming
radiant intensity is modulated by quadratic attenuation.
A�er each of the shadowmaps is processed, the bricks with the light related informations are �ltered

to the upper levels of the octree. Filtering is done the same way as the �ltering of the color and normal
parameters of the voxel, which was explained in the section 5.4.

�e implementation supports only one light to be involved in the indirect illumination. Multiple
lights would require atomic operations on �oat numbers or the use of amutex. �e �oat atomic operation
requires NV shader atomic �oat OpenGL extension, which is available on modern nVidia graphics
cards.
Once the light information is written in the last level of the octree, this information is �ltered into

the higher levels. Naive solution is to �lter all the nodes. In our implementation we reduce the number

33

5. Implementation

of the �ltered nodes by using a update list. �e update list contains indices of the nodes that needs to be
�ltered. �ese indices are stored in a level by level manner, starting from the deepest level and ending
with the root node. �e update list is composed of the bu�er, which is a 2D texture with format R32I,
and an atomic counter pointing to the next position in the update list.
In the light injection process, all the nodes that were visited in the traversation function were �agged.

�e node is �agged if the integer located in the 16th position of the node is set to 1. To create the update
list, we run a shader program for each level of a voxel octree, starting with the deepest level. In each
iteration, we run the program on all nodes in the voxel octree level. �e shader program checks the �ag.
If the �ag is set to 1, a location of a free space in update list is acquired from the atomic counter. �e
index of the node is stored in this location. �e �ag is then reset to its default value.
All the passes used for brick �ltering are modi�ed to work with this update list. �e thread index is

not used to point into the node in memory, but instead it is used point into the update list. �e actual
node index used for �ltering is then acquired from the update list.

5.6 Voxel Cone Tracing

�e actual cone tracing is performed once all the bricks of the voxel octree are �ltered. We have
implemented the voxel cone tracing in a separate pass. �e pass writes into two render targets. �e �rst
render target is a texture bu�er of RGBA colors, which stores the di�use part of indirect illumination
and ambient occlusion. �e second render target is a texture bu�er of RGB colors, which stores the
specular part of indirect illumination.
For each visible fragment, the shader program reads the depth and the normal of a texel. �e light is

gathered from several cones across a hemisphere. In our implementation a cone placement simulates
the Phong shading model [Pho75]. �e number of these cones is determined by the user. �e direction
and the span of each di�use cone is precomputed on CPU in accordance with the number of the cones.
�e precomputed cone directions are rotated by the normal of the texel and the cones origins are set to
world-space position of the texel, which is computed from the depth. �e specular cone, which is used
for glossy surfaces, has tight span, which is derived from the specular exponent of the material . �e
illustration of the cone placement is shown in the �gure 5.14.

Figure 5.14: The illustration of the cone placement in 2D; The Phong shading model(on the left) is
approximated with several wide diffuse cones and one tight specular cone (on the right).

To e�ectively gather the intensity coming from a cone, we generate several samples along the
direction of the cone. �e illustration of the sample placement is given in the �gure 5.15.
For each such sample we perform a lookup into the voxel octree. �e distance l from the cone origin

and the cone span α determine the sample diameter r = 2l tan (α
2). �e depth d of the octree, in which

34

5.6. Voxel Cone Tracing

Figure 5.15: The diameter of the cone at the sample position is equal to the depth of the lookup to the
octree (the 2D case with a quadtree).

the lookup is made, corresponds to the sample diameter r and is expressed by equation 5.1, where ws
denotes the width of the bounding box of the octree.

d = log2 (
ws

r
) (5.1)

In our implementation we use two di�erent sampling methods. �e �rst method is used for di�use
indirect illumination, which is gathered using several wide cones. We generate sample positions, in
a way, that each sample diameter correspond precisely with the size of a voxel in a particular level of
the voxel octree. �e �rst sample is taken from the deepest level of the octree and each subsequent
sample is taken from the higher level of the octree. �is sampling method is fast and is suitable for
wide cones. For tight cones, this sampling method generates the samples to far from each other and
thus the possibility of completely missing the light obstacle emerge. Tight cones, which are used for
rendering glossy materials, are sampled in a di�erent manner. �e distance from a surface point to the
�rst sample is chosen in a way that the sample diameter is equal to the size of a voxel in the lowest level
of the octree. Each subsequent sample is placed right next to the previous sample. �e distance between
two successive samples is equal to the sample diameter of the prior sample.
Each sample is traversed through the voxel octree, until the desired depth is reached. �e traversation

function return not only the index of the node, but also the relative position inside the node. If the
depth is not integer value, the traversation function is modi�ed to return a pair of the nodes’ indices
and relative positions.

�e node index and the relative position are used to acquire values from the brick bu�er, which is
as attached to the shader program as sampler3D. Every lookup, done by GLSL function texture, in the
brick bu�er results in tri-linearly interpolated value. �is interpolation is done by hardware, without
any additional instructions. If the lookup depth is not integer number, the values from are gathered
from two voxels. �ese values are then linearly interpolated. Together with HW interpolation the single
sample value is quadrilinearly interpolated.
For each sample we gather the radiant intensity coming from the voxel to the lighted surface point.

As mentioned in the section 5.3 and the section 5.5, we have implemented two voxel light models. �e
�rst model is composed of six values of radian intensity coming to six main axes. To acquire the radiant
intensity incoming from such voxel to a surface point, we sum the values of radiance from all six axes
modulated by projected area. �e GLSL function to acquire the intensity of the voxel is shown in code
sample 5.4.

�e second voxel light model is composed of color,radiant intensity,light direction and normal. �e

35

5. Implementation

vec4 getLightIntensity(vec3 direction,brickParams parameters,float slope){
vec3 radiance = vec3(0);
vec3 opacity = getTexValue(parameters,BRICK_VALUEINDEX_OPACITY).xyz;
ivec3 component = clamp(ivec3(sign(direction)),0,1);
vec3 portion = abs(direction);
radiance+=getTexValue(parameters,BRICK_VALUEINDEX_RADIANTI_X_MINUS+component.x).xyz*portion.x;
radiance+=getTexValue(parameters,BRICK_VALUEINDEX_RADIANTI_Y_MINUS+component.y).xyz*portion.y;
radiance+=getTexValue(parameters,BRICK_VALUEINDEX_RADIANTI_Z_MINUS+component.z).xyz*portion.z;
return vec4(radiance.rgb,max(dot(opacity,portion),0));

}

Listing 5.4: The computation of the light intensity radiating from the voxel - the represatation using radiant
intensity for 6 axes

vec4 getLightIntensity(vec3 direction,brickParams parameters,float slope){
vec4 color = getTexValue(parameters,BRICK_VALUEINDEX_COLOR);
vec4 normalLobe = gaussianLobeFrom01(getTexValue(parameters,BRICK_VALUEINDEX_NORMAL).xyz);
vec4 reflectDirLobe = gaussianLobeFrom01(getTexValue(parameters,BRICK_VALUEINDEX_LIGHTDIR).xyz);
reflectDirLobe.rgb = reflect(reflectDirLobe.rgb,normalize(normalLobe.rgb));
vec4 incomingIntensity = getTexValue(parameters,BRICK_VALUEINDEX_LIGHTINTENSITY);
vec3 opacity = getTexValue(parameters,BRICK_VALUEINDEX_OPACITY).xyz;
vec4 coneLobe = vec4(-direction,cos(slope));
float reflectanceProbabilityToPoint =

gaussianFromLobe(convGaussianLobes(convGaussianLobes(normalLobe,reflectDirLobe),coneLobe),-direction);
vec3 reflIntensity = color.rgb*incomingIntensity.rgb*reflectanceProbabilityToPoint;
return vec4(reflIntensity,dot(abs(direction),opacity));

}

Listing 5.5: The computation of the light intensity radiating from the voxel - the represatation using gaussian
lobes

normal of the underlying surface and the light direction are expressed as gaussian lobes. We compute
the gaussian lobe expressing the probability of emitting the light in a direction as convolution of normal,
light direction and cone span lobe. By evaluation of that gaussian lobe in the direction to the surface
point, we get the amount of re�ected intensity. �e radiant intensity coming out of the voxel to the
surface point is the voxel’s intensity multiplied with the calculated amount of re�ected intensity. �e
GLSL function to acquire the intensity of the voxel from the gaussian lobe representation is shown in
code sample 5.5.

�e acquired values of incoming radiant intensity from the samples are accumulated by the equation
5.2, where Iprev denotes the accumulated intesity, aprev denotes so far accumulated opacities and Isample
denotes the intensity of a sample. �e opacities of the samples are summed, and the tracing of a single
cone is �nished once the accumulated opacity is greater or equal to 1.

I = Iprev + (1 − aprev) ∗ Isample (5.2)

5.7 Dynamic scenes

�e sparse voxel octree, representing the scene, is build once and its building is the part of the prepro-
cessing. In order to enable the dynamic objects to a�ect the indirect illumination, it is necessary to
integrate these dynamic objects to the voxel octree.
Naive solution, which is to rebuild the octree each time the dynamic objects change, is not e�ective,

as can be seen in measurements in table 6.11. Instead, we divide the octree to a static and a dynamic part.
In our implementation the nodes and the bricks of the dynamic part are inserted into the memory a�er

36

5.7. Dynamic scenes

the static part. Every time, the update is made, the whole dynamic part of the octree is deleted, and new
voxelization is performed. To �ll the brick bu�er part of newly created nodes, we rely on the update list
mechanism described in section 5.5. Since the bounding box of the octree is derived from the static part
of the scene, only dynamic objects located inside the static part are supported.
To delete the dynamic part, it is necessary to reset the nodes located in the dynamic part of the

memory to it’s default un�lled state and to reset the references from the static part to the dynamic part.
�is is done by GPU by another pass.
A�er the node bu�er contains only the static part, the atomic counter pointing to the top of the

voxel-fragment list is set to the count of the static voxel fragments, and the atomic counter pointing to
the top of the node bu�er is set to the count of the static nodes. �e dynamic part is voxelized using the
same 3 steps described in section 5.2.3, but with little modi�cations. �e pass responsible for �agging the
node for the division also �ags the node to be updated. �e neighbour generation pass is also modi�ed.
Once the neighbour of a dynamic node are computed, the pointer to this dynamic node is written to
appropriate slot in the neighbours’ nodes. �ese adjacent nodes are also �agged to be updated.

�e brick bu�er’s size is set during the voxelization of the static part. In that moment, the amount of
dynamic nodes is not known. �e size of the brick bu�er is enlarged by a factor, accessible as command
line parameter. �e default value is set to 20 % and this value is su�cient to all the scenes tested in
chapter 6.
To update the brick bu�er it is necessary to �ll not only the newly created nodes, but also the adjacent

nodes. All the nodes, which needs to be re�lled with values, are �agged a�er the octree building process.
In the next step, the �agged nodes are inserted into the update list. �is update list is then used to
determine nodes for brick �ltering process.

37

6. Results

In this chapter we provide both performance and quality analysis of our VCT implementation. In the
section 6.1, we describe the scenes we have used for the testing. �e section 6.2 contain the description of
used hardware setups, as well as comprehensive measurement of all the aspects of our implementation.
In the section 6.3 we show the impact of the various setting to the quality of the rendering. We also
compare the results with Imperfect Shadow Maps in this section.

6.1 Tested scenes

Our implementation was tested on 5 scenes. �e scenes and their attributes are listed in tables 6.1 and
6.2. �e four of the selected scenes were o�en used for testing of global illumination algorithms, and
presents various levels of the geometry and light transport complexity.

�e �rst of the scenes used for the tests is called Cornell-box. It’s well-known and frequently used
synthetic scene. �e main element of the scene is a box, with one open side. �e walls of the box are
coloured in di�erent colors. �e main purpose of this scene to show the color bleeding e�ect.
Second scene, we have used for testing, is Crytec Sponza scene. �e scene was originally modelled by

Marko Dabrovic and the inspiration for the scene was the Atrium Sponza Palace in Dubrovnik. Crytec
remodelled the scene and added new elements like vases, foliage and color curtains. Also the materials
were improved by using normal maps. Sponza scene is middle sized scene with medium geometry and
high ligth transport complexity.

�ird scene, the Conference room, is small scene with high geometric complexity. �e scene is a
simple single room, with lots of objects such as chairs and tables. �e main focus for the testing of the
indirect illumination is the space below the table. �is space contains many objects, which block the
light transfer.
As the fourth scene, we have used the model of Sibenik cathedral. Sibenik is spacious scene with

simple geometry and materials. �e architecture of the cathedral contain many columns and small walls,
which leads to small shadowed areas.

�e ��h scene, which is the only one we have modelled, is simple U-shaped corridor. �e scene
is designed to reveal light leaking e�ect of the algorithm. �e scene contains some brightly coloured
elements to show color bleeding e�ect and the �oor with re�ective material.

6.2 Performance analysis

Our implementation was tested on several computers. �e speci�cations of these computers are listed
in the table 6.3.
To properly test all the aspects of our implementation, we have added moving objects, moving light

and moving camera to the scene. �e duration of all the steps of VCT, tested on various HW, are listed
in table 6.4. �e static part of the octree is build and �lled only once, other steps are performed each
frame. With our implementation we were able to reach interactive frame rates with the GeForce GTX
660 and 580. Measurements shows, that the most expensive step of the algorithm is light injection step.
It o�en takes more than 30 % of the total time spent on the rendering of single image. �e measurement
also clearly shows that the performance is not dependant on the complexity of the scene.

39

6. Results

Num. of triangles 36 262267 331179
Textures No Yes No
Geometry Simple Hard Hard
Lighting Simple Hard Medium

Table 6.1: Tested scenes with number of triangles, material definition, geometrical and lighting complexities

Num. of triangles 75282 5634
Textures Yes Yes
Geometry Medium Simple
Lighting Medium Hard

Table 6.2: Tested scenes with number of triangles, material definition, geometrical and lighting complexities

We have implemented 2 di�ernt representation of voxel light information. �e respresentation using
the gaussian lobes is using less brick and therefore the process of the bricks �ltering is faster as is shown
in table 6.5. On the other hand the evaluation of the single sample during cone tracing is slower. If we
compare the total time that includes both light injection step and cone tracing then the represatation
using gaussian lobes is slightly faster.

�e resolution of the �nal image a�ects only the cone tracing step. As shown in table 6.7 the time
needed for the cone tracing grows linearly with the number of �nal image pixels. �e resolution of
shadow map a�ects the initial steps of light injection. Since we use omnidirectional lights it is necessary
to traverse 6 shadow maps for a light. With the increasing resolution of the shadow maps the time of
traversation step grows immensely. In practical use it is too costly to use the shadow maps larger than
1024×1024.

�e performance of all the steps of the algorithm are dependent on the octree depth as is shown in
table 6.9. �e lower the depth is, the less nodes have to be constructed and the less bricks are to be �lled
with values.
Another parameter of the VCT, which a�ect the performance is the number of cones used for di�use

40

6.2. Performance analysis

HWCon�guration A B C
Graphics card GeForce GTX 660 2GB GeForce GT 550M 1GB GeForce GTX 580 1.53GB
Processor Intel Core i7 3770K Intel Core i5 2410M Intel Core i7 2600K
Memory 16 GB DDR3 6 GB DDR3 16 GB DDR3

Operation system MSWindows 7 64-bit MSWindows 7 64-bit MSWindows 7 64-bit
Driver version 314.22 314.07 314.22

Table 6.3: The specifications of computers used for testing.

H
W
co
nf
.

Sc
en
e

O
ct
.b
ui
ld

Br
ic
k
�l
l

D
yn
.o
ct
.b
ui
ld

D
yn
.b
ric
k
�l
l

L.
in
je
ct
.

V
C
T
D
i�

V
C
T
Sp
ec

To
ta
lt
im
e

A

Sponza 31.80 81.79 4.09 36.86 40.90 17.22 14.09 113.15
Conference 21.51 48.72 3.96 46.18 55.95 16.05 7.78 129.92
Sibenik 24.10 60.29 4.60 50.45 59.25 15.92 14.20 144.42

Cornell box 18.76 51.49 4.92 70.61 77.75 9.87 7.43 170.59
Dungeon 18.68 45.05 4.75 43.85 48.70 14.73 10.65 122.68

B

Sponza 146.10 263.56 8.36 118.86 201.90 86.03 64.48 479.63
Conference 66.93 122.94 9.23 151.80 350.91 80.10 35.78 627.82
Sibenik 83.63 186.80 8.83 164.22 354.82 81.61 64.23 673.71

Cornell box 65.95 155.49 14.88 234.73 387.60 52.76 37.79 727.76
Dungeon 63.57 129.71 19.68 133.52 326.52 71.77 49.21 600.70

C

Sponza 41.05 43.76 2.15 22.89 34.37 32.79 9.81 102.01
Conference 18.08 21.26 2.35 27.72 53.77 30.47 5.73 120.04
Sibenik 24.97 31.26 2.09 30.13 55.37 30.01 9.80 127.40

Cornell box 17.81 26.93 3.89 42.47 61.38 18.75 5.97 132.46
Dungeon 16.23 22.49 4.15 26.52 50.06 24.46 7.41 112.61

Table 6.4: Performance of the VCT steps tested on 3 HW setups 6.3; All times are in milliseconds.

indirect illumination. �e table 6.10 shows the duration of cone tracing for various number of cones.
With the increasing amount of cones, the duration of cone tracing grow linearly.

�e construction and �lling of the octree involves many passes. �e table 6.11 shows the duration of
these passes for the static part of the scene and the table 6.12 shows the duration of these passes for the
dynamic part of the scene. �e main bottleneck of the �lling process is the pass, where the brick values
are gathered from children. �is pass involves many memory accesses and instructions.

�e light injection measurement results are shown in the table 6.13. �e voxels lit by a light source
must be �lled by same �ltering process, which is used for initial brick �lling. �e gathering values from
children last the most time here as well. �e amount of time spent on �ltering is dependent on the
number of the voxels lit by the light. Update list generation on the other hand is dependent on the
number of all the nodes of the octree.

�e majority of the VCT memory requirements are taken by the brick bu�er. �e memory re-

41

6. Results

Vo
xe
l

re
pr
es
en
-

ta
tio
n

Sc
en
e

O
ct
.b
ui
ld

Br
ic
k
�l
l

D
yn
.o
ct
.b
ui
ld

D
yn
.b
ric
k
�l
l

L.
in
je
ct
.

V
C
T
D
i�

V
C
T
Sp
ec

To
ta
lt
im
e

6 axial radiant
intensity

Sponza 28.4524 82.22 2.60 34.60 41.05 16.87 14.05 109.18
Conference 13.35866 39.31 2.42 44.26 54.07 16.01 7.49 124.25
Sibenik 18.12558 59.09 2.48 48.37 57.60 16.04 14.00 138.49

Cornell box 12.7242 51.16 3.07 67.49 75.85 10.63 7.92 164.96
Dungeon 11.8201 41.86 3.00 42.31 49.38 13.69 10.38 118.77

gauss. Lobes

Sponza 34.1763 107.10 4.58 23.74 26.14 20.72 17.51 92.70
Conference 18.54325 48.20 4.18 25.14 34.58 18.57 8.08 90.55
Sibenik 23.03497 71.82 4.18 26.70 34.48 17.99 16.20 99.54

Cornell box 17.42828 63.35 4.65 35.73 42.04 11.56 8.78 102.77
Dungeon 16.87407 51.32 4.67 23.82 31.81 15.10 11.68 87.08

Table 6.5: Performanceof theVCTwith the representationusing6 intensity values andwith the representation
using gaussian lobes; All times are in milliseconds.

Vox. rep. axial radiant intensity gauss. Lobes
Oct. depth 7 8 9 7 8 9
Sponza 24 108 431 24 72 276

Conference 7 60 204 11 36 132
Sibenik 24 84 323 10 48 204

Cornell box 24 84 323 24 60 204
Dungeon 24 60 216 8 36 132

Table 6.6: The memory requirements of brick buffer in MB

Resolution 512×512 1280×800 1600×1024
Scene VCT Di� VCT Spec VCT Di� VCT Spec VCT Di� VCT Spec
Sponza 17.19 14.07 63.71 52.49 101.19 82.39

Conference 16.24 7.72 60.34 27.55 94.61 43.05
Sibenik 16.17 14.12 60.31 51.38 95.04 81.57

Cornell box 10.86 7.82 25.85 17.76 38.97 30.15
Dungeon 13.91 10.43 54.57 42.28 85.86 67.47

Table 6.7: Performance of the VCT varies with the resolution of final image; The resolution affects only the
final step of the algorithm - the cone tracing. All times are in milliseconds.

quirements of brick bu�er are shown in table 6.6. With the increasing depth of the octree the memory
requirements grow enormously. �e representation with gaussian lobes stores less values per node
and therefore the brick bu�er takes about 30% less memory than the representation with axial radiant
intensity.

42

6.2. Performance analysis

Shadow map res. 512×512 1024×1024 2048×2048
Scene SM render trav. SM SM render trav. SM SM render trav. SM
Sponza 1.15 2.69 2.23 10.17 6.88 40.33

Conference 1.27 6.84 2.80 26.66 9.22 105.73
Sibenik 0.86 6.76 2.74 26.62 9.64 105.53

Cornell box 0.41 5.23 1.37 20.14 5.18 79.50
Dungeon 0.57 6.83 2.01 26.63 7.61 105.70

Table 6.8: Performance of the VCT with changes with shadowmap resolution; The shadowmap resolution
affects only the rendering of a shadowmap and the traversation of a shadowmap; All times are in
milliseconds.

O
ct
.d
ep
th

Sc
en
e

O
ct
.b
ui
ld

Br
ic
k
�l
l

D
yn
.o
ct
.b
ui
ld

D
yn
.b
ric
k
�l
l

L.
in
je
ct
.

V
C
T
D
i�

V
C
T
Sp
ec

To
ta
lt
im
e

6

Sponza 9.78 5.80 2.74 6.88 10.40 10.86 8.13 39.01
Conference 8.44 3.68 2.68 6.93 13.98 10.59 7.79 41.97
Sibenik 12.15 4.26 2.77 7.50 14.44 10.91 9.24 44.86

Cornell box 8.13 4.56 2.86 8.95 14.07 6.55 4.60 37.04
Dungeon 7.50 3.97 2.69 7.23 13.24 9.25 8.78 41.19

7

Sponza 16.11 20.59 3.65 13.95 17.80 14.00 12.30 61.69
Conference 12.14 11.50 3.67 15.59 23.74 13.48 8.19 64.67
Sibenik 12.94 14.30 3.46 17.11 25.29 13.38 12.86 72.11

Cornell box 10.35 14.30 3.55 21.34 27.96 6.52 8.49 67.87
Dungeon 11.42 12.83 3.50 15.56 22.31 11.90 10.83 64.10

8

Sponza 31.81 81.79 4.09 36.86 40.90 17.22 14.09 113.15
Conference 21.51 48.72 3.96 46.18 55.95 16.05 7.78 129.92
Sibenik 24.10 60.29 4.60 50.45 59.25 15.92 14.20 144.42

Cornell box 18.76 51.49 4.92 70.61 77.75 9.87 7.43 170.59
Dungeon 18.68 45.05 4.75 43.85 48.70 14.73 10.65 122.68

Table 6.9: Performance of the VCT varies with the depth of the voxel octree. All times are in milliseconds.

VCT - Di� & AO [ms]
Scene 4 5 6 7 8 9 10 11 12
Sponza 11.67 14.58 17.22 19.35 21.87 23.95 25.93 27.81 29.61

Conference 11.54 14.28 16.05 17.94 20.16 21.09 22.76 23.86 25.20
Sibenik 11.39 13.77 15.92 18.39 20.64 22.27 24.17 25.97 27.53

Cornell box 8.68 9.58 9.87 11.21 11.97 13.23 14.43 15.58 15.12
Dungeon 10.76 12.07 14.73 15.92 17.40 18.67 20.00 21.89 22.73

Table 6.10: Performace of diffuse indirect illumination for various count of diffuse cones; All times are in
milliseconds.

43

6. Results

O
ct
.d
ep
th

Sc
en
e

V
FL
ge
n.

O
ct
.b
ui
ld

Re
se
tb
ric
ks

G
at
he
rV
F

C
P
in
sid
e

G
at
he
rc
h.

C
P
ed
ge

To
ta
lt
im
e

N
od
e
C
ou
nt

6

Sponza 1.77 8.01 0.49 0.16 0.53 3.50 1.12 15.58 6698
Conference 1.32 7.11 0.22 0.06 0.24 1.93 1.23 12.11 2997
Sibenik 0.99 11.16 0.30 0.08 0.37 2.33 1.17 16.41 4196

Cornell box 0.24 7.89 0.35 0.09 0.39 2.57 1.16 12.68 4893
Dungeon 0.30 7.21 0.29 0.06 0.29 2.28 1.04 11.48 3827

7

Sponza 4.38 11.73 2.03 0.72 2.22 13.29 2.34 36.70 28343
Conference 2.22 9.92 0.98 0.33 1.11 7.17 1.92 23.64 13116
Sibenik 2.50 10.44 1.40 0.48 1.57 8.94 1.90 27.23 19539

Cornell box 0.83 9.52 1.70 0.44 1.46 8.82 1.87 24.65 19045
Dungeon 0.96 10.46 1.13 0.44 1.18 8.11 1.96 24.25 15231

8

Sponza 12.24 19.56 9.04 3.39 10.16 53.00 6.20 113.60 126639
Conference 5.80 15.72 4.88 1.59 5.22 32.98 4.05 70.23 58160
Sibenik 7.40 16.70 6.27 2.29 7.06 39.89 4.78 84.39 87395

Cornell box 3.11 15.64 5.55 2.04 6.05 33.56 4.29 70.25 77051
Dungeon 3.38 15.30 4.58 1.62 4.91 30.03 3.91 63.73 62524

Table 6.11: Duration of the steps performed during the voxelization of the static part of the scene; All times
are in milliseconds.

O
ct
.d
ep
th

Sc
en
e

V
FL
ge
n.

O
ct
.b
ui
ld

Re
se
tb
ric
ks

G
at
he
rV
F

C
P
in
sid
e

G
at
he
rc
h.

C
P
ed
ge

U
pd
.l
ist

To
ta
lt
im
e

6

Sponza 0.28 2.47 0.43 0.03 0.32 1.72 0.84 3.54 9.62
Conference 0.36 2.32 0.20 0.04 0.46 1.96 0.83 3.44 9.61
Sibenik 0.27 2.50 0.27 0.03 0.49 2.29 0.85 3.57 10.27

Cornell box 0.29 2.57 0.34 0.04 0.83 2.98 0.96 3.79 11.81
Dungeon 0.29 2.40 0.25 0.03 0.50 2.08 0.87 3.49 9.92

7

Sponza 0.32 3.33 1.82 0.04 1.12 5.20 1.35 4.42 17.59
Conference 0.49 3.18 0.86 0.07 1.78 6.82 1.62 4.45 19.27
Sibenik 0.32 3.14 1.26 0.07 1.70 7.91 1.73 4.44 20.57

Cornell box 0.45 3.10 1.29 0.04 3.12 10.55 1.98 4.37 24.90
Dungeon 0.38 3.12 1.03 0.05 1.83 6.78 1.58 4.29 19.06

8

Sponza 0.29 3.80 8.05 0.07 3.57 17.15 2.54 5.49 40.95
Conference 0.55 3.41 3.77 0.04 6.93 26.48 3.60 5.37 50.14
Sibenik 0.27 4.33 5.61 0.04 6.37 28.02 3.93 6.48 55.05

Cornell box 0.55 4.37 5.19 0.06 12.82 41.30 5.26 5.99 75.54
Dungeon 0.45 4.30 4.12 0.13 6.76 23.49 3.41 5.96 48.60

Table 6.12:Duration of the steps performed during the voxelization of the dynamic part of the scene; All
times are in milliseconds.

44

6.3. Quality analysis

O
ct
.d
ep
th

Sc
en
e

SM
re
nd
er

Tr
av
.S
M

In
se
rt
va
l.

U
pd
.l
ist

Re
se
tb
ric
ks

C
P
in
sid
e

G
at
he
rc
h.

C
P
ed
ge

To
ta
lt
im
e

6

Sponza 1.15 2.06 0.76 3.19 0.43 0.31 1.68 0.81 10.40
Conference 1.33 5.03 1.04 3.15 0.19 0.47 1.94 0.82 13.98
Sibenik 0.93 5.03 1.11 3.36 0.27 0.53 2.38 0.84 14.44

Cornell box 0.46 3.84 1.19 3.50 0.34 0.83 2.99 0.93 14.07
Dungeon 0.59 5.04 0.97 3.07 0.25 0.45 2.04 0.83 13.24

7

Sponza 1.15 2.41 0.84 3.99 1.82 1.07 4.91 1.61 17.80
Conference 1.31 5.88 1.52 4.20 0.86 1.77 6.65 1.55 23.74
Sibenik 0.90 5.87 1.57 4.05 1.27 1.77 8.17 1.70 25.29

Cornell box 0.38 4.52 1.61 4.03 1.30 3.25 10.91 1.97 27.96
Dungeon 0.57 5.93 1.44 3.96 1.02 1.70 6.22 1.46 22.31

8

Sponza 1.18 2.70 1.03 4.85 8.03 3.53 17.07 2.52 40.90
Conference 1.27 6.79 2.07 4.89 3.80 6.97 26.51 3.66 55.95
Sibenik 0.90 6.78 2.27 5.49 5.64 6.35 27.99 3.82 59.25

Cornell box 0.48 5.21 2.23 5.47 5.17 12.76 41.08 5.34 77.75
Dungeon 0.65 6.81 2.28 5.39 4.19 5.72 20.49 3.16 48.70

Table 6.13: Duration of the steps involved in light parameters injection; All times are in milliseconds.

6.3 Quality analysis

We have compared our solution with the implantation of Imperfect Shadow Maps. �e images rendered
both with VCT and ISM, and the visualisation of their di�erence are shown in �gure 6.14.
Our VCT implementation produces much darker indirect illumination than the ISM. �is issue

is probably caused by the transparency of higher level voxels because the voxel intensity is multiplied
with the opacity of the voxel. �is issue is reduced with the use of directional opacity but is still present.
In the Sponza scene, the VCT produces color bleeding e�ect on the arches above the curtains. �is
bleeding is not present in the image rendered with ISM. �is is caused by several factors. �e voxel
light behaviour is coarsely approximated. It is approximated either with 6 directional values or with
gaussian lobe representation. Another approximation is caused by cone tracing. �e integration of
the incoming light over hemisphere is approximated by several wide cones. All these approximations
produce additional and unrealistic light bleeding.
To compare our solution with Light Propagation Volumes, we have used the NVIDIA’s implemen-

tation from Direct3D SDK.�e images rendered with both LPV and VCT and with similar light and
camera properties are shown in the table 6.15.

�e LPV, in comparison with the VCT, produces much brighter images. One of the cause is a light
leaking. �e light leaking is in the LPV worse then in the VCT, since the LPV uses coarse grid. �e LPV
uses hierarchical grids, which are repositioned according to camera. When the camera moves, there are
visible artefacts on the edge of the image.

�e ambient occlusion better shows the problems of the cone tracing. �e images rendered with
ambient occlusion and various depths of the octree are shown in table 6.20. With increasing depth of
the octrees, the VCT is able to render more details. On the other hand, the discontinuities mentioned in

45

6. Results

ISM - 1024 VPL VCT di�erence

0.318

-0.298

0.244

-0.221

0.321

-0.305

Table 6.14: The difference of the brightness between Imperfect ShadowMaps algorithm with 1024 lights
and our VCT implementation

section 5.4.2 are more frequent with the increasing depth of the octree. �ese discontinuities produce
visible artefacts.

�e Cornell box scene shows another issue of the VCT. �e scene is approximated by the voxel
octree. A voxel of the octree is cube with the sides aligned to 3 main axes. When the scene contain �at
surface not aligned with these axes, the voxels of the octree form steps to represent this surface. When
the indirect illumination is computed for the points on this surface, the samples for one surface point
may fall in the fully opaque voxel, while the samples for adjacent surface point may fall into empty space.
�is shows in the rendered image as a dark stripe.
Table 6.17 shows the comparison of the two implemented voxel representation. Both solution produce

plausible indirect illumination. �e representation using gaussian lobes produces minor artefacts, which
are shown in �gure 6.1. From our observation this issue is caused by the inconsistency of normals stored
in bricks. �e voxel-fragments generated on the thin wall can have normals facing opposite directions.
When these normals are stored and �ltered in the bricks, then the normal value creates splodges on

46

6.3. Quality analysis

LPV VCT

Table 6.15: The Sponza scene rendered using LPV and VCT

such a thin wall as shown in �gure 6.1.

Figure 6.1: The normals stored in the bricks can form splodges on thin walls (on the left) and thus created
indirect illumination artefacts (on the right)

47

6. Results

Direct illumination only Direct + Indirect + AO AO

Table 6.16: The tested scenes renderedwith direct illumination (on the left), global illuminationwith ambient
occlusion (in the middle) and with ambient occlusion (on the right)

48

6.3. Quality analysis

6 axial radiant intensity

Gauss. lobes

Table 6.17: The comparison of the images rendered with VCT using two type of voxel representation

49

6. Results

Octree Depth
6 7 8

Table 6.18: The tested scenes rendered with global illumination and ambient occlusion with the various
depth of the octree

50

6.3. Quality analysis

Cone count
4 5 6

Table 6.19: The tested scenes rendered with global illumination with the various number of diffuse cones

51

6. Results

Octree Depth
6 7 8

Table 6.20: The tested scenes rendered with ambient occlusion and with the various depth of the octree

52

7. Conclusion

In this thesis we have reviewed the indirect illumination algorithms used for real-time applications. We
have implemented the Voxel Cone Tracing algorithm [Cra+11]. �is algorithm uses sparse voxel octree
as the simpli�ed representation of the scene. For each point of the surface, the di�use and specular
indirect illumination is gathered from this octree. �is gathering is performed by tracing several cones,
that cover the area of hemisphere around the surface point. �is tracing is realized by sampling. For
each sample we perform a lookup into the octree at the depth equal to the diameter of the sample.

7.1 Summary

Our implementation successfully provides coarse approximation of indirect illumination. �e imple-
mentation is capable of rendering di�use and specular indirect illumination, ambient occlusion and is
also capable of rendering dynamic objects. �e overall quality is comparable with both ISM and LPV
algorithms. Above that, the specular re�ections of our implementation signi�cantly improve the image
quality. Although the algorithm performs the steps, which serve to maintain the continuity of values
between two adjacent voxels, some discontinuities still remains. �ese discontinuities cause artefacts,
which a�ect the quality of �nal image. �e implementation of voxel cone tracing part of the algorithm
provides from interactive to real-time rendering speed for small resolutions.
Another source of the artefacts is sampling. For tight cones that are used for specular re�ections it is

necessary to place successive samples very close next to each other to get plausible results. �is means it
is necessary to use more samples and thus reduce the rendering frame-rate.

�e update of the voxel octree with the light related values involves many expansive steps with many
memory accesses. �is �ltering proves to be major bottleneck of entire method. We have implemented
two di�erent representations of voxel light information. �e representation using the gaussian lobes
uses less parameters. �is means it uses less memory and light �ltering step is faster. On the other hand
the representation with 6 values of axial light intensity produces more stable indirect illumination with
less errors.

7.2 Future work

Our implementation shows promising results, but it would bene�t from several improvements. One of
the biggest issue, as seen in the section 6.3, is the light leaking through the walls. �is is caused by the
transparency of the higher level voxels. In current implementation the scene is expressed by boundary
representation and this representation is also projected to the created voxels. In future work it would be
bene�cial to device new voxelization method, which would create also the voxels inside of the objects.
Another issue of our voxel cone tracing is the sampling. Sampling is used to acquire the necessary

values from the voxel octree along the direction of the cone. �e distance between two successive
samples is o�en too big and the part of the voxel with signi�cant opacity is missed. To address this issue,
we divide this distance and make necessary adjustments, which leads to multiplying the number of
samples. In future work, our implementation would bene�t from implementing the voxel cone tracing
as true sparse octree tracing [LK10].

�e di�use indirect illumination is low frequency information. �e performance of the VCT could
be signi�cantly improved if the di�use indirect illumination was computed on a resolution lower than

53

7. Conclusion

the resolution of the �nal image. Such a optimization would require edge detection pass, since the
indirect illumination on the edges must be computed in full resolution. �is optimization e�ectiveness
is reduced when normal maps are used, since normal maps cause the frequent normal discontinuity of
two adjacent surface points.
As the process of �ltering the octree is main bottleneck of our implementation, this process would

bene�t from substantial optimization. �e obvious candidate for this optimization is the step where
brick values are averaged from its child bricks. �is step takes around 50% of the whole light injection
process.

54

Bibliography

[ASS13] Assimp developers. Assimp C++ library. 2013. url: http://assimp.sourceforge.
net/.

[Boo13] Boost developers. Boost C++ library. 2013. url: http://www.boost.org/.

[Bro03] PA Bromiley. “Products and convolutions of Gaussian distributions”. In:Medical School,
Univ. Manchester, Manchester, UK, Tech. Rep 3 (2003), p. 2003.

[CG12] Cyril Crassin and Simon Green. “Octree-Based Sparse Voxelization Using the GPU Hard-
ware Rasterizer”. In: OpenGL Insights. Ed. by Patrick Cozzi and Christophe Riccio. CRC
Press, July 2012, pp. 303–319. isbn: 978-1439893760. url: http://www.openglinsights.
com/.

[CLT07] K. Crane, I. Llamas, and S. Tariq. “Real-time simulation and rendering of 3d �uids”. In:
GPU Gems. Vol. 3. Addison-Wesley Professional, 2007, pp. 633–675. isbn: 978-0321515261.

[COM98] Jonathan Cohen, Marc Olano, and Dinesh Manocha. “Appearance-preserving simpli�ca-
tion”. In: Proceedings of the 25th annual conference on Computer graphics and interactive
techniques. ACM. 1998, pp. 115–122.

[Cra+11] Cyril Crassin et al. “Interactive indirect illumination using voxel cone tracing”. In:Computer
Graphics Forum. Vol. 30. 7. Wiley Online Library. 2011, pp. 1921–1930.

[CUDA13] NVIDIA Corporation. CUDA parallel computing platform. 2013. url: http://www.
nvidia.com/object/cuda_home_new.html.

[Dee+88] Michael Deering et al. “�e triangle processor and normal vector shader: a VLSI system
for high performance graphics”. In: ACM SIGGRAPH Computer Graphics. Vol. 22. 4. ACM,
1988, pp. 21–30.

[DS05] Carsten Dachsbacher and Marc Stamminger. “Re�ective shadow maps”. In: Proceedings of
the 2005 ACM SIGGRAPH symposium on Interactive 3D graphics and games. ACM. 2005,
pp. 203–231.

[DX13] Microso�. Microso� DirectX. 2013. url: http://msdn.microsoft.com/library/
windows/apps/hh452744.aspx.

[Eve01] Cass Everitt. “Interactive order-independent transparency”. In:White paper, nVIDIA 2.6
(2001), p. 7.

[Fou92] Alain Fournier. “Normal Distribution Functions and Multiple Surfaces”. In: GI ’92 Work-
shop on Local Illumination (1992).

[GLEW13] GLEW developers. GLEW C/C++ library. 2013. url: http://glew.sourceforge.net/.

[GLFW13] GLFW developers. GLFW C library. 2013. url: http://www.glfw.org/.

[GLM13] G-Truc Creation. GLM C++ library. 2013. url: http://glm.g-truc.net/.

[GLSL] �e Khronos Group. OpenGL Shading Language (GLSL) Reference Pages. 2013. url: http:
//www.opengl.org/sdk/docs/manglsl/.

[GLUT13] GLUT developers. GLUT library. 2013. url: http://www.opengl.org/resources/
libraries/glut/.

55

http://assimp.sourceforge.net/
http://assimp.sourceforge.net/
http://www.boost.org/
http://www.openglinsights.com/
http://www.openglinsights.com/
http://www.nvidia.com/object/cuda_home_new.html
http://www.nvidia.com/object/cuda_home_new.html
http://msdn.microsoft.com/library/windows/apps/hh452744.aspx
http://msdn.microsoft.com/library/windows/apps/hh452744.aspx
http://glew.sourceforge.net/
http://www.glfw.org/
http://glm.g-truc.net/
http://www.opengl.org/sdk/docs/manglsl/
http://www.opengl.org/sdk/docs/manglsl/
http://www.opengl.org/resources/libraries/glut/
http://www.opengl.org/resources/libraries/glut/

Bibliography

[ICG86] David S Immel, Michael F Cohen, and Donald P Greenberg. “A radiosity method for
non-di�use environments”. In: ACM SIGGRAPH Computer Graphics. Vol. 20. 4. ACM.
1986, pp. 133–142.

[Jen96] Henrik Wann Jensen. “Global illumination using photon maps”. In: Rendering Techniques
96 (1996), pp. 21–30.

[Kaj86] James TKajiya. “�e rendering equation”. In:ACMSIGGRAPHComputer Graphics. Vol. 20.
4. ACM, 1986, pp. 143–150.

[Kap09] Anton Kaplanyan. “Light propagation volumes in cryengine 3”. In: Advances in Real-Time
Rendering in 3D Graphics and Games Course–SIGGRAPH (2009).

[KD10] Anton Kaplanyan and Carsten Dachsbacher. “Cascaded light propagation volumes for
real-time indirect illumination”. In: Proceedings of the 2010 ACM SIGGRAPH symposium
on Interactive 3D Graphics and Games. ACM. 2010, pp. 99–107.

[Kel97] Alexander Keller. “Instant radiosity”. In: Proceedings of the 24th annual conference on
Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co.
1997, pp. 49–56.

[KIX12] Kixor developers. Kixor library. 2012. url: http://www.kixor.net/dev/objloader/.

[KL96] VenkatKrishnamurthy andMarc Levoy. “Fitting smooth surfaces to dense polygonmeshes”.
In:Proceedings of the 23rd annual conference onComputer graphics and interactive techniques.
ACM. 1996, pp. 313–324.

[Laf96] Eric Lafortune. “Mathematical models and Monte Carlo algorithms for physically based
rendering”. PhD thesis. Citeseer, 1996.

[LHN05] Sylvain Lefebvre, Samuel Hornus, and Fabrice Neyret. “Octree Textures on the GPU”. In:
GPU Gems 2. Addison-Wesley Professional, 2005. isbn: 0-321-33559-7.

[LK10] Samuli Laine and Tero Karras. “E�cient sparse voxel octrees–analysis, extensions, and
implementation”. In: NVIDIA Corporation 2 (2010).

[LOBJ13] LibObj developers.LibObj C++ library. 2013. url:http://sourceforge.net/projects/
libobj/.

[Mea80] Donald JR Meagher. Octree encoding: A new technique for the representation, manipula-
tion and display of arbitrary 3-d objects by computer. Electrical and Systems Engineering
Department Rensseiaer Polytechnic Institute Image Processing Laboratory, 1980.

[MKC07] RicardoMarroquim, Martin Kraus, and Paulo Roma Cavalcanti. “E�cient point-based ren-
dering using image reconstruction”. In: PBG’07: Proceedings of the Eurographics Symposium
on Point-Based Graphics. 2007, pp. 101–108.

[ML09] Morgan McGuire and David Luebke. “Hardware-accelerated global illumination by image
space photon mapping”. In: Proceedings of the Conference on High Performance Graphics
2009. ACM. 2009, pp. 77–89.

[Nic65] Fred E Nicodemus. “Directional re�ectance and emissivity of an opaque surface”. In:
Applied Optics 4.7 (1965), pp. 767–773.

[OGL4] �e Khronos Group. OpenGL 4 Reference Pages. 2013. url: http://www.opengl.org/
sdk/docs/man/xhtml/.

56

http://www.kixor.net/dev/objloader/
http://sourceforge.net/projects/libobj/
http://sourceforge.net/projects/libobj/
http://www.opengl.org/sdk/docs/man/xhtml/
http://www.opengl.org/sdk/docs/man/xhtml/

Bibliography

[PH10] Matt Pharr and Greg Humphreys. Physically Based Rendering, Second Edition: From�eory
To Implementation. 2nd. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2010.
isbn: 0123750792, 9780123750792.

[Pho75] Bui Tuong Phong. “Illumination for computer generated pictures”. In: Communications of
the ACM 18.6 (1975), pp. 311–317.

[Rit+08] Tobias Ritschel et al. “Imperfect shadow maps for e�cient computation of indirect illumi-
nation”. In: ACM Transactions on Graphics (TOG). Vol. 27. 5. ACM. 2008, p. 129.

[Rit+11] Tobias Ritschel et al. “Making Imperfect Shadow Maps View-Adaptive: High-Quality
Global Illumination in Large Dynamic Scenes”. In: Computer Graphics Forum. Wiley
Online Library. 2011.

[Rit+12] T. Ritschel et al. “�e state of the art in interactive global illumination”. In: Computer
Graphics Forum. Vol. 31. 1. Wiley Online Library. 2012, pp. 160–188.

[RSC87] William T Reeves, David H Salesin, and Robert L Cook. “Rendering antialiased shadows
with depth maps”. In: ACM SIGGRAPH Computer Graphics. Vol. 21. 4. ACM. 1987, pp. 283–
291.

[ST90] Takafumi Saito and Tokiichiro Takahashi. “Comprehensible rendering of 3-D shapes”. In:
ACM SIGGRAPH Computer Graphics. Vol. 24. 4. ACM. 1990, pp. 197–206.

[Sto+04] William A Stokes et al. “Perceptual illumination components: a new approach to e�cient,
high quality global illumination rendering”. In: ACM Transactions on Graphics (TOG).
Vol. 23. 3. ACM, 2004, pp. 742–749.

[Tok05] Michael Toksvig. “Mipmapping normal maps”. In: Journal of Graphics, GPU, and Game
Tools 10.3 (2005), pp. 65–71.

[Wil78] Lance Williams. “Casting curved shadows on curved surfaces”. In: ACM SIGGRAPH
Computer Graphics. Vol. 12. 3. ACM. 1978, pp. 270–274.

57

Appendix A: List of Abbreviations

AO Ambient Occlusion
BRDF Bidirectional Re�ectance Distribution Function
BRSM Bidirectional Re�ective Shadow Maps
BSDF Bidirectional Scattering Distribution Function
BTDF Bidirectional Transmittance Distribution Function
CPU Central Processing Unit
CUDA Compute Uni�ed Device Architecture
DFS Depth-First Search
GUI Graphical User Interface
GPU Graphics Processing Unit
ISM Imperfect Shadow Maps
LPV Light Propagation Volumes
NDF Normal Distribution Function
GLSL OpenGL Shading Language
GV Geometry Volume
PCF Percetage-Closer Filtering
pVPL potential Virtual Point Light
RSM Re�ective Shadow Maps
SDK So�ware Development Kit
SM Shadow Map
VPL Virtual Point Light
VCT Voxel Cone Tracing

59

Appendix B: Additional images

�e contrast and brightness of the following images have been modi�ed.

Figure B.1: Sponza scene without indirect illumination(on the left) and with indirect illumination(on the
right)

Figure B.2: Sponza scene without indirect illumination(on the left) and with indirect illumination(on the
right)

Figure B.3: Sponza scene without indirect illumination(on the left) and with indirect illumination(on the
right)

61

B. Additional images

Figure B.4: Sponza scene without indirect illumination(on the left) and with indirect illumination(on the
right)

Figure B.5: Conference scene without indirect illumination(on the left) and with indirect illumination(on the
right)

Figure B.6: Sibenik scene without indirect illumination(on the left) and with indirect illumination(on the
right)

62

Figure B.7: Sibenik scene without indirect illumination(on the left) and with indirect illumination(on the
right)

Figure B.8: Cornell box scene without indirect illumination(on the left) and with indirect illumination(on the
right)

63

Appendix C: User manual and
installation

�e application is shipped with both source code and the binaries for the windows platform. �e
executables for the other platforms must be compiled.

C.1 Compilation

�e application uses several libraries, which are stated in table C.1. Most of the libraries are included in
the project and are not necessary to be installed. �e only library which is not included is the Boost
library.

Library Version Attached
OpenGL 4.2 yes
ASSIMP 3.0.1270 yes
GLEW 1.9.0 yes
GLFW 2.7.6 yes
GLM 0.9.3.4 yes
Boost 1.5.2 no

Table C.1: List of the libraries needed for the compilation

�eproject is set using CMake, the cross-platform build system. �eCMake guides the user, through
the process of project creation, with cmake-gui. Cmake-gui, shown in the �gure C.1, allows the user to
choose the compiler and alerts the user about possible dependency issues.

Figure C.1: The cmake-gui application (on the left); Cmake lets user to choose a compiler (on the right)

65

C. User manual and installation

�e source directory must be set to the base directory of the source, where the �le CMakeLists.txt
is located. Set the build directory and press the Con�gure button. �en, the cmake-gui will let user to
choose the compiler. Press Generate button and the project for the selected compiler will be generated.
For the Unix-platform, enter following commands:

cd build directory/

make

For the Windows platform and Microso� Visual Studio IDE, Cmake generates the solution. Open it
it in the Visual Studio. �e solution consist of 5 projects. Set the IndirectIllumnVCT as the main project
and press the key F7 to build the whole solution.

C.2 Usage

�e application executable for the windows platform is located in directory /win . �e program has
several command line parameters, that are shown in table C.2. If these parameters are not set, the default
values will be used. �e order of the parameters is arbitrary. All the other parameters of VCT are set
with GUI.

Parameter
swith

Default
value

Accepted values Description

-d 0.2f �oat Sets the portion of dynamic bricks
-vd 8 integer 1-8 Sets the depth of voxel octree
-s sponza.conf string Sets the path to the scene con�guration

�le
-smRes 512 integer <

GL MAX TEXTURE SIZE
Sets the resolution of the shadow maps

-qatt 1 0 or 1 Sets the renderer to use quadratic atten-
uation

-nm 1 0 or 1 Sets the renderer to use normal maps
-pcf 1 0 or 1 Sets the renderer to use Percentage-

closer �ltering
-wmm 8 integer Sets the level of texture mip-map used

during voxel-fragment generation
-viewW 1280 integer <

GL MAX TEXTURE SIZE
Sets the width of the viewport

-viewH 800 integer <

GL MAX TEXTURE SIZE
Sets the height of the viewport

-windowW 1280 integer <

GL MAX TEXTURE SIZE
Sets the width of the window. �e mini-
mum value for correct GUI is 1280.

-windowH 800 integer <

GL MAX TEXTURE SIZE
Sets the height of the window. �e mini-
mum value for correct GUI is 800.

Table C.2: The command line parameters of the program.

Once the program is running, and a scene is loaded, the user can rotate the camera using a mouse.
�e movement of the camera is mapped onto the arrow keys. PgUp and PgDown keys are used to set the

66

C.2. Usage

height of the camera. �e �eld of view of the camera is set with + and - keys. �e movement of the light
is mapped onto keys NumPad 8, NumPad 2, NumPad 4, NumPad 6. �e elevation of the light is set by
the keys NumPad 7 and NumPad 9.

�e GUI of the program is shown and hidden by the space key. �e program gets closed a�er the
user hit escape key. If the scene contain animations, the dynamic object animations are run and stopped
byM key and the light animations are run and stopped by L key.

Figure C.2: The GUI of the program

�e GUI, shown in �gure C.2, is divided into 3 sections.
In the le� section, the user can turn on/o� direct illumination, indirect illumination and ambient

occlusion. �ere are also options used for debugging purposes, like draw voxels and draw cone info. �e
combo box located on the top of this section allows user to switch render style to voxel-fragment = color
mode. In this mode, the selected value of the node is directly mapped onto the underlying surface. �e
middle section of the GUI is dedicated to the measurements. �e parameters of the cone tracing and
tonemapping are located on the right side of the GUI. A user can choose the number of the cones, the
number of the samples for a cone and the distance between two succeeding samples. Additionally, the
user can tweak the impact of all the indirect illumination components.

67

Appendix D: CD content

thesis drinotom/...the root project directory

external ... external libraries

IndirectIllumVCT the implementation directory

data .. testing scenes and additional data

shaders..shaders for VCT

ui...shaders for GUI

source.. source codes

text ... source �les and PDF of this thesis

win32release......................................application for Windows platform

README.TXT...build instruction

69

	Contents
	List of Figures
	List of Tables
	Introduction
	Subject of this thesis
	Thesis structure

	Theoretical background
	Radiometry
	Surface representation
	Bidirectional Reflectance Distribution Function
	Bidirectional Transmittance Distribution Function
	Normal Distribution Function

	Rendering equation
	Common rendering techniques
	Normal mapping
	Shadow mapping
	Octree
	Deferred rendering

	Interactive Global Illumination Algorithms
	Virtual Point Lights
	Reflective Shadow Map
	Cascaded Light Propagation Volumes
	Hardware-Accelerated Image Space Photon Mapping
	Initial Bounce
	Secondary Bounces
	Radiance estimate

	Imperfect Shadow Maps
	Indirect Illumination using Voxel Cone Tracing
	Voxel-Octree building
	Voxel representation
	MIP-mapping
	Voxel Cone Tracing

	Problem Analysis
	Algorithm selection
	Technology selection

	Implementation
	Application structure
	Voxel-Octree building
	Voxel-fragments generation
	Octree structure
	Octree construction

	Voxel representation
	Brick filling
	Gathering values from voxel fragments
	Brick edge copy
	Brick averaging

	Light injection
	Voxel Cone Tracing
	Dynamic scenes

	Results
	Tested scenes
	Performance analysis
	Quality analysis

	Conclusion
	Summary
	Future work

	Bibliography
	List of Abbreviations
	Additional images
	User manual and installation
	Compilation
	Usage

	CD content

