
Master’s thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Graphics and Interaction

Painting hand-drawn images using
mobile devices

Jan Brejcha
Open Informatics, Software Engineering

2014
Supervisor: Ing. Daniel Sýkora, Ph.D.









/ Declaration
I hereby declare that I have complet-

ed this thesis independently and that I
have listed all the literature and publi-
cations used. I have no objection to us-
age of this work in compliance with the
act §60 Zákon č. 121/2000Sb. (copy-
right law), and with the rights connect-
ed with the Copyright Act including the
amendments to the act.

v



Abstrakt / Abstract
Tato diplomová práce se zabývá im-

plementací iOS aplikace pro obarvování
ručně kreslených kreseb vyfocených ve-
stavěným fotoaparátem. Pro obarvování
kreseb byl studován, implementován a
testován algoritmus LazyBrush. Ana-
lýza požadavků, návrh uživatelského
rozhraní a testování použitelnosti byly
provedeny ve spolupráci s plánovanou
cílovou uživatelskou skupinou–dětmi.

Pro dosažení lepších vizuálních vý-
sledků obarvení bylo implementováno
předzpracování obrazu. Obraz vyfocený
vestavěným fotoaparátem není vhodný
pro okamžité obarvování–obsahuje
pozadí, obraz může být otočen a per-
spektivně zkreslen. Tyto jevy jsou
odstraněny pomocí rozpoznání hran
papíru, zpětné perspektivní transfor-
mace užitím homografie, ořezu a filtrace
obrazu. Tímto je náročnost pracov-
ního postupu zjednodušena pouze na
vyfotografování–obarvení–uložení, díky
čemuž je aplikace dobře použitelná i
dětmi a neodbornými uživateli.

Překlad titulu: Obarvování ručních
kreseb na mobilních zařízeních

This thesis deals with the implemen-
tation of iOS application for colorization
of hand-drawn images captured with
the built-in camera. For image col-
orization the LazyBrush algorithm has
been studied, implemented and tested.
Requirements analysis, user interface
design and usability testing was made
in collaboration with intended target
group of users—children.

To obtain better visual results of
colorization image preprocessing of cap-
tured image was implemented. Image
captured with the built-in camera is
not ideal for immediate colorization—
it contains background, the picture
may be rotated and perspectively dis-
orted. These phenomena are removed
through registration of paper edges,
reverse perspective transformation us-
ing homography, image cropping and
image filtration. This reduces the
complexity of the workflow just to
capture—colorize—save which makes
the application usable easilly for chil-
dren and unprofessional users.

vi



Contents /
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . .1
2 Our Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
2.1 LazyBrush Application on iOS . .3
2.2 Application Workflow. . . . . . . . . . . .3

3 Related Work . . . . . . . . . . . . . . . . . . . . . . .5
3.1 Related Research. . . . . . . . . . . . . . . . .5
3.2 Existing Applications . . . . . . . . . . . .6

4 LazyBrush Algorithm . . . . . . . . . . . . . .9
4.1 Ideal Painting Tool . . . . . . . . . . . . . .9
4.2 Energy Function . . . . . . . . . . . . . . . . .9

4.2.1 Smoothness Term . . . . . . . . 10
4.2.2 Data Term . . . . . . . . . . . . . . . 12
4.2.3 Minimization . . . . . . . . . . . . . 12

5 Requirements Analysis . . . . . . . . . . . 16
5.1 Functional Requirements . . . . . . 16
5.2 Non-functional Requirements . 21
5.3 User Research and User Re-

quirements . . . . . . . . . . . . . . . . . . . . . 21
5.3.1 Target Group of Users . . . 22
5.3.2 User Research . . . . . . . . . . . . 22

6 UI Design . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.1 Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.2 Image Colorization . . . . . . . . . . . . . 27

7 Implementation. . . . . . . . . . . . . . . . . . . 29
7.1 Application Architecture . . . . . . 29

7.1.1 ImageSelector Compo-
nent. . . . . . . . . . . . . . . . . . . . . . . 30

7.1.2 ImageSource Compo-
nent. . . . . . . . . . . . . . . . . . . . . . . 32

7.1.3 ColorizationController
Component . . . . . . . . . . . . . . . 32

7.1.4 Solver Component . . . . . . . 32
7.1.5 ScribbleManager Com-

ponent . . . . . . . . . . . . . . . . . . . . 32
7.1.6 ScribbleRenderer

Component . . . . . . . . . . . . . . . 32
7.2 Image Filtration . . . . . . . . . . . . . . . 32

7.2.1 LoG Filter . . . . . . . . . . . . . . . . 33
7.2.2 Histogram Equalization . 34

7.3 Automatic Image Cropping . . . 34
7.3.1 Edge Detection. . . . . . . . . . . 35
7.3.2 Cropping . . . . . . . . . . . . . . . . . 36

7.4 LazyBrush Algorithm Imple-
mentation . . . . . . . . . . . . . . . . . . . . . . 38

7.5 Drawing Scribbles . . . . . . . . . . . . . . 41

7.5.1 UIBezierPath Scribble
Implementation . . . . . . . . . . 42

7.5.2 OpenGL ES 2 Scribble
Implementation . . . . . . . . . . 42

8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
8.1 LazyBrush Algorithm Testing . 46
8.2 Usability Testing . . . . . . . . . . . . . . . 46

8.2.1 Target User Group. . . . . . . 49
8.2.2 Test Setup. . . . . . . . . . . . . . . . 49
8.2.3 Participants . . . . . . . . . . . . . . 50
8.2.4 Test Assignment . . . . . . . . . 50
8.2.5 Findings . . . . . . . . . . . . . . . . . . 50
8.2.6 Colorized Images . . . . . . . . . 53
8.2.7 Conclusion . . . . . . . . . . . . . . . 57

8.3 GridCut Benchmark on iOS . . . 57
9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 59
9.1 Summary . . . . . . . . . . . . . . . . . . . . . . . 59
9.2 Future Work . . . . . . . . . . . . . . . . . . . 60
References . . . . . . . . . . . . . . . . . . . . . . . . 61

A List of Abbreviations . . . . . . . . . . . . . 63
B CD Contents. . . . . . . . . . . . . . . . . . . . . . 64

vii



Tables / Figures
3.1. Existing iOS applications . . . . . . . .8
5.1. User research summary . . . . . . . . 23
5.2. User requirements . . . . . . . . . . . . . . 24
7.1. Discrete Gaussian convolu-

tion kernel . . . . . . . . . . . . . . . . . . . . . . 34
7.2. Discrete Laplacian of Gaus-

sian convolution kernel. . . . . . . . . 34
8.1. Participants overview . . . . . . . . . . 50

1.1. Coloring Book . . . . . . . . . . . . . . . . . . . .1
1.2. Coloring for Kids . . . . . . . . . . . . . . . . .2
1.3. Kids Coloring Book . . . . . . . . . . . . . .2
2.1. Application storyboard . . . . . . . . . .4
3.1. Photoshop Touch application . . . .6
3.2. Paper drawing application . . . . . . .7
3.3. SketchBook application . . . . . . . . . .7
4.1. Ideal painting tool . . . . . . . . . . . . . 10
4.2. Energy function . . . . . . . . . . . . . . . . 11
4.3. Shortcut illustration . . . . . . . . . . . 12
4.4. Graph of multiway cut . . . . . . . . . 13
4.5. Colored graph of multiway

cut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.6. Work of LazyBrush algorithm . 15
5.1. Use case diagram. . . . . . . . . . . . . . . 17
6.1. Tutorial welcome page . . . . . . . . . 26
6.2. Tutorial—scrolling . . . . . . . . . . . . . 26
6.3. Tutorial—undo . . . . . . . . . . . . . . . . . 26
6.4. Main dashboard . . . . . . . . . . . . . . . . 26
6.5. Camera UI. . . . . . . . . . . . . . . . . . . . . . 28
6.6. Color picker UI . . . . . . . . . . . . . . . . . 28
6.7. Brush size chooser. . . . . . . . . . . . . . 28
6.8. Scribbles shown . . . . . . . . . . . . . . . . 28
7.1. Application workflow . . . . . . . . . . 30
7.2. Application architecture

component diagram . . . . . . . . . . . . 31
7.3. Histogram equalization . . . . . . . . 35
7.4. Image filtration . . . . . . . . . . . . . . . . . 36
7.5. Polar representation of a line . . 37
7.6. Hough transformation pseu-

docode . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.7. Original image to be cropped. . 39
7.8. Cropped image . . . . . . . . . . . . . . . . . 39
7.9. Solver manager class diagram . 40

7.10. Scribble class diagram 1 . . . . . . . 42
7.11. Quadratic spline. . . . . . . . . . . . . . . . 44
7.12. Scribble class diagram 2 . . . . . . . 44
8.1. Bottle with scribbles . . . . . . . . . . . 47
8.2. Bottle . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.3. Robber with scribbles . . . . . . . . . . 47
8.4. Robber . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.5. Footman with scribbles . . . . . . . . 48
8.6. Footman . . . . . . . . . . . . . . . . . . . . . . . . 48
8.7. Boy with scribbles. . . . . . . . . . . . . . 48
8.8. Boy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
8.9. Picnic with scribbles . . . . . . . . . . . 49

viii



8.10. Picnic . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.11. Manga with scribbles . . . . . . . . . . 49
8.12. Manga . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.13. Image drawn by respondent 1 . 54
8.14. Image drawn by respondent 2 . 54
8.15. Image drawn by respondent 4 . 55
8.16. Image drawn by respondent 5 . 55
8.17. Image drawn by respondent 6 . 56
8.18. Image drawn with pen . . . . . . . . . 56
8.19. Image drawn with thin fix . . . . . 57
8.20. GridCut vs. BK library . . . . . . . . 58
8.21. GridCut library speedup . . . . . . . 58

ix





Chapter 1
Introduction

Interactive digital image manipulation is becoming more and more popular. There is an
increasing demand for improving or retouching photos not only on personal computers
but on tablets and smartphones as well. As hardware performance of tablets and
smartphones is increasing, new applications of computer graphics and interactive image
manipulation are possible. Since tablets are controlled by touching the screen with
finger or stylus, some applications seems to be more natural on tablet than on PC.

Mobile devices like tablets and smartphones are mainly used for content consumption
or entertainment. For children there is a variety of applications allowing them to colorize
simple colorings — which are in many cases unchangeable.

Example of such application for iOS can be Coloring Book by Toy Maker on Fig-
ure 1.1. Children can colorize prepared vector cartoons with a bucket or a brush tool.
Application Coloring for Kids on Figure 1.2 has a story with song for each coloring.
Children can use only the brush tool with several predefined sizes and colors; no bucket
tool is present in this app. In practice it is difficult to color the coloring precisely.
Another application called Coloring Book by TabTale on Figure 1.3 works on similar
principle like the previous ones. Children can choose from prepared images, choose
colors and touch inside the regions in the image that are then colored with the chosen
color.

Figure 1.1. Coloring Book by ToyMaker for kids

The fact that the colorings in many applications are unchangeable makes the appli-
cation boring after all images were colorized several times. Natural idea to solve this
problem is to allow children to load their own hand-drawn images to be colorized. This
possibility engages children creativity more. This approach can be also a new method
for easy bitmap image colorization which is still in common tools neither really quick
to use nor user-friendly.

1



1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 1.2. Coloring for Kids by Internet
Design Zone

Figure 1.3. Kids Coloring Book by Tab-
Tale

2



Chapter 2
Our Goal

2.1 LazyBrush Application on iOS
The main intention is to design and implement iOS application capable of colorization
of photographed drawings. Main features of the applications are following. With the
application, a new photo can be taken or an existing one can be used. Then the brush
strokes (called scribbles) on top of the image are drawn. Each scribble consists of one
or several brush strokes with particular color; each scribble has only one color. The
scribble defines the region which should be colored with the color of that scribble. As
the user draws the scribbles, the system colors the image interactively with particular
colors. The final colored image can be saved into image library or printed on AirPrint
friendly printer directly from the application.

To make the process of taking a photo and colorizing a picture as simple as possible,
the image shall be preprocessed, cropped, perspective distortion shall be removed, the
outlines shall be highlighted and the grey background shall be removed to obtain white
background of the drawing. This application is though considered to be colorization
application only — no other advanced image editing techniques shall be implemented.
For future work, there will be a lot of opportunities to implement other tools for image
editing to provide comprehensive image editing application that takes advantage of
sophisticated image coloring not only for kids but for advanced users as well.

2.2 Application Workflow
The application is desired to be coloring application for children. The desired workflow
is illustrated as a storyboard drawn by hand with soft pencil and colorized with Lazy-
Brush iOS application on Figure 2.1. The child draws an image with his pencil or pen
on paper (in school, at home or during his free time, see Figure 2.1 a), then he takes a
photo of the drawing (preferably with our application, see Figure 2.1 b) and then uses
the application to color the drawing (on Figure 2.1 c) and to save (or send by email
or message to his relatives or friends) or to print on an AirPrint friendly printer (see
Figure 2.1 d). Children are not required to be able to read, but it is assumed that the
users of the application are not entirely new to iOS and understand basic navigation
in iOS — they are able to run any application and know their possibilities of device
controlling with gestures.

Nevertheless the main planned target user group are children, other users than chil-
dren are also possible. We just do not design the application for their concrete needs.
For example, these users can be people who like to draw greyscale drawings and want
to see how it looks like when the images are colored — people who like drawing and art,
or people who could use it for doing their work — like designers or architects to color
quick sketches. For them this application could be considered as a proof-of-concept
and, in case it is beneficial for them, other application based on this one can be created
to suit their needs better.

3



2. Our Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a) Image drawing b) Image capturing

c) Scribble drawing, colorization d) Image printing

Figure 2.1. Storyboard of application workflow

4



Chapter 3
Related Work

Related work is divided into two sections. Related research about the image segmenta-
tion and the automated image colorization was studied. An overview of these research
topics can be found in Section 3.1. Since real application is going to be implemented,
existing applications in the field of applications for drawing and sketching, coloring
books for children and other image processing applications were searched. An overview
of these applications on the iOS platform is available in Section 3.2.

3.1 Related Research
One of the first algorithms developed for colorizing black and white pictures was de-
scribed by Lieberman [1] and was based on flood-fill algorithm. Smith [2] described the
tint fill algorithm for colorizing areas with shaded boundaries and Fishkin and Barsky
[3] presented three algorithms for filling antialiased regions. These methods are limited
with the initial idea of flood fill on which they are based. Problematic for these methods
is the inability to color complicated patterns or drawings with gappy outlines.

Coloring with usage of color seeds was first described by Horiuchi [4] who used prob-
ability relaxation method for improving the search of an RGB vector from an intensity
value. Levin et al. [5] proposed method for coloring greyscale photos. Luan et al. [6]
proposed technique that significantly lowers the number of user-defined constraints to
do the image colorization which is based on repetitive texture patterns. This tech-
nique is ideal for coloring photos but is unsuitable for coloring greyscale hand-drawn
images because there is a lack of similar repetitive patterns. Very fast and efficient
framework for photo and video colorization was described in [7]. This method is based
on computing chrominance of the pixels in the image according to its distance from
a scribble with known chrominance. It is very efficient and therefore ideal for color-
ing greyscale photo or video “on the fly”, but it is unsuitable for coloring hand-drawn
images because they tend to contain black on edges and white other areas — there is
a lack of other smooth greyscale shades. Sýkora et al. [8] proposed method for col-
orization of black and white animations created with cell or paper based technology.
However this method is suitable for colorization of old greyscale material, it fails on
classic hand-drawn cartoons because it makes an assumption of strong dark closed out-
lines which are not always present in hand-drawn images. Manga colorization method
was proposed by Qu et al. [9]. Their framework analyses both pattern and intensity
continuities so that regions with open boundaries or similar patterns can be separated
with a single scribble. Segmented regions can be then colored in various ways. This
colorization method is ideal for complicated black and white drawings that contains a
lot of continuous patterns.

Many image colorization algorithms use image segmentation to obtain areas in the
image that are then colored with desired colors. Grady [10] described method using
random walker probability calculation to obtain high quality segmentation. Another
approach to solve image segmentation uses maxflow/mincut problem formulation from

5



3. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
combinatorial optimization. With connection to computer vision, the maxflow/mincut
problem was first introduced by Greig et al. [11] to reconstruct original image from noisy
image. This problem formulation helped to solve the image segmentation problem which
was introduced by Boykov and Jolly [12]. The efficiency of graph cuts was also studied
by Boykov et al. [13] who introduced approximate energy minimization algorithm called
α-expansion for graph cuts.

Sýkora et al. [14] introduced LazyBrush algorithm which is built on the idea of
approximate energy minimization through graph cuts. This algorithm was developed
to satisfy various conditions to be able to colorize hand-drawn images quickly and
effectively. It avoids problems typical for previously mentioned algorithms like color
leakage through gappy outlines so it is ideal for the purpose of the application being
implemented.

3.2 Existing Applications
On iOS there is a variety of applications for image manipulation or creation. Only some
of current most successful iOS applications for creating or manipulating with images
were chosen for this review. There are two main branches of applications we are inter-
ested in — the image manipulation applications and the image drawing applications.

Photoshop Touch application from Adobe has several options to select a part of the
image and then do some image processing on this part (like bucket coloring, etc.). Lasso,
magic wand and the scribble selection (see Figure 3.1) can be used — which is very
similar to the selection we use for LazyBrush algorithm. It is a complex application
with many other features like working with layers, adjustments and filters.

Figure 3.1. Photoshop Touch scribble selection tool. Image source credit: © Future Pub-
lishing Limited

Apple’s iPhoto is aimed mainly for improving and retouching photos. It cannot select
part of a photo and for example color it with specific color. Though user can resize,
crop the photo, adjust exposition, color saturation and much more.

6



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 Existing Applications

Figure 3.2. Paper from FiftyThree. Image source credit: © FiftyThree

Figure 3.3. SketchBook Pro from Adobe. Image source credit: © Adobe

7



3. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Besides the applications combining painting and image processing like the Photoshop

Touch, there are a lot of applications for drawing with a finger only. One of those
applications is the Paper application from FiftyThree. User can draw with his finger
very smoothly. The application offers several tools for drawing like fountain pen, a
pencil and an outliner. It brings the idea how the painting tool should be implemented
— very smooth, responsive with no lags at all.

Another sketching application is SketchBook Pro for iPad created by Adobe. It is an
application for people who want to do their sketches on iPad. User draws the sketch with
his fingers, and can use some advanced features like layers and layer transformations
— rotation, scale, opacity, etc. Besides Paper application, it has more tools — basic
primitives such as rectangle, ellipse and straight line. On the other side, this application
is not so smooth and responsive during drawing as Paper application. User Interfaces
of both Paper and SketchBook Pro application can be compared on Figure 3.2 and 3.3.

There are also smaller single task applications that are capable of editing photos. For
example, with the ColorSplash application the photo can be decolorized and then the
original colors can be placed back with a brush tool to only some parts of the image.

Application name painting editing target group price
Photoshop Touch yes yes common users 9.99$
iPhoto no yes common users 4.99$
Paper yes no common users, artists free
SketchBook Pro yes no artists, designers 4.99$
ColorSplash no yes common users 0.99$

Table 3.1. Comparison of iOS applications

For better understanding what each application is capable of, the table 3.1 was
prepared. The only application capable of coloring particular area of a photo is the
Photoshop Touch. The other applications mentioned here are useful either for drawing
images or image manipulation. None of the application are primarily designed to color
bitmap images, though with Photoshop Touch it is possible to do this, thanks to the
scribble selection.

8



Chapter 4
LazyBrush Algorithm

According to analysis in Section 3.1 LazyBrush algorithm by Sýkora, Dingliana and
Collins [14] was found to be the most suitable for the needs of our application. This
algorithm is designed to satisfy a set of properties which were developed in cooperation
with professional ink-and-paint illustrators. The definition of the algorithm with all its
properties was taken from [14].

4.1 Ideal Painting Tool
Ideal painting tool is a set of properties defined in [14] to form a tool that will be highly
effective for coloring bitmap images. The set of properties for an ideal painting tool is
intended as following:.Color leakage: For standard flood-fill algorithms, the color leakage through unclosed

outlines is a serious problem. Unclosed outline gaps must be closed manually or
automatically with automatic outline joining algorithms. The problem is that these
algorithms close all the gaps and thus can accidentally create many small areas
which makes colorization more time consuming for the artist. Ideal painting tool has
to avoid this problem. See section a) on Figure 4.1..Optimal boundary: Ideal painting tool finds an optimal boundary according to the
previous rule and then fills as much area as possible according to found boundaries.
See section b) on Figure 4.1..Connected labelling: The area that is labelled to be filled with color should be
connected (there should not be any disconnected parts). See section c) on Figure
4.1..Soft scribble: For the best usability of the tool, the soft scribble feature was proposed.
The scribbles can be placed imprecisely (users can drag the brush outside the area
they are labelling). The majority of the scribble determines the area which is going
to be colored. See section d) on Figure 4.1..Anti-aliasing: Edges in captured images are anti-aliased. This anti-aliasing has to
be present in the colored image as well. See section e) on Figure 4.1.

4.2 Energy Function
The framework that satisfies properties defined in Section 4.1 is defined through en-
ergy function. To obtain the result colorization the function is going to be minimized.

The input is a grey-scale image I consisting of a set of pixels P in a 4-connected
neighborhood system N and a set of scribbles (brush strokes) S (provided by user)
with a particular set of colors C. The result is considered the labelling (color-pixel
assignment) c that minimizes energy function (1).

E(c) =
∑
{p,q}∈N

Vp,q(cp, cq) +
∑
p∈P

Dp(cp), (1)

9



4. LazyBrush Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a)

b)

c)

d)

e)

Figure 4.1. Properties of Ideal painting tool: a) Color leakage b) Optimal boundary,
c) Connected labelling d) Soft scribbles, e) Anti-aliasing preservation

where p, q are two neighboring pixels, cp is a color c assigned to pixel p, cq is a color
c assigned to pixel q, Vp,q is a smoothness term which defines the energy of intensity
differences between pixel p and pixel q according to the assigned color cp and cq.
Dp(cp) is a data term defining energy of pixel p according to assignment of the color
cp. For better understanding of meaning of these variables, please refer to Figure 4.2.

4.2.1 Smoothness Term
The first part of formula (1) is called the smoothness term. During colorization, each
pixel is multiplied with the scribble’s color. Because of this, the best place for color
borders is in dark outlines (the black color remains black after multiplication so the color

10



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 Energy Function

cp ∈ C
Dp(cp)

Vp,q(cp, cq)

cq ∈ C

s ∈ S

t ∈ S

Figure 4.2. Energy function visualization

borders are “hidden” in the outline). Therefore, the smoothness term is formulated in
Formula (2).

Vp,q(cp, cq) ∝
{
min(Ip, Iq) for cp 6= cq

0 otherwise, (2)

where Ip is intensity of the pixel p, Iq is intensity of the pixel q. For practical usage,
there are further requirements on the smoothness term. To obtain regions without
holes, nonzero smoothness term in case cp 6= cq is required. Otherwise the places where
cp 6= cq can be disconnected from the network which can create holes. The second
problem is that the smoothness term in this form can cause the segmentation to go
through white areas. An illustration of this phenomenon can be seen on Figure 4.3.
To fix this issue, high-energy values for outlines between the white pixels must be
set. For this purpose, the pixel intensities are remapped. As our application colors
the greyscale image created with soft pencil, a sufficient choice for intensity mapping
function is non-linear mapping (see [14] for more details) that enhances the contrast in
formula (3).

I ′p = K · Ip
2 + 1, (3)

11



4. LazyBrush Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 4.3. Illustration of shortcut through white area

K = 2 · (w + h), (4)

where w is width of the image I, h is height of the image I and I ′p is the remapped
intensity of the pixel p.

4.2.2 Data Term
The second part of the formula (1) is called the data term; it defines hard constraints
in the minimization function. In case of LazyBrush not all user-defined scribbles are
necessarily hard constraints, which allows us to enable the soft scribbles feature. The
labelling is therefore modified by user as follows in formula (5).

Dp(cp) = λ ·K, (5)

where λ ∈ 〈0, 1〉 is a constant and K is a coefficient defined in formula (4). The value
λ modifies the meaning of the data term. The value λ is set to λ = 1 for pixels without
any scribble and λ = 0 for pixels that obtained hard scribble. For soft scribbles the
main idea is that a fragment of area |R| with a constant smoothness term should be
colored with the color of the scribble with biggest area. Therefore for soft scribbles we
set λ > 1 − ∂S/|S|, where ∂S is the perimeter of the scribble S and |S| is the area of
the scribble. For detailed inference of this formula, please refer to [14]. As for most
scribbles the 1 − ∂S/|S| < 0.95 holds, in practice we can set λ = 0.95 for all scribbles
instead of measuring the ∂S and |S| values for each scribble separately.

4.2.3 Minimization
Because the energy function (1) is dependent on the pixel intensities only and not on
the color labels, it satisfies the Potts model [15]. According to [16] minimization of a
function that satisfies Potts model can be transformed to multiway cut problem on a
certain undirected graph G = {V,E}, where V = {P,C} is a set of vertices of particular
pixels P , and color terminals C and E = {Ep, Ec} is a set of edges. Each pixel p ∈ P
is connected with its 4 neighbors that orthogonally surrounds pixel p via edges Ep

having weight wp,q = Vp,q for case cp 6= cq. Edges Ec connect color terminals with
pixels labelled by scribble having weight wp,c = K −Dp(c) — where for hard scribbles
wp,c = K − 0 · K = K holds and for soft scribbles wp,c = K − λ · K = K · (1 − λ)
holds. The whole situation can be seen before segmentation on Figure 4.4 and after
segmentation on Figure 4.5. The intensities in this case have three levels (white, grey,
black) and from these intensities the capacities of edges are deducted. The more thick
the edge, the more capacity it has.

According to [17], the multiway cut with 3 or more terminals is the NP-hard prob-
lem. To solve this problem an approximate α-expansion algorithm could be used. The

12



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 Energy Function

c1

c2 c3

p

q

wp,q

Ep

Ec wp,c1

Figure 4.4. Graph of multiway cut

c1

c2 c3

Figure 4.5. Solved and colored graph of multiway cut

13



4. LazyBrush Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
problem is that the α-expansion algorithm is still slow for the purpose of the interactive
image colorization. To address this issue the LazyBrush algorithm comes with greedy
multiway cut algorithm defined below. This algorithm does not guarantee the optimal-
ity, but provides comparable results to the mentioned α-expansion and is several times
faster.. Input: Image I, set of user-defined scribbles S..Output: Colored Image I ′.

1. Initialize the set of background color labels C. Each label ci ∈ C corresponds to one
particular scribble si ∈ S.

2. Create the set M of all uncolored pixels in image I.
3. Choose one arbitrary label cf ∈ C and remove it from set C.
4. Create graph G = {V,E} from set M . Connect pixels with label cf to terminal S

and pixels with all labels ci ∈ C to terminal T .
5. Solve the maxflow/mincut problem [18] above graphG from terminal S to terminal T .
6. Color pixels corresponding with terminal S with the color of label cf . Remove these

pixels from the set M .
7. If the set C is not empty, go to (3), otherwise set output image I ′ = I, end.

14



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2 Energy Function

ci ∈ C

c2

c3

c4

c5

c1

cf = c1 → S cf = c2 → S
c3, c4, c5 → Tc2, c3, c4, c5 → T

cf = c3 → S

c4, c5 → T

cf = c4 → S

c5 → T

cf = c5 → S

Figure 4.6. Work of LazyBrush algorithm. In every iteration one label ci is set as the
foreground cf and is removed from the set of labels C. On images in the second and fourth
line the colorization after each iteration is shown. Grey color means uncolored pixels that
remain in the set M for the next iteration.

15



Chapter 5
Requirements Analysis

The requirements analysis consists of two main parts—functional and nonfunctional
requirements. Functional requirements are defined through use cases and use case
scenarios which define detailed user interaction with the application. The use case
scenarios are based on the style that was presented by Cockburn [19]. According to
this requirements analysis, the actual implementation of the LazyBrush application for
iOS is created.

5.1 Functional Requirements
In the SketchColor application two entities come into the play—the user and the system.
There is only one user role—the artist. No other roles are considered since neither
system administrators nor other staff for this project are needed.

Interaction between the user and the system is defined on use case diagram on Figure
5.1. This diagram represents the functional requirements that the application shall
fulfill. Each functional requirement is described in detail in use case scenarios.

Each scenario describes certain user activity. It consists of main scenario and al-
ternative scenarios. Field “trigger” defines which scenario is called after the current
one finished. Pre-conditions are conditions that must be fulfilled before the scenario;
post-conditions are conditions that must be fulfilled after the scenario in case the sce-
nario was successful. Field “level” defines the granularity of the use case. According to
Cockburn [19], there are three levels. Those are: summary, user goal and sub-function.
The most interesting for us is user goal, as it describes the tasks of the user in the
system.

Use Case: Obtain Drawing.
ID: 1
Description: User chooses how to obtain the picture to be colored. There are two
possible methods — Take Photo (ID: 1.1) or Choose Photo From Library (ID: 1.2).
Level: User Goal
Pre-Conditions: User opened the application.
Post-Conditions: An image is obtained and prepared for colorization.
Trigger: None.
Main Scenario:

1. User selects one option—either Take Photo or Choose Photo From Library.
2. System triggers Take Photo (ID: 1.1) or choose image from image library (ID: 1.2)

according to the user’s selection.
3. The system obtains an image.
4. The system filters the image to enhance the edges.
5. The system opens the obtained image to color it.

16



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1 Functional Requirements

Special Requirements:
In the step 4 of the main scenario, the system filters the image. This is needed because
for the colorization process is much better if the image is more black and white than
greyscale—e.g. it is needed to have dark (ideally black) edges and light (ideally white)
background (as the background is mostly the white paper).

Figure 5.1. Use case diagram

17



5. Requirements Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Use Case: Take Photo.
ID: 1.1
Description: The live camera preview is presented and the user takes the desired photo
of the drawing to be colored.
Level: Sub-Function
Pre-Conditions: User selected the option to take a photo in a scenario (ID: 1).
Post-Conditions: An image is captured through the camera. The image is cropped
to contain the white paper with the drawing only, the image disortion is compensated
with data from gyroscope sensor.
Trigger: Automatically crop and straighten photo (ID: 1.1.1) in case of main scenario.
In case of Alternative Scenario 1 trigger (ID: 1).
Main Scenario:

1. The system opens dialog for image capture. Choose Photo From Library.
2. The user moves the camera to see desired image.
3. The user instructs the system to capture the photo.
4. The system captures the photo.

Alternative Scenarios:

Alternative Scenario 1
1. The system opens dialog for image capture.
2. The user cancels the image capture, no photo is captured.
3. The system goes to scenario (ID: 1).

Use Case: Automatically crop and straighten photo.
ID: 1.1.1
Description: The captured image is cropped to contain only the area of the paper with
the drawing and the image disortion is compensated with data from gyroscope sensor.
Level: Sub-Function
Pre-Conditions: The photo in scenario (ID: 1.1) was captured.
Post-Conditions: The photo was cropped and the disortion was compensated from data
from the gyroscope sensor — the images should look like it was captured with camera
perpendicular to the plane on which the paper lies even if the image was captured from
another than perpendicular angle.
Trigger: None.
Main Scenario:

1. The system obtains the image to be modified.
2. The system compensates the photo with data from gyroscope to look like it was

captured with camera perpendicular to the plane on which the captured image
lies.

3. The system crops the image to contain only the paper with the drawing.

Use Case: Choose Photo from Library
ID: 1.2
Description: The user selects the image stored in the image library to be colored.
Level: Sub-Function
Pre-Conditions: The user selected the option to select image from device image library.
Post-Conditions: An image is chosen.

18



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1 Functional Requirements

Trigger: In case of Alternative Scenario 1 trigger scenario (ID: 1).
Main Scenario:

1. The system opens dialog for image selection from the image library.
2. The user selects the desired image.

Alternative Scenarios:

Alternative Scenario 1
1. The system opens dialog for image selection from the image library.
2. The user cancels the selection, no image is selected.
3. The system goes to scenario (ID: 1).

Use Case: Draw Scribble
ID: 2
Description: The user touches the screen and drags his finger over it. The system
draws the scribble above the image.
Level: User Goal
Pre-Conditions: An image is opened and prepared for coloring. System knows the color
and thickness of the scribble being created.
Post-Conditions: The scribble is drawn.
Trigger: Execute the colorization process (ID: 3)
Main Scenario:

1. The user drags his finger above the area where the scribble shall be placed.
2. As the user drags his finger, the system records points where the user touched

during the drag. The system automatically draws the spline that goes through the
recorded points as fast as possible—the user shall not observe any lag. The spline
has predefined color and thickness.

3. When the scribble is finished, the user will release his finger.
4. The system ends the scribble.

Use Case: Choose Scribble Diameter (Color)
ID: 2.1 (diameter), 2.2 (color)
Description: The user chooses the diameter (color) for the scribbles that are going to
be created.
Level: Sub-Function
Pre-Conditions: The image is open and prepared for coloring.
Post-Conditions: The diameter (color) of the scribble was chosen.
Trigger: None.
Main Scenario:

1. The user instructs the system to change the diameter (color).
2. The system presents the view for changing diameter (color).
3. The user chooses the diameter (color).
4. The system sets the diameter (color) for future scribbles.

Use Case: Execute the Colorization Process
ID: 3
Description: The system will calculate the colorization of the image according to the
created scribbles.

19



5. Requirements Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Level: User Goal
Pre-Conditions: One or more scribbles were created in scenario (ID: 2).
Post-Conditions: The image is colorized and presented on screen.
Trigger: None.
Main Scenario:

1. The system is instructed by user or other scenario to start the colorization process.
2. The system colorizes the image.
3. The system presents the colored image.

Use Case: Export Image
ID: 4
Description: Exports the image. Image can be saved to device image library or printed
on AirPrint printer.
Level: User Goal
Pre-Conditions: The image is open.
Post-Conditions: The images are saved to the device image library or printed on the
printer.
Trigger: None.
Main Scenario:

1. The system is instructed to save the current image into device image library or
print the image on the printer.

2. The system saves/prints the image.
3. The user is notified that the images were saved or sent to printer.

Alternative Scenarios:

Alternative scenario 1
1. The system is instructed to print the image.
2. The system did not find any printer.
3. The user is notified that no printer was found.

Use Case: Show/Hide Scribbles
ID: 5
Description: For better experience, user can turn show or hide the scribbles. The
scribbles are hidden on default. This setting does not affect the scribbles that are being
drawn, these scribbles are always visible.
Level: Sub-Function
Pre-Conditions: The image is open.
Post-Conditions: Drawn scribbles were shown/hidden.
Trigger: None.
Main Scenario:

1. The user instructs the system to show or hide drawn scribbles.
2. The system shows or hides the scribbles.

Use Case: Show Introduction How To
ID: 6
Description: When the application is run for the first time, the introduction how to is
shown to teach the user what is the application about and what he can do.

20



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2 Non-functional Requirements

Level: User Goal
Pre-Conditions: The application is run for the first time, or the user selected an option
to see the introduction how to again.
Post-Conditions: None.
Trigger: Obtain drawing (ID: 1)
Main Scenario:

1. The user opens the application for the first time.
2. The system presents the introduction—sample prepared image is opened. The

system instructs the user how to draw a scribble.
3. The user draws a scribble as instructed by the system.
4. The system colorizes the image.
5. The system instructs the user how to select color and scribble thickness. The

system instructs the user to select new color and to make another scribble to
another area.

6. The user selects new color and makes new scribble.
7. The system colorizes the image.
8. The system instructs the user how to show or hide scribbles. The system also

shows how to export the image.
9. The system welcomes the user to the application and ends the introduction how

to.

5.2 Non-functional Requirements
Non-functional requirements are here defined with emphasis of usability. Usage of
mobile applications differs rapidly from desktop ones. The main difference is that the
user wants to wake his mobile or tablet, do some quick action and then asleep the device
again. On the other side, the desktop is typically used when the user has more time so
the usage is slower..Memory budget: To solve the maxflow/mincut problem the considerable memory

space is needed. According to unofficial experiments, around 45% of memory of the
device is usable until the system shuts the application down, so it is crucial to lower
the memory consumption of other components of the application as much as possible..Responsiveness: From usability point of view it is very important that the user
interface stays responsible without lags especially during scribble drawing. During
drawing of the scribbles, the user has to concentrate and must not be disturbed by
non-smooth screen updates..Usability: Since the application is intended mainly for children, it should be easy
to use for them. However, we do not want to discourage adult users from using the
application—this must be kept in mind during the UI design phase.

5.3 User Research and User Requirements
To design the User Interface of the application properly, user research with children
has been made. Because children behavior differs greatly according to their age,
the target group was sampled to three main age groups and for each user group
important questions regarding children activities connected to drawing and coloring
pictures were answered.

21



5. Requirements Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.3.1 Target Group of Users

Target group is very important in this stage. Our target group is children that like to
play with colors and mobile devices, children that like to draw and colorize pictures.
These tasks can be done at home, at school during art lessons or with friend on an
afternoon party. Children can draw and want to colorize pictures for various reasons
— as an entertainment, because they have to (school homework) or because they
want to create a gift for mom or relatives. All children doing theese or similar tasks
are our target user group.

These users are divided into five smaller groups according to their age: in the first
one there are children below the age of 7 years, in the second there are children aged
7 - 9, in the third 10 - 12 years old ones, in the fourth 13 - 15 years old and in the
fifth one children above 15 years. The secondary target group of users is other people
that like drawing, colorizing—or art at all. We design the application with emphasis
to children between 7 and 15 years. Younger children have very specific requirements
(small hands, inability to read, etc.) and thus special application for this category
would be needed. The same situation is with the group of users older than 15 years
— probably the feature set of this application will be too small to be ideal for them.

5.3.2 User Research
The whole procedure of User Research is inspired by Chapter 2 and 3 from [20].
During user research various users were asked to provide answers for the questions
regarding drawing, colorizing, drawing on tablets and smartphones, etc. The main
questions we wanted to answer are following:
. Why children draw? What are the objects or actions they like the most to draw?. Do children like more to draw with a pencil, crayons, chalks or a pen? Do children

like more to draw greyscale or color pictures?. How easy is for children to use state of the art applications for colorizing like
ColoringBook from the Chapter 1? What are the most common problems they
have using these applications?. Do children use tablets or smartphones — generally touch devices? What are the
most interesting applications for them?

These questions were answered during interviews with children. These questions
were not asked directly—the users told us about how they are actually drawing,
why they use this tool, etc. From each category of interest there was at least one
respondent interviewed. Answers from these questions were generalized into table
5.1. Some findings cannot be generalized into the table. These findings are generally
valid for all subgroups of our users:.They like more landscape paper orientation..They do not like to read..They behave quickly — they make quick and irresponsible decisions.

All interviewed children like to use touchscreen device. They use it mainly for
games; the older ones use it also for writing emails, sms or writing down notes in
school. None of interviewed children has broad experience with applications for col-
orization. This imply that our approach of a bitmap images colorization is really new
for them so it may be problematic for users to understand for what the application is
good for, which features it has and where are the limitations. To identify the finger
motoric skills an existing iOS application for colorization was used. This application

22



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.3 User Research and User Requirements

User characteristic age: 7 — 9 age: 10 — 12 age: 13 — 15

Sex male/female male/female male/female

Physical limitations worse finger
motoric skills,
probably better
for girls, reading
word or two is
not a problem

finger motor
skills can be
precise as well as
imprecise,
probably better
for girls

finger motoric
skills are better
but some users
may still have
problems using
touch device
precisely

IT experience rare usage of
touch devices,
probably does
not have his/her
own, games only

more frequent
usage of
touchscreen
devices, sms,
games

heavy usage of
touchscreen
devices, writing
emails, notes in
school, sms,
taking photos
and retouching
them, games

Motivation entertainment,
interested in
drawing, school,
like using
touchscreen
devices

entertainment,
interested in
drawing, school,
like even more
using
touchscreen
devices

entertainment,
interested in
drawing, school,
using
touchscreen
devices is
everyday life, it
is “in”

Attitude like more to
draw color
pictures,
colorization is
entertainment

greyscaled
pictures seems
to be more
entertaining —
for both drawing
and observing

does not like
colorization,
drawing is
entertainment
both color and
greyscaled

Prefferable tool crayons,
watercolors,
tempera, color
fix

soft pencil, chalk soft pencil, pen,
tempera

Table 5.1. User research summary

does not automatically colorize particular areas of the picture (i. e. the bucket tool),
so children had to colorize the object manually. Some children were able to do it
almost without a mistake, other were not able to place the brush strokes precisely.
This research revealed interesting fact that even 12 years old child can have the same
problems with the precision of placing brush strokes as the 7 years old child.

The user characteristics from table 5.1 are transformed into user requirements on
system being designed in table 5.2. The three age groups were merged into one, be-
cause only one application for whole group is going to be designed and implemented.
Thus all the findings must be merged to satisfy the majority of users.

23



5. Requirements Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

User characteristic Children aged from 7 and above

Can have bad
motoric skills of
fingers or hands.

The UI elements must be big enough to hit them
easily. Also there should be a lot of free space
between UI elements for better orientation.

May have problems
with reading.

All textual information should be accompanied by
image or icon to understand the meaning easilly.

Can have little
experience with
platform/application
of this kind

All features shall be self-explaining or explained
by some other form like tutorial.

Make quick
irresponsible
decisions

All changes should be revertible.

Table 5.2. Conclusion of user requirements from user research

From the user research it is obvious that the UI design has to be created with the
emphasis on simplicity and easy intuitive navigation. Important is the fact that not
all children are able to read so all possible textual information has to be supplied
with descriptive icon so there is obvious what the label is saying. Usage of bigger
buttons and sufficient amount of free space cannot be underestimated as well. Free
space helps the user to identify and hit the correct UI element in shorter time. As
the proposed colorization technique is entirely new to touchscreen devices, the user
shall be informed at the first launch of the application about the application features,
for example in a form of a short interactive tutorial.

24



Chapter 6
UI Design

The user interface design was created according to the Chapter 5 and is inspired by
the user research (see Section 5.3). The creation of the UI design of the final product
was though iterative process. Thanks to the iOS platform, no dummy prototypes were
created. Implementing user interface on iOS is so quick that it is better to prototype
it on real application, reuse it and improve it in next iterations. The application
was tested informally with users through the whole development. In final stage the
application was tested more formally with several children (see Chapter 8.2). These
findings were then used for improving the UI design being presented in this chapter.
The UI design is divided into two main parts. The first part talks about the tutorial
and the second part talks about the actual image colorization.

6.1 Tutorial
After the application is launched for the first time, the tutorial is started automat-
ically. The welcome page with start button can be seen on Figure 6.1. All buttons
in the application that start some important activity are big circular buttons. The
colors were chosen to have big contrast against the white text. In the tutoriali, the
user shall learn mainly four important things..Learn that the pinch zoom is available..Learn that scrolling is possible with two fingers..Learn that the application colors automatically the areas where a scribble was

placed..Learn that any brush stroke can be removed with the shake gesture (undo feature).

These are the most important things in the application and they must be mentioned
in the tutorial because there are no visible UI elements to let the user know that these
features exist. In contrast the color can be changed by tapping on the button with
color bucket which is pretty straightforward and hence does not need to be presented
in the tutorial. The less actions are in the tutorial, the better—the features learned
have better chance to be remembered if there is only few information.

The instructions how to zoom and how to scroll are very similar to each other;
the scrolling part of the tutorial can be seen on Figure 6.2. Instructions for drawing
scribbles are presented via animation. The user is asked to draw the scribble into the
flowerpot and the leaf according to the brush strokes that are drawn interactively on
these places. After the user places each brush stroke, the application colors the image
so the user sees the result immediately. The user can learn how to use the undo/redo
feature on the Figure 6.3. Undo/redo is implemented as a standard iOS gesture for
undo and redo—shake gesture. After the user completes all the tasks given by the
tutorial, the tutorial ends and the main application dashboard (see Figure 6.4) is
brought on the screen.

25



6. UI Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 6.1. Tutorial welcome page Figure 6.2. Tutorial—scrolling

Figure 6.3. Tutorial—undo Figure 6.4. Main application dashboard

26



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.2 Image Colorization

6.2 Image Colorization
In case the tutorial has been completed earlier, the main application dashboard (on
Figure 6.4) is opened on application launch. There are two main options to load
a photo into the application. The first option is to take a photo directly from the
application. The advantage of taking photo directly from application is that the
application crops the image automatically according to found edges of the paper and
removes the perspective disortion. Thanks to this it is possible to take nice photos
without drop shadows even when the light source is directly above the paper—we
can take the photo from side and thus do not let the drop shadows to appear on
the paper. The second option is to open an existing picture from the image library.
Such a picture could be captured earlier, or downloaded from the internet. The
dashboard thus contains two buttons, one for each option. Again, these buttons
are big circular to encourage the user to tap on them. The buttons can be quickly
recognized against each other thanks to the different colors that comply the color
scheme of this application—tones of blue and violet.

The camera view was created to look similar to the standard iOS photo
application—mainly the shutter button which is very important in camera ap-
plication. Therefore, users know instantly what is the button for. The camera view
has only two options—to take a photo with shutter button or to cancel it with cancel
button. No other UI elements are needed; all remaining tasks like focus the camera
view provides automatically.

When an image is opened, it can be colored. The color can be changed by tapping
on the color bucket button which is located on the bottom toolbar on the right side.
The color picker is a standard picker on the iOS. From this color picker, on Figure
6.6, it can be seen that it has one major disadvantage. Only the current color is
fully visible, all other color are behind a fog. Therefore the user recognizes the right
shade of the color only after he scrolls on it, which is inconvenient. There are plans
to create custom color picker but this has not been done yet due to the lack of time.
The color bucket changes its color according to currently selected color to visualize
it. On the Figure 6.7, a change of brush size can be seen. Again, a standard iOS
component named Slider was used to change the brush size. The preview of the
brush width is visible below the slider.

Both color picker and brush size picker are placed on the half screen popover
(Figures 6.6, 6.7). For iPhone platform, in contrast to iPad platform, the popover is
not in standard library so it had to be implemented. Without such popover normal
full screen view would be pushed on the current view with components for color
picking or a brush size. The popover has main advantage against standard approach
with full screen view—the user sees the image being colored and its current colors.
Therefore, the color picking is much easier because the user does not lose the context
for which he chooses the color. When the user picks the brush size, again the part
of the picture, for which the new brush size is being picked, should be visible so the
user does not need to recall the needed brush width. Another advantage of the half
screen popover is that the animation which brings the popover is visually nice so the
user enjoys it more.

On Figure 6.8, there are scribbles shown on top of the partly colored image. This
functionality is needed when more complex images are colored so the user needs to
know which parts obtained a scribble.

27



6. UI Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 6.5. Camera UI Figure 6.6. Color picker UI

Figure 6.7. Brush size chooser Figure 6.8. Scribbles shown

28



Chapter 7
Implementation

The entire application is implemented for iOS and is runnable on iPhone and iPad.
The application is restricted to iOS 7.0 or higher as it uses new components to
present the content. Applications for iOS can be implemented in Objective-C or
Objective-C++. Other languages like plain C++ are possible to use as well with
following restriction—the implementation of UI must be implemented in Objective-
C(++). There are some RAD tools that allow to implement the application in
pure C++ (C++Builder) or Object Pascal (Delphi), etc. These tools allow the
programmer to write one application for more mobile platforms at once. For this
application, the Objective-C++ was chosen because of following reasons. The code
for this application mostly implements the user interface. There is of course the
implementation of LazyBrush algorithm that does not deal with UI but this is not
the majority of the code. The reason for using Objective-C++ prior to Objective-
C is that the application uses the C++ GridCut [18] library for the segmentation
problem and thus it must be compiled as Objective-C++.

7.1 Application Architecture
The architecture of the application is designed according to the requirements analysis
in Chapter 5. The overview of the workflow can be seen on Figure 7.1. The user
takes a greyscale photo which is automatically cropped according to the boundaries
of the paper. The user can also open a photo from image library—in this case, the
system does not crop the image. Then the source image is filtered to enhance edges
and suppress the shade gradients and dropped shadows. Then the user draws the
scribbles on top of the image. Each time a scribble is added, the system colorizes
the image so the steps 5 and 6 can be repeated several times. The colorized image
can be printed on an AirPrint friendly printer or saved to the image library of the
device.

The whole application consists of several main components visible on Figure 7.2.
The entry point for the application is the ImageSelector component which lets the
user choose between two options—take a photo or open an image from the gallery.
These two actions are provided by the ImageSource component. Capturing a photo
is provided by the Camera component which is built on top of the iOS AVFounda-
tion framework. Opening a photo from the image library is done by the ImagePicker
component. After the image is provided by the ImageSource component, the Image-
Selector makes further preprocessing of the image. The preprocessed picture is taken
by ColorizationController which manages the colorization process. Scribbles are cre-
ated through ScribbleManager and rendered by ScribbleRenderer. The scribbles are
used by Solver to colorize the image which is provided by ColorizationController at
any time.

29



7. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. Take a photo 3. Open photo + greyscale

+ histogram eq.

5. Scribbles

6. LazyBrush8. AirPrint

7. Histogram equalization

2. Crop
+ greyscale

4. LoG

Figure 7.1. Application workflow overview

7.1.1 ImageSelector Component
This is the entry point component for the application. It provides the image to be
colored and it requires an image either from the camera or the system image library.
Before the image is provided to other components it is preprocessed. In case the im-
age was taken by the camera, the paper edges are registered and the image is cropped
(see Section 7.3) with the CropImage component. After cropping is done or in case
the image was opened from the system image library, the image is filtered to enhance
outlines and to clear the background by the ImageFilter component as described in
Section 7.2. The CropImage component is implemented by the CropImage class and
ImageFilter is implemented in class Filter. The actual implementation of the Image-
Selector component is provided by several classes because it is closely coupled with
the views that are presented on screen. The intention is to start image picking or the
capturing process that shows the actual view for the selected action. Once the action
finishes, the result is passed onto another view which shows the image and allows
the user to add other inputs like scribbles, etc. On iOS, each main view is managed
by UIViewController or its subclass. The initial view controller presenting the initial
view is RootViewController. When the user makes decision whether to choose the
image from the library or whether to take a new one, the controller calls the custom

30



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.1 Application Architecture

<<component>>
Solver

<<component>>
ColorizationController

<<component>>
ImageSelector

<<component>>
ImageSource

<<component>>
Camera

<<component>>
ImagePicker

<<component>>
CropImage

<<component>>
HistogramEqualizer

<<component>>
ScribbleManager

<<component>>
ScribbleRenderer

<<component>>
<<library>>

UIKit

<<component>>
<<library>>
AVFoundation

photoLibrary

cameraOutput

touchesToScribble

touches

scribbles
outputImage

equalizedImage

imageForEqualization

croppedImage

image

preprocessedImage

choosePhoto

takePhoto

openImage

takePhoto

colorizeImage

colorizeImage

scribbles

touches

renderscribbles

crop

provideImage

openImage takePhoto

Figure 7.2. Application architecture component diagram

31



7. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
segue. The segue is a mechanism in iOS to trigger an action while a new view con-
troller is presented on top of the previous one. In this case, the OpenPhotoSegue resp.
TakePhotoSegue calls UIImagePickerController or TakePhotoViewController which
provide an image. The result image is then preprocessed by the CropImage class or
the Filter class. The final image is then passed to LazyBrushViewController which
is the actual implementation of ColorizationController. In other words, the ImageS-
elector component is implemented by the RootViewController, the TakePhotoSegue
and the OpenPhotoSegue classes.

7.1.2 ImageSource Component
The ImageSource component is created by two other components. The ImagePicker
component is already implemented in the UIKit framework as UIImagePickerCon-
troller. This component is capable of taking photographs as well but, because the
application needs custom gyroscope data from the time a new photo is captured,
this Camera component had to be implemented from scratch. The implementation
of Camera component is TakePhotoViewController. It is implemented on top of the
AVFoundation framework that allows to access raw camera data in real time.

7.1.3 ColorizationController Component
ColorizationController is in fact implemented in the LazyBrushViewController class.
This controller presents all the options that the user can choose when drawing new
scribbles on the screen. ColorizationController needs an image that is prepared for
coloring and Solver that provides the actual colorization of the image. This com-
ponent provides the colored image any time for a further manipulation (saving or
printing).

7.1.4 Solver Component
The Solver component is implemented with the SolverManager class. It manages
the execution of the LazyBrush algorithm. It requires an image and scribbles as an
input and provides the colored image. For more details about the SolverManager
implementation, refer to Section 7.4.

7.1.5 ScribbleManager Component
The implementation of this component is the SelectionImageView class. It responds
to all touches events and creates new scribbles accordingly.

7.1.6 ScribbleRenderer Component
The ScribbleRenderer component is implemented by two classes — the Scribble class
and the GLQuadraticPath class. The rendering is important to be able to visualize
the scribbles and to calculate which pixels are labeled by which scribble. For details
about the implementation of scribbles, see the 7.5.

7.2 Image Filtration
According to [14], the LazyBrush algorithm is more accurate and faster on images
with dark outlines and a white background (i.e. the intensity difference between an
outline and an area that will be colored is maximal). When a photo of a hand-drawn

32



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.2 Image Filtration

image is taken, the result is not ideal for coloring with LazyBrush due to a small
contrast of outlines and the background. The captured image has a lot of greyscale
gradients even if drawing on a white paper was photographed. Moreover, such image
can contain unintended shadows dropped by user’s hand holding the device. This is
dependent on illumination conditions, the device position, etc.

To obtain better image, the source photo is filtered to enhance the edges in the
image and to get rid of the unintended shades of the background or drop shadows.
Since the edge detection is needed by many applications, this field of the image
manipulation and the computer vision was studied largely. At first, simple filter-
ing methods like the Roberts cross operator [21], the Sobel operator [22] and the
Prewitts operator [23] were invented to enhance the edges in the image. Marr and
Hildreth [24] presented a Laplacian of Gaussian (LoG) operator for the edge detec-
tion at zero-crossings. While these filters are effective in detecting edges, the output
can be disturbed by a noise. To address this issue, the Canny edge detection filter
and algorithm [25] with a non-maximum suppression and hysteresis tresholding for
detecting step edges was presented. On top of these ideas, more powerful techniques
for the edge extraction were developed. To obtain a reasonable set of edges from pic-
tures captured in various environments with various light conditions, the automatic
scale of the filter operators has to be estimated. A method for such estimation is
presented in [26].

The method described in [26] is usable mainly if the domain of the objects on
the images is unknown. Since the domain of the interrest for our application are
hand-drawn images with a soft pencil or a pen, our task is simpler, therefore there
is no need to implement such a robust technique. In [14], the LoG filter with linear
rescale of pixel intensities was used. Inspired by this technique, similar filtration was
implemented. The main advantage of the LoG filtration is that the edge center is
located in local maxima of the filtered image. Therefore, we obtain a single outline
per edge unlike of other techniques that locate edge borders.

7.2.1 LoG Filter

The LoG filter uses the second derivative of Gaussian kernel (see Table 7.2). Since the
filtration with this kernel is sensitive to noise in the signal, the noise is at first filtered
out by the small Gaussian kernel visible in Table 7.1. The image is convoluted with
the Gaussian filter at first, and then with the second derivative of the Gaussian kernel.
Thanks to the associativity of the convolution, we can convolute the second derivative
of the Gaussian kernel with the Gaussian kernel and then use this new kernel to filter
the image. After the convolution, the image must be negated to obtain black edges
and white background. Since naive implementations of convolution are slow, the iOS
Accelerate low-level C framework was used in the implementation. More specifically,
the Accelerate framework has function (vDSP f3x3()) for convolution of the 1D or
2D discrete signals with the arbitrary 3× 3 kernel.

Another possibility to implement the convolution quickly is to use some third party
library for the fast-fourier transformation. The image and the kernel are transformed
with the fourier transformation, then according to the convolution theorem, the image
is multiplied with the kernel and the result in transformed back with the reverse
fourier transformation. The result is the convolution of the image. Most probably,
this is the way the Accelerate framework really does the convolution itself, because
it allows the user to use the arbitrary kernel.

33



7. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
To speedup the convolution process even more, the separability of the Gaussian

kernel can be used. Thanks to this, it is possible to convolute the image with
horizontal filter [1,−4, 1] at first and then once more with the same filter rotated by
90 degrees. The result is the same as the convolution with the kernel in Table 7.2
with a smaller computational cost.

1 2 1
2 4 2
1 2 1

Table 7.1. Discrete Gaussian convolution kernel

0 1 0
1 -4 1
0 1 0

Table 7.2. Discrete Laplacian of Gaussian convolution kernel

7.2.2 Histogram Equalization
Second approach to image filtration in our application is histogram equalization. The
source image for storing the result of the colorization is filtered with this filter, as
can be seen on Figure 7.1. Also histogram equalization is used to darken the output
of the LoG filter.

The goal is to remap intensities in the image so that the darkest intensity is black
and the lightest intensity is white. For this purpose, lower and upper bound is
found and then the intensities of the image are linearly remapped between these two
bounds. The histogram H(I) of the greyscale image I is calculated. Then the darkest
intensity (upper bound) p with the highest histogram value is retrieved. The lower
bound l is the lowest intensity which appears in the image.

Each pixel intensity I(x, y) is recalculated the same way as on the Figure 7.4 a.
Here we see histogram of the picture on Figure 7.4 a. All pixels lying between lower
bound l and upper bound p are linearly rescaled. All pixel intensities below the lower
bound are clamped to 0; all pixels above the upper bound are clamped to 255. The
result can be seen in Figure 7.4 b.

The output of the LoG filter applied to the source image can be seen on Figure 7.4 c.
It can be easily seen that the outlines are very bright, so the histogram equalization
is used to darken these outlines. The result of the histogram equalization of this
image can be seen on Figure 7.4 d. This image is used for LazyBrush colorization
calculation, while the image on Figure 7.4 b is colorized and presented as the result
image. The image on Figure 7.4 d cannot be presented as a result, because the edges
detected with LoG filter look unnatural.

7.3 Automatic Image Cropping
As was defined in Chapter 5, in use-case (ID: 1.1.1) the photographed image shall
be automatically cropped and straightened to compensate the inaccurate position of
the camera during photo capture. The intention is to obtain an undistorted paper
with the drawing without the background of the paper.

34



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.3 Automatic Image Cropping

l = 69

p = 185

H(I)

Figure 7.3. Visualisation of linear rescale of image intensities

To crop the image, a two-phase approach was used. Firstly, the edges in the image
are detected with the edge detection filter. The edges of the paper should be the
longest straight edges in the image assuming the white paper on a relatively dark
surface. Secondly, the edges are recognized using the Hough transformation [27].
The Hough transformation is a robust method for recognition of objects that can be
expressed by an analytic equation. In our case, the Hough transformation is used for
the recognition of lines that create paper boundaries. The method is independent
of the edge orientation so the paper on the photo can be rotated and perspectively
distorted. After the lines creating the borders of the paper are recognized, the corners
of the paper are calculated and the back perspective transformation is applied on
the image to obtain undistorted image. The whole process is built with following
assumptions..The paper lies on surface that ensures that the paper boundaries are well visible

(i.e. a white paper on a dark table). The surface is plain, thus the paper is not
bended or deformed..The whole boundary of the paper is visible (i.e. all four edges of the paper can be
registered). If not, the image is not cropped..The paper that is being cropped and straightened has the same aspect ratio as the
A4 paper has—that is 210 : 297.

7.3.1 Edge Detection
Prior to the registration of the paper edges, the edges must be enhanced to make the
registration more reliable. This is done with LoG filter the same way as was defined
in Section 7.2.

35



7. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a) Source photo b) Source photo after histogram equaliza-
tion

c) Source photo filtered with of LoG filter d) Source photo after application of LoG
filter and histogram equalization

Figure 7.4. LoG filter and histogram equalization applied on source photo

7.3.2 Cropping
When the edges are enhanced by the LoG filteri, the boundaries of the paper must be
recognized and the image is cropped. For this purpose, the Hough transformation is
used. The image is transformed to Hough space to detect lines. Four strongest lines
that are reasonably far away each other are then considered as edges of the paper.
Finally, the lines are sorted to counter-clockwise order and intersections of these lines
are found. These intersections are considered as corners of the paper.

For the Hough space transformation the polar representation of lines is used. Each
line in R2 space is therefore represented by angle θ and radius ρ from origin O ∈ [0, 0]
(see Figure 7.5), so x · cos(θ)+ y · sin(θ) = ρ. The accumulator array A ∈ Rm,n of the
Hough space has the same dimension as the source image I, therefore m = w, n = h,
where m is the width of A, n is the height of A, w is the width I and h is the height

36



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.3 Automatic Image Cropping

of I. Each bin i ∈ {0, 1, ...,m} on the x-axis of A corresponds to the angle θi and
each bin j ∈ {0, 1, ..., n} on the y-axis of A corresponds to the radius ρj . To define
a line uniquely in R2 space, the angle θ ∈ 〈0,Π〉. Therefore the sample ∆θ of θ is
defined as ∆θ = Π

m . Since radius ρ ∈ 〈−
√
m2 + n2,

√
m2 + n2〉, the sample ∆ρ of ρ

is defined as: ∆ρ = 2·
√

m2+n2

n . The algorithm is listed in Figure 7.6. The variable
dtheta is equal to ∆θ, the variable dr is equal to ∆ρ.

ρ

θ

x

y

O

Figure 7.5. Polar representation of a line

After the edge pixels of the image I are transformed via Hough transformation into
the accumulation array A, four strongest lines that are reasonably far away from each
other and have reasonably big angle between each other to form a page boundary
are extracted repeating following two steps:

1. The maximum value is found at indices i, j in the array A. The i, j indices denotes
the angle θi = i ·∆θ and the radius ρj = j ·∆ρ. The angle θi and the radius ρj

define a line with respect to the origin O.
2. The array A is nulled for radiuses near ρj and angles near θi. For our purposes:

∀p ∈ {i−m/6, ..., i+m/6},∀q ∈ {j − n/6, ..., j + n/6} : A(p, q) = 0.

To find four edges, steps 1. and 2. are repeated four times.

for (y = 0; y < n; ++y){
for (x = 0; x < m; ++x){

if (I[x, y] is Edge pixel){
for (i = 0; i < m; ++i){

theta = dtheta * i;
r = x * cos(theta) + y * sin(theta);
j = (r / dr) + (n / 2);
++A[i, j];

}
}

}
}

Figure 7.6. Hough transformation pseudocode

37



7. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
After the angle θi and the radius ρj that define the boundary line with respect to

the origin O are found, the line is transformed to a parametric form (i. e. two points
defining the line are found). This is needed for easier calculations with boundary
lines to sort them and to find intersections of these lines that define the corners of
the paper being registered. To obtain two points [x1, y1], [x2, y2] from the polar line
representation, we choose values x1 = 0, x2 = m in case the θi ≥ Π/4 ∧ θi < 3/4 · Π.
Otherwise, we choose y1 = 0, y2 = n. Corresponding variables y1, y2, or x1, x2 are
then calculated by following equations:

yk = ρj − xk · cos(θi)
sin(θi)

, k = {1, 2},

or:
xk = ρj − yk · sin(θi)

cos(θi)
, k = {1, 2}.

Then the edges are sorted counter-clockwise, starting by the most left edge. For
this purpose, centroid m[mx,my] of each edge is calculated: mx = (x1 + x2)/2,
my = (y1 + y2)/2. The most left edge el has a centroid with minimal mx, the most
right edge er has a centroid with maximal mx, the most bottom edge eb has a centroid
with maximal my and the top edge et has a centroid with minimal my. Then four
intersection points are calculated. Because the edges are sorted counter-clockwise,
we calculate the intersection i1 between edges el and et, intersection i2 between edges
el and eb, intersection i3 between edges eb and er and intersection i4 between edges
er and et. Thus the counter-clockwise oriented points defining corners of the paper
were obtained.

Now the inverse perspective transformation is computed and the image is trans-
formed to obtain an undistorted image. With the assumption that the paper with
the same aspect ratio as the A4 paper is being recognized, we set destination points
of corners of the desired image for the transformation. The destination points are
simply the corners of the biggest rectangle that fits the source image with the aspect
ratio of the A4 paper. In case the paper being registered is portrait oriented, the
destination points in the counter-clockwise orientation beginning with the top left
one are: a1 = [0, 0], a2 = [0, t], a3 = [w, t], a4 = [w, 0] where w is the width of the
source image and t = 297 · (w/210) (to conform to the aspect ratio of the A4 paper).
In case the paper being registered is landscape oriented, the t = 210 · (w/297). Now
the homography matrix H between corresponding points ik => ak, k = {1, 2, 3, 4}
must be calculated. For such calculation, the OpenCV implementation of RANSAC
was used. After the homography is found, the image is transformed with the inverse
perspective transformation with the homography matrix H. The result image is then
cropped — the pixels inside the rectangle denoted by the destination points of its
corners ak, k = {1, 2, 3, 4} are the final image.

Results of the whole process—the edge recognition, the back perspective transfor-
mation, the crop and the image filtration with pixel intensity rescale can be seen on
Figure 7.7, resp. on Figure 7.8.

7.4 LazyBrush Algorithm Implementation
The application performance is of a great importance. Therefore the LazyBrush
algorithm has to be as fast as possible. The most time consuming task in the Lazy-
Brush algorithm is the image segmentation. During every colorization, the image

38



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.4 LazyBrush Algorithm Implementation

Figure 7.7. Original image to be cropped Figure 7.8. Image transformed with ho-
mography matrix H, cropped according to
the destination points ak, greyscaled and
filtered with the histogram equalization
(the intensity rescale).

segmentation is called as many times as there is the number of different colors (scrib-
bles). Therefore, the very efficient implementation of this task is needed. The image
segmentation problem is solved by the maxflow/mincut problem as was stated in
Chapter 4.

One of the most known algorithms for the maxflow/mincut problem is the Ford-
Fulkerson algorithm [28]. Advantage of this algorithm is that is general — it can
be used on arbitrary graphs; disadvantage is that it is slow. For computer vision,
further faster algorithms were addressed. Boykov and Kolmogorov [29] defined a new
algorithm for maxflow, much faster than the Ford-Fulkerson. The improvement was
made mainly by improving the method for searching augmenting paths. Kolmogorov
provided free implementation of the algorithm1) for academic purposes. Another im-
plementation of this algorithm can be found in boost library2) which is open source
and free to use — but to our knowledge much slower than Kolmogorov implemen-
tation. Implementation with further improvements was provided by Jamriška and
Sýkora known as GridCut library3). This library states that it is up to 8 times
faster than the Boykov-Kolmogorov implementation. As the requirements on library
performance are high, the benchmark comparing the Boykov-Kolmogorov implemen-
tation and the GridCut library on iPad 3 and iPhone 5s has been done in Section
8.3. The GridCut library performed much better than the Boykov-Kolmogorov im-
plementation which implies the GridCut library was used in the implementation of
the LazyBrush algorithm on iOS.

1) http://pub.ist.ac.at/~vnk/software.html
2) http://www.boost.org/doc/libs/1_54_0/libs/graph/doc/boykov_kolmogorov_max_flow.html
3) http://gridcut.com

39

http://pub.ist.ac.at/~vnk/software.html
http://www.boost.org/doc/libs/1_54_0/libs/graph/doc/boykov_kolmogorov_max_flow.html
http://gridcut.com


7. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The LazyBrush algorithm was implemented as a single class named SolverManager.

The class collaboration diagram can be found on Figure 7.9. The workflow to use
this class to colorize a greyscale image is following:.Create a new instance of SolverManager. Pass the greyscale image and the array

of scribbles into the constructor..Run the solve method..New colorized image is returned when the solution is found.

+ Scribble

+color : UIColor
+currentPath

+addPointToPath()
+splitPath()
+setLineWidth()
+commitPath()
+isEmpty()

+ SolverManager

+image : UIImage
+scribbles : Scribble

+initWithImageScribbles()
+solve()
+setSLinksWithForegroundScribble()
+setTLinks()
+updateTLinksWithForegroundScribble()
+updateNLinksWithForegroundScribble()
+setNLinks()

+ ImageData

+width : Integer
+height : Integer
+newAttr : char*
+cap : Integer
+imageOrientation : Integer

+ GridGraph_2D_4C<type_tcap, type_ncap, type_flow>

+GridGraph_2D_4C()
+~GridGraph_2D_4C()
+node_id()
+set_terminal_cap()
+set_neighbor_cap()
+set_caps()
+compute_maxlfow()
+get_segment()
+get_flow()

1..*

+scribbles

1 #imageData

1

#resultImageData

1 #graph

Figure 7.9. Solver manager class diagram

For simple usage of SolverManager, the type of image passed into the solver and
the image returned by the solver is always UIImage. This is a high level image on iOS
that can be easily shown on any view. Raw image data (e.g. the pixel values) cannot
be accessed directly from UIImage. To address this problem, a function for creating
raw image data (ImageData structure on Figure 7.9) was implemented. It creates a
new CoreGraphics context with a C array of unsigned chars (the image pixels), draws
the UIImage into this context and packs the raw data into the ImageData structure
with additional information about the image like width, height, orientation, etc.
Also, after the image was colored, there is a need to pack the raw data back into
an UIImage, so respective function for this functionality was implemented as well.
The conversion of the input UIImage to ImageData is done in the constructor of the
SolverManager. The constructor also makes a deep copy of the array of scribbles.
During the solve method, the scribbles are deleted one by one. This implies that the
SolverManager instance can be used only once, then must be deleted. The capacities
for the GridCut graph are stored in six capacity C arrays. First four arrays are for
all directions (top, bottom, left, right) and two arrays are for storing capacities from
the start node and to the terminal node. Instead of allocating six arrays separatelyi,
only one is allocated and respective pointers are calculated to this one array.

40



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.5 Drawing Scribbles

After SolverManager is constructed, the solve method is called. At first, capacities
between pixels in 4-neighbourhood (N-links) by method setNLinks are calculated. In
facti, for the best efficiency, the capacities are precalculated for each intensity level
and then we lookup the capacity for the current pixel intensity in an array. The
capacity Ci for an intensity level i is calculated according to the formula (1).

∀i ∈ {0, 1, 2, ..., 255} : Ci = 1 +K ·
(

i

256

)2
, (1)

where K = 2 · 800 · 600 = 960000. This setting is based on the described setting
in Chapter 4. The constant K is based on predicted width and height 800 × 600px
for all images. The capacity wi,j for an N-link between pixels with intensities pi, pj ∈
{0, 1, 2, ..., 255} is set according to the formula (2).

wi,j = min(Cpi , Cpj ). (2)

Then capacities of all edges connecting all pixels with a terminal node are calculated
in the setTLinks method . For each scribble, the pixels labeled by this scribble are
obtained. Each capacity of the edge connecting labeled pixels and the terminal node
(the edge is called T-link) is set to the constant S = K · (1 − λ) ≈ K · (1 − 0.95) =
960000 · 0.05 = 48000. Other edges are by default set to zero. Then the loopi, until
there are no more scribbles to process, is run. In the beginning of each iterationi,
one scribble as a foreground scribble is chosen and new graph from the GridCut
library is created. Capacities of edges between pixels labeled by the foreground
scribble and the start node (edges called S-links) are set to the constant S in the
setSLinksWithForegroundScribble method. T-links of pixels labeled by the foreground
scribble are set to zero in the updateTLinksWithForegroundScribble method. The
capacity arrays are then set to the graph and the maxflow is calculated on this graph
by the GridCut library. At the end of the iteration, the segmentation is obtained
from the graph. In the updateNLinksWithForegroundScribble method, the pixels
belonging to the start node are colored with the color of the foreground scribble and
N-links connecting the colored pixels with the pixels without a color are set to zero
(disconnected from the graph). Also, T-links going to and from the colored pixels are
set to zero. At last, the foreground scribble is removed from the array of scribbles
and the loop starts again in case there is at least one scribble in the array of scribbles.

When the array of scribbles is empty, the image is fully colored. A new UIImage is
created from the colored ImageData structure and is returned from the SolverMan-
ager. After the solve method finished, SolverManager is destroyed and the colored
image is shown on the device screen.

7.5 Drawing Scribbles
To label pixels with arbitrary colors for the LazyBrush algorithm, the scribbles are
drawn on top of the picture. Single scribble consists of one or more brush strokes.
These strokes are drawn by the user with touch gestures. As the scribbles influence
the final colorization of the imagei, the user experience of drawing scribbles is es-
sential. The implementation must deal with two main problems. The first one is
the problem of the interpolation of the points given by the touch gesture to create
a smooth spline. The second problem is how to draw the scribbles interactively, but
smooth as possible without any lags. This seems to be easy thing – nowadays de-
vices like iPhone 5S have so much power that poor implementations does not affect

41



7. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
the visual drawing performance much. The problem can be seen on older devices
like iPad 3. Naive implementations using the CoreGraphics iOS framework cannot
provide smooth drawing without lags.

7.5.1 UIBezierPath Scribble Implementation
At firsti, an attempt to implement the scribble rendering with high level UIBezierPath
has been made. The class diagram on Figure 7.10 describes the architecture of this
part of the application. The scribble consists of zero-or-more paths. Each path was
UIBezierPath which contains its leading points, color, width and other attributes
and can be rendered. The problem with the usage of UIBezierPath is the rendering
performance. The UIBezierPath can be rendered partly into defined rectangle or as a
whole. Therefore, when the user draws a part of the stroke, the UIBezierPath has to
be divided into smaller segments (of type UIBezierPath). Then only the last added
segment can be rendered without the whole UIBezierPath. Another problem is that
when we want to divide bezier paths into segments which should be rendered only
once we have to render those segments into bitmap instead of drawing them directly
into the screen context. The reason is that when the view is going to be redrawn
the context is cleared automatically so without drawing the scribbles into the bitmap
only the last segment would be visible. The fact is that if we render the bezier path
into bitmap and then the bitmap is drawn onto the screen it takes more time than if
only the last segment could be drawn directly into the screen context.

+ Scribble

+color : UIColor
+currentPath

+addPointToPath()
+splitPath()
+setLineWidth()
+commitPath()
+isEmpty()

+ UIBezierPath

+stroke()

0..*

+strokes

Figure 7.10. Scribble class diagram with UIBezierPath

The rendering speed of CGPath as a type from the CoreGraphics framework was
tested as well. The usage of CGPath is very similar to UIBezierPath — again the
paths have to be rendered into bitmap to avoid re-rendering the whole path over
again. According to the performance tests made through an Instruments profiling
application, the application really spends 95% of the time with the CoreGraphics ren-
dering routines. The visual performance was not different from the implementation
that used UIBezierPath since UIBezierPath is an Objective-C wrapper for CGPath.

7.5.2 OpenGL ES 2 Scribble Implementation
Due to these facts, the rendering was reimplemented to use OpenGL ES 2.0. The
difference is well observable on older devices like iPad 3. The main difference is
that since OpenGL uses the GPU chip for rendering the CPU utilization is much
lower than with UIBezierPath. The CPU utilization for an implementation with
UIBezierPath is around 70% and for an implementation with OpenGL it is around
12%. This is the reason why the implementation using UIBezierPath is lagging.

42



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.5 Drawing Scribbles

When drawing a spline, CPU must do mainly two things. The first one is to handle
the touch events and to calculate the spline leading points, the second one is the
drawing. As the rendering through CoreGraphics is CPU intensive and takes a big
amount of time, the application cannot handle so many touch events. Therefore, the
leading points are further apart and the spline is created from bigger blocks. This
makes the lag behavior. On the other side, the OpenGL implementation handles the
rendering on the GPU chip which is faster a lot. The application samples more touch
events and the spline is created from very small blocks. This makes the spline being
drawn smoothly.

For OpenGL ES scribble custom class GLQuadraticPath has been implemented.
This class interpolates leading points with quadratic curve and renders the calculated
spline with OpenGL ES 2. As the points are added into the GLQuadraticPath, new
points of spline segment are calculated. The calculation was derived from the formula
of the quadratic function (3).

f(x) = ax2 + bx+ c (3)

Consider points {q, w, z} ∈ R2 obtained from the touchscreen in this order. The
task is to approximate a quadratic spline from these points. The method is defined
in (4) and (5).

m1 = w − q
2

m2 = z − w
2

(4)

∀t ∈ 〈0, 1〉 : p(t) = (m2 − w)t2 + (w −m1)t+m1

= m2t
2 − wt2 + wt−m1t+m1

= m2t
2 + wt(1− t) +m1(1− t)

= m2t
2 + (1− t)(wt+m1)

(5)

The situation can be seen on Figure 7.11. At first, we calculate the centroid m1
of the first and the second point and the centroid m2 of the second and the third
point. Then for every parameter t, the equation (5) is evaluated. In practice, the
interval 〈0, 1〉 is sampled by number of points on the segment which is calculated
according to distance between first and second and between second and third point.
The calculated points are passed to the OpenGL renderer. Each point is rendered as
a single singular texture with the thickness of the stroke.

The helper class GLInfo holds the initialized OpenGL objects and the OpenGL
context so the GLQuadraticPath can render its contents via OpenGL. The Scribble
class diagram using GLQuadraticPath can be found on Figure 7.12. Each time new
point is added to the GLQuadraticPath with an addCurveToPoint method, a new
spline segment is created from the points calculated by formula (4) and (5). These
points are stored in the vertices array of floats. This array is then stored into the
graphics memory via buffer object and rendered. The big advantage of the OpenGL
framebuffer is that it must be explicitly cleared when needed. This means that
only new segments are drawn because the ones that were already drawn remain in
the framebuffer. The GLQuadraticPath also has a method render that renders the
whole path. This is usable when the screen is cleared and the scribbles has to be all
rendered to be visible.

43



7. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

m1

m2

q

w
z

Figure 7.11. Quadratic Spline Interpolation

+ Scribble

+color : UIColor
-currentPath : GLQuadraticPath

+addPointToPath(p : Point)
+getPointsInScribble()
+setLineWidth()
+commitPath()
+isEmpty()
+render()
+clear()
+removeLastStroke()
+addStroke(s : GLQuadraticPath)
+getLastStroke()

+ GLQuadraticPath

+color : UIColor
+lineWidth : Float
-vertices : Array<CGPoint>
-size : Integer
-bufferSize : Integer
-leadingPoints : Array<CGPoint>

+isEmpty()
+moveToPoint(p : Point)
+addCurveToPoint(p : CGPoint)
+init(color : UIColor,glinfo : GLInfo)
+render()
+removeAllPoints()
+size()

0..*

+strokes

+ GLInfo

+contentScaleFactor : Float
+framebuffer : GLuint
+renderbuffer : GLuint
+scribbleFramebuffer : GLuint
+brushTexture : textureInfo_t
+context : EAGLContext
+vertexBufferId : GLuint
+shaderProgram : programInfo_t
+attribVertex : GLuint
+attribColor : GLuint
+uniformMPV : GLuint
+windowWidth : Integer
+windowHeight : Integer

1

+glinfo 1 +glinfo

+ SelectionImageView

+currentColor : UIColor
+scribblesShown : Bool
-undoManager : NSUndoManager

+setBackgroundImage(image : UIImage)
+showScribbles()
+hideScribbles()
+setColor(c : UIColor)
+undoManagerDidUndo()
+undoManagerDidRedo()
+touchesBegan(event : UIEvent)
+touchesMoved(event : UIEvent)
+touchesEnded(event : UIEvent)

0..*+scribbles

1

+glinfo

Figure 7.12. Scribble class diagram with GLQuadraticPath

The scribble manages all strokes (GLQuadraticPath) that have the same color.
Therefore, the scribble consists of zero or many GLQuadraticPath objects. Besides
the stroke management, the scribble object is also responsible for finding all points
(pixel coordinates) in the scribble. This means that all rendered points from all brush
strokes has to be found. This functionality is implemented in the getPointsInScrib-
ble method. Basically, the implementation iterates over all the GLQuadraticPath
objects in the scribble and renders each in the off-screen renderbuffer. Then it gets
the rendered image for each stroke, iterates over the image and stores the pixels

44



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7.5 Drawing Scribbles

which have different color than the background in the result array. This method is
called from the SolverManager mentioned earlier when the hard constraints of the
LazyBrush algorithm must be set.

OpenGL is initialized in a SelectionImageView which holds collection of Scribbles.
This view initializes the GLInfo object and passes it to Scribble which passes it to
newly created paths. SelectionImageView responds to touch events and manages
scribble creation when needed. It also handles the undo manager — it removes last
stroke from scribble when undo event occurs and adds back the stroke to the scribble
when redo event occurs. It can also show or hide all the scribbles by clearing the
framebuffer or rendering all the scribbles again.

45



Chapter 8
Results

In this work the LazyBrush application for iOS has been implemented. Through this
effort, it is shown that such application for the colorization is able to run with an
interactive response on touchscreen devices. The colorization application on smart-
phone or tablet has its advantages — it can be always with the user, the drawing
that the user wants to color can be simply captured by the device’s camera so no
downloading or sending of the material is needed. The use of LazyBrush algorithm is
advantageous as well, because the LazyBrush algorithm is independent on a drawing
style or a drawing tool. Therefore, a variety of images on variety of occasions can
be colorized. The application was intended and designed mainly for kids since many
kids like drawing a lot so there is plenty of potential users of this application.

8.1 LazyBrush Algorithm Testing
To test if the implemented LazyBrush algorithm runs properly, original images 8.2,
8.4, 8.6 8.8, 8.10 and 8.12 from [14] were colorized. As we obtained the images from
the author of the article [14] in digital form, the images were only opened in the
iOS application, greyscaled, linearly rescaled with lower and upper bound as any
other image and colorized. The input for LazyBrush of these images can be seen on
Figures on the left side: 8.1, 8.3, 8.5, 8.7, 8.9 and 8.11. The bordering rectangles on
Figures with input are automatically generated scribbles to obtain white background.
From these images, it can easily be seen that the LazyBrush implementation works
as expected.

8.2 Usability Testing
After all main functionalities according to requirements analysis in Chapter 5 were
implemented, the application has been tested formally with several children. The
main design flaws were addressed in the final user interface presented in Chapter 6.

The tutorial was found as the most problematic part of the application. While
older users usually go through the tutorial without a problem, children usually make
some mistake because they do not read the instructions carefully and make quick
irresponsible decisions. Second main problem was identified with soft scribbles —
sometimes children make too small brush strokes that does not affect the final col-
orization because they are too small to gain majority weight and cause some part of
the image to be colored, and sometimes they make the brush strokes unreasonably
big so the color fills a larger area, than they actually want ed to. Despite these errors,
children were able to colorize their image in reasonable amount of time and almost
all of them stated that the colorization with this application was fun.

46



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.2 Usability Testing

Figure 8.1. Bottle with scribbles Figure 8.2. Bottle

Figure 8.3. Robber with scribbles Figure 8.4. Robber

47



8. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 8.5. Footman with scribbles Figure 8.6. Footman

Figure 8.7. Boy with scribbles Figure 8.8. Boy

48



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.2 Usability Testing

Figure 8.9. Picnic with scribbles Figure 8.10. Picnic

Figure 8.11. Manga with scribbles Figure 8.12. Manga

8.2.1 Target User Group
The target group for testing was the same as for designing the application. The target
group is therefore children 7 - 15 years old who like to draw or colorize pictures and
who like to use touchscreen devices like smartphones or tablets. The secondary target
group is all other people who enjoy to draw images, or who need to draw images and
colorize them for their work. These people shall also have a positive attitude to
touchscreen devices and use them on an everyday basis.

8.2.2 Test Setup
The test was done with iPhone 5s device with installed release version of the appli-
cation. All tests took part in afternoon/evening hours of late spring so the artificial
lighting had to be used. This made the test more difficult because the user had
to take the photo of his picture that way that no drop shadow waas visible on the
paper (of which the users were aware by their common sense automatically, without
the need to give them an advice). Participants were chosen according to the screener
which was made verbally not to distract the children with writing. The children need
to fit one of age groups: 7 - 9, 10 - 12, 12 - 15, they should have a positive attitude
to drawing pictures and should have a minor experience with using iOS/Android
touchscreen device. The process of the test was captured on a video with an iPad
3 device. The camera captured the hands with the screen only, not the entire user.
All the users voluntarily agreed that they take part in the test and that they will be
captured on a video which will not be presented to third parties.

49



8. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8.2.3 Participants

The overview of participants that took part in the test is available in Table 8.1.
There was a problem to find respondents that would cover the whole target group.
There was no girl as a child participant, and generally, there is very few children that
have experience with iOS devices — Android devices are more common in the Czech
republic.

Number Age Sex Platform experience

1 9 male little experience with iOS

2 9 male little experience with Android

3 9 male no experience with touchscreen devices

4 11 male little experience with Android

5 12 male daily experience with Android

6 12 male no experience with Android

Table 8.1. Overview of participants that took a part in the test

8.2.4 Test Assignment
Each participant was told to draw a picture; the tool selection (pen or pencil) was up
to the participant. The picture should be as big as possible. After the picture was
drawn, the participant was given an iPhone 5s phone with opened application. At
first, the tutorial was shown and the user was expected to go through the tutorial.
After the tutorial was finished, the user was told that at that moment he should be
prepared to take a photo of his/her drawing and colorize it with the application. As
the colorization is finished, the picture should be saved to the device image gallery.

8.2.5 Findings
The findings are sorted according to the priority. The most important problems are
listed at first. The ordering is based on how serious the finding is with a connection
to the usability. At each finding the participant who experienced the problem is
given. Also, the information if the problem was fixed and how is given..Priority: High..Problem: Because of his little fingers, he has difficulty to hold the phone while

taking a photo of his picture. Therefore, the image was not positioned exactly over
the paper with the drawing and the application did not cropped the photo..Proposed solution: The application has to be able to remove big perspective
disortion and rotation, so it has to be able to recognize the paper on the photo in
arbitrary position (i. e. rotated and taken from a side under the big angle)..Found by participant: 1..Fixed: Yes. The paper boundary recognition has been implemented with the
Hough transformation (see Section 7.3) which is robust and thus able to recognize
rotated and perspective disorted edges of the paper.

50



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.2 Usability Testing

.Priority: High..Problem: While trying to take photo on landscape orientation, the view rotates
but the camera preview does not rotate. Therefore, only part of the preview is
visible..Proposed solution: Force the preview to rotate as well or disable rotation of the
screen while taking photo..Found by participant: 5.Fixed: Yes, the rotation was disabled for this view.

.Priority: High..Problem: When the application shows the animation of drawing brush stroke, the
user does not understand what he shall do. He is confused that the example brush
stroke made by the application during animation does not disappear and expects
further animations..Proposed solution: The brush stroke drawn by the application as an example
stroke shall dissappear as soon as it is drawn completely..Found by participant: 3.Fixed: Yes, after the brush stroke is drawn, the application waits for 0.3 seconds
and then removes it.

.Priority: High..Problem: The user accidentally swipes from the left edge of the screen and thus
make the gesture that goes to the previous screen (the main application dashboard)
so his work is lost..Proposed solution: Disallow the swipe gesture that goes to the previous screen..Found by participant: 6.Fixed: Yes, swipe gesture to go to the previous screen was disallowed on this view.

.Priority: High..Problem: The user did not know that the whole paper with its borders should be
visible so the system was not able to crop the photo. He was not aware of this
feature..Proposed solution: The user should be noticed how to position the paper with
the drawing on the photo so the system can crop the image appropriately. Also,
the user should know that the application will automatically enhance the image
to make better contrast between the background and outlines..Found by participant: 1, 2, 3, 4, 5, 6..Fixed: No.

.Priority: High..Problem: The user went through the tutorial so quickly he almost could not espy
what he is really doing. Therefore, he touched the screen many times and the
application was too slow to present all the instructions. The user touched the
screen even before the instruction appeared so the instruction disappeared in fact
before it fully appeared. Also, the user accidentally draw a brush stroke while he
should zoom.

51



8. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
.Proposed solution: User interaction must be enabled only when the instruction

was fully shown. Also only the type of user interaction according to the actual
instruction can be allowed — i. e. when the user is supposed to zoom, he cannot
draw brush strokes..Found by participant: 3.Fixed: No.

.Priority: High..Problem: The user cannot recall some instructions from the tutorial—for example,
he does not know he can zoom. Further, he does not recall that he needs to use
two fingers to scroll instead of only one which is used for drawing..Proposed solution: Repeat the most important information from the tutorial
multiple times. Also the scrolling could be redesigned to be able to scroll with
only one finger as the users are used to..Found by participant: 1, 2, 3, 5.Fixed: No.

.Priority: High..Problem: The user does not understand the label of undo button in the Czech
language (it says “revert action” instead of “undo”)..Proposed solution: Change the label to something simpler such as “undo”1)..Found by participant: 1, 2.Fixed: No.

.Priority: Medium..Problem: The user has problems to understand how soft scribbles work. He knows
that small scribbles can be redrawn by bigger scribbles but he does not understand
that very big scribble redrawing with another big scribble sometimes does not help.
This is due to the greedy nature of the LazyBrush algorithm..Proposed solution: Add the possibility to erase the brush strokes..Found by participant: 1.Fixed: No.

.Priority: Medium..Problem: The user in the tutorial does not understand that the goal of the tutorial
is not to colorize the whole image, but only to learn main important features of
the application..Proposed solution: Highlight the information that the tutorial is there to teach
the user basic principles of using the application..Found by participant: 3.Fixed: No.

1) The czech label “revert action” is actually the standard system label and it can be problematic to change
it.

52



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.2 Usability Testing

.Priority: Low..Problem: When the user was choosing the color, he accidentally tapped into the
picture and colorized its part. He was little bit confused..Proposed solution: Disallow user interaction with the picture while choosing color
or brush size..Found by participant: 1.Fixed: No.

.Priority: Low..Problem: When the user was asked to save the colorized image, he was searching
the right button for this action for a while (10 seconds). Afterwards he recognized
the button correctly..Proposed solution: Highlight the possibility to save the image..Found by participant: 4, 5.Fixed: No.

.Priority: Low..Problem: The user tried to colorize very small rays from the sun that had variety
of holes in them and the application did not colorize them at all..Proposed solution: Improve the filtration of the image so it is more sensitive to
edges. This will result that the application will be able to colorize more objects..Found by participant: 6.Fixed: No.

8.2.6 Colorized Images
During the usability testing, the children colorized their own images visible on Figures
8.13, 8.14, 8.15, 8.16 and 8.17. Figure 8.13 was drawn with a pen and the result is
filtered with LoG and equalized with histogram linear rescale. From this, it can be
seen that the LoG filter is not ideal for the colorized image output since it detects
the edges and therefore the edges look unnatural. Because of this, the LoG filter
is not used any-more for colorized image outputs, the image for output is filtered
with the histogram equalization explained in Section 7.2. Figures 8.14, 8.15 and 8.16
were linearly rescaled between the lower and upper bound. While the upper bound
removes the grey background, the lower bound makes the image contents more dark.
This makes acceptable results on images with dark outlines which were captured
at good lighting conditions. The big problem for this method remains images with
bright edges. Although the linear rescale with the lower bound makes the edges
darker, it also creates dark noisy artifacts in the background since the background
intensities does not have sufficient distance from the edge intensities. Therefore,
image on Figure 8.17 was linearly rescaled with the upper bound only.

Images which were drawn with a pen or a thin fix like those on Figures 8.18
and 8.19 have naturally dark edges and thus the linear rescale with the lower and
upper bound gives good results. From all these presented figures, we can see that
the children were capable of using the application successfully to colorize their own
image.

53



8. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 8.13. Image drawn by respondent 1

Figure 8.14. Image drawn by respondent 2

54



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.2 Usability Testing

Figure 8.15. Image drawn by respondent 4

Figure 8.16. Image drawn by respondent 5

55



8. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 8.17. Image drawn by respondent 6

Figure 8.18. Image drawn with pen

56



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8.3 GridCut Benchmark on iOS

Figure 8.19. Image drawn with thin fix

8.2.7 Conclusion
The application was tested with several children from two different age groups. The
test was run in the afternoon or the evening when the direct artificial lighting had to
be used. This made taking photos of the pictures more complicated. Unfortunately,
all the participants were boys. To obtain other relevant findings, some girls should
test the application as well.

The test showed that the application is usable, but still contains some serious
problems mainly in the tutorial part. While for adults there is no problem to use the
tutorial, children are too quick and therefore they do not remember some important
features. After the children colorized their first image they were able to use the
application without serious problems. This imply that the biggest design challenge
is to attract the user most for the first time he uses the application so he learnes how
to use it. The biggest problem here is that the user can get bored first time he uses
the application because something is not just being colored the way the user wanted.

8.3 GridCut Benchmark on iOS
For better understanding on the topic how effective the GridCut library on iOS is,
performance benchmarks were done. The benchmarks can be downloaded from1) and
were prepared by Jamriška and Sýkora. Since the benchmarks as well as the GridCut
library are written in pure C++, it can be run on any platform supporting C++.
From these benchmarks, the tasks that are capable of running on the iOS devices
with at least 500 MB of RAM were chosen and bundled into an iOS application. The
application benchmarks the GridCut library at first and then it runs the benchmark

1) http://www.gridcut.com/dl/Benchmark.zip

57



8. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
of the competitive Boykov-Kolmogorov (BK) library. GridCut is in version 1.1 and
BK is in version 3.01. The compiler setting was set with -O3 and -DNDEBUG flags1).
The results of the benchmark are shown in the graph under Figure 8.20. The original
data from which this graph was generated are availabe as an attachment. On the X
axis, there are individual benchmark tests. On the Y axis, there is measured time
consumed by the task in milliseconds.

Figure 8.20. Performace comparison of GridCut and BK library on iPad 3 and iPhone 5s.

Figure 8.21. Speedup of GridCut with respect to BK on iPhone 5s and iPad 3

From the graph, it can be easily seen that GridCut runs several times faster than
BK in all instances. On Figure 8.21, it can be seen that on iPhone 5s GridCut is
7 times faster in best case and 1 time faster in worst case then BK. GridCut on
iPad 3 is 3.5 times faster in best case and 1.25 times faster than BK. The first four
benchmark instances are the LazyBrush tasks which on iPhone 5s have the biggest
speedup with a respect to the BK library.

1) Complete compiler settings are attached to the raw measured data in the attachments directory on CD.

58



Chapter 9
Conclusion

The main goal of this thesis was to implement an iOS application for colorization
of hand-drawn images. Such images can be photographed or loaded from the device
image gallery, preprocessed, cropped and then colorized. The target group of users
for this application are mainly children, but also users that like drawing and the col-
orization of pictures. The colorization is implemented with the LazyBrush algorithm
[14] which is one of the state of the art technique for an automatic image colorization.
The critical part of the LazyBrush algorithm — the image segmentation is solved by
the GridCut library [18]. The application was intended mainly for children, but the
user interface is not restricted to the children users only.

9.1 Summary
The background for the application has been analyzed to be sure that such applica-
tion brings a novel approach to the image colorization on a mobile platform. The
colorization techniques were searched as well to show that LazyBrush is besides other
algorithms highly suitable to solve our task. The LazyBrush algorithm has been ex-
plained to show all of its features and shortcomings and to show the actual process
how the image is colorized inside the application.

The functional requirements on the application were formalized to demonstrate
what key features are expected from the application. A qualitative user research with
children in a form of an interview to provide the requirements on the user interface
design was made. The key knowledge about the children behavior during image
the drawing, the colorization and the usage of the current colorization application
was used to design the usable user interface. This was a demanding task mainly
because the children are not aware of our new approach to the image colorization
with scribbles and therefore must be learned about the usage of the tool directly in
the application.

The application workflow and architecture according to the requirements was de-
signed. During implementation of the application, various problems came across and
were solved. The photograph being captured directly from the application has to
be cropped and filtered automatically so the colorization works as fast as possible
and the colorized picture gives the pleasing result. The actual implementation of
scribbles has to be also done in a nontrivial way to assure the application is smooth
even on older devices like iPad 3. Nevertheless, the final application is available for
iPhone only as the UI design of the iPad version has not been fully finished yet.

Final iPhone application was taken under usability testing with children. The test
revealed further problems that were partially fixed in the latest version of the appli-
cation. The results of the usability testing were also presented as well as colorized
images from the original LazyBrush paper [14]. The iPhone version of the application
is therefore prepared to be submitted to the Apple AppStore.

59



9. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9.2 Future Work

In the future, the application is intended for the further development. Several issues
can be improved in the future work. The filtration method for pictures taken as a
colorization result gives insufficient results in case the image outlines are not dark
enough. Another more robust technique to address this issue should be used.

The tutorial can be expanded to cover problems found during usability testing.
Also, information about the process of how children learn could be found and used
to design the tutorial better so the children can remember the learned functionali-
ties easier.

There is also a lot of other users for whom our application can be useful — artists,
architects, engineers and others. For those target groups, the user interface should be
adapted so they can use all the potential the application has. Also, other advanced
image processing features can be added into the application to provide a broader set
of options for the most demanding users.

60



References
[1] Lieberman H. How to color in a coloring book. ACM SIGGRAPH Computer

Graphics, 12(3):111–116, 1978.
[2] Smith A. R. Tint fill. ACM SIGGRAPH Computer Graphics, 13(2):276–283,

1979.
[3] Fishkin K. P. and Barsky B. A. A family of new algorithms for soft filling. ACM

SIGGRAPH Computer Graphics, 18(3):235–244, 1984.
[4] Horiuchi T. Estimation of color for gray-level image by probabilistic relaxation.

In Proceedings of IEEE International Conference on Pattern Recognition, pages
867–870, 2002.

[5] Levin A., Lischinski D., and Weiss Y. Colorization using optimization. ACM
Transactions on Graphics, 23(3):689–694, 2004.

[6] Luan Q., Wen F., Cohen-Or D., Liang L., Xu Y.-Q., and Shum H.-Y. Natu-
ral image colorization. In Proceedings Eurographics Symposium on Rendering,
pages 309–320, 2007.

[7] Yatziv L. and Sapiro G. Fast image and video colorization using chrominance
blending. IEEE Transactions on Image Processing, 15(5), 2006.

[8] Sýkora D., Buriánek J., and Žára J. Colorization of black and white cartoons.
Image and Vision Computing, 23(9):767–852, 2005.

[9] Qu Y., Wong T.-T., and Heng P.-A. Manga colorization. ACM Transactions
on Graphics, 25(3):1214–1220, 2006.

[10] Grady L. Random walks for image segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 28, 2006.

[11] Greig D. M., Porteous B. T., and Seheult A. H. Exact maximum a posteriori
extimation for binary images. Journal of the Royal Statistical Society. Series
B (Methodological), 51(2):271–279, 1989.

[12] Boykov Y. and Jolly M.-P. Interactive graph cuts for optimal boundary & region
segmentation of objects in N-D images. In Proceedings of Internation Conference
on Computer Vision, pages 105–112, 2001.

[13] Boykov Y., Veksler O., and Zabih R. Fast approximate energy minimization via
graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelligence,
23(11):1222–1239, 2001.

[14] Sýkora D., Dingliana J., and Collins S. LazyBrush: Flexible painting tool for
hand-drawn cartoons. Computer Graphics Forum, 28(2):599–608, 2009.

[15] Potts R. B. Some generalized order-disorder transformation. Mathematical
Proceedings of the Cambridge Philosophical Society, 48(1):106–109, 1952.

[16] Boykov Y., Veksler O., and Zabih R. Markov random fields with efficient ap-
proximations. In Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, pages 648–655, 1998.

61



References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
[17] Dahlhaus E., Johnson D. S., Papadimitriou C. H., Seymour P. D., and Yan-

nakakis M. The complexity of multiway cuts. In Proceedings of ACM Sympo-
sium on Theory of Computing, pages 241–251, 1992.

[18] Jamriška O., Sýkora D., and Hornung A. Cache-efficient graph cuts on struc-
tured grids. In Proceedings of IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 3673–3680, 2012.

[19] Cockburn A. Writing Effective Use Cases. Adison-Wesley, 2001.
[20] Stone D., Jarrett C., Woodroffe M., and Minocha S. User Interface Design and

Evaluation. Morgan Kaufmann, 2005.
[21] Roberts L. G. Machine perception of three-dimensional solids. In Optical and

Electro-Optical Information Processing, pages 159–197. MIT Press, 1965.
[22] Pingle K. K. Visual perception by computer. In Automatic Interpretation and

Classification of Images, pages 277–284. Academic Press, 1969.
[23] Prewitt J. M. S. Object enhancement and extraction. In Picture Processing

and Psychophysics, pages 75–149. Academic Press, 1970.
[24] Marr D. and Hildreth E. Theory of edge detection. In Proceedings of the Royal

Society of London, volume 207, pages 187–217, 1980.
[25] Canny J. A computational approach to edge detection. IEEE Transactions

Pattern Analysis and Machine Intelligence, 8(6):679–698, 1986.
[26] Lindeberg T. Edge detection and ridge detection with automatic scale selection.

International Journal of Computer Vision, 30(2):117–156, 1998.
[27] Duda R. O. and Hart P. E. Use of Hough tranformation to detect lines and

curves in pictures. Communications of the ACM, 15(1):11–15, 1972.
[28] Ford L. R. and Fulkerson D. R. Maximal flow through a network. Canadian

Journal of Mathematics, 8:399–404, 1956.
[29] Boykov Y. and Kolmogorov V. An experimental comparison of min-cut/max-

flow algorithms for energy minimization in vision. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 26(9):1124–1137, 2004.

62



Appendix A
List of Abbreviations

BK Boykov-Kolmogorov.
CPU Central Processing Unit. Carries out the instructions of the program.
GPU Graphics Processing Unit. The graphics chip that takes care of hardware

accelerated onscreen or offscreen rendering.
LoG Laplacian of Gaussian. Filter for edge detection.

RAD Rapid Application Development. Approach to software development
with the main goal to create software in short time.

UI User interface. By this term we mean the controls that are manipulated
by the user in order to control the application.

63



Appendix B
CD Contents

application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . application directory

bin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . application binary

source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . application source code

images . . . . . . . . . . . . . . . . . . . . . . . . . . . . selected result images in full resolution

text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the thesis directory

pdf . . . . . . . . . . . . . . . . . . . . . . . . . . .directory with the thesis compiled to pdf

tex . . . . . . . . . . . . . . . . . . . . . . . . directory with sources written in plain TEX

64


	TITLE
	Specification
	/Declaration
	Abstrakt/Abstract
	Contents/
	Tables/Figures
	Introduction 
	Our Goal 
	LazyBrush Application on iOS 
	Application Workflow 

	Related Work 
	Related Research 
	Existing Applications 

	LazyBrush Algorithm 
	Ideal Painting Tool 
	Energy Function 
	Smoothness Term 
	Data Term 
	Minimization 


	Requirements Analysis 
	Functional Requirements 
	{Non-functional Requirements} 
	{User Research and User Requirements} 
	{Target Group of Users} 
	{User Research} 


	UI Design 
	Tutorial 
	Image Colorization 

	Implementation 
	Application Architecture 
	ImageSelector Component 
	ImageSource Component 
	ColorizationController Component 
	Solver Component 
	ScribbleManager Component 
	ScribbleRenderer Component 

	Image Filtration 
	LoG Filter 
	Histogram Equalization 

	Automatic Image Cropping 
	{Edge Detection} 
	{Cropping} 

	LazyBrush Algorithm Implementation 
	Drawing Scribbles 

	Results 
	LazyBrush Algorithm Testing 
	Usability Testing 
	Target User Group 
	Test Setup 
	Participants 
	Test Assignment 
	Findings 
	Colorized Images 
	Conclusion 

	GridCut Benchmark on iOS 

	Conclusion 
	Summary 
	Future Work 

	References
	List of Abbreviations 
	CD Contents 

