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Abstract

This thesis deals with image registration method that can be employed
for image pre-processing for the purpose of facilitating the process of fea-
ture extraction. This method is particularly suitable for registering images
capturing articulated objects, for example figures. The thesis includes an
overview of basic deformation models employed in image registration, while
it focuses on models that preserves rigidity. An overview of basic image
registration methods is also included. A tool allowing to perform image
registration that preserves rigidity was implemented into development ver-
sion of GIMP, details of its implementation are described in the thesis.
Experiments presenting its functionality were performed and their results
are included in this thesis.

Keywords image registration, as-rigid-as-possible, image pre-processing,
GIMP
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Abstrakt

Tato práce se zabývá metodou registrace obrazu, kterou je možno použít pro
předzpracování obrazu k účelu usnadnění procesu extrakce příznaků. Tato
metoda je vhodná zejména pro registraci obrazů zachycujících kloubově
pohyblivé objekty, např. postavy. Práce obsahuje přehled základních de-
formačních modelů používaných při registraci obrazu, přičemž se zaměřuje
na modely zachovávající tuhost. Přehled základních metod registrace je zde
také uveden. Nástroj umožňující vykonávat registraci obrazu se zachováním
tuhosti byl naimplementován do vývojové verze programu GIMP, detaily
jeho implementace jsou v práci popsány. Experimenty prezentující jeho
funkčnost byly provedeny a jejich výsledky jsou součástí této práce.

Klíčová slova registrace obrazu, as-rigid-as-possible, předzpracování ob-
razu, GIMP
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Introduction

The CRISP-DM standard [22] describes essential phases that are worth not
forgetting during processing of data-mining project. One of these phases
is data preprocessing phase, in which data are prepared so that they can
be used in modeling phase, i.e. to build models used e.g. for prediction or
classification.

The preprocessing phase is very important, an informal rule GIGO1 is
what applies here. That means, if data, that are entering the modeling
phase, are redundant, are not correctly formated, contain invalid values
etc., then non-functional model is often produced.

Image, in computer science often understood as a two-dimensional ar-
ray, is usually the source of a large amount of redundant data. Therefore,
it is often convenient to represent these data in a form other than image
pixels. A face of a person can be expressed, for example, by features such
as color of his eyes, hair or skin, eye spacing, nose size etc. Such a pro-
cess of transformation of data to other, more appropriate, is called feature
extraction.

In order to extract features from images in a simpler way, it is often
useful to properly position the image, or as the case may be, to deform
it before the feature extraction phase. This way, the process of extraction
becomes easier, because then we can, for example, expect that person’s
eyes are always located at the same position. Let us look at another similar
example. We analyze a video clip capturing a human figure. For each
frame of the video clip and from a position of his hand, we want to extract
some information (e.g. whether the hand grips some object or whether it
is empty). To simplify this process, we need to know the correspondence

1Garbage In, Garbage Out.
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Introduction

between the position of the hand in each frame. Problems of this type can
be solved using image registration.

Motivation
With methods of image registration and image deformation I familiarized in
digital image processing class, where I tried to implement a method allowing
to deform an image as if it were an object from the real world which is made
of rubber. I was impressed by the results of image deformation using this
method.

As a long-time user of free software, I long felt the need to somehow
contribute to this sofware. I chose a popular free graphics program GIMP
and presented my implementation of the method including comparison with
several other image deformation methods to its community. I was selected
to implement this method into GIMP within Google Summer of Code 2013.

Goals of the thesis
The aim of this thesis is to implement image registration method that uses
the mentioned image deformation method preserving rigidity, integrate it
into GIMP and compare this implementation with tools Drop and NiftyReg
that allow non-linear image registration.

GIMP currently does not have a tool for image registration. This func-
tionality can be added to it by an existing registration plugin. However,
it only allows to perform affine image registration, that means registration
employing affine deformation model. The tool allowing image registration
preserving rigidity can therefore be interesting for GIMP.

Structure of the thesis
This thesis is divided into 4 chapters. Since deformation models are used in
image registration, the first chapter includes an overview of basic deforma-
tion models and also models allowing the mentioned deformation of images
that preserves rigidity.

The second chapter is devoted to image registration. Besides other
things, this chapter includes some further applications of image registration,
an overview of basic image registration methods and a description of image
registration method that preserves rigidity.

2



Structure of the thesis

The third chapter describes implementation of deformation algorithm
and subsequent implementation of deformation and registration into GIMP.
Among other things, there is also a description of user interface of developed
tools.

The last chapter presents results obtained using developed image regis-
tration tool. These results are compared with the tools Drop and NiftyReg
allowing non-linear image registration.
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Chapter 1
Image deformation

During image registration, the source image is deformed to well align with
the target image. Image deformation is therefore a key part of the process
of image registration. In the same or very similar meaning as the term
“deformation”, terms “image warping”, “image transformation” or “image
distortion” are also often used.

In this chapter, we describe the basic linear deformation models as well
as some interesting models allowing to perform more flexible deformation
of images. An overview of image deformation methods can be found in [5]
or [11].

We assume that the deformation is specified using a group of points
pi on the source image (source points) and corresponding points qi on the
target image (target points). The coordinates of the source image pixels
will be referred to as (x, y), the coordinates of pixels of the deformed source
image as (x′, y′).

1.1 Translation
The simplest image deformation method is translation. It is a shift of
every source image pixel by a shift vector t = (x0, y0). Translation is thus
determined by one source point and one corresponding target point. It can
be expressed as

x′ = x + x0

y′ = y + y0
.
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1. Image deformation

1.2 Similarity
Similarity includes a translation, a rotation by an angle α and a scaling. It
is determined by two different source points and their two corresponding
counterparts on the target image. It can be expressed as

x′ = s cos(α)x + s sin(α)y + x0

y′ = −s sin(α)x + s cos(α)y + y0
,

where s denotes a scaling factor.
When s = 1, this deformation is called a rigid deformation.

1.3 Affine model
Affine deformation further generalizes the similarity and also includes a
shearing. It is determined by three different non-colinear source points and
their counterparts on the target image. It can be expressed as

x′ = a11x + a12y + x0

y′ = a21x + a22y + y0
(1.1)

or simply as

p′ = Ap + t

where p′ are sought coordinates of a point (pixel) on the deformed image,
p is the coordinate of a point on the source image and A is an affine matrix
in the form

A =
 a11 a12

a21 a22

 .

1.3.1 Multipoint affine deformation
When we have exactly 3 pairs of corresponding points, we can acquire the
transformation matrix A by solving a system of equations that can be
obtained by substituting these points to equations 1.1. This way we obtain
the system consisting of 6 equations of 6 unknowns.

6



1.3. Affine model

Figure 1.1: Multipoint deformation of image

When we have more than 3 pairs of corresponding points, we can estim-
ate the affine deformation employing the least squares method [24, 26]. We
will show how to employ this method using Figure 1.12.

Our task is to find such affine transformation of coordinates (i.e. trans-
formation matrix A and translation vector t) which moves red points pi so
that they are located as close as possible to blue points qi. Hence, we are
interested to find out for what matrix A and vector t the function

∑
i

(Api + t− qi)2 (1.2)

yields the minimum, i.e.

arg min
A,t

∑
i

(Api + t− qi)2 .

Since it is a sum of squares, the function is convex on its domain and thus
we can find the global minimum. Firstly, we will algebraically formulate
the vector of translation tmin for which the function yields the minimum.
We solve the equation ∂

∂t
∑
i (Api + t− qi)2 = 0.

2The picture originates in short computer animated film Sintel which has been made
using 3D FLOSS graphics software Blender.
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1. Image deformation

∂

∂t
∑
i

(Api + t− qi)2 = 0

2
[
A
(∑

i

pi
)

+
(∑

i

t
)
−
∑
i

qi
]

= 0

A
(∑

i

pi
)

+ it−
∑
i

qi = 0

it =
(∑

i

qi
)
−A

∑
i

pi

tmin =
∑
i qi
i
−A

∑
i pi
i

tmin = qc −Apc

Next, we will formulate the affine transformation matrix Amin for which
the function yields the minimum.

We solve the equation

∂

∂A
∑

(Api −Apc − qi + qc)2 = 0.

For simplicity, we label p̂i = pi − pc and q̂i = qi − qc.

∂

∂A
∑
i

(Ap̂i − q̂i)2 = 0

2
∑
i

[(Ap̂i − q̂i) p̂i] = 0
∑
i

(
Ap̂ip̂Ti − q̂ip̂Ti

)
= 0

A
∑
i

(
p̂ip̂Ti

)
−
∑
i

(
q̂ip̂Ti

)
= 0

Amin =
∑
i

(
q̂ip̂Ti

)
·
(∑

i

p̂ip̂Ti

)−1

Let us remind that p̂i and q̂i are column vectors and q̂ip̂Ti = q̂i ⊗ p̂i is
outer product of the vectors.

Now, when we obtain new locations of points pi using the affine trans-
formation of coordinates, which we label as p′

i, and simultaneously, when
we deform every single pixel of the image, it is not a surprise, that we get
the result illustrated in Figure 1.2.
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1.3. Affine model

Figure 1.2: Multipoint affine deformation of image

1.3.2 Homogeneous coordinates
A planar point represented by the Cartesian coordinates in a form of a pair
(x, y) can be expressed in homogeneous coordinates as a triple (X, Y,w) =
(xw, yw,w), where we usually choose w = 1 [12]. However, w may be gen-
erally any non-zero number. A point expressed in homogeneous coordinates
as (X, Y,w) can be easily converted to Cartesian coordinates by dividing
by w, that is (X

w
, Y
w

).
Affine deformation can be expressed in matrix form using homogeneous

coordinates as

x′

y′

1

 =


a11 a12 a13

a21 a22 a23

0 0 1



x

y

1


or alternatively as

p′h = Aph. (1.3)

The advantage of the matrix notation is that we can easily combine
deformations using matrix multiplication. Inverse transformation can be
obtained by multiplying the equation 1.3 by the inverse of the matix A.

9



1. Image deformation

Affine deformation can therefore be expressed as a product of individual
transformations it is composed of, i.e. as

 x′

y′

1

 =

 1 0 x0

0 1 y0

0 0 1


 cos(α) sin(α) 0
− sin(α) cos(α) 0

0 0 1


 sx 0 0

0 sy 0
0 0 1


 1 hx 0
hy 1 0
0 0 1


 x

y

1


or simply as

p′h = TRSHph
where p′h are the sought homogeneous coordinates of a point on the de-
formed image, T is a translation matrix, R is a rotation matrix, S is scale
matrix, H is a shear matrix and ph is homogeneous coordinates of a point
on the source image.

1.4 Projective model
This model describes how a plane is deformed when viewed in space from
different point of views through a pinhole camera [31]. Projective deform-
ation can be expressed as

x′ = a11x+ a12y + a13

a31x+ a32y + 1

y′ = a21x+ a22y + a23

a31x+ a32y + 1

which, in a matrix form using homogeneous coordinates, can be expressed
as 

x′

y′

1

 =


a11 a21 a31

a21 a22 a23

a31 a32 1



x

y

1


or simply as

p′h = Pph.

Projective deformation is given by four different non-colinear points and
their corresponding counterparts. The matrix P can be acquired by solving
a system of equations that can be obtained by substituting these points to

10



1.5. ARAP, ASAP deformation models

the equations above. We solve the system consisting of 8 equations of 8
unknowns, which can be written in matrix form as



x1 y1 1 0 0 0 −x1x
′
1 −y1x

′
1

x2 y2 1 0 0 0 −x2x
′
2 −y2x

′
2

x3 y3 1 0 0 0 −x3x
′
3 −y3x

′
3

x4 y4 1 0 0 0 −x4x
′
4 −y4x

′
4

0 0 0 x1 y1 1 −x1y
′
1 −y1y

′
1

0 0 0 x2 y2 1 −x2y
′
2 −y2y

′
2

0 0 0 x3 y3 1 −x3y
′
3 −y3y

′
3

0 0 0 x4 y4 1 −x4y
′
4 −y4y

′
4





a11

a12

a13

a21

a22

a23

a31

a32



=



x1

x2

x3

x4

y1

y2

y3

y4


This system can be solved using Gaussian elimination method or by

multiplying by inverse matrix.
A faster method is described in [12]. In a special case, when we look

for a matrix of projective deformation which deforms a unit square to a
quadrilateral, system of equations can be simplified. This special case can
be easily generalized to a case of any square or rectangle to a quadrilateral.
By performing inversion of obtained 3× 3 matrix we are also able to solve
the inverse problem, i.e. a quadrilateral to a square. By combining these
two cases we obtain a general method for acquiring matrix of projective
deformation that transforms a quadrilateral to a corresponding counterpart.

1.5 ARAP, ASAP deformation models
This section describes image deformation methods allowing to deform an
image in a way that during the deformation it behaves like a real world
object made of rubber. With these methods it is possible to stretch and
shrink the image to certain extent and when the image is articulated (e.g.
an image of a figure), it is possible to manipulate its individual joints (e.g.
arms, feet). Resulting images of deformation employing these methods can
look very realistically.

In this section we will describe an image deformation method employing
Moving Least Squares optimization [26] and also a method described in [29]
or [28] which will be further used for image registration.

All these methods respect the as-rigid-as-possible (or as-similar-as-possible)
principle, i.e. to obtain a realistic result of the deformation, it is necessary

11



1. Image deformation

to minimize the amount of shearing (and in the case of ARAP even scaling)
factors involved in the deformation [26, 14, 1].

1.5.1 Deformation using Moving Least Squares
Let us now return to Figure 1.2 on page 9 and specify our task described
in section 1.3.1 some more. We want the sought affine transformation of
coordinates to move points pi almost exactly to locations of points qi.

It is obvious that we are not able to achieve desired result with use of
just one affine transformation. However, a combination of several different
affine transformations will help us. We can achieve that by assigning a
weight wi to every pixel v of the image. The weight is defined as

wi = 1
(pi − v)2α , (1.4)

thus it is a function which yields high values near points pi. For illustration,
let us select a particular point pj. The nearer the pixel v to the point pj,
the higher is the influence of an affine transformation that maps point pj
to point qj; α is a selected parameter.

Hence, we modify the function (1.2) being minimized to∑
i

wi (Api + t− qi)2 . (1.5)

By solving the minimizing problem symbolically, we obtain the affine
transformation matrix Amin and the translation vector tmin in the following
form

Amin =
∑
i

(
wiq̂ip̂Ti

)
·
(∑

i

wip̂ip̂Ti

)−1

(1.6)

tmin = qc −Apc

where
qc =

∑
iwiqi∑
iwi

, pc =
∑
i pi∑
iwi

.

Since a value of weights wi in this optimalization problem (Least Squares)
vary depending on a pixel v, this method is called Moving Least Squares
optimization.

When we deform the original image using this method, we obtain the
image in Figure 1.3, which safisfy our requirement, i.e. moving points pi
exactly to locations of points qi.

12



1.5. ARAP, ASAP deformation models

Figure 1.3: Multipoint MLS (affine) deformation of the image

However, the result still does not look realistically – there is a shearing
visible in it. As already stated at the beginning of the section 1.5, to obtain
a realistic result, the deformation has to be as-similar-as-possible or even
better as-rigid-as-possible. For ASAP deformation this means that affine
transformation of coordinates does not include shearing but only includes a
uniform scaling, a rotation and a translation. For ARAP deformation this
means that the affine transformation also does not include scaling but only
includes a rotation and a translation.

Thanks to the work of Schaefer et al. [26], closed form formulas of these
transformations are known (although only in 2D).

Similarity transformation matrix which is the solution of the minimiza-
tion problem 1.5 is formulated as

Smin = 1
µ

∑
i

wi

 p̂i
−p̂⊥i

( q̂Ti −q̂⊥Ti
)

(1.7)

where

µ =
∑
i

wip̂ip̂Ti

and operator ⊥ represents a perpendicular vector, i.e. (x, y)⊥ = (y,−x).

13



1. Image deformation

Figure 1.4: Multipoint MLS (rigid) deformation of the image

Rigid transformation matrix Rmin is formulated identically to the sim-
ilarity matrix. The only difference is in constant µ which is expressed as
follows:

µ =

√√√√(∑
i

wiqip̂Ti

)2

+
(∑

i

wiqip̂⊥Ti

)2

(1.8)

After processing of our image using ARAPMLS deformation3, we obtain
a deformed image in Figure 1.4 that already satisfies also our requirements
on realism.

It should be mentioned here that we obtain plaussible results only for
suitable positions of points pi a qi. The problem that appears here is caused
by the measure (Euclidean distance) that is employed in the weighting
function (1.4). This measure does not respect a topology of image. The
consequence of this is that when we e.g. move a point located on a hand
towards the body, not only the hand is deformed but also hips and the body.
This can be solved by a suitable measure that respects image topology.

However, we can still find cases for which MLS deformation yields un-
acceptable results.

3This type of deformation is implemented in a package of tools for image processing
Fiji as well as in the currently newest version (2.7) of graphics editor Krita. Both
programs are FLOSS software.
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1.5. ARAP, ASAP deformation models

Figure 1.5: Example of a large image deformation

1.5.2 Coupled bodies
Now, let us look at an image of a rope and its deformation (Figure 1.5).
That is one of the examples where we are not able to obtain plaussible
result with MLS method.

A method [29, 28] allowing such a large realistic deformations of images
will be now described. It is, generally, based on separation of a deformed
object info parts that are connected with each other and their (usually rigid)
transformation.

The method contains the following phases:

– construction of a lattice above an image

– deformation of the lattice

– regularization of the lattice

– transformation of the image under the lattice

Construction of a lattice above an image

In this first phase, it is necessary to construct a mesh above the source
image. It can be composed of arbitrary planar shapes.

In our case we use a mesh composed of squares despite the fact that
with it we are not able to precisely copy the image (as with triangular
mesh). The reason is simplicity of construction of square lattice above the
image (in comparison with e.g. triangulation) and lower number of lattice
elements in comparison to triangular mesh. Furthermore, when we adjust
the square lattice in a simple manner, we can achieve similar behaviour as
with triangular mesh.

This phase takes place only at the beginning of the method.
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1. Image deformation

(a) (b) (c) (d)

Figure 1.6: Phases of ARAP deformation of a lattice. Figures (a) and (b) de-
picts moving the selected point, thus deforming the lattice. Figure
(c) depicts lattice regularization and Figure (d) lattice deformed in
as-rigid-as-possible manner. However, this is just one iteration of
the algorithm.

Deformation of the lattice

A lattice is actually a group of points. Identically to the section 1.3.1 on
page 6, we have initial positions pi of points of the lattice (or source or
reference lattice) and target positions qi of the lattice (or target or current
lattice).

User sets new positions of some of the points qi of the target lattice and
thus deforms the lattice – some of the squares become quadrilaterals (see
Figure 1.6b).

Regularization of the lattice

The core of the method is in this phase where we try to respect user specified
constraints in form of the placed points qi as well as deform the lattice in
a way that every single square is deformed the most rigidly.

We perform a specified number of regularizing iterations of which every
one performs the following operations:

1. Rigid (or other) transformation of every lattice square (see Figure
1.6c) using the formula 1.7, 1.8 on page 14 and wi = 1.

– By that, every quadrilateral becomes square again.

2. Centering every originally overlapping points of the lattice (see Figure
1.6d).
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1.5. ARAP, ASAP deformation models

(a) Forward transformation (b) Backward transformation

Figure 1.7: Transformation (mapping) methods

– This ensures that all originally overlapping points of the lattice
will overlap again – and squares become quadrilaterals again.

Hundreds of these regularizing iterations are usually performed.

Projective transformation of the image under the lattice

Since we are interested in a deformation of an image and not only a lattice,
we have to transform a part of the image under every square of the source
lattice to corresponding squares of the target (deformed) lattice. We can
solve this problem with help of projective transformation which is given, as
already mentioned, by four points.

This transformation can be performed in two ways:

– Forward transformation

– In this way, we apply a transformation f to every pixel p = (x, y)
of the image under a square of the source lattice, by which we
obtain coordinates of pixel q = f(p) = (x′, y′) of the image
under the corresponding square of the target lattice. Then we
can color the pixel p by a color of the pixel q.

– This way we obtain transformed image, which usually has gaps –
see Figure 1.7a. This effect occurs when transforming a smaller
area to a larger one.

– Backward transformation

– In this way, we apply the inverse transformation f−1 to every
pixel q = (x′, y′) under a square of the target lattice. This gives
us coordinates of pixel p = f−1(p) = (x, y) of the image under

17



1. Image deformation

the corresponding square of the source lattice. Then we can color
the pixel q by a color of pixel the p.

– This method solves the problem with gaps – see Figure 1.7b.

1.5.3 3D ARAP, ASAP deformation
The method described in the section above can also be used for deforming
3D models in space. In comparison with the 2D case, there are several
differences there. Nevertheless, the principle is preserved.

Separation of 3D model into parts

Identically to the 2D case, it is necessary to somehow separate the object
which is to be deformed. There are several possible approaches here. One
of them is analogical to the 2D case, that is the construction of 3D lattice
composed of regular bodies (e.g. cubes) into which the model is embedded
[2]. Another possible approach is utilization of a structure of the model
itself which is usually composed of triangles [27]. Natural possibility is to
utilize user defined bones (i.e. groups of model points that form a rigid
whole) with specified weights of individual points.

Model deformation and regularization

Again as in the 2D case, user moves some of the points qi and thus deforms
the model.

During model regularization, we proceed in the same way as in the 2D
case. However, closed form formulas (1.7 on page 13) for computation of
similarity and rigidity transformations does not apply here. Nevertheless,
we can still use the general formula (1.6 on page 12) for computation of affine
transformation of points and obtain the similarity or rigid transformation
using some method for matrix decomposition – e.g. polar decomposition
[13] or singular value decomposition (SVD) [7].

To allow a greater control over the resulting deformation, it is advisable
to employ a more general technique (instead of the technique used in the 2D
case) to center overlapping points. The technique is called skinning, more
specifically linear blend skinnning [16] or dual-quaternion skinning [15] of
which the latter yields more realistic results.

An example of 3D ARAP deformation is depicted in Figure 1.9.
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1. Image deformation

(a) (b) (c)

(d) (e)

Figure 1.9: Example of 3D ARAP deformation. Three-dimensional model of a
hand in Figure (a) has been deformed, by moving several points,
into a shape depicted in Figure (d). Points, the model is composed
of, are depicted in Figures (b) and (e). Red points indicate fixed
points. The model is composed of bones. Figure (c) depicts one of
bone weights of the thumb.
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Chapter 2
Image registration

Suppose we have two images – S (source4) and T (target5). These images
are somehow similar. We want to deform the image S to well align it with
the image T . Problems of this type can be solved using image registration.

Figure 2.1a depicts one of the possible ilustrations of the problem. In
this case, this is a simple task which can be solved manually by moving
the image S to the appropriate position. Automation of this procedure is
however necessary when we need to perform this activity often and on a
large image database. More difficult task is depicted in Figure 2.1b where
we need to register two or more images acquired using some of the medical
imaging methods. From the picture, we can see that the sought deformation
will be somehow non-linear. Another possible ilustration of applications of
image registration is depicted in Figure 2.1c. There we need to use an
image registration method, which utilizes some of the deformation models
that preserves rigidity.

Image registration methods often somehow include deformation model,
image similarity measure and optimization method. Some deformation mod-
els have been described in the previous chapter.

In this chapter, we will describe the basic image similarity measures and
also some image registration methods with more focus on a registration
method employing ARAP and ASAP deformation models that have been
described in the previous chapter.

Firstly, let us look at some another applications of image registration.

4in some literature also floating, testing or sensed
5sometimes also fixed or reference
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2. Image registration

2.1 Applications of image registration
Image registration has wide range of applications and is employed in various
fields (for example medical imaging, remote sensing, computer vision), as
it can be used to solve the following frequently occurring problems [31, 3]:

– We have images acquired from various points of view, we want to com-
pose them into a larger whole (e.g. previously mentioned panorama
picture or satellite maps) or obtain a 3D representation of a scene
from them.

– We have images of the same object acquired at different times, we want
to know how the object changes in time (e.g. progress of treatment
of a patient, detection of a change in security video cameras or video
compression).

– We have images acquired from different types of sensors, the aim is
to integrate different informations contained in them in order to gain
more informations of the sensed scene (e.g. combination of a picture of
an injury with X-ray image of it or combination of an image obtained
from magnetic resonance with computed tomography image).

– We have an image of a real scene and we want to find a pattern in it
for the purposes of comparation (e.g. character recognition).

2.2 Measures of image (dis)similarity
To assess the extent to which the two images S and T or their parts are
similar, functions described in this section are often used. Functions which
yield high values when the images are very similar are called similarity
measures. Functions that have the opposite behavior are called dissimilarity
measures. An extensive overview of these measures can be found in [10].

2.2.1 Sum of Absolute Differences (SAD)6

This dissimilarity measure is defined as
∑
p∈N
|S(p)− T (p)| ,

6or also L1 norm or Manhattan norm
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2.2. Measures of image (dis)similarity

(a) Composing images into a panorama

(b) Images of a transversal cut of a head of two different patients acquired using
magnetic resonance for the purpose of comparison. Images come from the
RIRE dataset.

(c) These two hand-drawn images could be two consecutive frames of an anima-
tion. Image registration can help us to e.g. create smooth transition from one
frame to another.

Figure 2.1: Examples of some applications of image registration
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2. Image registration

where N denotes the common area (i.e. set of pixels coordinates) of images,
in which we detect similarity of the images.

The advantage of this measure is the speed of its computation. Support
for accelerating the computation of this measure is incorporated in SIMD
instructions in many of today’s processors – namely the instruction PSADBW.

2.2.2 Sum of Squared Differences (SSD)7

SSD is a dissimilarity measure which is defined as
∑
p∈N

(S(p)− T (p))2 .

When compared with SAD, this measure is more sensitive to the greater
differences between compared pixel intensities and less sensitive to additive
Gaussian noise [20].

2.2.3 Normalized Cross-Correlation (NCC)
This similarity measure is defined as

1
σS

1
σT

∑
p∈N

(
S(p)− S

)
·
(
T (p)− T

)
,

where σS a σT are standard deviations and S a T are expected values of
images intensities.

Thanks to subtraction of expected values, this measure is independent of
brightness changes and thanks to division by standard deviations of intens-
ities, it is independent of changes in contrast. Computational complexity
of this measure is higher when compared to SAD and SSD.

7or also squared L2 norm or squared Euclidean distance
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2.3. Image registration methods

2.3 Image registration methods
Image registration methods can be divided into area-based8 and feature-
based9 [31].

2.3.1 Area-based methods
While estimating the deformation model, these methods work directly with
the intensities of each pixel of image.

In this section, we will describe block-matching and general optimization
method.

Block-matching

When the source and the target image differ only in translation (or also
slight rotation), it is possible to determine the shift vector employing one
of the simplest image registration methods which is a block-matching10.

Block-matching is actually a brute-force method in which we gradually
shift a part (“window”) of the source image (or entire image) over the target
image along the x and y axis and using selected dissimilarity measure we
search for the optimum, i.e. the minimum.

Advantage of this approach is finding the global minimum, disadvantage
is the time complexity of the method – O (|S| |T |), where |S| is the size of
the window or entire source image and |T | is the size of the target image.

Block-matching method can be accelerated in various ways. One of these
ways is early-termination [17]. When computing a value of dissimilarity
function for the current window, we can stop the computation when the
value exceeds a specified minimum. This minimum is updated whenever
the lower value of dissimilarity function is found.

Optimization employing gradient descent

In the block-matching method, we gradually calculated the value of dissim-
ilarity function for every shift of the source image over the target image and
sought for a shift for which the function gave the minimal value. Analog-
ously, we can create a function

E(t) = d
(
S (p + t) , T (p)

)
,

8or also intensity-based or pixel-based
9or also point-based

10or sometimes also template-matching
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2. Image registration

where d (S, T ) is a dissimilarity function representing dissimilarity measure
of images S and T . Function E is often reffered to as energetic11 function
and it often contains, besides a term expressing the similarity measure, also
another (regularization) terms penalizing undesirable properties of deform-
ation – for example bending energy regularization term [21].

For example, we can use SSD dissimilarity measure and express the
function E as

E(t) =
∑
p∈N

(
S (p + t)− T (p)

)2
.

To obtain a locally optimal shift vector t, we can for example employ the
gradient descent method [19]. Gradient descent is an iterative optimization
method that proceeds at every step from the last found solution (in our
example ti) to next solution (ti+1) in the direction opposite to gradient of
the function E at the point ti. This can be expressed as

ti+1 = ti − s · ∇E(ti),

where ∇E(ti) is the gradient, that means the direction of the greatest rate
of increase of the function E at the point ti and s is a step size.

In the same way, we can find the parameters of mapping function of
other deformation models. Let us suppose tha we have a deformation model
given by a function W

(
p, ~θ

)
, where p denotes a coordinate of a point of

the source image and ~θ is a vector of deformation parameters. The energy
function can then be expressed as

E
(
~θ
)

= d
(
S
(
W
(
p, ~θ

))
, T

(
p
))

and the solution can again be found employing the gradient descent method.
Advantage of this approach is speed and disadvantage of it is that we

have no guarantee of finding the global minimum. The energy function
often contains a high number of local extrema and gradient descent method
can thus easily get stuck in one of them.

To optimize the energy function and lower the risk of getting stuck
in a local extrema, it is possible to use other optimization methods – for
example, nowadays very popular evolutionary algorithms [30].

11or also loss, cost, utility, objective or fitness
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2.3. Image registration methods

2.3.2 Feature-based methods
When estimating the deformation model, feature-based methods use fea-
tures, that is characteristic (or salient) objects that can be well described,
are stable in time, are spread over an image and have a meaningful interpret-
ation – e.g. bodies of water, wooded areas, populated areas, rivers, roads or
crossroads (lines intersections), corners of objects in image or objects which
appears as points [31].

Firstly, it is necessary to detect features in the source and the target
image and then to find the most correct match of features from one image
to the other.

In the past, features and their correspondences were specified manually
by user. Nowadays, one of often used methods of automatic acquisition
of features and their correspondences which gives good results is the SIFT
method [18].

Once we have the image features and their correspondences, we can
start looking for parameters of mapping function of selected deformation
model. Similarly as in section 1.3.1 on page 6, we have a certain number
of points located on the source image and we look for a function that maps
these points to points on the target image with the smallest possible error.
This problem can be solved by employing the least squares method or by
employing some other method of parameter estimation [9].

2.3.3 Hierarchical approach12

Image registration methods can be accelerated by reducing the resolution of
the source and the target image. The registration is then performed on the
scaled down images. This gives us a rough estimate which is then refined
on images of higher resolution [8].

This procedure is often used several times. Several levels of image sizes
are created while the image in nth level is half the size of the image in
(n+1)th level. At the start, image registration is performed on the first level
which gives us a rough estimate that is refined on the second level etc. The
number of levels can be specified by the user or determined automatically.

The hierarchical approach can be applied also in the choice of deforma-
tion models [8]. At low resolution of the images we use simple models with
low number of parameters and with every following level we use one level
more complex model. Using this approach, we can get, for example, the
following hierarchy of models: translation→ rigid model→ affine model→
projective model → elastic model.

12alternatively also coarse-to-fine, pyramidal or multiresolution approach
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2. Image registration

2.4 Registration of hand-drawn images

(a) Source image (b) Target image (c) Source and target image in
overlap

(d) Result of a non-linear image regis-
tration method [6]

(e) Plausible result of method [28]

Figure 2.2: Registration of hand-drawn images

When registering hand-drawn images (e.g. figures), it is not possible to use
feature-based methods since every single drawing is unique to some extent
and hence it is not possible to find corresponding features [28]. In this
situation area-based methods based on energy function optimization may
lead to a success. However, if the source image and the target image differ
in large non-linear deformation, the result of these methods will often not
be plausible – see Figure 2.2d.

In the following sections of this chapter we will deal with image regis-
tration method [28] which gives plausible results in the mentioned situation
and moreover, which has a wider range of applications.
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2.5. ARAP, ASAP image registration method

2.5 Image registration method employing
ARAP, ASAP deformation models

In ARAP registration, we use the fact that the deformation method de-
scribed in section 1.5.2 on page 15 allows us to arbitrarily move points qi
without having to consider their mutual connection.

The actual registration is then divided into the following two phases
which are continuously performed until fulfillment of specified stop condi-
tion.

1. ”Push” phase, that means moving points qi to suitable locations.

2. “Regularization” phase, that means performing the regularization
of the lattice (or 3D model).

2.5.1 ARAP image registration13

In Figure 2.3c there are two overlapping objects depicted – image of a rope
(the source image) and image of bent rectangle (the target image). The
aim of this image registration problem is to deform the image of a rope so
that it well align with the image of a bent rectangle.

In the push phase of ARAP registration, we move points qi to suitable
locations, that means locations where the area of the source image around
these points differs as little as possible from the area of the target image
(around these points). To find such a translation vector t, we can employ
the block-matching method that finds the optimal translation vector in
defined search area.

13or alternatively n-point image registration employing ARAP deformation model

(a) Source image (b) Target image (c) Overlapping images

Figure 2.3: Ilustration of a problem solved using ARAP registration

29



2. Image registration

iteration

0. 1. 2. 3.

initial pose push regularize push regularize push regularize

Figure 2.4: Several first iterations of ARAP image registration algorithm

When we use SAD dissimilarity measure to find out how well two parts
of images match, the optimal translation vector topt can be formulated as

topt = arg min
t∈M

∑
p∈N
|S(p + t)− T (p)| , (2.1)

where M is a search area14 where we search for optimal shift, N is SAD
„neighbourhood“, S is the source image and T is the target image.

The lattice, or more precisely its points that are shifted in the push
phase regardless of their mutual connection, is in regularization phase put
into a consistent state.

Figure 2.4 that shows several first iterations of ARAP image registra-
tion algorithm also shows phases of the image registration which have been
described at the beginning of this section.

Stop condition

Depending on overlap of registered images and also on values of previously
mentioned parameters (i.e. M , N), after several tens of iterations the source
image is often deformed to well align with the target image. In case the
whole process of registration is visualized and the registration is controlled
by user, he can manually stop the process depending on his satisfaction
with the result.

It is often useful to know an estimation of wheter the registration has
reached convergence. Suitable criterion is, according to [28], monitoring

14Area or set of points.
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2.5. ARAP, ASAP image registration method

of average distance (davg) of points qi of the deformed lattice from points
of initial pose lattice (or points pi of the reference lattice). The average
distance can be formulated as

davg = 1
|P |

∑
i

‖qi − pi‖ , (2.2)

where |P | is the number of lattice points.
The average distance has increasing character and after some number

of iterations it stabilizes with a tolerance at certain maximal value. We
can stop the registration after a fixed number of iterations in which this
distance does not change (with a tolerance).

Problems of this image registration method

As any method even this one has its limitations. The method does not lead
to plausible results in the following cases:

– unsufficient overlap of source and target images

– the source and the target image differs in too large amount of deform-
ation

2.5.2 3D ARAP registration
Let us mention a problem from „markerless motion capture“ (or „marker-
less“ MoCap) field, which deals with capturing of motion of real objects,
mostly persons, without the need of wearing special markers. Usually, the
aim of MoCap is to put a 3D model into a motion based on the captured
one. For solving this problem, ARAP registration method can be employed.

A scene after which the actor moves, is captured by several calibrated
cameras. Sequences of images recorded by individual cameras are then
preprocessed – e.g. background is removed, a part of image containing the
actor is modified to colour match with the 3D model. The model should
match as closely as possible with the actor.

At the beginning of the recorded sequence, the actor typically stands
in T pose. Before the actual registration it is necessary to place the 3D
model in space as accurately as possible according to images of actor from
individual cameras.

During registration of the 3D model onto pre-processed images from
individual cameras, we can use similar procedure as in image registration
that has been described in section 2.5.1. Let us suppose that we have i
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2. Image registration

cameras. To illustrate the principle, we now focus only on the first image
from sequences of individual cameras.

In push phase of 3D registration, we need to move every point of the 3D
model to a suitable location. Firstly, we render the 3D model from a view
of the first (virtual) camera. Employing the block-matching method, we
perform registration of the rendered image (i.e. the source image) onto the
image from the camera (the target image). We perform this procedure for
every camera and thus we find i vectors of translation in image planes of
individual cameras15 for every point of the 3D model. We transform each of
i 2D translation vectors of one point of the model to world coordinates and
thus we get 3D vectors. We compute average translation vector in space
and then we shift the point about it. We perform this procedure on every
point of the model. Then we perform a regularization of the 3D model. By
this, we described one iteration of this 3D registration.

2.5.3 Interactive registration
Thanks to the fact that the deformation method employed in the registra-
tion allows us to arbitrarily move points without having to consider their
mutual connection and also to the fact that the registration method is it-
erative, we can let user influence the registration process.

The user can watch the progress of registration and in situation when
the registration method has a problem with aligning the source with the
target image or object (see e.g. problems of this image registration method
on the previous page), he can help it by moving one or several points.

15That means, in individual views from virtual cameras to 3D model.
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Chapter 3
Implementation

One of the goals of this thesis was to implement the ARAP/ASAP im-
age registration method described in section 2.5.1 and integrate it into the
graphics editor GIMP. Since GIMP is written in the C programming lan-
guage, the choice of programming language for the implementation of this
registration method was obvious.

The implementation proceeded as follows. First, the standalone ARAP
n-point deformation algorithm, that was described in section 1.5.2, was im-
plemented. For easier debugging of the algorithm, GUI was created using
Allegro 5 graphics/gaming library. Subsequently an operation allowing to
perform n-point image deformation was implemented into GEGL library.
This library is employed in GIMP. In order to use one and the same im-
plementation of the algorithm with Allegro library, GEGL library and also
with some other library or program that allows graphical ouput, a library
for n-point deformation was created. After that, n-point deformation tool
was implemented into GIMP. The tool formed a base for n-point registration
tool which was implemented soon afterwards. The n-point deformation tool
was created during a three-month long work within the Google Summer of
Code 2013.

This chapter contains, besides a description of implementation details,
a justification of some implementation decisions and a description of user
interface of developed tools. Besides that, current trends of GIMP devel-
opment are described here as well.
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3. Implementation

3.1 Implementation of the algorithm in C
A shared (dynamic) library libnpd was created. The library contains data
types and functions allowing to perform n-point image deformation and
registration. The library is designed in a way so that it can be used with
various graphic apparatus (that is for example graphics library) and thus
requires to implement some graphics functions (e.g. get_pixel_color,
set_pixel_color) and data types (image, display).

In this section, we will describe data types and parts the library is
composed of, that means the computational part, the graphics part and
other routines.

3.1.1 Data types
The library defines some transparent and some opaque data types. Opaque
data type is a data type which is incompletely defined for some part of a
program. Data type which is completely defined is called transparent. In C
language, we can manipulate with opaque type only using pointers. Only
parts of a program which knows the implementation of this type, and thus
for which this type is transparent, can access its data. Let us give some
examples using libnpd library. Every data type that is described here is in
the form of a record (that is struct in C language).

Opaque data types

The library defines opaque data type Image (NPDImage) which is a
record that represents an image. The record can be composed of image
data, image width, height and so on. The library accesses the image data
of the image using ”opaque” functions as get_pixel_color and set_pi-
xel_color. These functions are defined as pointers to functions. How these
functions are implemented depends on a user of the library.

Another opaque data type that is defined by the library is Display
(NPDDisplay). This type represents a display apparatus or more pre-
cisely a graphics output. Implementation of this type can contain for ex-
ample a pointer to a graphics context (e.g. data type ALLEGRO_GRAPHICS
in Allegro library or cairo_t in graphics library Cairo) or a pointer to
an image into which the result of deformation will be rendered. Concrete
implementation of this data type depends on user of the library.

Transparent data types

The library defines the following transparent types:
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3.1. Implementation of the algorithm in C

– Point (NPDPoint) – This type represents a point with coordinates
(x, y) which is used for deformation purposes. In addition to that
it contains a weight w and another informations that are useful for
purposes of deformation.

– Bone16 (NPDBone) – This type represents a group of points form-
ing a rigid whole. In context of this n-point image deformation, this
“bone” represents a square. However, it can also represent some other
shape – for example a triangle in case we use triangle mesh instead of
a square lattice constructed above image.

– Hidden Model (NPDHiddenModel) – This type holds the source
and the deformed lattice (or in other words, “reference” and “current”
group of bones), a list of overlapping points (see below) and para-
meters of the deformation in one place together. The type (struct)
contains only fileds that are not tied to any method of displaying the
model (hence the name “hidden model”).

– Cluster of Overlapping Points (NPDOverlappingPoints) – For
the purposes of deformation is useful to remember which vertices
(points) of individual squares in the source lattice overlap. We often
need to manipulate every point in a cluster somehow – for example
we need to move every point in a cluster to certain position or to set
equal weight to every point of a cluster. Points in a cluster are called
overlapping points.

– Control Point (NPDControlPoint) – When deforming a lattice,
we can manipulate individual clusters of overlapping points – e.g. we
can move a cluster to a new position p = (x, y). After mesh regular-
ization, the cluster moves to a position that is given by a centroid of
cluster points. That can be undesirable. The user, for example, re-
quires the cluster to be fixed at the position p. This can be solved by
not transforming cluster points during the regularization. A slightly
different solution is offered by this data type which remembers user
defined position and its assignment to a cluster. Before every deform-
ation iteration, according to positions of control points the positions
of associated overlapping points are set.

16The name “bone” was borrowed from the field of 3D graphics, where this term
often refers to a group of points (in space). At the time of implementation of the n-point
deformation algorithm, algorithm data types were designed in a way so that it can also
be used (with minor modifications) for the 3D version of the n-point deformation.
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– Model (NPDModel) – This type holds the hidden model, the
defined control points, the source image, display and parameters of
deformation. It is actually a lattice tied to an image.

– Color (NPDColor) – This type represents a color composed of four
eight-bit color components (R, G, B, A).

3.1.2 Computational part of the library
The computational part of the library provides deformation of the lattice
(i.e. of the hidden model). Among other, this part of the library contains
functions that allow

– to perform specified number of deformation iterations and thus to
deform the lattice according to the principle described in section 1.5.2,

– to peform “push” phase of the registration according to the principle
described in section 2.5.1.

3.1.3 Graphics part of the library
Graphics part of the library contains functions that are independent on
graphics apparatus, that is for example graphics library. Among other, this
part of the library contains functions that allow

– to create a model, i.e. to create square lattice with specified square
size above specified image,

– to draw (deformed) model into an image,

– to draw model’s lattice.

When used with a graphics library it is necessary to implement NPDImage
and/or NPDDisplay data types and also to implement the following two
functions:

– Function npd_get_pixel_color (NPDImage *image, gint x,
gint y, NPDColor *color), that is a function that retrieves a color
of a pixel at position (x, y) in specified image and stores it into a
variable pointed to by parameter color.

– Function npd_set_pixel_color (NPDImage *image, gint x,
gint y, NPDColor *color), that is a function that stores a color
pointed by parameter color into a pixel at position (x, y) in specified
image.
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The library uses its own functions for bilinear interpolation and alpha-blending.
For obtaining samples from an image it uses the aforementioned get_pi-
xel_color function. When we want to use a better interpolation technique
we can implement the following function instead of the aforementioned two:

– Function npd_process_color (NPDImage *source_image,
gfloat ix, gfloat iy, NPDImage *deformed_image,
gfloat ox, gfloat oy), that is a function that obtains the source
and the deformed image and that is expected to process (in a sense
of interpolation and alpha-blending) a pixel at position (ix, iy) in the
source image and to store the result into a pixel at position (ox, oy)
in the deformed image.

To allow drawing the model’s lattice it is necessary to implement a
function

– npd_draw_line (NPDDisplay *display, gfloat x0, gfloat y0,
gfloat x1, gfloat y1), that is a function that draws a segment
given by points (x0, y0) a (x1, y1) on defined display.

3.1.4 Other rutines implemented in the library
The library also contains common functions for manipulation with deform-
ation – for example functions for model initialization/freeing and functions
for control point manipulation.

3.2 Implementation into GIMP

3.2.1 GIMP and current development trends
GIMP is a graphics software used most often for the purposes of creating
and editing raster graphics. It is a FLOSS software released under GNU
GPL. The program is multi-platform – with each new stable version, a
version for Linux (or other Unix-like systems), Windows and Mac OS X is
released. The current stable version of GIMP is of the 2.8 series.

GIMP is written mainly in C programming language (more precisely
C8917). The C language itself is not object-oriented. When creating large
projects, the use of object-oriented approach is advantageous. GIMP uses

17This standard is fully supported by many compilers and a portability to other
systems is therefore much easier.

39



3. Implementation

the C language enriched with object-oriented approach using GObject ob-
ject system, which is part of GLib library.

Development of GIMP was started by Spencer Kimball and Peter Mattis
in 1995. After several years, the development was fully in the hands of the
community which had meanwhile formed around this program. Today, the
program can be used for both amateur and professional use. Gimp is often
criticized for two reasons – it cannot work with high depth color images
and it does not allow some non-destructive image editing techniques. These
drawbacks should be resolved with help of GEGL library, which is used in
current versions of the program very intensively.

GEGL and BABL libraries

GEGL is a graphics library which uses specified oriented acyclic graph to
process images. This graph is made up of individual nodes that can rep-
resent graphics operations as well as another graph. Edges that connect
individual nodes determine the order in which the graph will be processed.

The library currently contains a large amount of operations allowing,
for example, to load (and save) graphic files of various graphic formats, to
generate image (e.g. fractals), to use various graphic filters and to create
compositions using Porter-Duff compositing operators [23]. It is not hard
to implement another operations into the library.

The library is ready to work with different pixel formats (with different
bit depth, color model, etc.). For this purposes, it employs BABL library.
The BABL library is being created along with GEGL library and is spe-
cialized in conversion between various formats.

Although the motivation for creating the GEGL library was its employ-
ment in GIMP, it can be easily employed within another aplications – it is,
for example, currently employed in the development version of a painting
application MyPaint.

The first stable version of GIMP which offered an option to take ad-
vantage of some of the benefits of the GEGL library was of the 2.6 series.
It is planned for the oncomming stable release of the 2.10 series to have all
obsolete code replaced by code that uses GEGL and BABL libraries – this
is one of the things developers currently work on.

GIMP plug-ins

Functionality of GIMP can be extended using plug-ins. They can be written
in various programming languages – namely Scheme, Python, Perl and C.
Plug-ins written in C are compiled and should be faster than the plug-ins
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written in other languages which are interpreted. There are several tutorials
which explain in detail the process of writing a plug-in. Thanks to these
tutorials18, the process of writing a plug-in is much easier. Most of these
tutorials were written at a time of the old GIMP core (which means they
do not use GEGL library) and so it is necessary to avoid using deprecated
functions for accessing individual pixels of image.

GIMP incorporates a large amount of plug-ins, the most of them func-
tion as graphic filters. The current development trend is not to create a
graphic filters in form of GIMP plug-ins, but instead to create GEGL op-
erations within GEGL library. This also applies to some other types of
plugins – for example plug-ins for loading (and saving) images of various
graphic formats. Such an approach has several advantages. For example
it is usually not necessary to create separate GUI for GEGL operation in
GIMP – all GEGL filters can share similar GUI. Preview of result of such
graphic operation is displayed directly on the canvas and not in a small
preview window (as it was used to be earlier). Another advantage is the
possibility to use the graphic operation in another graphics software. This
can reduce duplication of the same functionality between various graphic
FLOSS software and thus it can support a pressure on the optimization
of these functionalities. Classic way of creating GIMP plug-in has to be
selected in situation when a plug-in containing e.g. specific GUI has to be
created.

3.2.2 GEGL operation implementing n-point
deformation

N-point deformation algorithm was implemented into the GEGL library as a
new operation. This operation employs libnpd library which was described
in section 3.1. The libnpd library is now a part of a development version
of GEGL library. An example of how it is possible to connect the libnpd
library with a graphic apparatus, that is the GEGL library, is contained in
the source code of the GEGL operation which is called NPD.

3.2.3 N-point image deformation tool
When designing the implementation of n-point image deformation into
GIMP, two variants were considered – implementation of a plug-in or in-
ternal tool. Let us discuss now the pros and cons of both variants.

18Tutorial which describes the process of writing a plug-in in C language is available
at http://developer.gimp.org/writing-a-plug-in/1/.
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Discussion of implementation variants

Distribution of a plug-in does not depend on “GIMP release periods”. When
there are some enhancements or bug fixes in a plug-in, a new version of
a plug-in can be released almost immediately. For the internal tool, the
situation is worse for the user. A new version of the tool is firstly available
in the development version of GIMP and it may take quite a long time until
a new stable or bugfixing version of GIMP is released and available to user.
User can build the development version himself or there exists so called
nightly-builds19, but for a lot of users this process is too complicated. In
some situations, there can be long intervals between the releases of bugfixing
versions.

The need to manually install the plug-in can be taken as a disadvantage
of this variant – it is inconvenient for the user. When distributing the plug-
in separately from GIMP, the plug-in is not so “visible” and can attract
smaller group of potential users. This may be related to lower efforts of
other developers to improve the plug-in and update it for new versions
of GIMP without requiring the original author of the plug-in to do that
himself. However, if the plug-in could be useful for a large number of
GIMP users, there is definitely an option to negotiate its inclusion in the
official distribution of GIMP.

Writing a plug-in is not as demanding as creating internal tool, where a
programmer which is not familiar with GIMP development needs to study
new techniques (for example object-oriented approach using GObject object
system) and to understand GIMP internals. It is also appropriate (and for
the inclusion of the code to the main branch it is required) to follow certain
style of writing a code – GIMP uses a coding style similar to GNU coding
style. As already mentioned, there are tutorials explaining the process of
writing a plug-in. There is considerably less informations on how to write
internal tools20. More information can be drawn from existing source code
and comments contained in them, from comments contained in individual
commits in versioning system (Git) or ask GIMP developers for advices
(mostly through the IRC channel or mailing list).

GIMP plug-in is a program that is run by GIMP and that employs some
of GIMP’s functions. If plug-in creates its own GUI, the interface is not part
of GIMP’s GUI (it is a separate window with plug-in’s GUI). Therefore it
is not, for example, possible to create elements of plug-in’s GUI on GIMP’s
canvas. With internal tool, this is, of course, possible. Plug-in written

19That means at night automatically built version of the program based on the most
up-to-date source files of the program.

20Although a nice tutorial is available in [4].
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in C language can access GIMP core’s functions only using GIMP library
(LIBGIMP). With internal tool, possibilities regarding this are wider.

N-point image deformation as internal tool

The variant of implementation of internal tool was picked especially for the
following reasons:

– GIMP does not contain a tool allowing as-rigid-as-possible image de-
formation, however, it has a tool named Cage Tool which allows to
deform an image using a cage. The result of this tool is not as-rigid-as-
possible and thus it is more difficult to obtain realistic deformations of
images capturing real world objects. From user perspective, the pro-
cess of deformation using Cage Tool is relatively cumbersome since at
first user has to manually create a cage surrounding the deformed ob-
ject and only after that he can start deforming the cage using points
it is composed of. In videoclip contained in enclosed medium, there
is an ilustration of how quickly a user is able to deform an image of a
figure using n-point deformation tool in comparison with Cage Tool.

– According to the high number of positive responses to an intention to
implement n-point deformation tool21 it can be concluded that this
tool can be useful for a large group of GIMP users. This argument can
be also supported by the fact that the proprietary graphics software
Adobe Photoshop since version CS5 includes an internal tool allowing
ARAP image deformation as well.

– From the user perspective, it is more convenient to work with GUI,
which is seamlessly integrated in GIMP. In our case, individual control
points (handles) can be drawn directly onto the canvas. During the
deformation process, user can e.g. easily zoom a certain part of image
that is being deformed and focus on details or he can arbitrarily rotate
the canvas.

– The proposal to implement the internal tool was accepted by GIMP
developers and a substantial part was implemented during Google
Summer of Code 2013.

21When the idea to implement n-point deformation into GIMP appeared, analysis
of interest in this feature was carried out. At the beginning, a blog post describing
the intension was created. It was commented by several supporting comments. The
proposal was later sent to the GIMP Developer mail list and thus expanded through
social networks. Videoclips presenting the proposed tool had over 35 000 views and over
500 positive comments until December 2013.
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– There is a possibility to use the tool as a basis for implementing
n-point image registration into GIMP.

Implementation details

Every tool in GIMP is implemented as a class extending a parent class
named GimpTool. This parent class provides the basic functionality com-
mon to all tools in GIMP. In particular, the functionality is represented by
methods called when

– there are keyboard or mouse events (that is a keypress, mouse move
or mouse drag and drop etc.),

– user changes tool’s settings using GUI,

– a tool is paused, resumed or stopped,

– undo/redo is performed

and by some another methods22. The mentioned (and another) methods
can be overriden in a subclass.

The aforementioned class is extended by class named GimpDrawTool
that allows its descendant classes to add GUI elements onto canvas and
that is able to draw these elements. These elements include control points
(handles), basic plane shapes, guide lines, paths, text cursor and also a live
preview of a result of operation that is performed by a tool. This class is
extended by various classes representing tools, let us mention for example
a group of painting tools, selection tools, transformation tools and also a
tool for writing a text.

The class GimpDrawTool is also extended by a class named GimpNPoint-
DeformationTool that implements the n-point deformation tool. This class
employs libnpd library. Using (deformation) thread, it performs a deform-
ation of an image, using (preview) thread, it draws at regular intervals a
preview of current state of the deformation. The preview thread calls the
methods of GimpDrawTool in order to redraw GIMP’s GUI. Every GIMP
tool can define its own set of settings and their graphic representation within
GIMP tool’s GUI. For these purposes, a class named GimpToolOptions is
employed. This class is inherited by individual tools (or more precisely
by classes describing individual tools options). N-point deformation tool
employs its own class named GimpNPointDeformationOptions.

22A list of all available methods of the class GimpTool is located at
GIMPSRC/app/tools/gimptool.h, where GIMPSRC is a path to a directory with GIMP
source code.
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Figure 3.1: N-point image deformation tool in development version (2.9) of
GIMP

Description of user interface

Figure 3.1 depicts how the n-point image deformation tool is integrated into
GIMP’s GUI.

User can activate the tool using an icon located in the toolbar or al-
ternatively using an item in the main menu or using a keyboard shortcut.
However, this does not start the tool. GIMP allows user to work with mul-
tiple images. It is possible to switch among them or have them displayed
side by side. In order to allow a tool to get access to image data of a
particular image, it is necessary to click on the image. This will start the
tool.

After starting the tool, an automatically constructed lattice composed of
squares of the specified size apperas over the image. The individual lattice
squares are constructed only over parts of the image which contains at least
one visible pixel. When the image does not contain an alpha channel, the
lattice is constructed over the whole image.

With a mouse click it is possible to place control points over the image
and with dragging them it is possible to deform it. As in other GIMP tools
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user can select (and deselect) one or more control points using the SHIFT
key or using so called rubber band selection. Selected control points can
be deleted using the DELETE key. The last added point can be removed
using the BACKSPACE key. By holding this key it is possible to quickly
remove all of the control points.

The behaviour of the tool can be adjusted using the following set of
settings which are depicted in Figure 3.1 at the bottom left corner:

– An option to show or hide the lattice.

– An option to specify the size of lattice squares – only before starting
the tool.

– An option to specify deformation rigidity, that is the number of de-
formation iterations performed prior to every rendering of the model
(i.e. deformed image).

– An option to specify the deformation type (i.e. deformation model) –
there are two possibilities: rigid (ARAP) or scale (ASAP)

– “Rigid” type is suitable for bending objects or manipulating parts
of articulated objects. It does not give very good results in
greater stretching or shrinking of an object (see a videoclip on
enclosed medium).

– “Scale” type uses ASAP deformation model and thus is able
to scale some parts of the image (see a videoclip on enclosed
medium).

– An option to employ weights that comes from Moving Least Squares
image deformation and to set a parameter α (see section 1.5.1).

– This option, while using a rigid type of deformation, gives bet-
ter results in greater stretching or shrinking of an object – for
example, it is very useful for a face deformation (see a videoclip
on enclosed medium).

– An option to specify a method for interpolation of the resulting image
(for a preview of the deformation, bilinear interpolation is used) – user
can choose from all of the methods that are available in GIMP (or
more precisely in GEGL library) – i.e. nearest neighbour, bilinear,
cubic, NoHalo and LoHalo interpolation method.
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Figure 3.2: Depth of control points

If the user is satisfied with the result of the deformation, he can stop the
tool by pressing ENTER. The deformed image is then redrawn using the
selected interpolation method. If the user wants to stop the tool and discard
changes in the image, he can press ESC.

Current problems of the tool

The tool has currently problems regarding speed when working with large
images, mainly due to redrawing the preview of the deformation. The
preview has to be rendered several times per second, which is what causes
the problems. The solution is to deform a scaled down version of the image
during the preview and to render only parts of the image that are visible
in the GIMP window.

Currently, user does not have an option to set a depth of individual
control points and thus he cannot specify which part of the overlapping
lattice (image) will be visible. For example, we have an image of a figure,
we move its hand so that it overlaps its body. We want the hand to be in
front of the body (to be visible) or hidden behind the body – see Figure
3.2.

The tool currently does not use multiple CPU cores to speed up its
computations.
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3.2.4 N-point image registration tool
As the n-point deformation, the n-point image registration was implemented
into GIMP as an internal tool. The main reasons for this decision included
the possibility to use existing implementation of n-point deformation tool
and the possibility to allow the user to easily affect the registration process
(see section 2.5.3).

Implementation details

A class named GimpNPointRegistrationTool which extends GimpNPoint-
DeformationTool class was created. The n-point deformation tool class
was modified to allow its employment for other purposes – e.g. for regis-
tration purposes. As previously mentioned, the n-point deformation tool
uses a thread to perform the deformation. Within this thread a method,
the deformation code was moved into, is called. This method is overriden
in GimpNPointRegistrationTool by a method performing registration de-
scribed in section 2.5.1.

A class GimpNPointRegistrationOptions defining a set of settings of
the tool was created. This class extends GimpNPointDeformationOptions
class which was modified to allow its subclasses to use set of generic settings
of the deformation (i.e. a set of settings excluding MLS weights).

Description of user interface

Figure 3.3 depicts how the n-point image deformation tool is integrated into
GIMP’s GUI.

After activation of the tool, it is necessary to specify the source and the
target image which enters the registration process. Every image in GIMP
can be composed of several layers. The target image is always the first layer
and the source image is the active layer. In Figure 3.3, layers are depicted
at the upper right corner. The source image is the picture of a swan over
which the lattice is constructed, the target image is the picture of a swan
with neck further away from its body.

The registration process is started after clicking on the canvas. After
that, a lattice appears over the source image and user can manipulate the
image in the same way as with the n-point deformation tool.

The behaviour of the tool can be adjusted using the following set of
settings (we will describe only the settings that differ from the deformation
tool settings):
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Figure 3.3: N-point image registration tool in development version (2.9) of
GIMP

– An option to specify the values of block-matching parameters de-
scribed on page 30, that is “search area” (M) and “neighbourhood”
(N).

– An option to use the criterion for automatically stopping the regis-
tration process according to davg formula described on page 31.

– Registration is paused after 20 iterations during which values of
davg differ by less than the specified delta from the average value
d̄avg within these 20 iterations.

– When the registration is paused, user cannot manipulate with
the deformed image. Registration is resumed when this option is
unchecked or when the value of some the other options is changed
(e.g. M or N).

If user wants to apply the deformation, the tool can be stopped by pressing
ENTER, he can cancel the registration by pressing ESC.
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Current problems of the tool

The n-point registration tool inherits from its parent both benefits and
drawbacks. Again, there is the problem with large images. In this tool,
the problem also is caused by block-matching method that is employed
during registration. For large images, it is necessary to set a higher value
of the search parameters (“search area” and “neighbourhood”). A possible
solution is to use the hierarchical approach (see section 2.3.3) where we start
registering on scaled down image and gradually refine on larger images.

The tool currently does not use multiple CPU or GPU cores to speed
up computations of the block-matching.
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Chapter 4
Experiments

The n-point image registration (NPR) tool was tested on a set of images of
various type. Results of registration (i.e. deformed images) using the tool
were compared with results of registration using Drop [6] and NiftyReg [21]
tools.

This chapter briefly describes the mentioned methods and tools and the
results of experiments are presented here as well.

4.1 Drop
Drop is a tool allowing to perform non-linear image registration as well as
3D registration. It is based on a method described in [6]. The method is
an area-based method that uses free-form deformation model for deforming
the source image. The model is given by n control points which form a
grid. These points are fitted to a mapping function which can be linearly
interpolated but also interpolated e.g. using cubic B-splines [25]. Thanks to
employed optimization strategy, one can select an arbitrary (dis)similarity
measure [6]. The tool allows us to choose from a large number of these
measures – for example SAD, SSD, NCC, NMI (normalized mutual inform-
ation). Energetic function which is expressed using MRF (Markov Random
Fields) and which consists of similarity measure term and regularization
term is optimized employing discrete optimization (FastPD algorithm) [6].

The tool contains GUI that is comfortable to use. When needed, the
registration can be run also on command prompt.

The method uses hierarchical approach. The tool allows us to set a num-
ber of levels of image resolution (in the results section below we will refer
to them as imagelevels) and also a number of levels of grid squares (or
rectangles) sizes (gridlevels). We start with an initial size of grid squares
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sizes (gridsize) or in other words with grid of control points with spacing
specified by gridsize. With every subsequent level the grid is refined, i.e.
spacings are reduced by a half. In the results section below, the number of
iterations performed in every level will be called iterations and a simil-
arity measure will be called measure. The influence of the regularization
term can be adjusted using parameter λ.

The tool has been created for medical usage but it can be also used for
other purposes – for example, in [28] it is used to improve the final result
of ARAP registration of hand-drawn images.

Drop is able to load images of various medical formats – e.g. MHD
(MetaImage), Analyze, DICOM – but can also load classic raster PNG and
BMP images. The loaded images are converted to shades of gray, that
means that the color information is not utilized during registration. The
result of registration can be saved to a file in MHD format only. In a situ-
ation when color images enter the registration process and we would like to
obtain color resulting image, the tool allows to export a deformation (dis-
placement) field. The field is exported into two MHD format files. Both
files contain for every pixel of the source image one float number that rep-
resents a displacement along x axis (one file) and y axis (the other file).
The deformed color image can be obtained by applying this deformation
field on the source image (the field represents backward transformation).

The tool is available at http://www.mrf-registration.net where a
user manual describing various setting possibilities of the tool is also avail-
able.

4.2 NiftyReg
NiftyReg is a tool allowing to perform rigid or affine image registration as
well as non-linear image registration. It can also perform 3D registration.
Implementation of non-linear registration is based on method decribed in
[21] and [25].

The method is area-based method which uses free-form deformation
model based on cubic B-splines for deforming the source image. Again, the
model is specified by n control points that form a grid. As a (dis)similarity
measure, we can select one of SSD, NMI or KLD (Kullback–Leibler diver-
gence). Energetic function which consists of a similarity measure term and
a regularization term is optimized employing conjugate gradient method
(gradient ascent) [21].

Unlike the Drop tool, NiftyReg does not contain GUI. It can be run on
command prompty only.
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The method uses hierarchical approach. The number of levels can be
specified by parameter ln. Let us consider that we have a square grid of con-
trol points. We start with a grid of control points with spacing that equals
sx·2ln−1 and we finish with a grid with spacing given by optional parameter
sx. The maximum number of optimizing iterations that is performed in one
level can be specified by parameter maxit. We can also specify weights of
(sub)terms the regularization term consists of. These weights penalize some
unwanted properties of the sought deformation. Weight of a term penaliz-
ing bending [25] can be specified by parameter be. In the results section
below, a similarity measure will be called measure.

This tool is able to load images of medical format NII (NIfTI) as well as
e.g. images of raster graphics format PNG. All image output produced by
the tool is in NII format only. As in the case of software Drop, even NiftyReg
converts color input images to grayscale colors. Again, color output can be
obtained from deformation field which can be exported into a single file.
One half of content of the file represents a deformation along x axis, the
other half deformation along y axis.

The tool is available at http://sourceforge.net/projects/niftyreg/.

4.3 Results
The results of image registration using n-point registration (NPR) tool,
using Drop and NiftyReg are presented on the following pages. To every
single resulting image there is a set of parameters θ describing tool’s settings
written in tables. Parameters of NPR tool are described on page 46 and
48. Parameters of Drop and NiftyReg were described above.

The following three-phase procedure was chosen for experiments using
the NPR tool. The parameters used in these phases are indicated by θ11,
θ12, θ13. In the first phase the registration was usually started with high
rigidity value. By that the source image quickly roughly aligned with the
target image. In the second phase and with registration still running, the
rigidity was decreased. By that we achieved more accurate aligning of the
source image with the target image. In the last phase, deformation model
was changed from ARAP to ASAP which allowed a local change of scale.
By that the process was finished.

Although NPR tool allows interactive registration (see section 2.5.3 on
page 32) it was not used during experiments.

When experiments using Drop and NiftyReg took place, for every choice
of parameters, the registration was started from the beginning.
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The parameters θ12 (or θ13), θ22 a θ32 describe settings giving the best
results that I was able to achieve within experiments.

Images presented on the following pages are available on the attached
media in full resolution.

(a) source image (b) target image (c) initial overlap

(d) NPR ARAP θ11 (e) NPR ARAP θ12 (f) NPR ASAP θ13

(g) Drop θ21 (h) Drop θ22 (i) NiftyReg θ31 (j) NiftyReg θ32

Figure 4.1: Experiment 1 – methods results; images resolution: 420× 541

Tool Image Parameters
NPR (d) θ11 = {density = 16, rigidity = 600, mode = rigid, M = 24, N = 8}
NPR (e) θ12 = {density = 16, rigidity = 30, mode = rigid, M = 20, N = 8}
NPR (f) θ13 = {density = 16, rigidity = 30, mode = scale, M = 20, N = 8}
Drop (g) θ21 = {gridsize = 64, imagelevels = 5, gridlevels = 5, iterations = 5,

measure = SAD, λ = 10}
Drop (h) θ22 = {gridsize = 128, imagelevels = 5, gridlevels = 5,

iterations = 5, measure = SAD, λ = 10}
NiftyReg (i) θ31 = {sx = 25, ln = 5, maxit = 300, measure = SSD, be = 0}
NiftyReg (j) θ32 = {sx = 29, ln = 5, maxit = 350, measure = SSD, be = 0}

Table 4.1: Experiment 1 – methods parameters
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4.3. Results

(a) source image (b) target image (c) initial overlap

(d) NPR ARAP θ11 (e) NPR ARAP θ12 (f) NPR ASAP θ13

(g) Drop θ21 (h) Drop θ22

(i) NiftyReg θ31 (j) NiftyReg θ32

Figure 4.2: Experiment 2 – methods results; images resolution: 560× 400

Tool Image Parameters
NPR (d) θ11 = {density = 16, rigidity = 200, mode = rigid, M = 20, N = 8}
NPR (e) θ12 = {density = 16, rigidity = 30, mode = rigid, M = 20, N = 8}
NPR (f) θ13 = {density = 16, rigidity = 30, mode = scale, M = 20, N = 8}
Drop (g) θ21 = {gridsize = 64, imagelevels = 3, gridlevels = 3, iterations = 5,

measure = SAD, λ = 10}
Drop (h) θ22 = {gridsize = 128, imagelevels = 4, gridlevels = 4,

iterations = 5, measure = SAD, λ = 10}
NiftyReg (i) θ31 = {sx = 25, ln = 5, maxit = 100, measure = SSD, be = 0}
NiftyReg (j) θ32 = {sx = 29, ln = 5, maxit = 300, measure = SSD, be = 0}

Table 4.2: Experiment 2 – methods parameters
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4. Experiments

(a) source image (b) target image (c) initial difference

(d) NPR ARAP θ11 (e) NPR ARAP θ12 (f) NPR ASAP θ13

(g) Drop θ21 (h) Drop θ22 (i) NiftyReg θ31 (j) NiftyReg θ32

Figure 4.3: Experiment 3 – methods results; images resolution: 421 × 436. To
show the resulting overlap, difference images have been used. In
terms of similarity, Figures (g) a (i) are closer to the target image
than Figures (h) and (j). However, the deformation is so large that
the original structure of the brain disappears. Therefore, as a better
result, images in Figures (h) and (j) have been selected.

Tool Image Parameters
NPR (d) θ11 = {density = 10, rigidity = 50, mode = rigid, M = 5, N = 10}
NPR (e) θ12 = {density = 10, rigidity = 5, mode = rigid, M = 5, N = 15}
NPR (f) θ13 = {density = 10, rigidity = 10, mode = scale, M = 5, N = 15}
Drop (g) θ21 = {gridsize = 32, imagelevels = 3, gridlevels = 3, iterations = 5,

measure = SAD, λ = 10}
Drop (h) θ22 = {gridsize = 32, imagelevels = 3, gridlevels = 3, iterations = 5,

measure = SAD, λ = 100}
NiftyReg (i) θ31 = {sx = 5, ln = 5, maxit = 300, measure = SSD, be = 0}
NiftyReg (j) θ32 = {sx = 5, ln = 5, maxit = 300, measure = SSD, be = 0.005}

Table 4.3: Experiment 3 – methods parameters
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4.3. Results

(a) source image (b) target image (c) initial overlap

(d) NPR ARAP θ11 (e) NPR ARAP θ12 (f) NPR ASAP θ13

(g) Drop θ21 (h) Drop θ22 (i) NiftyReg θ31 (j) NiftyReg θ32

Figure 4.4: Experiment 4 – methods results; images resolution: 489× 656

Tool Image Parameters
NPR (d) θ11 = {density = 16, rigidity = 200, mode = rigid, M = 24, N = 8}
NPR (e) θ12 = {density = 16, rigidity = 30, mode = rigid, M = 10, N = 15}
NPR (f) θ13 = {density = 16, rigidity = 30, mode = scale, M = 10, N = 15}
Drop (g) θ21 = {gridsize = 128, imagelevels = 4, gridlevels = 4,

iterations = 5, measure = SAD, λ = 10}
Drop (h) θ22 = {gridsize = 192, imagelevels = 7, gridlevels = 5,

iterations = 5, measure = SAD, λ = 10}
NiftyReg (i) θ31 = {sx = 305, ln = 5, maxit = 150, measure = SSD, be = 0}
NiftyReg (j) θ32 = {sx = 35, ln = 5, maxit = 100, measure = SSD, be = 0}

Table 4.4: Experiment 4 – methods parameters
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Conclusion

In this thesis, I utilized the experience gained through summer 2013 and
also other experiences gained during studying. Into the development version
of GIMP I have implemented a tool allowing image registration preserving
rigidity.

Results showing the functionality of the tool have been presented in
the chapter with experiments in which the tool was compared with some
other image registration methods. From these experiments it is evident
that some modern non-linear image registration methods, when properly
set, are able to cope even with a large deformation of images entering the
registration. In contrast to these methods a great advantage of ARAP
registration method can, in some situations, be the fact, that it produces,
in almost all circumstances, the results that are not unnaturally deformed.
This feature of the method is particularly useful when registering real or
cartoon figures and their poses.

The process of integrating a new, wider, functionality into well-esta-
blished program as GIMP, is not of the easiest – it is composed of many
subproblems and takes a lot of time. The tool, which was developed within
this thesis is functional however still not perfect – some of its weaknesses
has been described in the chapter on implementation. Further work is thus,
among other things, to eliminate those weaknesses.

Thanks to this thesis, I broaden my horizons some more. I am grateful
for the oportunity to be involved in interesting projects connected to this
thesis.
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Appendix A
Acronyms

ARAP As-Rigid-As-Possible

ASAP As-Similar-As-Possible

FLOSS Free/Libre/Open Source Software

GEGL Generic Graphics Library

GIGO Garbage In, Garbage Out

GIMP GNU Image Manipulation Program

GPL General Public Licence

GSOC Google Summer of Code

GUI Graphical User Interface

MLS Moving Least Squares

MoCap Motion Capture

NCC Normalized Cross-Correlation

NPR N-Point Registration

SAD Sum of Absolute Differences

SIMD Single Instruction Multiple Data

SSD Sum of Squared Differences

SVD Singular Value Decomposition
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Appendix B
Contents of enclosed CD

readme.txt..............................brief description of the CD
bin.........directory with the executable form of the implementation
results ...................................... results of experiments
src

impl...........................source code of the implementation
thesis..........................source text of the thesis in LATEX

text
thesis-en.pdf ........ english version of the thesis in PDF format
thesis-cz.pdf..........czech version of the thesis in PDF format

video .............. video clips presenting the capabilities of the tools

67


	Introduction
	Motivation
	Goals of the thesis
	Structure of the thesis

	Image deformation
	Translation
	Similarity
	Affine model
	Multipoint affine deformation

	Projective model
	ARAP, ASAP deformation models
	Deformation using Moving Least Squares
	3D ARAP, ASAP deformation


	Image registration
	Applications of image registration
	Measures of image (dis)similarity
	Sum of Absolute Differences (SAD)or also L1 norm or Manhattan norm 
	Sum of Squared Differences (SSD)or also squared L2 norm or squared Euclidean distance
	Normalized Cross-Correlation (NCC)

	Image registration methods
	Area-based methods
	Feature-based methods
	Hierarchical approachalternatively also coarse-to-fine, pyramidal or multiresolution approach

	ARAP, ASAP image registration method
	3D ARAP registration
	Interactive registration


	Implementation
	Implementation of the algorithm in C
	Data types
	Computational part of the library
	Graphics part of the library
	Other rutines implemented in the library

	Implementation into GIMP
	GIMP and current development trends
	GEGL operation implementing n-point deformation
	N-point image deformation tool
	N-point image registration tool


	Experiments
	Drop
	NiftyReg
	Results

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

