
Na tomto míst¥ bude o�ciální zadání

va²í práce

• Toto zadání je podepsané d¥kanem a vedoucím katedry,

• musíte si ho vyzvednout na studiijním odd¥lení Katedry po£íta£· na Karlov¥ nám¥stí,

• v jedné odevzdané práci bude originál tohoto zadání (originál z·stává po obhajob¥ na
kated°e),

• ve druhé bude na stejném míst¥ neov¥°ená kopie tohoto dokumentu (tato se vám vrátí
po obhajob¥).

i

ii

Czech Technical University in Prague

Faculty of Electrical Engineering

Department of Computer Graphics and Interaction

Master's Thesis

E�cient methods for computing complex global illumination
e�ects

Bc. Robin Hub

Supervisor: Ing. Bittner Jiri, Ph.D.

Study Programme: Open Informatics

Field of Study: Computer Graphics and Interaction

December 19, 2013

iv

v

Aknowledgements

I would like to thank Ing. Ji°í Bittner, Ph.D. for his professional supervision and advices.
Doc. Ing. Vlastimil Havran, Ph.D. for his valuable comments and remarks. Martin �týs for
proofreading the theoretical part. Iliyan Georgiev for allowing me to use his scenes for the
evaluation of the implementation.

vi

vii

Declaration

I hereby declare that I have completed this thesis independently and that I have listed all
the literature and publications used.
I have no objection to usage of this work in compliance with the act �60 Zákon £. 121/2000Sb.
(copyright law), and with the rights connected with the copyright act including the changes
in the act.

In Prague on December 19, 2013 .

viii

Abstract

Computing a photo realistic image of an arbitrary virtual scene in an a�ordable amount of
time is still an open problem. Often, one has to trade certain illumination e�ects for speed.
However, the recently proposed global illumination methods show that the solution to the
problem does not only lie in increasing the speed of the computer hardware, but also in
careful algorithm design.

This thesis presents a comprehensive overview of the theory of the global illumination,
discusses the fundamental rendering algorithms using the presented concepts and a recent
method, vertex connection and merging (VCM)[GKDS12], is presented in detail as a com-
bination of the basic algorithms. The text follows with the description of the architecture
of an advanced photorealistic rendering software and with the description of the VCM im-
plementation within an existing rendering toolkit. Then we evaluate the VCM algorithm,
compare it to the other algorithms, and present how its input parameters a�ect the resulting
image.

ix

x

Contents

1 Introduction 1

1.1 Global Illumination . 1
1.2 Approaches to Global Illumination . 2

2 Preliminaries 3

2.1 Foundations . 3
2.1.1 Common de�nitions and notations . 3
2.1.2 Abstract model of light . 7
2.1.3 Radiometry and radiometric quantities 7
2.1.4 Light surface interaction . 9

2.1.4.1 BRDF . 10
2.1.4.2 BTDF . 11
2.1.4.3 BSDF . 12

2.1.5 Light transport and measurement . 13
2.1.6 Monte Carlo integration . 15

2.1.6.1 Introduction . 16
2.1.6.2 Importance sampling . 17
2.1.6.3 Multiple importance sampling 19
2.1.6.4 Russian roulette . 20

2.2 Path sampling methods . 20
2.2.1 Path space formulation of light transport 20
2.2.2 Path tracing . 23
2.2.3 Bidirectional path tracing . 26

2.3 Density estimation methods . 29
2.3.1 A short introduction to particle tracing 29
2.3.2 Photon mapping . 29

2.3.2.1 Photon map generation . 30
2.3.2.2 Rendering using photon map 31
2.3.2.3 Extensions . 32

2.3.3 Progressive photon mapping . 32
2.3.4 Stochastic progressive photon mapping 35
2.3.5 Bidirectional photon mapping . 35

xi

xii CONTENTS

3 Vertex connection and merging 37

3.1 Vertex connection . 38
3.2 Vertex merging . 38
3.3 Measurement estimation . 39
3.4 The VCM algorithm . 40
3.5 Convergence . 42

4 Implementation 43

4.1 Global Illumination Rendering Toolkit (GIRT) 43
4.1.1 Design goals . 44
4.1.2 Library overview . 45

4.1.2.1 Scene . 45
4.1.2.2 Materials . 48
4.1.2.3 Camera models . 49
4.1.2.4 Rendering . 49
4.1.2.5 Image �ltering and tone mapping 51
4.1.2.6 Implementation details . 51

4.2 Vertex connection and merging implementation 53

5 Results 61

5.1 Testing correctness . 61
5.2 Rendering algorithms comparison . 63
5.3 Optimizing VCM input parameters . 65
5.4 Increasing the number of vertex merging samples 66
5.5 Computing image for more merging radii at once 67

6 Conclusion 75

6.1 Future work . 75

Bibliography 77

A Materials de�nition �le example 81

B Lights de�nition �le example 83

C Benchmark de�nition �le example 85

D Image gallery 87

E Installation and user manual 91

E.1 Requirements . 91
E.2 GIRay application . 91
E.3 GIRay Benchmark application . 93
E.4 Building from source code . 93

F DVD Content 95

List of Figures

1.1 The bathroom scene created for the purposes of this thesis and rendered by
our implementation of the VCM algorithm. 2

2.1 A direction −→ω and the associated solid angle dσ(−→ω). 4
2.2 A direction −→ω and the associated projected solid angle dσ⊥x (−→ω). 5
2.3 Geometric settings of two points . 6
2.4 Incident radiance from the direction −→ωi is scattered uniformly to all directions. 10
2.5 Portion of the incident radiance from the direction−→ωi is scattered in the perfect

re�ection direction only. 11
2.6 Portion of the incident radiance from the direction−→ωi is scattered in the perfect

refraction direction only. 12
2.7 The canonical uniform random variable. 17
2.8 Visualization of the inversion method. The random variable ξ1 is mapped to

the random variable y ∼ py through P−1
y . 18

2.9 A path of length k = 4. 21
2.10 A single measurement during unidirectional path tracing. 25
2.11 A single measurement during the path tracing with next event estimation

without explicit connection to the camera vertex. 26
2.12 A single measurement during the bidirectional path tracing. A light path with

2 vertices is connected to an eye path with 3 vertices. Dashed lines depict the
explicit subpath connections. 27

2.13 A single traced photon path during the process of photon map generation.
The yellow line depicts the light source, which is the start point of every
photon path. Individual photon records created by tracing depicted photon
path are shown as yellow disks. 30

2.14 Rendering from the photon map. Figure depicts the process of radiance esti-
mation for two pixels. Red discs represent hitpoints created by tracing primary
rays from the camera. Yellow discs represent photons stored in the photon
map. A single thin arrow points in the direction from which is a particular
photon incident. The circles visualizes the photon search radius. Note that
we required 5 photons for a single radiance estimate. 32

2.15 Visualization of radiance estimate for a single pixel within bidirectional pho-
ton mapping. An eye path is traced through the scene. Photon map radiance
estimate is performed at each eye vertex (red disc) and the results are com-
bined using the multiple importance sampling 35

xiii

xiv LIST OF FIGURES

3.1 A path of length k = 4 sampled by the vertex connection technique s = 2 , t = 3. 38
3.2 A path of length k = 4 sampled by the vertex merging technique s = 3 , t = 3. 38
3.3 This �gure depicts the vertex connection and merging estimate for a single

pixel. Each eye path vertex (red disc) is connected to each light path vertex
(yellow disc) as in bidirectional path tracing. Additionally, photon mapping
radiance estimate is performed at each eye path vertex. 42

4.1 The architecture around the class SceneCache. 46
4.2 The architecture around the class Light. 47
4.3 The architecture around the class Material. 48
4.4 The architecture around the class Camera. 50
4.5 The architecture around the class AbstractRenderer. 50

D.1 The virtual model of the hallway at Department of Computer Graphics at
Czech Technical University in Prague create by Tomá² Kraus within his Bach-
elor's thesis. Rendering took 3 hours. 88

D.2 The car model created by Alex Kuntz and modi�ed by Iliyan Georgiev. The
scene is lit by a HDR environment map. Render time was 1 hour. 88

D.3 An image of the living room scene, which was modeled by Iliyan Georgiev.
Render time was 2 hours. 89

D.4 Bathroom scene lit by a special light source that imitates sunny daylight
through a window. Rendering took 1 hour. 89

D.5 Mirror balls scene by Toshiya Hachisuka rendered in 1 hour. 90

E.1 A screenshot of the GIRay application. 92
E.2 A screenshot of the GIRay application. 93

List of Tables

2.1 Common notations used in this thesis. 4

5.1 The top left image shows the reference image produced by our implementa-
tion of path tracing with the next event estimation in 30 minutes. The top
right image shows the same scene rendered by our implementation of vertex
connection and merging in the same amount of time. The bottom left image
visualizes the color di�erence between top images. The RMS di�erence is
0.006. The plot visualizes how the RMS di�erence from the reference evolved
in time for both algorithms. The contour of the light source on the di�er-
ence image is caused by the random sampling of pixel locations. See that
the path tracer converges faster in this simple case (di�use surfaces) than the
VCM, since within 30 minutes it performed 3657 iterations while the VCM
performed only 929 iterations. 62

5.2 Tone mapped reference images of the scenes used for the evaluation of our
VCM implementation. Left: Mirror balls scene by Toshiya Hachisuka Mid-

dle: Living room scene by Iliyan Georgiev Right: custom Bathroom scene . . 63

5.3 This table shows some pro�ling information of the last VCM iteration that
was performed when the images for the tables 5.6, 5.7, and 5.8 were created.
The table 5.4 provides column descriptions. 65

5.4 This table provides column descriptions of the table 5.3. All times are in
milliseconds and bound to the last iteration. 65

5.5 The result of VCM rendering after 1 minute and after 1 hour of the three scenes
used for the evaluation of our VCM implementation, Mirror balls, Living room,
and Bathroom. First column shows the complete image while the middle
column shows its vertex merging contribution and the right column shows its
vertex connection contribution. The number of iterations accomplished by
the algorithm so far is also provided. 68

xv

xvi LIST OF TABLES

5.6 The result of rendering the Mirror balls scene after 60 minutes by vertex con-
nection and merging, bidirectional path tracing, bidirectional photon map-
ping, and path tracing with the next event estimation. Number of iterations
(samples per pixel) is also provided. The bottom left image shows the ref-
erence image computed by the VCM algorithm in 5 hours. The plot in the
bottom right corner shows the evolution of the RMS di�erence from the refer-
ence image for individual methods. The spikes in convergence of the VCM and
the BPM were caused by the current merging radius and photons densities
together at a particular time. 69

5.7 The result of rendering the Living room scene after 60 minutes by vertex con-
nection and merging, bidirectional path tracing, bidirectional photon map-
ping, and path tracing with the next event estimation. Number of iterations
(samples per pixel) is also provided. The bottom left image shows the ref-
erence image computed by the VCM algorithm in 5 hours. The plot in the
bottom right corner shows the evolution of the RMS di�erence from the ref-
erence image for individual methods. 70

5.8 The result of rendering the Bathroom scene after 60 minutes by vertex connec-
tion and merging, bidirectional path tracing, bidirectional photon mapping,
and path tracing with the next event estimation. Number of iterations (sam-
ples per pixel) is also provided. The bottom left image shows the reference
image computed by the VCM algorithm in 5 hours. The plot in the bottom
right corner shows the evolution of the RMS di�erence from the reference
image for individual methods. 71

5.9 Results presented in this table show that sometimes it might be worth to
increase the impact of vertex merging by increasing the number of light
paths, which most likely increases the amount of photon records. All im-
ages (1024x768) on this table were created by the VCM algorithm after 60
minutes. The top left image was created with the merging radius 12.5 mm
and every iteration the number of pixels light paths were traced. The next
image to the right was created with the same initial merging radius but the
number of light paths were quadrupled. To generate the bottom left image
we doubled the merging radius and changed the number of light paths back
to the number of pixels. The plot shows the RMS di�erence from reference of
all three images in time and we can see that increased number of photons led
to a better result. See the section 5.4 for more detailed discussion. 72

5.10 The results of the vertex connection and merging for a various initial merging
radii in time in the context of the Living room scene. The vertex merging at
the second eye path vertex was turned on. The left column shows the result
for the radius of 5mm, the middle column for 12mm, and the right column for
25mm. 73

5.11 The results of the vertex connection and merging for a various initial merging
radii in time in the context of the Living room scene. The vertex merging at
the second eye path vertex was turned o�. The left column shows the result
for the radius of 5mm, the middle column for 12mm, and the right column for
25mm. 74

Chapter 1

Introduction

Global illumination is the part of the computer graphics that deals with the photorealistic
image synthesis. The quality of the result is the most important aspect. Of course, speed
is also an important factor but not that important as it is in real time applications (e.g.
games). Global illumination tries to provide digital images of virtual scenes which are indis-
tinguishable from the photographs taken by today's cameras. This means global simulation
of light transport without making any crucial simpli�cation. The �gure 1.1 shows an image
rendered using the VCM global illumination algorithm presented in this thesis.

1.1 Global Illumination

The problem of global illumination is to �nd the amount of light incident on the camera
sensor. This is a very short and vague de�nition but it should su�ce for an intuitive under-
standing of the problem. Light emanates from its sources, travels through the environment
and is absorbed or scattered upon interaction with the scene surface. In reality it takes
some time before the light reaches a sensory surface. We can think about our virtual scene
as about a closed system, in which the light emission is constant. That entails we are only
interested in the incident amount of light on the camera sensor at any time at which the
light distribution has already reached its equilibrium. In this case, we can assume that the
light propagates at in�nite speed, which means that time is not taken into account.

The thesis is restricted to the light model based on geometrical optics and radiometry.
This choice allows the simulation of most global illumination e�ects (e.g. di�use inter-
re�ection) as well as it keeps the computational cost relatively low. One of the very important
e�ects not discussed here is participating media. Pharr et al.[PH10] o�er a comprehensive
discourse on this topic. Note that we could use the wave optics to model the light, which is
relatively complicated but it allows us to simulate the e�ects of interference, di�raction, and
polarization. Recall that our goal is to generate photo-realistic images, not exact physical
measurements. The mentioned wave optics e�ects can be mostly omitted without anyone's
notice.

Global illumination is a fragment in the process of computer generated image acquisi-
tion. Unfortunately it is not the only thing we have to solve in order to be able to present
photo realistic pictures on today's low dynamic range (LDR) displays. The tone mapping

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: The bathroom scene created for the purposes of this thesis and rendered by our
implementation of the VCM algorithm.

is the process that does exactly that enables to view high dynamic range images on LDR
display. It takes a generated HDR image and produces its LDR version. Tone mapping is a
very extensive topic on its own and is orthogonal to global illumination, therefore it is not
discussed in this thesis. Reinhard et al.[RWP+10] or Banterle et al.[BADC11] o�er a good
insight to the topic.

1.2 Approaches to Global Illumination

Solving global illumination is in general a very computationally expensive task even if geo-
metric optics is used and time is not taken into account. We can drop certain lighting e�ects
like glossy inter-re�ections, but this would decrease the realism of resulting image. These
methods are not tackled in this text, because they can be derived from discussed methods.

Most methods that solves global illumination is stochastic and is based on estimating
the result using Monte Carlo integration (e.g. path tracing). Each such method proposed
till this day has its own weaknesses and strengths, which means that there is no omnipotent
algorithm, that we could use. There are two main approaches to global illumination, one
is based on sampling the space of light carrying paths (e.g. Bidirectional path tracing) and
the other is using the density estimation (e.g. Photon Mapping). Georgiev et al.[GKDS12]
proposed new method called vertex connection and merging(VCM), which is a practical
combination of both mentioned approaches. VCM is a robust algorithm, which can handle
a wide variety of scenes.

That said, we can start with more formal discussion of the theoretical background.

Chapter 2

Preliminaries

2.1 Foundations

The following text introduces the required theoretical background that is common to all
global illumination algorithms discussed throughout this thesis. Theory is mostly presented
in an informal and intuitive way to give the reader basic knowledge to understand later sec-
tions. References to the relevant resources are provided through the following text. Readers
already familiar with the radiometry, light transport, and the Monte Carlo numerical inte-
gration can skip directly to the next section.

In the following text, we heavily use concepts from the measure theory [CK08][Bar95].
For example we will be working with measure spaces and Lebesgue integration. It is necessary
that the reader understands the measure theory at least basically before continuing.

2.1.1 Common de�nitions and notations

The comprehensive overview of all common de�nitions and notations is given in the table
2.1. The following text provides a more elaborate introduction.

Surface

Scene surfaceM is a set of points x ∈ R3. Every surface point has its normal denoted byNx.
For practical reasons we restrictM to be a union of piecewise di�erentiable two-dimensional
manifolds with boundaries (e.g. triangles).

We de�ne the measure A onM in a natural way, so that A(D) is the surface area of a
set D ⊆M. This way, given a function f :M→ R∫

M
f(x) dA(x)

denotes the Lebesgue integral of f with respect to the surface area measure.

3

4 CHAPTER 2. PRELIMINARIES

Notation Description

S2 The set of all directions, the unit sphere in R3

M The set of all surface points.
H2

+(x) Upward hemisphere at the point x.
H2
−(x) Downward hemisphere at the point x.

TM(x) Tangent space of point the point x.
V (x,y) Visibility between points x, y.
G(x,y) Geometric term of points x, y.
〈f, g〉 Inner product of functions f , g.
δσ Dirac's delta function with respect to the σ measure.
Nx Normal vector of the point x.

Rx(−→ω) Re�ection of the direction vector −→ω around the surface normal at the point x.
Tx(−→ω) Direction of the transmitted light incident from −→ω at the point x.
−→xy Unit length direction vector from x to y

cos θxy Nx · −→xy

Table 2.1: Common notations used in this thesis.

Directions and solid angle

A direction −→ω is represented by a unit vector in R3. The union of all directions in the
mentioned space is denoted as S2, the unit sphere in R3. Measure σ on S2 is de�ned in
the way, such that σ(D) represents the solid angle generated by a set of directions D ⊆ S2

(e.g. surface area of the unit sphere). As with the surface area measure, given a function
f : S2 → R ∫

D⊆S2
f(−→ω) dσ(−→ω)

denotes the Lebesgue integral of f with respect to the solid angle D. Figure 2.1 shows a
direction vector together with di�erential solid angle associated with it.

−→ω
dσ(−→ω)

x

Nx

Figure 2.1: A direction −→ω and the associated solid angle dσ(−→ω).

Given a surface point x, we de�ne the upper hemisphere

H2
+(x) = {−→ω ∈ S2 : Nx · −→ω > 0},

the lower hemisphere
H2
−(x) = {−→ω ∈ S2 : Nx · −→ω < 0}

2.1. FOUNDATIONS 5

and the tangent space
TM(x) = {y ∈M : Nx · −→xy = 0} .

Projected solid angle

The next concept we will work with, is the projected solid angle. Given a surface point x
and a set of directions D ⊆ S2, we de�ne it as

σ⊥x (D) =

∫
D
Nx · −→ω dσ(−→ω)

This concept is for example very useful when it comes to computation of irradiance at
particular surface point. Notice that σ⊥x (H2

+(x)) = π, which is the area of the tangential
unit disk at the point x. Figure 2.2 shows the di�erential projected solid angle for a direction.

−→ω

dσ⊥x (−→ω)
x

Nx
dσ(−→ω)

Figure 2.2: A direction −→ω and the associated projected solid angle dσ⊥x (−→ω).

Geometric factor

Consider the geometric setting depicted by the �gure 2.3. We de�ne the geometric factor of
two surface points x ,y ∈M as

G(x,y) =
|Nx · −→xy| |Ny · −→yx|

‖x− y‖2 V (x,y) =
| cos θxy|| cos θyx|

d2
V (x,y) , (2.1)

where V (x,y) is the visibility function de�ned as follows

V (x,y) =

{
1 if x,y are mutually visible
0 otherwise

∣∣∣∣ x,y ∈M . (2.2)

Intuitively, we can interpret the geometric factor as projecting a very small area centered
around y to the surface of the unit sphere placed at x and consecutively projecting the
incurred solid angle to the tangent space TM(x). The geometry factor is mainly used for
transforming functions de�ned against the solid angle measure when integration is done with
respect to the surface area measure.

Ray space and throughput measure

We need to be familiar with the concept of the ray space [Vea98] R which is the Cartesian
product M × S2. The ray r(x,−→ω) ∈ R starts at the surface point x and goes in the

6 CHAPTER 2. PRELIMINARIES

y

x

θxy

θyx
d

Nx

Ny

Figure 2.3: Geometric settings of two points

direction −→ω . The restriction to the set of pointsM emanates from the fact that there is no
participating media present.

We next introduce the throughput measure [Vea98] τ onR in order to be able to integrate
functions on the ray space. Its di�erential form is de�ned as

dτ(r) = dτ(x,−→ω) = dA(x)dσ⊥x (−→ω) .

The throughput τ(D) of a set of rays D ⊆ R is then∫
D
dτ(r) =

∫
D
dA(x)dσ⊥x (−→ω) .

The ray space can also be de�ned as the Cartesian product M×M. A pair of points
(x,y) de�nes the ray r(x,−→xy). The di�erential throughput measure of such ray is then

dτ(r) = dA(x)
dσ⊥x (−→xy)| cos θyx|
‖x− y‖2 V (x,y) = dA(x)dA(y)G(x,y) .

Note that de�ningR as the Cartesian product of all surface points leads to some redundancy.
Two pairs of points (x1,x2) and (x1,x3) de�ne the same ray as long as −−−→x1x2 = −−−→x1x3. Nev-
ertheless this formulation is used later when the path integral formulation of light transport

is discussed.

Other de�nitions

Inner product Given two real valued functions f , g de�ned on a measurable space (X,Σ),
we de�ne the inner product of mentioned functions with respect to a measure µ de�ned on
our measurable space as

〈f, g〉 =

∫
X
f(x)g(x) dµ(x) . (2.3)

Inner product greatly simpli�es the mathematical formulation of light transport.

Dirac's delta function Dirac's delta function is an important concept of the real analysis.
It is real valued function denoted as δ(x) with the following properties:

1. δ(x) =

{
∞ if x = 0
0 otherwise

∣∣∣∣ x ∈ R

2.1. FOUNDATIONS 7

2.
∫
R δ(x)dx = 1

Most of the time, we will be dealing with the Lebesgue integral of a real valued function
de�ned on a measure space 〈X,Σ, µ〉, therefore we introduce the function δx

′
µ for a �xed

x′ ∈ X which denotes the Dirac's delta function of the given measure space. Analogously,
δx
′

µ has the following properties:

1. δx
′

µ (x) =

{
∞ if x = x′

0 otherwise

∣∣∣∣ x,x′ ∈ X

2.
∫
X δ

x′
µ (x)dµ(x) = 1 | x,x′ ∈ X

Note that in the de�nition of delta function against the measure space we could simply use
the identity element of that measure space, which would result in the de�nition very similar
to δ(x ∈ R) (2.1.1). The approach taken will be justi�ed later when we discuss specular
BSDF or certain types of light sources.

2.1.2 Abstract model of light

One doesn't have to understand the exact physics of light to be able to create realistically
looking computer images. Light is a synonym for electromagnetic radiation, which is carried
by particles called photons. These particles have very complex behavior which di�ers by their
wavelength. The human visual system is stimulated by photons that carry electromagnetic
radiation at wavelength of range from 380 nm to 720 nm. We call this range the visible light.
When simulating the visible light for the purposes of digital image synthesis we can a�ord
many simpli�cations. That means we can drop certain details and use radiometric quantities
as well as assume that the visible light travels on a straight line and use geometrical optics
to transport these quantities in the space. This way we are still able to simulate important
illumination e�ects and create digital images that are indistinguishable from photographs
taken by today's cameras.

Now it is a good time to mention that throughout this thesis we will be dealing with phys-
ical measurements only. Human perception of these measurements is not discussed. That
means we won't talk about photometry or colorimetry. The �rst chapter of the Sharma's
book [Sha03] provides a comprehensive overview of the mentioned �eld.

2.1.3 Radiometry and radiometric quantities

Radiometry is a part of optics that deals with the measurement of electromagnetic radiation
in the space. It is an abstraction from the actual photons. Because the number of photons
required to stimulate sensors in the human visual system is very large, we no more treat
photons as discreet particles, but instead we care about the energy E they carry, which is
given by E = h

c

λ
, where h is the Planck constant and c is the speed of light in vacuum. That

means we regard the energy of photons as a continuous variable and we de�ne the behavior
of the visible light using mathematical tools for continuous variables. In the following text,
radiometric quantities are de�ned and their intuitive meaning is given. However, in order to
be able to develop global illumination algorithms, it is necessary to have solid understanding
of radiometry in general.

8 CHAPTER 2. PRELIMINARIES

Phase space

Phase space ψ [Vea98] is the Cartesian product R3×S2×R+, where individual parts stand
for position, direction, and wavelength. It is a 6-dimensional space which can be used to
describe the state of a photon particle at a �xed time. By counting the number of photons
within a given region of the path space we acquire the photon number Np for that region.
Using Np we can derive the function fd(p), which gives us the density of photon particles
at the path space point p(x,−→ω , λ). We also de�ne the measure µψ(p) on the phase space
through its di�erential form

dµψ(p) = dµψ(x,−→ω , λ) = dA(x)dσ(−→ω)dλ (2.4)

Radiant energy

Radiant energy Q with units of [J] is a function of time de�ned as

Q(t) =

∫ t

t0

∫
p∈D

fd(p)dµψ(p)dt , (2.5)

where D ⊆ ψ.
Di�erentiation of Q with respect to wavelength results in the spectral radiance energy

Qλ with units of [J ·m−1].

Radiant power (Radiant �ux)

Radiant power or radiant �ux Φ is de�ned as the derivative of radiant energy with respect
to the time.

Φ(t) =
dQ(t)

dt
(2.6)

It has units of [W]. Intuitively, radiant �ux represents the change of radiant energy at a
�xed time within a subset of phase space. Like in the case of the spectral energy there exist
spectral variant denoted Φλ.

Radiance

Radiance L with units of [W · sr−1 · m−2] is the most important radiometric quantity in
the context of global illumination. It is the amount of energy �owing through a point in
a speci�c direction at a �xed time. More formally it can be de�ned using ray space and
throughput measure as

L(r) =
dΦ(r)

dτ(r)
, (2.7)

where r ∈ R.
The following de�nition of L is equivalent to 2.7 and is used more frequently within the

global illumination literature.

L(x,−→ω) =
dΦ(x,−→ω)

cos θdσ(−→ω)dA(x)
=

dΦ(x,−→ω)

dσ⊥x (−→ω)dA(x)
(2.8)

2.1. FOUNDATIONS 9

In 2.8 x ∈ R3, −→ω ∈ S2 and θ denotes the angle between the direction −→ω and the surface
normal Nx. Note the cos θ factor in 2.8 which tells that the radiance is de�ned with respect
to the hypothetical di�erential surface centered around a point perpendicular to a direction
of the radiance �ow. Without this, the radiance would be dependent on a particular scene
geometry.

Radiance is a function of time which is not stated explicitly to simplify notations. We
can mostly disregard it. Recall that we only care about equilibrium radiance distribution
within a scene. There is a slight problem with this simpli�cation when dealing with light
surface interaction. We need a way to distinguish between incoming (incident) and re�ected
(outgoing, leaving) radiance. This is relatively no issue when we are dealing only with
re�ective materials. Arvo [Arv95] introduced the �eld radiance at a �xed point as the
radiance approaching from the set of directions H2

−(x) and the surface radiance as the
radiance leaving a �xed point in the set of directions H2

+(x). If we want to simulate the
e�ect of refraction, we need to distinct between incoming and re�ected radiance as follows.
Given a speci�c point in time t, we de�ne the incident radiance Li as the state of the radiance
�eld at t and we de�ne the outgoing radiance Lo as the state of the radiance �eld at the
limit point t+ δ.

Throughout the thesis, when we talk about incident radiance Li from a direction −→ωi,
we mean that light actually �ows opposite the −→ωi. This is a very common habit which for
example simpli�es de�nitions of re�ectance functions.

Irradiance and radiant exitance

Irradiance E with units of [W ·m−1] is de�ned as the total amount of energy arriving at a
speci�c point x from all directions. We can de�ne it using incident radiance as

E(x) =

∫
−→ωi∈S2

Li(x,
−→ωi)|Nx · −→ωi| dσ(−→ωi) =

∫
−→ωi∈S2

Li(x,
−→ωi) dσ⊥x (−→ωi) (2.9)

We can also de�ne the irradiance as the derivative of Φ with respect to the surface area
measure.

Naturally, we de�ne the radiant exitance B, which stands for the total energy leaving
a particular surface point x in all directions. It has the same units as irradiance and it is
de�ned using outgoing radiance as

B(x) =

∫
−→ωo∈S2

Lo(x,
−→ωo)|Nx · −→ωo| dσ(−→ωo) =

∫
−→ωo∈S2

Lo(x,
−→ωo) dσ⊥x (−→ωo) (2.10)

2.1.4 Light surface interaction

Now that we have discussed the basic mathematical framework and the radiometry, we con-
tinue by de�ning the meaning of light surface interaction in the context of global illumination
algorithms presented in this thesis. Recall that we represent the scene surface as a set of
piecewise di�erentiable 2-manifolds (components) for practical reasons (memory consump-
tion etc.). If we model the light as a large amount of discreet particles, we would have to
break down the scene geometry to many components in order to achieve some detail. For
this reason we model the light using radiometric quantities and describe its interaction with
a surface statistically using functions.

10 CHAPTER 2. PRELIMINARIES

2.1.4.1 BRDF

Bidirectional re�ectance distribution function (BRDF) is a four dimensional function which
statistically describes how the light particles are re�ected of the surface. Given a �xed point
x ∈ M, the incident radiance in a direction −→ωi ∈ H2

+(x) and the outgoing radiance in a
direction −→ωo ∈ H2

+(x), BRDF fr is de�ned as

fr(x,
−→ωi,−→ωo) =

dLo(x,
−→ωo)

dσ⊥x (−→ωi)Li(x,−→ωi)
=
dLo(x,

−→ωo)
dE(x,−→ωi)

. (2.11)

Note that both directions in the previous equation are restricted to point to the upper
hemisphere placed at the point x, which implies that this function cannot be used to describe
the transmission. For any physically valid BRDF following properties must hold.

1. fr(x,
−→ωi,−→ωo) = fr(x,

−→ωo,−→ωi) (Helmholtz's reciprocity)

2.
∫
−→ωo∈H2

+(x) fr(x,
−→ωi,−→ωo) dσ⊥x (−→ωo) ≤ 1 (Energy conservation)

3. fr(x,
−→ωi,−→ωo) ≥ 0 (Non negativity)

The second property can be derived from the de�nitions of irradiance and radiant exitance.

Di�use re�ection BRDF of di�use re�ection, denoted fr,d, is one of the simplest exam-
ples. We just want to scatter the kd ∈ (0, 1] portion of incident energy to all directions
uniformly and obey properties of physically plausible BRDF, see �gure 2.4. It is obvious
that the resulting function has to be constant independent of directions proportional to kd,
so we only need to consider the conservation of energy. We express the amount of re�ected
energy using our unknown constant re�ection function.∫

−→ωo∈H2
+(x)

fr,d dσ
⊥
x (−→ωo) = fr,d

∫
−→ωo∈H2

+(x)
dσ⊥x (−→ωo) = fr,dπ (2.12)

We want the previous result to be equal to our constant kd which implies that BRDF for
di�use re�ection is fr,d = kd

π .

−→ωi

x

Figure 2.4: Incident radiance from the direction −→ωi is scattered uniformly to all directions.

2.1. FOUNDATIONS 11

Specular re�ection BRDF for specular re�ection is yet another simple example. In this
case we want to scatter the incident radiance from a direction −→ωi only in the direction that
corresponds to the re�ection of −→ωi around the surface normal at a �xed point x, see �gure
2.5. As in the previous case we want to control the amount of re�ected energy. We do this
by the constant kr ∈ (0, 1]. The specular re�ection function is then de�ned as

fr,s(x,
−→ωi,−→ωo) = krδ

Rx(−→ωi)
σ⊥x

(−→ωo) . (2.13)

Recall the de�nition of Dirac's delta function in the context of a measure space which can
be used to show that following equation holds.∫

−→ωo∈H2
+(x)

fr,s(x,
−→ωi,−→ωo)dσ⊥x (−→ωo) = kr

We see that fr,s de�ned as 2.13 truly re�ects kr portion of the incident energy into the
specular direction.

−→ωi

x

−→ωo

Nx

Figure 2.5: Portion of the incident radiance from the direction −→ωi is scattered in the perfect
re�ection direction only.

2.1.4.2 BTDF

Bidirectional transmission distribution function (BTDF), denoted ft, is the complement of
the BRDF, because it describes the transmission of light energy. It can be non-zero only if
directions −→ωi,−→ωo point to di�erent hemispheres centered at a point x. More formally

ft(x,
−→ωi,−→ωo) > 0⇒ (Nx · −→ωi) (Nx · −→ωo) < 0.

Physically valid BTDF must obey properties analogous to BRDF but there is a slight dif-
ference. Helmholtz's reciprocity does not hold. Physical BTDF obey the following more
general property

ft(x,
−→ωi,−→ωo)
η2
o

=
ft(x,

−→ωo,−→ωi)
η2
i

,

where ηi and ηo are the refractive indices of materials containing −→ωi and −→ωo respectively.
Another important fact to mention is that when the light is refracted between materials

with di�erent indices of refraction, we have to scale the incident radiance by the factor η2o
η2i
,

where ηi is the refraction index of the material to which the light is transmitted and ηi is
the refraction index of the material from which the light is incident.

12 CHAPTER 2. PRELIMINARIES

Specular transmission Now we can derive the BTDF for the specular transmission. As
with re�ection, we want to transmit only kt ∈ (0, 1] amount of energy, see �gure 2.6. Using
Dirac's delta function and the fact discussed in the previous paragraph we can write BTDF
for specular transmission as

ft,s(x,
−→ωi,−→ωo) = kt

η2
o

η2
i

δ
Tx(−→ωi)
σ⊥x

(ωo) . (2.14)

−→ωi

x

−→ωo

Nx

ηo

ηi

Figure 2.6: Portion of the incident radiance from the direction −→ωi is scattered in the perfect
refraction direction only.

2.1.4.3 BSDF

BSDF, denoted fs, stands for bidirectional scattering distribution function. It is the union of
BRDF and BTDF, which means that it describes both, the re�ection and the transmission at
a surface point. The reason we started with de�nitions of fr and ft is that we mostly model
the materials as a combination of various BRDFs and BTDFs. Physically plausible BSDF
has following properties. The only real di�erence from BRDF properties is in the reciprocity
and in the domain of the integral used to formulate the property of energy conservation.
They are provided here for reference.

1. fs(x,
−→ωi,−→ωo)
η2o

= fs(x,
−→ωo,−→ωi)
η2i

(Reciprocity)

2.
∫
−→ωo∈S2 fs(x,

−→ωi,−→ωo) dσ⊥x (−→ωo) ≤ 1 (Energy conservation)

3. fs(x,
−→ωi,−→ωo) ≥ 0 (Non negativity)

Adjoint BSDF

Recall that Helmholtz's reciprocity does not hold for all physically valid BSDFs. For this
reason we introduce the adjoint BSDF f∗s as

f∗s (x,−→ωi,−→ωo) = fs(x,
−→ωo,−→ωi) , (2.15)

which is used during the importance transport (discussed in 2.1.5) or particle tracing. The
main advantage is that asjoint BSDF let us formulate a measurement using importance

2.1. FOUNDATIONS 13

transport in the same way we do it using radiance transport, because directions −→ωi,−→ωo have
the same meaning in both cases.

Note that any re�ectance function (BRDF) is self adjoint. The problem is when BSDF
includes transmission. In that case, we have to formulate the adjoint explicitly. For example,
using general reciprocity property, we can derive the adjoint specular transmission BSDF
following way.

f∗s (x,−→ωi,−→ωo) = fs,t(x,
−→ωo,−→ωi)

=
η2i
η2o
fs,t(x,

−→ωi,−→ωo)

= ktδ
Tx(−→ωi)
σ⊥x

(−→ωo)

(2.16)

Note that in 2.15 there is no scaling by the factor η2o
η2i
. This is an important detail.

2.1.5 Light transport and measurement

Throughout this section we precisely de�ne a pixel measurement, the fundamental operation
in digital image synthesis. Light sources and sensors (e.g. camera lens) are given in advance
as a piece of the scene description. We discuss how radiance emitted by the light sources is
transported through the environment and �nally measured on camera sensor.

In the context of this thesis our sensor is a single pixel but it can be an arbitrary surface in
the scene. We say that sensor emit importance We which varies with position and direction.
It is de�ned as

We(r) =
dS(r)

dΦ(r)
[S ·W−1] , (2.17)

where r ∈ R and S is the unit of sensor response. In the case of image synthesis We is called
exitant importance function and it has units of [W−1], which implies that corresponding
response is unitless.

Having de�ned importance function, we can formulate pixel measurement I as

I =

∫
R
We(r)Li(r) dτ(r) . (2.18)

Note that 2.18 is simply the inner product of functions We and Li on the ray space so we
can simply write

I = 〈We, Li〉 .

As mentioned, We is given to us in advance with the scene description but Li has to be
computed through radiance propagation. Our goal is to express the incident radiance using
emitted radiance function Le, which will lead us to the solution of the pixel measurement.

The operator framework used in the following text was introduced by Erik Veach in his
dissertation thesis [Vea98]. Our talk is limited only to the subset required to understand
later chapters. We refer the interested reader to the original work, if she wants to gain more
generic overview of measurement formulations.

14 CHAPTER 2. PRELIMINARIES

The propagation operator

We start by de�ning the propagation operator G, which operates on functions de�ned on
the ray space. This operator is based on ray casting function xM which is de�ned as

xM(r) = xM(x,−→ω) = x + dM(x,−→ω)−→ω | x ∈M,−→ω ∈ S2 , (2.19)

where dM(x,−→ω) is the boundary distance function, which gives the distance to the �rst point
visible from x in the direction −→ω . Having precise de�nition of the ray casting, we continue
with de�nition of G.

(Gh)(x,−→ω) =

{
h(xM(x,−→ω),−−→ω) if dM(x,−→ω) <∞
0 otherwise

(2.20)

Now we can express the incident radiance at a point x from direction −→ωi in terms of the
outgoing radiance from another point in the scene by writing

Li(x,
−→ωi) = (GLo)(x,

−→ωi).
Or we can simply express Li using Lo as Li = GLo.

The scattering operator

We de�ne another operator on the ray space, the scattering operator K, as

(Kh)(x,−→ωo) =

∫
−→ωi∈S2

fs(x,
−→ωi,−→ωo)h(x,−→ωi) dσ⊥x (−→ωi) . (2.21)

Note that by plugging the incident radiance function expressed using the propagation opera-
tor as GLo into K we get the local scattering equation, which gives us the outgoing radiance
from a �xed point in a certain direction due to illumination from the entire sphere centered
at the point.

The transport operator and the solution operator

To simplify further notations and derivations, we combine previously de�ned operators into
a single one, the transport operator

T = KG , (2.22)

which allows us to formulate the exitant radiance from a point in a �xed direction as

Lo(x,
−→ωo) = Le(x,

−→ωo) + (TLo)(x,
−→ωo) . (2.23)

Note that 2.23 is actually the rendering equation [Kaj86] formulated using operator frame-
work.

The transport operator allows us to derive a solution to the rendering equation in the
form of a single operator, the solution operator, denoted S. The solution operator can be
relatively easily derived from the operator formulation of the rendering equation 2.23 as

Lo = Le + TLo
(E−T)Lo = Le

Lo = (E−T)−1Le
Lo = SLe

(2.24)

2.1. FOUNDATIONS 15

The solution operator exists if and only if we use physically valid BSDFs, in which case it
can be written as

S = Le + TLe + T2Le + ...+ T∞Le . (2.25)

This formulation says that exitant radiance is equal to the sum of emitted radiance, emitted
radiance scattered once, emitted radiance scattered twice etc.

Operator measurement formulation

We have formulated the necessary mathematical framework, which allows us to express the
measurement 2.18 by the inner product of two functions de�ned on the ray space

I = 〈We,GSLe〉 . (2.26)

Note that using this form of pixel measurement I and Monte Carlo techniques, discussed in
the 2.1.6, we can derive the standard path tracing algorithm. The de�nition of the solution
operator 2.25 directly serves as a guideline to the path tracing.

Importance transport

Naturally, we don't have to restrict our selves to the radiance transport only. We can imagine
that our sensors emit importance in to the environment in the same way as the light sources
emit radiance. Importance is scattered upon surface interaction and occasionally ends up
on a light source, which now hypothetically �gures as a sensor. We then have the incident
importance functionWi and exitant important functionWo. The meaning of these functions
is analogous to the radiance counterparts. Now we can formulate a measurement as

I = 〈GSWe, Le〉 . (2.27)

There is a slight issue with this formulation as it is only valid when the solution operator
is self adjoint. This condition is met only if we use symmetric BSDFs (e.g. Helmholtz's
reciprocity holds). In the case of asymmetric BSDFs, recall the specular transmission, we
have to de�ne the adjoint solution operator S∗ explicitly using adjoint BSDFs.

2.1.6 Monte Carlo integration

This section provides a brief overview of the Monte Carlo methods used in the context of
global illumination algorithms [Shi01b]. It discusses the basic principles of the Monte Carlo
numerical integration together with techniques that have shown to be of practical use, when
rendering photorealistic images. That said, this section doesn't contain thorough derivations
and proofs of all stated theorems. References to relevant resources are provided wherever
possible. It is assumed that the reader is already familiar with the theory of continuous
random variables [Ros09].

16 CHAPTER 2. PRELIMINARIES

2.1.6.1 Introduction

The Monte Carlo is a type of numerical integration useful for estimating integrals on mul-
tidimensional domain. For example. recall that exitant radiance from a given point in a
certain direction is, among others, given by an integral over the two dimensional space of
directions S2. In 2.2 we even formulate a measurement using an in�nite dimensional space
of light carrying paths.

Let us have a function g de�ned on a measure space 〈X,Σ, µ〉.

I =

∫
x∈X

g(x)dµ(x) (2.28)

is the integral of g over the whole measure space X with respect to the measure µ. The
Monte Carlo estimator for 2.28 looks like

〈I〉 =
1

N

N∑
i=1

g(xi)

p(xi)
. (2.29)

In 2.29 N ∈ N, the number of samples taken, and xi is a continuous random variable. All
random variables xi are identically independently distributed (IID) according to probability

density function p, which has the property∫
x∈X

p(x)dµ(x) = 1 .

The probability that a random variable x ∼ p takes a value from a subset D ⊆ X is

P (x ∈ D) =

∫
x′∈D

p(x′)dµ(x′) . (2.30)

Not that 2.29 is also an random variable and its expected value is equal to the value of the
integral being estimated as its shown in 2.31.

E[〈I〉] = E

[
1

N

N∑
i=1

g(xi)

p(xi)

]
=

1

N

N∑
i=1

E
[g(xi)

p(xi)

]
=

1

N

N∑
i=1

∫
x∈X

g(x)

p(x)
p(x)dµ(x) = I (2.31)

This also shows that the expected value of 〈I〉 is the sum of expected values of IID random
variables g(xi)

p(xi)
. Recall the de�nition of variance V [x] = E

(
[x − E(x)]2

)
. Using the law of

large numbers it is relatively easy to see that

P

(
lim
N→∞

V

[
1

N

N∑
i=1

g(xi)

p(xi)

]
= 0

)
= 1 .

Previous statement says that by performing an in�nite number of trials we get the value of
the integral estimated as long as p is non-zero whenever g is. Of course, we would like to have
close estimate after a smallest amount of trials as possible. Setting N = ∞ corresponds to
performing the whole integration. When xi in the 2.29 are IID then the following derivation
shows that to halve the variance we have to double the number of samples.

V

[
1

N

N∑
i=1

g(xi)

p(xi)

]
=

∑N
i=1 V

[
g(xi)
p(xi)

]
N2

=
V
[
g(xi)
p(xi)

]
N

2.1. FOUNDATIONS 17

This result also implies that standard deviation σ decreases with
√
N , which means to halve

it we need to quadruple the number of samples.

2.1.6.2 Importance sampling

As we discussed, the estimator 2.29 always converge to the value of integral being estimated
if g(x) > 0⇒ p(x) > 0. Of course as long as N <∞ there will be a non-zero variance of the
estimator in practical scenarios (not necessarily always), which introduces itself as a noise.
Imagine we pick our samples from the distribution

pg(x) =
g(x)∫

x′∈X g(x′)dµ(x′)
, (2.32)

where x ∈ X. In such case, we need only one sample to have the variance of zero, because
the fraction g(x)

pg(x) is equal to the integral for any x ∈ X. Of course, pg implies knowledge
of I, so why would we use it to estimate I anyway. The point is, that we can lower the
variance of an estimator by making sure that p(x) matches g(x) as much as possible. This
approach to variance reduction is called importance sampling. The problem of sampling a
domain according to an arbitrary probability density function is discussed next.

Canonical uniform random variable Uniform continuous random variable can take on
a value from an real interval [a, b) with equal probability given by the constant probability
density 1

b−a . When the interval is [0, 1) we talk about canonical uniform real random variable,
which is denoted ξ, see �gure 2.7. Note that the probability density for ξ is equal to 1. In
practice we are given a random number generator that provides us with ξ. We then have to
transform the canonical distribution to the desired probability density.

ξ

y

x

1

1

Figure 2.7: The canonical uniform random variable.

Inversion method

The inversion method is a way of sampling an interval of real numbers according to some
probability density. Say we have two continuous random variables x ∼ px and y ∼ py but
we are only able to draw samples from px. Then we can de�ne the random variable y as
y = T (x). Now the problem is to �nd the transformation function T so that the distribution

18 CHAPTER 2. PRELIMINARIES

of y is exactly py [PH10]. Function T has to be a one-to-one mapping and its derivative has
to be strictly positive. This fact leads to the relation of cumulative density functions (CDF)

Py(y) = Py(T (x)) = Px(x) ,

which can be used to express T as

T (x) = P−1
y

(
Px(x)

)
.

In a common case, x is the canonical uniform random variable so

T (x) = P−1
y (x) .

Now it should be obvious, why this methods is called the inversion method. We �nd the
CDF of py, we invert it and we use it to directly transform samples from ξ. If P−1

y is not
invertible, we can the rejection method, which is not discussed here. Figure 2.8 visualizes
the process of mapping the canonical continuous random variable to the random variable
y ∼ py.

1
P−1
y

ξ1

y1

Figure 2.8: Visualization of the inversion method. The random variable ξ1 is mapped to the
random variable y ∼ py through P−1

y .

Multiple dimensions

Suppose we want to sample a certain subset of R2 given a density function p(x, y). We derive
the marginal probability density

p(x) =

∫
R
p(x, y) dy (2.33)

and the conditional density

p(y|x) =
p(x, y)∫

R p(x, y)dy
=
p(x, y)

p(x)
. (2.34)

It is relatively easy to show that p(x) and p(y|x) are probability densities. We now generate
samples according to p(x, y) by sampling 2.33 and 2.34 separately using techniques for single
dimension (e.g. the inversion method) [PH10].

2.1. FOUNDATIONS 19

As an example, consider we want to sample the H2
+(x) set of direction and we have a

probability density with respect to the solid angle measure σ. Solid angle measure is useful
but very abstract, so we use the (θ, φ) parametrization of the directions. The solid angle
produced by a �xed point (θ, φ) is

dσ = sin θdθdφ ,

which leads us to the relation of the density functions

p(θ, φ) = p(ω) sin θ .

So given a density p(ω) we derive the density p(θ, φ) and we use the technique using marginal
and conditional density described above.

2.1.6.3 Multiple importance sampling

Multiple importance sampling [Vea98] (MIS) is a very useful variance reduction technique
that is used extensively in global illumination. Recall the scattering equation 2.23 which
includes the integral of the product of multiple functions, namely Li and fs. We can sample
it using the density function that matches BSDF but if the incident radiance would be large
from unimportant directions according to the BSDF probability density, variance would also
be large. Same applies if somehow we know, how to sample directions using a density function
that roughly matches the incident radiance function (e.g. by using photon map). Multiple
importance sampling is about combining samples from di�erent sampling techniques (density
functions), so that variance is lowered.

Say, we want to estimate an integral of function g de�ned on an measure space 〈X,Σ, µ〉

I =

∫
X
g(x)dµ(x)

and we have n di�erent sampling techniques, where pi denotes the probability density of
i-th technique. Each technique is good for sampling a certain subset of X but not good for
sampling the whole domain. If we take ni ≥ 1 samples from each technique, then we can
combine them using the multi-sample estimator [Vea98]

F [I] =

n∑
i=1

1

ni

ni∑
j=1

wi(xij)
f(xij)

pi(xij)
, (2.35)

where wi is the weighting function for samples from i-th sampling technique. If we want F to
produce an unbiased estimate of I, the weighting functions must satisfy following conditions.

1.
∑n

i=1wi(x) = 1 i� f(x) 6= 0

2. wi(x) = 0 whenever pi(x) = 0

There are many weighting functions that satis�es these conditions but only a few helps to
lower the variance. In general case, Veach showed [Vea98] that the best strategy one can use
is the balance heuristic, which implies usage of weighting functions de�ned as

wi(x) =
nipi(x)∑n
k=1 nkpk(x)

. (2.36)

20 CHAPTER 2. PRELIMINARIES

Sometimes it might be better to use more general version of balance heuristic, called the
power heuristic with weighting functions 2.37.

wi(x) =

(
nipi(x)

)β∑n
k=1

(
nkpk(x)

)β , (2.37)

where β ∈ R+ (usually β = 2). Note that the balance heuristic is the special case of
the power heuristic. For a discussion when the power heuristics is practical, we refer the
interested reader to the original work [Vea98].

2.1.6.4 Russian roulette

The last Monte Carlo technique we discuss is Russian roulette which allows us to estimate
recursive integrals or integrals over in�nite dimensional spaces without introducing bias. The
idea is rather very simple. We assign a non-zero discreet probability q to sampling element
with zero measure. The original probability density then has to be scale by the factor 1−q.

2.2 Path sampling methods

In this section we start by reviewing the path integral formulation of light transport (path
integral framework), which allows us to write a pixel measurement I in the form of a non-
recursive integral equation. Recall that the rendering equation contains a recursive integral.
This formulation was introduced by Veach in his dissertation thesis [Vea98] and it serves as a
good basis for formulating unbiased global illumination algorithms presented in this section.

2.2.1 Path space formulation of light transport

As mentioned, path space formulation of light transport is presented in a very formal and
rigorous way. The following text should serve as a comprehensive overview of important
de�nitions required to formulate global illumination algorithms based on path sampling. We
refer the interested reader to the original work [Vea98], if she wants to know more details.

We start by a formal de�nition of a geometric primitive called path and proceed further
towards the formulation of pixel measurement I on the path space.

Path

A path (�gure 2.9) of length k ≥ 0 is a (k + 1)-tuple of surface points

x = (x0, . . . ,xk) ,

where xi ∈M. It can also be de�ned as a member of the set

Ωk =Mk+1 ,

which contains all possible paths of length k. Note that by this de�nition we allowed the
path points to be located only at the scene surfaces. Placing points anywhere in the space

2.2. PATH SAMPLING METHODS 21

x0

x1

x2

x3 x4

Figure 2.9: A path of length k = 4.

would be useless for our purposes. Recall that we are disregarding e�ects of participating
media. Also note that every two adjacent points xi and xi+1 de�ne the ray r(xi,xi+1) that
goes from xi towards xi+1.

Light path is a path which has the �rst vertex located on the light source. It is assumed
that every such path x implicitly contains imaginary vertex with the index of −1, x−1, and
that

Le(x−1 → x0) = Le(x0) (2.38)

fs(x−1 → x0 → x1) =
Le(x0 → x1)

Le(x0)
, (2.39)

where Le(x0) represents the total emitted radiance per squared meter at the point x0. The
imaginary vertex can be thought as the source of all energy. This seemingly arti�cial de�ni-
tion will be useful later as it makes the formulations of path sampling algorithms short and
compact.

Eye path is then naturally a path with the �rst vertex located on the camera sensor.
Analogically, every eye path x contains imaginary vertex x−1 and

We(x−1 → x0) = We(x0) (2.40)

fs(x1 → x0 → x−1) =
We(x0 → x1)

We(x0)
, (2.41)

where We(x0) is the total emitted importance per squared meter at the point x0.

Path space

We naturally continue by de�ning the set of all paths of all possible lengths k ≥ 0 to which
we will refer to as the path space

Ω =

∞∑
k=1

Ωk

A single path is denoted x and has the length k(x). Note that the path space is an in�nite
dimensional space.

Area product measure

In order to integrate functions de�ned on the path space, we de�ne the area product measure
µA so that

µA(Ω) =
∞∑
k=0

µA(Ωk) =
∞∑
k=0

A(M)k+1

22 CHAPTER 2. PRELIMINARIES

This way a path x of the length k has the di�erential area product measure

dµA(x) = dµA(x0, . . . ,xk) =
k∏
i=0

dA(xi)

Measurement contribution function and throughput

Given a �xed path x of the length k, the measurement contribution function f(x) gives us
the energy �owing through the path per unit of the area product measure. We �rst de�ne
the path throughput T (x) as

T (x) = G(x0,x1)
k−1∏
i=1

fs(xi−1 → xi → xi+1)G(xi,xi+1) . (2.42)

Using the de�nition 2.42 we can de�ne the measurement contribution function as

f(x) = Le(x0 → x1)T (x)We(xk → xk−1) (2.43)

Note that in 2.43 → denotes the direction of the light �ow when used in the context of Le
and denotes the direction of the importance �ow in the case of We. This notation is not in
correspondence with Veach's original formulation. Also note that f(x) is non-zero i� x0 lies
on the light source and xk lies on the camera lens. Let us denote the set o� all such non-zero
contribution paths Ωf .

Sometimes it will be useful to work with the eye path throughput of an eye path x

TE(x) = We(x0)
k∏
i=1

fs(xi → xi−1 → xi−2)G(xi−1,xi) . (2.44)

As in the case of the eye path, this de�nition is used to make the formulations of path
sampling algorithms short and compact.

Analogically, we formulate the light path throughput

TL(x) = Le(x0)

k∏
i=1

fs(xi−2 → xi−1 → xi)G(xi−1,xi) . (2.45)

Pixel measurement

Using de�nitions presented so far, we can �nally de�ne the pixel measurement I using the
path space

I =
∞∑
k=1

∫
Ωk

f(x) dµA(x) = (2.46)

∫
Ωf

f(x) dµA(x) (2.47)

Formulation of the pixel measurement given above is elegant and intuitive. Nevertheless
it is not by far the most important advantage. As we can see in 2.43 there is no need for
special treatment of non-symmetric BSDF, which makes formulations and implementations
of bi-directional algorithms less error prone.

2.2. PATH SAMPLING METHODS 23

Measurement estimation

We de�ne the Monte Carlo estimator of 2.46

〈I〉 =
∞∑
k=1

1

Nk

Nk∑
i=1

f(xi)

p(xi)
. (2.48)

In 2.48 Nk denotes the number of samples taken to estimate the contribution of paths of
length k and p(x) stands for probability density of path x with respect to the area product
measure. We can easily show that 2.48 is an unbiased estimator of 2.46 and 2.47.

E[〈I〉] =
∞∑
k=1

1

Nk

Nk∑
i=1

E

[
f(xi)

p(xi)

]
=
∞∑
k=1

1

Nk

Nk∑
i=1

∫
Ωk

f(x)

p(x)
p(x)dµA(x) =

∞∑
k=1

∫
Ωk

f(x)dµA(x) = I

Constructing p(x) for a set of paths of �xed length Ωk is straightforward. Recall that
x ∈ Ωk is simply a (k+ 1)-tuple of surface points (x0, . . . ,xk). Assuming that each point xi,
i ∈[0, k], is selected using a stationary distribution pAi(xi) with respect to the surface area
measure, we can write p(x) as

p(x) =
k∏
i=0

pAi(xi) .

This construction of p(x) gives us a way to perform importance sampling on global scale.
We are not limited to doing it locally as with algorithms based on radiance/importance
propagation. This is another great advantage of path integral formulation.

There are certain limitations on what paths can be sampled. If a path expressed using
the extended notation for light paths does not contain the DD substring, then unbiased
algorithms are unable to account for its contribution. For example, caustics from a point
light seen through a mirror by a pinhole camera.

2.2.2 Path tracing

The �rst unbiased algorithm we discuss is the path tracing. It has been originally formulated
by Kajiya as a solution to the rendering equation [Kaj86]

Lo(x, ωo) = Le(x, ωo) +

∫
S2

(GLo)(x, ωi)fs(x, ωi, ωo)dµ
⊥
x (ωi) , (2.49)

whereG is the propagation operator. He proposed an obvious recursive algorithm that solves
2.49. Note that the measurement formulation 〈We,GSLe〉 can be thought as an extension
of the rendering equation, which allows as to measure the incident radiance on more than a
one point from more than a one direction. We formulate path tracing using the path integral
framework. The algorithm 1 outlines the basic structure of it. Various mutations only di�er
in the way the estimate of the radiance �owing from a surface point to a speci�c pixel sample
point is computed.

24 CHAPTER 2. PRELIMINARIES

Algorithm 1 Path tracing algorithm skeleton

1: function PathTracing(pixelSamples)

2: for i← 1 to pixelCount do

3: image[i] = 0

4: for j ← 1 to pixelSamples do

5: pixelSample = GenerateRandomPixelSample(i)

6: ray = MapPixelSampleToRay(pixelSample)

7: radiance = EstimateRadiance(ray)

8: image[i] += radiance / pixelSamples

9: end for

10: end for

11: return image

12: end function

Naive path tracing (unidirectional) is based on estimating the pixel measurement I by
sampling the path space using eye paths only. More formally the estimate can be written as

〈I〉 =
∞∑
t=2

f(xt)

pt(xt)
, (2.50)

where xt denotes an eye path that consist of t vertices and as the length t − 1, f is the
measurement contribution function and pt is the probability density function of eye path
with t vertices.

De�nition 2.50 is all but useful, because it contains the sum over in�nite number of
path samples. For e�ciency reasons, we recursively generate only a single eye path z by
a random walk trough the scene. Every non-empty subpath of z starting at z0 is also an
eye path, so the original path represents correlated samples of eye paths with t ≤ k(z)
vertices. The generation of z is possibly terminated using the Russian roulette technique
at every new vertex after a certain number of vertices has already been generated. We can
think of the Russian roulette in this context as sampling a zero contribution vertex ε. After
sampling ε there is no reason to continue, because paths of lengths t > k(z) would have zero
measurement contribution. Using our eye path z , we can write the unbiased estimate of the
pixel measurement as

〈I〉 =

k(z)+1∑
t=2

f(zt)

pt(zt)

=

k(z)+1∑
t=2

TE(zt)

pt(zt)
Le(zt−1 → zt−2)

=

k(z)+1∑
t=2

αtLe(zt−1 → zt−2) ,

(2.51)

2.2. PATH SAMPLING METHODS 25

z0

z1

z2

z3 z4

Figure 2.10: A single measurement during unidirectional path tracing.

where zt denotes the subpath of z with vertices (z0, . . . , zt−1) and TE(z) denotes its eye path
throughput. As we can see from 2.51, to evaluate the measurement contribution of path with
t vertices, we just need to compute the emitted radiance from the vertex zt−1 towards the
vertex zt−2. The coe�cient αt can be computed recursively during the random walk as

α2 = 1 (2.52)

αt =
fs(zt−1 → zt−2 → zt−3) cos θzt−2zt−1

pσ(zt−2 → zt−1)
× αt−1 , (2.53)

where pσ denotes a probability density with respect to the solid angle measure.
Figure 2.10 depicts a single pixel measurement within the path tracing algorithm. Note

that there is no contribution of paths of lengths 2 and 3. Non-zero probability is given to a
large set of paths with zero contribution, which introduces high variance.

Unidirectional path tracing is not very e�cient algorithm solving global illumination,
because the probability density pt does not match the measurement contribution function
f(zt) very well in most cases. A simple variance reduction technique that doesn't make the
path tracing much harder to implement is the next event estimation. For every eye subpath
zt, where t ≥ 1, we generate a light path y consisting of a single vertex, using probability
density de�ned against the surface area measure. The measurement estimate is then

〈I〉 =

k(z)+1∑
t=1

f(zty)

pt(zt)pA(y0)

=

k(z)+1∑
t=1

Te(zt)

pt(zt)

fs(y0 → zt−1 → zt−2)G(y0, zt−1)Le(y0 → zt−1)

pA(y0)

=

k(z)+1∑
t=1

αEt α
L ,

(2.54)

where coe�cient αL is evaluated upon connection of zt to the generated light vertex and αEt
is constructed recursively as in the case of unidirectional sampling.

In 2.54, the probability of successfully connecting the eye subpath z1 to the generated
light vertex is very low. In the context of image synthesis, I represents the measurement for
a single pixel, so number of directions with zero contribution to measurement is relatively
low. This leave us with two options. We can either give up on connecting the �rst vertex
to the light source and account for visible light sources as in unidirectional path tracing or
we can perform measurement for all pixels at once. In the second case, we have to weight
measurement contribution for technique t = 1 by the factor 1

Npixels
.

26 CHAPTER 2. PRELIMINARIES

z0

z1

z2

z3

z4

Figure 2.11: A single measurement during the path tracing with next event estimation
without explicit connection to the camera vertex.

Figure 2.11 depicts a single pixel measurement in the context of the path tracing with
the next event estimation. Dashed arrows represent the explicit connection of a path to the
light source. Note that connection is not performed at the �rst eye path vertex.

There is another simple improvement of the path tracing with the next event estimation
that lowers the variance when area light sources are present in the scene. It lies in using
more than one sampling technique when generating a light point for an eye subpath zt. In
2.54, we are generating a light point using a probability density de�ned directly against the
surface area measure. We can also try to generate a light point by sampling the BSDF at
vertex zt−1 and combine results from both techniques using multiple importance sampling.

2.2.3 Bidirectional path tracing

Bidirectional path tracing [Vea98][VG94][LW93] can be thought as a generalization of the
path tracing with the next event estimation. For every pixel measurement we generate path
samples by combining arbitrarily long eye and light paths. Intuitively, this results in having
more than one technique to sample a path of a certain length, so the multiple importance
sampling is employed to weight individual contributions.

As xs,t we denote a path created by connecting a light path with s vertices to an eye
path with t vertices. That said, the bidirectional estimator of pixel measurement I is

〈I〉 =
∞∑
s=0

∞∑
t=0

ws,t(xs,t)
f(xs,t)

ps,t(xs,t)
, (2.55)

where ps,t(xs,t) is the probability density of generating the path xs,t using s, t technique and
ws,t(xs,t) is the MIS weight of the path xs,t generated by s, t technique.

We deal with the in�nite number of dimensions of the path space pretty much the same
way as we did it in the case of path tracing. For each pixel measurement we create a single
light path y and a single eye path z (see �gure 2.12). Both paths are generated using random
walk through the scene which is possibly terminated by sampling the zero contribution vertex
ε. We then create a various correlated path space samples by connecting each pre�x of z to

2.2. PATH SAMPLING METHODS 27

z0

z1

z2

y1

y0

Figure 2.12: A single measurement during the bidirectional path tracing. A light path with 2
vertices is connected to an eye path with 3 vertices. Dashed lines depict the explicit subpath
connections.

each pre�x of y, so we can write the estimator 2.55 using y, z as

〈I〉 =

k(y)∑
s=0

k(z)∑
t=0

ws,t(yszt)
f(yszt)

ps,t(yszt)
. (2.56)

Note that this way we create exactly one sample for each technique s, t but we don't have
to consider techniques s > (k(y) + 1) or t > (k(z) + 1), since their sample paths contain the
zero contribution vertex. This was a very brief overview of the bidirectional path tracing.
In the following text, mathematical formulation of the algorithm is given.

The estimator 2.56 can be rewritten to

〈I〉 =

k(y)∑
s=0

k(z)∑
t=0

ws,t(yszt)α
L
s (y)Cs,t(y, z)αEt (z) , (2.57)

where αLs and αEt depends entirely on the light path and on the eye path respectively. These
two parameters can be evaluated recursively during a random walk as

αL0 (y) = 1 (2.58)

αL1 (y) =
TL(y)

pA(y0)
(2.59)

αLs (y) =
fs(ys−3 → ys−2 → ys−1)| cos θys−2ys−1 |

pσ(ys−1)
αLs−1 (2.60)

and

αE0 (z) = 1 (2.61)

αE1 (z) =
TE(z)

pA(z0)
(2.62)

αEt (z) =
fs(zt−1 → zt−2 → zt−3)| cos θzt−2zt−1 |

pσ(zt−1)
αEt−1 (2.63)

The parameter Cs,t(y, z) is fully determined by paths being connected as

Cs+t≤1(y, z) = 0
C0,t(y, z) = Le(zt−1 → zt−2)
Cs,0(y, z) = We(ys−1 → ys−2)
Cs,t(y, z) = fs(ys−2 → ys−1 → zt−1)G(ys−1, zt−1)fs(ys−1 → zt−1 → zt−2)

(2.64)

28 CHAPTER 2. PRELIMINARIES

As we can see, evaluating measurement contribution function is very straightforward and it
can be done very e�ciently. We just need to store parameters αLs and αEt at vertices during
the process of a path generation. When we connect two subpaths ys,zt we evaluate 2.64
and use the aforementioned parameters stored at last vertices of the paths to compute the
unweighted contribution of the path xs,t.

Algorithm 2 Bidirectional path tracing algorithm skeleton

1: function BidirectionalPathTracing(pixelSamples)

2: for i← 1 to pixelCount do

3: image[i] = 0

4: for j ← 1 to pixelSamples do

5: pixelSample = GenerateRandomPixelSample(i)

6: eyePath = GenerateEyePath(pixelSample)

7: lightPath = GenerateLightPath

8: for each eyeV ertex in eyePath do

9: for each lightV ertex in lightPath do

10: C = ComputeUnweigtedContribution(eyeV ertex, lightV ertex)

11: W = ComputeMISWeight(eyeV ertex, lightV ertex)

12: image[i] += (W ∗ C) / pixelSamples

13: end for

14: end for

15: end for

16: end for

17: return image

18: end function

Computing MIS weight is a harder process. There are s + t + 1 sampling techniques to
generate a path xs,t. We can simply use w(xs,t) = 1

s+t+1 . Of course, that makes 2.56 an
unbiased estimator of the pixel measurement I but we end up with worst of all techniques.
If we want to lower the variance, we have use the balance or the power heuristic [Vea98].
Here we use the balance heuristic to simplify the notations.

ws,t(xs,t) =
ps,t(xs,t)∑s+t

i=0 pi,s+t−i(xs,t)
(2.65)

In 2.65 we can see that the weight depends on probability densities with which all the
other techniques would have generated the path. Computing weights is a tricky process
and naive implementation can be very ine�cient and numerically unstable. Veach proposed
a universal and relatively e�cient approach, which requires a single iteration across path
vertices and which is numerically stable. Recently, Antwerpen proposed another very e�cient
approach which is suitable for GPU implementations [vA11], because it doesn't require the
iteration across path vertices. On the other hand, Antwerpen's approach is slightly limited
Probabilities can not depend on subpaths lengths.

2.3. DENSITY ESTIMATION METHODS 29

The following algorithm brie�y summarizes the algorithm described. Details have been
left out, since we will see how the Vertex Connection and Merging can be modi�ed to perform
the bidirectional path tracing in later chapters.

2.3 Density estimation methods

This section is devoted to so called density estimation methods for global illumination. Par-
ticularly, we are going to discuss theory and limitations of original photon mapping algorithm
and its derivatives. Again, following text is only a brief overview of important concepts, which
one needs to be familiar with in order to understand complex global illumination algorithms.
References to relevant books and papers are given wherever possible.

2.3.1 A short introduction to particle tracing

Particle tracing can be roughly described as a process of �nding an approximation of equi-
librium radiance distribution (functions Li, Lo) in a scene, so that we are able to use it to
perform a measurement of any kind locally without the need of recursive sampling. It is
based on generating N samples of radiance function within the scene. Particle is a synonym
for such sample in this context. Every particle (αj ,

−→ωj ,pj) is represented by its weight αj ,
incoming direction −→ωj and position pj . The weights of particles must obey some conditions,
so that

1

N

N∑
j=1

αjWe(pj ,
−→ωj) (2.66)

is an unbiased estimator of∫
A

∫
S2
We(p,

−→ω)Li(p,
−→ω) dσ⊥p (−→ω)dA(p) . (2.67)

The main advantage of particle approach is that we can create our approximation of equi-
librium radiance once and then use it to perform numerous measurement (e.g. all pixels). Of
course, this results in correlation between measurements but that is often not objectionable.

2.3.2 Photon mapping

Photon mapping was originally formulated by Jensen. It is a quite complicated global illu-
mination algorithm and here we discuss only a basic version that presents the idea behind
it. Our formulation is in coherence with the original one, which means we talk about �ux
transport. Photon mapping can also be formulated using Veach's particle tracing framework
introduced in the previous section, which is not that intuitive but more robust. Extensions
to the basic version are shortly discussed at the end of this section.

The basic de�nition of the photon mapping consists of two main steps. At �rst, we
generate the photon map by tracing photons through the scene. After that, photon map is
used to produce biased estimate of all pixel measurements by tracing paths from the camera.
All versions of algorithm mostly di�ers in what way is the photon map used. The algorithm
3 brie�y outlines the basic photon mapping through the pseudocode.

30 CHAPTER 2. PRELIMINARIES

Algorithm 3 Basic photon mapping algorithm

1: function PhotonMapping

2: photonMap = CreatePhotonMap

3: for i← 1 to pixelCount do

4: pixelSample = GenerateRandomPixelSample(i)

5: ray = MapPixelSampleToRay(pixelSample)

6: hitPoint = TraceRay(ray)

7: image[i] = PhotonMapRadianceEstimate(photonMap, ray, hitPoint)

8: end for

9: return image

10: end function

2.3.2.1 Photon map generation

Photon map is generated by tracing N particles (energy packets) through the scene from
the light source. At every intersection of a particle with a non-specular surface, photon
is stored to the photon map. Each photon is described by its weight (carried energy) α,
incident direction −→ω and position p. The �gure 2.13 visualizes the process of photon map
generation. It is good, if all photons stored in the photon map have roughly the same weight,
which means that light intensity at some location is described also by the density of photons.
Disadvantage of having photons with varying weights is that a single photon with a large
weight might introduce artifacts to the rendered image. This will become obvious when we
discus radiance estimation using photon map.

p0

p1

p2

−→ω2

−→ω1

−→ω0

Figure 2.13: A single traced photon path during the process of photon map generation. The
yellow line depicts the light source, which is the start point of every photon path. Individual
photon records created by tracing depicted photon path are shown as yellow disks.

As mentioned, particles are traced from the light source and their initial position and
direction is sampled from the distribution proportional to the emitted radiance function of
the scene. Let us denoted the state of a particle at i-th vertex of its path as (αi,

−→ωi,pi). The
initial weight α1 is

α1 =
|Np1 · −→ω1|Le(p1,

−→ω1)

p(p1,
−→ω1)

, (2.68)

2.3. DENSITY ESTIMATION METHODS 31

where p(p1,
−→ω1) is the probability density of the ray (p1,

−→ω1) with respect to the throughput
measure.

Particle is then stochastically traced through the scene and its state is stored to the
photon map if it intersects a non-specular surface. The weight of the stored photon at i-th
path vertex is equal to the weight of the incident particle, αi−1, and the incident direction
of the photon is the opposite to the incident particle direction, −−→ω i−1. Tracing is possibly
terminated by Russian roulette. Particle weight is modi�ed upon scattering at i-th path
vertex (i ≥ 2) as

α∗i = αi−1
f∗s (pi,−−→ω i−1,

−→ωi)|Npi ·
−→ωi|

pσ(−→ωi)

αi = 1
qi
α∗i ,

(2.69)

where −→ωi is the new direction of the particle generated with the probability density propor-
tional to the adjoint BSDF de�ned against the solid angle measure. The coe�cient qi is the
discrete probability of continuing the path of our particle. Recall that we want all photons
to have approximately the same weight. That means we set it to

qi =
α∗i
αi−1

. (2.70)

The number of photons stored in the photon map is usually (e.g. for closed environment)
much larger than the initial number of traced particles N . The number of photons required
is mostly given in advance and particles are traced until the speci�ed amount is reached.
Usually, hundreds of thousands or millions of photons are stored. The more photons, the
better approximation of equilibrium radiance within the scene. We are only limited by the
size of the memory.

2.3.2.2 Rendering using photon map

Measurement estimation using photon map is relatively easy in its basic form, which consist
in direct visualization of the map. At �rst, ray is traced from the camera through each
pixel until it hits non-specular surface (e.g. recursive ray tracing). At such intersection
(p′,−→ω ′), outgoing radiance Lo(p′,−→ω ′) is measured using 〈Lo, Li〉. The �gure 2.14 visualizes
the process of rendering from a photon map.

The problem here is that we would like to have enough photons (incident radiance sam-
ples) at the di�erential surface around point x′. The probability density of having even one
such photon is almost zero if we trace only a �nite number of photons, therefore we inter-
polate Li from nearby photons using density estimation. This is the point where the bias is
introduced to the measurement. The standard density methods used in the photon mapping
is k-nearest neighbors. The estimate of the Lo(p′,−→ω ′) is then

Lo(p
′,−→ω ′) ≈ 1

Nπr2

n∑
j

αjfs(x
′,−→ω ′,−→ωj) , (2.71)

where r is the minimal radius containing n nearest neighbors or some prede�ned maximal
value. This is a simplest methods possible. It would be better to use some kernel density

32 CHAPTER 2. PRELIMINARIES

Figure 2.14: Rendering from the photon map. Figure depicts the process of radiance esti-
mation for two pixels. Red discs represent hitpoints created by tracing primary rays from
the camera. Yellow discs represent photons stored in the photon map. A single thin arrow
points in the direction from which is a particular photon incident. The circles visualizes the
photon search radius. Note that we required 5 photons for a single radiance estimate.

estimation. Note that by increasing the number of photons in the photon map and the
number of photons considered around the point x′, we get more accurate approximation to
the outgoing radiance. In fact, when N → ∞ we are able to acquire the exact value of
Lo(x

′,−→ω ′) with the cost of in�nite amount of memory. That is why the method is said to
be consistent.

2.3.2.3 Extensions

Previous text described the basic concepts behind the photon mapping. Anyway, rendering
method presented is mostly all but useful, because it results in an image containing low
frequency noise even if large number of photons is stored, especially in the scenes with glossy
materials. For this reason, direct illumination is usually estimated like in the standard
path tracing. Photon map is only used when estimating indirect illumination. Nevertheless,
photon map is often good for handling directly visible caustics. For this reason a separate
photon map (caustic map) is created during the process of photon tracing, which is then
used to estimate the illumination caused by caustics.

2.3.3 Progressive photon mapping

Recall that photon mapping is a consistent algorithm but in order to reach the exact solution
it requires an ini�nite number of particles to be traced and an in�nite number of photons to
be searched around �xed point x′, where we want to estimate the outgoing radiance L(x′, ω′).
More precisely

Lo(x
′, ω′) = lim

N→∞
1

Nπr2

Nβ∑
j

αjfs(x
′,−→ω ′,−→ωj) (2.72)

where β ∈ (0, 1), so that Nβ is also an in�nite value in�nitely smaller than N in the limit.
Note that r in 2.72 converges to dA(x′). Solving the previous equation, of course, requires
an in�nite amount of memory, when done using the original photon mapping. Progressive

2.3. DENSITY ESTIMATION METHODS 33

photon mapping (PPM) [HOJ08] does it without the in�nite memory requirement. It is a
multipass algorithm. The �rst pass consist in standard recursive ray tracing for each pixel.
Ray tracing is always terminated at �rst non-specular vertex and such vertex is stored to
some array together with the required data for the radiance estimation. Every consecutive
pass is standard photon tracing. A new photon map is build during it, which is used to re�ne
the radiance estimates for all stored hitpoints from the �rst pass. The following algorithm
outlines the progressive photon mapping through the pseudocode.

Algorithm 4 Progressive photon mapping algorithm

1: function ProgressivePhotonMapping(numOfPasses)

2: for i← 1 to pixelCount do

3: pixelSample = GenerateRandomPixelSample(i)

4: ray = MapPixelSampleToRay(pixelSample)

5: hitPoint = FirstNonSpecularHit(ray)

6: pixelHitPoints += hitPoint

7: end for

8: for i← 1 to numOfPasses do

9: photonMap = CreatePhotonMap

10: RefineRadianceEstimate(photonMap, pixelHitPoints, image)

11: end for

12: return image

13: end function

At every stored hit point x′ from the �rst pass we store the current density estimation
radius, R(x′), number of photons in the radius, N(x′), and the accumulated unnormalized
re�ected weight

τ(x′) =

N(x′)∑
j=1

αjfs(x
′,−→ω ′,−→ωj) . (2.73)

The initial radius R(x′) is determined by searching certain amount of nearest photons after
the �rst photon tracing pass.

Radius reduction

We denote the number of photons that ends up in the search radius R(x′) of the point x′ after
i ≥ 2-th photon tracing pass asM(x′). We want to reduce the radius R(x′) but we also want
to increase the precision of our radiance estimate by increasing the photon density N(x′)

πR(x′)2 .
We do it by using a single parameter α ∈ (0, 1) which controls the amount of photons we
keep after the new photon tracing path. We can write the new number of photons at point
x′ as

N̂(x′) = N(x′) + αM(x′) . (2.74)

34 CHAPTER 2. PRELIMINARIES

This leads to the new possibly reduced density estimation radius at x′

R̂(x′) = R(x′)

√
N(x′) + αM(x′)
N(x′) +M(x′)

. (2.75)

For more elaborate derivation, we refer the interested reader to the original paper [HOJ08].

Weight correction

We also need to correct the τ(x′) at the hit point x′ for the reduced radius. The accumulated
re�ected weight of M(x′) number of photons in the old search radius R(x′) is

τM (x′) =

M(x′)∑
j=1

αjfs(x
′,−→ω ′,−→ωj) . (2.76)

Assuming that the weight density is constant in the search radius, we can write the accu-
mulated re�ected �ux for the reduced radius as

τ̂(x′) = (τ(x′) + τM (x′))
πR̂(x′)
πR(x′)

(2.77)

= (τ(x′) + τM (x′))
N(x′) + αM(x′)
N(x′) +M(x′)

(2.78)

Again, we refer to more elaborate derivation provided in the original paper [HOJ08].

Radiance evaluation

After every photon tracing pass, we present the new re�ned image just by iterating through
stored hit points from the �rst pass and computing the radiance estimate from the data
stored. For a particular hitpoint x′, the estimate is evaluated as

Lo(x
′,−→ω ′) ≈=

τ(x′)
πR(x′)Nemitted

(2.79)

where Nemitted is the total number of particle traced acquired by summing the number of
particles traced from all tracing passes done so far.

Discussion

PPM does not solve many problems of previously presented version of photon mapping,
because its convergence is still slow and even by tracing tens of millions of particles, we will
not get a clean result when glossy materials are present in the scene. On the other hand, this
algorithm is suited for the scenes with specular and di�use materials. Also, it is relatively
easy to extend the photon mapping algorithm presented to this progressive version.

2.3. DENSITY ESTIMATION METHODS 35

2.3.4 Stochastic progressive photon mapping

Stochastic progressive photon mapping (SPPM) [HJ09] is the extension of the progressive
photon mapping which tries to solve practical limitations of the original algorithm. It is
capable of capturing distributed ray tracing [CPC84] e�ects (e.g. glossy re�ections) in a
reasonable amount of time. We will not derive the algorithm here. Interested reader can
always read the original work by Hachisuka [HJ09]. Basically, the SPPM is almost the same
as PPM. The change is that the stored hit points, generated by tracing paths from the
camera, are regenerated after every photon tracing pass using distributed ray tracing.

2.3.5 Bidirectional photon mapping

Vorba [Vor11] recently formulated the photon mapping using the path integral framework[Vea98]
which allowed him to formulate an algorithm that performs radiance estimate at di�erent
vertices of an eye path using the photon map and combine the results using the multiple im-
portance sampling. The algorithm is much alike bidirectional path tracing, except that light
paths are traced for the purpose of creating a photon map only and they are not connected
to eye paths. Naturally, the author calls his algorithm bidirectional photon mapping. The
algorithm itself is not very practical because of its slow convergence. On the other hand,
formulating the photon mapping in the path integral framework was a step toward successful
combination of path sampling methods with density estimation methods as we will see in
the next chapter.

z0

z1

z2

Figure 2.15: Visualization of radiance estimate for a single pixel within bidirectional photon
mapping. An eye path is traced through the scene. Photon map radiance estimate is
performed at each eye vertex (red disc) and the results are combined using the multiple
importance sampling

36 CHAPTER 2. PRELIMINARIES

Chapter 3

Vertex connection and merging

Both presented families of global illumination algorithms, the path sampling and the density
estimation, have their own strengths and weaknesses. Path sampling algorithms, especially
bidirectional path tracer, are good at sampling almost all light paths. The weakness of
this class is the computational complexity. Recall that to evaluate bidirectional path sam-
ple contribution we had to perform a visibility check between endpoints of light and eye
paths, which is relatively expensive operation. Density estimation algorithms (e.g. photon
mapping) mostly have worse mean squared error convergence rate than path sampling algo-
rithms. Their main advantage is that we can have large number of samples and account for
their contributions by a single range query. Density estimation methods are also good when
it comes to sampling so called SDS paths, which often have small probability density in the
context of path sampling [Vea98]. In this chapter we present the theory behind the vertex
connection and merging algorithm (VCM) [GKDS12]. The idea behind it is to combine
the bidirectional path tracing (BPT) with the photon mapping (PM) into a single robust
algorithm.

From the success of multiple importance sampling in the bidirectional path tracing, one
can judge, that this Monte Carlo technique can be used to successfully combine BPT and
PM. Recall that MIS estimator of an integral I =

∫
Ω f(x)dµA(x) is

〈I〉 =

m∑
i=1

1

ni

ni∑
j=1

wi(xi,j)
f(xi,j)

pi(xi,j)
, (3.1)

where m is the number of sampling techniques, ni is the number of samples taken from
i-th technique, xi,j is j-th sample taken by the i-th sampling technique, wi is the weighting
function of i-th technique and pi is the probability density with respect to the measure µ of
i-th technique. Note that to use the MIS estimator, all sampling densities have to be de�ned
against the same measure. For this reason we need to express both algorithms in the same
mathematical framework. We choose the path integral framework, because bidirectional
path tracing with multiple importance sampling is already successfully formulated.

37

38 CHAPTER 3. VERTEX CONNECTION AND MERGING

3.1 Vertex connection

Consider a path x of the �xed length k. Recall that in bidirectional path tracing this path can
be sampled by k+2 techniques by gradually setting the s = 0, 1, . . . , k+1, where s denotes the
number of vertices sampled from the light source. We will refer to the bidirectional sampling
techniques as vertex connection, because we need to perform an explicit visibility check to
evaluate the contribution of a path, except in case of s ∈ {0, k + 1}, which corresponds to
the unidirectional path tracing and we just need to evaluate the emitted radiance function.
A path sampled by any vertex connection technique will be called regular path. We denote
the probability density of sampling the regular path x using s light path vertices and t eye
path vertices as pV C,s,t. Figure 3.1 depicts a single path sampled by a vertex connection
technique.

x0

x1

x2

x3 x4

Figure 3.1: A path of length k = 4 sampled by the vertex connection technique s = 2 , t = 3.

3.2 Vertex merging

Consider, we are performing the radiance estimate using a photon x∗s. The tracing history of
our photon (x0, . . . ,xs−1) and the current eye path (xs, . . . ,xk) together form a regular path
x of the length k. The photon can be used to approximate the measurement contribution
of x . We will refer to the photon mapping techniques for sampling regular paths as vertex
merging, because we can intuitively imagine it as merging vertices x∗s and xs. Figure 3.2
depicts sampling of the path from �gure 3.1 by vertex merging at the last eye path vertex.

x0

x1

x2

x3 x4

rx∗2

Figure 3.2: A path of length k = 4 sampled by the vertex merging technique s = 3 , t = 3.

We need to �nd the probability density of our regular path x proposed by the vertex
merging at x∗s. Note that our path x could have been proposed by any photon located within
the merging radius r at the endpoint of the eye path. The discrete probability density of
proposing the regular path through vertex merging is then

Pacc(x) = Pr(‖xs − x∗s‖ < r) =

∫
Ad

pA(xs−1 → x)dA(x) , (3.2)

3.3. MEASUREMENT ESTIMATION 39

where Ad = {x ∈ M | ‖xs − x‖ < r}. If we accept that probability density of having a
photon in our merging radius is constant, we can approximate Pacc as

Pacc(x) ≈ πr2pA(xs−1 → x∗s) . (3.3)

Note that the probability Pacc(x) is dimensionless, so the probability density of proposing
the regular path x through vertex merging is approximately

pVM,s,t(x) ≈ pV C,s,t(x)Pacc(x) . (3.4)

Note that pVM is de�ned against the same product area measure as the probability density
of any vertex connection technique for x . The photon serves as a random variable that
conditions the acceptance of our regular path.

From the de�nition 3.4, we can see that the vertex merging probability density of sampling
a regular path is at most same as the probability density of sampling the same path using
the vertex connection technique. In fact, for practical sizes of merging radius, the density of
vertex merging will be units of magnitude lower than the density of vertex connection. The
real power of vertex merging techniques lies in relatively low computational cost. We can
account for tens of millions of samples in the same time we would evaluate a single vertex
connection sample, because, instead of visibility check, we just have to perform range search.
We can think of vertex merging as a kind of brute force variance reduction technique.

We will approximate the measurement contribution of a regular path x , proposed by a
vertex merging technique, using the function fVM de�ned as

fVM(x) = TL(x0, . . . ,xs−1)
1

πr2
fs(ys−1 → zt−1 → zt−2)TE(xs, . . . ,xk) , (3.5)

where r is the merging radius at the vertex xs. Note that we can replace the 1
πr2

term in 3.5
by a density estimation kernel Kr(‖x∗s−xs‖) with the support radius r. 1

πr2
is used, because

it is coherent with our de�nition of photon mapping.
In further discussion, if we put an extended path x∗ into a probability density function

pV C , we mean the probability density of the regular path obtainable from x∗ by leaving out
the photon vertex x∗s. Putting a regular path into a probability density function pVM is
analogous to the previous case.

3.3 Measurement estimation

Now that we have formulated the photon mapping as a set of techniques for sampling regular
path using the path integral framework, we can combine it with the bidirectional path tracing
using multiple importance sampling. The result is a single estimator for a pixel measurement
I de�ned as

〈I〉V CM =
1

nV C

nvc∑
l=1

∞∑
s=0

∞∑
t=0

wV C,s,t(xs,t)
fV C(xs,t)

pV C,s,t(xs,t)
+

1

nVM

nvm∑
l=1

∞∑
s=2

∞∑
t=2

wVM,s,t(xs,t)
fVM(xs,t)

pVM,s,t(xs,t)

, (3.6)

40 CHAPTER 3. VERTEX CONNECTION AND MERGING

where nV C is the number of bidirectional samples, nVM is the number of traced particles.
Note that this de�nition does not consider the vertex merging at the camera lens (t = 1).
Usually, nVM = 1 and nV C ≥ 1mil. When power heuristic is used, the weighting functions
can be computed as

wv,s,t(xs,t) =
nβvp

β
v,s,t(xs,t)

nβV C
∑

s′≥0,t′≥0

pβ
V C,s′,t′(xs,t) + nβVM

∑
s′≥2,t′≥2

pβ
VM,s′,t′(xs,t)

, (3.7)

where v ∈ {V C, VM}. The approach to the weight evaluation is much more crucial in VCM
than it is in bidirectional path tracing, because of commonly large number of vertex merging
samples.

3.4 The VCM algorithm

This section gives a brief outline of the original VCM algorithm [GKDS12]. Detailed de-
scription together with an implementation is provided in the next chapter.

The basic version of the algorithm consist of two main phases, particle tracing and image
measurement. The goal of particle tracing step is to generate a standard photon map. This is
similar to the presented photon mapping algorithm. The di�erence is that particle paths are
also saved and their number corresponds to the number of image pixels. The process of image
measurement is really a combination of bidirectional path tracing and bidirectional photon
mapping [Vor11]. An eye path is sampled for each pixel measurement, possibly terminated
by the Russian roulette. Every eye subpath of length ≥ 1 is merged with all photons in
the search radius, which is global for all pixels within a single iteration. The corresponding
stored light subpath is used to evaluate the bidirectional estimate. The algorithm 5 outlines
the vertex connection and merging version presented in the original paper [GKDS12]. Details
are intentionally left out since they are described in the next chapter, when we discuss the
implementation of VCM.

Achieving consistency

Algorithm given above is inconsistent for any �nite size of the merging radius. Images
generated by it contains systematic error due to density estimation. We can make the
algorithm consistent by running it in a loop with decreased merging radius every iteration.
Then if we average results from every iteration, we get an image without systematic error as
the number of iterations approaches in�nity. The radius reduction scheme proposed by the
original paper [GKDS12] is

ri = r1

√
iα−1 , (3.8)

where α ∈ (0, 1) is a user parameter and r1 is the initial radius. These two values are
discussed together with the implementation in the next chapter.

3.4. THE VCM ALGORITHM 41

Algorithm 5 Vertex connection and merging

1: function VertexConnectionAndMerging(numOfIterations)

2: for i← 1 to numberOfIterations do

3: for j ← 1 to numOfPixels do

4: lightsPaths[j] = GenerateLightPath

5: photons += lightPaths[j]

6: end for

7: accel = BuildRangeSearchAccelerator(photons)

8: for j ← 1 to numOfPixels do

9: radiance = 0

10: pixelSample = GenerateRandomPixelSample(i)

11: eyePath = GenerateEyePath(pixelSample)

12: for each lightV ertex in lightPaths[j] do . Light tracing

13: radiance += ConnectToCamera(lightV ertex)

14: end for

15: for each eyeV ertex in eyePath do

16: for each lightV ertex in lightPaths[j] do

17: radiance += ConnectVertices(eyeV ertex, lightV ertex)

18: end for

19: radiance += MergeVertices(eyeV ertex, accel)

20: end for

21: image[j] += radiance/numOfPixels

22: end for

23: end for

24: return image

25: end function

42 CHAPTER 3. VERTEX CONNECTION AND MERGING

z0

z1

z2

y1

y0

Figure 3.3: This �gure depicts the vertex connection and merging estimate for a single pixel.
Each eye path vertex (red disc) is connected to each light path vertex (yellow disc) as in
bidirectional path tracing. Additionally, photon mapping radiance estimate is performed at
each eye path vertex.

3.5 Convergence

The original paper shows that the progressive VCM algorithm has mean squared error con-
vergence rate same as the BPT, which is O(1/N) [Vea98]. As the number of iterations
approaches in�nity, the result contains vertex connection contributions only, because MIS
weights for vertex merging contributions are zero for in�nitely small merging radius. The
gain from vertex merging is that we can have visually plausible result after a lower amount of
samples than we would require with bidirectional path tracing. For more elaborate discussion
on the convergence, we refer the interested reader to the original work [GKDS12].

Chapter 4

Implementation

The goal of this thesis was to analyze complex methods for global illumination through
their implementations. We wanted to realize and compare a substantial subset of rendering
algorithms. In order to ease the development process and accomplish a fair comparison of
all implemented algorithms there was a demand for a common framework. All algorithms
we wanted to realize were based on Monte Carlo integration and ray tracing, so we knew
that very large amount of code will be shared among various rendering methods. We had
an option to base our implementation on an existing rendering library, which is for example
Pharr's Physically Based Rendering Toolkit [PH10], which has a large amount of capabilities,
it contains implementation of numerous rendering algorithms, many material models, many
camera models etc. The problem was, among others, the lack of interactivity. Beside the
analysis of complex rendering methods, we wanted to bring Monte Carlo algorithms to
interactivity through image �ltering.

Although the focus of this thesis is primarily the discussion of complex global illumi-
nation algorithms, the �rst part of this chapter introduces the common framework, which
served as the base for implementations of all required algorithms. We named it Global Il-
lumination Rendering Toolkit (GIRT). We believe that understanding a generic rendering
library is equally important as understanding global illumination in general. The second part
is devoted to the description of the vertex connection and merging implementation. Recall
that it is a robust algorithm that combines ideas from the path sampling and the density
estimation, so understanding this renderer is equivalent to understanding bidirectional path
tracing and progressive photon mapping separately.

4.1 Global Illumination Rendering Toolkit (GIRT)

This section presents the overall design of GIRT. It is intended to provide an overview of the
library and we won't go into details. The discussion level should be deep enough for someone,
who wants to start using the library, and it should be high enough for someone, who just
wants to know, how a global illumination framework might be designed. Our discussion
starts with the design goals and then it continues with particular components.

43

44 CHAPTER 4. IMPLEMENTATION

4.1.1 Design goals

We needed a library that allows us to implement various rendering algorithms while mini-
mizing the code duplication. The �rst mandatory requirement on it was that it had to work
within Virtual Reality Universal Toolkit (VRUT). As its name suggest, VRUT is a generic
framework for development various applications related to the computer graphics. Its core
provides a basic graphical user interface, framebu�er, and scene data. Users can then provide
modules that work with the core scene data (e.g. render them). By implementing GIRT
library we wanted VRUT to be able to present its internal data as realistically as possible.

Testing and analysis of various rendering algorithms within VRUT framework would be
cumbersome, because the framework was not primarily designed to provide an environment
for such an enterprise. That is why we needed our library to be independent of VRUT. It
meant we needed a custom scene geometry representation, camera representation, threading
support etc. It showed up that this would be necessary anyway, because VRUT was primarily
designed for real-time rendering. That means it uses very di�erent concepts in material
library design and supports only delta distribution light sources.

The library had to be implemented using the C++ language. Not only because VRUT
is implemented using this language but also because C++ is commonly used to develop this
kind of applications for its robustness and speed. A clear design was the primary concern
because we needed to allow rapid prototyping of rendering algorithms. That doesn't mean
that e�ciency of the implementation was of no concern to us but sometimes we traded it
for well-arranged code. For example, we did not want to obfuscate our implementation by
mixing CPU with GPU code. So these were the requirements more or less unrelated to
actual rendering capabilities of the GIRT library.

Scene geometry Requirements around the scene geometry were relatively simple, because
the library was supposed to create images of static scenes only (or simple dynamic). We just
wanted to support various kinds of geometrical primitives and be able to add new ones in
the future.

Ray casting acceleration As has been already mentioned, all algorithms we wished to
implement are based on ray casting one way or another, so having a good acceleration
structure that speeds up this operation is mandatory. Of course, we did not want to use the
library to analyze various acceleration structures but it appeared to us that disallowing it by
the design would be a pity, because it should not be too much work to account for it. That
is why we decided to implement ray casting acceleration in a generic way.

Light sources A generic implementation of light sources to easily support various types
of lights among all implemented rendering algorithms is a must for any robust physically
based renderer, so we wanted GIRT to support as much types of light sources as possible
and we did not want to account for di�erent types explicitly within rendering algorithms
implementations. Particularly, we wanted to support omindirectional light, environment
light, directional light, spot light, and di�use area light.

4.1. GLOBAL ILLUMINATION RENDERING TOOLKIT (GIRT) 45

Camera models For the purposes of rendering algorithms analysis a single pinhole camera
model would su�ce. Nevertheless, there were ideas to use the GIRT library for the generation
of HDR environment maps, so we had to create a generic camera model support.

Materials Supporting various surface material types is crucial if one wants to thoroughly
test a rendering algorithm. We knew that we need to pay extra attention to the design
around the material support if we didn't want to end up duplicating the code and also
because we didn't want to implement all material types immediately. From the start we
needed to support di�use material, glossy material, and glass. A basic support of �rst to
mentioned types can be achieved by exploiting the phong shading model [Pho75].

Rendering and rendering algorithms Rendering algorithms can be thought as the
hearth of the library. We wanted the implementation of a new algorithm to be as smooth as
possible and we wanted the result to be short and clean to minimize the risk of introducing
an error. Every rendering algorithm has to run in parallel (e.g. custom thread), because we
want to use the library in interactive applications.

From the start we wanted to support judiciously optimized path tracing. This algorithm
is, in comparison to other methods like VCM, relatively easy to implement without making
a mistake. The images generated by this algorithm can be then used as reference images
when debugging complex algorithms.

Image �ltering Aside performing an analysis of various rendering methods, we wanted
to push complex global illumination algorithms towards interactivity through image �lter-
ing. We wished to test recently proposed e�cient noise reduction algorithms like Guided

image �ltering [HST13]. We also wanted to be able to �lter di�erent types of image contri-
butions(e.g. direct and indirect lighting) by di�erent types of image �lters, because di�erent
contributions sometimes exhibit di�erent noise type.

4.1.2 Library overview

This chapter provides a high level overview of the GIRT library design and architecture. We
discuss how we have ful�lled our design goals but we will not go into implementation details.

4.1.2.1 Scene

If we take a look at the �gure 4.1 we can see that an instance of the class SceneCache is
responsible for holding geometry data and light sources of a single virtual scene. It does not
contain information about a camera. These are separated, because we might want to view a
single scene by di�erent cameras and we might want to reuse a single camera among multiple
scenes. More on cameras will be discussed later. An instance of the SceneCache also does
not contain any material related data. This design decision was made, because we wanted
to be able to keep multiple SceneCache instances in the memory and share material data
between them. As we will discuss, a material can contain high-resolution textures together
with their mipmaps, so a material can consume a large amount of memory.

46 CHAPTER 4. IMPLEMENTATION

SceneCache

SceneCacheAccelerator

Primitive

Triangle

NoAccelerator BVHAccelerator KDAccelerator

Light

Figure 4.1: The architecture around the class SceneCache.

All scene data, geometry and light sources, have to be created through the interface of
SceneCache. This is not just to underline that an instance of SceneCache owns this
data but also to ensure that scene data are allocated e�ciently without fragmenting the
memory. Imagine a large scene consisting of millions of geometric primitives. Allocating
these primitives using the standard allocator is time consuming and can eventually consume
unnecessarily large amount of memory.

SceneCache also provides the interface for tracing rays through the scene geometry.
It has two methods, one for casting a single ray and one for casting an arbitrarily large
batch of rays. Casting in batches is more e�ective, because it delegates all requests to an
instance of abstract class SceneCacheAccelerator, so there is a virtual call overhead.
Nevertheless, batching is sometimes undesirable, because it may be cumbersome to em-
ploy it in implementation of speci�c rendering algorithm. As has been mentioned, an in-
stance of SceneCacheAccelerator owned by the SceneCache instance is responsible for
actual ray casting. Today, there are two types of ray casting acceleration structures im-
plemented, kD-Tree (KDAccelerator) and cache optimized bounding volume hierarchy
(BVHAccelerator). The type of the accelerator that an instance of SceneCache should
use is speci�ed using a �xed enumeration, which implies that new types can be added by the
library developer only.

As has been stated earlier, GIRT is limited to static scenes only. This is quite a limi-
tation that on the other hand allows certain simpli�cations while implementing ray casting
acceleration structures. The process of feeding and instance of SceneCache with data has
to be bounded by the calls to special SceneCache methods, so that the particular instance
knows when to free the old data and when to build the acceleration structure for the new
data. After the data is loaded, no change to the geometry is allowed. This might change in
the near future.

Primitive

The basic unit of the scene geometry is the abstract class Primitive. Recall our restriction
on scene surface setM. An instance ofPrimitive represents a single piece-wise di�erentiable
2-manifold. It can actually represent a set of such 2-manifolds but no current implementation
does that. Discussing this, GIRT currently contains only one implementation of Primitive

4.1. GLOBAL ILLUMINATION RENDERING TOOLKIT (GIRT) 47

that represents a single triangle (class Triangle). There are certain parts of Primitive
interface and responsibilities that we should discuss.

Every implementation of the Primitive class has to implement two ray intersection
methods. The �rst method is used when we are performing an occlusion query (e.g. shadow
ray) and the second one is used when we are performing the standard ray casting and
searching for the �rst intersection (e.g. primary/secondary rays). The �rst method is usually
easier to implement as well as it is usually faster than the second one, because we do not
require information about surface for shading, we just want to know whether or not is a
particular ray occluded.

Information about hit surface from primitive-ray intersection routine are recorded in
an aggregate class IntersectionInfo . A single instance of this class saves the intersected
primitive, distance to intersection, particular intersection point, normal vector associated
with the intersection point, and other useful data required for shading (e.g. di�erentials for
texture �ltering).

Instance of Primitive can be queried for world space axis aligned bounding box of surface
points it represents. This routine is particularly important for ray casting accelerators,
because it is the only information they should know about the geometry of a primitive. Last
but not least, a primitive can be a part of an area light source. For this reason Primitive
provides a routine that allows uniform sampling of its surface points.

Light

The class hierarchy regarding lights is depicted on �gure 4.2. The base class Light was
designed in the way, so that it is the only class rendering algorithms needs to be aware
of. Through its interface a single light can be disabled or enabled, we can query for the
total emitted power [W], we can change the intensity, and we can query whether or not
is a particular light source a delta distribution (e.g. point light). Delta distribution light
sources require special care in renderers as they can not be sampled by following a random
walk through BSDF sampling. This was the basic part of the Light interface. The other
part, relatively complex, is related to the Monte Carlo sampling of a light surface points and
directions. We refer the interested reader directly to the source source code of the library,
because discussion of this interface is beyond the level of discussion in this section.

Light

AreaLight

DiffuseAreaLight

PointLight EnvironmentLightDirectionalLight

Figure 4.2: The architecture around the class Light.

Classes PointLight and DirectionalLight represent classic light sources known from
the classic OpenGL �xed pipeline. Their names should suggest which particular light source

48 CHAPTER 4. IMPLEMENTATION

each class represents. The direction of a directional light and the position of a point light
can be changed even after the scene has been loaded and the rendering process started.

The class EnvironmentLight enables us to perform image based lighting. It is in-
tended that there is at most a single light source of this type in a scene. An instance of
EnvironmentLight is backed by a single latitude/longitude texture (possibly HDR).

AreaLight represents a generic interface to any type of area light source. There is cur-
rently only a single implementation that provides di�use area light source (Di�useAreaLight),
which has constant Le from all points to allH2

+(x) directions. Area light is assigned a portion
of scene geometry (e.g. instances of Primitive), so there is no need to specially account for
their geometry when performing ray-scene intersection. An instance of Primitive, which is
returned from ray-primitive intersection routine in an instance of IntersectionInfo , con-
tains, possibly non-null, reference to an instance of AreaLight.

4.1.2.2 Materials

The Design of the material system is depicted on �gure 4.3. An instance of Primitive
holds a reference to a single instance of the Material class that describes its surface. Ma-
terial itself is a hypothetically composed of various BSDF objects. We say "hypotheti-
cally", because, when asked,Material instance is capable of putting together an instance of
BSDF that statistically describes the surface of the single point provided through instance
of IntersectionInfo .

Material BSDF

BxDFTexture<T>

ImageTexture<T> ConstantTexture<T>

Figure 4.3: The architecture around the class Material.

BSDF

BSDF function for a speci�c surface point is encapsulated in the class with the same
name, BSDF. Say, we have the result from a ray casting operation in the form of an
IntersectionInfo instance and we want to perform the shading at the particular point.
We ask the hit Primitive for its Material. Provided the instance of IntersectionInfo ,
the Material instance can give us the BSDF object for the hit point. The BSDF class is
itself only an aggregate of BxDF class, which is an abstract class and every implementation
should stand for a single BRDF or BTDF function(e.g. di�use re�ection). This design is
similar to the one presented in Pharr's book on physically based rendering[PH10].

4.1. GLOBAL ILLUMINATION RENDERING TOOLKIT (GIRT) 49

Textures

Consider the implementation of the di�use (Lambertian) material, which is encapsulated in
the class MatteMaterial. Recall that di�use BRDF has only a single parameter, which
tells how much of the incident energy is scattered. This parameter is provided to the speci�c
BxDF object by the MatteMaterial instance through a texture lookup. The speci�c
texture is polymorphically hidden behind an implementation of the abstract class Texture.
Currently, there are two implementations. The classConstantTexture stands for a singular
speci�c value. This type of texture is fast to evaluate but it is not useful if we want to
create a detailed scene without having too much geometry. The other type, ImageTexture,
stores a rectangular array of values. The value for a speci�c IntersectionInfo is fetched
from an instance of ImageTexture using uv coordinates. Image textures also support the
mipmapping technique for �ltering.

Supported materials

Beside the di�use material, GIRT library currently supports phong material, mirror material,
and glass material. All mentioned models are physically valid. Glass material is implemented
in terms of the Fresnel equations. Physically plausible Phong material was implemented
according to the technical report by Lafortune[LW94]. We intent to support many more
material types in the future. The supported materials are enough to create realistically
looking images, they were relatively easy to implement, and they are su�cient for analysis
of various rendering algorithms.

As in the case of light sources, we did not talk about sampling support in the con-
text of BSDF. For an high level overview, it should be su�cient to know that given an
outgoing radiance/importance direction −→ωo, an instance of BSDF provides an incident radi-
ance/importance direction −→ωi sampled according to the probability density proportional to
the re�ectance function.

4.1.2.3 Camera models

Take a look at the �gure 4.4 which shows the design behind the camera support. All camera
models are derived from a common base class, Camera. An instance of the Camera

class holds the information about the view coordinate system of a camera (e.g. position
and orientation). The Camera class provides large amount of methods in order to allow
a comfortable change of the underlying view coordinate system. Currently, there are two
subclasses of Camera. PerspectiveCamera implements standard pinhole camera model
that is used to generate images and SphericalCamera, which is capable of creating HDR
latitude/longitude environment maps.

4.1.2.4 Rendering

The architecture around the rendering functionality of the GIRT library is described by
the �gure 4.5. The abstract class AbstractRenderer provides the rendering interface to
the user as well as it o�ers common functionality to its subclasses. Every �nal subclass of
AbstractRenderer should correspond to a single rendering algorithm (e.g. path tracing),

50 CHAPTER 4. IMPLEMENTATION

Camera

PerspectiveCamera SphericalCamera

Figure 4.4: The architecture around the class Camera.

but it does not have to be that way. AbstractRenderer also owns the framebu�er, which
can be customized by a particular implementation to �t its needs. Before anything can
be rendered, an instance of AbstractRenderer has to be provided with a SceneCache
instance and aCamera instance. The actual rendering process is controlled by two methods.
They are so important that we even mention them here. Rendering is initiated by calling
the function startRendering(). This method shall not hold the calling thread until the
rendering is �nished. It shall run the rendering in parallel and return as soon as possible.
During the rendering process it is important to avoid changing any parameter that a�ects the
process. For example, one should not change the intensity of a light source. The rendering
process has to be stopped before changing any such parameter, which is done through the
method cancelRendering(). This method shall hold the calling thread until the process is
really terminated and it is safe to change a parameter a�ecting it.

AbstractRenderer

VCMPhotonMappingPathTracer

Framebuffer Renderbuffer

Figure 4.5: The architecture around the class AbstractRenderer.

Although we are going to discuss the VCM implementation in a detail within the second
part of this chapter, we shortly discuss the PathTracer renderer here. This subclass imple-
ments the path tracing with the next event estimation and multiple importance sampling for
direct lighting estimation. It is the simplest algorithm implemented within the GIRT library
and it is used to create reference images whenever possible. Path tracing is based on the pure
image sampling, which is why it is derived from the intermediate class SamplerRenderer.
SamplerRenderer implements the startRendering() method of the AbstractRenderer
base class by spawning a speci�c amount of worker threads. Each worker thread iteratively
generates image samples and provides this image samples to the PathTracer for process-
ing. In PathTracer implementation, every sample is mapped to a primary ray by using
the camera, it is traced through the scene and its eventual contribution is recorded to the
framebu�er.

Currently, there are three implementations ofAbstractRenderer, the already discussed

4.1. GLOBAL ILLUMINATION RENDERING TOOLKIT (GIRT) 51

PathTracer, VCM, and PhotonMapping. The last mentioned implements standard
photon mapping as formulated by Jensen[Jen01] as well as stochastic progressive photon
mapping[HJ09].

4.1.2.5 Image �ltering and tone mapping

The process of image �ltering and tone mapping is completely handled by the graphics pro-
cessing unit (GPU) and it is all encapsulated within a single class, ImageFilter. OpenGL
API was used as the interface to the graphics card. Image �ltering can be done on each
component of a framebu�er separately. For example, PathTracer allows to separate con-
tributions of direct lighting and indirect lighting. We can then leave the direct lighting
component un�ltered and perform Gaussian �ltering on the indirect lighting component.
We have implemented three types of image �lters, space-invariant Gaussian �lter, bilateral
�lter[TM98], and guided image �lter[HST13]. We refer the interested reader to the original
papers for more information.

The results of image �ltering are combined to a single texture, �ltered image. The last
step in the image pipeline is to perform the tone mapping, which allows to show the �ltered
image on today's low dynamic range display devices without loosing �delity. Currently, only
relatively simple global tone mapping operators are supported (e.g. Logarithmic, S-Curve,
and Exponential).

4.1.2.6 Implementation details

This small section is devoted to the discussion to some implementation details that are worth
mentioning.

Parallelization

Global illumination algorithms that we have implemented (e.g. path tracing) are said to
be embarrassingly parallel. For example, lock free parallelization in path tracing can be
achieved just by relatively simple parallel reduction on image pixels, which is what the class
SamplerRenderer exactly does. In the case of building photon map it is very much alike.
For such tasks we have implemented the special class AsynchronousTaskExecutor. An
instance of this class is capable of executing a given functor multiple times in parallel. We
often set the number of parallel executions to the number of physical cores available on the
machine and then we just adjust the thread priority of all executions.

Some tasks are not so easily made parallel. Building a hash grid among a set of point
is just one example. It can be done using the parallel reduction and the pre�x sum. For
tasks like this we decided to use the Intel Thread Building Blocks[Int], which implements
all common parallel algorithms in a generic way and its interface looks very much like the
interface of C++ Standard Template Library (STL).

Random numbers

A correct implementation of a random number generation (RNG) is the �rst step when
dealing with Monte Carlo methods. Testing the implementation before proceeding with

52 CHAPTER 4. IMPLEMENTATION

implementation of an algorithm is worthwhile. By choosing a wrong RNG method, your
algorithm may spend a lot of time on evaluating largely correlated samples. One needs an
algorithm that really distributes its samples uniformly with su�ciently high resolution.

Another problem may arise if our stochastic algorithm is parallel, like in the case of
rendering. If we seed individual instances of selected RNG in a wrong way, we can end
up with each thread performing the same work. We have chosen our RNG according to
guidelines provided in the article by David Jones[Jon].

Color

The library is intended to produce visually plausible images of virtual scenes and not exact
physical measurements. The light transport is computed independently only for three com-
ponents of the RGB color model. Quantities for all wavelengths are packed in an instance
of the class RGBSpectrum. The library is hard coded in the terms of this class, because
we do not expect any changes of this decision in the future.

Material and light de�nition �les

We wanted the library to be a part of the VRUT framework as well as we wanted it to be
standalone, but even VRUT provides us with a limited set of light types and material types.
For these reasons we needed a proper way of de�ning the surface materials and scene lights.
Using a 3rd-party format was out of the topic, because in the VRUT mode we still wanted to
load all the geometry from its core and use most of its materials. We only wanted to be able
to override its materials. For example, in GIRT we might have a better way of representing
metal material than the simple Phong model. After thorough consideration we decided to
create our own formats.

The structure of de�nition �les is the same for both, materials and lights. Their syntax
is very close to JSON, which is a data de�nition subset of Javascript language. Complete
example �les are provided together with the GIRT library. Appendix A and Appendix B
show short example of material de�nition �le and lights de�nition �le respectively.

Detailed geometry

To improve the detail of a scene we can either introduce more polygons or we can perturb
geometric surface normals to change the shading behaviour. Each technique has its own
strengths an weaknesses. Beside the large memory consumption and slower ray casting,
having many small polygons can lead to numerical issues within the rendering algorithm.
On the other hand, Veach [Vea98] showed that changing geometric surface normal can lead
to various artifacts (e.g. light leaks or black spots). Naturally, GIRT supports the �rst
approach, which consist in having more polygons. The second one is supported through
the technique known as bump mapping. Bump map can be speci�ed for any material (see
appendix A).

Tree leaf is an example of something that requires large geometrical detail. When creating
close up renders of such structure, we have no other choice than to introduce a large number
of geometric primitives but when viewing it from a relatively large distance, we can represent

4.2. VERTEX CONNECTION AND MERGING IMPLEMENTATION 53

it using a single planar polygon with texture map. GIRT supports mask textures, so a leaf
can be represented by a single quadrilateral with a mask texture that says which part of the
quadrilateral belongs to the leaf and which does not.

Numerical issues

The GIRT library is based on IEE754 32bit �oating point numeric type, so numerical issues
arise in many parts of the library. For example precision of ray casting is dependent on
distance between the origin of a ray an the potential hit point. When tracing a ray from
a location that was computed as the intersection of another ray with the scene we might
have to o�set the origin of the new ray in its direction to avoid an intersection of the surface
around the location at a distance near zero. The required o�set depends on the distance
the previous ray traveled through the scene. An instance of IntersectionInfo records this
information and provides the required o�set for us.

4.2 Vertex connection and merging implementation

This section provides a discussion of the implementation of vertex connection and merging
algorithm that exists withing the GIRT library. Unfortunately, there is not enough space to
provide the complete source code here and outline it step by step. Instead, we �rst discuss
the implementation in overall and then we provide the pseudocode of the main rendering
method in the form of literate programming as it is used in the Pharr's book on physically
based rendering [PH10]. The pseudocode matches the actual implementation as much as
possible. The reader is assumed to be familiar with the basic concepts of the GIRT library
and with the theory behind the vertex connection and merging method. We also recommend
reading the technical report on implementing the VCM[Geo12] before continuing any further.

Our implementation more or less matches the algorithm de�nition in the original paper[GKDS12]
and it uses recommendations provided in the technical report[Geo12]. For example the multi-
ple importance sampling weights are computed using the modi�ed Antwerpen's scheme[vA11].
This scheme is very e�cient since its computation of the MIS weights has constant complexity
as opposed to the linear complexity of the scheme proposed by Veach[Vea98] for bidirectional
path tracing. However its e�ciency comes at some cost. The probability densities of the
sampled vertices can not depend on the length of a path. For example if we want to perform
the Russian roulette not before a speci�c amount of vertices has been sampled, we have to
disregard this in MIS weight computation and accept the bias or we have to use a di�er-
ent scheme, which may not be so e�cient. Withing a bidirectional path tracing this is not
an issue since there are a lot less weight computations than in the vertex connection and
merging.

Our implementation supports all light types and materials that are implemented within
the GIRT library, which means that besides di�use BSDF and area lights it supports specular
materials (e.g. mirror and glass) as well as delta distribution light sources and environment
lights. Supporting all of these capabilities was real complicated during the development but
the complexity is hidden behind the light sources and BSDFs implementations, so the code
of the algorithm is relatively clean.

54 CHAPTER 4. IMPLEMENTATION

The implementation of the algorithm has many parameters that control its behavior.
Next we provide a list of these parameters together with their description.

• Initial radius controls the impact of vertex merging. It can be speci�ed in two ways.
Either the user can provide it directly in the scene units or it can be derived from
the radius of the scene bounding sphere. The later case is proposed in the original
paper and the user just specify the percentage of the radius. We �nd this approach
less intuitive and so we have implemented the �rst method as well.
• The user can specify the radius reduction parameter which is used to derive the
radius for a particular algorithm iteration. The radius reduction scheme used in our
implementation is described by the equation 3.8.
• Russian roulette o�set can be speci�ed to decrease the variance for short paths with
potentially high measurement contribution.
• Beside the Russian roulette, the user can also control themaximal depth of a path in
the number of its vertices. Value of zero lets the Russian roulette to bound the depth.
This choice might be dangerous if non-physical BSDFs are present in the scene, since
our implementation of Russian roulette depends on the albedo of a particular BSDF.
• Maximal number of iterations can be speci�ed. This might be useful when per-
forming a benchmark.
• The algorithm can be told by the user to run in the bidirectional path tracing

mode. We have achieved this the same way as it is suggested in the technical
report[Geo12]. This is useful if we want to compare the VCM with BPT or if we
just know that VCM is not required for a particular scene and lighting conditions.
• Merging at the second eye vertex can be turned o� by the user. Merging on this
vertex corresponds to the photon mapping without the �nal gathering which has a
slow convergence if the merging radius is large. We will compare results with merging
at second camera vertex on or o� in the next chapter.

The vertex connection and merging implementation within the GIRT library is repre-
sented by the class VCM, which is as direct subclass of AbstractRenderer. The imple-
mentation is capable of running the whole algorithm in parallel by the speci�ed amount
of threads. Now we continue by presenting its implementation of the startRendering()
virtual method in the form of a pseudocode and literate programming.

What follows is the skeleton of the algorithm. At �rst, rendering process is initialized
and then the VCM iteration loop begins, which consist in preparation, generation of the
light paths, generating photon map (point search acceleration structure), and rendering.
Note that if the algorithm runs in the BPT mode there is no need for the photon map,
which is used exclusively for the vertex merging. Generating lights path in advance then
unnecessarily wastes memory space, so in the case of the BPT mode turned on we generate
light path right when it is required for an eye path sample.

〈GIRT VCM Algorithm〉 ≡
〈Prepare The Rendering Process〉
while not cancel
{

4.2. VERTEX CONNECTION AND MERGING IMPLEMENTATION 55

〈Prepare VCM Iteration〉
if not BPT mode
{
〈Generate Light Paths and Photon Map〉
〈Build Range Query Data Structure〉

}
〈Render〉

}

Preparing the rendering process consist in clearing the framebu�er, computing the initial
radius, clearing all state variables to some appropriate initial value, and reserving memory
space. If the deducing of the initial radius from the scene bounding sphere radius is turned o�
no computation is done and the user speci�ed radius is used directly. By reserving memory
space we mean preallocating enough space for light paths and the photon map. Recall that
the number of light paths traced is equal to the number of pixels, since the same paths are
used for building the photon map and bidirectional path tracing estimate. If the resolution
is high and the scene is a closed environment photon map can �nally contain millions of
photons. Not preallocating memory can result in a substantial performance degradation.

〈Prepare The Rendering Process〉 ≡
〈Compute The Initial Radius〉
〈Reset State Variables〉
〈Clear the Framebuffer〉
〈Reserve Memory Space〉

The preparation of a single iteration is mainly about increasing the iteration counter,
then the merging radius for the upcoming iteration is evaluated using 3.8. At last some state
variable and storage for light paths and photon map is cleared. Most of the state variables
is helper variables that save computation later. For example there is the ηV CM = nVM

nV C πr
2

parameter that is used when computing every multiple importance sampling weight (VCM
technical report eq. 20), where r is the current merging radius, nVM is the number of vertex
merging samples, and nVM is the number of vertex connection samples. Precomputing this
parameter does not make the VCM interactive but is worthwhile.

〈Prepare VCM Iteration〉 ≡
〈Apply Radius Reduction Scheme〉
〈Update State Variables〉
〈Clear Data〉

Light paths generation is performed in parallel by the user speci�ed number of threads.
By default this number is equal to the number of available hardware threads and their
priority is set below normal to keep the system responsive (especially Windows 7). The
parallelization is realized using the helper class AsynchronousTaskExecutor which is a
part of the GIRT library. An instance of this classes is more or less like a thread pool
that is able to execute the given functor by required number of parallel threads up to some
maximum. In the case of light paths generation the functor is a private method of the VCM
class. This method generates light paths and photons in a loop batch by batch. After it

56 CHAPTER 4. IMPLEMENTATION

generates a batch the function merges it with the global array within the VCM instance.
The pseudocode describes the actual light paths generation procedure not the parallelization.

When storing a generated light path we do not consider the �rst vertex (on the light
source). The �rst vertex is later generated new for every vertex of an eye path. This technique
decreases the correlation between samples and can reduce the variance if specialized sampling
techniques are employed. In the case of spherical luminaire we can use the point sampling
technique described in the Siggraph course on Monte Carlo methods[Shi01a], which requires
the knowledge of an eye path vertex.

〈Generate Light Paths and Photon Map〉 ≡
〈Allocate Local Storage〉
while not cancel
{

if all paths generated
break

for i=1 to batchSize
{
〈Generate Light Path〉
〈Store Data To Local Structures〉

}

〈Store Batch To Global Structures〉
}

Generation of a single light path begins with sampling a point on a light source using the
probability density proportional to the emitted radiosity function. Then the �rst direction
is sampled according to exitant radiance function at the chosen point. The particular light
source is sampled according to its total emitted �ux.

The light ray induced by the light sample is then traced through the scene and if it hits
the scene surface, the �rst vertex (second actually) of the light path is initialized with all
required parameters and stored. Path is then continued by the code that is common for
generation of both path types (eye and light).

〈Generate Light Path〉 ≡
〈Generate Light Sample〉
〈Trace the Ray Induced By the Light Sample〉

if light ray missed the scene
return

〈Initialize the Second Light Path Vertex〉
〈Continue Path Generation〉

Continuation of the path generation is slightly more involved than everything we have
seen so far. The procedure is based on a loop that is bounded by the maximum number of
path vertices. At �rst the Russian roulette is possibly applied based on surface albedo for the
current incident direction. If the path is not terminated by the Russian roulette a new direc-

4.2. VERTEX CONNECTION AND MERGING IMPLEMENTATION 57

tion is sampled using the BSDF at the current path vertex. The ray induced by the BSDF
sample is traced through the scene and if it does not miss, a new path vertex is initialized with
all its parameters. We should expand the fragment 〈Initialize New Path Vertex and Store It〉
further since it is the most complicated part of the procedure.

〈Continue Path Generation〉 ≡
while not cancel && not max depth reached
{

if russian roulette should be applied
〈Compute the Continuation Probability〉
if ξ > continuation probability

break

〈Sample Next Direction Using the Current Point’s BSDF 〉
〈Trace the Ray Induced By the BSDF Sample〉

if BSDF ray missed the scene
break

〈Initialize New Path Vertex and Store It〉
}

The initialization of a new path vertex is mostly about computing the parameters for
the recursive weight computation scheme. The procedure is not uni�ed in this phase and it
contains branches that are conditioned on the parameters of the previous and the current
vertex. The goal of the following pseudocode is to show all di�erent cases. Unfortunately,
there is not enough space to show the details. In the case the reader is more interested
we refer her or him directly to the source code and to the VCM implementation technical
report[Geo12].

If the new sampled direction was proposed by a specular BSDF we have to handle the
reverse sampling probability density explicitly, since the BSDF method that computes the
density returns 0 if it is specular. The value of 0 is wrong in this case because we know that
for our pair of directions the Dirac delta distribution that backs the specular BSDF would
evaluate to ∞. See VCM technical report for the de�nition of reverse sampling probability
density.

In the case the previous vertex has only specular BSDF we have to compute the parame-
ters for the recursive MIS weight computation scheme di�erently, according to the equations
53-55 in the technical report, in order to disregard corresponding connections and mergings.
In the other case we compute the parameters according to equations 31-36 in the technical
report.

〈Initialize New Path Vertex and Store It〉 ≡
〈Precompute Commonly Used Expressions〉

if sampled direction is specular
〈Handle Reverse Probability Explicitly〉

if previous vertex is specular

58 CHAPTER 4. IMPLEMENTATION

〈Specular Previous Vertex Parameters〉
else
〈Non Specular Previous Vertex Parameters〉

Having generated the records for the photon map, we can proceed with initialization of
the range search acceleration structure. Since our merging radius is constant for all searches
within a single iteration (a least for now), we can use a specialized structure for this kind
of operation, the hash grid. We set the size of the grid box approximately to the size of
the scene axis aligned bounding box and we set the cell size equal to the merging radius.
This way the range query has constant complexity in the sense of the number of visited cells
(eight). Parallelization of the hash grid building process is slightly more involved than the
parallelization of the light paths generation. We used the Intel Thread Building Blocks[Int]
for this task. See the source code of PointHashGrid for details. We should also mention
that to save memory space our hash grid instance does not store the photons it has been
built from. It stores only the world space positions and indices to the original array it has
been given.

We can now move to the main function of the VCM algorithm procedure that performs
the actual pixel measurements. As the light path generation the rendering is performed in
parallel by the same amount of threads. Each thread processes a batch of pixel samples
in a loop. The batch size is chosen large enough to avoid synchronization overhead as well
as small enough to avoid a single thread running ten times longer just because it has been
assigned a complex part of the image.

If the renderer is in the BPT mode we have to generate the light path for the current
pixel sample using known procedure, otherwise we just fetch the stored light path from the
global array.

Every light path vertex is �rstly connected to the camera projection center. This connec-
tion is di�erent from other vertex connections, since it can contribute to an arbitrary pixel
in the image (light tracing).

If the light path generation was terminated by missing the scene geometry before the
maximum amount of vertices has been reached or before the Russian roulette terminated it,
we have to account for the eventual contribution of a distant area light source (environment
map). This is a special case of unidirectional sampling but since distant area light can not
be hit by ray tracing procedure, it has to be treated as a special case explicitly.

In the case an eye path vertex belongs to an area light source we have to account for the
contribution of the corresponding path as in unidirectional path tracing.

As has been already mentioned, we handle bidirectional techniques t ≥ 2, s = 1 by
generating a new point on the light source. Other bidirectional techniques, t ≥ 2, s ≥ 2, are
handled by connecting relevant points of the eye path and the light path. Vertex merging is
performed starting at the second eye path vertex.

There is not enough space to provide a detailed description of every fragment mentioned
in 〈Render〉. We believe that the actual source provided together with this thesis is clear and
divided into short meaningful methods. The most complicated part of these fragments is MIS
weight evaluation which is described by equations 38-47 in the VCM technical report[Geo12].

〈Render〉 ≡

4.2. VERTEX CONNECTION AND MERGING IMPLEMENTATION 59

while not cancel
{
〈Acquire Pixel Range〉
for each pixel in the current range
{
〈Generate Eye Path〉

if BPT mode
〈Generate Light Path〉

else
〈Fetch Stored Light Path For the Pixel〉

for each light path vertex
〈Connect Light Vertex To the Camera〉

〈Handle Environment Light〉

for each eye path vertex
〈Connect Eye Vertex To the Light〉
〈Handle Unidirectional Contribution〉

for each light path vertex
〈Connect Eye Vertex To Light Vertex〉

〈Merge Vertices at Eye Vertex〉
}

}

60 CHAPTER 4. IMPLEMENTATION

Chapter 5

Results

In this chapter we present an empirical evaluation of our vertex connection and merging
implementation presented in the previous chapter. We start by discussing how we have
checked the implementation's correctness. Then we analyze the results for various scenes and
compare these results to other algorithms. The last section is devoted to the optimization
of VCM parameters in the sense of di�erent requirements on the image quality.

5.1 Testing correctness

To verify the correctness we implemented the path tracing with the next event estimation,
which is relatively simple algorithm in comparison to the vertex connection and merging,
and provide it with carefully designed input for which it can give the correct result in an
a�ordable amount of time, which means that all non zero measurement contribution paths
have relatively high probability density even if sampled by the path tracer. Assuming that the
foundations of the GIRT library (e.g. BSDFs, sampling etc.) are implemented correctly and
that our implementation of path tracing is done right, we can partially check the correctness
of a new algorithm by comparing the result produced by it to the result produced by our
path tracer. This was the �rst step we actually took to check our VCM implementation.
Table 5.1 shows the result of the test. No tone mapping was applied and we can see that
presented images are indistinguishable by a human eye. In fact the root mean square (RMS)
di�erence of pixels luminances is 0.006. From the bottom left image of the table 5.1 we
can see that this di�erence is caused only by a random noise in the images. There is no
substantial di�erence in the form of missing some lighting e�ects.

We realize that checking our implementation through the comparison with the path
tracing is not su�cient, since the VCM algorithm is designed to deal with the lighting
conditions for which the path tracing is improper, because it either converges slowly or it
does not converge at all. We will see such cases in the next section. For this reason we tested
our implementation on such setup for which it was designed (SDS light carrying paths). We
have also collected the scenes which were presented within the original VCM paper [GKDS12]
and rendered them using our implementation. Then we compared our results with the results
presented in the original paper.

61

62 CHAPTER 5. RESULTS

PT 3657iter VCM 929iter

DIFF
 1600 1800 2000

R
M

S
 i

m
ag

e
d
if

fe
re

n
ce

Time[s]

 0

 0.02

PT

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0 200 400 600 800 1000 1200 1400

VCM

Table 5.1: The top left image shows the reference image produced by our implementation of
path tracing with the next event estimation in 30 minutes. The top right image shows the
same scene rendered by our implementation of vertex connection and merging in the same
amount of time. The bottom left image visualizes the color di�erence between top images.
The RMS di�erence is 0.006. The plot visualizes how the RMS di�erence from the reference
evolved in time for both algorithms. The contour of the light source on the di�erence image
is caused by the random sampling of pixel locations. See that the path tracer converges faster
in this simple case (di�use surfaces) than the VCM, since within 30 minutes it performed
3657 iterations while the VCM performed only 929 iterations.

5.2. RENDERING ALGORITHMS COMPARISON 63

Table 5.2: Tone mapped reference images of the scenes used for the evaluation of our VCM
implementation. Left: Mirror balls scene by Toshiya HachisukaMiddle: Living room scene
by Iliyan Georgiev Right: custom Bathroom scene

To properly test the correctness of a rendering algorithm one should provide it with an
analytically computable input and then compare its result for the input with the analytically
computed result. The problem with this approach is that the VCM algorithm was designed
for cases for which the analytically evaluable example is hard to �nd. Not mentioning that our
implementation might not pass due to the minor di�erences caused by 32 bit �oating point
arithmetic and otherwise negligible bias introduced by the recursive weight computation
scheme [vA11]. Since our goal is photo realistic image we just need to be sure that our
algorithm correctly simulates the global illumination e�ects it should and that relative pixel
intensities are correct.

5.2 Rendering algorithms comparison

In this section we present an empirical evaluation of our vertex connection and merging
implementation. We present the results for three selected scenes (table 5.2), though we have
tested our implementation on more than just three. The appendix D contains noise free
images of other scenes on which we have the VCM implementation. All scenes used for
testing are located on the DVD-ROM provided together with this thesis.

All measurements were done on a single machine which speci�cation is given below.
Although our implementation uses the GPU only for displaying the resulting image we have
included its speci�cation.

• Intel Xeon E5-1620 CPU 3.60GHZ, 4 Cores, 8 Threads, 10MB Cache

• 16GB RAM, DDR3 1600MHz

• OS Windows 2008 R2 Server Edition 64bit

• NVIDIA GeForce GTX Titan (928MHz) 6GB DDR5 (6008MHz)

All presented images were rendered in the resolution of 1024 × 768 pixels. This implies
that the VCM implementation traced 786 432 light paths in every iteration. Recall that in
our implementation, the count of traced light paths is the same as the number of pixels in the
image (see the previous chapter). The maximal depth of a single path was not speci�ed, so

64 CHAPTER 5. RESULTS

the path generation was terminated at some point by the Russian roulette that was based on
the albedo of the material at a surface point. This means that we had to make sure our scenes
do not contain physically invalid materials. We tried to specify our materials with a great
care but to make sure the algorithm will not end in an endless loop we ensured the physical
validity directly in particular implementations of BSDF models. Radius reduction parameter
α of the reduction scheme 3.8 for the vertex connection and merging and the bidirectional
photon mapping (BPM) was always set to 2

3 which is the optimal value proposed in the
original paper [GKDS12]. Note that the VCM images presented in this section were created
by performing the vertex merging till the third vertex of the eye path, disregarding it at the
second one.

The table 5.5 shows images of all three scenes created by our VCM implementation in
one minute and in one hour. For all images, the contribution of vertex merging techniques
and the contribution of vertex connection techniques are shown separately. If a path, whose
vertices are located at locations with relatively high photon density, is sampled by a vertex
merging technique its contribution to the image will be relatively large due to high multiple
importance sampling weight, especially when the merging radius is large. We can see that the
vertex merging accounts for the re�ected caustics. The directly visible caustics are handled
by the light tracing, which is a vertex connection sampling technique. Recall that we do not
perform vertex merging at the second eye path vertex. As the time grows the impact of the
vertex merging decreases due to the merging radius reduction. One hour images show that
most of the vertex merging image contribution comes from the re�ected caustics only. Recall
that re�ected caustics are transported through the paths which have very low probability
densities when sampled by the vertex connection techniques only. The vertex merging has a
relatively large MIS weight for such path even when the merging radius is small.

The tables 5.6, 5.7, and 5.8 show a comparison of VCM to other global illumination
algorithms, namely to the bidirectional photon mapping, to the bidirectional path tracing,
and to the path tracing with the next event estimation. All mentioned algorithms were
implemented within the GIRT library. The reason for the comparison of VCM with BPM
and BPT should be clear. Recall that VCM is a combination of these algorithms. The
comparison with path tracing is presented only to show the necessity of complex global
illumination methods.

We can see that the path tracing is unable to account for certain lighting e�ects like
re�ected caustics or caustics caused by a small light source even if the next event estima-
tion technique is used. The usage of multiple importance sampling for the direct lighting
computation might improve the result but not substantially. This should serve as a good
motivation for complex global illumination methods.

In overall, we can see that the bidirectional path tracing has problems in the areas with
re�ected caustics. Paths that transport the re�ected caustics have a low probability density
and if they happen to be sampled they only cause few bright pixels in the image, which appear
as artifacts. In a reasonable amount of time (about one hour) the CPU implementation of
BPT is unable to converge to the correct result, if re�ected caustics paths are present.

The bidirectional photon mapping showed to produce visually more acceptable results
than BPT in exchange for the bias. But for example if the illumination is caused by a distant
light source photon density might get so low that the algorithm is unable to re�ne its result.

5.3. OPTIMIZING VCM INPUT PARAMETERS 65

Scene I IT LGT Merging ALPL AEPL ACC PC MR

Mirror Balls 410 8.5 1.5 2.1 7 6 41.5 4.07 3
Living Room 340 10.5 1.36 1.4 3.6 4.2 14.8 2.01 2
Bathroom 205 17.4 1.6 3.4 7.4 8.1 59.6 5 3.8

Table 5.3: This table shows some pro�ling information of the last VCM iteration that was
performed when the images for the tables 5.6, 5.7, and 5.8 were created. The table 5.4
provides column descriptions.

Column Description

I Number of VCM iterations done so far.
IT Time of the last iteration.
LGT Total time consumed by the light paths generation.
Merging Average time spent with vertex merging by a single thread.
ALPL Average light path length.
AEPL Average eye path length.
ACC Average number of vertex connections for a single pixel sample.
PC Number of photons.
MR Millions of rays per second.

Table 5.4: This table provides column descriptions of the table 5.3. All times are in millisec-
onds and bound to the last iteration.

This is the case of the wall behind the mirror in the Living room scene. See that even after
an hour of rendering the result is still splotchy.

The graphs presented within the tables 5.6, 5.7, and 5.8 show that bidirectional photon
mapping converges to the reference image faster than other methods in the early phase of the
rendering process but is always superseded by the vertex connection and merging after some
time. Nevertheless, our tests showed that using VCM for a scene which can be e�ciently
handled by path tracing is not worth it. Even if the path tracer converges slower in the sense
of the number of samples per pixel, it can evaluate a lot more samples than the VCM in the
same amount of time (see the table 5.1).

The table 5.3 shows some pro�ling information of the last VCM iteration that was per-
formed when the images for the comparison tables were created.

5.3 Optimizing VCM input parameters

As has been already mentioned, the original VCM paper [GKDS12] shown that the optimal
value for the radius reduction parameter α is 2

3 . For this value the progressive photon map-
ping estimator has the optimal mean squared error (MSE) convergence rate of O(1/N2/3).
The MSE convergence rate of the vertex connection and merging then lies between the MSE

66 CHAPTER 5. RESULTS

convergence rate of the bidirectional path tracer O(1/N) and the mentioned optimal rate of
the progressive photon mapping.

A very important input parameter of the method that a�ects the visual appearance of
the image in time is the initial merging radius. Choosing it too large results in the loss
of detail due to the blurring by the density estimation kernel but the image looks smooth
after relatively small amount of time. The blurred image can give the user an insight to the
illumination of a scene which might be useful during its development. Choosing the radius
too small might result in having the same problems as the bidirectional path tracing. The
original paper proposed to derive the initial merging radius from the bounding sphere of the
scene. When the scene is large and complex, we have found this approach a bit non intuitive,
so in our implementation we allow the user to specify the initial radius directly in the scene
units. The tables 5.10 and 5.11 show the results of the VCM method for various merging
radii in time in the context of the Living room scene. To produce the table 5.10 we have
turned the vertex merging at the second eye path vertex on and to produce the table 5.11
we have turned it o�.

5.4 Increasing the number of vertex merging samples

As has been mentioned, the original paper [GKDS12] proposed that the number of vertex
merging samples should be the same as the number of pixels in the image. We believe,
this idea comes from the fact that as the resolution gets lower we are able to perform more
vertex connection samples per pixel in the same amount of time, and as we have seen, the
bidirectional path tracing has the better RMS convergence rate than bidirectional photon
mapping. Nevertheless, we have modi�ed our VCM implementation, so we can trace more
photon paths than the number pixels (integer multiply of the number).

It has shown that sometimes it might be worth to increase the photon density as in the
case of our test scenario, which is presented as the table 5.9. We used the Living room scene
with the known environment setup from algorithm comparison and we have rendered this
scene using three VCM con�gurations. In the �rst con�guration we set the initial merging
radius to 12.5mm and the number of photon paths to the number of pixels, in the second
con�guration we also set the merging radius to 12.5mm but set the number of photons paths
fourth times the number of pixels, in the third con�guration we set the merging radius
to 25mm and set the number of photons path back to the number of pixels. Recall that
all tests were done in the resolution of 1024x768 pixels. We let all of the mentioned VCM
con�gurations to run for 60 minutes and all of them ended with more or less visually plausible
result. We continue with the more elaborate comparison of the results.

By comparing �rst two con�gurations we wanted to see what happens if we increase
the photon density for the same merging radius and it has shown that after 60 minutes the
version that uses the increased number of photons paths has smaller RMS di�erence from
the reference image than the version with the number of photon paths same as the number
of pixels. We have also found the result of the higher density con�guration visually better
since the splotches caused by the vertex merging are not so accentuated.

By halving the merging radius and quadrupling the number of vertex merging samples
(light paths), the MIS weight of a path proposed by a vertex merging technique should

5.5. COMPUTING IMAGE FOR MORE MERGING RADII AT ONCE 67

remain the same, which also means that overall contribution of vertex merging to the image
should remain about the same. By looking at the results on table 5.9 for last two VCM
con�gurations we can see that not only the RMS di�erence from reference is larger for the
greater radius but also the result for greater radius contains noticeable low frequency noise.

This result showed that in some cases it might be worth to increase the impact of vertex
merging techniques by increasing the number of its samples. For small radius the variance
of bidirectional photon mapping estimator can be reduced substantially.

5.5 Computing image for more merging radii at once

Results of the VCM method for di�erent merging radii brought the idea of computing images
for more than one radius at once. We have modi�ed our implementation so that we have
extracted the merging radius from the recursive MIS weight computation scheme. This
change is based on the VCM technical report [Geo12] where the weight computation scheme
is modi�ed to handle per vertex merging radii. We have measured the overhead of multiple
radii on our test scenes. It showed up that the overhead is negligible in comparison to other
operations. The overhead was always less then 0.3% of the total rendering time.

68 CHAPTER 5. RESULTS

VCM Vertex Merging Vertex Connection

1min 6iter

60min 410iter

1min 6iter

60min 340iter

1min 4iter

60min 205iter

Table 5.5: The result of VCM rendering after 1 minute and after 1 hour of the three scenes
used for the evaluation of our VCM implementation, Mirror balls, Living room, and Bath-
room. First column shows the complete image while the middle column shows its vertex
merging contribution and the right column shows its vertex connection contribution. The
number of iterations accomplished by the algorithm so far is also provided.

5.5. COMPUTING IMAGE FOR MORE MERGING RADII AT ONCE 69

VCM 410iter BPM 666iter

BPT 619iter PT 1897iter

REF

 2500 3000 3500

BPT

 4000

R
M

S
 i

m
ag

e
d
if

fe
re

n
ce

Time[s]

PT

 0

 0.05

VCM

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 500 1000 1500 2000

BPM

Table 5.6: The result of rendering the Mirror balls scene after 60 minutes by vertex con-
nection and merging, bidirectional path tracing, bidirectional photon mapping, and path
tracing with the next event estimation. Number of iterations (samples per pixel) is also pro-
vided. The bottom left image shows the reference image computed by the VCM algorithm
in 5 hours. The plot in the bottom right corner shows the evolution of the RMS di�erence
from the reference image for individual methods. The spikes in convergence of the VCM
and the BPM were caused by the current merging radius and photons densities together at
a particular time.

70 CHAPTER 5. RESULTS

VCM 340iter BPM 652iter

BPT 582iter PT 1830iter

REF

 2500 3000 3500

BPT

 4000

R
M

S
 i

m
ag

e
d
if

fe
re

n
ce

Time[s]

PT

 0

 0.01

VCM

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0 500 1000 1500 2000

BPM

Table 5.7: The result of rendering the Living room scene after 60 minutes by vertex connec-
tion and merging, bidirectional path tracing, bidirectional photon mapping, and path tracing
with the next event estimation. Number of iterations (samples per pixel) is also provided.
The bottom left image shows the reference image computed by the VCM algorithm in 5
hours. The plot in the bottom right corner shows the evolution of the RMS di�erence from
the reference image for individual methods.

5.5. COMPUTING IMAGE FOR MORE MERGING RADII AT ONCE 71

VCM 205iter BPM 481iter

BPT 285iter PT 930iter

REF

 3000 3500 4000

BPT

R
M

S
 i

m
ag

e
d
if

fe
re

n
ce

Time[s]

PT

 0

 0.05

VCM

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 500 1000 1500 2000 2500

BPM

Table 5.8: The result of rendering the Bathroom scene after 60 minutes by vertex connection
and merging, bidirectional path tracing, bidirectional photon mapping, and path tracing
with the next event estimation. Number of iterations (samples per pixel) is also provided.
The bottom left image shows the reference image computed by the VCM algorithm in 5
hours. The plot in the bottom right corner shows the evolution of the RMS di�erence from
the reference image for individual methods.

72 CHAPTER 5. RESULTS

12.5mm 1x 12.5mm 4x

25mm 1x

 4000

R
M

S
 i

m
ag

e
d
if

fe
re

n
ce

Time[s]

12.5mm 4x

 0.005

 0.01

25mm 1x

 0.015

 0.02

 0.025

 0.03

 0.035

 0 500 1000 1500 2000 2500 3000 3500

12.5mm 1x

Table 5.9: Results presented in this table show that sometimes it might be worth to increase
the impact of vertex merging by increasing the number of light paths, which most likely
increases the amount of photon records. All images (1024x768) on this table were created
by the VCM algorithm after 60 minutes. The top left image was created with the merging
radius 12.5 mm and every iteration the number of pixels light paths were traced. The next
image to the right was created with the same initial merging radius but the number of light
paths were quadrupled. To generate the bottom left image we doubled the merging radius
and changed the number of light paths back to the number of pixels. The plot shows the
RMS di�erence from reference of all three images in time and we can see that increased
number of photons led to a better result. See the section 5.4 for more detailed discussion.

5.5. COMPUTING IMAGE FOR MORE MERGING RADII AT ONCE 73

r=5mm r=12mm r=25mm

20sec 3iter 20sec 3iter 20sec 2iter

60sec 8iter 60sec 8iter 60sec 5iter

4min 32iter 4min 30iter 4min 23iter

15min 118iter 15min 114iter 15min 96iter

30min 236iter 30min 230iter 30min 200iter

60min 472iter 60min 464iter 60min 415iter

Table 5.10: The results of the vertex connection and merging for a various initial merging
radii in time in the context of the Living room scene. The vertex merging at the second eye
path vertex was turned on. The left column shows the result for the radius of 5mm, the
middle column for 12mm, and the right column for 25mm.

74 CHAPTER 5. RESULTS

r=5mm r=12mm r=25mm

20sec 3iter 20sec 3iter 20sec 2iter

60sec 8iter 60sec 8iter 60sec 6iter

4min 32iter 4min 31iter 4min 25iter

15min 121iter 15min 116iter 15min 101iter

30min 242iter 30min 233iter 30min 209iter

60min 484iter 60min 469iter 60min 430iter

Table 5.11: The results of the vertex connection and merging for a various initial merging
radii in time in the context of the Living room scene. The vertex merging at the second eye
path vertex was turned o�. The left column shows the result for the radius of 5mm, the
middle column for 12mm, and the right column for 25mm.

Chapter 6

Conclusion

Realistic image synthesis is a broad �eld of computer graphics and there are many di�erent
methods and approaches. The choice of a particular method depends on the requirements,
whether we just want to compute a visually plausible image that contains some global illumi-
nation e�ects or whether we want the result to be physically accurate and indistinguishable
from the photograph taken by a today's camera. This thesis presented theoretical back-
ground for any class of methods and discussed the algorithms suitable for photorealistic
image synthesis.

We have successfully implemented and evaluated the state of the art method for global
illumination, the vertex connection and merging. The implementation was realized within
our global illumination rendering toolkit. It supports various BSDF models and many models
of light sources, including delta distribution sources and HDR environment maps. It is
capable of producing high quality images of relatively complex scenes. Some images produced
by our implementation are provided in the Appendix D.

We checked the correctness of our vertex connection and merging implementation by
comparing its result to the results of path tracing with the next event estimation with a
positive result. Then the implementation was tested on three di�erent scenes that exhibit
di�cult lighting conditions. It showed up that the VCM algorithm successfully converges
to a visually plausible result as opposed to the result produced by the bidirectional photon
mapping or bidirectional path tracing alone.

We have shown how the input parameters of the VCM algorithm a�ect the process of
the image synthesis. The results might serve as motivation for further research, which can
be based on them.

6.1 Future work

The success of a path sampling global illumination technique depends primarily on how
e�cient importance sampling it performs on the space of light carrying paths for a particular
measurement. Even though we have seen vertex connection and merging create a visually
plausible image in an a�ordable amount of time, it is not hard to imagine an input for which
all presented methods fail. For example if we want to create an image of a single room within a
building with many lit rooms, all presented bidirectional algorithms would fail by assigning a

75

76 CHAPTER 6. CONCLUSION

non zero probability to a large set of paths with zero measurement contribution. Metropolis
light transport[VG97] tried to solve this problem but has its own known weaknesses, for
example it might not �nd an important contribution to the image within an assigned time
quantum. Using data from previous iterations to change the probability densities in the
interesting portion of the path space might improve the convergence of the VCM method in
a scenario like the one mentioned.

As we have seen, the result of the vertex connection and merging method highly varies
with the initial radius for vertex merging. It is relatively cheap to compute the result for
di�erent radii simultaneously. The weight computation scheme has to be changed, so it
does not contain the information about the current merging radius. This change is already
described in the VCM technical report[Geo12]. One can then study how to combine the
images of di�erent radii in order to produce a visually plausible result.

Our implementation of the vertex connection and merging method provided the GIRT
library with a powerful rendering tool, which might be a motivation for the improvement of
the library itself in the sense of adding new ray casting acceleration data structures, BSDF
models, light models etc. The actual implementation of the algorithm was written with the
mentioned improvements of VCM in mind, so it can serve as a base for their realization.

Bibliography

[Arv95] James Richard Arvo. Analytic Methods for Simulated Light Transport. PhD
thesis, New Haven, CT, USA, 1995. AAI9619140.

[ATW] Anttweakbar. http://anttweakbar.sourceforge.net.

[BADC11] Francesco Banterle, Alessandro Artusi, Kurt Debattista, and Alan Chalmers.
Advanced High Dynamic Range Imaging. A K Peters, Ltd., 1st edition, 2011.

[Bar95] Robert G. Bartle. The Elements of Integration and Lebesgue Measure. Wiley-
Interscience, 1st edition, 1995.

[CK08] Marek Capinski and E. Kopp. Measure, Integral and Probability. Springer, 2008.

[CPC84] Robert L. Cook, Thomas Porter, and Loren Carpenter. Distributed ray tracing.
SIGGRAPH Comput. Graph., 18(3):137�145, January 1984.

[Geo12] Iliyan Georgiev. Implementing vertex connection and merging. Technical report,
Saarland University, 2012.

[GKDS12] Iliyan Georgiev, Jaroslav K°ivánek, Tomá² Davidovi£, and Philipp Slusallek.
Light transport simulation with vertex connection and merging. ACM Trans.

Graph., 31(6):192:1�192:10, November 2012.

[HJ09] Toshiya Hachisuka and Henrik Wann Jensen. Stochastic progressive photon map-
ping. ACM Trans. Graph., 28(5):141:1�141:8, December 2009.

[HOJ08] Toshiya Hachisuka, Shinji Ogaki, and Henrik Wann Jensen. Progressive photon
mapping. ACM Trans. Graph., 27(5):130:1�130:8, December 2008.

[HST13] Kaiming He, Jian Sun, and Xiaoou Tang. Guided image �ltering. IEEE Tran-

scations on Pattern Analysis and Machine Intelligence, 35(6), 2013.

[Int] Intel. Thread building blocks. https://www.threadingbuildingblocks.
org/.

[Jen01] Henrik Wann Jensen. Realistic Image Synthesis Using Photon Mapping. A K
Peters/CRC Press, 2nd edition, 2001.

[Jon] David Jones. Good practice in (pseudo) random number generation for bioin-
formatics applications. http://www0.cs.ucl.ac.uk/staff/d.jones/
GoodPracticeRNG.pdf.

77

78 BIBLIOGRAPHY

[Kaj86] James T. Kajiya. The rendering equation. SIGGRAPH '86 Proceedings of

the 13th annual conference on Computer graphics and interactive techniques,
20(4):143�150, 1986.

[LW93] Eric P. Lafortune and Yves D. Willems. Bi-directional path tracing. In
PROCEEDINGS OF THIRD INTERNATIONAL CONFERENCE ON COM-

PUTATIONAL GRAPHICS AND VISUALIZATION TECHNIQUES (COMPU-

GRAPHICS '93, pages 145�153, 1993.

[LW94] Eric P. Lafortune and Yves D. Willems. Using the modi�ed phong re�ectance
model for physically based rendering. Technical report, 1994.

[PH10] Matt Pharr and Greg Humphreys. Physically Based Rendering: From Theory To

Implementation. Morgan Kaufmann, 2nd edition, 2010.

[Pho75] B. T. Phong. Illumination for computer generated pictures. Communications of
ACM, 18(6):311�317, 1975.

[Ros09] Sheldon M. Ross. A First Course in Probability. Pearson, 8th edition, 2009.

[RWP+10] Erik Reinhard, Greg Ward, Sumanta Pattanaik, Paul Debevec, Wolfgang Hei-
drich, and Karol Myszkowski. High Dynamic Range Imaging: Acquisition, Dis-

play, and Image-Based Lighting. Morgan Kaufmann, 2nd edition, 2010.

[Sha03] Guarav Sharma. Digital Color Imaging Handbook. CRC Press LLC, 1st edition,
2003.

[Shi01a] Peter Shirley. Direct lighting via monte carlo integration. State of the Art in

Monte Carlo Ray Tracing for Realistic Image Synthesis, pages 29�38, 2001.

[Shi01b] Peter Shirley. Fundamentals of monte carlo integration. State of the Art in Monte

Carlo Ray Tracing for Realistic Image Synthesis, pages 15�30, 2001.

[TM98] C. Tomasi and R. Manduchi. Bilateral �ltering for gray and color images. In
Proceedings of the Sixth International Conference on Computer Vision, ICCV
'98, pages 839�, Washington, DC, USA, 1998. IEEE Computer Society.

[vA11] Dietger van Antwerpen. Recursive mis computation for streaming bdpt on the
gpu. Technical report, Delft University of Technology, 2011.

[Vea98] Eric Veach. Robust Monte Carlo Methods for Light Transport Simulation. PhD
thesis, Stanford, CA, USA, 1998. AAI9837162.

[VG94] Eric Veach and Leonidas J. Guibas. Bidirectional estimators for light transport.
In Eurographics Rendering Workshop 1994 Proceedings, pages 147�162, 1994.

[VG97] Eric Veach and Leonidas J. Guibas. Metropolis light transport. In Proceedings of

the 24th Annual Conference on Computer Graphics and Interactive Techniques,
SIGGRAPH '97, pages 65�76, New York, NY, USA, 1997. ACM Press/Addison-
Wesley Publishing Co.

BIBLIOGRAPHY 79

[Vor11] Ji°í Vorba. Bidirectional photon mapping. Proceedings of CESCG 2011, 2011.

[WKB12] Bruce Walter, Pramook Khungurn, and Kavita Bala. Bidirectional lightcuts.
ACM Trans. Graph., 31(4):59:1�59:11, July 2012.

80 BIBLIOGRAPHY

Appendix A

Materials de�nition �le example

Listing A.1: Example of materials de�nition �le

mat e r i a l s =
{

#Array o f mater ia l s , each mat e r i a l s i s enc l o s ed by { }
{

name = 'Wood ' ,
type = ' phong_modified ' ,

kd = #Di f f u s en e s s g iven by image t ex ture
{

type = ' image ' ,
wrap_mode = ' repeat ' ,
f i l e = ' t ex tu r e s /wood . jpg '

} ,
ks = #Specu l a r i t y g iven by constant t ex ture
{

type = ' constant ' ,
va lue = (0 . 3 , 0 . 3 , 0 . 3)

} ,
s h i n i n e s s = #Specu lar exponent g iven by constant t ex tu re
{

type = ' constant ' ,
va lue = 32

}
}

}

81

82 APPENDIX A. MATERIALS DEFINITION FILE EXAMPLE

Appendix B

Lights de�nition �le example

Listing B.1: Example of lights de�nition �le

l i g h t s =
{

{
name = ' Ce i l i ngL i gh t ' ,
type = ' area ' ,
Le = (1 . 0 , 1 . 0 , 1 . 0) , #Constant rad iance in a l l

upper hemisphere d i r e c t i o n s
s c a l e = 100 .0 , #Radiance s c a l e
exponent = 0 #Focuses the l i g h t around the

normal
} ,
{

name = 'LampLight ' ,
type = ' po int ' ,
p o s i t i o n = (4 . 3 , 1 . 3 , 2 . 0) ,
c o l o r = (1 . 0 , 1 . 0 , 0 . 7)

} ,
{

name = 'Sun ' ,
type = ' d i r ' , #D i r e c t i o na l l i g h t
d i r e c t i o n = (0 . 0 , −1.0 , 0 . 0) ,
c o l o r = (1 . 0 , 1 . 0 , 0 . 7) ,
s c a l e = 10000

}
}

83

84 APPENDIX B. LIGHTS DEFINITION FILE EXAMPLE

Appendix C

Benchmark de�nition �le example

Listing C.1: Example of a GIRay Benchmark con�guration �le

benchmark =
{

resolut ion_w = 3840 ,
reso lut ion_h = 2160 ,
scene_geometry_fi le = Bedroom . obj ,
ma t e r i a l s_ f i l e = mate r i a l s . g i r t ,
l i g h t s_ f i l e = l i g h t s . g i r t ,
autosave_times = '20 1000 5000 ' ,
ex i t_after_last_autosave = 0 ,
render_system_config =
{

rende re r =
{

type = VCM,
i n i t i a l_ r ad i u s_s c a l e = 0 .04 ,
rad ius_reduct ion = 0.666667 ,
mode = vcm ,
i n i t i a l_ r a d i u s = 0 .001 ,
der ive_in i t ia l_radius_from_scene = 1

} ,
camera =
{

vertical_FOV = 45 ,
p o s i t i o n = ' (56 . 3231 , 61 .7524 , −30.1371) ' ,
o r i e n t a t i o n = '(−0.0450603 , 0 .902451 , 0 .0973615 ,

0 .417492) '
}

}
}

85

86 APPENDIX C. BENCHMARK DEFINITION FILE EXAMPLE

Appendix D

Image gallery

This appendix presents tone mapped images of virtual scenes produced by our vertex con-
nection and merging implementation. Vertex merging was turned o� on the second eye path
vertex.

87

88 APPENDIX D. IMAGE GALLERY

Figure D.1: The virtual model of the hallway at Department of Computer Graphics at
Czech Technical University in Prague create by Tomá² Kraus within his Bachelor's thesis.
Rendering took 3 hours.

Figure D.2: The car model created by Alex Kuntz and modi�ed by Iliyan Georgiev. The
scene is lit by a HDR environment map. Render time was 1 hour.

89

Figure D.3: An image of the living room scene, which was modeled by Iliyan Georgiev.
Render time was 2 hours.

Figure D.4: Bathroom scene lit by a special light source that imitates sunny daylight through
a window. Rendering took 1 hour.

90 APPENDIX D. IMAGE GALLERY

Figure D.5: Mirror balls scene by Toshiya Hachisuka rendered in 1 hour.

Appendix E

Installation and user manual

E.1 Requirements

The following lists enumerates the important system requirements in order to run the binaries
located in the bin directory.

• Microsoft Windows 7/8 64bit

• OpenGL, version 3.3 and higher

E.2 GIRay application

GIRay is an interactive application based on the GIRT library presented in this thesis. The
application contains real-time renderer which enables to set the view from which we want to
create photorealistic image. It gives us the possibility to interactively change the parameters
of the used rendering algorithm, see the intermediate result, and perform tone mapping and
�ltering on the �nal image. The optimized build of the application for OS Windows 7/8
64bit is provided in the bin directory on the DVD-ROM. The �gure E.1 shows a screenshot
of the application.

Loading scene

GIRay loads the geometry of a scene from the Wavefront OBJ �le. The materials have to
be de�ned in the custom de�nition �le materials.girt (see appendix A) or they can be
de�ned by the Wavefront MTL �le which has to be named same as the name of the scene
geometry �le. If both are present the former is used.

To load and render a scene in GIRay, perform the following steps:

1. Start GIRay by running giray.exe from the bin directory.

2. Press Ctrl + O and select the scene geometry �le (.obj).

91

92 APPENDIX E. INSTALLATION AND USER MANUAL

Figure E.1: A screenshot of the GIRay application.

View manipulation

To change the view on the loaded scene you have to enter the view manipulation mode by
pressing the space key. Then you can change the camera position by W,S,A,D keys and
you can change the camera orientation using the mouse. The speed of the movement can be
adjusted by the scroll wheel on the mouse. To exit the view manipulation mode you have to
press space again.

If you want to save the current view on the scene use the choice Save view from context
menu that is opened by pressing the right mouse button within the window of GIRay. If you
save more than just one view you can switch between them by clicking on Cycle view in the
same context menu.

Settings

The application does not exploit the graphical user interface (GUI) components of the op-
erating system to export the parameters of the GIRT library and it uses OpenGL based
library AntTweakBar[ATW] instead. You can use this GUI to change the resolution of the
resulting image, set the desired rendering algorithm (e.g. Path Tracer, VCM, etc.), change
the parameters of the selected renderer (e.g. initial radius of vertex merging), select the
image �lter and adjust its parameters, or apply tone mapping.

E.3. GIRAY BENCHMARK APPLICATION 93

Figure E.2: A screenshot of the GIRay application.

E.3 GIRay Benchmark application

From the research point of view the GIRay Benchmark application is more important than
GIRay. This application just loads a benchmark con�guration �le, which is discussed latter,
and performs the rendering process using the GIRT library. It has a very simple GUI that just
indicates the state of the benchmark. The �gure E.2 shows a screenshot of the application.

Benchmark con�guration

The base of a GIRay Benchmark con�guration �le, whose example is given in the appendix C,
should be created through GIRay. In GIRay, you set the view and the rendering algorithm
and then you create the benchmark con�guration by clicking on Save benchmark in the
context menu.

Through the benchmark con�guration you instruct the application when you want to
save the state of the rendering process automatically (in seconds) and whether or not you
want the application to exit after the last automatic save, which is good for performing
benchmarks in batches. You can save the current rendering progress manually though the
GUI of the GIRay Benchmark application.

The save of the rendering process consist in �ushing the whole HDR framebu�er to
the disk in the form of an Industrial Light and Magic EXR �le. Every component of the
framebu�er is saved to a separate EXR �le. At the end of the benchmark a log �le is created
that contains the information about the passed rendering process. These information is
collected by calling a specialized virtual method on the renderer used.

If you want the GIRay benchmark to compare the progress to a reference image, you
have to provide the �le named reference.exr beside the benchmark con�guration �le.

E.4 Building from source code

Requirements

The majority of requirements to build the GIRay applications is located in the dependencies
directory. Nevertheless there are few dependencies that are not present in the directory since
they are usually shared between many projects. These are:

• CMake The latest version of the CMake build system is required to create solution
�le for the Microsoft Visual Studio.

• GLEW 1.7 This library is required by GIRay because it uses OpenGL 3.3 for image
�ltering.

94 APPENDIX E. INSTALLATION AND USER MANUAL

• wxWidgets 2.9.5 The wxWidgets library is used as a layer between OS and the
GIRay applications.

Build steps

1. Run the build.but script from the root directory which starts up the CMake build
systems and points it to the build directory.

2. Select the generator. For example Microsoft Visual Studio 10 Win64, where Win64

stands for the 64bit build.

3. Click on Con�gure button.

4. Eventually �x missing paths to dependencies (GLEW, wxWidgets).

5. Click on Con�gure button again.

6. Click on Generate button.

7. Open the generated VS solution in the build directory.

8. Select the Build Con�guration (e.g. Debug, Release) and run the build.

9. Build the INSTALL project explicitly. That copies required dlls and OpenGL shaders
to the bin directory.

10. You can now run the desired GIRay application.

Appendix F

DVD Content

hubrobin−t h e s i s / − root d i r e c t o r y
|−−bin / − de s t i n a t i on f o r b i n a r i e s
|−−bu i ld / − de s t i n a t i on f o r the CMake bu i ld system f i l e s
|−−cmake/ − custom s c r i p t s f o r the CMake bu i ld system
|−−dependenc ies / − 3 rd party and custom l i b r a r i e s
| |−−AntTweakBar/ − AntTweakBar OpenGL GUI l i b r a r y
| |−−DevIL − DevIL image manipulat ion l i b r a r y
| |−−Per fTools − custom p r o f i l e r
| |−−PObject − l i b r a r y f o r l oad ing PObject f i l e s
| |−−RapidXML − XML par se r r equ i r ed by PObject
| |−−TBB − I n t e l Thread Bui ld ing Blocks
| |−−VRUT − compiled core o f the VRUT
|−−g i r ay / − source code root
| |−−app/ − source code o f the GIRay app l i c a t i o n
| |−−benchmark_app/ − source code o f the GIRay Benchmark app l i c a t i o n
| |−− g i r t / − source code o f the GIRT l i b r a r y
|−− r ender s / − HDR images rendered by our VCM implementation
|−− r e s u l t s / − r e s u l t s o f our VCM implementation eva luea t i on
|−− s c ene s / − scene f i l e s

95

	Introduction
	Global Illumination
	Approaches to Global Illumination

	Preliminaries
	Foundations
	Common definitions and notations
	Abstract model of light
	Radiometry and radiometric quantities
	Light surface interaction
	BRDF
	BTDF
	BSDF

	Light transport and measurement
	Monte Carlo integration
	Introduction
	Importance sampling
	Multiple importance sampling
	Russian roulette

	Path sampling methods
	Path space formulation of light transport
	Path tracing
	Bidirectional path tracing

	Density estimation methods
	A short introduction to particle tracing
	Photon mapping
	Photon map generation
	Rendering using photon map
	Extensions

	Progressive photon mapping
	Stochastic progressive photon mapping
	Bidirectional photon mapping

	Vertex connection and merging
	Vertex connection
	Vertex merging
	Measurement estimation
	The VCM algorithm
	Convergence

	Implementation
	Global Illumination Rendering Toolkit (GIRT)
	Design goals
	Library overview
	Scene
	Materials
	Camera models
	Rendering
	Image filtering and tone mapping
	Implementation details

	Vertex connection and merging implementation

	Results
	Testing correctness
	Rendering algorithms comparison
	Optimizing VCM input parameters
	Increasing the number of vertex merging samples
	Computing image for more merging radii at once

	Conclusion
	Future work

	Bibliography
	Materials definition file example
	Lights definition file example
	Benchmark definition file example
	Image gallery
	Installation and user manual
	Requirements
	GIRay application
	GIRay Benchmark application
	Building from source code

	DVD Content

