
Insert here your thesis’ task.

Czech Technical University in Prague

Faculty of Information Technology

Department of Software Engineering

Bachelor’s thesis

Sculpting in Virtual Reality

Vojtěch Krs

Supervisor: Ing. Ondřej Jamrǐska

14th May 2014

Acknowledgements

I would like to thank my supervisor, Ing. Ondřej Jamrǐska, without whom this
thesis would not be possible and whose guidance and enthusiasm were invalu-
able. I’d like to thank my family for the support they gave me throughout the
process of writing and during my studies. My thanks also goes to my friends
and schoolmates, many of whom share my amazement of new technology and
particularly, virtual reality.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on 14th May 2014 .

Czech Technical University in Prague
Faculty of Information Technology
c© 2014 Vojtěch Krs. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Krs, Vojtěch. Sculpting in Virtual Reality. Bachelor’s thesis. Czech Technical
University in Prague, Faculty of Information Technology, 2014.

Abstrakt

Sculptováńı je populárńı metodou 3D modelováńı, která by mohla využ́ıt
nových pokrok̊u v oblasti virtuálńı reality. Tato práce se zaměřuje právě
na implementaci sculptovaćıho systému ve virtuálńım prostřed́ı. Pro zobrazeńı
virtuálńıho prostřed́ı byly použity brýle pro virtuálńı realitu, Oculus Rift,
přičemž interakce uživatele s t́ımto prosted́ım je umožněna pomoćı Razer Hy-
dra, ovladač̊u sleduj́ıćı pohyb a orientaci rukou. Samotné modelováńı využ́ıvá
trojúhelńıkové śıtě zjemněné dle potřeby. Systém byl úspešně implementován
a otestován. Dokazuje, že 3D modelováńı, zejména sculpting, ve virtuálńı
realitě má smysl a nav́ıc nab́ıźı uživateli reálný dojem hloubky a velikosti
spolu s intuitivńım ovládáńım.

Kĺıčová slova sculpting, virtuálńı realita, oculus rift, razer hydra, adaptivńı
trojúhelńıková śıt’

ix

Abstract

Sculpting is a popular method of 3D modeling that could benefit from the re-
cent advancements in the field of virtual reality. This thesis focuses on im-
plementation of a sculpting system in a virtual reality environment. Oculus
Rift head mounted display is used to immerse the user in this environment,
while the interaction is facilitated by Razer Hydra, a 6-DOF hand tracking
device. The sculpting employs an adaptively refined triangle mesh to represent
the sculpted surface. The system was successfully implemented and tested,
proving that sculpting in virtual reality is a viable option, offering the user
a real sense of scale and depth in addition to an intuitive interaction.

Keywords sculpting, virtual reality, oculus rift, razer hydra, adaptive tri-
angle mesh

x

Contents

Introduction 1

Motivation . 1

Goals . 2

1 Sculpting with Triangular Meshes 3

1.1 Representation . 3

1.2 Modeling and Sculpting . 4

1.3 Sculpting Tools . 5

1.4 Adaptive Remeshing . 10

2 Sculpting in Virtual Reality 13

2.1 Display . 13

2.2 Controls . 15

2.3 Putting It Together . 16

3 Implementation 21

3.1 Overview . 21

3.2 Mesh Data Structure . 22

3.3 Remeshing Process . 25

3.4 Sculpting Tools . 28

3.5 Integration of Razer Hydra . 33

3.6 Integration of Oculus Rift . 36

4 Testing and Discussion 41

4.1 Testing . 41

4.2 Optimizations . 41

4.3 Performance Measurements . 43

4.4 Examples of Sculpting Results 44

Conclusion 47

xi

Bibliography 49

A Acronyms 51

B Contents of enclosed CD 53

xii

List of Figures

1.1 Bunny’s head mesh . 4
1.2 Sculpting process iterations . 5
1.3 Functions used for vertex weight calculation 6
1.4 Pull tool . 7
1.5 Flatten tool . 7
1.6 Buildup tool . 8
1.7 Smooth tool . 9
1.8 Adaptive remeshing . 10
1.9 Edge split . 11
1.10 Edge collapse . 11
1.11 Butterfly subdivision scheme . 12

2.1 Oculus Rift . 14
2.2 Lens distortion . 15
2.3 Razer Hydra . 16
2.4 Application start screen . 17
2.5 Screen in Oculus Rift . 17
2.6 Drag tool over time . 18

3.1 Mesh data structure . 23
3.2 Edge split algorithm . 26
3.3 Edge collapse algorithm . 27
3.4 Tool class diagram . 29
3.5 Tool modes . 32

4.1 Box twist test . 43
4.2 Box twist test - remeshing time . 45
4.3 Continuous sculpting test - adding detail 45
4.4 Continuous sculpting test - decreasing detail 45
4.5 Examples of sculpting results . 46

xiii

List of Tables

2.1 Left controller . 19
2.2 Right controller . 19
2.3 Controls . 19
2.4 Special controls . 20

xv

Introduction

Motivation

The concept of virtual reality has been around for decades. What started
as a science fiction has become more and more tangible thanks to the recent
advances in technology. Head mounted displays (HMDs) are currently the best
way to transport yourself to a different reality, along with special accessories
such as haptic gloves, which communicate your hand gestures to a computer
and can provide tactile feedback, or omnidirectional treadmills, which allow
you to walk around virtual space without leaving your living room.

Until recently, HMDs were somewhat crude and very expensive, limiting
their use only for special purposes such as military training. However, in
2012, Oculus Rift has been introduced. It is a HMD featuring low latency,
wide field of view (FOV) and a relatively low price. Low latency and wide
FOV are essential to a sense of immersion. If this sense is maximized, it can
trick your brain to believe that you are actually in another reality.

The low price of Oculus Rift is a key for virtual reality to become main-
stream. This headset is focused primarily on gaming, which has already proven
to be a great driving force for technological advancement of graphic processing
units (GPUs). However, the applications of virtual reality are hardly limited
to the entertainment industry. Other uses include virtual reality therapy for
treating phobias or posttraumatic stress disorder, medical training, architec-
ture visualization and many others.

The application of virtual reality that I decided to focus on is 3D modeling,
which is a process of creating three dimensional model of a physical object
using a computer. The reason why I chose modeling, is that it can benefit
tremendously from virtual reality. 3D artists today use 2D monitors with
mouse or tablets for doing something that is inherently physical and three
dimensional, therefore virtual reality seems like an ideal way to improve this
process.

There are many approaches to modeling, but the one that is the closest

1

Introduction

to the physical act of modeling is sculpting. It is based on the same principle
as real sculpting, thus its implementation in virtual reality could prove to be
advantageous.

Head mounted display can provide only one part of the virtual reality, the
image of an artificial world. However, what makes the experience even more
compelling, is the interaction with this world. Traditional input methods, such
as keyboard and mouse, aren’t very suitable for virtual reality. I decided to
use Razer Hydra instead, which are controllers that are able to track position
and orientation of user’s hands. This is essential for sculpting, because it
allows the user to interact with the model in a fashion a sculpter would with
a real sculpture.

Goals

The primary goal of my thesis is to design and implement a simple virtual
reality sculpting system that will support the Oculus Rift HMD and will use
Razer Hydra as the input controller. The primary features of the system will
be as follows:

• An adaptively refined triangle mesh will be employed to represent the
sculpted clay surface

• Four basic tools will be implemented, which will allow the user to:

– build up the surface by adding clay

– create dimples or holes by removing the clay

– drag the surface

– smooth the surface

• The system will be implemented in C++ using the OpenGL API

The secondary goals are to design the system is such a way that it is easy
to use for novice users and performant enough to handle meshes with up to 100
thousand triangles. Besides the sculpting tools outlined above, the goal is to
also implement a set of interaction tools that will allow the user to manipulate
the model during sculpting in order to e.g., rotate it or move it around.

2

Chapter 1

Sculpting with Triangular
Meshes

Imagine a sculptor creating a physical sculpture. What does he need before
he starts to form even the most basic shape? Stone, hammer and chisel? Clay
and hands? In general, a sculptor needs material and tools. Those are the
two most essential things for sculpting. And this applies to both physical and
3D computer sculpting.

To be able to model an object in a computer, we need a way to represent
it so the computer can understand it. The representation affects not only the
way we save it in the computer memory, but consequently how we interact
with it. The representation of the model can be compared to the sculptor’s
material and the program tools to physical tools.

1.1 Representation

The process of 3D modeling largely depends on the underlying representation
of the object. Different representations may differ in their capabilities to
represent various shapes, in the way we interact with them and also in their
performance. The representations can be divided into two main categories,
volume and surface, while both are viable for sculpting.

The volume representation describes the entire volume of an object by a
collection of elements called voxels, which hold information about a particular
region in space, usually color or material. This representation is more realistic,
but can be hard for the computer to work with as the amount of data needed to
represent even a simple object can be enormous. Nevertheless, it’s commonly
used in medical or engineering simulations.

On the other hand, the surface representation only describes the boundar-
ies of an object. This can save a lot of memory space as well as computation
power and is suitable for applications where information only about the surface

3

1. Sculpting with Triangular Meshes

Figure 1.1: The surface of a bunny’s head (left) as represented by a triangle
mesh (right).

of an object is enough.

The most common and simplest way to describe a surface is to stitch it to-
gether from a geometrical primitive, while the most basic 3D planar primitive
is the triangle. By connecting a number of triangles, we can approximate the
shape and surface of an arbitrary object. The result is a graph, called mesh,
containing the triangle’s points, which are called vertices. These vertices are
then connected by triangle’s sides, called edges, to other vertices to finally
form the individual triangles. Figure 1.1 illustrates such triangle mesh.

We can assemble the mesh also by using other polygons, such as quadri-
laterals. However, triangles have the advantage of being natively supported
by rendering hardware. This is because they are fairly easy to work with,
particularly the math that is used is simple. This allows for fast processing
and rendering.

1.2 Modeling and Sculpting

When dealing with meshes, the actual modeling process consists of manipu-
lation of vertices, edges and faces. To shape a surface, transformations such
as translation, rotation or scale are applied to these entities.

Commonly in 3D modeling, these transformations, along with other oper-
ations such as creation, removal or interconnection, are applied to individual
vertices or a set of vertices defined by selection. This gives us full control over
the mesh but it can be tedious to work with, especially when modeling a large
and complicated mesh.

In the case of sculpting, we give up the full control over the mesh in favour
of fast and easy modeling. Instead of moving individual entities, tools like
pulling, pushing and smoothing of the are applied on the mesh as if it would
be made of clay. The sculpting process usually starts with a simple model,

4

1.3. Sculpting Tools

Figure 1.2: Sculpting process iterations: the artist starts with a basic mesh
and gradually adds details (courtesy of Ćıcero Moraes [1]).

such as sphere, on which the tools are applied one after another to add detail
and sculpt it into the desired shape. Figure 1.2 shows snapshots of this process.

1.3 Sculpting Tools

Sculpting tools are usually applied to a group of vertices, in what’s called an
area of interest. This area is usually spherical, while its size is determined by
a radius parameter. However, the position of the area has to be computed
depending on user input. This is done by sending a ray, typically from a mouse
cursor, and finding point of intersection (POI) of the ray with the surface of
the mesh. The tool is then applied in the direct vicinity of this point.

Another attribute of a tool is strength. It dictates how much should the
tool be applied. It can be either uniform over the whole area of interest or it
can vary. The variations in strength are then computed by a weight function.

The weight function computes the weight coefficient of a point, i.e., how
much of the strength should be applied at a given vertex, depending on its
distance from the POI. To achieve a brush-like behaviour, when the center of
the area is transformed the most, while the strength diminishes with distance
from the center, a smoothstep [2] function (equation 1.1, figure 1.3a) is used.

smoothstep(t) = 6t5 � 15t4 + 10t3 (1.1)

5

1. Sculpting with Triangular Meshes

(a) Smoothstep function (b) Weight function w

Figure 1.3: Functions used for vertex weight calculation

1.3.1 Common principles

When a tool is applied, a new position is calculated for every vertex inside
the area of interest. Every vertex needs two additional pieces of information
before we can calculate its transformed position: a local vertex normal and a
weight coefficient.

The local vertex normal n is a vector that is perpendicular to the surface
near given vertex. We compute it by averaging surface normals of all triangles
that contain given vertex [3]. The surface normal of a triangle is given by
the cross product of its two edges. Because the mesh shape is changing with
every application of a tool, these normals have to be recalculated after every
application.

To calculate the weight coefficient we use the aforementioned weight func-
tion w. Figure 1.3b shows the shape of the function, which is also the shape of
the surface after applying pull tool, for instance. Equation 1.2 describes the
weight function, where v is the vertex in question, p the point of intersection
and r the radius.

w(v) = 1� smoothstep
(
‖v � p‖

r

)
(1.2)

We can either apply tools continuously, every frame, or gradually, when
the tool moves. If the tool is applied every frame, at a rate of several frames
per second, we need the tool application to be independent of this rate. To
achieve this, we have to incorporate time into the calculation of transformed
vertex position by introducing another variable, the elapsed time ∆t.

Therefore, when determining the new vertex position, the final rate ρ(v)
at which a transformation of the tool is applied can be calculated as a product
of above variables, as seen in equation 1.3, where s denotes the global strength
of the tool.

ρ(v) = w(v)s∆t (1.3)

6

1.3. Sculpting Tools

1.3.2 Pull Tool

Pull tool is the simplest tool, as during its application the vertices are simply
moved in the direction of their local normal vector. This causes vertices of
a flat surface to move in the same direction and vertices of a curved surface
to move away from each other. Volume described by such curved surface
appears to inflate when this tool is applied as seen in figure 1.4. The way get
the transformed position of a vertex is illustrated by equation 1.4.

v′ = v + ρ(v)n; (1.4)

Figure 1.4: Pull tool, red arrows show the vertex normals along which are the
vertices transformed to their new position, shown in blue.

1.3.3 Flatten Tool

Sometimes a flat surface is required instead of a curved one, to do this we can
use a flatten tool. Its objective is to transform the group of vertices in such
a way, that each and every vertex rests on a common 3D plane with the rest
of the group, while this common plane is fitted to the average position and
average normal vector of vertices in the group, as illustrated by figure 1.5.

Figure 1.5: Flatten tool, red arrows illustrate vertex normals while the blue
arrows show the transformation direction for each vertex to its new position,
visualized also in blue.

7

1. Sculpting with Triangular Meshes

First we compute the average position v̄ and average normal vector n̄ of
vertices inside the area of interest. After that we form a plane equation using
the average values. We can easily calculate the missing constant component
d, as illustrated in equation 1.5.

v̄ · n̄ + d = 0

d = �v̄ · n̄
(1.5)

Now for each vertex we calculate the distance l between the given vertex
and the plane. The sign of resulting number shows on which side of the plane
the vertex sits on. The transformed position of a vertex can then be computed
as described in equation 1.6. Where n denotes the local normal of given vertex
and ρ(v) is the rate. We subtract the second member of the equation, instead
of adding it, to ensure the direction in which the vertex moves points towards
the plane.

l = n̄ · v + d;

v′ = v � lρ(v)n;
(1.6)

1.3.4 Buildup tool

Buildup tool is the most common way to shape a surface. It simulates a brush
stroke that adds a layer of material on top of an existing surface. To achieve
this, we employ the very same principle we used with flatten tool. However,
before forming the plane equation, we move the average vector along the
average normal as described by equation 1.7, where s denotes the strength of
the tool.

v̄′ = v̄ + sn̄ (1.7)

Figure 1.6: Buildup tool illustration that shows vertices being moved towards
the imaginary plane at rate depending on their weight.

8

1.3. Sculpting Tools

1.3.5 Smooth Tool

Occasionally we need to fix some previous sculpting operation that went wrong
or just simplify the surface. Smooth tool is the ideal solution, as it smooths
out the surface and transforms vertices so they have even spacing.

ṽ =
1

|N (v)|
∑

vn∈N (v)

vn (1.8)

v′ = (1− ρ(v))v + ρ(v)ṽ (1.9)

The actual smoothing is done by moving every vertex in the area of interest
into the centre of its neighbouring vertices, as described by equation 1.8, where
N (v) is the set of neighbouring vertices and ṽ is the target position. To apply
the tool smoothly, a linear interpolation is used. This is described in equation
1.9, where the rate ρ(v) acts as the coefficient.

Figure 1.7: Smooth tool moves the vertex v towards ṽ, the center of its
neighbours.

1.3.6 Drag Tool

Drag tool is quite different from the previous tools. The basic principle is
simple: an area of interest is selected and the tool is moved in arbitrary
direction while the selected vertices follow the movement. To put it even
more simply, the vertices are grabbed and dragged through 3D space.

To calculate the transformed position we need to know how the tool moved
from last frame. If we remember the tool’s position, we can calculate the offset
∆c. The target position ṽ is then given by the addition of offset to the vertex,
as seen in equation 1.10.

∆c = clast − c

ṽ = v + ∆c
(1.10)

9

1. Sculpting with Triangular Meshes

The actual new position is then calculated using linear interpolation, sim-
ilarly to smooth tool. However, there is no need for elapsed time or strength
in the calculation, as the rate of transformation depends on the tool offset.

v′ = (1� w(v))v + w(v)ṽ (1.11)

Therefore, only the vertex weight acts as the linear coefficient, as seen in
equation 1.11. This is done to maintain the bulge shape, pictured in figure
1.3b. Note, that unlike in the previous tools, there is no need for a local
normal vector, as the direction in which the vertex moves completely depends
on the tool offset.

1.4 Adaptive Remeshing

Sculpting suffers from several drawbacks. The most important is the progress-
ive loss of detail while the model is being sculpted. The surface expands and
triangles become stretched, moreover, in order to model fine details the model
must be subdivided to a desired level of detail. To ensure this level of detail
and to avoid triangle stretching, we need to employ adaptive remeshing [4].
The difference when it’s used or not is illustrated by figure 1.8.

Figure 1.8: On a initial object (left) a sculpting tool is applied (center), which
stretches the triangles. Remeshing restructures the mesh (right).

Adaptive remeshing is a process of restructuring a mesh in regard to its
changing geometrical shape. To ensure high quality triangular mesh we need
to keep the following goals in mind:

• Mesh should be dense enough to be able to represent fine details of the
mesh.

• Aspect ratio of all triangles should be close to 1.

• Size of the triangles should be as similar as possible

1.4.1 Remeshing process overview

The remeshing scheme used is similar to [5, 6]. First we split all edges that are
longer than a split threshold, then we collapse all edges that are shorter than

10

1.4. Adaptive Remeshing

the collapse threshold. This causes the mesh to keep only edges of a length
between the thresholds. While splitting or collapsing edges, new edges are
created and existing edges are modified. These edges may meet the condition
of being longer or shorter than above thresholds. To ensure they are handled
too, both the splitting and collapsing phases run repeatedly until there are no
edges that meet the condition.

Moreover, the edges are first sorted by their length before each splitting or
collapsing phase. This causes the resulting mesh to have better quality. The
details of this process are further explained in the section 3.3.

1.4.2 Edge Split

The split edge operation is performed on long edges. It splits the edge and
adds a new vertex. This vertex can be placed either at the edge midpoint
or at a position calculated in such way that it retains the curvature of the
surface. One of the ways to achieve this is to use the butterfly subdivision
scheme, which will be described later in section 1.4.4.

Figure 1.9: Edge split: the long edge (red) is split, subdividing its two adjacent
triangles into four (blue)

1.4.3 Edge Collapse

When the edge is shorter than a given threshold, we perform the edge collapse
operation. This is done by replacing the edge with a single vertex. We can
use the butterfly subdivision scheme again to determine the position of this
new vertex.

Figure 1.10: Edge collapse: the short edge (red) is collapsed into a new single
vertex (blue)

11

1. Sculpting with Triangular Meshes

Figure 1.11: Butterfly subdivision scheme: the position of the new point P is
calculated from the neighbouring points.

1.4.4 Butterfly Scheme

The new position of vertices after splitting or collapsing edge can be calculated
by the butterfly subdivision scheme [7]. Its principle and implementation are
very simple and the results are satisfactory for our purposes. Its main purpose
is to preserve the curvature of the surface after remeshing. The new vertex
position P is determined as:

P =
1

16
(8(P1 + P2) + 2(Q1 +Q2)− (R1 +R2 +R3 +R4)) (1.12)

Where P1 and P2 are end points of edge in question, Q1 and Q2 are vertices
of adjacent triangles of given edge that are not end points of the edge, and
R1...R4 are vertices of adjacent triangles to the triangles incident on the edge.
The full scheme is illustrated by figure 1.11.

12

Chapter 2

Sculpting in Virtual Reality

The difference between the current sculpting applications and sculpting in
virtual reality is not only in the way we display the sculpted object and its
environment, but mainly in the way how the user interacts with it using input
devices. Both used peripherals, the Oculus Rift and the Razer Hydra, have
their specifics, which will be described in this chapter. Furthermore, the form
of the developed application will be discussed, along with its controls.

2.1 Display

Virtual reality is currently undergoing a revolution, which was started by
Palmer Luckey in 2012 when he introduced his prototype of virtual reality
head-mounted display called the Oculus Rift. Since then, it gained huge pop-
ularity among gamers and technology enthusiasts alike, and after a successful
Kickstarter campaign a developer kit was released to public.

A second developer kit is currently scheduled for summer 2014, with con-
sumer version coming in the near future. The company founded by Palmer
Luckey, the Oculus VR, has since been heavily invested in and was recently
acquired by Facebook. Other VR headsets started to emerge recently to join
the virtual reality revolution, such as Sony’s project Morpheus or True Player
Gear’s Totem.

2.1.1 Oculus Rift Overview

Oculus rift is head-mounted display that features a LCD panel with a resol-
ution of 1280 x 800 pixels, a lens for each eye and three sensors: gyroscope,
magnetometer and accelerometer. Head-mounted displays have been around
for some time, but what is special about Oculus Rift is its low latency head
tracking and very wide field of view.

The integration of Oculus Rift into an application consists of two parts.
One is to read the orientation data from the headset, the second is to render

13

2. Sculpting in Virtual Reality

Figure 2.1: Oculus Rift developer kit (courtesy of Sebastian Stabinger [8])

the 3D scene in a very specific way, while the time between the data input
and image output must be as short as possible.

The latency is crucial for virtual reality. If the latency is higher than 20
ms, the sense of immersion is broken and motion sickness can occur [9, page
32]. Even lower tresholds were suggested, such as 15 or 7 ms [10].

2.1.2 LCD Display

The display has relatively low resolution, even more so as the 720p display is
divided by the lenses into two halves, one for each eye. That means that the
effective resolution is only 640x800 per eye. Current developer kit also suffers
from the screen door effect, i.e., that space between individual pixels is visible,
because of the low pixel density of the LCD display. Nevertheless, the state
of art is progressing rapidly. The second developer kit is supposed to have
resolution of 1920 x 1280 pixels, which eliminates the screen door effect.

2.1.3 Stereoscopic 3D

As mentioned above, Oculus Rift uses single display to show images for both
eyes. The image is rendered separately for each eye from a slightly different
viewing position to simulate the offset of human eyes. When these two images
are combined in the brain, they give the user the perception of 3D depth. As
in real world, this perception only applies to objects that are relatively close
to the viewer.

2.1.4 Lenses

The lenses serve a single purpose, to widen the field of view. However, the use
of lenses causes a number of problems. The two most important are distortion
and chromatic aberration.

14

2.2. Controls

(a) Pincushion distortion (b) Barrel distortion

Figure 2.2: Lens distortion

The lenses magnify the image of the display but they introduce a pincush-
ion distortion (see figure 2.2a) at the same time. This has to be countered
by the rendering software. By rendering the image with the opposite distor-
tion, a barrel distortion (see figure 2.2b), one can cancel out the pincushion
distortion, resulting in correct image in the eye of the viewer. [9, page 26]

Because the refractive index of the lenses varies for different wavelengths,
the effect known as chromatic aberration occurs. This optical artifact is more
visible when we look further from the center of the lens. It causes colored
fringes to appear around borders of objects. This is also fixed by the rendering
software. [9, page 40]

2.1.5 Sensors

The three sensors inside Oculus Rift, the gyrosope, the magnetometer and
the accelerometer, come together in what’s called sensor fusion to determine
the orientation of the head. The Oculus Rift firmware uses predictive head
tracking algorithm that allows it to estimate the head orientation upto 50 ms
into future, which considerably lowers the latency.

Over a long period of time an error can accumulate in the sensors. This is
called the drift error. Errors in pitch and roll are automatically corrected by
accelerometer that estimates the gravity vector. Yaw drift errors are reduced
by magnetometer data, however the device has to be first calibrated, as the
correction is done by comparing current data to data of pre-measured points
in space [9, page 19].

2.2 Controls

Using traditional input methods, like keyboard and mouse, while using a
vritual reality headset can be troublesome. The user cannot see the key-
board and has to interact with it from memory. Therefore gamepads became
popular input device for virtual reality games, as they have small amount of

15

2. Sculpting in Virtual Reality

buttons and are easy to use. However, while being fairly well suited for games,
they fall short on other applications of virtual reality, such as this sculpting
application.

2.2.1 Razer Hydra Overview

Luckily, other input devices are available. One of them being Razer Hydra,
which consists of two controllers with 6-DOF tracking and a base unit. The 6-
DOF refers to six degrees of freedom, specifically, freedom of movement along
three axes and rotation along three axes. Razer Hydra also features several
buttons and joystick on each controller in layout similar to classical gamepad.
The two controllers simulate the movement and orientation of hands, allowing
for much more realistic interaction with the virtual world.

Figure 2.3: Razer Hydra (courtesy of Razer Inc. [11])

The two controllers are connected by a wire to a base, which is connected
to PC. The base tracks the absolute position and orientation of the controllers
using weak magnetic field with a precision of 1 mm and 1◦ [12].

2.3 Putting It Together

When modeling an object, we usually don’t care about its surroundings since
we are focused solely on the object. However, in virtual reality, it would be
disturbing to float in empty space with just the object in front of us. The
same applies to the input, as we do not see the physical controllers with a
headset on, we need them to be in virtual world also.

Therefore, when the user first starts the application, he is put in a virtual
environment with a simple floor and a sphere in front him. After a short
calibration he can then proceed to sculpt and manipulate the sphere with
the controllers that are displayed in front of him. The figure 2.4 shows the
screenshot how the application looks like after it’s been started. The actual
image being rendered for Oculus Rift can be seen in 2.5

The 3D scanned model of Razer Hydra, which was used to visualize the
controllers in the virtual world, was kindly provided by Zoltán Erdőkövy [13].

16

2.3. Putting It Together

Figure 2.4: Screenshot of the application right after it’s been started and
calibrated.

Figure 2.5: Image that is being sent to Oculus Rift: a barrel distortion is
applied on each side to correct distortion introduced by the lenses. Each side
corresponds to one eye and the view is shifted accordingly.

17

2. Sculpting in Virtual Reality

2.3.1 Sculpting

The actual sculpting is done by aiming the right controller on the object and
pressing right trigger button. In default mode, the tool is applied only when
the controller moves, or more precisely, when the intersection point on the
object moves by a certain distance.

By pressing the right bumper button, the user can change from default
mode to continuous, or alternatively called airbrush, mode. That causes the
tool to be applied constantly, even if there is no movement of the controller.

Right start button toggles the inversion mode, which causes the draw and
pull tool to transform vertices in opposite direction, and left button 1 toggles
the symmetry mode, which causes the tool to be applied symmetrically on the
other side of the object

Using the right joystick, the user can change the radius of the tool on the
x-axis and strength of the tool on the y-axis.

The individual tools can be switched using numbered buttons on both
controllers.

Drag tool, unlike other tools, reacts to relative position or orientation
change of the controller to the point of intersection. By moving and rotating
the controller, the user can drag the surface arbitrarily. Thanks to adaptive
remeshing, the stretched surface will be remeshed and will stay in place as
illustrated by figure 2.6.

Figure 2.6: Drag tool over time. Red cross shows the initial point of intersec-
tion, the blue cross shows the point of intersection after dragging the mesh
using just the rotation of the controller.

2.3.2 Manipulation

The user is also able to manipulate the object in several ways. By holding
the left bumper the object will rotate along its own axis. If the button is

18

2.3. Putting It Together

released while the controller has enough velocity, the object will continue to
rotate. The rotation will slow down and stop shortly after that. By holding
the left bumper and right bumper at same time while increasing or decreasing
the distance between the two controllers, the user is able to scale the object.

To move the object or rotate it in other directions, the user can use pivot-
ing. Pivoting is enabled by pressing the left trigger. While in pivoting mode,
the left controller will act as a pivot and the object will move with it and
rotate around it. By pushing the left joystick on y-axis, the user can bring the
object closer or farther from the pivot. After disengaging the pivoting mode,
the object will stay at its current position.

While manipulating the object in any of above ways, the user is able to
continue sculpting. This is particularly useful when pivoting or rotation is
enabled.

2.3.3 Movement

Apart from moving the object itself, the user can walk around the virtual en-
vironment using the left joystick. While standing or walking, the user can look
around by taking advantage of Oculus Rift 360 head tracking. The direction
of movement is primarily in the direction where the body is turned. However,
when moving forward/backward, the direction is slightly adjusted to consider
where the user is looking.

2.3.4 Controls Overview

Table 2.3 shows the basic program controls. However, there are other special
and conditioned controls as seen in table 2.4.

Control Action

Joystick X Forward/backward

Joystick Y Strafe left/right

Trigger Enable pivoting

Bumper Rotate object

Button 1 Symmetry toggle

Button 2 Drag tool

Button 3 Save mesh

Button 4 Wireframe toggle

Start button Reset mesh

Table 2.1: Left controller

Control Action

Joystick X Strength +/−
Joystick Y Radius +/−
Trigger Apply current tool

Bumper Airbrush toggle

Button 1 Draw tool

Button 2 Pull tool

Button 3 Smooth tool

Button 4 Flatten tool

Start button Invert tool

Table 2.2: Right controller

Table 2.3: Controls

19

2. Sculpting in Virtual Reality

Table 2.4: Special controls

Control Condition Action

Right Bumper Left Bumper is pressed Scaling mode

Right Joystick X No intersection point Turning Left/Right

Left Joystick Y Pivoting enabled Zoom object

2.3.5 Calibration

Calibration has to be performed before the user can start sculpting. One
reason to do so is the ambiguity of position tracking solution of Razer Hydra
which reports two positions: real position and mirrored position across the
base unit [12]. To determine the real position, the user must go through a
calibration process, which consists of following steps:

1. Point controllers to the base

2. Press trigger on left controller

3. Press trigger on right controller

Another step in calibration is:

4. Put controllers to your shoulders and press both triggers

The last step is used to estimate the distance of the user to the base and
also to estimate the position of the users head in relation to the base and
controllers.

The first three steps of the calibration are performed by Razer Hydra’s
API, the last step is custom.

20

Chapter 3

Implementation

The following chapter focuses on implementation details, particularly, it de-
scribes both the details of the sculpting process and the integration of Oculus
Rift and Razer Hydra. It follows and extends the principles described in both
previous chapters.

The sculpting implementation consists of three parts: the mesh data struc-
ture, i.e., how the mesh is represented, the remeshing process and the imple-
mentation details of individual tools. Oculus Rift integration section describes
how the application has to be designed to be able to render a 3D scene for a
virtual reality headset and the Razer Hydra integration section shows how to
implement a position tracking device that is able to interact with virtual clay.

3.1 Overview

3.1.1 Platform and Libraries

The C++ language was used to develop this application, while the primary
target platform was Windows. Extending to other platforms is made possible
thanks to the choice of open source multiplatform libraries, however, support
of other systems is not available out of the box at this time.

The graphics API of choice was OpenGL version 3.2+, which was used
for 3D rendering. GLM was library employed as the primary mathematical
library, mainly because it is designed to work well with OpenGL and provides
tools for 3D math. To create and manage the window and OpenGL context,
the GLFW library was chosen, as it is the most modern available library of
this type.

3.1.2 Main program loop

Algorithm 1 illustrates the high-level structure of the application. After the
initialization, the application stays in what’s called a main loop, consisting of

21

3. Implementation

Algorithm 1: High-level program structure

begin Initialization
Initialize Oculus Rift
Create window & OpenGL context
Initialize Razer Hydra
Load shaders, meshes and textures

end
repeat

Update
Draw

until termination requested ;
Free resources;

Algorithm 2: Update

begin Read data from Oculus Rift
Read orientation

end
begin Read data from Razer Hydra

Read position
Read orientation
Read buttons pressed

end
Process input
Find point of intersection
if sculpting AND point of intersection exists then

Apply current tool on the mesh
Remesh
Recalculate mesh normals
Send the modified mesh data to GPU

end

updating and drawing, until the user gives the signal to close the application.

Most of the application time is spent in the Update procedure, illustrated
by algorithm 2, that runs every frame. First, it reads all available data from
both the Oculus Rift and the Razer Hydra and processes them. Then, it finds
the point of intersection and applies the current tool if sculpting is enabled.
After every tool application, remeshing process is performed and the mesh
normals are recalculated. Finally, the modified mesh is sent to the GPU.

3.2 Mesh Data Structure

The remeshing process heavily utilizes two operations, edge split and col-
lapse. Therefore, the mesh data structure had to be designed in such a way,
that these operations are as efficient as possible. Specifically, finding incident
edges, adjacent triangles and neighbouring vertices had to be as fast as pos-
sible. Moreover, addition and removal of these edges, triangles and vertices is

22

3.2. Mesh Data Structure

Figure 3.1: Mesh data structure breakdown for a tetrahedron. Indices are
denoted by letters instead of integers.

performed in both edge split and edge collapse, thus these operations had to
be taken in account also.

3.2.1 Overview

The mesh data structure includes three primary arrays of data: vertices, edges
and triangles. It also includes two auxiliary arrays of arrays: vertexEdges and
vertexTriangles. One additional array, normals, is also included. All the
mentioned arrays are implemented using the STL vector container. The data
structure breakdown is shown in figure 3.1.

Vertices array contains simple 3-tuples of floats, representing vertex co-
ordinates. The two extra arrays, vertexEdges and vertexTriangles, keep the
information about to what edges and triangles given vertex belongs. Normals
is an array of simple 3-tuples of floats that store the surface normal vector
for each vertex. They are recalculated after every change to the mesh using
method discussed earlier in section 1.3.1. Triangles keep three integer indices
of their vertices, referring to their position in the vertices array. Edges array

23

3. Implementation

contains edges, structures of two pairs: one pair of vertex indices and one pair
of adjacent triangle’s indices. Non-manifold edges are therefore not supported.

3.2.2 Adding entities

Adding vertices or edges is straightforward. It is only matter of adding given
entity at the end of the respective array and adding the interconnection in-
formation. For example, in case of an edge, we first insert the edge at the
end of the edges array and then, for both vertices, we add it to vertexEdges
subarrays denoted by the vertex indices, so each vertex knows which edge it
belongs to.

Adding a whole triangle is slightly more complicated. Apart from adding
the new triangle to triangle array and connecting it to its vertices it also has
to go through all its edges and either create new or modify existing ones.

3.2.3 Removing entities

Because we remove individual entities fairly often, it must be done effectively.
However, the vertices, edges and triangles are stored in an one dimensional
array, thus simply deleting the entity and moving the rest of the array is out
of question.

A different approach to deleting was chosen and it is very similar to how
the deleting works in a hash table data structure. The complexity of the
operation is constant, however the data have to be consolidated from time to
time (in this case after every remesh).

Basically, a tombstone is created in place of the entity when it’s deleted.
This is done differently for each entity. The edge is considered removed when
its end vertices are equal. The triangle is considered removed when at least
two of its indices are equal. However, vertices aren’t being deleted, they just
stop being referenced if there is neither a valid edge nor triangle containing
them.

24

3.3. Remeshing Process

Algorithm 3: Process of splitting all edges longer than a threshold
Input: threshold
repeat

edgesToSplit = empty array
for each e in edges do

if length2(e) > threshold2 then
add e to edgesToSplit

end

end
sortedEdges = sortByLength(edgesToSplit, descending)
for each e in sortedEdges do

if length2(e) > threshold2 then
split(e)

end

end

until no split occured

3.3 Remeshing Process

The remeshing process is performed after every change made to the mesh.
The process consists of a split phase, collapse phase and consolidation.

3.3.1 Split & Collapse Overview

Both split and collapse phases of above process run repeatedly on sorted arrays
of edges to achieve equal triangle size and triangle aspect ratio close to 1. The
split phase is illustrated by algorithm 3.

The collapse phase is almost identical to algorithm 3. However, the com-
paring condition is lesser than and the sorting function is ascending.

The edge length is checked twice in each iteration, as some of the edges
that are to be split/collapsed will change in length during the phase and they
might not meet the condition again. The vector length is not fully computed
as ||v0 − v1||, but as ||v0 − v1||2 to avoid the costly square root function. It
is then compared to the threshold length, which is squared. This is possible
because squaring preserves the order relation.

3.3.2 Edge Split Algorithm

The split edge operation is divided in four steps as illustrated by figure 3.2.

1. Remove edge (upper left)

2. Remove adjacent triangles ta and tb (upper right)

3. Add new vertex vc (lower left)

4. Add triangles (vc,va,v0), (vc,v1,va), (vc,v0,vb) and (vc,vb,v1) (lower
right)

25

3. Implementation

x

x

Figure 3.2: Edge split algorithm

3.3.3 Edge Collapse Algorithm

Collapsing an edge is slightly more complicated than splitting, mainly because
more neighbouring vertices, edges and triangles are involved. The collapse
operation is performed in 7 steps, which are illustrated by figure 3.3.

1. Remove edge (upper left)

2. Remove adjacent triangles ta and tb (upper right)

3. Remove edges (v0,va), (v1,va), (v0,vb) and (v1,vb) (upper right)

4. Add new vertex vc (lower left)

5. Add new edges (vc,va) and (vc,vb) (lower left)

6. Replace v0 and v1 with vc in triangles adjacent to v0 and v1, respect-
ively (lower right)

7. Replace v0 and v1 with vc in edges connected to v0 and v1, respectively
(lower right)

The vertices v0 and v1 are not explicitly removed, they just stop being
referenced, as explained in section 3.2.3, and are deleted in the consolidation
phase later.

Because more neighbouring vertices are involved in the edge collapsing
than in edge splitting, we cannot recklessly follow the above algorithm for
every edge. Some special cases must by observed and handled. These special

26

3.3. Remeshing Process

x

x

Figure 3.3: Edge collapse algorithm

cases are a specific configuration of the vertices that would cause problems if
they weren’t dealt with.

One of these special cases is when va0 = va1 or vb0 = vb1. If not handled,
it would lead to a non-manifold edge, which would break the data structure.

Another special case is when v0 and v1 shares an edge with a vertex that
is connected to v1 or v0, respectively, and that vertex isn’t va nor vb. This
can’t be seen properly in 2D, but considering the figure 3.3, such connection
would go behind the displayed triangle mesh. Multiple problems arise when
this case is not observed, such as invalid interconnection information which
can lead to visual artifacts on rendered mesh.

I found, that instead of trying to handle above special cases by creating
a branch of code that would do the edge collapse separately, canceling the
operation is far easier way to solve this problem. The repeated process of
collapsing ensures that all short edges are eventually collapsed, even if these
cases are skipped. Also, if the ideal edge length is set very high, the mesh will
degenerate into a tetrahedron.

3.3.4 Consolidation

The consolidation step is necessary because of the way how removed vertices,
edges or triangles are handled, which is illustrated in section 3.2.3. Basically,
after each remeshing, number of vertices become unreferenced and many edges
and triangles are made obsolete. The consolidation rebuilds the mesh data
structure so only relevant entities are present.

27

3. Implementation

Algorithm 4: Consolidation

/* Copy old entities */

oldTriangles = triangles
oldVertices = vertices

/* Clear all mesh arrays */

clearArrays()
isReferenced = empty array
newIndex = empty array

for i=0 to sizeof(vertices) do
add false to isReferenced
add -1 to newIndex

end
for each t in oldTriangles do

if wasRemoved(t) then continue
for each vi in t do /* For each vertex index vi in t */

if isReferenced[vi] == true then continue
/* addVertex re-adds the vertex and returns its new index. */

newIndex [vi] = addVertex(vertices[vi])
isReferenced [vi] = true

end
addTriangle(newIndex [t[0]], newIndex [t[1]], newIndex [t[2]])

end

The consolidation is done by re-adding existing non-deleted triangles into
an empty mesh data structure. Also, only referenced vertices are re-added
and these vertices need to be re-indexed. This is illustrated by algorithm 4.

3.4 Sculpting Tools

When applying a tool, all vertices are checked whether they fall into the area
of interest, which is determined by the tool radius and point of intersection,
and then a transformation is applied with a rate depending on their distance
to the point of intersection and strength of the tool.

3.4.1 Tool design

Inheritance and polymorphism has been utilized in design of the tools as
they share a common interface. The base class MeshTool includes common
attributes like radius, strength, etc. and also an abstract function that applies
given tool. This apply function is then overridden in every tool with its own
implementation. A class diagram that shows the relationships, attributes and
methods of all tools is shown in figure 3.4.

28

3.4. Sculpting Tools

MeshTool

+radiusP:Pfloat
+strengthP:Pfloat
+invertP:Pbool
+airbrushP:Pbool
+symmetryP:Pbool

+applySPmeshP:PMeshPA,P
timeDelta:Pfloat,P
controllerP:PControllerF,P
intersectionPointP:Pvec3PA

-P:Pvoid
#getInfluenceSPcenterP:Pvec3,

vertexP:Pvec3
-P:Pfloat

FlattenTool

#shiftCentroidSPcentroidP:Pvec3PA,P
normalP:Pvec3P

-P:Pvoid

BuildupTool

PullTool SmoothTool DragTool

-isActiveP:Pbool
-activeDstP:Pfloat

+startDragSPcontrollerP:PControllerF,P
intersectionPointP:Pvec3

-:Pvoid
+endDragS-P:Pvoid
+isDragActiveP:Pbool

Figure 3.4: Tool class diagram

3.4.2 Pull Tool

The pull tool is the simplest of the implemented tools. The actual process is
straightforward; it iterates over all vertices and transforms them according to
equation 1.4.

3.4.3 Flatten Tool

Algorithm 5 illustrates how the flatten tool transform vertices. First, all af-
fected vertices are saved in arrays, then the imaginary plane is computed, and
finally all affected vertices are transformed depending on their distance to that
plane. The vertices are saved to avoid iterating over all vertices again.

3.4.4 Buildup Tool

As discussed earlier, the buildup tool is only a variation of the flatten tool.
Thanks to this, only small part of the code has to be changed, specifically,
when calculating the imaginary plane, the average position is modified as
described in equation 3.1, where s denotes the tool strength.

c = c + sn (3.1)

29

3. Implementation

Algorithm 5: Flatten tool
verts = empty array
c = (0, 0, 0)
n = (0, 0, 0)
for vi = 0 to sizeof(vertices) do

v = vertices[vi]
if ρ(v) > 0 then

/* Add vertex to centroid */

c = c + v
n = n + normals[vi]
add vi to verts

end

end
/* Calculate average vertex position and normal */

c = c / sizeof(verts)
n = n / sizeof(verts)
/* Construct plane */

d = −c · n
for i = 0 to sizeof(verts) do

vi = verts[i]
v = vertices[vi]
l = −(v · n + d)
vertices[vi] = v + lρ(v)n ;

end

3.4.5 Smooth Tool

Smooth tool is the only tool that makes use of the interconnection between
the vertices as it needs all neighbours of a given vertex. As seen in algorithm
6, it iterates over all vertices and for each vertex calculates a centroid of its
neighbours and then moves the vertex to this centroid at a rate determined
by tool strength and weight of the vertex and elapsed time.

Note that the new positions of vertices are stored in a separate array, which
replaces the old array after all vertices have been processed. This is because
all the new positions have to be calculated from vertices in the state of a mesh
that has not yet been modified.

3.4.6 Drag Tool

The drag tool is slightly different from other tools as it also needs the inform-
ation when and how the dragging started and when it ended. Therefore it
implements two more functions, startDrag and endDrag. Apart from that, it
also uses the information about the position and orientation of the controller
in previous frame. Specifically, the ray coming out of the controller. The ray
calculation method is described further in this chapter, in section 3.5.4.

The startDrag function computes the initial distance between controller
and the point of intersection. This distance is then used in the entire process
of dragging, as can be seen in algorithm 7, where it acts as the d input variable.

30

3.4. Sculpting Tools

Algorithm 6: Smooth tool
newVertices = empty array
for vi = 0 to sizeof(vertices) do

v = vertices[vi]
/* Number of neighbours */

k = sizeof(vertexEdges[vi])
c = (0, 0, 0)
for i=0 to k do

ei = vertexEdges[vi][i]
e = edges[ei]
/* Find the vertex index of the edge e other than vi */

v0 = e.vertices[0]
if e.vertices[0] == vi then v0 = e.vertices[1]
/* Add the vertex to the centroid */

c = c + vertices[v0]
end
/* Calculate target position */

ṽ = c / k
/* Calculate new position */

v′ = (1− ρ(v))v + ρ(v)ṽ
add v′ to newVertices

end
vertices = newVertices

Algorithm 7: Drag tool
Input: d, controller
r = controller.currentRay
u = controller.lastRay
/* Calculate offset o */

a = ro + d ∗ rd

b = uo + d ∗ ud

o = -(b - a)
for vi = 0 to sizeof(vertices) do

v = vertices[vi]
vertices[vi] = (1− ρ(v))v + ρ(v)(v + o)

end

3.4.7 Tool Modes

In default mode the tool is applied only when the point of intersection (POI)
moves by a certain amount, so called minimal step, in contrast to the airbrush
mode, where it is applied always. The exact distance is computed as the the
distance of POI where the tool was last applied, which is, however, transformed
by the last tool transformation, and the current POI. If the last POI wasn’t
transformed, the tool would continue to be applied even though the controller
didn’t move. The rate at which the tool is applied is not affected by the
elapsed time.

In the airbrush mode the tool is applied every frame, regardless of control-
ler movement. However, the rate at which the tool is applied is influenced by

31

3. Implementation

(a) Inversion (b) Symmetry

Figure 3.5: Tool modes

the elapsed time ∆t. Both default and airbrush mode don’t apply to the drag
tool, as it works on a different principle.

The inversion mode causes the tools to transform the vertices in the op-
posite direction, therefore creating a dimple or a hole. Figure 3.5a shows how
the mesh looks like after the application of an inverted tool. Inversion applies
only to buildup and pull tool.

The last, and perhaps the most useful tool mode is the symmetry mode.
If it’s enabled, the tool is applied around the POI and also around the POI
that is mirrored along the yz plane, as is illustrated by figure 3.5b. If a vertex
that is to be transformed resides in both the standard and mirrored area, the
transformation has to be modified accordingly. The implementation varies
slightly for every tool, specifically when the area of interest and the mirrored
area aren’t disjoint.

Let f be the weight depending on standard POI and let g be the weight
depending on mirrored POI. Then the final weight of a vertex is computed as
follows:

• Pull tool : weight = (f + g)/2

• Smooth tool : weight = max(f, g)

In case of buildup tool, the transformations are applied in the same way
on the mirrored area, however the imaginary plane is computed separately for
this area and vertices are transformed according to this separate plane.

The drag tool symmetry computation proceeds as usual if the vertex is
only in the standard area. If not, specifically, if g > f , then the vertex weight
is set to g and the offset o is flipped along the yz plane. That is done by
changing the sign of its x coordinate.

32

3.5. Integration of Razer Hydra

3.5 Integration of Razer Hydra

The Razer Hydra is commonly used for games and as it pre-dates the Oculus
Rift, it was commonly used for games, which developed for keyboard and
mouse, and introduced so called gestures, which translated simple movements
of the controllers to various game commands. However, since the Oculus
release, it has been heavily used in various virtual reality demos. The gestures
are not so important in virtual reality, as the main reason why these controllers
are used is to simulate real hands and track their position and orientation.

3.5.1 Integration

The interface for Razer Hydra, called Sixense API, is a set of C functions that
allow reading data from the device. It also features number of utilities that
simplify the integration.

One of these utilities is the ControllerManager, which facilitates part of
the calibration process. It takes care of determining which hemisphere sur-
rounding the controller base is the correct one, as the controllers report both
correct and mirrored position across the base. The integration of this utility
is fairly simple, as it only needs to receive the controller data every frame and
in response it returns a message which should be displayed to the user.

However, before the application can receive any data, it has to initialize the
API. This is done by calling the sixenseInit() function. After that controller
data are available. Upon closing the application sixenseExit() has to be called
to free allocated resources.

The data is read by the sixenseGetAllNewestData() function that returns
all available data for both controllers. This includes position, orientation,
button states but also the hardware index of the controller or whether the
controller is docked at the base or not.

3.5.2 Custom Calibration

For the purposes of this application, a custom calibration and initialization had
to be added. The first important step is to determine which controller is the
right and which is the left. This is done simply by comparing their coordinates.
The coordinates also serve for calculation of distance of controllers to the base.
This distance is then used to position the mesh in an ideal place and also to
position the virtual head, in other words, the camera, in correct place after
the calibration. It is also used to modify the filtering parameters.

3.5.3 Filtering

The filtering parameters control the filtering, in other words smoothing, of the
controller position. If the filtering would be too weak, the position wouldn’t
be steady and would flicker, if too strong, the position would be smooth, but

33

3. Implementation

would lag behind considerably. The default parameters proved to be too weak,
so the following values were chosen for ideal smoothing:

• nearRange = 0.4 ∗ d

• nearV alue = 0.945

• farRange = 1.4 ∗ d

• farV alue = 0.985

Where d is the measured distance from controller to base. The nearRange
and farRange determine the range where the filtering rate should be inter-
polated between nearV alue nad farV alue. For ranges smaller or bigger than
nearRange or farRange, the nearV alue and farV alue are used, respectively.
The complete explanation of the filtering can be found in [12, page 24].

3.5.4 Orientation

The default orientation of the controllers doesn’t match exactly the direction
at which the controllers are pointing. Specifically, the direction of the ray
determined from the controller’s default position and orientation does not
point from the front of the controller, where trigger and bumper buttons are
located. To correct this, the orientation of the controllers has to be rotated
by 30◦ along the x axis.

The mentioned ray r coming out of the controller is calculated using equa-
tion 3.2, where ro is the ray origin, rd is ray direction vector, P is the controller
position and finally R is the a 3× 3 rotation matrix specifying the controller
orientation. The vector (0, 0,−1) is the forward direction in the application’s
coordinate system.

r = (ro, rd) = (P ,R

 0
0
−1

) (3.2)

Other than calculating rays coming out of the controllers and processing
the individual buttons to change the state of the application accordingly, the
object manipulation is computed using the relative position and orientation
change of the controllers.

3.5.5 Object Rotation

To rotate the object, the left bumper button must be pressed. While pressed,
the left controller can be used to rotate the object around its pivot. This is
done by moving the controller around the object while the object orientation
follows.

34

3.5. Integration of Razer Hydra

The calculation used is similar to arcball technique used for mouse [14].
The actual calculation is shown in equation 3.3, where x is the rotation axis
and α is the angle. They are calculated from the controller position Pc,
position of the controller in last frame Pl and the object’s pivot Z.

a = Pc −Z

b = Pl −Z

x = a× b

cosα =
a · b
‖a‖‖b‖

(3.3)

After the left bumper button is released, the rotation continues if the velo-
city of the controller movement was high enough. This done to simulate the
inertia of the object. To do this, several previous positions of the controller
have to be recorded in a queue. Upon the button release, an average vector
is computed from these stored positions. The oldest position stored and also
the oldest position, translated by the average vector, act as Pl and Pc, re-
spectively, in the equation 3.3 to calculate the axis and angle of the rotation.
The length of this average vector is then used as the velocity of the rotation.
This velocity is decreased linearly in every frame until it’s zero.

3.5.6 Object Scaling

To scale the object, the user first has to press left bumper button and then
right bumper button and keep them pressed while moving controllers away or
towards each other. The amount of scale is then determined by the ratio of
two distances of the two controllers: the distance at the start of the scaling d
and the distance in the current frame d′.

s′ = s
d′

d
(3.4)

While scaling is active, the new object scale s′ is calculated by multiplying
the scale at the start of the scaling, denoted by s, by the mentioned ratio, in
every frame, as illustrated by equation 3.4.

3.5.7 Object Pivoting

While in pivoting mode, the left controller will act as a pivot and the object
will move with it and rotate around it. This mode is toggled by pressing the
left trigger button. At the start of the pivoting, the controller position P and
orientation Q is stored. During the pivoting, the difference between current
state and start state is calculated.

The difference in position ∆P is calculated simply as the difference between
current position P ′ and start position P , as illustrated by equation 3.5. On the
other hand, the orientation difference ∆Q is calculated as difference between

35

3. Implementation

two quaternions, current orientation Q′ and start orientation Q. This is done
by multiplying the current quaternion with the inverse of the start quaternion,
as shown in equation 3.6.

∆P = P ′ − P (3.5)

∆Q = Q′Q−1 (3.6)

Rp = T (P ′)R(∆Q)T (−P ′) (3.7)

M ′ = RpT (∆P)M ; (3.8)

In the above equations, T (v) denotes a translation matrix, which trans-
lates by vector v, and R(q) denotes a rotation matrix, which rotates by qua-
ternion q. All above calculations are made in homogeneous space, therefore
all matrices are 4× 4.

The rotation around pivot, denoted by matrix Rp, is calculated by rotat-
ing in the coordinates of the pivot, in other words, around current controller
position. The amount and direction of the rotation is defined by ∆Q. This
is illustrated by equation 3.7. The equation 3.8 describes how the transform-
ations are put together to obtain the final model transformation M ′ of the
object. The M denotes the model matrix prior to pivoting, T (∆P) controller
offset translation and Rp the pivot rotation.

3.6 Integration of Oculus Rift

The OculusVR SDK version 0.2.5c was used, however, at the time of writing,
a new version, 0.3.1, was released. The version that was used offers only object
oriented C++ API, which proved to be difficult to work with. A strictly C
API would have been preferred, as OculusVR realized too, so the latest version
features such C interface. The latest version also takes care of distortion
rendering, which had to be implemented manually.

3.6.1 Integration

Before any data can be read from the Oculus Rift, the API has to be initialized.
This is done by series of initialization commands and by creating number of
objects, such as a DeviceManager, a custom message handler, SensorDevice,
HMDDevice, etc. The freeing of resources is similarly cumbersome, as every
object has to be destroyed. This is partly done by the API’s own allocator,
partly manually.

Moreover, the API is primarily focused on DirectX, so integrating it with
OpenGL introduces some difficulties. On top of that, the provided example in
the SDK has been written for DirectX and OpenGL simultaneously, making
use of a wrapping mechanism, which proved to be troublesome to decipher,

36

3.6. Integration of Oculus Rift

Algorithm 8: Oculus Rift program structure

begin Initialization
Initialize OculusVR API
Create render target

end
repeat

Read sensor data
begin Draw

Render target ← texture
for left and right eye do render scene
Render target ← screen
for left and right eye do render distorted image

end

until termination requested
Free resources

as the documentation doesn’t cover all the details. Eventually, I overcame all
mentioned hurdles and managed to succesfully integrate the API.

3.6.2 Oculus Rift Program Structure

Algorithm 8 shows the minimal basic program structure needed to integrate
Oculus Rift. After initialization, in the main program loop, the application
reads the sensor data and renders the image accordingly. First the scene is
rendered to a texture and then this texture is rendered while the distortion is
applied.

3.6.3 Data Retrieval

To read the orientation data is fairly straightforward. The SensorFusion ob-
ject’s method returns the orientation quaternion for the predicted orientation.
The orientation is predicted to minimize the latency of the sensors. Thanks to
that, the retrieval is almost instantaneous. The API also offers the orientation
in Euler angles, which is useful for calculating the yaw angle, as it is not only
affected by where the user is looking, but also by the orientation of the virtual
body. Thus, the yaw angle is kept separate to be modified later depending on
user input.

3.6.4 Rendering Scene

The first part of rendering for Oculus Rift is to draw the scene to a buffer in
the memory, called render target, which is then used as a standard texture.
Each eye is rendered separately, with an offset, to ensure stereoscopic vision
and thus the depth perception.

The actual rendering process is almost the same as it would be for normal
2D display with a couple of differences:

37

3. Implementation

• Projection matrix is modified

• View matrix is modified

• Rendering is done only on left or right half of the viewport at a time

The projection matrix represents a standard perspective projection, with
a field of view calculated with regard to the resolution of the display, screen
size and eye to screen distance [9, page 23-24]. The standard perspective
projection is set up for the center of the screen, however, to correctly display
it for Oculus Rift, the projection has to be shifted to coincide with the center of
the lens. This is done by applying a translation transformation that depends
on lens seperation distance, a value that can be retrieved from the API. The
complete calculation can be found in [9, page 24].

The view matrix is calculated depending on the headset orientation, which
is read from the sensors earlier, and is then shifted to accommodate for the
distance between the left and right eye. This is also done by a simple trans-
lation transformation. The amount by which the view is shifted depends on
the interpupillary distance (IPD), a distance between the eyes that differs for
each person. This distance should be specified a priori in Oculus configuration
utility. If there is a mismatch between the used IPD and the actual person’s
IPD, the virtual reality experience may be uncomfortable, may strain the eyes
and the sense of scale may be altered [15].

3.6.5 Rendering Distortion

The second part of rendering is distortion. To accommodate for the distortion
introduced by lenses, a barrel distortion has to be applied, as described in
section 2.1.4. This is done by using a special distortion shader [9, page 27].
A simple rectangle spanning the entire screen is rendered using this shader,
which uses the previously mentioned texture with rendered scene. The shader
distorts and positions the texture accordingly. The API provides the para-
meters for the distortion, such as lens center, or warp function coefficients,
which control the amount of distortion. Several other parameters have to be
calculated, such as scale or screen center, to correctly position the rendered
image.

The barrel distortion pulls pixels towards its center. Because of this, the
edges of the screen would have unused blank space and considerable amount
of field of view would be lost. To avoid this, the scene is first rendered in
higher resolution than the actual screen can display. The ideal scale factor for
the resolution can be also retrieved from the API. The shader then scales and
positions the distorted image to fill as much space as possible [9, page 28].

The chromatic aberration correction is also done by the above shader. It
works on the same principle as the distortion, however it takes different set

38

3.6. Integration of Oculus Rift

of parameters and each color is transformed separately according to these
parameters.

39

Chapter 4

Testing and Discussion

The application was first developed for a standard 2D monitor screen to allow
for easier debugging. First the sculpting process was implemented, with a
mouse as a controller, following the Razer Hydra integration and finally Oculus
Rift integration. The 2D screen mode is available in the application if no
Oculus Rift device is connected.

4.1 Testing

Overall, the application has been tested to contain no memory leaks. This
was critical, considering that the remeshing process reallocates big amount of
memory every frame, which in case of a memory leak would inevitably lead
to a crash of the application.

The testing of the sculpting process was done both by actual sculpting and
programmatically to accommodate for all possible combinations. Therefore,
the remeshing process can be considered stable. There was very little testing
involved in the integration of Razer Hydra, other than finding suitable button
bindings, thanks to the API being very straightforward. The Oculus Rift
integration has been tested against the open source sample application in the
OculusVR SDK, specifically, to make sure that all common calculations are
matching and that they provide the same result.

4.2 Optimizations

One of the challenges I faced, was to optimize the application and maximize
the performance. As with any graphical application, the main challenge is to
ensure high and steady frame rate. However, when dealing with a virtual real-
ity headset, the frame rate is even more crucial. Any temporary or permanent
drop in the frame rate will cause very uncomfortable feeling and might even

41

4. Testing and Discussion

cause nausea [15]. The current version of Oculus Rift is designed to run at
60 Hz, in other words, 60 frames per second.

The usual problem with graphical applications, such as games, is to render
huge amounts of polygons with various post-processing effects efficiently. Luck-
ily, this has not been a problem in this case, as the amount of polygons and
GPU processing in general was negligible in comparison to current GPU cap-
abilities. Therefore, not only the GPU computation was insignificant, but also
the passing the data from CPU to GPU, which is the usual bottleneck in other
cases, was very fast. Thanks to this, the application is able to send the entire
mesh with all its vertices and triangles to the GPU in every frame and render
it in less than 5 ms.

4.2.1 Remeshing Process

The biggest problem was optimizing the remeshing process, which takes place
on the CPU. Even with a data structure and algorithms designed to make the
process as efficient as possible, it suffers from limitations in terms of triangle
count.

Every operation in the remesh process has at most linear complexity,
except for collapse and split phases, which include edge sorting. There-
fore, the theoretical asymptotic complexity of the whole remeshing process
is O(n log n). Since the sorting is a crucial part of the process, the asymptotic
complexity cannot be further improved.

However, in practical terms, the most expensive operation happens to be
the consolidation process. Even though its complexity is linear, it is the biggest
bottleneck of the remeshing process. This is mainly due to the quantity and
size of memory allocations that goes on in the consolidation.

There are several opportunities to optimizing the consolidation process.
One of them is to consolidate not every frame, but only once in a time. This
however causes lags that would hinder the sculpting process. A partial consol-
idation can also be performed, specifically on the edges, as the number of edges
is what slows down the split/collapse operations the most when the mesh data
structure is unconsolidated. However, to ensure smooth user experience, the
remeshing process would have to be offloaded to a separate thread. That was
however outside of the scope of this thesis, but it is an interesting avenue for
future work.

4.2.2 Code Optimizations

As the asymptotic complexity cannot be further improved, I focused on more
practical and low level optimizations. To find problematic parts of the code,
a CPU profiling tool Very Sleepy [16] was used. Several pieces of code were
found and optimized, such as the following:

42

4.3. Performance Measurements

Figure 4.1: Box twist test: a 3D box is gradually twisted (which increases
mesh density) to a certain point and then un-twisted (which decreases it).

• Comparing edge length as distance squared, to avoid costly square root
function.

• Reserving enough space in arrays in advance, to avoid frequent realloc-
ating.

• In splitting and collapsing process, precomputing edge lengths and them
instead of actual edges, to avoid recomputation.

4.3 Performance Measurements

The most complex process is remeshing, thus the only relevant data to measure
is the remeshing time. The operations like sculpting or rendering both run
under 5 ms. To measure the time, two tests were devised, a box twist test
and continuous sculpting test.

A machine running Windows 8 64bit with Intel i5-3570K @ 3.4 GHz CPU
was used to measure the data. The remeshing time isn’t affected by the GPU
speed, as the whole remeshing process happens on CPU.

4.3.1 Box Twist Test

This test consists of twisting a 3D box by a certain amount and then twisting
it back. This causes rapid increase in number of triangles when twisting and
rapid decrease when untwisting.

The figure 4.2 shows the measured data. The rate at which triangles were
added or removed was very steep, causing it to barely keep above 60 FPS. Also
note, that the untwisting is slower than the twisting. This is because edge
collapse, which is a more expensive operation, is prevalent when untwisting.
This is also clearly demonstrated by the second test.

43

4. Testing and Discussion

4.3.2 Continuous Sculpting Test

The second test is closer to actual process of sculpting, when we either add or
decrease detail. To add detail, the pull tool was used to continuously pull the
mesh and add triangles. The prevalent operation in this case is edge split. In
the second case, when decreasing detail, the edge collapse was the dominant
operation. This was achieved by slowly decreasing target edge length and
remeshing at the same time.

As can be seen in figures 4.3 and 4.4, the relationship between number of
triangles and remeshing time is linear. When comparing the remeshing times
in the two graphs, it is clear that the edge collapse is more expensive operation
than the edge split.

4.4 Examples of Sculpting Results

The figure 4.5 shows the example results of meshes sculpted in the application.
All shown meshes are under 30 thousand triangles and were sculpted in about
10-20 minutes each. All tools were used to some extent, depending on the
model shape.

The symmetry mode was enabled in all shown examples and they show
that it helps a great deal when sculpting. If it wasn’t used, the process of
sculpting of these meshes would be tedious and the result wouldn’t be as
good. In case of the first example, the head, the symmetry mode was enabled
to sculpt the shape of the head and the face. Then it was disabled to sculpt
the hair.

When showcasing the application to new users, I observed that they were
able to grasp the controls rather quickly and that they were able to sculpt
basic shapes in a matter of minutes. Most of them were very excited after
trying it out and provided valuable feedback. One of the sculpting results of
a first time user is the second model, the piglet.

The third example, the spider, demonstrates the usefulness of the drag
tool. It was used to extrude the legs from its body. The eyes and joints on the
legs were made using the pull tool, which was also used to inflate the spider’s
abdomen.

44

4.4. Examples of Sculpting Results

Figure 4.2: Box twist test: remeshing time

Figure 4.3: Continuous sculpting test: adding detail.

Figure 4.4: Continuous sculpting test: removing detail.

45

4. Testing and Discussion

Figure 4.5: Examples of sculpting results: head (top), piglet (middle), spider
(bottom)

46

Conclusion

During the development of this application I familiarized myself with sculpt-
ing and algorithms related to sculpting, particularly the remeshing process.
However, the scientific work on this topic is extensive and I’ve only scratched
the surface. Nevertheless, I’ve managed to implement a functioning sculpting
system with basic tools that can be used to sculpt meshes with up to 100
thousand triangles. The system is being displayed in a virtual reality head-
set, Oculus Rift, and controlled by a position and orientation tracking device,
Razer Hydra. Thus, all the primary and secondary goals of this thesis were
met.

Other than implementing the sculpting and remeshing mechanism, the in-
tegration of the Razer Hydra and the Oculus Rift proved to be a challenge.
To make them work together and turn it into a smooth virtual reality experi-
ence required a great deal of experimenting. Particularly, developing sculpting
tools that are controlled by a position tracking device was no easy task. The
fact that no previous work has been published on using this combination of
peripherals to make a sculpting application made it even more difficult, but
at the same time, more exciting.

The resulting application provides a simple and easy process of modeling,
but what sets it apart is the real sense of scale and depth it provides, which
is something you can’t get in a commonly available desktop 3D modeling
software. Turning something like sculpting, which is inherently physical and
tangible, into an enhanced virtual reality is in my opinion remarkable and
we should continue to explore the possibilities and the new doors that it can
open.

Future work

The sculpting system that was implemented is still very basic and lacking some
features of professional sculpting software, such as textured brushes, masking,
custom brush curves, various deformations like skewing or bending and many

47

Conclusion

more. In future, I would like to implement some of these features.
However, to implement more features, a better user interface has to be

devised. Adding a graphical user interface (GUI) into virtual reality is no easy
task, as traditional 2D GUI suffers from serious drawbacks when displayed in
a virtual reality headset [15], for instance, elements placed near the borders
of the screen won’t be fully visible to the user. The most intuitive way to
implement it is to put the interface elements in the 3D space and treating
them like physical objects, which would require a great deal of further effort.

One feature that is very important for performance and mesh quality is
non-uniform subdivision, i.e., the mesh has greater density only where the
details are, while large flat surfaces have low density. This is something that
could also be implemented, but it would require redesigning the remeshing
process. Offloading the remeshing process to a separate thread could also
prove to be beneficial to the performance.

The virtual reality hardware is progressing rapidly. The most important
feature that is coming in the near future is the positional tracking of the Oculus
Rift headset. This is something very important for virtual reality immersion
and for reducing motion sickness. The practical consequence for this sculpting
application would be the ability to look around corners and to easily see the
result from different angles with just the movement of the head.

48

Bibliography

[1] Moraes, C. Sculpting process image. 2013, [Cited 2014-05-09]. Available
from: http://www.ciceromoraes.com.br/?p=970

[2] Ebert, D. S.; Musgrav, K. F.; Peachey, D.; et al. Texturing & modeling:
a procedural approach. Morgan Kaufmann, 2003.

[3] Thürrner, G.; Wüthrich, C. A. Computing vertex normals from polygonal
facets. Journal of Graphics Tools, volume 3, no. 1, 1998: pp. 43–46.

[4] Stãnculescu, L.; Chaine, R.; Cani, M.-P. SMI 2011: Full Paper: Free-
style: Sculpting Meshes with Self-adaptive Topology. Comput. Graph.,
volume 35, no. 3, June 2011: pp. 614–622.

[5] Brochu, T.; Bridson, R. Robust topological operations for dynamic ex-
plicit surfaces. SIAM Journal on Scientific Computing, volume 31, no. 4,
2009: pp. 2472–2493.

[6] Dunyach, M.; Vanderhaeghe, D.; Barthe, L.; et al. Adaptive Remeshing
for Real-Time Mesh Deformation. Eurographics Short Papers, 2013, pp.
29–32.

[7] Dyn, N.; Levine, D.; Gregory, J. A. A butterfly subdivision scheme for
surface interpolation with tension control. ACM Transactions on Graph-
ics (TOG), volume 9, no. 2, 1990: pp. 160–169.

[8] Stabinger, S. Oculus Rift photos. Dec. 2013, [Cited 2014-05-09]. Available
from: http://en.wikipedia.org/wiki/Oculus Rift

[9] Antonov, M.; Mitchell, N.; Reisse, A.; et al. Oculus SDK overview. Oculus
VR, Inc., July 2013.

[10] Abrash, M. Latency the sine qua non of AR and VR. Dec. 2012,
[Cited 2014-04-30]. Available from: http://blogs.valvesoftware.com/
abrash/latency-the-sine-qua-non-of-ar-and-vr/

49

http://www.ciceromoraes.com.br/?p=970
http://en.wikipedia.org/wiki/Oculus_Rift
http://blogs.valvesoftware.com/abrash/latency-the-sine-qua-non-of-ar-and-vr/
http://blogs.valvesoftware.com/abrash/latency-the-sine-qua-non-of-ar-and-vr/

Bibliography

[11] Razer. Razer Hydra photo. 2011, [Cited 2014-05-09]. Available from:
http://www.razerzone.com/gb-en/gaming-controllers/razer-
hydra-portal-2-bundle/

[12] Sixense. Sixense SDK Overview. Sixense Entertainment, Inc., 2011.

[13] Erdőkövy, Z. The Razer Hydra 3D model. Jan. 2012, [Cited 2014-05-
09]. Available from: http://www.zspline.net/blog/2012/01/15/the-
razer-hydra-3d-model/

[14] Shoemake, K. ARCBALL: A User Interface for Specifying Three-
dimensional Orientation Using a Mouse. In Proceedings of the Conference
on Graphics Interface ’92, 1992, pp. 151–156.

[15] Yao, R.; Heath, T.; Davies, A.; et al. Oculus VR Best Practices Guide.
Oculus VR, Inc., 2014.

[16] Chapman, N.; Mitton, R.; Engelbrecht, D.; et al. Very Sleepy
CPU Profiler. 2012, [Cited 2014-05-12]. Available from: http://

www.codersnotes.com/sleepy

50

http://www.razerzone.com/gb-en/gaming-controllers/razer-hydra-portal-2-bundle/
http://www.razerzone.com/gb-en/gaming-controllers/razer-hydra-portal-2-bundle/
http://www.zspline.net/blog/2012/01/15/the-razer-hydra-3d-model/
http://www.zspline.net/blog/2012/01/15/the-razer-hydra-3d-model/
http://www.codersnotes.com/sleepy
http://www.codersnotes.com/sleepy

Appendix A

Acronyms

VR Virtual Reality

HMD Head Mounted Display

FOV Field of View

DOF Degrees of Freedom

GPU Graphics Processing Unit

POI Point of Intersection

SDK Software Development Kit

IPD Interpupillary Distance

GUI Graphical User Interface

51

Appendix B

Contents of enclosed CD

readme.txt the file with CD contents description
exe the directory with executables
src.......................................the directory of source codes

thesis..............the directory of LATEX source codes of the thesis
RiftSculpt.................the directory of application source codes

BP Krs Vojtech 2014.pdf................the thesis text in PDF format

53

	Introduction
	Motivation
	Goals

	Sculpting with Triangular Meshes
	Representation

	Sculpting in Virtual Reality
	Display
	Controls
	Putting It Together

	Implementation
	Overview
	Mesh Data Structure
	Remeshing Process
	Sculpting Tools
	Integration of Razer Hydra
	Integration of Oculus Rift

	Testing and Discussion
	Testing
	Optimizations
	Examples of Sculpting Results

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed CD

