Czech Technical University in Prague
Faculty of Electrical Engineering
Department of Computer Graphics and Interaction

Master’s Thesis

Methods for Fast Construction of Bounding Volume
Hierarchies

Be. Daniel Meister

Supervisor: Ing. Jit{ Bittner, Ph.D.

Study Programme: Open Informatics
Field of Study: Computer Graphics and Interaction

May 12, 2014

v

Aknowledgements

I would like to thank Ing. Jif{ Bittner, Ph.D. for his kind attitude and for supervising this
thesis. Also I would like to express my gratitude to RNDr. Marek Vinkler for many valuable

advices.

vi

vii

Declaration

I hereby declare that I have completed this thesis independently and that I have listed all
the literature and publications used.

I have no objection to usage of this work in compliance with the act §60 Zakon ¢. 121/2000Sb.
(copyright law), and with the rights connected with the copyright act including the changes
in the act.

In Prague on May 12, 2014

viii

Abstract

The bounding volume hierarchy is one of the most common acceleration data structures
used in computer graphics. This thesis is about a fast parallel construction of bounding
volume hierarchies on the GPU. Two construction algorithms were implemented the CUDA
technology. The first algorithm is based on Morton codes and spatial median splits. The
second algorithm uses the surface area heuristic to minimize the cost of the hierarchy. Both
algorithms were tested in the real-time rendering system. The core of the rendering system
is based on an efficient ray tracer.

Abstrakt

Hierarchie obdlek je jedna z nepouzivanéjsich akcelera¢nich datovych struktur v pocitacové
grafice. Tato prace se zabyva rychlou paralelni konstrukei hierarchie obdlek na grafickych
procesorech. Implementoval jsem dva konstrukéni algoritmy v technologii CUDA. Prvni
algoritmus je zalozen na déleni prostorovym medidnem a Mortonovych kédech. Druhy al-
goritmus vyuzivda SAH heuristiku k minimalizaci ceny vysledné hierarchie. Oba algoritmy
jsem testoval v zobrazovacim systému, ktery je zalozeny na algoritmu zpétného sledovani
paprsku.

ix

Contents

1 Introduction
1.1 Thesis Structure

2 Theoretical Background

2.1 Ray Shooting and Visibility oo
2.2 TImage Synthesis.
221 Ray Casting e
2.22 RayTracing o e
2.2.3 Path Tracing and Rendering Equation
2.3 Acceleration Data Structures
2.3.1 Object Partitioning Structures
2.3.2 Space Partitioning Structures L.
2.4 Parallel Computing
2.4.1 Reduction e e
2.4.2 Prefix Scan
2.4.3 Radix Sort

3 Compute Unified Device Architecture

3.1 Programming Model L oo
3.2 Memory Model
3.3 Execution Model

4 Construction of Bounding Volume Hierarchies

4.1 Cost Model e
4.2 Top-Down Construction
4.2.1 Surface Area Heuristic
4.2.2 Spatial and Object Median
4.3 Bottom-Up Construction
4.4 Incremental Construction

5 Bounding Volume Hierarchies on the GPU

5.1 Morton Curve and Spatial Median Splits
5.2 Linear Bounding Volume Hierarchies
5.2.1 Spatial Median Splits
5.2.2 SAH Splits e
5.3 Hierarchical Linear BVH

xi

—

© 00 =1 O UL UL W W

— = =
N OO

15
15
16
18

19
19
20
20
21
22
22

xii
5.4 Hierarchical Linear BVH with Work Queues
5.4.1 Spatial Median Splits
5.4.2 SAH Splits
5.5 Compact Prefix BVH.
5.6 BVH with Task Pool
5.6.1 Spatial Median Splits
5.6.2 SAH Splits
6 Design and Implementation
6.1 Construction of Bounding Volume Hierarchies
6.1.1 Spatial Median Splits
6.1.2 SAH Splits
6.1.3 Radix Sort
6.2 Rendering System oL
6.2.1 Used Technologies
6.2.2 CUDA Management
6.2.3 Scene Management oL
6.2.4 BVH Management
6.2.5 Rendering Pipeline oo
6.2.6 User Interface

7 Results and Discussion

7.1 Static Scenes
7.1.1 Spatial Median Split with 30-bit Morton Codes
7.1.2 Spatial Median Split with 60-bit Morton Codes

7.1.3 SAH Splits with 30-bit Morton Codes and 15-bit Clusters

7.2 Dynamic Scenes.o
7.3 Discussion e

8 Conclusion

81 Future Work

Bibliography
A List of Abbreviations
B Installation Guide

C User Manual

C.1 Configuration L
C.2 Controls e

D DVD Content

CONTENTS

45

...... 45
...... 46
...... 46
...... 46
...... 47
...... 47

59

...... 59

61

65

67

69

...... 69
...... 70

71

Chapter 1

Introduction

Rendering algorithms based on ray shooting are an important part of the image synthesis.
The basic idea is to shoot a ray through each pixel of the virtual camera to the virtual
scene. The closest intersections between rays and the scene are computed. Pixels are shaded
according to material properties of intersected primitives, light sources and a given lighting
model. The major obstacle of these algorithms is the time complexity. Thousands of rays
are tested against thousands of scene primitives. The time complexity can be reduced using
various acceleration data structures. In real-time interactive applications the scene geometry
changes in each frame and the acceleration structure is no longer valid. The most natural
update of the data structure is a reconstruction from scratch. Therefore, the goal is to
minimize the construction time and maximize the efficiency of the data structure. The
bounding volume hierarchy fulfills both criteria.

CUDA is a technology providing general purpose processing on graphics cards. Mapping
construction algorithms of hierarchical data structures to massively parallel architecture of
modern graphics cards is not trivial due to the parent-children dependencies. Subtle parallel
algorithm design and careful implementation is a key to the efficiency. This thesis is about
a fast parallel construction of bounding volume hierarchies on graphics cards.

1.1 Thesis Structure

The first part of this thesis is rather theoretical. We will provide a theoretical background
to ray shooting and acceleration data structures. We will summarize well-known parallel
algorithms. We will introduce the CUDA technology with a focus on terminology. We will
describe general principles of construction of bounding volume hierarchies. We will present a
survey on parallel construction algorithms of bounding volume hierarchies on graphics cards.
The second part of this thesis is purely practical. We will describe the design of the rendering
system and the implementation of the construction algorithms. We will present and discuss
our results.

CHAPTER 1. INTRODUCTION

Chapter 2

Theoretical Background

In this chapter we will introduce the problem and summarize the related work. In the first
section we will describe the visibility problem and the ray shooting algorithm. In the second
section we will present a survey on the image synthesis algorithms based on ray shooting. In
the third section we will summarize data structures used to accelerate ray shooting algorithm.
In the last section we will describe some well-known parallel algorithms.

2.1 Ray Shooting and Visibility

A visibility problem is a fundamental issue of computer graphics. A visibility can be defined
in terms of mathematical relations. The visibility for two points is a binary relation V on E¢,
where E? denotes the d dimensional Euclidean space. Two points x and y in d dimensional
Euclidean space are mutually visible if and only if the line segment Xy with endpoints x and
y does not intersect any geometrical primitive [13]. The relation is trivially reflexive and
symmetric. Using this definition we simply define a visibility function v.

lif (x,y) eV
y) = 2.1
v(xy) {0 otherwise 21)

The ray shooting problem is similar to the visibility problem. For a given ray we want
find the closest geometric primitive intersecting the ray. The ray r = (o,d) is a semi-infinite
line specified by its origin o € E¢ and its direction d € E such that ||d|| = 1. The parametric
form expresses the ray r as a function of scalar value ¢ [24].

r(t) =o+td, 0<t< oo (2.2)

Using the parametric form we can simply derive ray-primitive intersection algorithms, e.g.
ray-sphere, ray-triangle, etc. The geometric primitive is a compact subspace in E¢ with d —1
dimensional continuous boundary, e.g. polygons, implicit surfaces, etc. Using the previous
definitions we define the ray shooting problem. Formally, for a given ray r = (0,d) and the
set of geometric primitives P we want find the primitive p € P such that p Nr(t) # () and
t is the minimum. A primitive intersected the ray may not exist. A ray shooting algorithm
is an algorithm providing a solution to the ray shooting problem. The visibility problem is

4 CHAPTER 2. THEORETICAL BACKGROUND

trivially reducible to the ray shooting problem, see figure 2.1. A naive ray shooting algorithm
sequentially tests all geometric primitives against a given ray. The time complexity of the
naive algorithm is O(n), where n is the number of primitives. For thousands of rays and
thousands of geometric primitives the naive algorithm is inapplicable. We can reduce the
time complexity using acceleration data structures. The acceleration data structures are
discussed further.

- &
VA

Figure 2.1: A scheme illustrating the visibility problem and the ray shooting algorithm.
Points x and y are not mutually visible. Points x and z are mutually visible. The solution
of the ray shooting problem for the ray r is the blue rectangle.

2.2 Image Synthesis

An image synthesis is a process of creating images. A photorealistic image synthesis tries to
create images of a scene that are indistinguishable from the photograph of the same scene. To
achieve this goal it is necessary to simulate the physics of light and its interaction with matter
[24]. The geometric optics omits the wavelength of light and describes light propagation in
terms of rays. The geometric optics assumes that the light travels instantaneously through
the medium in straight lines and the light is not influenced by external factors, e.g. gravity
or magnetic field [6]. The geometric optics model is sufficient for the image synthesis.

There is a class of image synthesis algorithms based on the ray shooting algorithm some-
times inaccurately termed as ray tracing. The fundamental idea is to shoot the rays through
a virtual camera to the scene and trace them back to the light sources. Using the ray shoot-
ing algorithm we find the point of the interaction between the light ray and the surface. In
the context of ray shooting the virtual scene is described as a set of geometric primitives.
In this section we will present a brief survey on these image synthesis algorithms with the
focus on the ray shooting algorithm.

2.2.1 Ray Casting

The first ray shooting based rendering algorithm was introduced by Appel [2] in 1968. The
idea is to shoot a ray from the camera center through each pixel of the image plane and to find
the closest primitive intersecting the ray. An intensity value of the pixel is then computed
according to the material properties, light sources, and a given lighting model. Shadows can

2.2. IMAGE SYNTHESIS)

be computed by shooting rays from the point of intersection to the light sources. If there is
any primitive intersecting the ray then the point is occluded. Today this approach is known
as ray casting.

2.2.2 Ray Tracing

This approach was extended by Whitted [29] in 1979. Primary rays are shot from the camera
center to the scene and the closest intersections are computed. Shadow rays are shot to the
light sources and the occlusion is computed. Secondary rays, reflected or refracted rays, are
shot from the point of intersection. Each secondary ray is recursively traced. This process
is depicted in figure 2.2. Today this approach is known as Whitted-style ray tracing. The
disadvantage is that this approach is restricted to the perfect reflection and the perfect
refraction. In 1984 Cook et al. [5] extended ray tracing with some realistic effects including
depth of field, motion blur, glossy reflections, etc. This approach is called distributed ray
tracing and it is based on modeling probability distributions of phenomena and stochastic
sampling [27].

camera .~ light source
1

\

L

.
A

A S
s shadow ray

primary ray

-
-
-
-
-
-
-
-
-
-

-

secondary ray

Figure 2.2: A scheme illustrating the ray tracing algorithm in 2D.

2.2.3 Path Tracing and Rendering Equation

Kajiya [15] introduced the rendering equation and a path tracing algorithm in 1986. The
rendering equation expresses the scattering of light in the scene, which is the fundamental
phenomenon in the photorealistic image synthesis.

L(x,w,) = Le(x,w,) + / fr(x, wi, wo)L(x,w;) cos Ordw; (2.3)

w;EN
The angle between the normal vector n of the point x and the direction vector w; is
denoted by 6;. The set of all unit direction vectors w; such that w; - n > 0 is denoted by

Q. The bidirectional reflectance distribution function, denoted by f,., expresses how light is
reflected on a surface. The total spectral radiance L(x,w,) leaving the point x in direction

6 CHAPTER 2. THEORETICAL BACKGROUND

w, is sum of the emitted and reflected spectral radiance. The emitted spectral radiance is
denoted by Le(x,w,). The reflected spectral radiance is the integral over all vectors w;.
The integrand is the spectral radiance reflected in the direction w; attenuated by the term
cos 0; and weighted by the value of the function f,. The situation described by the rendering
equation is depicted in figure 2.3.

Figure 2.3: A scheme illustrating the rendering equation.

In a general case the path tracing algorithm is based on the rendering equation. It is
impossible to solve the rendering equation analytically. The rendering equation must be
solved numerically using Monte Carlo integration. The difficulty of the rendering equation is
the recurrence relation within the integral. The idea is to generate paths from the camera to
the light sources. A path is a sequence of surface points and it is generated by shooting a ray
through the camera to the scene. At the nearest point of intersection a reflected ray is shot
in a randomly sampled direction and the ray is traced recursively. Each path accumulates
the partial spectral radiance according the rendering equation. The final spectral radiance
of the pixel is computed by the averaging the partial results of the paths. One of the paths
must hit a light source, otherwise the pixel is black. The presence of a noise depends on the
number of samples per pixel.

2.3 Acceleration Data Structures

A naive ray tracing algorithm has the time complexity O(mn) in the worst case, where m
is the number of rays and n is the number of primitives. Whitted noted that up to 95% of
the execution time is spent on ray-primitive intersection computations [29]. Therefore, it is
desirable to decrease the amount of ray-primitive intersection tests.

Acceleration data structures exploit spatial coherency of objects and split the scene into
small local coherent parts. During intersection computation are tested only parts spatial
coherent with the ray, others are pruned. The scene can be split in a space or object domain.
Thus, acceleration structures consist of two major classes: object and space partitioning
structures.

2.3. ACCELERATION DATA STRUCTURES 7

2.3.1 Object Partitioning Structures

Object partitioning structures split the scene objects into disjoint subsets. Thus, no object
has more than one entry in the structure and a memory footprint of the data structure is
bounded. This approach is typically based on bounding volumes, whose associated space
subsets may overlap.

Efficiency

convex hull

>

Tightness

Figure 2.4: Bounding volumes, courtesy of Ericson [7].

Bounding Volumes: The idea is to enclose complex scene objects in a simpler bounding
volume. Bounding volume should be efficient and tight [13, 17]. Efficiency means that the
intersection test between the bounding volume and a ray is cheap. Tightness is a measure
to hit the bounded object by a ray when the bounding volume is hit by the same ray. These
two criteria are opposite and must be balanced. The idea of bounding volumes is not only
restricted to the ray tracing algorithm. The concept of bounding volumes is used in collision
detection or occlusion culling algorithms. Examples of bounding volumes are depicted in
figure 2.4.

Bounding Volume Hierarchies: A bounding volume hierarchy is a natural extension of
the bounding volumes. The bounding volume hierarchy was originally introduced by Rubin
and Whitted [25] in 1980. In general the bounding volume hierarchy is a rooted tree of an
arbitrary branching factor. Usually the bounding volume hierarchy has the branching factor
two. Leaf nodes contain geometric primitives. Interior nodes contain references to descen-
dants and bounding volume enclosing all descendants. A root node contains a bounding
volume enclosing the whole scene.

A ray query is evaluated by traversing the tree from the root node to the leaf nodes.
Branches whose bounding volumes are not hit are pruned. Primitives in leaf nodes are
tested sequentially. An example of bounding volume hierarchy is depicted in figure 2.5.

8 CHAPTER 2. THEORETICAL BACKGROUND

2 @a®
£ %

Figure 2.5: An example of the bounding volume hierarchy in 2D.

2.3.2 Space Partitioning Structures

Space partitioning structures subdivide the scene space box into disjoint subsets. Scene
objects are split together with the scene space. Thus, a geometric primitive may have more
than one entry in the data structure and the memory footprint of the data structure is
unbounded.

Uniform Grids: The simplest space partitioning structure is an uniform grid. The idea
is to subdivide the scene by axis aligned splitting planes with the uniform spacing [13]. The
scene space is split into equally sized space elements. Efficiency of the uniform grid is heavily
dependent on the scene data distribution. In dense scenes all space elements are uniformly
occupied and the efficiency is good. On the other hand, in sparse scenes almost all space
elements are empty and few elements contain many geometric primitives and the efficiency
is poor. A ray traversal algorithm for the uniform grid is known as 3D-DDA [8], which is
similar to well-known DDA algorithm. An example of the uniform grid is depicted in figure
2.6.

>

Figure 2.6: An example of the uniform grid in 2D, yellow objects are tested.

2.4. PARALLEL COMPUTING 9

kD-Trees: A kD-tree was designed by Bentley [3] in 1975. The kD-tree is a rooted binary
tree, which recursively subdivides the scene space by axis aligned splitting planes. Leaf nodes
contain geometric primitives. Interior nodes contain the position of the splitting plane, the
axis of the plane and references to descendants. The kD-tree is a special case of a BSP tree,
which subdivides the space by planes in general positions.

A ray traversal algorithm for the kD-tree proceeds in similar manner as the ray traversal
algorithm for the bounding volume hierarchies. The kD-tree is traversed from the root node
to leaf nodes, but pruning is done more efficient. The ray traversal algorithm distinguishes
up to thirteen different cases based on the node splitting plane position, the node bounds,
the origin and the direction of the ray. Detailed analysis of the kD-tree can be found in the
Havran’s Ph.D. thesis [13]. An example of the kD-tree is depicted in figure 2.7.

o2 m
& 7Sk
o |%

Figure 2.7: An example of the kD-tree in 2D.

Octrees: An octree is well-known data structure used for modeling 3D solid objects. Glass-
ner [10] introduced the octree in the context of ray tracing. The octree is a rooted tree with
the branching factor eight. Thus, all interior nodes have exactly eight children. Leaf nodes
contain geometric primitives. The octree recursively subdivides the scene space by three
orthogonal planes which are placed in the middle of a subdivided space element.

A ray traversal algorithm for the octree is similar to the algorithm for the kD-tree, but
it is more complicated. At most four of eight children are visited if the parent node is hit
[13]. Tt is due to the linear nature of the ray and the orthogonality of the splitting planes.
An example of the octree is depicted in figure 2.8.

2.4 Parallel Computing

In the first part of this section we will describe two the most common parallel algorithms:
parallel reduction and parallel prefix scan. In the second part of this section we will explain
the parallel radix sort algorithm.

10 CHAPTER 2. THEORETICAL BACKGROUND

et

O

Figure 2.8: An example of the octree.

2.4.1 Reduction

The reduce operation takes a binary associative operator @ and the ordered sequence

ap,atly...,0n—-1 (2.4)

of n elements and returns the value

agDar D---Dap—1- (2.5)

The sequential algorithm of the reduction is straightforward. We scan the sequence
element by element and simultaneously update the partial result of processed elements. The
time complexity of the sequential algorithm is O(n). The parallel algorithm is based on the
divide and conquer paradigm. The sequence is recursively divided into halves until a single
element is left. In interior nodes of a recursion tree partial results are merged using the
@ operator. The pseudocode of the algorithm is shown in algorithm 1. The depth of the

n

recursion tree is [logy n|, and hence the time complexity for & processor is O(logn). The

time complexity for p processors such that p < § is O({%—‘ +log p). Each processor requires

{%1 time steps and merging partial results of each processors takes another log, p steps.

Algorithm 1 Parallel Reduction, courtesy of Blelloch [4].
1: for d <~ 0 to logyn — 1 do

2: for i «+ 0 to n — 1 by 2%*! in parallel do
3: Gjqodt1_1 <= Qipod_1 D Gjqodt1_y

4: end for

5: end for

2.4.2 Prefix Scan

There are two types of prefix scans: inclusive and exclusive. Both prefix scans take a binary
associative operator & and the following ordered sequence of n elements.

2.4. PARALLEL COMPUTING 11

apg, A1y ...,0n—1 (26)

Inclusive prefix scan: The inclusive prefix scan returns the following ordered sequence.

ap, (ap ® ay),...,(ap@ar ®--- B ap—1) (2.7)

Exclusive prefix scan: The exclusive prefix scan requires an identity element e such that
(a; ®e) = (e @ a;) = a; for arbitrary a;. The exclusive prefix scan returns the following
ordered sequence.

e, ap, (ap ®ai),...,(apDar & - D an_2) (2.8)

The exclusive prefix scan can be constructed from the inclusive prefix scan by removing
the last element and inserting the identity element at the beginning. The inclusive prefix
scan can be constructed from the exclusive prefix scan by removing the identity element
and inserting the sum of the last element of the input sequence and the last element of the
exclusive prefix scan at the end. The sequential algorithm is also straightforward. We scan
the input sequence element by element and simultaneously write the partial results of the
output sequence. The time complexity of the sequential algorithm is O(n). There are two
parallel prefix scan algorithms.

Algorithm 2 Hillis-Steele algorithm, courtesy of Nvidia [21].
1: for d + 0 to logy(n) — 1 do

2 for i < 0 to n — 1 in parallel do
3 if i > 29 then

4: Q; < Q;_od D a;

5: end if

6 end for

7. end for

Hillis-Steele Algorithm: This algorithm was designed by Hillis and Steele [14] in 1986.
This algorithm computes inclusive prefix scan. The pseudocode of the algorithm is shown
in algorithm 2. Steps of the algorithms are depicted in figure 2.9. This algorithm requires
O(nlogn) computational steps. The time complexity for § processors is O(logn). The time
complexity for p processors such that p < 4 is O({%W +logp). This algorithm is suitable for

small inputs.

Blelloch’s Algorithm: This algorithm was designed by Blelloch [4] in 1990. This algo-
rithm computes exclusive prefix scan. The algorithm consists of two passes. In the first
pass the parallel reduction is computed. The first pass is sometimes called up-sweep and

12 CHAPTER 2. THEORETICAL BACKGROUND
ag a1 as as N as ag ar
0 \ 1 \ 2 \ 3 \ 4 j \ 5 ‘ \ 6 ‘ \ 7 ‘
D a; D a; D a; D a; D a; D a; D a; D a;
=0 i i =2 =3 i=4 =5 i=6
0 - \ 7
D a; ; D a;
i=0 = i=4
0 7
@ a; a; @ a;
=0 i=0

Figure 2.9: Hillis-Steele algorithm for 8 elements.

it is depicted in figure 2.10. The second pass is called down-sweep. The pseudocode of the
second pass is shown in algorithm 3.

Steps of the algorithm are depicted in figure 2.11. A tree structure can be resembled in

the figure. Each interior node of the tree contains sum of all leaves preceding the node in
the preorder traversal. The root value is set to e, because there are no leaves preceding the
root. Each left child node has the same number of preceding leaves as its parent node, hence
each left child node has the same value as its parent node. A value of each right child node
is the sum of the parent value and the left sibling value.

The advantage is that this algorithm requires only O(n) computational steps. The time

complexity is the same as the time complexity of Hillis-Steele algorithm. The algorithm is

suitable for large inputs.

Algorithm 3 Blelloch’s algorithm, down-sweep, courtesy of Blelloch [4].

1: ap—1 <0
2: for d < logy(n) — 1 downto 0 do

3: for i < 0 to n — 1 by 2¢*! in parallel do
4 t 4 a; 04

5 Ajqgd_j = Gjjodti_j

6: Qjyod+1_1 < 1D Gy odr1_y

7 end for

8: end for

2.4.3 Radix Sort

A radix sort is well-known sorting algorithm. Keys are represented as a sequences of digits.
The idea is to sort keys successively according to all digits from the least significant to
the most significant ones. Using a stable sort algorithm we get a lexicographic ordering of

2.4. PARALLEL COMPUTING 13

1 3 5 7
ag D a; ap D a; ay D a; ag D a;
i=0 i=0 i=4 i=0
1 3 5 7
ao P a; as P a; [n D a; ag D a;
i=0 i=0 i=4 i=4
1 3 5 7
ao P a; as P a; [n D a; ag D a;
i=0 i=2 i=4 i=6
ag ay az as ay as ag ar

Figure 2.10: Blelloch’s algorithm, up-sweep phase for 8 elements.

the keys. In each pass of the algorithm a d-bit digit of k-bit keys is processed. Keys are
distributed into 2¢ buckets according to the current digit. The total number of passes is (E]

d
[20]. The advantage is the linear time complexity O(n).

The distribution of keys can be easy parallelized via exclusive prefix scan. The algorithm
requires 2¢ flag vectors of length n. The current digits of keys are examined. For i-th key
the i-th flag of the particular vector is set to 1. Performing exclusive prefix scan on the
concatenated vectors we obtain output indices for each keys. The parallel time complexity
for n processors is O(logn). The time complexity for p < n processor is O({%-‘ +logp). An
example of the algorithm is depicted in figure 2.12.

14 CHAPTER 2. THEORETICAL BACKGROUND

ag @ a;

=0

ag @ a;

=0

ag @ a;

=0

Figure 2.11: Blelloch’s algorithm, down-sweep phase for 8 elements.

01, 11, 10, 00, 10, 01, 10, 00|

0,0,1,1,1,0,1, 1] 11,1,0,0,0, 1,0, 0]

]O, 0,0,1,2,3,3,4,5,6,7,7,7,7, 8, 8‘

X
/-

0,0,0,1,2 3,3, 4] 5,6,7,7,7, 7,8, 8

/
\

[10, 00, 10, 10, 00, 01, 11, 01]

Figure 2.12: An example of radix sort algorithm such that d = 1. The current bold digits
are examined. According to the digit value the corresponding flag of the particular vector
is set to 1. Performing exclusive prefix scan on the concatenated vectors we obtain output
indices.

Chapter 3

Compute Unified Device
Architecture

The graphics card is a standard component of modern computers. Graphics processing units
are based on massively parallel architecture. Thousands of threads can be executed simul-
taneously on the GPU, e.g. each pixel is processed in parallel. Therefore, the GPU is a
potential source of tremendous computational power [22]. Compute Unified Device Archi-
tecture is a technology providing a general purpose processing on the GPU introduced by
Nvidia in 2007. Thus, complex general tasks, e.g physics simulation or numerical comput-
ing, can be significantly accelerated. The disadvantage is that the CUDA technology is only
implemented by GPUs manufactured by Nvidia. The computational power of GPUs is ex-
pressed as a compute capability value. The higher compute capability generally means more
computational resources.

3.1 Programming Model

The communication between the CPU and the GPU is based on well-known client-server
model. In the context of CUDA the CPU is termed as host and the GPU is termed as
device. A kernel function is a function executed by threads in parallel on the GPU. The
kernel function must be declared with the __global__ attribute. Threads are organized in
a two-level hierarchy. Threads are organized into blocks and blocks are organized into a grid
[18]. A Block is a 1D to 3D array of threads and a grid is a 1D to 3D array of blocks. On
GPUs with low compute capability the third dimension is limited. Each thread has a unique
index within the block and each block has a unique index within the grid. According to
these indices each thread identifies the data to be processed. Before launching the kernel the
programmer specifies the extent of the blocks and the grid. The thread hierarchy is depicted
in figure 3.1. Threads within the block can be efficiently synchronized using the function
__syncthreads(). All threads in the block meet up at the point of call this function. The
global synchronization is possible using atomic operations.

CUDA supports many programming languages. We will focus on C and C++ program-
ming languages. CUDA C is a minimal extension of the C and C++ programming languages
[22]. Almost all features of the C++ programming language are supported in kernels. The

15

16 CHAPTER 3. COMPUTE UNIFIED DEVICE ARCHITECTURE

kernels are launched and managed from the CPU via either the runtime or driver API. The
runtime API is a high-level API that compiles and links kernel code into executables. The
management of a CUDA context and CUDA modules is implicitly done by the runtime API.
The driver API is a low-level API. A CUDA context and CUDA modules must be managed
explicitly by the programmer. The driver API is harder to program, but it provides more

control.
grid
block (0,0) block (1,0)
thread thread N thread thread
(0,0) (1,0) (0,0) (1,0)
thread thread o thread thread
(0,1) (1,1) (0,1) (1,1)
block (0,1) block (1,1)
thread thread N thread thread
(0,0) (1,0) (0,0) (1,0)
thread thread o thread thread
(0,1) (1,1) (0,1) (1,1)

Figure 3.1: The CUDA thread hierarchy.

3.2 Memory Model

The CUDA memory model consists of six types of memories: registers, local memory, shared
memory, constant memory, global memory, and texture memory. Different memory types
have different access latency, different scope, and are suitable for different usage. The choice
of the appropriate memory type is crucial for the efficiency. The memory model is depicted
in figure 3.2.

Registers: The registers are the fastest on-chip memory. The registers are allocated to
individual threads and each thread can access its own registers [18]. Unfortunately the
number of registers per block is limited. The size of each register is 32 bits. Local variables
in kernels are usually stored in registers.

Local Memory: The local memory is a part of the global memory and its access latency
is the same as the access latency of global memory. The local memory is cached only on

3.2. MEMORY MODEL 17

grid
block (0,0) block (1,0)
shared memory shared memory
registers registers registers registers
¢ ¢ ¢ ¢
thread thread thread thread
(0,0) (1,0) (0,0) (1,0)
¥ ¥ ¥ ¥
local local local local
memory memory memory memory
global
memory
constant
memory
texture
memory

Figure 3.2: The CUDA memory model.

GPUs with the compute capability 2.0 or higher. All local variables which cannot fit into
registers are stored in the local memory [22].

Shared memory: The shared memory is a very fast on-chip memory. Efficiency of shared
memory access is comparable with the efficiency of registers. The scope of shared memory
is the block of threads. Variables allocated in the shared memory must be declared with
__shared__ attribute within the kernel function. The block synchronization and the shared
memory provides an efficient communication between threads in the block [18, 22].

Global Memory: The global memory is inefficient off-chip memory. The global memory
access takes 400 to 600 cycles. The latency can be reduced using coalesced access pattern.
The global memory is cached only on GPUs with the compute capability 2.0 or higher. The
global memory is accessible to all threads. Variables allocated in the global memory must
be declared with the __device__ attribute outside of the kernel function. In global memory
are usually stored large input or output data.

Constant Memory: The constant memory is a part of the global memory. The constant
memory is read-only and it is cached. Variables allocated in the constant memory must
be declared with the __constant__ attribute outside the kernel function. The size of data
stored in the constant memory must be known at the compile time [18]. The constant

18 CHAPTER 3. COMPUTE UNIFIED DEVICE ARCHITECTURE

memory is suitable for read-only random accesses. The disadvantage is that the size of the
memory is limited to 64 kB.

Texture Memory: The texture memory is a part of the global memory. The texture
memory is read-only and it is cached. The texture memory is accessible via special hardware
texture units. The advantage is that the size of the texture memory is not limited as the
size of the constant memory. The texture memory is suitable for spatially coherent data.
The size of a texture element is 4, 8, or 16 bytes. The texture space is 1D to 3D. The values
between samples can be efficiently interpolated using the special texture units.

3.3 Execution Model

GPUs consist of device memory, caches and streaming multiprocessors. The streaming mul-
tiprocessors consist of shared memory, registers and streaming processors, also known as
CUDA cores. The simplified GPU architecture is depicted in figure 3.3. An exact structure
of the GPU depends on the compute capability. The CUDA execution model defines how
the blocks of threads are mapped to streaming multiprocessors. Threads are scheduled in
warps, i.e. group of 32 concurrent threads, and executed on streaming multiprocessors. This
architecture is termed as SIMT which means single instruction multiple threads [22].

GPU
streaming multiprocessor streaming multiprocessor
shared memory shared memory
streaming streaming streaming streaming
processor processor processor processor
streaming streaming streaming streaming
processor processor processor processor
.
streaming streaming streaming streaming
processor processor processor processor
streaming streaming streaming streaming
processor processor processor processor
registers registers
constant cache
texture cache
device memory

Figure 3.3: A simplified GPU architecture.

Chapter 4

Construction of Bounding Volume
Hierarchies

We already know that the bounding volume hierarchy is a rooted tree of an arbitrary branch-
ing factor. Interior nodes contain bounding volumes enclosing all descendants and leaf nodes
contain geometric primitives. Further we will focus on bounding volume hierarchies with
branching factor two and with axis aligned bounding boxes.

The advantage of the bounding volume hierarchies, unlike space partitioning structures,
is that can be constructed in three different manners: top-down, bottom-up and incremental.

4.1 Cost Model

Before we will describe various construction methods we will define a simple cost model. The

cost of a bounding volume hierarchy can be expressed by the following recurrence equation.

kr + P(NL|N)c(N) + P(Ngr|N)c(Ng) if N is interior node

(V) = : (4.1)
kr|N| otherwise

Where ¢(N) is the cost of a (sub)tree with the root node N, kr is the average cost of a
traversal step, kj is the average cost of a ray-primitive intersection test, Ny, is the left child
of the node N, Ng is the right child of the node N, P(Np|N) is the probability of traversing
the node N, P(Ng|N) is the probability of traversing the node Ng, and |N| is the number
of primitives in the node .

We assume that the distribution of the rays is uniform and that are not blocked. Under
these assumptions the conditional probabilities in equation 4.1 can be expressed as geometric
probabilities. The geometric probability in our case is the ratio between the surface area of
the child node and the parent node [27].

SA(BV(NL))

P(Ng|N) = m (4.3)

19

20 CHAPTER 4. CONSTRUCTION OF BOUNDING VOLUME HIERARCHIES

SA(Y) denotes the surface area of the bounding volume Y and BV (X) denotes the
bounding volume of the node X. After substituting equations 4.2 and 4.3 into equation 4.1
we get equation 4.4.

kr + %c(NL) + %c(NR) if N is interior node
(N) = , (4.4)
kr|N| otherwise
Unrolling the recurrence relation in equation 4.4 we get equation 4.5.
SA(BV(N;)) SA(BV(N))
N)=k — =+ k —————|N, 4.
oAN) =br %: saBv(v) M2 sapvn) ™ (45)
i l

N; denotes an interior node of a (sub)tree with the root node N, N; denotes a leaf node
of a (sub)tree with the root node N and |N;| denotes the number of primitives in the leaf
node N;.

4.2 Top-Down Construction

The most common way to construct a bounding volume hierarchy is a recursive division of the
scene primitives. At the beginning we have a root node which contains the scene bounding
box and all primitives. In each step of the construction one leaf node is processed. The leaf
node is split into two new leaves which are further processed. The primitives of the split
node are reordered into its children and bounding volumes of the children are computed. The
division continues until one of the termination criteria is reached. The common termination
criteria are maximum primitives in a leaf, maximum tree depth or maximum memory used.
The advantage is that this approach is fast and can be parallelized.

The number of different trees is exponentially proportional to the number of primitives
[11]. For each node there are O(2") ways how to reorder primitives into its children, where
n is the number of primitives in the node. Some hierarchies are better than others. The
question is how to split the node to build a good hierarchy.

There are three basic approaches how to split the node: object median, spatial median
and surface area heuristic cost minimization. All three approaches try to separate the prim-
itives by an axis aligned plane. The separation is not always possible, hence the primitives
are approximated to points, e.g. a centroid of a primitive. The set of points can be always
separated by a plane. All three splitting axes are used or one axis is chosen according to some
heuristic. The greatest extent of the bounding box or round-robin are the most common
ones.

4.2.1 Surface Area Heuristic

A surface area heuristic was originally proposed by Goldsmith and Salmon [11]. The number
of possible splits by an axis aligned plane is only O(n), where n is the number of primitives
in the node. The idea is to express a cost of each splitting plane and choose a plane with
the lowest cost. The following cost function is derived from equation 4.4.

4.2. TOP-DOWN CONSTRUCTION 21

SA(BV(NL))

SABV (V) Vel

(4.6)

(N, Npu Ni) = b + ki (‘Ww)

SA(BV(N))

Where |Np| denotes the number of primitives in the node Nz and |Ng| denotes the
number of primitives in the node Ng. The recurrence relation has been replaced simply
by the number of primitives in the child nodes. Surface area heuristic is a greedy local
approximation of the cost function in equation 4.1. The expression in equation 4.6 assumes
that the child nodes are leaves. Another termination criterion can be derived from equation
4.6. The splitting is terminated if the minimum cost of the split is greater than k;|N| [27].
There are two basic methods how to sample splitting planes.

Sweeping: This method is known as full SAH evaluation. All splitting planes are evaluated
and a plane with the lowest cost is chosen. This approach requires three sorted arrays of
primitive indices ordered according to the three coordinates. This method produces trees of
higher quality, but it is rather slow.

Binning: This method was introduces by Ingo Wald [28]. It is known as SAH approxima-
tion. This method is limited to hierarchies of axis aligned bounding boxes. The bounding box
of the current node is uniformly subdivided into k spatial regions. Each region is associated
with a bin. Primitives are projected to the bins according the following equation.

k(1 — €)(BBy™ —c;)
BB _ Bpmin
J J

bin(c, j) = (4.7)

Where bin(c, j) is the index of the bin, ¢ is a centroid of the projected primitive, j is
splitting dimension, BBJ’-’”'” is j-th component of the minimum bound vector and BB;»”‘” is
j-th component of maximum bound vector. The expression 1 — ¢ ensures that the primitive
lying on the maximum bound will be projected to the last bin. Each bin accumulates the
number of projected primitives and a bounding box of the projected primitives. Two prefix
scans of bins are performed and exactly k — 1 splitting planes are evaluated. Sometimes
all primitives may fall into the same bin, then the object median split must be done. The
advantage is scalability of the quality. If k£ is high then the construction is slow, but the
quality is better. If & is low then the construction is fast, but the quality is rather low.

4.2.2 Spatial and Object Median

Spatial median splits were introduced by Kay and Kajiya [17]. The bounding box is split
in the middle. The advantage is that this splitting method is very fast. The quality of the
hierarchy is dependent on the spatial coherency of the scene.

An object median method splits the primitives into halves. This method is fast, but
produces hierarchies of low quality. The advantage of this method is that it never fails until
the node contains only one primitive. This method is used if binning or spatial median fails.

22 CHAPTER 4. CONSTRUCTION OF BOUNDING VOLUME HIERARCHIES

4.3 Bottom-Up Construction

This approach is also known as agglomerative clustering. At the beginning all primitives
are considered as clusters. In every step of the construction the closest clusters are merged
together based on a given distance function. At the end of algorithm there is only one
cluster. The advantage is that this approach produces hierarchies of higher quality. The
disadvantage is worse time complexity. A naive algorithm has the time complexity O(n?) in
the worst case [12].

4.4 Incremental Construction

An incremental construction was first introduced by Jeffrey Goldsmith and John Salmon
[11]. Objects are piece by piece inserted into the leaves, which are consequently split into
new leaves. All bounding boxes from the new leaves to the root must be refitted. The
advantage of the incremental construction is that we don’t need to know a whole input at
the beginning of the construction. The disadvantage is that constructed hierarchies suffer
from lack of quality.

Chapter 5

Bounding Volume Hierarchies
on the GPU

Since GPGPU was introduced researchers have made a remarkable effort to map traditional
sequential algorithms to a massive parallel GPU architecture. Many topics are still open.
Efficient construction of bounding volume hierarchies is still a challenge. In this chapter we
will present a survey on the construction algorithms on the GPU.

It is natural to seek inspiration in parallel algorithms on the CPU. Ingo Wald [28] noted
that a tree construction can be parallelized in horizontal or vertical way. The vertical way
means a parallel processing of subtrees. The horizontal way means parallel processing of
splitting a single node. All further presented algorithms are based on vertical or horizontal
processing.

5.1 Morton Curve and Spatial Median Splits

The Morton curve is a space filling curve. The order along the curve is given by 3k-bit
Morton codes. The space filled by the curve is subdivided into a grid of 2¥ x 2¥ x 2¥ space
elements. Each 3k-bit Morton code corresponds to one space element in the grid. The
advantage is that the mapping between the Morton codes and space elements coordinates is
very simple. A 3k-bit Morton code can be computed by interleaving successive bits of the
corresponding space element coordinates. The following two equations define the relation
between space element coordinates and the Morton code.

X=[x,y,2] =[Tk.. . T1, Yk Y1, 2k - - - 21] (5.1)

m = ZpYpTk . . . 21Y121 (5.2)

A space element x corresponds to a 3k-bit Morton code m, where z;,y;, x; are i-th bits
of the coordinates. The Morton curve can be generalized to an arbitrary dimensions. An
example of the Morton Curve in 2D is depicted in figure 5.1.

Spatial median splits can be efficiently done using the Morton curve. Each geometric
primitive is represented by one point, e.g. a centroid of the primitive. The coordinates of

23

24 CHAPTER 5. BOUNDING VOLUME HIERARCHIES ON THE GPU

11 ;

1010 NJ1011 NJ1110 NJ1111

10| ~
1000 |1 1100|1101

0 >

0010 \JO011 0110 \JO111

00 —

0000 10001 10100 |0101
00 01 10 11

Figure 5.1: An example of the Morton curve and 4-bit Morton codes in 2D.

the points are quantized into k bit integers with the respect to the scene bounding box.
These coordinates are mapped to the 3k-bit Morton codes. Primitives are ordered along
the Morton curve. The hierarchy is constructed by examining the most significant bits of
the Morton codes and bucketing primitives to the appropriate children. Primitives with the
current bit 0 are placed to the left child, others are placed to the right child.

5.2 Linear Bounding Volume Hierarchies

In 2009 Lauterbach et al. [19] introduced two novel construction algorithms on GPU. The
first algorithm is based on the Morton curve and spatial median splits. The second algorithm
is based on the SAH cost minimization splits.

Morton codes: 00,01,10,11
split lists: a = (0,0)

b=(1,1), ¢=(1,0)
d=1(2,0)

(0,0), (1,1),(1,0),(2,0)

stable sort

(1,1),(0,0),(1,0),(2,0)

Figure 5.2: An example of the construction of split lists with four 2-bit Morton codes.

5.2. LINEAR BOUNDING VOLUME HIERARCHIES 25

5.2.1 Spatial Median Splits

Assume that we have a sorted sequence of the Morton codes corresponding to the primitives.
Bits of Morton code encode the path from the root to the leaf containing the primitive. The
most significant different bit of two consecutive Morton codes identifies the least common
ancestor, the farthest node from the root containing both primitives. The idea is based on
determining the least common ancestors and on the construction of split lists.

All consecutive Morton code pairs are examined in parallel. Each thread determines the
most significant different bit and constructs a split list. If the h-th bit is the most significant
different bit, then the split list of the i-th primitive contains pairs (i, h), (i,h—1)...(,0). A
global split list is constructed by concatenation of individual split lists. The global split list
is an ordered sequence of the first component of pairs. Using a stable sort algorithm on the
global split list we get an ordered sequence of the second component of pair in decreasing
order. The global list encodes all information about hierarchy topology. The hierarchy is
constructed level by level using the global list. The construction of split lists is depicted in
figure 5.2.

The disadvantage is that singletons, interior nodes with a single child, may occur. The
singletons have to be removed with an additional post-process. The disadvantage is also the
global list sorting. The number of global list items might be significantly larger than the
number of primitives.

5.2.2 SAH Splits

The algorithm works with two task queues. Each task corresponds to the node which will
be processed. At the beginning the input queue contains only a task corresponding to the
root node. Each task is processed by a block of 3¢ threads. The bounding box of the node is
uniformly subdivided by 3t axis align planes, ¢ planes for each axis. Each thread evaluates
the SAH cost of the corresponding splitting plane. A parallel reduction using minimum
operator is performed to find a plane with the lowest cost.

input queue

split kernel

output queue

compaction kernel

output queue

Figure 5.3: A scheme illustrating the queue system. The blue elements represent tasks. The
split kernel processed tasks from the input queue and new tasks inserts to the output queue.
The compaction kernel removes holes in the output queue.

26 CHAPTER 5. BOUNDING VOLUME HIERARCHIES ON THE GPU

Primitives have to be reordered into either the left or the right child node. An auxiliary
array of size 2t is allocated in the shared memory, where t is the number of threads in the
block. The first half corresponds to the left node and the second half corresponds to the
right node. Each primitive is processed by a single thread. A thread reads the corresponding
primitive and according to the position of the splitting plane decides whether it belongs to
the left node or to the right node. If it belongs to the left node then the corresponding flag
in the first half of the auxiliary array will be set to 1. If it belongs to the right node then
the corresponding flag in the second half of the auxiliary array will be set to 1. After all
flags are set a parallel exclusive prefix scan on the auxiliary array is performed. The output
index consists of some global offset and the corresponding value of the prefix scan.

At the end of the iteration new tasks are generated and placed to the output queue.
Indices of the tasks are 2i and 27 + 1, where 7 is the index of the parent task. In the output
queue holes may occur, which must be removed by an additional compaction pass, see figure
5.3. This process continues until the output queue is empty.

5.3 Hierarchical Linear BVH

In 2010 Pantaleoni and Luebke [23] improved the previous Morton code based construction
algorithm. The authors observed that the Morton code defines a hierarchical structure
similar to the octree. The first three bits of the code define the eight child voxels of the root
voxel. The next three bits define the structure within the child voxels, and so on.

The sorting is divided into two levels. The top level sorting is done according to the first
3m bits. If m is relatively small, e.g. 5 or 6, two consecutive primitives will likely fall into
the same voxel. Therefore, the Morton codes are compressed with the well-known run length
encoding algorithm. The efficiency of the compression depends on the coherency between
consecutive primitives. Efficiency of the compression is proportional to an acceleration of the
top level sorting. After the top level sorting is done the codes are decompressed. Primitives
are then sorted according to the remaining 3(k — m) bits.

The construction of the hierarchy is quite different from the previous case. In each
iteration a treelet of depth p is constructed according to the examined p consecutive bits.
The treelet can be encoded into an array of size 2P — 1. The index of the treelet root node is
0. The indices of the child nodes are 2i and 2i 4+ 1, where i is the index of the parent node.
An example of the treelet encoding is depicted in figure 5.4.

The algorithm requires three auxiliary arrays. The number of primitives is denoted by

e head_to_node: An array of size n mapping a head of each leaf interval to the corre-
sponding node index. If i is the head of an interval corresponding to the leaf with
index j, then holds head_to_node[i] = j. Otherwise holds head_to_nodeli] = —1.

e primitive_to_interval: An array of size n mapping a primitive index to the correspond-
ing interval index.

e interval_to_head: An array mapping an interval index to a head of the corresponding
interval.

5.4. HIERARCHICAL LINEAR BVH WITH WORK QUEUES 27

At the beginning there is a single leaf interval and all primitives belong to this interval.
The first entry of the array head_to_node is set to 0, other entries are set to —1. All entries
of the array primitive_to_interval are set to 0. The first entry of the array interval_to_head
is set to 0. In each iteration a binary vector of size n is created. If head_to_node[i] # —1,
then the i-th component of the binary vector is set to 1, other components are set to 0.
Interval indices are obtained performing a parallel inclusive prefix scan on the binary vector.
Treelets are generated from the auxiliary arrays. The number of nodes is equal to twice the
number of splits in each treelet. Thus, offsets for each treelet nodes are obtained performing
a parallel exclusive scan on the numbers of nodes. At the end of each iteration all treelets
are emitted and arrays head_to_node and interval to_head are updated.

The advantage is that there are no singletons. Thus, the memory layout is better. The
number of kernel launches is reduced due to the treelet processing. The input of sorting
operation is dramatically reduced. The global split list in the previous case is larger than n.
In this case the sorting operation is performed on a compressed array of size at most n.

[oft[2[s]4]
olo[1]1]1
o[1]ofoln
—
1]ofo]1]o
(2[4 -[-[s[-]

Figure 5.4: A scheme illustrating the treelet encoding such that p = 3. Indices of child nodes
are 2¢ and 2¢ 4 1, here 7 is the index of the parent node.

5.4 Hierarchical Linear BVH with Work Queues

In 2011 Garanzha et al. [9] proposed two novel and simpler algorithms based on efficient
task-queue system. The task-queue system is similar to the one proposed by Lauterbach et
al. [19]. There are some significant differences. A task corresponds to a single split node
and each task is processed by a single thread. In each iteration the tasks are fetched from
the input queue. Each task will produce 0 or 2 new tasks. Performing warp-wide parallel
prefix scan on these counts we obtain an offset for each task within the warp. Atomically
adding the sum of new tasks to the global counter we obtain the global offset in the output
queue. At the end of iteration the queues are swapped. This process continues until the
output queue is empty. This process is summarized in figure 5.5.

Both algorithms are based on Morton curve. The two level sorting is replaced by efficient
radix sort [20]. The first algorithm is simpler and the hierarchy is constructed by spatial
median splits. The second algorithm constructs several levels of the hierarchy by SAH splits
and the remaining levels by spatial median splits.

28 CHAPTER 5. BOUNDING VOLUME HIERARCHIES ON THE GPU

warp 0 warp 1
output tasks 21012} 0 2121012
warp prefix scan o221 4 4 01211414 6

output counter

Figure 5.5: A scheme illustrating the queue system. Warps performs exclusive prefix scan
on the number of output tasks. The first thread in the warp atomically adds the number of
the output tasks to the global counter.

5.4.1 Spatial Median Splits

Each thread examines the current Morton code bit of the first and the last primitive in the
corresponding node. The same bits are skipped. Using the binary search algorithm we find
the last zero bit in the interval. Using the index of the last zero bit we split the corresponding
to interval. The left part of the interval is assigned to the left child node. The right part
of the interval is assigned to the right child node. The number of output tasks is computed
performing parallel prefix scan. The created nodes are emitted and new tasks are put in the
output queue. An additional refitting post-process is required. The hierarchy is built level
by level. The post-process updates bounding boxes level by level from the leaves to the root.

5.4.2 SAH Splits

This algorithm is based on the surface area heuristic and the binning procedure. The first
m < k bits define coarse clusters. The primitives with the same m bits belong to the
same cluster. Further we treat clusters as primitives. Each cluster has three attributes: a
bounding box aggregating its primitives, an index of the corresponding task, and an index
of the bin. Each task has five attributes: a bounding box of the corresponding node, an
index the corresponding node, an index of the best splitting plane, an index of the first child
task, and the set of bins. The iteration consists of three steps. At the beginning all clusters
belong to the root task.

Binning: Parallel processing of clusters. A cluster is projected to the corresponding set of
bins using atomic operations, i.e. minimum, maximum, add. For each axis the bin index is
computed.

SAH Evaluation: Parallel processing of tasks. The result of binning is evaluated and the
splitting plane with the lowest cost is chosen. The number of output task is computed and
the global offset is determined.

5.5. COMPACT PREFIX BVH 29

Cluster Distribution: Parallel processing of clusters. In this step the clusters are dis-
tributed to new tasks. If the index of the splitting plane is less or equal to the bin index,
then the cluster is assigned to the left child node. Otherwise the cluster is assigned to the
right child node. The index of a task corresponding to the left child node is i and the index
of a task corresponding to the right child node is 7 + 1, where ¢ is the offset computed in the
previous step.

These two algorithms seem to be simple and efficient. We decide to implement these two
algorithms. The more details will be discussed in chapters 6 and 7.

5.5 Compact Prefix BVH

In 2012 Karras [16] introduced very efficient construction of binary trees including bounding
volume hierarchies. The construction is based on spatial median splits and Morton codes.
Assume that we have a sorted sequence of Morton codes corresponding the primitives. The
algorithm splits nodes according to the current bit of Morton codes. The part of the interval
containing zeros is assigned to the left child node. The part of the interval containing ones
is assigned to the right child node.

The algorithm uses a very special data layout. Leaf nodes and interior nodes are stored
in separate arrays. Leaf nodes are stored in array L. Interior nodes are stored in the array I.
The root node is the first element of the array I. Children indices are v and v + 1, where ~
is the index of the last zero bit in the interval. An important property of this layout is that
one of the endpoints of the interval associated with the particular internal node is encoded
in the index of the node. An example of the layout is depicted in figure 5.6.

00001 00010 00100 00101 10011 11000 11001 11110

Figure 5.6: An example of the compact prefix BVH layout.

The algorithm efficiently determines the second endpoint by examining the neighborhood
of the first endpoint. Searching for the second endpoint is based on the longest common
prefixes of Morton codes. We define a function ¢ such that (i, j) returns the length of the
longest common prefixes of the Morton codes in the interval [, j].

30 CHAPTER 5. BOUNDING VOLUME HIERARCHIES ON THE GPU

First the algorithm determines the direction d of searching by checking prefixes of the
neighboring elements. Assume that the index of the first endpoint is ¢ and the index of the
second endpoint is j. If §(i,i+1) > d(¢,7—1) then the first endpoint is the first element of the
interval and we will search for the second endpoint on the right side. If §(i,i+1) < 6(i,i—1)
then the first endpoint is the last element of the interval and we will search for the second
endpoint on the left side. Therefore, the direction d = sgn(d(é,i+1) > d(i,i—1)). The lower
bound for §(i,j) is given by 0pin = (i,i — d). Using the lower bound §,,;, and direction
d we simply find the second endpoint by the binary search algorithm. In the same manner
we find the split position 7. The lower bound is given by 6,04 = (7,7). Using the lower
bound 6,4 and the direction d we find the split position by the binary search algorithm.
The pseudocode of this process is shown in algorithm 4.

The disadvantage of this algorithm is that the Morton codes must be unique. The
author solved this problem using augmented Morton codes. An augmented Morton code is
an original Morton codes concatenated with its index. The advantage is that the algorithm
is not limited by the construction by levels and the parallelization of the construction is
maximized.

5.6 BVH with Task Pool

In 2013 Vinkler et al. [26] designed a general framework based on a task pool with persistent
warps. The idea is to launch a single kernel with as many warps as possible. Then all the
work takes place on the GPU. The task pool is the core component of the framework. A
task is a computational job associated with the given range of data. The task consists of
phases and phase consists of steps. A phase is a logical algorithmic block of a task and a
step is an algorithmic block of the phase. The task is associated with work chunks, which
are the smallest unit of work. The work chunk consists of 32 data items and each thread
in warp processes a single item. Warps fetch the work chunks of active tasks. Unlike queue
based algorithm the advantage is that the task pool provides communication between warps,
e.g. some tasks may be dependent on others. The communication is realized via atomic
operations. At the beginning initial tasks are put in the task pool. Some task may spawn
new tasks. Warps continue fetching the work chunks until there is no active tasks in the task
pool.

Authors mapped the construction of bounding volume hierarchies to this framework.
Both spatial median and SAH splits are possible. A task corresponds to a split node. At
the beginning the root task is put to the task pool.

5.6.1 Spatial Median Splits

The splitting plane is trivially determined. In the reordering step each warp processes an
interval of 32 primitives and computes the number of primitives to the left and to the right.
Atomically adding the number of primitives on the left side to a global left counter we obtain
a global offset for primitives belonging to the left side. Similarly atomically subtracting the
number of primitives on the right side from the global right counter we obtain a global
offset for primitives belonging to the right side. The global counters are initialized with first

5.6. BVH WITH TASK POOL

Algorithm 4 Compact prefix BVH construction algorithm, courtesy of Karras [16].

Input: An index i of the split node.
1:d <« sgn(d(i,i +1) —9(i,i — 1))

5min — (5(2,2 — d)

lmaz — 2

while (i, +i + lLnazd) > Omin do
lmaz — 2lmaz

end while

[+ 0

for k < 1 to logy ljnar do
t ¢ lope
if 5(i,7 +d(l+1)) > dpmin then

I+ 1+t

end if

. end for

s j—1+dl

: 5node < 5(%])

15+ 0

: for k < 1 to logy le, do

t [or]

if §(i,7 + d(s+1t)) > 0pode then
s+ s+t

end if

: end for

: 7y < i+ sd + min(d,0)

. if min(é, j) = v then

left < L[v]

. else

left < I[v]

. end if

. if max(i,j) = v then

right <— L[y + 1]

: else

right < Iy +1]

. end if

L W W W NN N DN NDNDNRNDNDLDN H o= e = e e = e
TR S SS P TIST LSS SD PTG E BN R

32 CHAPTER 5. BOUNDING VOLUME HIERARCHIES ON THE GPU

and the last index of the interval. At the end left and right bounding boxes are computed
performing parallel reduction on the left and the right intervals.

5.6.2 SAH Splits

In each axis 32 splitting planes are uniformly sampled. Each warp processes a distinct
interval of primitives associated with the node. Each thread processes a single primitive and
determines its position with respect to one of splitting planes. The number of primitives and
bounding boxes on both sides are atomically updated. The last finished warp chooses the
best splitting plane. The reordering step is done in the same way as in the previous case.

Chapter 6

Design and Implementation

In this chapter we will describe design and implementation details. In the first section we
will describe the implementation of the construction of bounding volume hierarchies. In the
second section we will describe our rendering system.

6.1 Construction of Bounding Volume Hierarchies

In this section we will describe details of implemented algorithms. We implemented both
algorithms according to Garanzha et al. [9]. We are using the ray tracer from Timo Aila
and Samuli Laine’s framework [1]. The ray tracer support three types of data layout: an
array of structures, a structure of arrays or a compact layout. The compact layout stores
only interior nodes of the hierarchy. An interval associated with the leaf node is directly
referenced from a parent interior node by the index of the first element. Intervals associated
with leaf nodes are separated by special values, known as terminators. Thus, the end of the
interval is detected via the terminator. The compact layout and structure of arrays layout
are inconvenient for the parallel construction. Thus, we use the array of structures layout.

The construction algorithms are implemented in the HLBVHBuilder class. The size of
each node is 64 bytes. Interior nodes contain bounding boxes of the child nodes and indices
to the child nodes. Indices to leaf nodes are encoded using bitwise negation. Leaf nodes
contain an interval of the triangle indices and bounding box of the triangles. A termination
criterion is a maximum triangles in a leaf.

6.1.1 Spatial Median Splits

The first algorithm is simpler and it is based on Morton codes and spatial median splits.
The parameters of this algorithm are maximum triangles in a leaf and the length of Morton
codes in bits. In the following paragraphs we will describe particular steps.

Scene Bounding Box: First we compute the bounding box of the scene. Each thread
processes several triangles of the input scene and accumulates the bounding box. We compute
an unrolled parallel reduction within warps and within blocks using __syncthreads function.
The first thread in the block atomically updates the global bounding box using atomicMin
and atomicMax functions

33

0O Uk WN =

34 CHAPTER 6. DESIGN AND IMPLEMENTATION

Morton Codes: FEach thread processes several triangles of the scene. For each triangle
a Morton code is computed according to equation 5.2 using the scene bounding box from
the previous step. We use unsigned long long data type for Morton codes. The length of
Morton codes up to 60 bits is supported. Each thread also writes an appropriate index of
the triangle to the index array.

Sorting: We use the Duane Merrill and Andrew Grimshaw’s radix sort algorithm [20].
This algorithm is implemented in a RadixSort class and will be discussed further. We sort
triangles using Morton codes as keys and triangle indices as values.

while (queue.getInSize () > 0) {

// Split kernel.
CudaKernel splitKernel = module—>getKernel(”split’);

// Set parameters.
splitKernel.setParams (...) ;

// Launch split kernel.
splitKernel.launch (...);

// Add new nodes.
bvh.number0fNodes += queue.getOutSize();

// Resize node buffer if is necessary.
if (size_t(bvh.nodes.getSize()) < size_t(bvh.numberOfNodes) * sizeof(Node))
bvh.nodeBuffer.resize(2 * bvh.numberOfNodes * sizeof(Node));

// Ping — pong queues.
queue . swap () ;

// Reset counter.
queue .resetOutSize () ;

Listing 6.1: A sample code of the construction using spatial median splits.

Triangle Transformation: The ray tracer uses a unit ray-triangle intersection test [30].
The intersection is computed in the coordinate system of the triangle. An origin of the system
is located in the first vertex of the triangle. The first basis vector is a vector pointing from the
first vertex to the second vertex of the triangle. The second basis vector is a vector pointing
from the first vertex to the third vertex of the triangle. The third basis vector is a normal
vector of the triangle anchored in the first vertex. In this step the transformation matrices
are computed. Each thread processes several triangles. For each triangle the transformation
matrix to its coordinate system is computed. The matrix is written to the appropriate place
using the indices from the previous step.

Splits: In this step we construct the hierarchy topology. We use two task queues: an
input and an output queue. Both queues and operations associated with the queues are
encapsulated in the TaskQueue class. A task is a four tuple including an index of the
associated node, an index of the current bit, start and end indices of the associated triangle

6.1. CONSTRUCTION OF BOUNDING VOLUME HIERARCHIES 35

interval. At the beginning input queue contains only a root task including a triangle interval
of the whole scene. The index of the root node is 0 and the index of the current bit is an
index of the most significant bit. The split kernel is being launched in a loop, see listing 6.1.

In the kernel each input task is processed by a single thread. The thread reads the task
and checks the termination criteria and decides whether the node should be split. If so the
thread splits the interval using the current bit of the task and Morton codes. If current bit
of Morton codes associated with the task are all zeros or all ones then the next different bits
are used. If all bits of Morton codes are consumed then the object median split is done.
We find the splitting index using the binary search algorithm searching for the first index
with the bit equal to 1. Threads within the warp write the number of output tasks to an
auxiliary array allocated in the shared memory. Within the warp the unrolled Hillis-Steele
prefix scan is performed on this array. The first thread in the warp atomically adds the sum
of output tasks to the global counter using the atomicAdd function. This function returns
the original value of the counter. Adding the original value to the prefix scan values each
thread obtains an offset to the output queue for its output tasks, see figure 5.5. Node indices
for new tasks are obtained by adding the offset to the number of nodes. After the kernel
is finished the queues are swapped and this procedure is repeated until the output queue is
empty. Additionally for each kernel launch we store the number of outputs tasks.

Refitting: In the previous step the hierarchy was constructed level by level in a top-down
manner. The refitting procedure is similar. The bounding boxes of the hierarchy are refitted
level by level from leaves to the root. We use the number of output tasks from the previous
step as bounds of interval in node array corresponding to the currently processed level.

6.1.2 SAH Splits

The second algorithm is partially based on the first algorithm. The first levels of the hierarchy
are constructed by SAH splits and the remaining levels are constructed by the spatial median
splits. There is another parameter of the construction, the length of Morton code prefix in
bits used for SAH splits, denoted by m. Up to the split procedure the process is the same
as in the first algorithm.

Clusters: We use the first m < k bits of Morton code to generate clusters. Triangles with
the same first m bits belong to the same cluster. The cluster generation is similar to the
splitting procedure using spatial median splits. We split the intervals until all m bits are
consumed. Additionally for each triangle we store an index pointing to the associated cluster.
At the beginning all triangles belong to the root cluster. After each iteration triangles are
distributed to new clusters. Once all clusters are identified the clusters’ bounding boxes
are computed. Each thread processes several triangles. The thread computes bounding
boxes of these triangles. The thread identifies the clusters associated with the triangles and
atomically updates their bounding boxes. Morton codes of clusters are mapped back to
quantized coordinates using equation 5.1. Therefore, the m must be multiple of 3. Further
we treat the clusters as primitives. The cluster data are stored in a Clusters class.

0O~ O U W

36 CHAPTER 6. DESIGN AND IMPLEMENTATION

Top Levels: This step is similar to the splitting procedure using spatial median splits. We
work in two domains: cluster domain and task domain. Therefore, we need auxiliary arrays
providing mapping between these two domains. Each cluster has a task index, bin index and
node index. The task index is an index of the associated task. The bin index is the result of
binning procedure. The node index is an index of the associated node. Each task has a bin
set, an index of the plane and an index of the first child task. We use a ClusterTaskQueue
to managed the cluster task data. At the beginning all cluster belongs to the root task. The
splitting procedure is executed in a loop. The iteration of the loop consists of three kernels,
see listing 6.2.

while (clusterQueue.getInSize() > 0) {

// Reset bins.

CudaKernel resetKernel = module—>getKernel (" resctBins”);
resetKernel.setParams (number0OfBins, clusterQueue.getBinsBuffer());
resetKernel.launch();

// Binning.

CudaKernel binKernel = module—>getKernel(”binClusters”);
binKernel.setParams (...) ;
binKernel.launch (...);

// Splitting.

CudaKernel splitKernel = module—>getKernel (”splitSATI");
splitKernel.setParams (...) ;

splitKernel.launch();

// Distribute clusters.

CudaKernel distributeKernel = module—>getKernel ("’ distributeClusters”);
distributeKernel.setParams (...) ;

distributeKernel.launch();

// Add new nodes.
bvh.number0fNodes += clusterQueue.getOutSize ();

// Ping — pong queues.
clusterQueue.swap();

// Reset counters.
clusterQueue.resetOutSize () ;

Listing 6.2: A sample code of the construction using SAH splits.

In the first kernel each cluster is processed with a single thread. Each cluster can access
a bin set of the associated task. Quantized coordinates of the cluster are used as a bin index.
Bins are updated using atomic operations. Therefore, the number of bins for one axis must
be at least 273 . This concept guarantee that all clusters of the associated task will never be
projected into the same bin.

In the second kernel each task is processed with a single thread. Each thread evaluates
costs of splitting planes according to equation 4.6 using the result of binning. For each axis
two sequential prefix scans are performed on bins using the local memory. The splitting plane
with the lowest cost is chosen. Using the same approach as previously we obtain indices of
the child tasks. If the task contains only one cluster then we insert an appropriate splitting

6.1. CONSTRUCTION OF BOUNDING VOLUME HIERARCHIES 37

task to the input queue used for lower levels of the hierarchy. For a single cluster we mark
the index of the first child task with —1.

In the third kernel clusters are distributed to new tasks. Each cluster is processed by
a single thread. The thread compares the bin index with the index of splitting plane and
determines the new task index. From the previous step we know the index of the first child
task. The index of the second child task is the index of the first child task incremented by
one. If the index of the first child task is equal to —1 we know that the node was not split.
For this case we mark the task index with —1 and the cluster is not processed further. We
update the interval bounds of the corresponding task and the node index of the associated
cluster. This process is repeated until the cluster input queue is empty.

Lower Levels: The remaining levels are constructed by spatial median splits. We use the
input tasks from the previous step. After the topology is constructed we have to run the
refitting procedure. Nodes corresponding to the clusters are not refitted because they don’t
resides in the continuous interval and must be processed further.

Cluster Refitting: During SAH evaluation bounding boxes of interior nodes are implicitly
computed. Interior nodes contain bounding boxes of the left and the right children. We have
to only refit interior nodes associated with clusters. We launch a single kernel. Each cluster
is processed by a single thread. Using node indices we can simply map clusters to the
corresponding nodes.

6.1.3 Radix Sort

We reimplemented the Duane Merrill and Andrew Grimshaw’s radix sort algorithm [20]. The
algorithm follows the the radix sort scheme discussed in chapter 2. In each iteration 4-bit
or 5-bit digits of input keys are processed. The iteration of the sorting algorithm consists of
three kernel launches.

The first kernel decodes and buckets the keys. Each thread processes several keys. Each
thread decodes its keys and according to the current digit locally increments the corre-
sponding flag in the corresponding flag array. Performing sequential reductions on these flag
arrays we obtain the number of keys in each bucket. Performing parallel reductions within
the thread block on partial reductions of threads we obtain the number of keys in each bucket
within the block. These values are written to a global auxiliary array. The first part of the
auxiliary array contains reduction values corresponding to the first digit. The second part
of the auxiliary array contains reduction values corresponding to the second digit, and so
on. The second kernel performs parallel prefix scan on the global auxiliary array using a
single thread block. The third kernel again decodes and buckets the keys. Each thread again
computes the flags according to the current digit. Reductions are replaced by prefix scan.
Each thread performs local sequential prefix scan on its flag arrays. Threads within the
block then perform parallel prefix scan on these partial local scans. Each thread determines
the output indices of its keys and values using global prefix scan values and block prefix scan
values.

38 CHAPTER 6. DESIGN AND IMPLEMENTATION

6.2 Rendering System

In this section we will describe implementation details of the rendering system. The applica-
tion is written in ANSI C4++ and in CUDA. We parallelized almost all computations using
the CUDA technology including the BVH construction, rendering, and an interpolation of
key frames. The architecture of the application is object oriented. The kernels are encapsu-
lated by classes. The kernels are scalable according the compute capability of the particular
device.

The application works in the following way. At the beginning the application is configured
from a text file. A scene is loaded from a file and a BVH is constructed. In this point the
applications enters the main loop. Rays are generated and intersections are computed using
the BVH. Pixels of the final image are shaded and the image is displayed via graphical
user interface. In this point the main loop returns to the ray generation and the whole
process is repeated. In the main loop the application handles the user inputs and changes
appropriate parameters. The application also supports animated scenes. The animated
scenes additionally require an interpolation of key frames and the BVH reconstruction in
each frame.

6.2.1 Used Technologies

In this subsection we will briefly discuss the used technologies and libraries and the purpose
of the choice.

CUDA: The CUDA technology was discussed in chapter 3. In our application we use the
CUDA driver API because it provides more control over the program. Using the driver API
we manage the CUDA modules explicitly. The host code and the device code is separated.
We compile and load the CUDA modules in runtime. The management of the modules is
similar to the management of shader programs.

Qt: Qt framework is a cross-platform application and Ul framework. The framework is
distributed into modules. In our application we use a core module, a GUI module and an
OpenGL module. The core module provides many useful classes, e.g. container classes,
timer classes, file manipulation classes, etc. The GUI module provides a graphical user
interface elements, e.g widgets, dialogs, etc. The OpenGL module provides a basic OpenGL
functionality and an OpenGL context management.

GLM: GLM is a header only mathematics library for graphics software based on OpenGL
Shading Language. The library provides various classes of vectors and matrices with over-
loaded operators. The advantage is that the library is partially supported in the CUDA
kernels. We work with the vectors and matrices across the whole application.

GLEW: GLEW is a cross-platform library. The GLEW library manages OpenGL exten-
sions and provides the functionality of new versions of OpenGL. In our application we use
OpenGL to display the result images.

6.2. RENDERING SYSTEM 39

Assimp: Assimp is a cross-platform library. The library provides 3D model import and
export operations with the uniform interface. Various well-known formats are supported.
The library provides many useful post-processing options. In our application we use only
the import operation.

DevIL: DevIL is a cross-platform image library. The library has a very intuitive API
similar to the OpenGL API. The library provides image import and image export operations
in different formats. In our application we use both operations.

T
I
I
I
I
I
| setParams
I
I
I
I
I
I
I

Figure 6.1: A diagram illustrating the CUDA management.

6.2.2 CUDA Management

We need to manage modules, kernels, and data. The management is based on Timo Aila
and Samuli Laine’s framework [1]. Unfortunately this framework depends on the Windows
API. We reimplemented four classes from the framework replacing the Windows API with
the Qt framework. Classes CudaModule, CudaKernel and CudaCompiler encapsulate CUDA
functions. A diagram of the classes is depicted in figure 6.1.

A CudaCompiler class is based on the factory pattern. The CudaCompiler class creates
instances of a CudaModule class. First a source cu file is compiled to a cubin file. The
cubin file is a binary form of the CUDA module. Then the CUDA module is loaded from
the cubin file using an appropriate CUDA function and the associated CudaModule instance
is created. The compilation of the cu files is quite expensive. Therefore, the compiler uses a
hashing scheme. The source cu files are hashed and the result hash value is used as a name
of the cubin file. If the cubin file with the name exists then the module is loaded directly
and the compilation is skipped.

The CudaModule class encapsulates the manipulation with the CUDA modules and the
CudaKernel class encapsulates the manipulation with the kernel. Via a CudaModule instance
we can retrieve CudaKernel instances associated with the module or we can access the global
variables of the module. The management of the CUDA context is implemented in static
members of the CudaModule class. Static methods also provide useful information about the
device, e.g. free memory or the compute capability. Via a CudaKernel instance we can set
the parameters of the kernel or we can launch the associated kernel.

40 CHAPTER 6. DESIGN AND IMPLEMENTATION

The Buffer class encapsulates the manipulation with data. The class provides mapping
data between various memory spaces. The supported memory spaces include the CPU
memory space, the CUDA memory space and the OpenGL memory space. We can map
data between arbitrary two memory spaces without explicitly copying. Typically a buffer
instance is passed to a kernel as a parameter or global variables are retrieved from modules
in the form of a buffer instance.

Scene
Buffer vertices

. Buffer normals
importImage loadStaticScene Buffer vertIndices
ImageImporter Sceneloader |[--—-------- > Buffer texCoords
Buffer matIndices
QVector<Tetxure> textures

QVector<Materials> materials
QVector<Light> lights

. loadDynamicScene >‘ DynamicScene
e - float frameRate
Interpolator ool T00p
\ QVector<Frame> frames

Figure 6.2: A diagram illustrating the scene management.

6.2.3 Scene Management

A Scene class is a container class for scene data including vertices, normal vectors, vertex
indices, texture coordinates, textures, materials, material indices, and lights. The scene
data except lights and materials are stored in Buffer instances. Lights and materials are
mapped to constant memory. Texture data are encapsulated in a Texture structure. Only
directional or point lights are supported. The Scene class has no public constructor and
its instances can be only created via a SceneLoader friend class. The SceneLoader class
encapsulates import functions of the Assimp library. The SceneLoader class is based on a
factory pattern. The scene data are loaded from a given file. Texture data are loaded via a
helper ImageImporter class which encapsulates import functions of the DevIL library.

A DynamicScene class is a derived class from the Scene class. A DynamicScene class
is a container class for animated scenes with key frames. Each key frame contains vertices
and normal vectors, the rest scene data are shared. Vertices and normal vectors of key
frames are encapsulated in a Frame structure. The Scene class is extended with a vector of
Frame instances. The Interpolator class linearly interpolates vertices and normal vectors
of two key frames according to a given time parameter and a frame rate. The result of the
interpolation is stored in buffers of the ancestor class. The interpolation is implemented
on GPU using the CUDA technology. Instances of DynamicScene can be created via the
SceneLoader friend class from a given list of filenames. A diagram illustrating the scene
management is depicted in figure 6.2.

6.2. RENDERING SYSTEM 41

sort build

|
|
I
I
| build
I
I
I
I

CudaBVH
Buffer nodes
Buffer trilndices
Buffer triMatrices

Figure 6.3: A diagram illustrating the BVH management.

6.2.4 BVH Management

The ray tracer requires the BVH in form of a CudaBVH class. The ray tracer uses a unit ray-
triangle intersection test [30]. Thus, the CudaBVH class contains hierarchy nodes, triangle
indices and triangle transformation matrices. The CudaBVH class has no public constructor
and its instances can be created only via a HLBVHBuilder class. The BVH management is
depicted in figure 6.3.

RayBuffer
Buffer rays
Buffer results

traceBatch primary/ao

CudaTracer

traceBatch

traceBatch

CudaBVH
renderFrame

renderFrame e
Pid renderFrame

primary/ao

renderFrame

%;££§£ Scene

Figure 6.4: A diagram illustrating the rendering pipline.

6.2.5 Rendering Pipeline

A Renderer class and its method renderFrame is an entry point of the rendering pipeline.
Input parameters of the renderFrame method are a Camera instance, a Scene instance and

42 CHAPTER 6. DESIGN AND IMPLEMENTATION

a CudaBVH instance. An output parameter is a final image stored in a Buffer instance. The
renderer supports three types of rays: primary rays, ambient occlusion rays, and diffuse
rays. Images computed with different ray types are depicted in figure 6.5. First renderer
generates the appropriate type of rays using a RayGen class. Ray data including ray origin
and ray direction vector are encapsulated by a Ray structure. The Ray structure also contains
bounds of the rays, i.e. minimum and maximum ¢. Using a CudaTracer class we compute
the intersections. The result of ray tracing for each ray is stored in a RayResult structure.
The RayResult structure contains the index of the intersected triangle, a parameter ¢, and
barycentric coordinates of the hit. Both ray results and rays are encapsulated by a RayBuffer
class. Pixels of the final image are shaded according to a given ray type. The image is
displayed via a graphical user interface or exported to a file using an ImageExporter class.
The ImageExporter class encapsulates export functions of the DevIL library.

Primary Rays: There are two shading modes using primary rays. The first mode uses flat
shading without materials. The second mode uses smooth shading with materials and tex-
tures. The second mode interpolates normal vectors and texture coordinates using barycen-
tric coordinates of the intersection obtained from the ray tracer. The final value of the texel
is obtained using bilinear interpolation of neighbor values. The color of a pixel is computed
according to Phong illumination model.

Ambient Occlusion Rays: Ambient occlusion rays are generated after the primary rays.
Points of intersection of primary rays are used as origins of ambient occlusion rays. For each
primary we generate several ambient occlusion rays. Direction vectors of ambient occlusion
rays are randomly sampled. An ambient occlusion radius limits the length of the rays. Only
triangles within the radius are considered during intersection computation. The final color
of a pixel is computed as the sum of ambient occlusion rays that hit nothing per primary
ray divided by the number of ambient occlusion rays per primary ray.

Diffuse Rays: Diffuse rays are similar to the ambient occlusion rays, but there are
some differences. First the diffuse rays are not limited by a radius. Second a pixel value is
computed in different way. If a diffuse ray hits some triangle then the value is computed
as the diffuse component of Phong illumination model. Otherwise the value is equal to the
white color. The final color of a pixel is sum of these values divided by the number of diffuse
rays per primary ray and multiplied by a diffuse color of the triangle hit by the associated
primary ray.

6.2.6 User Interface

In this subsection we will briefly describe user interfaces of the application. The application
can be configured via a text file. The file may contain named blocks with keys and values.
We use an Environment! class to parse the configuration file. Configurable parameters
include renderer parameters, camera parameters, etc. All configurable parameters are listed
in appendix C.

L An author of the Environment class is Tom4s Kopal.

6.2. RENDERING SYSTEM 43

Figure 6.5: Mitsuba model traced with different ray types: primary rays with flat shading,
primary rays with smooth shading and materials, ambient occlusion rays, and diffuse rays.

A graphical user interface is important component of the application. The main pur-
pose of the GUI is that we need to display final images. The GUI is based on Qt frame-
work. The main window is implemented in a MainWindow class. To display images we use
a RenderWidget class derived from the QGLWidget class. The RenderWidget is a central
widget of the main window. The RenderWidget handles mouse and keyboard events. Using
mouse and keyboard users can rotate or translate the camera. There is a menu bar in the
main window. Using the menu bar users can interactively change a ray type or a BVH
construction algorithm. Users can open a settings window and configure the application in
runtime.

44

CHAPTER 6. DESIGN AND IMPLEMENTATION

Chapter 7

Results and Discussion

In this chapter we will present our results. We tested two types of scenes: static and dynamic
scenes. We use all three ray types: primary rays, ambient occlusion rays, and diffuse rays.
Sample images are depicted in figure 7.12. The image resolution of all tested scenes is
1024 x 768 pixels. We use one directional light source. We use one primary ray per pixel.
We use four secondary rays, ambient occlusion or diffuse rays per primary ray. The radius
for ambient occlusion rays was set to 1.0. We use 8, 16 and 32 maximum triangles in leaves
as a termination criterion.

We used two types of timers. We used very precise CUDA events to measure kernel
times. We use less precise QT timers to measure a whole process including CPU time. The
CUDA events have microseconds precision. The QT timers have only milliseconds precision.
For testing we used a PC with the following equipment.

e CPU: Intel Xeon E5-1620, 3.6 GHz, 10 MB

e GPU: GeForce GTX TITAN, 6144 MB RAM, Compute Capability 3.5
e Memory: 24 GB RAM

e OS: Windows 7 64 bit

e Compiler: The Visual C++ Compiler 16.00, Nvidia NVCC 5.0

7.1 Static Scenes

Static means that the geometry of a scene does not change in time. Therefore, the hierarchy
is built only once. We tested fourteen static scenes of various triangle distributions. Images of
static scenes are depicted in figure 7.1. We tested both implemented algorithms. For testing
we use three configuration of the algorithms: spatial median splits with 30-bit Morton codes,
spatial median splits with 60-bit Morton codes and SAH splits with 30-bit Morton codes 15-
bit clusters.

45

46 CHAPTER 7. RESULTS AND DISCUSSION

17k tris 75k tris 126k tris 224k tris 262k tris 331k tris

345k tris 871k tris 1087k tris 1765k tris 2880k tris 6704k tris 12759k tris

Figure 7.1: Images of the static scenes: Head, Mitsuba, Sibenik Cathedral, Rungholt House,
Lost Empire, Crytek Sponza, Conference, Armadillo, Stanford Dragon, Happy Buddha,
Turbine Blade, Hairball, Rungholt, Power Plant.

7.1.1 Spatial Median Split with 30-bit Morton Codes

The results for this configuration are shown in tables 7.1 and 7.2. The construction perfor-
mance in MTris/s is depicted in figure 7.4. Construction time scales rather logarithmically
than linearly with depth of the hierarchy. It is due to the level by level construction. There-
fore, it pays off to construct deeper hierarchies with lower costs and higher ray tracing
performance. Spatial coherent scenes such as Armadillo or Happy Buddha have lower cost
than complex scenes such as Crytek Sponza. The size in MB is not direct proportional to the
number of nodes. As mentioned the hierarchy structure contains also triangle indices and
triangle transformation matrices. Therefore, the size of the hierarchy is dependent rather on
the number of triangles than the number of nodes. Auxiliary memory used for construction
is relatively small.

7.1.2 Spatial Median Split with 60-bit Morton Codes

The results for this configuration are shown in tables 7.3 and 7.4. The construction per-
formance in MTris/s is depicted in figure 7.5. The results are similar to the results of the
previous case. There are two possible explanations. The first explanation is that the termi-
nation criteria are applied before the first 30 bits are consumed. This is reasonable especially
for small scenes. When all bits of Morton codes are consumed then the algorithm uses ob-
ject median splits. Thus, the second explanation is that the object median splits are very
close to the spatial median splits. Only the construction time differs from the previous case
especially for larger scenes. The additional time is consumed in the sorting phase. The radix
sort algorithm requires twice number of iterations for double-length keys.

7.1.3 SAH Splits with 30-bit Morton Codes and 15-bit Clusters

The results for this configuration are shown in tables 7.5 and 7.6. The construction per-
formance in MTris/s is depicted in figure 7.6. The algorithm is more complex. Therefore,
the construction times and auxiliary memory consumption are higher. Times of particular
kernels are shown in table 7.7. The most time consuming are splitting procedure using SAH

7.2. DYNAMIC SCENES 47

splits and cluster computations for small scenes. The most time consuming are sorting,
cluster computation and refitting procedure for large scenes.

The algorithm splits nodes until the only one cluster remains regardless of the termination
criteria. The termination criteria are applied after all clusters are split. Therefore, hierarchies
of small scenes are deeper than should be. This fact corresponds to the number of nodes
and construction times. As expected hierarchies constructed by SAH splits have lower costs
and higher ray tracing performance. The quality improvement is significant especially for
spatial incoherent scenes such as Crytek Sponza or Sibenik.

29 key frames 246 key frames 30 key frames 21 key frames 16 key frames
5k tris 11k tris 78k tris 176k tris 252k tris

Figure 7.2: Images of the dynamic scenes: Wood Doll, Toasters, Ben, Fairy Forest, Exploding
Dragon.

7.2 Dynamic Scenes

Dynamic means that the geometry of the scene changes in time. Thus, the hierarchy must
be updated in every frame. We tested five dynamic scenes of various complexity. Images
of dynamic scenes are depicted in figure 7.2. For testing we use two configurations of the
algorithm: spatial median splits with 30-bit Morton codes and SAH splits with 30-bit Morton
codes and 15-bit clusters. We use 8 maximum triangles in leaves as a termination criterion.

The results for both configurations are shown in tables 7.8 and 7.9. We averaged all
values across all key frames of each scene. FPS values include both construction time and
render time. We compared costs of all key frames for both configurations for each dynamic
scene. The results of comparison are depicted in figures 7.7, 7.8, 7.9, 7.10, and 7.11. We
measured cost of simple refitting. Thus, the hierarchy is built from the first key frame using
the SAH configuration. In each other key frames bounding boxes are only refitted from
leaves to the root. Hierarchies constructed via SAH splits have the lowest costs in all cases.
Interestingly, for scenes Wood Doll, Toasters and Fairy Forest the refitted hierarchies have
lower costs than the reconstructed hierarchies by spatial median splits.

The special case is the Exploding Dragon scene. The geometry of this scene changes
completely in time. The Bunny falls on the Dragon and both models explode, see figure 7.3.
In this case simple refitting absolutely fails.

7.3 Discussion

The results imply some interesting observations. The construction performance in MTris/s
is higher for large scenes. This is the property of massively parallel processing. Large scenes

48 CHAPTER 7. RESULTS AND DISCUSSION

Figure 7.3: Sample key frames of the Exploding Dragon scene. The geometry of the scene
changes completely.

keeps the GPU more occupied. Similarly, it pays off to construct deeper hierarchies, because
the construction time scales logarithmically with the depth. This is again a property of
massively parallel processing. Reconstruction of the hierarchy is reasonable because simple
refitting may be unstable for some distributions. The efficiency of the refitting depends on
how much the geometry changes.

7.3. DISCUSSION 49
Construction [ms] Cost #Nodes
Kernels Overall

Scene 8 J16 [32 [[8 [16 [32 8 16 [32 8 [16 [32
Head 1.8 1.9 2.1 10.0 | 8.0 8.0 108 | 131 185 6969 3673 1941
Mitsuba 2.1 2.2 2.1 9.0 9.0 8.0 288 | 361 501 23655 12447 6299
Sibenik 2.2 2.3 2.6 10.0 | 12.0 | 10.0 || 247 | 300 | 413 30405 16321 8623
R. House 2.2 2.2 2.4 12.0 | 11.0 | 13.0 || 322 | 391 541 45445 23491 11947
Lost Empire 3.0 2.9 3.1 16.0 | 14.0 | 16.0 || 300 | 354 | 474 83429 42975 22121
Cr. Sponza 4.1 4.1 4.0 18.0 | 17.0 | 17.0 || 484 | 550 | 700 100249 | 52933 27713
Conference 4.1 4.0 5.1 18.0 | 20.0 | 18.0 || 245 | 290 | 407 118851 | 63165 33177
Armadillo 4.4 4.1 4.2 16.0 | 17.0 | 18.0 || 115 130 | 168 137939 | 67147 36093
St. Dragon 9.2 9.8 8.3 30.0 | 30.0 | 22.0 191 219 282 354299 | 183761 | 94193
H. Buddha 12.5 | 10.4 | 10.0 || 36.0 | 32.0 | 31.0 || 234 | 270 | 351 439141 | 226479 | 115951
Blade 18.2 | 17.2 | 14.9 || 48.0 | 45.0 | 41.0 || 267 | 308 | 404 668327 | 345247 | 172265
Hairball 26.4 | 24.8 | 27.4 || 71.0 | 65.0 | 73.0 || 1700 | 2011 | 2777 || 1151495| 585639 | 288369
Rungholt 58.0 | 54.7 | 53.2 || 125.0| 115.0| 109.0|| 596 | 705 | 953 2491683 | 1311125| 662163
Power Plant 100.4| 95.0 | 93.8 || 215.0] 197.0| 190.0|| 215 244 | 322 4403547 | 2288377| 1182525

Table 7.1: Results for the BVH construction using spatial median splits with 30-bit Morton
codes. We use 8, 16 or 32 maximum triangles in leaves as a termination criterion.

Performance [MRays/s] Memory [MB]
Primary Ambient Occlusion Diffuse
Scene 8 J16 [32 [[8 16 [32 8 16 [32 8 [16 [32] Aux.
Head 119 | 102 | 81 r 68 56 68 60 50 1.6 14 1.3 0.9
Mitsuba 91 78 71 70 61 51 60 52 43 5.6 4.9 4.5 3.2
Sibenik 59 50 31 112 | 96 73 36 29 20 7.0 6.1 5.6 3.9
R. House 89 76 59 129 | 113 | 88 100 | 87 69 11.4 10.0 9.3 6.5
Lost Empire 7 64 49 91 75 56 72 60 46 20.6 18.0 16.7 11.7
Cr. Sponza 19 15 11 37 29 21 17 14 10 24.2 | 21.2 19.5 13.6
Conference 41 34 22 72 62 45 35 28 20 30.2 26.5 24.6 17.2
Armadillo 97 86 69 59 55 46 47 43 36 323 | 279 | 25.8 18.0
St. Dragon 62 48 41 57 50 39 50 44 34 81.9 | 71.0 | 65.2 45.3
H. Buddha 69 65 50 50 45 36 43 39 32 102.0 | 88.4 | 81.3 56.5
Blade 113 | 98 88 61 56 50 50 45 39 162.8 | 142.1 | 131.0 || 91.8
Hairball 13 11 8 17 15 10 13 11 7 269.5 | 233.3 | 214.2 || 149.7
Rungholt 51 42 32 78 65 48 52 44 32 615.3 | 539.8 | 498.2 || 348.6
Power Plant || 10 9 7 22 20 15 10 9 7 1149.4| 1014.0] 943.3 || 663.5

Table 7.2: Results for the BVH construction using spatial median splits with 30-bit Morton
codes. We use 8, 16 or 32 maximum triangles in leaves as a termination criterion.

50 CHAPTER 7. RESULTS AND DISCUSSION

Construction [ms] Cost #Nodes
Kernels Overall
Scene 8 [16 [32 [[8 16 [32 8 [16 [32 8 [16 [32
Head 2.2 2.2 2.5 10.0 | 9.0 10.0 || 108 | 131 185 6975 3673 1955
Mitsuba 2.7 2.5 2.7 11.0 | 12.0 | 11.0 || 287 | 348 | 471 23507 12337 6239
Sibenik 2.9 3.3 3.9 12.0 | 12.0 | 14.0 || 247 | 299 | 409 30311 16257 8639
R. House 3.1 3.1 3.3 14.0 | 13.0 | 15.0 || 322 | 391 | 540 45533 23391 11921

Lost Empire || 4.3 4.2 4.4 17.0 | 16.0 | 16.0 || 300 | 355 | 476 83441 42979 22097
Cr. Sponza 5.1 5.1 5.5 20.0 | 19.0 | 19.0 || 485 | 547 | 686 100323 | 52857 27639
Conference 7.1 6.3 7.7 27.0 | 22.0 | 23.0 || 245 | 290 | 408 131377 | 70813 38207
Armadillo 6.2 6.8 60.0 || 21.0 | 21.0 | 19.0 || 115 | 130 | 167 137655 | 68999 36815
St. Dragon 13.3 | 12.7 | 12.4 || 35.0 | 33.0 | 32.0 || 191 | 218 | 281 354173 | 183755 | 94363
H. Buddha 16.1 | 15.3 | 15.0 || 35.0 | 33.0 | 37.0 || 234 | 269 | 350 438805 | 226831 | 116037

Blade 27.2 | 26.1 | 22.7 || 58.0 | 55.0 | 47.0 || 266 | 307 | 404 667617 | 345791 | 172511
Hairball 39.3 | 37.6 | 38.5 || 86.0 | 81.0 | 81.0 || 1701 | 2010 | 2776 || 1154193| 587259 | 288715
Rungholt 86.9 | 83.7 | 82.2 || 157.0] 147.0| 161.0|| 598 | 706 | 956 2489835| 1312147 661669

Power Plant 161.9| 155.2| 152.4|| 278.0] 260.0| 252.0(| 214 | 243 | 324 4840783| 2501507| 1301027

Table 7.3: Results for the BVH construction using spatial median splits with 60-bit Morton
codes. We use 8, 16 or 32 maximum triangles in leaves as a termination criterion.

Performance [MRays/s] Memory [MB]
Primary Ambient Occlusion Diffuse
Scene 8 J16 [32 [8 16 [32 [8 16 [32 8 [16 32] Aux.
Head 117 | 100 | 80 7 65 58 67 61 51 1.6 1.4 1.3 0.9
Mitsuba 94 88 64 73 64 52 60 53 43 5.6 4.9 4.5 3.2
Sibenik 59 44 36 112 | 96 73 36 29 20 7.0 6.1 5.6 3.9
R. House 90 76 58 129 112 | 86 100 | 87 68 11.5 10.0 9.3 6.5
Lost Empire || 77 64 49 91 75 55 72 60 46 20.6 | 18.0 16.7 11.7
Cr. Sponza 19 16 11 36 29 21 17 14 10 24.2 | 21.2 19.5 13.6
Conference 40 34 22 72 61 45 35 29 20 30.9 27.0 24.9 17.2
Armadillo 100 | 79 69 60 54 46 47 43 36 323 | 279 | 258 18.0
St. Dragon 62 53 42 58 50 39 50 43 34 819 | 71.0 | 65.2 45.3
H. Buddha 79 66 51 51 45 37 44 39 32 102.0 | 88.4 | 81.3 56.5
Blade 116 100 | 88 62 56 50 50 45 38 162.7 | 142.1 | 131.0 || 91.8
Hairball 13 11 8 17 15 10 13 11 7 269.7 | 233.4 | 214.3 || 149.7
Rungholt 52 42 31 7 64 47 52 43 32 615.2 | 539.8 | 498.2 || 348.6
Power Plant || 9 9 7 22 20 15 10 9 7 1177.4| 1027.7| 950.8 || 663.5

Table 7.4: Results for the BVH construction using spatial median splits with 60-bit Morton
codes. We use 8, 16 or 32 maximum triangles in leaves as a termination criterion.

7.3. DISCUSSION 51

Construction [ms] Cost #Nodes
Kernels Overall
Scene 8 J16 [32 [[8 [16 [32 8 J16 [32 8 [16 [32
Head 13.4 | 13.3 | 13.5 || 26.0 | 26.0 | 26.0 || 85 87 91 9965 7529 6355
Mitsuba 135 | 13.4 | 13.4 || 30.0 | 26.0 | 25.0 || 263 280 293 26783 19977 17611
Sibenik 16.8 | 14.7 | 14.8 || 31.0 | 29.0 | 30.0 || 188 | 203 | 225 33251 20749 14553
R. House 159 | 13.7 | 15.6 || 34.0 | 28.0 | 33.0 || 305 | 353 | 374 45805 27449 24041

Lost Empire 15.0 | 14.8 | 14.6 || 36.0 | 31.0 | 31.0 || 267 | 328 | 421 83619 44219 25675
Cr. Sponza 16.5 | 18.3 | 16.6 || 41.0 | 38.0 | 38.0 || 269 | 290 | 301 101601 | 54615 30905
Conference 16.6 | 16.2 | 14.7 || 43.0 | 36.0 | 37.0 || 146 | 160 | 183 120851 | 64209 34559
Armadillo 13.3 | 14.7 | 14.5 || 32.0 | 32.0 | 33.0 || 104 | 119 | 156 137941 | 69159 36949
St. Dragon 19.7 | 19.1 | 18.7 || 46.0 | 50.0 | 38.0 || 179 | 207 | 269 354309 | 183783 | 94245
H. Buddha 23.2 | 22,5 | 22.1 || 52.0 | 52.0 | 44.0 || 215 | 250 | 328 438487 | 226313 | 116343

Blade 33.3 | 31.9 | 28.2 || 62.0 | 66.0 | 60.0 || 315 | 360 | 387 663245 | 341519 | 170615
Hairball 46.6 | 43.9 | 43.1 || 91.0 | 90.0 | 79.0 || 1693 | 2004 | 2764 || 1151503| 585743 | 288827
Rungholt 92.1 | 88.6 | 87.0 || 167.0| 156.0| 150.0|| 536 | 645 | 893 2491699 1311171| 662321

Power Plant 152.8| 147.0| 145.6|| 274.0| 258.0| 249.0|| 197 | 225 | 301 4403557 | 2288421 | 1182613

Table 7.5: Results of BVH construction using SAH splits with 30-bit Morton codes and
15-bit clusters. We use 8, 16 or 32 maximum triangles in leaves as a termination criterion.

Performance [MRays/s] Memory [MB]
Primary Ambient Occlusion Diffuse

Scene 8 J16 [32 [[8 16 [32 8 16 [32 8 [16 [32] Aux.
Head 126 | 119 | 108 || 81 7 72 70 67 63 1.8 1.6 1.6 9.6

Mitsuba 106 | 102 | 91 74 70 62 29 58 51 5.8 5.4 5.2 29.9
Sibenik 65 64 55 128 | 117 | 102 45 38 30 7.2 6.4 6.0 20.2
R. House 85 86 76 36 122 115 28 94 89 11.5 10.3 10.1 43.0
Lost Empire 78 63 50 95 78 60 74 62 49 20.6 18.1 16.9 42.5
Cr. Sponza 32 26 22 46 38 29 31 25 19 24.3 | 21.3 | 19.7 26.3
Conference 54 49 44 98 87 70 50 44 34 30.2 26.6 24.7 23.2
Armadillo 127 | 80 63 42 38 47 33 44 37 323 | 279 | 25.8 27.9
St. Dragon 64 55 42 58 51 39 51 44 35 81.9 | 71.0 | 65.2 62.1
H. Buddha 81 68 51 52 46 37 45 40 32 102.0 | 88.4 | 81.3 7.5
Blade 113 | 99 86 62 58 50 50 46 39 162.4 | 141.9 | 130.9 || 1154
Hairball 13 11 8 18 15 10 13 11 8 269.5 | 233.3 | 214.3 || 200.6
Rungholt 53 43 32 81 67 49 55 45 33 615.3 | 539.8 | 498.2 || 388.5
Power Plant 15 13 10 26 23 16 14 12 9 1149.4| 1014.0| 943.3 || 666.9

Table 7.6: Results of BVH construction using SAH splits with 30-bit Morton codes and
15-bit clusters. We use 8, 16 or 32 maximum triangles in leaves as a termination criterion.

52 CHAPTER 7. RESULTS AND DISCUSSION

[Scene “ Sort [Clusters [SAH splits [Median splits [Refit [Other H Kernels H Overall]
Head 0.3 4.5 7.5 0.2 0.4 0.5 13.4 26.0
Mitsuba 0.5 3.8 8.3 0.1 0.2 0.6 13.5 30.0
Sibenik 0.7 5.2 9.7 0.2 0.5 0.5 16.8 31.0
R.House 0.9 3.3 10.5 0.1 0.3 0.8 15.9 34.0
Lost Empire 1.0 3.4 9.0 0.2 0.5 0.9 15.0 36.0
Cr. Sponza 1.4 4.1 9.0 0.4 0.8 0.8 16.5 45.0
Conference 1.8 4.5 7.9 0.5 1.0 0.9 16.6 47.0
Armadillo 1.7 2.8 6.3 0.4 1.1 1.0 13.3 33.0
St. Dragon 3.9 3.6 7.4 0.9 2.4 1.5 19.7 67.0
H. Buddha 4.8 4.8 7.7 1.1 2.9 1.9 23.2 80.0
Blade 8.7 6.1 9.5 1.8 4.8 2.6 33.5 69.0
Hairball 13.2 9.6 10.2 2.8 7.0 3.8 46.6 91.0
Rungholt 28.5 24.9 9.7 5.4 14.1 9.5 92.1 167.0
Power Plant 53.0 47.9 5.2 7.7 26.0 13.1 152.9 274.0

Table 7.7: Times of particular construction phases in ms. SAH splits with 30-bit Morton
codes and 15-bit clusters. We use 8 maximum triangles in leaves a as termination criterion.

Construction [ms] || Cost FPS
Scene Primary Am. Occl. Diffuse
Wood Doll 6.2 74 95 27 22
Toasters 6.8 205 61 21 14
Ben 12.2 93 53 17 14
Fairy Forest 14.1 129 37 11 6
Exploding Dragon 15.2 68 43 14 11

Table 7.8: Results for dynamic scenes, spatial median splits with 30-bit Morton codes. FPS
includes both construction time and render time.

Construction [ms] || Cost FPS
Scene Primary Am. Occl. Diffuse
Wood Doll 21.5 51 39 11 9
Toasters 24.4 122 31 10 8
Ben 29.8 83 27 9 7
Fairy Forest 30.5 105 24 8 5
Exploding Dragon 31.2 59 26 9 7

Table 7.9: Results for dynamic scenes, SAH splits with 30-bit Morton codes and 15-bit
clusters. FPS includes both construction time and render time.

7.3. DISCUSSION 53

70+~

60

Performance [MTris/s]
w B a
o o o

N
o

=
o

Sibenik Sponza Conference Buddha Blade Hairball Power Plant

Figure 7.4: Construction performance in MTris/s using spatial median splits and 30-bit
Morton codes for different termination criteria.

60—

Performance [MTris/s]
w B
o o

N
o

10

Sibenik Sponza Conference Buddha Blade Hairball Power Plant

Figure 7.5: Construction performance in MTris/s using spatial median splits and 60-bit
Morton codes for different termination criteria.

54 CHAPTER 7. RESULTS AND DISCUSSION

Performance [MTris/s]

Sibenik Sponza Conference Buddha Blade Hairball Power Plant

Figure 7.6: Construction performance in MTris/s using spatial SAH splits and 30-bit Morton
codes and 15-bit clusters for different termination criteria.

120

= Spatial median

1o s 1@t

100 -

cost

0 5 10 15 20 25
key frame index

Figure 7.7: Costs of the Wood Doll scene for both construction algorithms and refitting
procedure. We use 8 maximum triangles in leaves as a termination criterion.

7.3. DISCUSSION 55

240
s spatial median
— SAH
s refit
~

220

200

180

160

cost

140

120

100

80
0 50 100 150 200
key frame index

Figure 7.8: Costs of the Toasters scene for both construction algorithms and refitting pro-
cedure. We use 8 maximum triangles in leaves as a termination criterion.

130

s spatial median
s efit

120

110

100

cost

90

80

70)
0 5 10 15 20 25 30

key frame index

Figure 7.9: Costs of the Ben scene for both construction algorithms and refitting procedure.
We use 8 maximum triangles in leaves as a termination criterion.

o6 CHAPTER 7. RESULTS AND DISCUSSION

1351

= spatial median [

130 ;-/_’_v_\ e it

cost

100 . . .)
0 5 10 15 20
key frame index

Figure 7.10: Costs of the Fairy Forest scene for both construction algorithms and refitting
procedure. We use 8 maximum triangles in leaves as a termination criterion.

4500

= Spatial median
s refit

4000 -

3500 -

3000 [

2500 -

cost

2000 -

1500 -

1000 -

500 -

0 5 10 15
key frame index

Figure 7.11: Costs of the Exploding Dragon scene for both construction algorithms and
refitting procedure. We use 8 maximum triangles in leaves as a termination criterion.

7.3. DISCUSSION 57

Figure 7.12: Images of scenes rendered with different ray types.

o8

CHAPTER 7. RESULTS AND DISCUSSION

Chapter 8

Conclusion

This thesis addressed fast parallel construction algorithms of bounding volume hierarchies
on the GPU. We presented a theoretical background of ray shooting and various acceleration
data structures. We reviewed construction methods of bounding volume hierarchies and the
BVH construction algorithms designed for massively parallel architecture of modern GPUs.

We implemented two construction algorithms in the CUDA technology according to
Garanzha et al. [9]. Both algorithms are based on Morton codes and an efficient work
queue system. Both algorithms were tested in our rendering system. Our rendering system
is implemented in the CUDA technology. The rendering system is based on an efficient ray
tracer. We tested both algorithms with different configuration. We tested fourteen static
scenes and five dynamic scenes. The complexity of scenes varies between 5k triangles to
12.7M triangles.

The first algorithm constructs the hierarchy using spatial median splits. This algorithm
is very fast, but it is suitable only for spatial coherent and symmetric scenes. Construction
times vary between 8 ms (Mitsuba, 30-bit Morton codes, 32 maximum triangles in leaves)
and 278 ms (Power Plant, 60-bit Morton codes, 8 maximum triangles in leaves). Ray tracing
performance varies between 7 MRays/s (Power Plant, 30-bit Morton codes, 32 maximum
triangles in leaves, diffuse rays) and 129 MRays/s (Rungholt House, 60-bit Morton codes, 8
maximum triangles in leaves, ambient occlusion rays).

The second algorithm optimizes top levels of hierarchy using SAH splits. This algorithm
is slower than the first algorithm, but it is applicable for more complex scenes. Construc-
tion times vary between 25 ms (Mitsuba, 30-bit Morton codes, 15-bit clusters, 32 maximum
triangles in leaves) and 274 ms (Power Plant, 30-bit Morton codes, 15-bit clusters, 8 max-
imum triangles in leaves). Ray tracing performance varies between 10 MRays/s (Hairball,
30-bit Morton codes, 15-bit clusters, 32 maximum triangles in leaves, diffuse rays) and 128
MRays/s (Sibenik, 30-bit Morton codes, 15-clusters, 8 maximum triangles in leaves, ambient
occlusion rays).

8.1 Future Work

The first algorithm using spatial median splits is very fast, but the parallelism of the algo-
rithm is limited. The first levels of the hierarchy contain only a small number of nodes and

99

60 CHAPTER 8. CONCLUSION

the GPU is not fully occupied. The solution could be the algorithm proposed by Karras [16].

The second algorithm using SAH splits for top levels and spatial median splits is limited
as well, but there is another issue. The algorithm constructs top levels of hierarchy using
binning and SAH splits. The number of bins scales exponentially with the number of bits
used for SAH splits. In hierarchies of large complex scenes the number of the top levels
is much smaller than the number of the lower levels. The consequence is that the quality
of these hierarchies is comparable with the quality of hierarchies constructed via spatial
median splits. The parallel construction of bounding volume hierarchies using the surface
area heuristic exclusively is still a challenge. The solution could be the framework introduced
by Vinkler et al. [26]. The topic of this thesis certainly will discussed in the future.

Bibliography

1]

[9]

[10]

[11]

Timo Aila and Samuli Laine. Understanding the Efficiency of Ray Traversal on GPUs.
In Proceedings of the Conference on High Performance Graphics 2009, HPG ’09, pages
145-149, New York, NY, USA, 2009. ACM.

Arthur Appel. Some Techniques for Shading Machine Renderings of Solids. In Pro-
ceedings of the April 30—-May 2, 1968, Spring Joint Computer Conference, AFIPS ’68
(Spring), pages 37-45, New York, NY, USA, 1968. ACM.

Jon Louis Bentley. Multidimensional Binary Search Trees Used for Associative Search-
ing. Commun. ACM, 18(9):509-517, September 1975.

Guy E. Blelloch. Prefix Sums and Their Applications. Technical Report CMU-CS-90-
190, School of Computer Science, Carnegie Mellon University, November 1990.

Robert L. Cook, Thomas Porter, and Loren Carpenter. Distributed Ray Tracing. SIG-
GRAPH Comput. Graph., 18(3):137-145, January 1984.

Philip Dutre, Kavita Bala, Philippe Bekaert, and Peter Shirley. Advanced Global Illu-
mination. AK Peters Ltd, 2006.

Christer Ericson. Real-Time Collision Detection (The Morgan Kaufmann Series in In-
teractive 3-D Technology) (The Morgan Kaufmann Series in Interactive 3D Technology).
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.

A. Fujimoto, Takayuki Tanaka, and K. Iwata. Tutorial: Computer Graphics; Image
Synthesis. chapter ARTS: Accelerated Ray-tracing System, pages 148-159. Computer
Science Press, Inc., New York, NY, USA, 1988.

Kirill Garanzha, Jacopo Pantaleoni, and David McAllister. Simpler and Faster HLBVH
with Work Queues. In Proceedings of the ACM SIGGRAPH Symposium on High Per-
formance Graphics, HPG 11, pages 59-64, New York, NY, USA, 2011. ACM.

A. S. Glassner. Tutorial: Computer Graphics; Image Synthesis. chapter Space Subdi-
vision for Fast Ray Tracing, pages 160-167. Computer Science Press, Inc., New York,
NY, USA, 1988.

Jeffrey Goldsmith and John Salmon. Automatic Creation of Object Hierarchies for Ray
Tracing. IEEE Comput. Graph. Appl., 7(5):14-20, May 1987.

61

62

[12]

[13]

[14]

[15]

[17]

[18]

BIBLIOGRAPHY

Yan Gu, Yong He, Kayvon Fatahalian, and Guy Blelloch. Efficient BVH Construction
via Approximate Agglomerative Clustering. In Proceedings of the 5th High-Performance
Graphics Conference, HPG 13, pages 81-88, New York, NY, USA, 2013. ACM.

Vlastimil Havran. Heuristic Ray Shooting Algorithms. Ph.D. thesis, Department of
Computer Science and Engineering, Faculty of Electrical Engineering, Czech Technical
University in Prague, November 2000.

W. Daniel Hillis and Guy L. Steele, Jr. Data Parallel Algorithms. Commun. ACM,
29(12):1170-1183, December 1986.

James T. Kajiya. The Rendering Equation. SIGGRAPH Comput. Graph., 20(4):143—
150, August 1986.

Tero Karras. Maximizing Parallelism in the Construction of BVHs, Octrees, and K-d
Trees. In Proceedings of the Fourth ACM SIGGRAPH / Eurographics Conference on
High-Performance Graphics, EGGH-HPG’12, pages 33-37. Eurographics Association,
2012.

Timothy L. Kay and James T. Kajiya. Ray Tracing Complex Scenes. SIGGRAPH
Comput. Graph., 20(4):269-278, August 1986.

David B. Kirk and Wen-mei W. Hwu. Programming Massively Parallel Processors: A
Hands-on Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st
edition, 2010.

C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and D. Manocha. Fast BVH
Construction on GPUs. In IN PROC. EUROGRAPHICS 09, 2009.

Duane Merrill and Andrew Grimshaw. High Performance and Scalable Radix Sorting: A
case study of implementing dynamic parallelism for GPU computing. Parallel Processing
Letters, 21(02):245-272, 2011.

Hubert Nguyen. Gpu Gems 3. Addison-Wesley Professional, first edition, 2007.

John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable Parallel Pro-
gramming with CUDA. Queue, 6(2):40-53, March 2008.

J. Pantaleoni and D. Luebke. HLBVH: Hierarchical LBVH Construction for Real-
time Ray Tracing of Dynamic Geometry. In Proceedings of the Conference on High
Performance Graphics, HPG 10, pages 87-95. Eurographics Association, 2010.

Matt Pharr and Greg Humphreys. Physically Based Rendering: From Theory to Imple-
mentation. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.

Steven M. Rubin and Turner Whitted. A 3-dimensional Representation for Fast Ren-
dering of Complex Scenes. SIGGRAPH Comput. Graph., 14(3):110-116, July 1980.

Marek Vinkler, Jiti Bittner, Vlastimil Havran, and Michal Hapala. Massively Paral-
lel Hierarchical Scene Processing with Applications in Rendering. Computer Graphics
Forum, 32(8):13-25, 2013.

BIBLIOGRAPHY 63

[27] Ingo Wald. Realtime Ray Tracing and Interactive Global Illumination. PhD thesis,
Computer Graphics Group, Saarland University, 2004.

[28] Ingo Wald. On Fast Construction of SAH-based Bounding Volume Hierarchies. In
Proceedings of the 2007 IEEE Symposium on Interactive Ray Tracing, RT 07, pages
33-40, Washington, DC, USA, 2007. IEEE Computer Society.

[29] Turner Whitted. An Improved Illumination Model for Shaded Display. SIGGRAPH
Comput. Graph., 13(2):14—, August 1979.

[30] Sven Woop, Jorg Schmittler, and Philipp Slusallek. RPU: A Programmable Ray Pro-
cessing Unit for Realtime Ray Tracing. ACM Trans. Graph., 24(3):434-444, July 2005.

64

BIBLIOGRAPHY

Appendix A

List of Abbreviations

1D One-Dimensional

2D Two-Dimensional

3D Three-Dimensional

AABB Axis Aligned Bounding Box

API Application Programming Interface
BSP Binary Space Partitioning

BV Bounding Volume

BV (X) Bounding Volume of the X

BVH Bounding Volume Hierarchy

CUDA Compute Unified Device Architecture
DDA Digital Differential Analyzer

DOP Discrete Oriented Polytop

FPS Frames Per Second

GPU Graphics Processing Unit

GPGPU General-purpose computing on Graphics Processing Units
GUI Graphical User Interface

HLBVH Hierarchical Linear Bounding Volume Hierarchy
LBVH Linear Bounding Volume Hierarchy
OBB Oriented Bounding Box

OpenGL Open Graphics Library

SAH Surface Area Heuristic

SA(X) Surface Area of the X

SIMT Single Instruction Multiple Threads
UTI User Interface

65

66

APPENDIX A. LIST OF ABBREVIATIONS

Appendix B

Installation Guide

The application requires a graphics card manufactured by Nvidia with the CUDA technology.
The compute capability of the graphics card must be at least 1.2. Further the application
is dependent on several libraries. Windows 64 bit versions of libraries are included on the
attached DVD. An overview of requirements is shown in table B.1.

’ Library ‘ Min. version
CUDA 5.0
Qt 5.1 OpenGL version
GLEW 1.8
Assimp 3.0
DevIL 1.7.8
CMake 2.8.10
Visual C++ | 9.0
GCC 4.8.1

Table B.1: Requirements.

The application is compilable on both Windows and Linux. To build the application
we require two other tools, CMake and a compiler. Using CMake user can generate either
makefile or other project files. We will now describe one of many ways how to build the
application.

Run the CMake GUI application.

Set source code as the project root directory.

Set build as the project root/build directory.
Configure and choose an appropriate project file.
Generate the project file.

Go to build directory where the project file resides.

NS ot W e

Build the application via the project file.

67

68

APPENDIX B. INSTALLATION GUIDE

Appendix C

User Manual

In this appendix we will describe the user interface of the application. First we will describe
how to configure the application. Second we will describe the graphical user interface and
the application controls.

[Parameter [Block [Type | Description |
filename Scene string | filename of a static scene
filefilter Scene string | reg. expression filtering filenames of a dynamic scene
scale Scene float scene isotropic scale
numberOfSamples Renderer int number of samples per primary ray
aoRadius Renderer float radius of ambient occlusion rays
rayType Renderer string | primaryRaysFlat, primaryRaysSmooth, aoRays, diffuseRays
width RenderWidget | int width of the viewport
height RenderWidget | int height of the viewport
maxLeafSize Bvh int maximum triangles in a leaf
mortonCodeBits Bvh int size of Morton codes in bits
mortonCodeSAHBIts | Bvh int number of bits used for SAH splits
splitMethod Bvh string | median, sah
position Camera vector | position of the camera
elevAngle Camera float altitude angle of the camera in degrees
viewAngle Camera float azimuth angle of the camera in degrees
nearPlane Camera float near plane of the camera
farPlane Camera float far plane of the camera
fieldOfView Camera float field of view of the camera in degrees
step Camera float move increment value
frameRate Animation float frame rate of an animation scene
loop Animation bool flag indicating animation loop

Table C.1: Configurable parameters.

C.1 Configuration

The application is configurable via a configuration file, i.e. a text file with the env suffix.
The configuration file is passed to the application as a command line argument. If the
configuration file is not specified then the default.env file is used, which should resides in
the working directory. If the default file does not exist then the default values are used.
The configuration file contains named blocks with keys and values. An example of the

69

OO Utk W~

e e e el e el
O Ut W~ OO

70 APPENDIX C. USER MANUAL

configuration file is shown in listing C.1. The overview of all configurable parameters is
shown table C.1.

RenderWidget {

width 512

height 512
}
Scene {

filefilter ../data/scenes/fairy_forest/fx*.obj
}

Renderer {
rayType aoRays

}

Bvh {
mortonCodeBits 60
splitMethod median

Listing C.1: An example of the configuration file.

C.2 Controls

The application is fully interactive. Drag a mouse to rotate the camera or use thewW, A, S, D
keys to move the camera. Use the menu bar to open settings menu and configure the
application in runtime. Use the menu bar to change a ray type or a BVH construction
algorithm. Use the menu bar save a screenshot of the current image. Use the menu bar to
close the current scene or open new one.

Appendix D

DVD Content

DVD
— bat

—— dynamic: batch and configuration files for dynamic scenes

static: batch and configuration files for static scenes

—— bin: Windows 64 bit executable

cmake: CMake scripts

—— data

L scenes

—— dynamic: dynamic scenes

static: static scenes
—— doc
L thesis: the thesis

——— 1ib: required libraries

src: source files

71

	Introduction
	Thesis Structure

	Theoretical Background
	Ray Shooting and Visibility
	Image Synthesis
	Ray Casting
	Ray Tracing
	Path Tracing and Rendering Equation

	Acceleration Data Structures
	Object Partitioning Structures
	Space Partitioning Structures

	Parallel Computing
	Reduction
	Prefix Scan
	Radix Sort

	Compute Unified Device Architecture
	Programming Model
	Memory Model
	Execution Model

	Construction of Bounding Volume Hierarchies
	Cost Model
	Top-Down Construction
	Surface Area Heuristic
	Spatial and Object Median

	Bottom-Up Construction
	Incremental Construction

	Bounding Volume Hierarchies on the GPU
	Morton Curve and Spatial Median Splits
	Linear Bounding Volume Hierarchies
	Spatial Median Splits
	SAH Splits

	Hierarchical Linear BVH
	Hierarchical Linear BVH with Work Queues
	Spatial Median Splits
	SAH Splits

	Compact Prefix BVH
	BVH with Task Pool
	Spatial Median Splits
	SAH Splits

	Design and Implementation
	Construction of Bounding Volume Hierarchies
	Spatial Median Splits
	SAH Splits
	Radix Sort

	Rendering System
	Used Technologies
	CUDA Management
	Scene Management
	BVH Management
	Rendering Pipeline
	User Interface

	Results and Discussion
	Static Scenes
	Spatial Median Split with 30-bit Morton Codes
	Spatial Median Split with 60-bit Morton Codes
	SAH Splits with 30-bit Morton Codes and 15-bit Clusters

	Dynamic Scenes
	Discussion

	Conclusion
	Future Work

	Bibliography
	List of Abbreviations
	Installation Guide
	User Manual
	Configuration
	Controls

	DVD Content

