

Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Computer Graphics and Interaction

Master's Thesis

Visualization of inner structure of complex 3D objects based
on opacity modulation

Bc. Tomá² Pastý°ík

Supervisor: �molík Ladislav Ing., Ph.D.

Study Programme: Open Informatics

Field of Study: Computer Graphics and Interaction

January 5, 2015

iv

v

Aknowledgements

I would like to thank Ing. Ladislav �molík, Ph.D. for his kind guidance and valuable
consultations and advices when supervising this thesis. I extend my gratitude to my parents,
friends and loved ones for their love and support which guided me through all my life.

vi

vii

Declaration

I hereby declare that I have completed this thesis independently and that I have listed all
the literature and publications used.
I have no objection to usage of this work in compliance with the act �60 Zákon £. 121/2000Sb.
(copyright law), and with the rights connected with the copyright act including the changes
in the act.

In Kladno on January 5, 2015 .

viii

Abstract

This thesis addresses problem of rendering semi-transparent objects and the enhancement
by opacity modulation to reveal object's internal structures. Illustration Bu�er - algorithm
solving the Order Independent Transparency (OIT) is implemented and compared to other
OIT solving techniques: Depth Peeling, Dual Depth Peeling and Per Pixel Linked Lists. We
focus on opacity modulation based on object's features and we apply such modulations to the
Illustration Bu�er while comparing the ease of use with other algorithms. Finally we test all
mentioned algorithms and conclude which algorithm is better under speci�c circumstances.

keywords: order independent transparency, illustration bu�er, comparison, depth peeling,
dual depth peeling, per pixel linked lists, opacity modulation, inner structure visualization

Abstrakt

Tato práce se zabývá problémem zobrazování £áste£n¥ pr·hledných objekt· a jeho vylep²ení
pomocí modulace pr·hlednosti za ú£elem odhalení vnit°ních struktur 3D t¥les. Implemento-
vali jsme metodu Illustration Bu�er °e²ící problém Order Independent Transparency (OIT),
kterou porovnáváme s algoritmy, které takové zobrazování °e²í: Depth Peeling, Dual Depth

Peeling a Per Pixel Linked Lists. Aplikujeme metody modulace pr·hlednosti zaloºené na
vlastnostech objekt· na Illustration Bu�er a zkoumáme obtíºnost pouºití v porovnání s os-
tatními zmín¥nými algoritmy. Algoritmy °e²ící OIT problematiku testujeme mezi sebou a
ukazujeme, za jakých podmínek je který algoritmus lep²í.

klí£ová slova: order independent transparency, illustration bu�er, porovnání, depth peeling,
dual depth peeling, spojové seznamy pro pixely, modulace pr·hlednosti, vizualizace vnit°ní
struktury

ix

x

Contents

1 Introduction 1

1.1 Thesis Structure . 1

2 Theoretical Background 3

2.1 Rendering of Translucent Objects . 3
2.1.1 Painter's Algorithm . 4

2.2 Order Independent Transparency . 4
2.2.1 Dual Representation of the Problem 5
2.2.2 Image Compositing . 6

2.2.2.1 Under Operator . 6
2.2.2.2 Over Operator . 7

2.3 Opacity Modulation . 7
2.3.1 Modulation by Di�erences in Shape 8
2.3.2 Modulation by Distance Between Samples Along the Viewing Ray . . 8
2.3.3 Modulation by Distance from Important Shape Features in the Layer . 10
2.3.4 Modulation by Groups . 10
2.3.5 Modulation by Distance from De�ned Plane/Area (Cut Motivated) . . 11
2.3.6 Additional Notes to Opacity Modulation 11

2.4 Colour Modulation . 12
2.4.1 Lighting and Shading . 12
2.4.2 Silhouette Enhancement . 12
2.4.3 Transfer Functions . 13

3 Analysis of Compared Methods 15

3.1 Order Independent Transparency . 15
3.1.1 Depth Peeling . 15
3.1.2 Dual Depth Peeling . 16
3.1.3 Alpha Blending Approximations . 18
3.1.4 Concurrent Linked List Construction on the GPU 18
3.1.5 Illustration Bu�er . 20

3.1.5.1 Neighbors Location by Carnecky 21
3.1.5.2 Proposed Neighbors location 23

3.2 Comparison of OIT Solving Methods . 24
3.2.1 Modulation by Groups . 24
3.2.2 Modulation by Distance from De�ned Plane/Area (Cut Motivated) . . 25

xi

xii CONTENTS

3.2.3 Depth Peeling and Dual Depth Peeling 25
3.3 Per Pixel Linked Lists . 27

3.3.1 The Illustration Bu�er . 29
3.4 Summary . 33

4 Design and Implementation 35

4.1 Used Technologies . 35
4.1.1 OpenGL and GLSL . 35
4.1.2 GLM . 35
4.1.3 RapidJSON . 35
4.1.4 QT Framework . 36
4.1.5 The OpenGL Extension Wrangler Library 36

4.2 Application Structure . 36
4.2.1 Graphical User Interface . 39
4.2.2 Additional Notes to Application Structure 40

4.3 Creation of the Illustration Bu�er . 40
4.3.1 Used structures . 40

4.3.1.1 Formats Packing . 42
4.3.2 Bu�er Filling . 42
4.3.3 Sorting . 43
4.3.4 Neighbors Location . 44
4.3.5 Groups and Importance per Components 45
4.3.6 Visualization of the Illustration Bu�er 45

4.4 Non Local Transparency . 46
4.4.1 Transparency Fields . 46
4.4.2 Di�usion Process . 47

4.4.2.1 Physical Process . 47
4.4.2.2 Nonphysical Process . 48
4.4.2.3 Proposed α, β Di�usion . 49
4.4.2.4 Automatic Transparency Field Setup 49

4.5 Modulation by Distance Along the Ray . 49
4.5.1 Combined with Modulation by Di�erences in Shape 50

4.6 Final Rendering Pass . 50

5 Results and Discussion 53

5.1 The Illustration Bu�er Creation . 55
5.1.1 Sorting Methods Comparison . 58
5.1.2 Comparison with Other Methods . 59
5.1.3 Memory consumption . 61

5.2 Results of the Opacity Modulation . 61
5.2.1 Speed Comparison . 62
5.2.2 Visual Comparison . 63

6 Conclusion 69

6.1 Future Work . 70

CONTENTS xiii

A List of Abbreviations 73

B Additional Measurements Data 75

C Installation Guide 77

D DVD Content 79

E User Manual 81

E.1 Controls . 82
E.2 Con�guration . 82
E.3 Measurements and Graphs . 82

xiv CONTENTS

List of Figures

2.1 Correct order (3, 2, 1) . 4
2.2 Incorrect order (2, 1, 3) . 4
2.3 Unsolvalble problem for Painter's algorithm . 4
2.4 For the sake of simplicity one row display of pixels pi, i ∈ {1, ...,m} where m is the

number of pixels is shown. Fragments with the same number are in the case of peeling

methods in the same layer. In case of ray casting terminology, numbers denote the

order along the ray. 5
2.5 Decreasing opacity globally for the whole model causes the internal structures

to appear in exchange for the loss of shape perception. 7
2.6 Normals ~a,~b,~c, ~d as neighbors of normal ~n . 8
2.7 The curvature estimation is than computed as the sum of all distances between the

~n and other normals. 8
2.8 α computed using equations (2.8) (2.8) . 9
2.9 α computed using equations (2.9),(2.8) . 9
2.10 α computed using equations (2.9), (2.10) . 9
2.11 T-Junctions . 10
2.12 Courtesy of Kruger et al.[16] shows distance from the point based modulation on

the left and focus area de�ned by orthogonal box on the right. 11

3.1 Creating shadow map from the camera point of view to retrieve the depth of nearest

fragments. 16
3.2 Peeling layers in both front and back direction. If number of layers n is odd, the last

layer would be blended twice if the sliding window mechanism was not used. 17
3.3 Shows how fragments are stored to the linked lists structure whene elements are

rendered to the viewport. 19
3.5 Using a perspective we show two crossing planes a). When peeling the �rst layer and

querying the neighboring pixels of P in such layer, we retrieve b). When searching

for neighbors of P in Illustrative bu�er we want to �nd c). 21
3.4 Principle of the concurrent lists is the same as in �gure 3.3. Here however are next

pointers stored separately from the data. Data are spanned by size of four here,

giving space for colour, four surrounding neighbours (NB), normal (N) and some

other data, which depend on the target use of the bu�er. Bu�er pixelHead if of a

same size as the viewport (X × Y). This �gure does not consider the sorting of

samples along the ray. 22
3.6 Meaning of εn and εz on the surface samples. 22

xv

xvi LIST OF FIGURES

3.7 a) indexed geometry to prevent duplicate geometry to be sent to gpu. b) Every

vertex knows indices of all vertices in given triangle. c) Every triangle has its own

id. d) table maps IDs of the triangles (blue) to b) where every vertex knows all

indices in its triangle. 23
3.8 Every fragment has equal opacity. 25
3.9 Fragment is fully opaque if the number of neighbors is less than four meaning it is

part of the edge. 25
3.10 a) space arrangement of shaded 3D terrain (red) with green grid on the top. b) Pro-

jection of objects in a). c) points of the same surface in object's perspective do not

have to be neighboring fragments. 26
3.11 Samples along the view ray and distances between them in camera space. Distance(i)

shows a distance to the next layer in front to back manner and SkipDistance(i,k) is

a distance between samples si, sk. 28
3.12 Every fragment si has four pointers nbTi, nbRi, nbBi, nbLi to its geodesic neighbor

in the top, right, bottom and left direction, if such neighbor exists. Fragment si still

has the pointer to next fragment along the view ray, it is not visualized here for the

sake of simplicity. 29
3.13 Fragment of the silhouette (red), fragment occluded by silhouette (green) and its

neighboring fragment not occluded by above surface (blue). 30
3.14 Can we simply answer the question 'is si and sj on the same surface?' Answer is

unfortunately negative as explained in the text. 31
3.15 Hallo highlight using algorithm 8 produces dark hallo. 32
3.16 Hallo highlight produced by algorithm 9 with colourOfHaloHighlight = white. . . 32
3.17 Same as in �gure 3.16 with last layer opaque. 32

4.1 Viewport of dimensions X,Y divided into 9 regions each with its own atomic
counter fragCounter[i], i ∈ {0..8} . 40

4.2 Heatmap gradient shows the linked lists size color coded in following manner: for

gradient blue->green->yellow->red lowest sizes are blue and longest red. 45
4.3 Discrete Laplacian convolution kernel for 2D signals 47
4.4 All images were created by 15 iterations of di�usion process. Top left: is result

of convolution with discrete Laplace operator of α. Top right: is non physical

approximation of β di�usion as in [12], su�ering from any contour discontinuity.

Bottom left: is result of applying discrete gaussian �lter on β. We can see artifact

called ringing in place of former contour which is typical for such kernels. Bottom

right: is method used by us where result is combination of blurred non physical β

di�usion process and output of discrete Laplacian operator on α. 48

5.1 Measured projections of models along with the heatmaps indicating pixels
with highest length of linked list as red. Models are sorted alphabetically by
name. 54

5.2 GPU Time in plit stages of the Illustration Bu�er creation process. Models on the

horizontal axis is sorted by the Total rendering time. 55
5.3 Heatmaps of the linked lists lengths of GPU 2 and Suspension 2. 56

LIST OF FIGURES xvii

5.4 Parallel coordinates visualizing the same information as the �gure 5.5. Time space

is split to thirds. Results of the �rst third are green, second third blue and last third

results are red. 57
5.5 Visualized table 5.2. Secondary Y axis is used for the dashed line representing Ψ,

primary Y axis (on the right) is then used for all other variables using logarithmic

scale. 57
5.6 Speed comparison of the dynamic sort and sorting in static array. Bigger spikes are

caused by the Ψ parameter as discussed before. 59
5.7 Depth peeling . 60
5.8 Dual depth peeling . 60
5.9 Concurrent per pixel linked lists . 60
5.10 Illustration Bu�er . 60
5.11 Speed comparison of the single pass of the di�usion process, blurring by Gaussian

separable �lter and of distance-curvature search, where distances between layers are

found as well as the surface curvature. 62

B.1 Visualization of tables B.1 and B.2 . 76

E.1 Graphical User Interface of the main window with Settings panel on the
right. All three tabs are shown. 81

xviii LIST OF FIGURES

List of Tables

4.1 Table shows data stored per fragment. First column shows the position in
the fragData bu�er according to the spanning mechanism. SpanSize = 4 is
used. One row of the table is represented as vector of 4 unsigned integers
(uvec4). 41

5.1 Illustration Bu�er creation split to stages Fill, Sort, FindNeighbors, Compose. 56
5.2 Illustration Bu�er creation - Table show used models, number vertices, frag-

ments and max size of the linked lists in given view, resulting in time mea-
sured on GPU, and FPS where CPU overhead is considered as well. Column
Ψ shows percentage coverage of the worst third of the linked lists lengths. In
other words it shows coverage of the yellow and red pixels in the heatmaps in
percents (Pixels with no linked lists stored are not considered). 58

5.3 Comparison of the dynamic sort method with sort in the array. Table is sorted
by the MAX |LIST| for convenience. 59

5.4 Comparison of the depth peeling, dual depth peeling and concurrent per pixel

linked lists. Please note that data vertices, fragments, list max
size and Ψ are shared by all methods and can be found for example in table
5.2. 61

5.5 Speed comparison of the single pass of the di�usion process, blurring by Gaus-
sian separable �lter and of distance-curvature search, where distances between
layers are found as well as the surface curvature. 63

B.1 Impact of changing the number of fragments with other variables �xed. First
row denotes used viewport resolution. 75

B.2 Impact of changing the number of fragments with other variables �xed. First
row denotes used viewport resolution. 76

C.1 Minimal application requirements. Either CLANG or GCC is required, not
both. 77

xix

xx LIST OF TABLES

Chapter 1

Introduction

There are many challenges in rendering semi-transparent objects. The most important one is
to display such objects in a way users understand and can determine their inner structure and
shape from one image. It is vital for the users to be able to use their experience from the real
world and connect it to what they see to create the �nal mental model. Considering complex
objects the user might not be able to construct this model at all if the object is opaque or
transparency of all layers is homogeneous. This implies the need for some image enhancement
with knowledge of local geometry based on human perception. Even if we are able to enhance
image in this way it might not be enough for the user to understand the structure of examined
object correctly. Therefore interactivity is a desired property in object visualization so that
user can manipulate the object in space.

When we are rendering semitransparent 3D objects on GPU we can choose from variety
of order independent transparency (OIT) algorithms. Yet, it is not clear at what conditions
is one algorithm better than another. In other words, when it is worth to invest time
and resources to implement more complicated algorithm. In this thesis we therefore address
this problem by comparison of several OIT solving algorithms: Depth Peeling, Dual Depth

Peeling, Per Pixel Linked Lists and the Illustration Bu�er.
Our implementation is based on one of the latest techniques called the Illustration

Bu�er [12]. However authors focus mainly on �ow surfaces while their technique of building
the bu�er containing the scene can be used in general. When such a bu�er - called Illustra-

tion Bu�er is obtained, every single fragment knows its neighbors along the surface as well
as along the viewing ray. This knowledge can be later used to determine the most important
sections of image for the user such as edges, junctions, silhouettes. . .

Even though main goal of this thesis is to implement the technique described in [12]
we also compare it to other known techniques solving the OIT problem: Concurrent per
Pixel Linked Lists, Depth Peeling and Dual Depth Peeling.

1.1 Thesis Structure

Necessary theory background is introduced in Chapter 2, where OIT problem is de�ned along
with its dual representation. Methods of �nal image composition are introduced as well as
the categorization of opacity modulation techniques. Chapter 3 compares discussed OIT

1

2 CHAPTER 1. INTRODUCTION

solving algorithms with great focus on their usability in several opacity modulation ap-
proaches. Chapter 4 is rather practical. The application structure, used technologies and
details on the Illustration Bu�er implementation are provided. Finally we discuss our results
in Chapter 5 and Chapter 6 concludes the thesis.

Chapter 2

Theoretical Background

To achieve and describe some advanced opacity modulation techniques a related theory
should be introduced �rst. This chapter introduces the problem of rendering translucent ob-
jects, describes its dual representation that will provide us further �exibility when comparing
rendering methods. Finally, methods of �nal image composition are introduced.

For the purpose of this work let us de�ne pixel as the �nal image element presented to
the user. Pixel is therefore the smallest element user can address. Considering traditional
rendering pipeline (e.g. in OpenGL 5.3), fragments are de�ned as a candidate for a pixel.
Both pixels and fragments contain the colour as well as the depth as the distance to the
camera.

The z-bu�er of the same size as current framebu�er is de�ned to choose the �nal pixels
containing the depth of the closest pixels to the camera. It is the depth test that turns
fragments to pixels:

deptBuffer(x, y) =

{
unchanged if fragment.depth > depthBuffer(x, y)
fragment.depth if fragment.depth <= depthBuffer(x, y)

If no depth-bu�er is used during the rendering process, pixels are being rewritten by any
later fragments, regardless the depth. The order of incoming fragments in general case is
not de�ned.

2.1 Rendering of Translucent Objects

Since rendering of the translucent geometry needs to take into consideration all the translu-
cent fragments, the depth-bu�er cannot be used. Without the depth-bu�er we do not dis-
card any fragments due to their depth but we have to solve the order of rendered geometry
to get correct result, as shown in �gures 2.1 and 2.2. Numbers corresponds to the distance
to the camera with a red layer being the closest and the blue one the furthest. As it is

3

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

3

5

6

5

5

5

6

6

7

4

p1

p2

pm

pi, i ∈ {1, ...,m} m

fi, i ∈ {1, ..., n} n

fi, i ∈ {1, ..., n}
fi ∀(i, i� 1), i ∈ n, fi.depth > fi� 1.depth

6 CHAPTER 2. THEORETICAL BACKGROUND

Layers

Terminology of ray casting however might not be suitable for some algorithms solving
OIT problem, especially methods based on peeling. Layers are denoted as li, i ∈ {1, ..., n}
where n is the number of total layers created. Layer li than consists of all fragments, that
would have index i in the Algorithm 4.

Algorithm 2: OIT solution using layers terminology
1 while layer to be processed exists do
2 1. Render geometry.
3 2. Peel (ignore) any previously processed layers.
4 3. Store all pixels of the current layer (denoted by the same number in �gure 2.4 to a separate

texture.
5 end
6 Blend all layers to one image using techniques described in section 2.2.2.

This results in image representation split into n sorted layers stored as separate images.
This di�ers from the previous method where each fragment is stored separately.

2.2.2 Image Compositing

When compositing the pixel �nal colour the order of incoming fragments is extremely im-
portant. Fragments need to be sorted along the ray as shown in �gure 2.4 in front to back
or back to front order. Each direction of sorting requires speci�c blending approach using
over or under operator when composing the �nal colour. Following equations using both
operators are derived from equation shown in Chapter 11.4 of the book Moderní po£íta£ová
gra�ka[24].

For both operators let us consider two samples, front sample sf with colour cf and
opacity αf and the back sample sb with colour cb and opacity αb. Sample is considered fully
transparent for α = 0 and fully opaque for α = 1. Let the colour of resulting sample be
denoted as C of opacity α.

Following equation is used in terms of alpha blending[24] to solve the problem of rendering
semi-opaque objects in back to front manner (as the Painter's algorithm does (section 2.1.1)):

C = αfcf + (1− αf)[αbcb + (1− αb)cbackground] (2.1)

In de�nitions of over and under operators we omit the cbackground on purpose since it can
always be replaced as additional layer of samples.

2.2.2.1 Under Operator

Under operator is used when compositing samples in front to back manner. Equation
2.1 needs to be reformulated recursively for compositing �nal colour from the samples
si, i ∈ {1, ..., n} where n is the number of samples to be composed along the ray in op-
posite direction:

C = α1c1 + (1� α1)(α2c2 + (1� α2) . . . (αi� 1ci� 1 + (1� αi� 1)αncn)

C = α1c1 + α2c2(1� α1) + . . .+ αici(1� α1) · . . . · (1� αn)

Cout = αincin + αici(1� αin) = αici αincin

αout = (1� αin) ∗ αi

αi, ci
Cout αout

Ti = (1 � αi) αout
Tout = (Ti� 1)(1 � αi)

Cout = αici + αincin(1� αi) = αici αincin

αout = (1� αin) ∗ αi

αi, ci

α = 1.0 α = 0.75 α = 0.5 α = 0.25

~n

Curvature = |~n� ~a|+ |~n�~b|+ |~n� ~c|+ |~n� ~d|

< 0, 2 > < 0, 8 >
< 0, 1 >

d

na

b

c

~a,~b,~c, ~d
~n

|n-a| |n-b|

|n-c|

|n-d|

~n

si, i ∈ {1, ..., n}
n

i

i = 1 si
sj

Distance(i) = |si.depth� sj .depth|

i, j i < j si
focusRegion α si

α = saturate

(
Distance(i)

focusRegion

)

α α α

saturate
Distance

Distance(i) = |si.depth� si+1.depth|

δc

curvature

α = saturate

(
max

(
Distance(i)

focusRegion

)
, curvature(i) · δc

)

T-Junction XT-Junction

Non-local
transparency

Silhouette
enhancement

XT-Junction

Non-local
transparency

pk
αk

2.3. OPACITY MODULATION 11

2.3.5 Modulation by Distance from De�ned Plane/Area (Cut Motivated)

This method is motivated by cutting through the volumetric data[16].It is, in fact, very
similar to the method using distance between speci�c samples along the ray. In this case
however the distance is computed w.r.t. a point, plane, area (called later "the focus element")
in general in space which is not the original part of the model. The user is usually in charge
of the position and size of such focus element enabling to see just the information in the area
of focus.

α = saturate

(
||si.pos− f.pos||
focusRegion

)
(2.11)

Equation 2.11 demonstrates the case of a focus area of size focusRegion and center
in point f . Other cases can be solved by point location search methods from computational

geometry. In case of the focus element de�ned by plane we search the shortest distance
of si.pos to the plane (the size of vector perpendicular to the plane originating in si.pos).
The focus element de�ned by the area can be than solved by determining if si.pos is inside
or outside of the focus area convex hull.

Figure 2.12: Courtesy of Kruger et al.[16] shows distance from the point based modulation on
the left and focus area de�ned by orthogonal box on the right.

2.3.6 Additional Notes to Opacity Modulation

Presented opacity modulation methods are often also called importance-based [14],[16]. Even
though these methods require di�erent metrics and features to be detected, all of them then
a�ect the samples opacity by the sample importance of given metric.

This chapter shows the most important methods for perception of the internal structure
however some other existing and not mentioned methods can be used depending on the use
domain.

Great advancement and inspiration in this area can be found in volume rendering where
the samples usually contain additional data about the mass they describe [11],[14],[16]. Many
of the principles from the illustrative and importance-based volume rendering (which is solv-
able by ray casting) may be applied to the Illustration Bu�er.

12 CHAPTER 2. THEORETICAL BACKGROUND

2.4 Colour Modulation

Even though the opacity modulation and its application to di�erent methods solving OIT

problem is the main topic of this work, a colour modulation should not be omitted since it is
an important part of the visualization process.

2.4.1 Lighting and Shading

Shading and lighting considerably a�ects the �nal perception of what we can see. Even
if the opacity modulation would allow us to see everything important we want to see, this
might not be enough for the total comprehension of the context. While, in our study, we use
only the di�use lighting as:

NdotL = (max(dot(normalize(normal), normalize(eyeDir)), 0.0))

Colour = sampleColour ∗NdotL
(2.12)

and we do not use any specular part of the lighting, a lighting model can a�ect our perception
of the material and increase the overall understatement of the context. Kruger et al. show
results of custom lighting models for the human skin and bones combined with a context
preserving opacity modulation[16]. In general we should be very careful using the specular
part of the lighting combined with presented opacity modulation methods. The reason of
such care is that specular light peak could hide the detail we need in places where it is crucial
for the user to understand the object shape and structure.

The selected shading model also a�ects the perception of the surface smoothness. While
in our application the Phong's shading model is used, �at or Gouraud shading might be
important to use in speci�c-use cases[24]. This matter is however not covered in this work.

2.4.2 Silhouette Enhancement

As shown in section (2.3.3),a silhouette enhancement can have great impact when it is
combined with methods of non local transparency. This is however best achieved by a colour
modulation and not by opacity modulation as in [12]. We therefore use following formula
for the silhouette enhancement:

Colour = Colour + colourOfHallo ∗ saturate(distance) (2.13)

where colourOfHallo is the desired colour of the highlight multiplied by distance to the
contour of the silhouette saturated to < 0, 1 >. This is further discussed in 3.3.1. Please visit
algorithm 9 in the next chapter to see how this can be included in the colour composition
process.

2.4. COLOUR MODULATION 13

2.4.3 Transfer Functions

Transfer functions are a powerful tool especially in volume rendering where each sample is
de�ned by additional data, e.g. density. The transfer function is de�ned as:

Function f(x) is a transfer function f(x) = τd if x is a scalar value and τ is a value of

dimension d. In visualization the τ4 is usually used to map the scalar value to RGBA colour.

This de�nition can be extended to multiple dimensions of the mapped scalar value as well
to achieve f(x0,, xn) = τd where multiple scalar values will a�ect the result. Even though
our work does not focus on the volumetric rendering, this method can be used to geometry
based models as well. For example we can use it to modulate an opacity in a custom way
based on the distance. We use transfer function for debugging purposes and visualization
of the Illustration Bu�er as shown in Chapter 4.

14 CHAPTER 2. THEORETICAL BACKGROUND

Chapter 3

Analysis of Compared Methods

This chapter presents analysis of the OIT problem and OIT solving algorithms. Further,
comparison of presented algorithms is discussed w.r.t. ease of use and application of opacity
modulation methods presented in Chapter 2.

3.1 Order Independent Transparency

Problem of the Order Independent Transparency (OIT) is well known in scene rendering
and there is no standard � already included implementation in either OpenGL or DirectX.
It is a general problem consisting of rendering objects with a uniform or non-uniform alpha
channel. To display such geometry correctly all fragments need to be blended in the correct
order, thus sorting the fragments is often the key requirement for techniques solving OIT.
This section is a summary of several most common techniques to deal with this problem.

3.1.1 Depth Peeling

In 2001 presented method by C.Everitt[15] is based on multiple geometry passes, peeling just
one layer of visible geometry per pass. It is in fact based on a shadow mapping technique,
which helps to determine visibility between scene points and a certain light source. Shadow
mapping uses additional depth bu�ers for every light source to be able to compare the depth
of rendered fragment and the depth bu�er created by the light source.

While standard depth test provided by GPUs would give us only the nearest fragment's
depth, it is not a su�cient test for OIT problem since knowledge of all layers depths is
required. The algorithm works as follows:

15

16 CHAPTER 3. ANALYSIS OF COMPARED METHODS

Algorithm 3: The Depth Peeling on GPU
Data: Depth Bu�er D, Shadow Texture S, Layer Texture L, Result Texture R, Geometry
Result: All layers blended into R

1 Depth Test ON
2 Render the geometry
3 Store the �rst layer consisting of the nearest fragments to R, store the depth of such fragments to S.
4 while Layers to be processed exist do
5 Depth Test ON
6 Render the geometry
7 Peel the previously captured layer using S.
8 Store result in L
9 S = create shadow map from the camera view.
10 Depth Test OFF
11 Render full-screen quad
12 Blend the L to R

13 end
14 In the �nal pass render texture R to the framebu�er.

Figure 3.1: Creating shadow map from
the camera point of view to retrieve the
depth of nearest fragments.

Since we need two depth tests per pass, �rst
to peel away the previous layer and the second
to render only the currently nearest fragments,
OpenGL depth bu�er is not enough. For the sec-
ond depth test we use standard OpenGL depth
bu�er, shadow-mapping[24] principle is used to
create the depth map of layer to be peeled. This
shadow map is however rendered from the point of
the camera and not the light, see �gure 3.1. By
storing only z coordinates instead of the colour we
get the depth map for the next layer to be peeled.

This algorithm therefore performs n geometry
passes to retrieve n layers. While more advanced
algorithms such as Dual Depth Peeling[9] blend
these layers �on the �y� during the peeling passes,
depth peeling algorithm[15] stores currently retrieved layer and performs another blending
pass using full-screen quad, using OpenGL blending functions.

With graphical hardware being more advanced several extensions of original Depth Peel-

ing algorithm are published, such as Z-�ghting Aware Depth Peeling [22] and more impor-
tantly Dual Depth Peeling[9] discussed below this section.

3.1.2 Dual Depth Peeling

Dual depth peeling method[9]is a modi�cation of the original Depth peeling algorithm dis-
cussed in previous section allowing to peel two layers at once. In one pass it peels back
and front layers simultaneously. Since this is not possible to do with default depth bu�er
and GPU does not have multiple depth bu�ers to perform front to back and back to front
rendering, custom min-max depth bu�er has to be used.

3.1. ORDER INDEPENDENT TRANSPARENCY 17

To prevent peeling any fragments by both front to back and back to front directions, the
algorithm uses mechanism of sliding window for two consecutive layers. The min-max depth
bu�er is implemented as RG32F two channel texture where depth values can be compared
by MIN blending in every pass. By using the sliding window mechanism single fragment
shader can be used for the depth comparison and blending. Default depth bu�er o�ered by
hardware is turned o�. The mechanism of using a sliding window for two consecutive layers
works as follows:

Distance from the camera

layers L1, Ln

layers L2, Ln-1

layers L n/2 , L n/2 +1

L n/2

Figure 3.2: Peeling layers in both front and back direction. If number of layers n is odd, the last
layer would be blended twice if the sliding window mechanism was not used.

Algorithm 4: The Dual Depth Peeling on GPU
Data: Min-Max bu�er, Layer Texture F,Layer Texture B, Geometry
Result: All layers blended to one

1 Depth Test ON
2 Render the geometry
3 Store the �rst layer consisting of the nearest fragments to F and the last layer of furthest fragments
to B.

4 In the �rst pass no fragments are peeled. The min-max bu�er values are initialized by depths of two
outside layers. while both directions did not meet do

5 Render the geometry
6 All fragments with equal depths from the previous pass are peeled from the front and back.
7 Update the min-max bu�er.
8 Blend results of front peeling with F and results of back peeling with B in the same pass.

9 end
10 To process the last fragments (if exists) only one direction needs to be used to avoid

double-processed fragments, using the sliding window.
11 The additional �nal step is needed to blend both layers F,B created by front to back and back to

front progress.

It is also important to state that for the front to back direction under-blending equation needs
to be used while for all fragments peeled in the opposite direction, over-blending equation is
needed. Both equations are explained further in Chapter 3.

While in original depth peeling N geometry passes were necessary to process the scene,
where N is the number of layers it created, Dual depth peeling performs N/2 + 1 geometry
passes only, where the additional +1 step is described as step 11 in algorithm description.

18 CHAPTER 3. ANALYSIS OF COMPARED METHODS

3.1.3 Alpha Blending Approximations

As published by Houman Meshkin[17] at GDC1 it is possible to approximate rendering
of transparent objects in a single geometry pass. The main idea of the Weighted Sum
algorithm is to remove completely order-dependent terms of the rendering equation and
splitting order-independent terms to multiple render targets. This method however does not
produce plausible results for higher alpha values, only for alpha values α < 0.3. Higher alpha
values result in too dark or too bright images (since we do not compare this method to other
algorithms in greater detail, please head to cited paper for details and images).

Much better results were achieved with Average Sum algorithm published by NVIDIA[9].
Their idea is based on the fact, that if all the layers had the same colour, result would not
depend on layers' order. To ful�ll such condition colours are replaced by average colour
per pixel and weighted by fragments' alpha if not uniform. Even though the algorithm is
called[9] Single-Pass Approximation, at least two passes are needed to accumulate RGBA
colours �rst and then to compute alpha-weighted average colour. As this algorithm does not
omit any order-dependent terms of the rendering equation, results are much more plausible
even for high or non-uniform alphas compared to Dual depth peeling and Weighted sum
algorithms. Such comparison of images can be found in[9].

Even though this approach is very fast, it gives only the approximation of the OIT
problem which is not extendable to any methods considering non-local transparency and
therefore this method is not further examined in this text.

3.1.4 Concurrent Linked List Construction on the GPU

So far described methods are complex and unintuitive due to graphical hardware of the time
they were published. A much more intuitive method is to store every fragment that belongs
to one pixel to a linked list originating in that pixel and sorting it by fragment's depth to
achieve correct behavior in the colours compositing equation. Method[23] described below
is very similar to original A-bu�er published in 1984[13], it only achieves OIT by using
linked lists constructed in memory of GPU. While �rst GPU implementations of A-bu�er
presented by Meyers and Bavoil called Stencil routed A-bu�er [18] and Bavoil et al.[10] called
K-bu�er was able to store �xed amount of fragments per list, method presented by Yang[23]
is unbounded. Since this work is based on creating linked lists on GPU, this topic is discussed
further in following chapters.

A GPU version of A-bu�er can be constructed in two geometrical passes. In the �rst pass
we create a linked lists of fragments per pixel. To do that we need to store the fragments
along with the pointers to their neighbours along the viewing ray, as well as the pointer to
the �rst fragment per pixel, called a pixel head. First fragments that are processed per pixel
are stored as la inked list head. With the following fragments we continue to build the linked
lists per pixel until all fragments are processed.

1Game Development Conference

-1 -1

-1 0

-1 -1

-1 -1

-1

-1

-1 -1 -1 1 -1

-1 -1 -1 2 -1

-1 -1 -1 -1 -1

-1 -1 -1
0 1 2 3 4 5 6 7

VIEWPORT pixelHead fragData

index to fragData buffer
is therefore:

color of
fragment 0

pointer to
next from

fragment 0

In the fragData buffer span = 2
is used, therefore each fragment ocupies
exactly 2 fields.

index_fd = index*2

Color is then stored at index_fd,
Next pointer is at index_fd + 1.

-1 -1

-1 0

-1 -1

-1 -1

-1

-1

-1 -1 -1 1 -1

-1 -1 -1 3 -1

-1 -1 -1 -1 4-1 -1 -1 -1 4-1 -1 -1 -1

-1 -1 -1
0 1 2 3 4 5 6 7

-1
8 9 10 11 12 13 14 15

2

Head pointer needs to be updated
to index of new fragment.

Previous index has to be stored as
the next pointer of the fragment witch
replaced it:

X

Y

X

Y

X

Y

X

Y

AC = 1

AC
colour

AC+ = 1

20 CHAPTER 3. ANALYSIS OF COMPARED METHODS

As soon as we have the A-bu�er constructed in the GPU's memory, the second pass is
needed to sort pixels' linked lists. That can be achieved simply by rendering a full-screen
quad and sorting lists in the fragment shader. While the original A-bu�er[13] tored depth,
transparency, pixel coverage and colour per fragment, it's GPU version23 stores such data
to separate bu�er and than uses pointers to speed up the work with the linked list structure.

Figure 3.3 shows how to store the fragments data to the memory of the GPU to form
concurrent linked lists. To do so we need an atomic counter that will increase with each new
rendered fragment to give us the fragment identi�er. The algorithm of creating the linked
lists is then showed in the Algorithm 5.

Now we have all samples (fragments) along each ray going through the center of each
pixel stored in the concurrent linked lists. To be able to compose the �nal image we have
to now sort the samples of each list. To do so the full-screen quad is rendered and for each
pixel the HEADPOINTERS bu�er is queried for the �rst fragment of the list. Next pointers
in the FRAGMENTDATA bu�er are then used to traverse the list until special value of -1 is
found which indicates the last element in the list. Fragments are than sorted using insertion
sort as Yang[23] or selection sort as Carnecky[12] (Even though selection sort should be more
e�cient due to number of writes over the insertion sort, no performance di�erence was found
presumably because of caching[12]).

The biggest di�erence of this approach to the peeling mechanisms is that we only need
to render the geometry once. When sorting and blending the collected samples along the
rays we only access all the information already stored in GPU memory. Used structures are
mentioned in greater detail in the Design and Implementation chapter

3.1.5 Illustration Bu�er

Inspired by Yang[23], technique called Illustration Bu�er was presented by Carnecky et
al.[12]. It is the context that is desirable knowledge for all fragments to have. With that
knowledge it is easier to determine the fragment role in the image, such as being a part of
the silhouette, being occluded etc. Illustration bu�er data structure is motivated by several
image enhancements that modulate opacity based on speci�c image features that increase
understanding of complex transparent objects notably. Such features are described in the
Theory section in further detail.

To provide the information about the surrounding shape of all fragments, A-bu�er con-
structed in the GPU memory[23] is extended. While in A-bu�er method fragments know
their neighbors only along the viewing ray, Illustration Bu�er presents method of �nding and
connecting also neighbors that belong to the surrounding pixels. For pixel with coordinates
(x, y) new four neighbors are found if exists in linked lists of pixels (s + dx, y + dy) where
(dx, dy) ∈ {(1, 0), (−1, 0), (0, 1), (0,−1)}.

After the neighbours being found the Illustration bu�er can be used to traverse object
surfaces to retrieve desired shape describing information such as gradients or distances to
important features.

Figure 3.4 shows necessary structures for the Illustration Bu�er and how the data are
stored when new element is rendered. To retrieve the next available free index for inserted
fragment we need to use global atomic counter, or several as is discussed in the imple-
mentation. In contrast to the previous concurrent linked lists we need to store much more

fragData

• X ×Y X, Y

• X × Y

•

•

• fragData

P

P

P

a)

b)

c)

P

P

L li, i ∈ {1, ..., n} n
L K

kj , j ∈ {1, ...,m} m
K

-1 -1

-1 0

-1 -1

-1 -1

-1

-1

-1 -1 1 -1

-1 -1 3 2 -1

-1 -1 -1 -1 -1

-1 -1 -1
0 1 2 3 4 5 6 7

VIEWPORT pixelHead fragNext

-1 -1

-1 0

-1 -1

-1 -1

-1

-1

-1 -1 -1

-1 -1 3

 4-1 -1 -1 4-1 -1 -1

-1

-1 -1 -1 -1

 5

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

fragData

DATA OF
FRAGMENT id=0

-1 -1 -1
0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

DATA OF
FRAGMENT id=0

-1 -1

-1 1 2

NB N ... NB N ...

16 17 18 19 20 21 22 23

NB N ... NB N ...

NB N ... NB N ...-1

-1

-1N

M

N

M

N

M

N

M

fragNext

fragData

X×Y

i == j
ε

εn
i, j ni, nj

εn

εz

εn εz

εn(i, j) = 1� ni + nj

εz
robj

ni xi z

zi

(
zi
dxi

)

εz(i, j) =
1

robj

[
zi + (xj � xi) ·

(
dzi
dxi

)
� zj

]

ε(i, j) = wz · εz(i, j) + wn · εn(i, j)

0

0
00

0

1
1

2
2

3

3

4 4

5
5

v0v1 v2 v3 v4 v5

VERTICES COORDINATES

0 1 2 3 4 5 6 7 8

0,1,5

0,2,3
0,1,2

0,2,3

0,3,4

0,3,4 0,4,5
0,4,5

0,1,5

0,1,2

0,1,2

0,1,5

0,4,5
0,3,4

0,2,3

0 1 5

0 1 2

0 3 4

0 4 5

0 2 30 2 3

0

1

2

3

4

0

1

2

3

4

a) b) c) d)

ε
A,B

fi ∈ A ci fi B
A ci fi A

ε = ∞

A,B A
B

ID
IDs

f ∈ A xf , yf g ∈ B xg, yg

f g f g

f g f g

f g f g

24 CHAPTER 3. ANALYSIS OF COMPARED METHODS

4. f and g are neighbors and fragments of two neighboring triangles if f and g share
exactly 1 indices. This situation can happen e.g. for triangles with ID = 1, ID = 4
in �gure 3.7.

Algorithm 6: proposed neighbor search
Data: two neighboring lists A,B, current fragment fi ∈ A, indices of fi indicesOfF .
Result: Index to the linked list structure of fi neighbor.

1 for b = 0; b < count(B); b++ do
2 fragB = B(b); indicesOfB = fragB.triangleIndices;
3 for k = 0; k < 3; k++ do
4 for l = 0; l < 3; l++ do
5 if indicesOfB[k] == indicesOfA[L] then
6 return fragB.ID; // Neighbor has been found since it shares at least one triangle

index with fi.
7 end

8 end

9 end

10 end

The algorithm for neighbor search is then simpli�ed to only one cycle through the neigh-
boring list B and there is no need for the cycle through A afterwards.

drawbacks

Even-though this method is geometry motivated there can be artifacts caused by the
rasterization process. Such artifacts occur when rendered triangles are smaller than pixel
and neighboring fragments skip triangle(s) in the isNeighbor query. This error is shown
in �gure 3.9. With that knowledge we can higher the viewport resolution or lower the detail
of the model to overcome this drawback in exchange for speed.

3.2 Comparison of OIT Solving Methods

We have shown several algorithms to solve the OIT problem as well methods to modulate
opacity based on several shape properties. Not all of those methods can be applied to all
presented algorithms solving OIT with the same e�ort or cannot be applied at all. This
section summaries such comparison of the peeling methods, per pixel linked lists and the
Illustration Bu�er.

3.2.1 Modulation by Groups

Opacity modulation based on groups is trivial in all presented methods solving the OIT and
therefore is presented separately. To all algorithms we simply pass the group id along with
colour and normal to all fragments. Than we present the lookup texture with de�nitions
of desired opacity for each group.

curvature

a) b) c)

componentID

componentID

Distance(i) = |si.depth� sj .depth|

si sj

Distance

3.3. PER PIXEL LINKED LISTS 27

The dual depth peeling algorithm would have to be modi�ed to not to blend the layers
on the �y in the same pass as the peeling occurs but to use one more texture to store the
result. If layers are indexed in front to back manner, results of layer li would have to blended
to previously processed layers in the peeling of the next layer li−1, when Distance between
li and li−1 is known.

Modulation by Distance from Important Shape Features in the Layer

This is the most problematic case of the peeling methods functionality extension. As
we have seen in case of modulation by di�erences in shape �nding the correct neighbors of
the same surface is di�cult and non-intuitive task requiring major changes of the original
algorithm. Reason for that is that for successful di�usion of the distance information we do
need to know the real neighbors on the surface, not the neighbors in the peeled layer.

Second problem is to successfully detect desired image features, the silhouette in this
case. This problem was addressed by Nienhaus and Döllner in search for a method to
�nd object blueprints using depth peeling[20]. They have combined the depth normal with
normal bu�er to create the edge map using discontinuities in the depth and normals to �nd
the visible edges. The non-visible edges become visible after occluding geometry is peeled
using the depth peeling mechanism.

In case of the opacity modulation by the distance from the closest silhouette of the same
surface, we need to spread the distance information over the layer �rst. Considering the
problem with location of the true neighbors on the surface, this problem becomes inherently
di�cult. If we for now think of the neighbors location issue as solved we could spread the
distance information using method presented by Rong and Tan called the jump �ooding [21].
Jump �ooding allows to spread the information from the original seeds (the silhouette in our
case) in logn steps given the n× n grid size.

As we will see in the analysis of the Illustration Bu�er, this kind of modulation is much
more easier to implement and comprehend than in case of peeling algorithms. Therefore we
do not advise using the depth peeling in this case.

We have also discussed the silhouette enhancement technique, which requires knowledge
of the distance from the silhouette of occluding layer above the current layer (please see the
Chapter 2 to recall the silhouette enhancement). Trying to implement such feature with
depth peeling is also not advised for the same reasons.

3.3 Per Pixel Linked Lists

Per pixel linked lists are fast and intuitive method to solve the OIT. It is however clear that
without extending the algorithm to the Illustration Bu�er it is not applicable for any kind
of modulation that requires the fragment neighbors to modulate the opacity.

pj s0 si si+1 si+2 sn

Distance(i)

SkipDistance(0,i+2)

si, sk

Distance(i) = |si.depth� si� 1.depth|

SkipDistance(i, j) = |si.depth� sj .depth|

si, sj |i � j| > 1

si sj j > i

nbLi

nbRi

nbTi

nbBi

Si

nbB

si nbTi, nbRi, nbBi, nbLi

si

fi
fi n

Curvature = |~n� ~a|+ |~n�~b|+ |~n� ~c|+ |~n� ~d|

~n� ~neighborNormal

β

bβ
β = 1

bβ
β = 0 bβ = 0 β = 0, bβ = 1

β bβ

∂

∂t
β = λβ∆β

λα

3.3. PER PIXEL LINKED LISTS 31

βk+1 = βk + bβλβ∆βk (3.2)

In equation (3.2) second order central �nite di�erence approximation of ∆β is used.
Since without computing the error estimation the central �nite di�erence produces errors
that are not visually plausible we use discrete Laplace operator for ∆αk estimation from 8
surrounding neighbors. Please refer to the Design and Implementation Chapter for details.

This process is however not very e�ective for the di�usion of α modulated by distance
from the silhouettes. Please see the Results and Discussion Chapter for comparison with
following non-physical process:

βk+1 = max(βk,max(βkneighbor)− λβ) (3.3)

nbRi

nbTi

nbBi

SiSj

Figure 3.14: Can we simply answer the
question 'is si and sj on the same sur-
face?' Answer is unfortunately negative as
explained in the text.

We have been also examining the possibility of
using already mentioned Jump �ooding algorithm
which would for n× n grid size distribute the dis-
tance in logn steps[21]. This idea is unfortunately
not applicable since we cannot simply solve the
query: 'is fi of screen coordinates k,l neighbor
of fj of screen coordinates m,n?', which is vital
query asked in every step of the jump �ooding algo-
rithm. Situation is shown in �gure 3.14. Problem
is that we would have to employ some path�nding2

technique to answer that question which would be
much more computationally expensive than pre-
sented di�usion processes.

The silhouette enhancement can be imple-
mented in very same manner as the β �eld. The
�eld γ (called the halo highlight �eld[12]) is there-
fore introduced along with the binary value bγ . Value of γ will be high near the occluding
edges and fall of with increasing distance from such edge. γ = 0, bγ = 1 for every other
fragment. We can use the very same di�usion as with the β �eld:

γk+1 = max(γk,max(γkneighbor)− λγ) (3.4)

User de�ned variables λβ and λγ in equations 3.3,3.4 a�ect the fallo� of the β, γ values
and results of such a�ecting are discussed in Chapter 5.

To use the values we have spread over the surfaces we need to modify the image composi-
tion equations. Considering the front to back blending procedure, colour c as the �nal pixel
colour, colour ci of current fragment and αi is fragment initial transparency (not opacity),
the composition algorithm is modi�ed to Algorithm 8.

2Path�nding is a method of �nding a path from A to B in a graph.

colourOfHaloHighlight
= white

β, γ

c = 0
α = 1

α̂i = (1� γi)(αi + (1� αi)βi)
c = c+ αα̂ici
α = α(1� αi)

c = αcbackground

γ
α̂i

β, γ

c = 0
α = 1

c+ = γ ∗ colourOfHaloHighlight
α̂i = (αi + (1� αi)βi)
c = c+ αα̂ici
α = α(1� αi)

c = αcbackground

3.4. SUMMARY 33

3.4 Summary

In this Chapter algorithms based on peeling as well as on linked lists were introduced and
compared based on the ease of use and most importantly on extendability by other opacity
modulation techniques. Algorithms dual depth peeling and original depth peeling are in-
tuitive to use in case of modulation by depth between samples along the ray, even in case
of modulation by distance to de�ned focus area. It is however hard and not worth the e�ort
to solve opacity modulation considering any non-local information. Therefore use of peeling
algorithms on such techniques is not advised.

We have found the Illustration Bu�er to be really powerful tool o�ering intuitive traverse
of the object surfaces and therefore retrieving any non-local information easily.

34 CHAPTER 3. ANALYSIS OF COMPARED METHODS

Chapter 4

Design and Implementation

In this chapter implementation of the Illustration Bu�er is presented as well as used tech-
nologies and overall structure of the application.

4.1 Used Technologies

In this section used technologies are described as is their purpose in our application. We use
ANSI C++ and comply the C++11 standard as a bottom layer technology.

4.1.1 OpenGL and GLSL

OpenGL[4] is an environment for development of interactive 2D and 3D graphics applications.
It o�ers powerful API for communication with the GPU, managing bu�ers, textures and
much more. We use OpenGL to implement all the structures we need by the Illustration
Bu�er as well as the skeleton of the algorithm itself.

GLSL[3] is a shading language with direct support of OpenGL enabling management
of all operations that occurs at programmable points in OpenGL rendering pipeline. We use
GLSL to implement our shaders that implement most of the algorithm logic. Opengl version
4.4.0 NVIDIA 331.113 is used along with GLSL version: 4.40 NVIDIA via Cg compiler.

4.1.2 GLM

GLM[2] is a header only library for working with vector and matrix mathematics in graphics
applications mostly. We can �nd de�nitions of new types with standard vector and matrix
operations with overloaded operators for ease of use. We use this library to store vector and
matrices data to pass to the GLSL shading languange.

4.1.3 RapidJSON

A fast JSON parser/generator for C++ with both SAX/DOM style API[7] is used to parse
our con�guration �les stored in the JSON format.

35

36 CHAPTER 4. DESIGN AND IMPLEMENTATION

4.1.4 QT Framework

QT Framework[5] is a framework for development of cross-platform applications as well as
their user interface (UI). It is divided into several modules to minimize the unnecessary
code for speci�c application. In our implementation we use only four modules of 5.3.0 QT
Framework version:

• Core is a base of the QT framework o�ering many extensions of c++11 containers,
functionality and it is necessary for development with QT.

• Gui module cares about most of the GUI elements.

• Widgets module extends the Gui module by adding widgets that we use for modal
windows and better layout of the application.

• Opengl module o�ers basic opengl integration with OpenGL context management.
It also o�ers a wrapper for all OpenGL commands since version QT5 but that o�ers
only limited functionality of OpenGL ES 2.0. We therefore use a GLEW library for
that purpose.

4.1.5 The OpenGL Extension Wrangler Library

The OpenGL Extension Wrangler Library (GLEW)[1] is used to manage OpenGL extensions
as well as to provide access to OpenGL functionality we require. We use version 1.11.0 in our
application.

4.2 Application Structure

First we describe classes that are most important for the algorithm. Since the application
consists of many classes we show relation diagrams in parts. We do not describe shaders
or processing work�ow in this section.
IllustrationBufferAlgorithm class is responsible for creation of all bu�ers, textures
and auxiliary structures before the algorithm starts. Then it consists of several methods
each describing one stage of the algorithm. These are discussed further in this section.
AlgTemplateObject class serves as a renderer of the object. It also initializes attached
algorithm and then calls methods of the algorithm when enabled.
Context is class passed to both IllustrationBufferAlgorithm and AlgTemplate-
Object and is used as con�guration container. It o�ers inner con�guration as well as user
parameters controlled by UI to other classes. Since there are 42 �eld members of the Context
class we omit that information in all diagrams.
Object is a parent of AlgTemplateObject and is is responsible for the geometry and
memory management for object geometry, materials and such.
ObjMtlLoader class implements simple parsing of OBJ format and it also supports ma-
terials and loading object groups. It loads informations about model name and path form
JSON �le providing simple way of importing OBJ models without changing the source code.
ShaderProgramLoader class loads the shaders con�guration from attached JSON �le.
This allows us to add and remove shader programs dynamically without changing the code.

4.2. APPLICATION STRUCTURE 37

+alg

Context

+ Context(width : int, height : int)

+ ~ Context()

+ windowSizeChanged(width : int, height : int)

+ updateCameraViewMatrix()

+ update()

+ loadModelsInfo(filename : const char*)

+ getModelNames(names : std::vector< std :: string >&)

+ addProgramDefinition(key : const char*, program : GLuint)

+ getProgram(source : const char*) : GLuint

+ updateFpsValue()

+ getWindowHeight() : GLint

+ getWindowWidth() : GLint

+ setWindowHeight(windowHeight : GLint)

+ setWindowWidth(windowWidth : GLint)

+ updateAlphaValue(alpha : float)

«enum»

Context::PeelingMode

OFF

WITH_LIMIT

LAYER_BY_LAYER

Object

+ vertices : std::vector< glm :: vec4 >

+ normals : std::vector< glm :: vec3 >

+ elements : std::vector< GLuint >

+ componentIDs : std::vector< GLint >

+ materials : std::vector< MtlMaterial >

+ modelMatrix : glm::mat4

+ alg : IllustrationBufferAlgorithm*

+ componentNames : std::vector< std :: string >

+ componentOpacities : GLfloat

+ origVerticesCount : GLint

+ renderIndexedGeometry : bool

+ Object()

+ ~ Object()

+ update(g : Context&)

+ draw(g : Context&)

+ loadWavefrontOBJ(filename : const char*)

+ upload()

+ drawVBO()

«enum»

Context::ComponentOpacityMode

ONE_FOR_ALL

INDIVIDUAL

«enum»

Context::ActivePass

OIT_ONLY

SORTING

NEIGHBOURS_SEARCH

ALPHA_DIFFUSION

BETA_DIFFUSION

GAMMA_DIFFUSION

VIEW_DISTANCE

«enum»

Context::AlphaMode

CONSTANT

MODULATED_BY_NUMBER_OF_FRAGMENTS

AlgTemplateObject

+ AlgTemplateObject(alg : IllustrationBufferAlgorithm&, g : Context&, filename : const char*)

+ ~ AlgTemplateObject()

+ draw(g : Context&)

+ drawHeatMap(g : Context&)

+ update(g : Context&)

+ fillWithMaterials(colors : GLfloat*)

+ resetTimer()

IllustrationBufferAlgorithm

+ IllustrationBufferAlgorithm()

+ ~ IllustrationBufferAlgorithm()

+ prepareBuffers(width : int, height : int)

+ fillPassBefore(g : Context&) : GLint

+ fillPassAfter(g : Context&)

+ sortPass(g : Context&)

+ findNeighboursPass(g : Context&)

+ fieldsDiffusionPass(g : Context&)

+ fieldsDiffusionSeparablePass(g : Context&)

+ curvaturePass(g : Context&)

+ renderOITPass(g : Context&, fieldsUsed : bool)

+ getMaxLayersCount(g : Context&) : GLint

+ windowResize(width : int, height : int)

+ getBufferIdOf(name : bufferNames) : GLuint

Diagram 1: Diagram show relations between AlgTemplateObject, IllustrationBu�erAlgorithm, Ob-
ject and Context along with its enumerations.

-loader

ShaderProgramLoader

+ ShaderProgramLoader()

+ loadShaderPrograms(g : Context&, configFileName : const char*)

+spLoader

Object

+ vertices : std::vector< glm :: vec4 >

+ normals : std::vector< glm :: vec3 >

+ elements : std::vector< GLuint >

+ componentIDs : std::vector< GLint >

+ materials : std::vector< MtlMaterial >

+ modelMatrix : glm::mat4

+ alg : IllustrationBufferAlgorithm*

+ componentNames : std::vector< std :: string >

+ componentOpacities : GLfloat

+ origVerticesCount : GLint

+ renderIndexedGeometry : bool

+ Object()

+ ~ Object()

+ update(g : Context&)

+ draw(g : Context&)

+ loadWavefrontOBJ(filename : const char*)

+ upload()

+ drawVBO()

ObjMtlLoader

+ ObjMtlLoader()

+ ~ ObjMtlLoader()

+ loadGeometry(filename : const char*, vertices : vector< glm :: vec4 >&, normals : vector< glm :: vec3 >&)

+ ...(elements : vector< GLuint >&, componentIDs : vector< GLuint >&)

+ loadMaterial(filename : const char*, materials : std::vector< MtlMaterial >&)

+ getComponentNames(componentNames : std::vector< std :: string >&)

+ getComponentAlphas(componentAlphas : GLfloat*)

MtlMaterial

+ name : std::string

+ Ka : glm::vec3

+ Kd : glm::vec3

+ Ks : glm::vec3

Context

+ Context(width : int, height : int)

+ ~ Context()

+ windowSizeChanged(width : int, height : int)

+ updateCameraViewMatrix()

+ update()

+ loadModelsInfo(filename : const char*)

+ getModelNames(names : std::vector< std :: string >&)

+ addProgramDefinition(key : const char*, program : GLuint)

+ getProgram(source : const char*) : GLuint

+ updateFpsValue()

+ getWindowHeight() : GLint

+ getWindowWidth() : GLint

+ setWindowHeight(windowHeight : GLint)

+ setWindowWidth(windowWidth : GLint)

+ updateAlphaValue(alpha : float)

Diagram 2: Diagram shows relations between AlgTemplateObject, IllustrationBu�erAlgorithm,
Object and Context along with its enumerations.

38 CHAPTER 4. DESIGN AND IMPLEMENTATION

-camera

+camera

+mControl

-context

+trackball

+fps

-clock

TimeMeasuring

+ counter : GLuint

+ TimeMeasuring()

+ start()

+ end()

+ getElapsedTime() : GLuint64

Camera

+ object : Object*

+ trackball : VirtualTrackball*

+ rotationQuaternion : glm::quat

+ prevRotationQuaternion : glm::quat

+ distance : GLfloat

+ origDistance : GLfloat

+ projectionMatrix : glm::mat4

+ viewMatrix : glm::mat4

+ scrollSpeed : const float

+ useWalkMode : bool

+ usePerspectiveProjection : bool

+ Camera(width : int, height : int)

+ ~ Camera()

+ windowSizeChanged(width : int, height : int)

+ keyboardMovement(t : MovementType)

+ mouseMovement(x : int, y : int, leftMouseBtnPressed : bool)

+ mousePressed(x : int, y : int)

+ mouseReleased()

+ updateCameraViewMatrix()

+ updateProjectionMatrix()

+ resetViews()

Context

+ Context(width : int, height : int)

+ ~ Context()

+ windowSizeChanged(width : int, height : int)

+ updateCameraViewMatrix()

+ update()

+ loadModelsInfo(filename : const char*)

+ getModelNames(names : std::vector< std :: string >&)

+ addProgramDefinition(key : const char*, program : GLuint)

+ getProgram(source : const char*) : GLuint

+ updateFpsValue()

+ getWindowHeight() : GLint

+ getWindowWidth() : GLint

+ setWindowHeight(windowHeight : GLint)

+ setWindowWidth(windowWidth : GLint)

+ updateAlphaValue(alpha : float)

VirtualTrackball

+ VirtualTrackball(winWidth : int, winHeight : int)

+ ~ VirtualTrackball()

+ screenMapping(pt : glm::vec2) : glm::vec3

+ startTracking(pt : glm::vec2)

+ track(pt : glm::vec2) : glm::quat

Fps

+ Fps()

+ ~ Fps()

+ Initialize()

+ Frame()

+ GetFps() : float

+ start()

MeasurementsControl

+ fragCount : GLuint

+ bestTime : float

+ bestFps : float

+ MeasurementsControl(g : Context*)

+ ~ MeasurementsControl()

+ beginFrame()

+ afterGeometryRendered(a : AlgTemplateObject*)

+ endFrame(a : AlgTemplateObject*)

+ resetTimer()

UserInput

+ UserInput(w : AlgorithmWidget*, c : Camera*)

+ ~ UserInput()

+ handleKey(key : int, released : bool, c : Context*)

+ handleMouse(x : int, y : int)

+ pressMouseButton(btn : int, x : int, y : int)

+ releaseMouseButton(btn : int)

+ scroll(direction : float)

Diagram 3: Camera class is attached to UserInput to receive commands and is accessible via
Context. VirtualTrackball is used in case of orbiting camera mode, walking mode is imple-
mented as part of the Camera class. Fps and TimeMeasurements are used for measurements.

UserInput captures all user input from mouse and the keyboard and adjusts Context and
Camera variables accordingly.

Camera while model matrix is stored in the Object, camera is holding view and pro-
jection matrices. Quaternions are used for rotations of the camera. Camera is capable
of both perspective and orthogonal projections, walk mode is also implemented here. It uses
VirtualTrackball for modi�cations of the view matrix if orbiting mode is enabled.

VirtualTrackball class is noti�ed when user clicks and starts dragging. It than for
each frame computes the di�erence angle between the start point and the end point, both
projected to the ball surface. Please refer to [24] for description of virtual trackball method.

Fps class uses QElapsedTimer from QT to compute time di�erence between last and
current frame and turn it into the FPS value.

TimeMeasurements while Fps measures time using CPU clock, TimeMeasurements
class measures time w.r.t. GPU. It uses opengl queries GL_TIME_ELAPSED, GL_QUERY_RE-
SULT_AVAILABLE, GL_QUERY_RESULT to measure processing on GPU more precisely.

MeasurementsControl captures important data in time given by the measured task.
Such logic is used from the AlgTemplateObject in the beginning of each frame, after the
geometry is rendered and when frame ends.

4.2. APPLICATION STRUCTURE 39

4.2.1 Graphical User Interface

Graphical interface is built on top of QT Framework using Qt Designer Form Class allowing
easy management of the elements using graphical designer provided by QTCreator IDE. Each
form is attached to its own class where signals and events are captured and can be easily
passed to the application logic. GUI consists from classes shown in Diagram 4. How the
GUI of our implementation looks like can be seen in Appendix E.

MainWindow

+ MainWindow(app : QApplication*, c : Context*)

+ ~ MainWindow()

AboutDialog

+ AboutDialog(parent : QWidget*)

+ ~ AboutDialog()

-aboutDialog

-glWidget

-glWidget

-centralWidget

IndividualTransparencyWidget

+ IndividualTransparency(c : Context*, parent : QWidget*)

+ ~ IndividualTransparency()

+ redrawComponentOpacities()

-individualOpacityDialog

SettingsPanel

+ SettingsPanel(c : Context*, parent : QWidget*)

+ ~ SettingsPanel()

+ redrawComponentNames()

+ redrawComponentOpacities()

QWidget

AlgorithmWidget

+ AlgorithmWidget(format : const QGLFormat&, c : Context*, parent : QWidget*)

+ ~ AlgorithmWidget()

+ initializeAlgorithm()

+ reloadModel(name : undef)

+ eventFilter(obj : QObject*, event : QEvent*) : bool

+ exportFBOToImage()

CentralWidget

+ CentralWidget(c : Context*, parent : QWidget*)

+ ~ CentralWidget()

+ init(glWidget : AlgorithmWidget*)

+ initFallback()

Diagram 4: There is one MainWindow, which is partitioned into CentralWidget
and SettingsPanel. CentralWidget is a place for AlgorithmWidget which ren-
ders its content using OpenGL. Application uses two dialogs - AboutDialog and
IndividualTransparencyWidget.

MainWindow is a descendant of QMainWindow. It creates all the widgets as shown in
Diagram 4 as well the global menu. Global menu serves for change of the model, exporting
images and toggling the AboutWidget.

SettingsPanel is tabbed interface used for the control of all variables that a�ect how
currently selected stage works. It also consist of camera options, groups options and custom
opacity per component settings.

CentralWidget is only a wrapper class for the AlgorithmWidget.

AlgorithmWidget class is responsible for the initialization of OpenGL context as well as
for checking application requirements.

IndividualTransparencyWidget if enabled in the settings, this widget dynamically
generates sliders for each component in rendered model. Sliders represent opacity value.

AboutDialog shows informations about the application, author and purpose.

IllustrationBufferAlgorithm

prepareBuffers
IllustrationBufferAlgorithm

GL_ATOMIC_COUNTER_BUFFER

fragCounter[0]

fragCounter[3]

fragCounter[1]

fragCounter[4]

fragCounter[2]

fragCounter[5]

fragCounter[6] fragCounter[7] fragCounter[8]

X

Y

X,Y
fragCounter[i], i ∈ {0..8}

4.3. CREATION OF THE ILLUSTRATION BUFFER 41

Since we need to not only read but also write to the bu�ers in the same shader in-
vocation, traditional GL_TEXTURE_2D cannot be used in case of most structures we
need. We therefore use OpenGL extension ARB_shader_image_load_store. This ex-
tension brings functions imageLoad(), imageStore() and also many atomic operations im-
ageAtomic*().

Bu�er pixelHead which stores pointers to �rst node of each per pixel linked lists is de�ned
as GL_TEXTURE_2D with GL_R32I type of the same size as the viewport. To use is as
image w.r.t. ARB_shader_image_load_store we need to bind it as a ImageTexture:

1 // In C++ source code
glTexImage2D (GL_TEXTURE_2D, 0 ,GL_R32I , width , height , 0 ,GL_RED_INTEGER,GL_INT, 0) ;

3

// And in the shader :
5 uniform layout (binding = 0 , r 3 2 i) coherent iimage2D u_pixelHead ;

We use also bu�er pixelCount which stores lengths of per pixel linked lists. It is therefore
also 2D and we use the same format as for the bu�er pixelHead.

We use GL_TEXTURE_BUFFER for bu�ers fragData,fragData2, fragNext and fragEle-
ments. These are one dimensional texture bu�ers created as follows (only fragData is shown):

1 bu f f e r s I d s [fragData] = 0 ;
g lGenBuf fers (1 , &bu f f e r s I d s [fragData]) ;

3 g lB indBuf f e r (GL_TEXTURE_BUFFER, bu f f e r s I d s [fragData]) ;
g lBuf fe rData (GL_TEXTURE_BUFFER, fragCountMaxData , 0 , GL_DYNAMIC_DRAW) ;

5 g lB indBuf f e r (GL_TEXTURE_BUFFER, 0) ;

7 t ex tu r e Id s [fragData] = 0 ;
glGenTextures (1 , &t ex tu r e Id s [fragData]) ;

9 glBindTexture (GL_TEXTURE_BUFFER, t ex tu r e Id s [fragData]) ;
g lTexBuf fer (GL_TEXTURE_BUFFER, GL_RGBA32UI, b u f f e r s I d s [fragData]) ;

11 glBindTexture (GL_TEXTURE_BUFFER, 0) ;

Internal formats used by those bu�ers are: GL_RGBA32UI for fragData,fragData2 and
fragElements and GL_R32I for fragNext. Bu�er fragElements consists of vertex indices
of the triangle it belongs to. We need this for neighbors search is described in Chapter 3.

Table 4.1 shows what data we store when experimenting with the Illustration Bu�er. We
use the spanning mechanism for fragData bu�er to store 4*4 unsigned integers per fragment.
Four uvec4 are therefore reserved in fragData bu�er per fragment. We describe the data
stored further in this Chapter.

uint uint uint uint

fragID*spanSize RGBA Color Depth LayerIndex DistToNext Layer
fragID*spanSize + 1 Left Right Bottom Top
fragID*spanSize + 2 α+ 2bα β + 2bβ γ + 2bγ
fragID*spanSize + 3 Normalized normal Curvature

Table 4.1: Table shows data stored per fragment. First column shows the position in the frag-
Data bu�er according to the spanning mechanism. SpanSize = 4 is used. One row of the table
is represented as vector of 4 unsigned integers (uvec4).

42 CHAPTER 4. DESIGN AND IMPLEMENTATION

4.3.1.1 Formats Packing

Note cells RGBA Color and Normalized normal in table 4.1, where we store vector data
to unsigned integer. To save used memory space packing of 4 �oats f, f ∈< 0, 1 > to one
unsigned integer is used. For example color and alpha channel are stored to one unsigned
integer as:

1 // packing formats in GLSL us ing b i tw i s e s h i f t s
u int co lor32UI = (u int (c o l o r . r ∗ 255) << 24) | (u int (c o l o r . g ∗ 255) << 16)
| (u int (c o l o r . b ∗ 255) << 8) | u int (c o l o r . a ∗ 255) ;

3 // For one f l o a t va lue to u int we can use bu i l t−in GLSL func t i on s
u int depth32UI = f loa tB i t sToUint (abs (depth)) ;

4.3.2 Bu�er Filling

In our implementation creation of the Illustration Bu�er is separated to two stages.

�llPassBefore method ensures that bu�ers pixelCount and pixelHead are reset to initial
state. This can be done using GL_PIXEL_UNPACK_BUFFER. Other bu�ers can be simply
rewritten by new data but for image to not interfere with previous results pixelCount and
pixelHead need to be reset. Atomic counter used for fragments indices needs to reset as well.
This can be done using following code snippet:

g lB indBuf f e r (GL_ATOMIC_COUNTER_BUFFER, bu f f e r s I d s [fragCount]) ;
2 GLuint∗ p=(GLuint ∗) glMapBufferRange (GL_ATOMIC_COUNTER_BUFFER, 0 , s i z e o f (GLuint) ,

GL_MAP_WRITE_BIT |
4 GL_MAP_INVALIDATE_BUFFER_BIT |

GL_MAP_UNSYNCHRONIZED_BIT) ;
6

p [0] = ou r I n i t i a lVa l u e ;
8 glUnmapBuffer (GL_ATOMIC_COUNTER_BUFFER) ;
g lB indBuf f e r (GL_ATOMIC_COUNTER_BUFFER, 0) ;

Then all bu�ers are binded as uniforms to the current shader pass we call the �ll-

Pass. Since OpenGL cannot know what purpose of our bu�er is we need to specify how
the bu�er will be accessed. That is done when binding the bu�er using GL_READ_WRITE,
GL_READ_ONLY, GL_WRITE_ONLY �ags and memory quali�ers coherent, volatile,
restrict, read- only, writeonly in the shader. It is responsibility of the deve-
loper to set these since write operations when using image load/store are not automatically
coherent[6].

drawVBO method is then called in the AlgTemplateObject that renders the geometry
using indexed geometry[24] and GL_ARRAY_BUFFER bu�ers that store model data in the
memory of GPU and are uploaded only once before the algorithm start.

When geometry is rendered using the fillPass all fragments are discarded and stored
in the Illustration Bu�er:

4.3. CREATION OF THE ILLUSTRATION BUFFER 43

1 vec4 c o l o r = computeShadingAndLighting (normal , eyeD i r e c t i on) ;
c o l o r . a = u_alpha ;

3

uint newFragId = atomicCounterIncrement (u_fragCount) ;
5 i v e c2 coords = ivec2 (gl_FragCoord . xy) ;

7 i n t prevFragId = imageAtomicExchange (u_pixelHead , coords , i n t (newFragId)) ;
imageAtomicExchange (u_fragNext , i n t (newFragId) , i n t (prevFragId)) ;

9 imageStore (u_fragData , i n t (newFragId∗u_dataSpanSize) , pack (co lo r , depth)) ;
// Here a l l other data needed by cur rent setup can be s to r ed as we l l .

11 // Tr iang l e i n d i c e s f o r the neighbor search , fragment normal f o r curvature
// est imat ion , and othe r s .

13

imageAtomicAdd (u_pixelCount , coords , 1) ; // i n c r e a s e number o f proce s sed
fragments at these coo rd ina t e s .

Now all the data are stored in presented bu�ers in GPU memory. Geometry therefore
does not have to be rendered again and again as in case of the peeling methods which will
turn out to be very important in measurements. For the Illustration Bu�er to be complete we
still have to sort accumulated fragments and �nd their geodesic neighbors along the surface.

4.3.3 Sorting

In our application two sorting methods are implemented. One sorting the linked list without
using any auxiliary structures and second where array of �xed size is used for sorting.

Sorting the Linked List by Insertion sort can be done easily using two fragNext

bu�ers. One to be �lled initially and second that will be used for adding sorted fragments
as shown in algorithm 10. Since our insertion sort di�ers in two used structures for next
pointers we show used GLSL source code instead of pseudocode. We can see this procedure
as a analogy to two linked lists A,B. A is unsorted and B consists only from copy of head
in A. Then we remove node a from the front of A and insert them to B. To be able to remove
a.next from A and insert it to B, we would have to remember what was the original a.next
since inserting the a node to B may change its next pointer. In single linked lists this could
be solved also by copies of the nodes instead of their removal from A. We solve this issue as
mentioned by two bu�ers for the next pointers.

Sorting in Array of Fixed Size Number of accesses to the bu�ers is a bottleneck of the
previous method. We load all values and their next pointers to static arrays of �xed size (64
in our implementation). This array is then sorted and results are stored back to the bu�ers.

44 CHAPTER 4. DESIGN AND IMPLEMENTATION

Algorithm 10: creating the concurrent linked lists structure
Data: Bu�ers u_fragNext and u_fragNext2, u_fragData and u_pixelHead
Result: Sorted next pointers in the u_fragNext2 and �xed head pointer in u_pixelHead.

1 int sortedSize = 1;
2 int head = imageLoad(u_pixelHead, ivec2(gl_FragCoord.xy)).x;
3 �oat headDepth = uintBitsToFloat(imageLoad(u_fragData, head*u_dataSpanSize).y);
4 int new = imageLoad(u_fragNext, head);
5 �oat newDepth = uintBitsToFloat(imageLoad(u_fragData, new*u_dataSpanSize).y);
6 int newCounter = 1;
7 int curr,prev;
8 �oat currDepth;
9 while sortedSize < totalCount do
10 if newDepth < headDepth then
11 imageStore(u_fragNext2, new, ivec4(head,0,0,0));
12 head = new;
13 headDepth = newDepth;
14 new = imageLoad(u_fragNext, new);
15 newDepth = uintBitsToFloat(imageLoad(u_fragData, new*u_dataSpanSize).y);
16 sortedSize++;
17 continue;

18 end
19 prev = head;
20 curr = imageLoad(u_fragNext2, head);
21 currDepth = uintBitsToFloat(imageLoad(u_fragData, curr*u_dataSpanSize).y);
22 int innerCounter = 0;
23 while innerCounter <= sortedSize && currDepth < newDepth do
24 prev = curr;
25 curr = imageLoad(u_fragNext2, curr);
26 currDepth = uintBitsToFloat(imageLoad(u_fragData, curr*u_dataSpanSize).y);
27 innerCounter++;

28 end
29 imageStore(u_fragNext2, prev, ivec4(new,0,0,0));
30 imageStore(u_fragNext2, new, ivec4(curr,0,0,0));
31 new = imageLoad(u_fragNext, new);
32 newDepth = uintBitsToFloat(imageLoad(u_fragData, new*u_dataSpanSize).y);
33 sortedSize++;

34 end
35 imageStore(u_pixelHead, ivec2(gl_FragCoord.xy), ivec4(head,0,0,0));

4.3.4 Neighbors Location

Proposed indices motivated method is implemented to �nd neighbors along the surface.
As described in 3.1.5.2 every vertex is passed all 3 vertex indices of incident triangle. We
use GL_ARRAY_BUFFER to pass pre-processed indices to the vertex shader when geometry
is rendered.

Indices are passed to the fragment shader as flat uvec3 v_triangleIndices
so that its values are not interpolated between fragments and indices stay valid. This infor-
mation is then stored per fragment in the fragData bu�er.

u_ComponentOpacities[512]

u_ComponentOpacities[componentID]

< 0, 1 >

46 CHAPTER 4. DESIGN AND IMPLEMENTATION

To visualize found neighbors and correct order of fragments along the ray peeling of the
Illustration Bu�er is implemented. Two modes can be used in our application:

Peeling limit is a limiting number to the �nal pixel compositing equation. For example
if set to 3, only �rst three fragments in each linked list are used for the computation of �nal
color.

Layer by Layer is a mode where for number L only L-ith fragments are shown if exist.

4.4 Non Local Transparency

Non local transparency modulation methods presented by Carnecky et. al.[12] are im-
plemented to demonstrate Illustration Bu�er �exibility and ease of use. We have however
used transparency �eld α in di�erent way than in[12] as described further.

4.4.1 Transparency Fields

Let β, γ be transparency �elds accompanied by binary �elds bβ, bγ as introduced in Chapter
3. Carnecky et. al. also use �elds α, bα for initial transparency. These were designed for
complex �ow surfaces with discontinuous initial transparency α in [12]. They use described
physically motivated di�usion process to smooth the α, bα values since any discontinuity
in the transparency could be mistaken for a surface contour. We however do not have
discontinuous initial transparency considering only one surface, we only use di�erent initial
values per surface which do not su�er from mentioned perception problem.

To test the di�erence between physical and non physical di�usion process we therefore
modify the α �eld presented in [12] to be set fully opaque on the surface contour. To set
�elds α, β, γ along with binary values bα, bβ, bγ several prerequisites have to be met:

1. fragmentIndex, fragmentLayerIndex ∈ {1, ..., n}, where n is number of fragments
in given linked list and fragmentLayerIndex is increasing with the distance from the
camera. We compute and store this simply during the sortPass as custom fragment
data.

2. boundaryN is a number of directions for which current fragment is a boundary. This
can be easily computed in the �ndNeighborsPass when all existing neighbors are known.
BoundaryN is set to zero and increased by one with every direction where neighbor
does not exist.

3. indexSmallerThanNeighbours is a binary �eld that is true if fragmentIndex is
smaller than at least one fragmentIndex of its neighbors. This indicates fragment
adjacency to the contour. (Please refer to Chapter 3 and �gure 3.13)

4. indexGreaterThanNeighbours is also binary �eld that is true if fragment lies un-
derneath some silhouette fragment and its fragmentIndex is therefore bigger than of
one of its neighbors. (Please refer to Chapter 3 and �gure 3.13)

4.4. NON LOCAL TRANSPARENCY 47

With these values known we can �nally set �elds α, β, γ with respect to rules de�ned
in Chapter 3:

i f (boundaryN > 0) {
2 beta , aplha = 1 .0 f ;

b_alpha , b_beta = 1 .0 f ;
4 }

i f (layerIndexGreaterThanNeighbours) {
6 beta = 0 .0 f ;

b_beta = 0 ;
8 }

i f (layerIndexSmal lerThanNeighbours) {
10 gamma = 1.0 f ;

b_gamma = 0 ;
12 }

Note that we have set the �elds α, β = 1.0f at the surface boundary. While it may
seem as a duplicate information we use than di�erent di�usion techniques for both �elds and
compare the results as well as results of their combination. To save memory we store both
values α and bα as α+ 2bα without loss of precision. All discussed �elds are implemented in
the end of the �ndNeighborsPass and stored to fragData bu�er to positions discussed in Used

structures section.

4.4.2 Di�usion Process

We now have �elds α, β, γ initialized. Physical and non physical approximations can be
computed. Since these approximations di�er signi�cantly when used alone, method of com-
bining the physical and altered nonphysical di�usion process is proposed. We can motivate
ourselves with �gure 4.4, where we can see how ine�cient is transport of values using discrete
Laplace operator and artifacts caused by nonphysical process proposed by [12].

To overcome the read/write collisions during this pass, ping pong computational scheme

is implemented in the �eldsDi�usionPass where the di�usion occurs. This is simply done
by switching bu�ers fragData in input and fragData2 in pass output in every iteration.

4.4.2.1 Physical Process

0.5 1 0.5

1 -6 1

0.5 1 0.5

Figure 4.3: Discrete
Laplacian convolution
kernel for 2D signals

As described we use discrete Laplace operator for the ∆αk estima-
tion. Discrete Laplace operator's convolution kernel is commonly used
in image processing. Kernel shown in �gure 4.3 is in our implemen-
tation not applied to pixels as in image processing but to neighboring
fragments in the Illustration Bu�er.

This is simply implemented as a sum of the neighboring frag-
ments with corresponding coe�cient given by the convolution ker-
nel shown in �gure 4.3. Best results was achieved by normal-
ization of �nal value by 1

4 . Second order central �nite di�eren-
ce proposed by Carnecky et. al. is also implemented but not
used due to high amount of visual errors. For its use please
uncomment line with #define CENTRAL_DIFFERENCE in the
smoothFieldsPassLaplacian.frag shader �le.

α β

β

β α

β
fi

�

�

4.5. MODULATION BY DISTANCE ALONG THE RAY 49

4.4.2.3 Proposed α, β Di�usion

As we can see in �gure 4.4, we get great quality (no box-like artifacts) for a price of very
ine�cient values transport in case of discrete Laplacian operator. Quite opposite is a result
of the nonphysical di�usion of β �eld, where we get values quickly distributed but quality is
very poor. We therefore use a combination of those techniques with minor modi�cation.

First α �eld is processed by a discrete Laplacian operator and β is processed by the
nonphysical process. To overcome the visual errors we propose to use the Gaussian �lter
to blur the result of β di�usion to lower amount discontinuities in such result. We implement
this using user-de�ned number of blurring passes using 2D Gaussian �lter kernel.

G(x) = e−
x2

2σ2 (4.1)

Since equation (4.1), with standard deviation σ controlling the �lter width is both sep-
arable and radially symmetrical, its 2D version can be separated to two one-dimensional
�lters to speed up the process[19]. Field β is �rst blurred in the horizontal direction and
result of such convolution is then blurred horizontally. In our implementation we use stan-
dard deviation σ = 0.85 and size of the 1D �lter size = 5 (current fragment + 2 neighbors
on both sides).

We can see in �gure 4.4 that such blurring produces another type of visual error called
Ringing artifact [24]. We therefore combine this blurred image with computed �eld α which
has in principle high values exactly in places of the ringing artifacts. This is of course no
coincidence since Laplacian operator is sensitive to high-frequency input which is a place
where the ringing artifacts occur. Final image is composed using algorithm 8 where α �eld
is used instead of the initial opacity αi.

4.4.2.4 Automatic Transparency Field Setup

To get visually pleasant results we would have to adjust value λβ manually with every
change of di�usion iterations. To overcome this we allow auto mode in our application
as the default mode. Value λβ in the auto mode are computed simply as:

λβ = 0.95/DIterations;

where 0.95 is a best value for our scenes found experimentally and DIterations is a number
of di�use iterations. For an auto mode we have found su�cient to set values λα = 1 and
λγ = 0.45.

4.5 Modulation by Distance Along the Ray

After sorting the fragments along the ray when creating the Illustration Bu�er, single traverse
of the linked list will give us the distances between the fragments along the ray. We store
this information in the fragData bu�er.

To turn the distance to α channel, distances need to be normalized. We do this by uniform
variable u_distanceNorm controlled by the user. Value α is then simply computed as:

50 CHAPTER 4. DESIGN AND IMPLEMENTATION

alpha = clamp(distance/(u_distanceNorm), 0.0, 1.0);

Please note that proper way to do this would be to �nd the maximum distance between
fragments across all linked lists and use it for the normalization. If user-de�ned parameter
λd is then de�ned in range < 0, 1 >, there is no need to clamp the �nal value:

alpha = (distance/u_distanceNorm) ∗ λd;

Finding the maximum is however not implemented since it would require additional com-
putation time and we found the single user-de�ned variable u_distanceNorm to be su�cient
since we aim to keep the application as interactive as possible. For automatic normalization
we can �nd the maximum by doing the modi�ed parallel pre�x scan with maximizing pre�xes
instead of summing[19].

4.5.1 Combined with Modulation by Di�erences in Shape

Fragment curvature is found during the curvaturePass. We use curvature computed from
4 geodesic neighbors as well as 8 adding also neighbors on the diagonals. For all fragments
in the linked list curvature is computed as:

// ne ighbors i s an array with 8 neighbor IDs i f ex i s t , ze ro otherw i s e .
2 // norm_n has to be unpacked from the unsigned i n t as d i s cu s s ed be f o r e
f l o a t curvature = 0 f ;

4 f o r (i n t n = 0 ; n < 8 ; n++){
i f (ne ighbours [n] > 0) {

6 uvec4 s = imageLoad (u_fragData , i n t (ne ighbours [n]) ∗u_dataSpanSize+3) ;
vec3 norm_n = vec3 (s . x >> 16 , (s . x >> 8) & 0xFF , (s . x) & 0xFF) /255 . 0 ;

8 vec3 d i f f = norm_n − normal ;
curvature += length (d i f f) ;

10 }
}

4.6 Final Rendering Pass

All gathered informations are composed together in the �nal rendering pass renderOIT.
We again iterate over all fragments in each linked list and composite the �nal pixel color as
discussed in Chapter 3. To enable the user to understand the purpose of each transparency
�eld, following combinations are to be applied: (α), (β), (α and β), (α and γ), (β and γ)
and �nally (α and β and γ). Field is simply set zero if not used and no changes need to be
done to the compositing equation implemented as:

1 s r c . rgb += gamma ∗ vec3 (1 . 0 f) ; // white c o l o r o f s i l h o u e t t e enhancement
alpha_r = (alpha + (1 . 0 f − alpha) ∗beta) ;

3 f ina lFragmentColor . rgb += fina lFragmentColor . a ∗ alpha_r ∗ s r c . rgb ;
f ina lFragmentColor . a ∗= (1 . 0 f − alpha) ;

5 f ina lFragmentColor . a ∗= (1 . 0 f − beta) ;

4.6. FINAL RENDERING PASS 51

Simple version of the compositing is used for the modulation by distance along the ray
and the curvature e�ect:

1 alpha = clamp (max(d i s tance , curvature ∗ u_curvatureEf fector) , 0 . 0 , 1 . 0) ;
f ina lFragmentColor . rgb += fina lFragmentColor . a ∗ (alpha ∗ s r c . rgb) ;

3 f ina lFragmentColor . a ∗= (1 . 0 f − alpha) ;

52 CHAPTER 4. DESIGN AND IMPLEMENTATION

Chapter 5

Results and Discussion

In this Chapter results and measurements of our implementation of the Illustration Bu�er
are presented along with measurements of compared algorithms. For measurements of the
Per Pixel Linked Lists and the Illustration Bu�er we use our own implementation while
Depth peeling and Dual depth peeling methods are measured using the NVIDIA Graphics

SDK 10 [8] where only more precise measuring was implemented.

While our implementation is cross-platform application and developed on Linux, NVIDIA
Graphics SDK 10 is compilable only under the Visual C++ Compiler and therefore all
measurements are conducted on a Windows machine with following con�guration:

• CPU: Intel CoreTM2 Duo CPU E6850 @ 3.00GHz, 64KiB L1 cache, 4MiB L2 cache

• Memory: 4× 2GiB DIMM DDR Synchronous 59392 MHz

• GPU: GeForce GTX 660, 2048 MB GDDR5 @ 6.0 Gbps, OpenGL 4.3

• OS: Windows 8 64-bit

• Compiler: GCC 4.9.1

• OpenGL: version: 4.4.0 NVIDIA 331.113

• GLSL: version: 4.40 NVIDIA via Cg compiler

Very precise GPU timers are used to measure application rendering time in nanoseconds.
Queries GL_TIME_ELAPSED, GL_QUERY_RESULT_AVAILABLE and GL_QUERY_RESULT
are used. For measurements of the total rendering time we use Fps class using QElap-
sedTimer.

Twelve varied models are used to measure the Illustration Bu�er characteristics. Each
model is tested in two positions - one general and one with maximum possible linked lists
length. All tested views along with the heatmaps visualizing linked lists depths are shown
in �gure 5.1. Please note that in all measurements image resolution 600× 600 is used if not
stated otherwise.

53

5.1. THE ILLUSTRATION BUFFER CREATION 55

5.1 The Illustration Bu�er Creation

During the Illustration Bu�er creation we examine relations between number of vertices,
rendered fragments (not pixels!), lengths of the linked lists storing the data along the ray and
of course rendering time on the GPU and rendering time combined with the CPU workload.
Please note that choosing the sorting method also causes big performance impact. For
simplicity we show this on concurent per pixel linked lists alone in the next section. To be
able to examine the relations fully creation process is split to several stages by functionality.

• Fill stage renders the geometry and �lls the bu�ers in GPU memory necessary for
future Illustration Bu�er creation. No pixels are rendered to the framebu�er.
• Sort stage sorts the fragments along the view ray. No pixels are rendered to the
framebu�er.

• FindNeighbors stage is responsible for �nding existing geodesic neighbors along the
surface for each stored fragment, if exists. It also sets initial transparency �elds. No
pixels are rendered to the framebu�er.
• Total stage combines all before and composes �nal pixel colors.

Figure 5.2: GPU Time in plit stages of the Illustration Bu�er creation process. Models on the
horizontal axis is sorted by the Total rendering time.

Results of the split stages measurements are shown in table 5.1. Table 5.2 then shows the
Total rendering time in greater detail. These informations are necessary to decode what is
happening in �gure 5.2.

When Fill and Sort stages are compared we see two spikes for Dragons 1,2 which
are scenes with the greatest number of vertices. These show perfectly how application stays
vertex bounded during the sort for big geometry instances with small linked lists lengths.
Spike for the Dragons 2 shows how workload of the sort stage is a lot bigger than for
Dragons 1, where maximum linked list length was smaller.

GPU 2 Suspension 2 GPU 2

Suspension 2

GPU 2 Suspension 2

5.1. THE ILLUSTRATION BUFFER CREATION 57

Is is clear that even though the longest linked list of Suspension 2 is longer than
in case of GPU 2, coverage of the longest linked lists is much lower. We can see this fact also
in 5.5 by examining the dashed line. This line shows percentage coverage of the linked list
lengths that are bigger than 2

3 of the longest linked list, please mind the secondary vertical
axis. We denote this coverage as Ψ. This also perfectly demonstrates the complexity of GPU
parallelization process and optimizations being done by the hardware. Figure 5.4 shows how
important is the Ψ property for the �nal rendering time, which is not so apparent from
�gure 5.5. Lines are in most cases ordered and without crossings in the last segment of the
graph thus Ψ characteristics is the most important parameter a�ecting the �nal speed along
with the maximum list lengths.

VERTICES FRAGMENTS LIST MAX
LENGTH

PSI GPU TIME [ms]

Figure 5.4: Parallel coordinates visualizing the same information as the �gure 5.5. Time space
is split to thirds. Results of the �rst third are green, second third blue and last third results are red.

Figure 5.5: Visualized table 5.2. Secondary Y axis is used for the dashed line representing Ψ,
primary Y axis (on the right) is then used for all other variables using logarithmic scale.

58 CHAPTER 5. RESULTS AND DISCUSSION

MODEL VERTICES FRAGMENTS MAX |LIST| Ψ [%] TIME [ms] FPS

Anatomy 1 37963 284196 13 0,01% 7,562848 126

Anatomy 2 37963 360567 23 4,98% 12,571584 80

BikeWheelFork 1 34786 268946 14 2,16% 12,390464 82

BikeWheelFork 2 34786 396110 54 2,61% 40,350754 26

Drill 1 119328 682863 30 0,06% 21,550688 47

Drill 2 119328 938931 33 5,29% 39,334015 28

Engine 1 73125 991435 26 1,34% 30,020128 35

Engine 2 73125 822796 44 0,93% 42,659233 26

GPU 1 10796 494564 16 1,58% 12,710432 77

GPU 2 10796 1067557 58 13,14% 131,768768 11

GearBox 1 334954 1240161 42 1,01% 73,290848 17

GearBox 2 334954 1559269 58 0,76% 108,144798 12

Head 1 97141 991103 22 1,58% 27,980576 38

Head 2 97141 1645353 38 0,42% 50,11261 22

Hearth 1 92026 756464 20 1,30% 21,785376 47

Hearth 2 92026 1187402 30 1,01% 31,837536 34

Suspension 1 372827 895210 30 0,58% 47,640865 24

Suspension 2 372827 1900548 64 0,10% 86,380898 15

Teapot 1 7231 363598 8 0,04% 6,69888 147

Teapot 2 7231 868698 16 1,21% 16,111521 62

Dragon 1 437645 317648 10 0,10% 12,100896 83

Dragon 2 437645 331854 16 0,28% 14,615904 68

Dragons 1 1312935 471328 14 0,12% 25,893728 41

Dragons 2 1312935 1368308 18 0,50% 49,082592 24

Table 5.2: Illustration Bu�er creation - Table show used models, number vertices, fragments
and max size of the linked lists in given view, resulting in time measured on GPU, and FPS
where CPU overhead is considered as well. Column Ψ shows percentage coverage of the
worst third of the linked lists lengths. In other words it shows coverage of the yellow and red
pixels in the heatmaps in percents (Pixels with no linked lists stored are not considered).

Another method measurements can be found in Appendix B, where change of resolution
is examined with other parameters �xed. Measurements, where one variable is changed with
others �xed however can't be simply done with the coverage Ψ and linked list lengths. This
would require special models designed for this very purpose thus such measurements were
not conducted. Please note that by changing the resolution maximal length of linked lists
does not need to stay �xed due to the rasterization process. It will however stay almost
stable in most cases.

We can observe in �gure B.1 that di�erence between GPU times between consequent
resolutions depends on the same aspects of the scene as discussed in this section. That is
percentage coverage Ψ, maximal length of all linked lists and �nally number of fragments.

5.1.1 Sorting Methods Comparison

Here measurements of the two implemented sorting methods are presented. Since per pixel
linked lists are part of the Illustration Bu�er solution we present results on the per pixel

linked lists only for simplicity.

It is very clear from graph in �gure 5.6 and table 5.3 that dynamic version of the sort
is winning in all cases over sorting in static array. This measurements might be however
more interesting and producing di�erent results even when GPU with bigger memory was
used. We have used 3 arrays of size 64. One for IDs, second for the depths and third for the
distances between layers. In case of our GPU it was more expensive to allocate such arrays
than much bigger amount of texture reads and writes, which could di�er on hardware where
invocation of the fragment shader for one pixel would have more memory available.

5.1. THE ILLUSTRATION BUFFER CREATION 59

8 10 13 14 14 16 16 16 18 20 22 23 26 30 30 30 33 38 42 44 54 58 58 64
0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

40,00

dynamic in arrayTime [ms]

max linked list length

Figure 5.6: Speed comparison of the dynamic sort and sorting in static array. Bigger spikes are
caused by the Ψ parameter as discussed before.

Common characteristics Dynamic In array

MODEL VERTICES FRAGS MAX

|LIST|

Ψ [%] TIME [ms] FPS TIME [ms] FPS

Teapot 1 7231 363598 8 0,04% 1,79 466 3,31 287
Dragon 1 437645 317648 10 0,10% 5,07 187 6,45 149
Anatomy 1 37963 284196 13 0,01% 2,10 418 3,51 262
BikeWheelFork 1 34786 268946 14 2,16% 3,29 285 5,12 187
Dragons 1 1312935 471328 14 0,12% 12,85 79 14,49 69
GPU 1 10796 494564 16 1,58% 2,68 343 5,01 189
Teapot 2 7231 868698 16 1,21% 3,90 241 6,42 150
Dragon 2 437645 331854 16 0,28% 5,41 176 6,83 141
Dragons 2 1312935 1368308 18 0,50% 17,11 60 20,70 50
Hearth 1 92026 756464 20 1,30% 4,99 189 7,99 121
Head 1 97141 991103 22 1,58% 6,14 156 9,85 101
Anatomy 2 37963 360567 23 4,98% 2,72 336 4,86 196
Engine 1 73125 991435 26 1,34% 7,05 135 9,82 101
Drill 1 119328 682863 30 0,06% 4,75 197 7,47 129
Hearth 2 92026 1187402 30 1,01% 6,62 145 12,16 81
Suspension 1 372827 895210 30 0,58% 10,37 94 13,18 77
Drill 2 119328 938931 33 5,29% 8,05 119 10,24 96
Head 2 97141 1645353 38 0,42% 9,91 98 15,96 64
GearBox 1 334954 1240161 42 1,01% 14,46 67 18,96 54
Engine 2 73125 822796 44 0,93% 8,73 111 11,02 90
BikeWheelFork 2 34786 396110 54 2,61% 7,60 115 9,40 99
GPU 2 10796 1067557 58 13,14% 20,68 50 36,82 30
GearBox 2 334954 1559269 58 0,76% 20,07 50 24,80 43
Suspension 2 372827 1900548 64 0,10% 17,66 57 22,74 44

Table 5.3: Comparison of the dynamic sort method with sort in the array. Table is sorted
by the MAX |LIST| for convenience.

5.1.2 Comparison with Other Methods

We now know how the Illustration Bu�er behaves. This section provides speed comparison
with the remaining methods compared in this thesis: depth peeling, dual depth peeling and
concurrent per pixel linked lists.

60 CHAPTER 5. RESULTS AND DISCUSSION

7000.00

285600.00

564200.00

842800.00

1121400.00

1400000.00

250000.00

600000.00

950000.00

1300000.00

1650000.00

2000000.00

0.00

14.00

28.00

42.00

56.00

70.00

0.00

2.80

5.60

8.40

11.20

14.00

0.00

28.00

56.00

84.00

112.00

140.00

VERTICES FRAGMENTS LISTS MAX
LENGTH

PSI GPU TIME [ms]

Figure 5.7: Depth peeling

7000.00

285600.00

564200.00

842800.00

1121400.00

1400000.00

250000.00

600000.00

950000.00

1300000.00

1650000.00

2000000.00

0.00

14.00

28.00

42.00

56.00

70.00

0.00

2.80

5.60

8.40

11.20

14.00

0.00

28.00

56.00

84.00

112.00

140.00

VERTICES FRAGMENTS LISTS MAX
LENGTH

PSI GPU TIME [ms]

Figure 5.8: Dual depth peeling

285600.00

564200.00

842800.00

1121400.00

1400000.00

600000.00

950000.00

1300000.00

1650000.00

2000000.00

14.00

28.00

42.00

56.00

70.00

4

2.80

5.60

8.40

11.20

14.00

28.00

56.00

84.00

112.00

140.00

7000.00 250000.00 0.00 0.00 0.00
VERTICES FRAGMENTS LISTS MAX

LENGTH
PSI GPU TIME [ms]

Figure 5.9: Concurrent per pixel linked lists

VERTICES FRAGMENTS LIST MAX
LENGTH

PSI GPU TIME [ms]

Figure 5.10: Illustration Bu�er

We have used implementation of the peeling methods from the NVIDIA Graphics SDK 10,
only our own GPU time measuring system was added to their implementation. Concurrent
per pixel linked lists we on the other hand measured in our own implementation since it is
a sub-problem of the Illustration Bu�er construction.

Figures 5.7, 5.8, 5.9 and 5.10 show such comparison using parallel coordinates. Measured
data can be also found in table 5.4. We can see that linked lists absolutely win in speed.
Another observation is that only Illustration Bu�er is really a�ected by Ψ, which is caused
by its FindNeighbors stage. We can also see that overhead on the fragment shader is not
big for �rst three methods and they are vertex bounded in most cases. This is logical for
the peeling methods since we need to render the geometry in each peeling pass. It might
be however surprising for the per pixel linked lists, where even though the sorting procedure
must occur on all fragments overhead is small thus application stays vertex bounded. This
is however completely di�erent in case of the Illustration Bu�er where processing of the
FindNeighbors stage is vital for the �nal rendering time.

Another really interesting �nding is that dual depth peeling is in fact much slower than
original depth peeling algorithm. It is not an error in measurements, dual depth peeling

5.2. RESULTS OF THE OPACITY MODULATION 61

as stated by the authors[9] 'may speed up performance by 2x for geometry bound applica-
tions'. Which is true, only for models Dragon,Dragons dual depth peeling actually speeds
up the rendering process and slows down otherwise.

Depth peeling Dual depth peeling Linked lists Illustration Bu�er

MODEL TIME [ms] FPS TIME [ms] FPS TIME [ms] FPS TIME [ms] FPS

Anatomy 1 3,71456 269 3,780544 265 2,10 418 7,562848 126
Anatomy 2 6,845984 146 6,763392 148 2,72 336 12,571584 80
BikeWheelFork 1 5,002528 200 6,605408 151 3,29 285 12,390464 82
BikeWheelFork 2 18,693695 54 18,202721 55 7,60 115 40,350754 26
Drill 1 11,776256 85 13,186496 76 4,75 197 21,550688 47
Drill 2 17,932705 56 19,386368 52 8,05 119 39,334015 28
Engine 1 12,098816 83 15,221184 66 7,05 135 30,020128 35
Engine 2 19,601856 51 21,992928 46 8,73 111 42,659233 26
GPU 1 4,749152 211 6,540608 153 2,68 343 12,710432 77
GPU 2 17,111233 58 27,447712 36 20,68 50 131,768768 11
GearBox 1 49,930943 20 40,493729 25 14,46 67 73,290848 17
GearBox 2 68,777283 15 49,199966 20 20,07 50 108,144798 12
Head 1 11,10448 90 13,515168 74 6,14 156 27,980576 38
Head 2 24,807137 40 34,500385 29 9,91 98 50,11261 22
Hearth 1 10,079136 99 11,115456 90 4,99 189 21,785376 47
Hearth 2 15,244064 66 19,986464 50 6,62 145 31,837536 34
Suspension 1 35,680351 28 21,393408 47 10,37 94 47,640865 24
Suspension 2 63,731583 16 57,904831 17 17,66 57 86,380898 15
Teapot 1 2,470528 405 2,968192 337 1,79 466 6,69888 147
Teapot 2 4,463328 224 7,612128 131 3,90 241 16,111521 62
Dragon 1 23,64992 42 16,269793 62 5,07 187 12,100896 83
Dragon 2 23,782944 42 18,152449 55 5,41 176 14,615904 68
Dragons 1 56,015232 18 34,098175 29 12,85 79 25,893728 41
Dragons 2 66,103233 15 40,214657 25 17,11 60 49,082592 24

Table 5.4: Comparison of the depth peeling, dual depth peeling and concurrent per pixel

linked lists. Please note that data vertices, fragments, list max size and Ψ are
shared by all methods and can be found for example in table 5.2.

5.1.3 Memory consumption

Unfortunately, memory consumption is the biggest weakness of the Illustration Bu�er. While
in Depth Peeling and Dual Depth Peeling structures are of �xed size without any rela-
tion to the number of rendered fragments (except for the absolute size of the viewport,
of course), structures fragData and fragNext of the Illustration Bu�er are growing linearly
based on the number of fragments. Demand on the memory is of course growing when we
expand the amount of data stored per one fragment.

5.2 Results of the Opacity Modulation

In this section performance of methods used to modulate the opacity is presented as well
as the results of such renders.

62 CHAPTER 5. RESULTS AND DISCUSSION

5.2.1 Speed Comparison

GPU time is captured in table 5.5 and visualized in �gure 5.11. We show the GPU time of
one pass only! It usually takes several passes to get pleasant results as discussed further.
Please note that we omit other dependencies in �gure 5.11 for simplicity, please refer to �gure
5.10 where parallel coordinates are used to visualize such relations.

Di�usion and blurring stages are examined �rst. We see that curves of both are very
much alike in shape but di�usion process is much more expensive. While both processes are
similar, the implementation di�ers greatly. While blurring Gaussian �lter is separable to
horizontal and vertical pass, Laplacian �lter used in di�usion process cannot be separated
thus it needs to access more texture data in one iteration. It is also clear that performance
cost of the blurring process is relatively small thus we can use it to enhance the di�usion
process.

While it may seem that process of �nding the surface curvature along with the distance
between samples is more expensive than previously discussed stages, it is not. We need
several passes of both di�usion and blurring processes while the distance-curvature pass will
be performed only once to get data we need for �nal composition. 8 neighbors were used to
�nd the surface curvature in this measurement.

Figure 5.11: Speed comparison of the single pass of the di�usion process, blurring by Gaussian
separable �lter and of distance-curvature search, where distances between layers are found as well
as the surface curvature.

However as we show in visual comparison, curvature computed from 4 geodesic neighbors
is usually su�cient, which will yield lower processing time.

Only measurements of one pass are provided. This is simply because we would get linear
progression of the time for many iterations of presented methods. Such progression is not
really interesting nor surprising since dataset topology (neighbors) does not change during
the process.

5.2. RESULTS OF THE OPACITY MODULATION 63

Common characteristics DIFFUSION BLURR DIST-CURV

MODEL VERTICES FRAGS MAX

|LIST|

Ψ [%] TIME [ms] TIME [ms] TIME [ms]

Anatomy 1 37963 284196 13 0,01% 9,630 2,771 10,244
Anatomy 2 37963 360567 23 4,98% 12,809 3,933 16,257
BikeWheelFork 1 34786 268946 14 2,16% 13,325 3,581 15,895
BikeWheelFork 2 34786 396110 54 2,61% 17,775 5,484 45,671
Drill 1 119328 682863 30 0,06% 23,919 7,745 28,554
Drill 2 119328 938931 33 5,29% 33,609 10,109 48,878
Engine 1 73125 991435 26 1,34% 35,054 11,194 39,724
Engine 2 73125 822796 44 0,93% 28,032 7,693 50,682
GPU 1 10796 494564 16 1,58% 20,245 5,981 18,279
GPU 2 10796 1067557 58 13,14% 61,811 16,001 147,159
GearBox 1 334954 1240161 42 1,01% 46,219 15,173 86,068
GearBox 2 334954 1559269 58 0,76% 63,914 19,020 125,594
Head 1 97141 991103 22 1,58% 37,152 11,019 38,196
Head 2 97141 1645353 38 0,42% 61,848 18,971 66,959
Hearth 1 92026 756464 20 1,30% 25,532 8,062 28,990
Hearth 2 92026 1187402 30 1,01% 40,554 12,199 43,196
Suspension 1 372827 895210 30 0,58% 30,447 9,739 56,365
Suspension 2 372827 1900548 64 0,10% 70,155 20,998 105,973
Teapot 1 7231 363640 8 0,04% 12,777 3,618 10,228
Teapot 2 7231 868698 16 1,21% 30,894 8,861 24,599
Dragon 1 437645 317648 10 0,10% 9,624 3,669 15,210
Dragon 2 437645 331854 16 0,28% 9,303 3,240 17,553
Dragons 1 1312935 471328 14 0,12% 13,778 5,192 30,169
Dragons 2 1312935 1368308 18 0,50% 50,068 17,090 63,829

Table 5.5: Speed comparison of the single pass of the di�usion process, blurring by Gaussian
separable �lter and of distance-curvature search, where distances between layers are found
as well as the surface curvature.

5.2.2 Visual Comparison

Selection of output images rendered by our application is presented in this section. We
also present FPS in time of rendering and the values of variables used. Since this thesis
does not address the human perception in greater detail and focus on the technical aspects,
we leave the conclusion of this images to the reader. We provide this list to remind the
parameters used in this thesis and algorithms to better understand following images:

• Curv is a short for curvature.

• Dist is a short for method based on distance between samples along the ray.

• δc is a user parameter de�ned to a�ect the curvature e�ect on the �nal image.

• α, β, γ are transparency �elds de�ned in Chapter 3.

• λα, λβ, λγ are parameters to a�ect transparency �elds α, β, γ. If Caption of an image
does not state such value, automatic mode was applied as described in Chapter 4.

• di is a number of iterations used during the di�usion process.

• bi is a number of iterations of the Gaussian �lter.

• focusRegion is a distance between samples along the ray of higher importance.

α = 0.5 α di = 25

α, β di = 25 α, β, γ di = 25 bi = 10

α = 0.5 focusRegion = 0.7 δc = 1.8

δc = 0.6 focusRegion = 0.1

focusRegion = 1.1 δc = 0.9 δc = 0.6

α = 0.13 α, β, γ di = 10 bi = 2 α = 0.13

α = 0.34 δc = 1.8

focusRegion = 0.9 focusRegion = 0.9 δc = 1.8

δc = 1.2 α, β, γ di = 10 bi = 5 α = 0.13

α = 0.4 α, β, γ di = 5 bi = 5 α = 0.16

δc = 1.8 focusRegion = 0.5 δc = 1.8

68 CHAPTER 5. RESULTS AND DISCUSSION

Chapter 6

Conclusion

This thesis addressed the approaches of the internal structure visualization for complex 3D
objects. Theoretical background for the problematics of rendering semi transparent objects
and techniques of the opacity modulation based on several object features was presented.
Comparison of the OIT solving algorithms was provided and the Illustration Bu�er was
found the most �exible algorithm considering discussed opacity modulation techniques thus
was examined in further detail.

We implemented the Illustration Bu�er algorithm using OpenGL and GLSL technology.
All discussed opacity modulation technique were implemented on top of the Illustration
bu�er. We have found the construction of the bu�er to be the hard part of the implementa-
tion, application of the opacity modulation methods was rather easy.

We have tested our implementation on 24 scenes consisting of 12 geometrical models
varying between 7K to 1.3M vertices, 26K to 1.9M fragments and 8 to 64 maximal lengths
of the per pixel linked lists using 600x600 image resolution. Impact of increasing the number
of fragments was measured by changing the resolution.

Our results show that the Concurrent per Pixel Linked Lists are the best choice over
other methods considering speed. Peeling methods are on the other hand more memory
e�cient and their memory consumption does not grow with the number of fragments like
in case of the Illustration Bu�er and Concurrent per Pixel Linked Lists. The Illustration
Bu�er was found to be the slowest but most usable algorithm. Now it should be easy for the
reader to choose the algorithm according to his/her demands.

Construction times of the Illustration Bu�er vary between 6ms to 131ms in our measure-
ments. We have found the number of fragments and most importantly the maximum length
of the per pixel linked lists and coverage of the longest lists to be the most performance
a�ecting variables.

We have introduced geometry motivated method for searching the geodesic neighbors
along the surface which speeds up the search process but produces artifacts for models with
great detail (so that several triangles are render to one pixel.). This can be however solved
by model preprocessing in exchange for greater performance and interactivity.

69

70 CHAPTER 6. CONCLUSION

6.1 Future Work

We have seen that search for the neighbors is a bottleneck of the Illustration Bu�er creation
process. Methods of this process optimization and enhancement should be researched to
provide better interactivity even on very complex models. As we could see in section Visual

Comparison where �nal renders of our application were shown, our implementation is not
Z-Fighting aware and therefore produces errors where the geometry is poorly de�ned or is
de�ned in scale that is too small.

Mainly technical aspects of the opacity modulation were addressed in this thesis and
testing on human participants should be done to better understand the human perception
of complex internal structures by using varying opacity modulation techniques.

Bibliography

[1] GLEW - The OpenGL Extension Wrangler Library. <http://glew.sourceforge.
net/>. Accessed: 2014-12-24.

[2] GLM - OpenGL Mathematics. <http://glm.g-truc.net/0.9.6/index.
html>. Accessed: 2014-12-24.

[3] GLSL - OpenGL Shading Language. <https://www.opengl.org/
documentation/glsl/>. Accessed: 2014-12-24.

[4] OpenGL - The Industry's Foundation for High Performance Graphics. <https://
www.opengl.org/>. Accessed: 2014-12-24.

[5] QT Framework - Qt Project. <http://qt-project.org/>. Accessed: 2014-12-24.

[6] OpenGL - Image Load Store. <https://www.opengl.org/wiki/Image_Load_
Store>. Accessed: 2014-12-24.

[7] Rapid JSON - A fast JSON parser/generator for C++ with both SAX/DOM style API.
<https://github.com/miloyip/rapidjson>. Accessed: 2014-12-31.

[8] NVIDIA Graphics SDK 10. <https://developer.nvidia.com/opengl>. Ac-
cessed: 2014-12-24.

[9] BAVOIL, L. � MYERS, K. Order independent transparency with dual depth peeling.
Technical report, NVIDIA Corporation, 02 2008.

[10] BAVOIL, L. et al. Multi-fragment e�ects on the GPU using the k-bu�er. In Proceedings

of the 2007 symposium on Interactive 3D graphics and games, s. 97�104. ACM, 2007.

[11] BRUCKNER, S. et al. Illustrative context-preserving volume rendering. In EuroVis, s.
69�76, 2005.

[12] CARNECKY, R. et al. Smart transparency for illustrative visualization of complex �ow
surfaces. IEEE Trans. Vis. Comput. Graph. 2013, 19, 5, s. 838�851.

[13] CARPENTER, L. The A -bu�er, an Antialiased Hidden Surface Method. SIGGRAPH
Comput. Graph. January 1984, 18, 3, s. 103�108. ISSN 0097-8930. doi: 10.1145/964965.
808585. Dostupné z: <http://doi.acm.org/10.1145/964965.808585>.

71

http://glew.sourceforge.net/
http://glew.sourceforge.net/
http://glm.g-truc.net/0.9.6/index.html
http://glm.g-truc.net/0.9.6/index.html
https://www.opengl.org/documentation/glsl/
https://www.opengl.org/documentation/glsl/
https://www.opengl.org/
https://www.opengl.org/
http://qt-project.org/
https://www.opengl.org/wiki/Image_Load_Store
https://www.opengl.org/wiki/Image_Load_Store
https://github.com/miloyip/rapidjson
https://developer.nvidia.com/opengl
http://doi.acm.org/10.1145/964965.808585

72 BIBLIOGRAPHY

[14] MOURA PINTO, F. � FREITAS, C. M. Importance-aware composition for illustrative
volume rendering. In Graphics, Patterns and Images (SIBGRAPI), 2010 23rd SIB-

GRAPI Conference on, s. 134�141. IEEE, 2010.

[15] EVERITT, C. Interactive order-independent transparency. Technical report, NVIDIA
Corporation, 06 2001.

[16] KRUGER, J. � SCHNEIDER, J. � WESTERMANN, R. Clearview: An interactive con-
text preserving hotspot visualization technique. Visualization and Computer Graphics,

IEEE Transactions on. 2006, 12, 5, s. 941�948.

[17] MESHKIN, H. Sort-independent alpha blending. 2007.

[18] MYERS, K. � BAVOIL, L. Stencil routed A-bu�er. In ACM SIGGRAPH, 7, 2007.

[19] NGUYEN, H. Gpu Gems 3. Addison-Wesley Professional, �rst edition, 2007. ISBN
9780321545428.

[20] NIENHAUS, M. � DöLLNER, J. Blueprints - Illustrating Architecture and Technical
Parts using Hardware-Accelerated Non-Photorealistic Rendering. In HEIDRICH, W. �
BALAKRISHNAN, R. (Ed.) Graphics Interface, 62 / ACM International Conference

Proceeding Series, s. 49�56. Canadian Human-Computer Communications Society, 2004.
Dostupné z: <http://dblp.uni-trier.de/db/conf/graphicsinterface/
graphicsinterface2004.html">. ISBN 1-56881-227-2.

[21] RONG, G. � TAN, T.-S. Jump �ooding in GPU with applications to Voronoi diagram
and distance transform. In Proceedings of the Symposium on Interactive 3D Graphics

and Games, s. 109�116. ACM Press, 2006.

[22] VASILAKIS, A. � FUDOS, I. Z-�ghting Aware Depth Peeling. In SIGGRAPH Posters.
ACM, 2011.

[23] YANG, J. C. et al. Real-time Concurrent Linked List Construction on the GPU. In
Proceedings of the 21st Eurographics Conference on Rendering, EGSR'10, s. 1297�
1304, Aire-la-Ville, Switzerland, Switzerland, 2010. Eurographics Association. doi:
10.1111/j.1467-8659.2010.01725.x. Dostupné z: <http://dx.doi.org/10.1111/
j.1467-8659.2010.01725.x>.

[24] �ÁRA, J. et al. Moderní po£íta£ová gra�ka. Computer Press, 2004. ISBN
9788025104545.

[25] �MOLíK, L. Interactive Illustrative Visualization of 3d Models. PhD thesis, Faculty of
Electrical Engineering, Czech Technical University in Prague, July 2011.

http://dblp.uni-trier.de/db/conf/graphicsinterface/graphicsinterface2004.html"
http://dblp.uni-trier.de/db/conf/graphicsinterface/graphicsinterface2004.html"
http://dx.doi.org/10.1111/j.1467-8659.2010.01725.x
http://dx.doi.org/10.1111/j.1467-8659.2010.01725.x

Appendix A

List of Abbreviations

1D One-Dimensional
2D Two-Dimensional
3D Three-Dimensional
ANSI American National Standards Institute
API Application Programming Interface
CPU Central Processing Unit
FPS Frames per second
GDC Game Development Conference
GLEW The OpenGL Extension Wrangler Library
GLSL OpenGL Shading Language
GPU Graphics Processing Unit
GUI Graphical User Interface
IDE Integrated Development Environment
JSON JavaScript Object Notation
MVP Model View Projection
OBJ Wavefront .obj File Format
OIT Order Independent Transparency
QT Cross-platform Application and UI Framework
RGBA Red Green Blue Alpha Format
SDK Software Development Kit
UI User Interface
VBO Vertex Bu�er Object

73

74 APPENDIX A. LIST OF ABBREVIATIONS

Appendix B

Additional Measurements Data

400x400 450x450 500x500 550x550
model #frags [ms] #frags [ms] #frags [ms] #frags [ms]

Anatomy 1 126296 4,71 159666 5,09 197269 5,52 238644 6,71
Anatomy 2 160267 7,81 202807 8,44 250522 9,75 302912 11,51
BikeWheelFork 1 119486 6,64 151306 7,97 186828 8,54 226038 11,16
BikeWheelFork 2 176012 25,14 222792 28,07 275204 29,03 332948 30,77
Drill 1 303673 12,42 384597 14,61 474041 16,45 573959 20,03
Drill 2 417460 21,55 528164 25,73 651967 30,35 788422 34,68
Engine 1 440439 16,81 557607 19,71 688829 22,26 833030 26,58
Engine 2 365743 24,23 462718 28,11 571715 31,53 691365 38,55
GPU 1 219870 7,28 278235 8,68 343496 9,43 415536 11,26
GPU 2 474450 61,33 600549 81,68 741436 83,67 897034 102,54
GearBox 1 550972 43,57 697378 48,73 860962 55,39 1041905 66,89
GearBox 2 693358 61,88 877294 68,70 1083141 82,11 1310306 92,44
Head 1 440563 14,95 557542 17,73 688352 20,62 833145 24,71
Head 2 731184 26,97 925545 32,02 1142755 37,66 1382749 41,62
Hearth 1 336200 12,41 425523 14,70 525262 16,66 635657 19,73
Hearth 2 527587 17,28 667923 20,32 824387 23,35 997826 27,83
Suspension 1 397860 27,82 503386 32,00 621602 37,81 752308 42,39
Suspension 2 844522 52,52 1069506 61,71 1320028 64,70 1597364 68,17
Teapot 1 161566 3,37 204534 4,18 252578 4,51 305504 5,79
Teapot 2 386128 8,03 488538 10,03 603308 11,31 729882 13,80
Dragon 1 141126 8,64 178682 9,53 220612 10,05 266784 11,48
Dragon 2 147526 10,00 186578 11,10 230448 12,11 278944 13,47
Dragons 1 209316 19,92 264930 21,43 327276 22,33 395986 24,51
Dragons 2 608124 32,35 769554 35,96 950294 39,87 1149646 44,81

Table B.1: Impact of changing the number of fragments with other variables �xed. First
row denotes used viewport resolution.

75

76 APPENDIX B. ADDITIONAL MEASUREMENTS DATA

600x600 650x650 700x700
model #frags [ms] #frags [ms] #frags [ms]

Anatomy 1 284196 7,82 333476 8,71 386880 8,79
Anatomy 2 360567 13,04 423164 14,87 490751 16,85
BikeWheelFork 1 268946 12,60 315752 13,70 366012 14,69
BikeWheelFork 2 396110 42,24 464712 42,01 539200 46,34
Drill 1 682863 21,95 802118 24,96 929220 28,22
Drill 2 938931 40,02 1101728 44,11 1277522 49,58
Engine 1 991435 30,38 1163484 34,37 1349344 37,95
Engine 2 822796 43,10 965506 47,64 1119805 51,28
GPU 1 494564 13,00 580287 14,83 673177 16,44
GPU 2 1067557 132,28 1253030 132,23 1453378 148,61
GearBox 1 1240161 73,63 1455451 81,61 1687934 89,25
GearBox 2 1559269 102,70 1830104 107,29 2122659 108,57
Head 1 991103 28,28 1163565 32,60 1349534 35,01
Head 2 1645353 44,81 1931097 45,51 2239816 48,29
Hearth 1 756464 22,39 887865 25,17 1029590 28,07
Hearth 2 1187402 32,16 1393473 37,34 1616192 39,81
Suspension 1 895210 48,69 1050801 53,92 1218220 59,23
Suspension 2 1900548 75,55 2230808 80,17 2587586 87,69
Teapot 1 363598 7,27 426754 7,82 494974 8,59
Teapot 2 868698 16,76 1019654 19,14 1182474 21,16
Dragon 1 317648 12,34 372736 13,69 432214 14,15
Dragon 2 331854 15,19 389544 16,17 451678 17,24
Dragons 1 471328 26,28 552926 28,15 641244 29,50
Dragons 2 1368308 47,10 1606040 47,33 1862570 47,27

Table B.2: Impact of changing the number of fragments with other variables �xed. First
row denotes used viewport resolution.

Figure B.1: Visualization of tables B.1 and B.2
. PSI is Ψ as de�ned before.

Appendix C

Installation Guide

Our application needs graphic card supporting at least OpenGL of version 4.2. It also re-
quires extensions GL_shader_image_load_store, GL_shader_atomic_counters.
The application is compilable on both Linux and Windows. Following minimal software
requirements have to be met:

Library Minimal version

OpenGL 4.2
GLEW 1.11.0
Qt 5.3
GLM 0.9.5
QMake 3.0
GCC 4.9.1
CLANG 3.5.0

Table C.1: Minimal application requirements. Either CLANG or GCC is required, not both.

Windows libraries 32 bit compiled by MinGW are included on the DVD. On linux simply
install packages for your distribution including the library. Easiest way is to compile the
code is using QtCreator IDE which automatically detects the environment and performs
necessary commands. If using this method, please set the root directory of our structure as
a run directory so that resources are available. We now describe how to build application
manually:

1. Run qmake IllustrationBu�erProjectQT5.pro to generate make�les.

2. Run make

3. Run make install (this will automatically copy the resources folder to your executable.)

4. Run compiled application.

Entire project con�guration for both Windows and Linux platforms is present in the
IllustrationBufferProjectQT5.pro �le which makes this project easily usable.

77

78 APPENDIX C. INSTALLATION GUIDE

Appendix D

DVD Content

This is the structure of attached DVD. Please note that not all models presented as
renders in this thesis are part of the models folder since some models provided by the su-
pervisor were not allowed to distribute, only publish the results by it's license. Models that
are included are free to use.

DVD ..root directory
bat ..scripts for measurements
bin ...application windows executable

platformsnecessary QT libs for windows
resourcescopy of the resources for win exe

doc ...documentation, thesis PDF and video
doxygendocumentation of the source code
latex ...source code of the thesis text
screenshotsscreenshots of the application

libs ...libraries
resources ...non compilable resources

config ...con�guration JSON �les
gui ..styles of the GUI
images ..Images for the GUI
models ..models and materials
shaders ..GLSL shaders
textures .. texture for the heatmap

src ...C++11 source code
gui ...classes and ui �les for the GUI
measuringclasses used for the measurements
graphspython �les to generate parallel coord. graphs

tmpempty directory, used for temporal build data

79

80 APPENDIX D. DVD CONTENT

Settings panel

82 APPENDIX E. USER MANUAL

E.1 Controls

Application and algorithm's functions are controlled via the settings panel and global
menu. Following controls are used for movement in the scene:

• Orbit Camera Mode - mouse is used to rotate the model when left mouse button is
pressed. Scrolling wheel can be used to zoom.

• Walk Camera Mode - Keys W,A,S,D are used to move forward, backward, left and
right. Keys Q,E are used for control of the elevation. Mouse can be used to adjust the
look at direction.

E.2 Con�guration

Application is con�gurable via JSON con�g �les. Following snippet shows how the con�g
�le looks like for models. First is a name as will appear in the application and second is the
path to a �le. Material �les are loaded automatically, its name has to be the same as of the
.obj �le though, only with .mtl.

1 {
"Anatomy" : " r e s ou r c e s /models /anatomy . obj " ,

3 "Teapot" : " r e s ou r c e s /models / teapot . obj "
}

{
2 " f i l l P a s s " : {

"programNumber" : 1 ,
4 " ver t " : " r e s ou r c e s / shaders / ba s i c . ve r t " ,

" f r ag " : " r e s ou r c e s / shaders / f i l l P a s s . f r a g "
6 } ,

" so r tPas s " : {
8 "programNumber" : 2 ,

" ve r t " : " r e s ou r c e s / shaders / so r tPas s . ve r t " ,
10 " f r ag " : " r e s ou r c e s / shaders / so r tPas s . f r a g "

} ,
12 " renderOITPass" : {

"programNumber" : 3 ,
14 " ver t " : " r e s ou r c e s / shaders / so r tPas s . ve r t " ,

" f r ag " : " r e s ou r c e s / shaders /renderOIT . f r ag "
16 } ,

}

E.3 Measurements and Graphs

We also provide several .bat �les that can be used for batch measurements of all provided
models on the Windows platform for convenience.

Note that the application source code has to be recompiled with uncommented line 25:
#define MEASURING_TIME in Context.h header �le. For optimal results please check

E.3. MEASUREMENTS AND GRAPHS 83

the comments in the shaders, where several de�nes are used for measurements of the given
task only.

• IllustrationBu�erConstruction.bat Illustration Bu�er construction.

• IllustrationBu�erResolutions.bat Changing the resolution from 400x400 to 700x700

• IllustrationBu�erDi�usion.bat Measurement of one di�usion pass GPU time

• IllustrationBu�erDi�usionGauss.batMeasurement of one blurring pass GPU time

• LinkedLists.bat Measures only creation of per pixel linked lists.

• IllustrationBu�erViewDistance.bat Is used for measurements of �nding the cur-
vature and distance between samples.

These scripts runs the application with the same MVP matrices as we have used in our
measurements and will generate txt �le with the results.

When the application is compiled with #define MEASURING_TIME as stated above,
following arguments can be used:

arg 1: Number for measured task (1 = per pixel linked lists, 2 = Illustration Bu�er con-
struction, 3 = Di�usion, 4 = Di�usion and Gaussian �lter, 5 = Distance Curvature)

arg 2 : counter of the model (e.g. 2 if this model is measured second time in given view)
arg 3 : model name as will appear in generated report
arg 4 : model path
arg 5 - 21 : rows of the model view matrix
arg 22 - 37 : rows of the projection matrix
arg 38 : optional dimmension of the viewport. Is set 600x600 by default.

Python scripts we have used to generate graphs with parallel coordinates are also included
on attached DVD in src/graphs directory.

	Introduction
	Thesis Structure

	Theoretical Background
	Rendering of Translucent Objects
	Order Independent Transparency
	Image Compositing
	Under Operator

	Opacity Modulation
	Modulation by Distance from Defined Plane/Area (Cut Motivated)
	Additional Notes to Opacity Modulation

	Colour Modulation
	Lighting and Shading
	Silhouette Enhancement
	Transfer Functions

	Analysis of Compared Methods
	Order Independent Transparency
	Depth Peeling
	Dual Depth Peeling
	Alpha Blending Approximations
	Concurrent Linked List Construction on the GPU
	Illustration Buffer

	Comparison of OIT Solving Methods
	Modulation by Groups

	Per Pixel Linked Lists
	Summary

	Design and Implementation
	Used Technologies
	OpenGL and GLSL
	GLM
	RapidJSON
	QT Framework
	The OpenGL Extension Wrangler Library

	Application Structure
	Graphical User Interface

	Creation of the Illustration Buffer
	Used structures
	Formats Packing

	Buffer Filling
	Sorting
	Neighbors Location

	Non Local Transparency
	Transparency Fields
	Diffusion Process
	Physical Process
	Proposed , Diffusion
	Automatic Transparency Field Setup

	Modulation by Distance Along the Ray
	Combined with Modulation by Differences in Shape

	Final Rendering Pass

	Results and Discussion
	The Illustration Buffer Creation
	Sorting Methods Comparison
	Comparison with Other Methods
	Memory consumption

	Results of the Opacity Modulation
	Speed Comparison
	Visual Comparison

	Conclusion
	Future Work

	List of Abbreviations
	Additional Measurements Data
	Installation Guide
	DVD Content
	User Manual
	Controls
	Configuration
	Measurements and Graphs

