

Bachelor’s Thesis

Czech

Technical

University

in Prague

F3

Faculty of Electrical Engineering

Department of Computer Graphics and Interaction

Visualizing Information on the

Web

Róbert �epa

Software Engineering and Management - Web and Multimedia

May 2016

Supervisor: Ing. Ladislav �molík, Ph.D.

Acknowledgement / Declaration

First and foremost, I have to thank
my research supervisor, Ing. Ladislav
�molík, Ph.D. Without his assistance
and dedicated involvement in every step
throughout the process, this work would
have never been accomplished. I would
also like to show gratitude to my par-
ents, Ivana and Ladislav, for their never-
ending support.

I declare that I have written the pre-
sented research thesis by myself without
undue help from a second person and
that I stated all the information sources
in accordance with the methodological
guideline of the ethical principles in the
preparation of university theses.

Prague, 27th May 2016

. .

iii

Abstrakt / Abstract

Cie�om tejto práce je zoznámi� sa
s dostupn˝mi nástrojmi pre vizuali-
záciu dat na webe, vykona� nad nimi
anal˝zu a porovna� tieto nástroje z
h�adiska vizualizácie rôznych typov dát,
moûností interakcie s datami, moûnosti
rozöírite�nosti a dostupnosti/ceny. Na
základe anal˝zy si jeden z nástrojov vy-
bra� a implementova� v �om aplikáciu
pre vizualizáciu adresárovej ötruktúry
z Google Drive. Aplikácia umoû�uje
prieh�adnú vizualizáciu atributov súbo-
rov a adresárov. Aplikácia obsahuje dva
prepojené poh�ady na rovnaké data, v
ktor˝ch je moûné s datami interagova�.

K�ú�ové slová: bakalárska práca, Ja-
vaScript, HTML5, CSS3, SVG

The aim of this thesis is to investigate
available tools for visualizing data on
the web, to analyze and evaluate these
tools by visualization possibilities of var-
ious data types, interaction possibilities
with the data, extension options, and
availability/price. Based on the analysis
to select one (or more) of these tools and
to implement the application for visual-
izing filesystem on Google Drive. Ap-
plication is able to visualize attributes
of files and directiories. Application has
two connected views to same data, in-
teracting with each other.

Keywords: bachelor thesis, Java-
Script, HTML5, CSS3, SVG

iv

Contents /

1 Introduction .1
1.1 Aim of thesis .2
1.2 Structure .3

2 Analysis of libraries.4
2.1 Introduction .4
2.2 Basic analysis of libraries4

2.2.1 Arbor.js .4
2.2.2 D3.js .5
2.2.3 Cola.js .6
2.2.4 Cubism.js.6
2.2.5 Google Chart Tools7
2.2.6 Kartograph8
2.2.7 NVD3.js .8
2.2.8 Paper.js .9
2.2.9 Processing.js 10

2.2.10 Raphael 10
2.2.11 Rickshaw 11
2.2.12 Sigma.js 11
2.2.13 Three.js. 12

2.3 Final overview 13
2.4 Choice of framework 14
2.5 D3.js in detail 14

2.5.1 Introduction 14
2.5.2 Selections 16
2.5.3 Dynamic properties 16
2.5.4 Appending the elements . 16
2.5.5 Data . 17
2.5.6 Enter and Exit 17
2.5.7 Conclusion 17

3 Building the application 18
3.1 Introduction . 18
3.2 Google Drive API 18
3.3 Choosing the techniques 20
3.4 Project setup 25

3.4.1 Server. 25
3.4.2 Build system 26
3.4.3 React and Flux 26
3.4.4 Isomorphic applica-

tions with React and
Node.js 28

3.4.5 Project structure 28
3.5 User-interface design 29
3.6 Implementation 30

3.6.1 Tree map implementa-
tion . 31

3.6.2 Mind map implemen-
tation . 32

3.7 Demonstration of the appli-
cation . 33

4 Conclusion . 35
References . 36

A Installation . 37
B Abbreviations and symbols 38
B.1 Abbreviations 38
B.2 Symbols . 38

v

Tables / Figures

2.1. Summary of analyzed tools 13
2.2. Example data for D3. 15
3.1. Google Drive file metadata 19

1.1. Pie chart visualization of tab-
ular data .2

2.1. Hierarchical data visualization . .5
2.2. Scatter plot matrix6
2.3. Time series visualization7
2.4. Pie chart .7
2.5. Interactive map8
2.6. Stacked area chart9
2.7. Path intersection detection9
2.8. Time visualization 10
2.9. Time series of tabular data 11

2.10. Network graph 12
2.11. 3D representation of chemi-

cal element . 13
3.1. OAuth modal 19
3.2. Tree graph . 20
3.3. Non-nested tree map 21
3.4. Nested tree map 22
3.5. Grouping node-link graph. 23
3.6. Node with inner bubble chart . 23
3.7. Force layout . 24
3.8. Flux architecture 27
3.9. Project structure 28

3.10. Home route mock-up. 29
3.11. Tree map mock-up 30
3.12. Application tree map 34
3.13. Application mind map 34
4.1. Node with inner bubble chart . 35

vi

Chapter 1

Introduction

Data visualization is not as young discipline as many might assume. The idea of
using pictures to better and faster understand huge amounts of data has been around
for centuries. From maps and graphs to pie charts invented by William Playfair in 1801,
we can clearly conclude that people knew about advantages of eye-brain connection for
a very long time. Old Japanese proverb “a hundred listenings do not compare with one
look” underlines the fact. The reason is how human visual system works. According to
the study of Koch et al. [1], approximate bandwidth of human retinas is about 8960
kilobits per second. Once that data arrive to a brain, they are processed very fast by
parts of brain which excel at edge detection, shape recognition and pattern matching.
Not only data visualization helps people to process lots of data, it also helps to see
patterns which are not clear by seeing raw numbers in tables or reports. Figure 1.1
provides a good example.

Nonetheless, it’s technology, that made the visualization the hot topic of today. Even
the application I have created as outcome of this thesis wouldn’t be possible before the
introduction of the first public working draft of HTML5 [2]. Computers make it possible
to process huge amounts of data and output their graphical representation - and how to
output the data is complicated topic for discussion. Use of color, shadows and shapes
in data visualization is addressed by scientists and designers continually. There are lots
of trade-o�s between computer and humans limitations, and also display limitations–
every pixel is important. I will briefly touch some of them in this work.

Data visualization as an utility, has the potential to transform a large part of the
industry. Companies will be able to understand their data quickly, discover emerging
trends–both in the business and in the market–which can give them edge over the
competition, and identify relationships and patterns. It allows access to challenging
data sets which would otherwise require hours to identify. However, to visualize the
data, one must understand them and their structure, determine what needs to be
visualized and what kind of information needs to be displayed. Therefore, there is need
to know an audience and to understand how it processes visual information–topics of
accessibility emerge. Finally, use a visualization which expresses the information in the
simplest and the most understandable form.

1

1. Introduction .

Figure 1.1. Two di�erent pictures of the same data. In the second one, it is clear that
#33aaaa colored T-Shirt is the best seller, so company should focus on making more of
those. Spreadsheet requires a lot of time to figure this out, and computed data can be

harder to remember than a large bluish cone.

1.1 Aim of thesis

Typically, administrator manages Google Drive service which the business pays for.
His job is to share/unshare files to company employees, track space usage, or to see
how many files with given types are present in specific directory. Graphical interface
provided by Google is very similar to typical GUI provided in Windows or OSX–enabling
to navigate through hierarchy and do some operations with files. However, if we want
to get specific information about group of files or file system as whole, we need to do it
manually, or run some filter script on top of it to see the results. One of the specific use
cases of administrator managing the drive is to find some old multimedia files which
are not needed anymore and take too much space. This is not a problem when the
file system content is small. But as the file system content grows, it becomes more
problematic to get the information we want and even worse to remember it, even for a
short amount of the time. Visualization can help with these problems.

The aim of this work is to create an application which will help from administrators
in large corporations to common household users to spot information and patterns that
they seek in their Google Drive file system. In this work I choose and implement the
most suitable visualization techniques for the following generalized tasks:
.To navigate through hierarchy and see file system structure
.To spot files by their size
.To spot files by their types
.To spot files by their owners and permissions to these files

In addition, visualizations are in single views and these views interact with each
other. The interactions are following:
.Changing the color of an attribute in one view translates to another and vice versa
.Changing the depth of visualized hierarchy in one view translates to another view

and vice versa (depends on user)
.Actual node selected in one view may translate to another view and vice versa (de-

pends on user)

2

. 1.2 Structure

The implementation of the application is based on the analysis of available tools for
visualizing data on the web and choosing the most suitable visualization techniques for
the given tasks.

1.2 Structure

Following chapter presents analysis of available JavaScript tools for visualizing the
information on the web. I document features and limits of given libraries/frameworks
and choose the most suitable one for my work.

Chapter 3 presents building the application. In the beginning I investigate Google
Drive API to see how a file meta data objects look like and what type of information
I can work with, then I choose the most suitable visualization techniques for the given
tasks. I also design user interface and describe other tools I use for front-end and back-
end part of the application. In the end of the chapter I provide implementation details
of the chosen visualizations.

Chapter 4 presents future work, related work and conclusions.
This work also contains well-commented source code of the application.

3

Chapter 2

Analysis of libraries

2.1 Introduction

This chapter presents the analysis of available JavaScript libraries and frameworks
for data visualization. I outline the most popular and relevant JavaScript tools which
are free to use. I investigate what the given tools are able to do, what kind of data are
they able to visualize, if they are still maintained, if the code is readable and easy to
extend and finally, if they are easy to learn.

In the end I choose one tool and analyze it in detail.

2.2 Basic analysis of libraries

2.2.1 Arbor.js

Arbor1) is a graph visualization library built with web workers and jQuery. Rather
than trying to be an all-encompassing framework, arbor provides an e�cient, force-
directed layout algorithm plus abstractions for graph organization and screen refresh
handling. Developer can decide between canvas, SVG or positioned HTML elements.

.Suitable for hierarchical, relational and tabular data visualization. As shown in
Figure 2.1, Arbor.js is suitable for creating interactive file system visualizations.

.Canvas, SVG and HTML manipulation. Data interaction via collapsible nodes and
manipulating with nodes position.

. Implemented gravity and physics for graphs.

.Extensive and readable documentation.

.MIT license. Possible to extend the code.

.Not readable and uncommented code. Hard to change the code.

.Depends on jQuery2).

.Last github commit in May 2012. The project probably stopped to develop.

1) http://arborjs.org
2) https://jquery.com/

4

http://arborjs.org
https://jquery.com/

. 2.2 Basic analysis of libraries

Figure 2.1. Hierarchical data visualization with Arbor.js

2.2.2 D3.js

D31) is a JavaScript framework for manipulating documents based on data. D3 helps
to bring data to life using HTML, SVG, and CSS. It puts emphasis on web standards and
has full modern browsers support. Despite its similarity of syntax and semantics with
jQuery, tools are completely di�erent. With jQuery, developer directly manipulates
elements, unlike with D3, developer provides the data to the library, defines callbacks
and D3 manipulates elements. With D3 we typically bind data to some shape, define
how it should be rendered, and D3 makes DOM updates. Note that we always have
access to data, so we do not have to store the information to the ids, classes or data
attributes of the elements for the future access. D3 uses update selections, making it
quite e�cient in the business of keeping the UI in sync with data changes.

.Virtually able to visualize any kind of data. Figure 2.2 shows scatter plot matrix.

.Unlimited interaction possibilities.

.Huge, scalable framework with variety of layouts for graphs, trees, charts, diagrams,
dendograms, treemaps, parallel coordinates, and so on2).

.Active github, lots of tutorials and big community.

.BSD license. Possible to extend the code.

1) http://d3js.org/
2) https://github.com/mbostock/d3/wiki/Gallery

5

http://d3js.org/
https://github.com/mbostock/d3/wiki/Gallery

2. Analysis of libraries .

Figure 2.2. Scatter plot matrix is good way to roughly determine if we have a linear
correlation between multiple variables.

2.2.3 Cola.js

Cola1) is an open-source library for arranging HTML5 documents and diagrams
using constraints. It alters the behavior of other data visualization libraries like D3,
Cytoscape or svg.js. The core layout is based on a complete rewrite in JavaScript of
the C++ libcola library. Cola also contains D3 force layout adapter which achieves i.e.
more stable layout than D3 and provides constraints such as alignments or grouping.
In terms of learning curve, programmers can develop in Cola as they were developing
in D3. However, there are few minor di�erences.

.Easy to learn and use for D3 developer.

.Project is alive on github and continues to develop.

. It is not a standalone tool, more like an extension layer above either D3, Cytoscape
or svg.js.

.MIT license. Possible to extend the code.

2.2.4 Cubism.js

Cubism2) is a D3 plugin for visualizing time series. It can be used to create real-time
dashboards. Cubism reduces server load by polling the most recent values. Despite
loading is asynchronous, rendering is synchronous, thus it improves both performance
and readability. It has built-in support for fetching data with Graphite3) and Cube4),

1) http://marvl.infotech.monash.edu/webcola/
2) http://square.github.io/cubism/
3) http://graphite.wikidot.com/
4) http://square.github.io/cube/

6

http://marvl.infotech.monash.edu/webcola/
http://square.github.io/cubism/
http://graphite.wikidot.com/
http://square.github.io/cube/

. 2.2 Basic analysis of libraries

and can be readily extended to fetch data from other sources. Figure 2.3 shows time
series of scalar numeric data and basic operations with them.

.Suitable for data visualization based on time.

.No interactivity options unless additional D3 code is used.

. It is D3 plugin, thus D3 knowledge is required.

.Last github commit on April 2014. Project probably stopped to be developed, al-
though it still works well with no deprecation warnings.

.Apache license. Possible to extend the code.

Figure 2.3. Time series visualization with Cubism.js. Positive values are green and nega-
tive values are blue. With mouse over the drawing we can inspect the values.

2.2.5 Google Chart Tools

Google Chart Tools1) is library for creating variety of charts. It is worth pointing
out area charts, bar charts, bubble charts, donut charts, treemaps, maps, scatter charts
and so on. Library is powerful and simple to use. It just requires to create library
object with chart type name, and pass data with options to it.

.Perfect to create common visualizations in short time and with very little knowledge.
Figure 2.4 shows pie chart created just with 3 lines of code.

.Not suitable if advanced and highly customized visualization with variety of interac-
tions is needed. Tool has its boundaries which cannot be crossed.

.Can visualize scalar, vector, tabular and relational data.

. It is maintained by Google, always up to date, on par with web standards, and with
full browser support.

.Free to use. API is provided minified, code is not readable and impossible to extend.

Figure 2.4. Pie chart showing day activities of a person, created with Google Chart Tools.

1) https://developers.google.com/chart/

7

https://developers.google.com/chart/

2. Analysis of libraries .

2.2.6 Kartograph

Kartograph1) is a simple and lightweight framework for building interactive map
applications without Google Maps or any other mapping service. It was created with
the needs of designers and data journalists in mind. It o�ers versions for Python and
JavaScript. It can cluster data in maps, visualize it in pie charts and so on. Figure 2.5
shows visualization of crime rate in the major cities in the USA.

.Can visualize tabular and relational data in geographic maps.

.Depends on jQuery and Raphael2).

.Project github is somewhat inactive. Although last commit is from July 2015, most
of the code was committed in 2012.

.LGPL license. Possible to extend the code.

Figure 2.5. Interactive map created with Kartograph. Information is visualized via 3D
bar charts.

2.2.7 NVD3.js

NVD33) is a collection of re-usable chart components built with D3. Components are
highly customizeable. Figure 2.6 shows example of stacked area chart.

.Collection of pie, line and bar charts with interaction.

.Great built-in interactivity.

.Usable for scalar, vector, tabular and relational data.

.Depends on D3.js.

.Active github.

.Apache license. Possible to extend the code.

1) http://kartograph.org/
2) http://raphaeljs.com/
3) http://nvd3.org/

8

http://kartograph.org/
http://raphaeljs.com/
http://nvd3.org/

. 2.2 Basic analysis of libraries

Figure 2.6. Stacked area chart component of NVD3. It can be switched to stream and
expanded mode, and variables can be disabled by clicking on circles. By hovering mouse

cursor over the graph, the data are shown in detail.

2.2.8 Paper.js

Paper1) is an open source vector graphics scripting framework that runs on top of
the HTML5 Canvas. It o�ers comfortable and clean programming interface to create
and work with vector graphics and bezier curves.
. It is too abstract and focused generally on 3D graphics, rather than focused on data

visualization. Figure 2.7 shows path intersection detection.
.Supports every browser which supports Canvas.
.Active project github and twitter.
.Lots of tutorials on web page.
.Easy to learn but hard to master.
.MIT license. Possible to extend the code.

Figure 2.7. Path intersection detection created with Paper.js. Words are moved by user
and intersections are shown in real time.

1) http://paperjs.org/

9

http://paperjs.org/

2. Analysis of libraries .

2.2.9 Processing.js

Processing1) is library for data visualization, digital art, interactive animations,
graphs, video games and so on. It uses popular Processing2) visual programming
language.

.Huge framework focused on 3D graphics in general.

.Lots of plugins created by big community.

.Active github, forum, blog and lots of tutorials.

.MIT license. Possible to extend the code.

2.2.10 Raphael

Raphael3) is small library to simplify work with vector graphics. It is not focused
on data visualization, even though it is possible, as Figure 2.8 shows.

.Simple

.Same as Paper.js, it is not focused on data visualization.

.Perfect and readable documentation.

.Small community, inactive twitter.

.MIT license. Possible to extend the code.

Figure 2.8. Time visualization with Raphael.

1) http://processingjs.org/
2) https://processing.org/
3) http://raphaeljs.com/

10

http://processingjs.org/
https://processing.org/
http://raphaeljs.com/

. 2.2 Basic analysis of libraries

2.2.11 Rickshaw

Rickshaw1) is a D3 plugin for visualizing time series.

.More options compared to Cubism.js, for example scatterplots, line charts, stacked
bars or color interpolation. Figure 2.9 shows time series of tabular data.

.Easy to use, only requires data in specific format.

.Depends on D3.js.

.Weak documentation, the only source of information is readme file on github.

. Inactive github.

.MIT license. Possible to extend the code.

Figure 2.9. Time series of tabular data visualized in line chart.

2.2.12 Sigma.js

Sigma2) is library focused on graph drawing of networks. Example of such visualiza-
tion is provided in Figure 2.10.

.Relational and hierarchical data visualization.

.Easy to use, only requires data in specific format.

. Interaction possibilities.

. It is small library, so web and documentation are short.

.Active github.

.MIT license. Possible to extend the code.

1) http://code.shutterstock.com/rickshaw/
2) http://sigmajs.org/

11

http://code.shutterstock.com/rickshaw/
http://sigmajs.org/

2. Analysis of libraries .

Figure 2.10. Network graph created with Sigma.

2.2.13 Three.js

Three1) is framework for programming in WebGL. It is layer just above WebGL, so
programmer works with shaders, lights, scenes and so on. Just like Processing, it is
possible to create anything 3D. Figure 2.11 shows 3D graph in Canvas.

.Huge community, arguably the most popular 3D framework for the web.

.Active twitter and github.

.Not focused on data visualization.

.Requires knowledge of WebGL.

.Great documentation and lots of examples and tutorials.

.MIT license. Possible to extend the code.

1) http://threejs.org/

12

http://threejs.org/

. 2.3 Final overview

Figure 2.11. 3D representation of chemical element implemented with Three.js.

2.3 Final overview

In this section I provide the final overview of the analyzed tools, as shown in Table 2.1.
I compare the libraries by activity of development, learning curve, and data types which
can be visualized. Since there is a lot of data types categories, I discuss only three major
categories: tabular data, relational data and spatial data. We can understand tabular
data as items(rows) and their attributes(columns), relational data as items(nodes) with
attributes and links between nodes and spatial data as grids with positions and cells
and their attributes. A common example of spatial data can be seen in geographical
maps.

Tool Maintained Di�culty Data types
Arbor.js No Medium T, R
Cola.js Yes Hard T, R, S
Cubism.js No Hard T
D3.js Yes Hard T, R, S
Google Chart Tools Yes Easy T, R
Kartograph No Medium T, R, S
NVD3.js Yes Medium T, R
Paper.js Yes Hard -
Processing.js Yes Hard T, R, S
Raphael No Easy -
Rickshaw No Hard T
Sigma.js Yes Easy T, R
Three.js Yes Very hard T, R, S

Table 2.1. Summary of analyzed tools. T stands for tabular, R relational, S spatial. Dash
is undefined, because tools are not directly created for data visualization, however, there

is possibility that they are able to create visualizations.

13

2. Analysis of libraries .

Di�culties are following: easy, medium, hard and very hard. Easy di�culty is just
giving the data to the library controller function, medium requires learning library
API environment which is not very complex. Hard is the same as medium, but more
complex, and very hard requires additional knowledge of computer graphics.

2.4 Choice of framework

I analyzed arguably the most popular and relevant tools for visualization and graphics
development on the web. For my topic, which is visualizing the Google Drive file system,
I go for D3.js. The reason for it is big community, lots of examples and the power which
is given to the developer. It does not necessarily mean, that other tools like Processing
or Three.js are worse for the given issue, D3 just makes more sense, because it is data
driven, and I work with data fetched from Google API.

Next section o�ers more detailed analysis of D3.js.

2.5 D3.js in detail

In this section I try to elaborate the basic idea behind D3 in introduction, following
subsections outline techniques for creating and updating visualizations and conclusion
sums everything up.

2.5.1 Introduction

D3 is described as a JavaScript library for manipulating documents based on data.
D3 helps to bring data to life using HTML, SVG, and CSS. To understand this, we
must forget how are we used to manipulate the DOM.

One of the common tools for visualizing on the web is SVG. Typical approach to
visualize data with SVG using pure JavaScript or jQuery would be to iterate through
some data array, and insert SVG element with calculated properties to the DOM. Then,
if we need to update the visualization, the most naive approach is to select and remove
an old SVG elements from DOM and insert the new ones. In the more specific cases
we would need to compare old SVG elements which do not need to be removed, update
the existing ones and insert or remove the changes. This is a mess, because we would
also need to store old information to the DOM, typically to id or data attributes, if we
want to compare it with new data.

This is not the case of D3. D3 o�ers three core methods, data, enter, and exit,
which handle the DOM updates themselves using D3’s general update pattern1).
Programmer only has to tell them, what to do with existing, new and old elements. D3
takes a burden of complicated DOM manipulation o� programmer’s shoulders. This is
what makes D3 unique.

To demonstrate it with example, I use the data from Table 2.2 and following code
snippet to demonstrate how to visualize this data in treemap, provided in Figure 2.12.
The code snippet shows both D3 code and output of it in the HTML. D3 code outlines
how data focused D3 is. There is no need for any DOM operations, just bind myData
1) http://bl.ocks.org/mbostock/3808218

14

http://bl.ocks.org/mbostock/3808218

. 2.5 D3.js in detail

variable which contains data from Table 2.2 to an SVG rect element and set its proper-
ties like height, width and styles. Note that this is iteration and we always have access
to every array item which is passed as argument to the function. In addition, width and
height properties have been already calculated by d3.layout.treemap based on their size
property, and appending the SVG g and text elements is also not outlined there and
it needs to be done. I wrote it to SVG output part of the code to make it consistent
with Figure 2.12. Aim of this example is just to demonstrate, how to access the data
and create their graphical representation in D3. Also to clear any confusion, the svg
variable is already created by D3 by appending it to a DOM element, for example a div
container.

//D3 code
svg.selectAll("rect")

.data(myData)

.attr("width", function(d) {return d.width;})

.attr("height", function(d) {return d.height;})

.style("fill", "#ffbb78")

.style("stroke", "#fff");

//SVG output in the HTML file
<g class="cell">

<rect x="0" y="0" width="187" height="131" fill="#ffbb78"
stroke="#fff">

</rect>
<text x="93.5" y="65.5" text-anchor="middle">

The Wold of Wall Street
</text>

</g>
<g class="cell">

<rect x="187" y="0" width="227" height="294" fill="#ffbb78"
stroke="#fff">

</rect>
<text x="300.5" y="147" text-anchor="middle">

Man of Steel
</text>

</g>
<g class="cell">

<rect x="0" y="131" width="187" height="163" fill="#ffbb78"
stroke="#fff">

</rect>
<text x="93.5" y="212.5" text-anchor="middle">

The Great Gatsby
</text>

</g>

Film Ve�kos� v GB
The Wolf of Wall Street 2
The Great Gatsby 2.5
Man of Steel 5.45

Table 2.2. Multimedia files and their size.

15

2. Analysis of libraries .

Figure 2.12. Visualized size of multimedia files using treemap.

2.5.2 Selections

D3 employs declarative approach to modifying the DOM. Compared to imperative
approach of W3C DOM API1), it makes the code more readable and understandable.
Following code demonstrates the same thing done by pure JavaScript and D3.

//JavaScript using W3C DOM API
var paragraphs = document.getElementsByTagName("p");
for (var i = 0; i < paragraphs.length; i++) {

paragraphs.item(i).style.setProperty("color", "white", null);
}

//D3
d3.selectAll("p").style("color", "white");

2.5.3 Dynamic properties

Compared to jQuery or Prototype, styles, attributes and other properties can be
specified as functions of data in D3, not just simple constants. This is the place where
we can calculate properties of elements based on the data. Following code snippets
shows styling of every even and odd paragraph.

d3.selectAll("p").style("color", function(d, i) {
return i % 2 ? "#fff" : "#eee";

});

2.5.4 Appending the elements

Initially, we want to append SVG to container, or to append SVG elements to the
group. This is done with D3 append() method. Note that in contrast with jQuery, D3
append() returns created element, so we can continue to work with it, as demonstrates
the following code snippet.
1) https://www.w3.org/DOM/DOMTR

16

https://www.w3.org/DOM/DOMTR

. 2.5 D3.js in detail

var svg = d3.select("body")
.append("svg")
.attr("width", 100)
.attr("height", 300);

2.5.5 Data

The data() method is the core of D3. It binds the data to document elements. In the
easiest case, the array is bound in the order. Specifically, the array of [200, 300, 400]
binds value 200 to the first rectangle, 300 to the second and 400 to the last. Also, if we
want to update the data, we use this method and D3 figures out which SVG elements
need to be redrawn. This method was already mentioned in the previous example, so
I won’t go to more details.

2.5.6 Enter and Exit

The data() method only works for updating the arrays of the same length. The
enter() method declares, what to do with new data, while exit() specifies, what to do
with the old, untouched data. Exit is typically used, if we want to remove old elements
from the DOM, and enter vice versa. Following code demonstrates the example of data
manipulation in the both cases.

var newData = [800, 200, 300, 600, 800];

//two elements are new, append them to the svg
svg.selectAll("rect")

.data(newData)

.enter()

.append("rect")

.attr("x", function(d,i) {return i*2;})

.attr("width" , 15);

var evenNewerData = [50, 2, 3];
svg.selectAll("rect")

.data(evenNewerData)

.append("rect")

.attr("x", function(d,i) {return i*2;})

.attr("width" , 15);

//two elements are left, remove them
selection.exit()

.remove();

2.5.7 Conclusion

In this section I demonstrated how D3 works and how it lets a programmer to focus
on what he really is doing–visualizing the data. It handles the DOM updates really
fast and code is readable and maintainable. But the framework itself is pretty hard to
learn and even harder to master. I hope I have covered the basics in understandable
way, and more advanced usage will be showcased in the application code of this work.

17

Chapter 3

Building the application

3.1 Introduction

The aim of the implementation part is to choose the visualization techniques for use
cases described in the introduction of this work and implement web application using
these techniques.

Firstly I analyze the Google Drive API and identify, what can be fetched from it.
Application should be able to give every user the opportunity to visualize his own data
on demand. Thereafter I choose the most suitable visualizing techniques for the given
data and outline the business logic of the application. I set up the project environment
and explain the project structure. I briefly touch the back-end, front-end and build tools
which make development faster, cleaner, maintainable and with less bugs. Finally, I
outline the implementation of the chosen techniques for the visualization.

3.2 Google Drive API

In this section I examine the Google Drive API1) for JavaScript.
API provides the service for fetching Google Drive metadata asynchronously via

AJAX. It is available for multiple languages including Java, Python, PHP, Ruby,
JavaScript and so on. It requires to create a project in Google Developers Console2).
This is the control point of the application where we can see quotas of enabled APIs
and other settings of the project, like setting how the OAuth modal with look like.
Figure 3.1 shows the OAuth modal of my project, which handles user authentication
and authorization and pops up when user requests the Google Drive data.

Google Drive API maximum quotas are set to 1,000,000,000 requests per day with
possibility to apply for higher quotas.

One API call returns array of 100 metadata objects and next page token. In order to
get the whole Google Drive structure, I need to call the API in the loop until no next
page token is received. Getting the Google Drive structure by parts is good, because I
can create a loader which gives feedback to users about loading progress. Implementa-
tion of the loader service is in app/services/DriveAPILoader.js file.

I have examined the fetched API object structure in Table 3.1. We can see that it
has some good attributes for visualization, i.e. creation and modification times, size,
mime type, or owners and parents, which can be visualized as relational data.

1) https://developers.google.com/drive/v3/web/quickstart/js
2) https://console.developers.google.com/

18

https://developers.google.com/drive/v3/web/quickstart/js
https://console.developers.google.com/

. 3.2 Google Drive API

Figure 3.1. Google handles security automatically. DriveVision is the name of the project
created in Google Developers Console.

Attribute Type Commentary
capabilities Object Object of capabilities, i.e. canWrite.
createdTime String Time of file create.
explicitlyTrashed Boolean Whether the file is trashed explicitly.
iconLink String Link to file icon.
id String Unique ID of the file in Google Drive.
isAppAuthorized Boolean Whether opened by the requesting app.
kind String This is always drive#file.
lastModifyingUser Object Who modified a file most recently.
mimeType String Type of the file.
modifiedByMeTime String The last time the file was modified by me.
modifiedTime String The last time the file was modified.
name String Name of the file.
ownedByMe Boolean Whether it is owned by me.
owners Array Array of user objects, who own the file.
parents Array Array of strings, parents IDs.
permissions Array Array of user objects with permissions.
quotaBytesUsed String The number of storage quota bytes.
shared Boolean Whether the file is shared.
spaces Array Whether ’drive’, ’appDataFolder’ or ’photos’.
starred Boolean Whether the file is starred.
trashed Boolean Whether the file is in trash.
version String A monotonically increasing version number.
viewedByMe Boolean Whether the file has been viewed by me.
viewedByMeTime String Time of the last view-time.
viewersCanCopyContent Boolean Whether readers can copy the file.
webViewLink String A link for opening the file.
writersCanShare Boolean Whether writers can share the file.

Table 3.1. Object returned by Google Drive API represents single file metadata.

19

3. Building the application .

3.3 Choosing the techniques

In this section I reason about the techniques I use to visualize the Google Drive
file system. In the introduction of this work I have presented the following tasks to
visualize:

.To navigate through hierarchy and see file system structure

.To spot files by their size

.To spot files by their types

.To spot files by their owners and permissions to these files

Following the first task, the first thing which comes to mind when visualizing the
data which have some hierarchy is to display them in some sort of graph with nodes
and links between them. First we must define the terminology. Following definitions
outline the graph, its paths and cycles according to Diestel [3].
Definition 3.1. A graph is a pair G = (V, E) of sets such that E ™ [V]2; thus, the
elements of E are 2-element subsets of V . To avoid notational ambiguities, we shall
always assume tacitly that V

u
E = ÿ. The elements of V are the vertices (or nodes,

or points) of the graph G, the elements of E are its vertex edges (or lines).
Definition 3.2. A path is a non-empty graph P = (V, E) of the form V = x0, x1, . . . , xk,
E = x0x1, x1x2, . . . , xk≠1xk , where the xi are all distinct. The vertices x0 and xk are
linked by P and are called its endvertices or ends; the vertices x1, . . . , xk≠1 are the inner
vertices of P . The number of edges of a path is its length, and the path of length k is
denoted by Pk. Note that k is allowed to be zero; thus, PkP0 = K1.
Definition 3.3. If P = x0 . . . xk≠1 is a path and k Ø 3, then the graph C := P + xk≠1x0
is called a cycle.

Diestel describes a tree as an acyclic graph, one not containing any cycles. The
vertices of degree 1 in a tree are its leaves, the vertices of degree greater than 1 are
nodes. We can understand the degree of vertex as the number of edges connection to
it. Figure 3.2 shows an example of a non-trivial tree.

Figure 3.2. Non-trivial tree.

There are two categories of hierarchical data visualization–node-link diagrams and
space-filling diagrams. Node-link diagrams are categorized by their layouts to indented
layout, traditional layout, force layout, dendrogram, circular layout or circular dendro-
gram, hyperbolic trees and so on. Space-filling diagrams include, but are not limited
to icicle diagrams, sunburst diagrams, circle packing, and Voronoi treemaps.

To fulfill the first task, navigating through hierarchy and seeing file system structure,

20

. 3.3 Choosing the techniques

we can use any type of those diagrams. But not every of them scales good or uses the
screen space well with growing amount of data. For example, dendrograms or tradi-
tional layouts, where root is on the top and leaves at bottom, grow to width very fast
and need to be zoomed out.

I aim to use every pixel possible, because most of the users of this application do not
have large screens. I do not expect the large, multimedia studios to use it. I expect
the application to be used by admins, or common users, who want to control the files
in the company cloud, or their own files, respectively. And those users usually work on
desktops and laptops.

For this reason, the ideal candidates are all space-filling diagrams and circular layout,
circular dendrogram and force layout from node-link diagrams. This application uses
two visualization views, so choosing the visualizations able to cover all four cases is
ideal.

The first task is already covered, and to visualize file sizes, all space-filling diagrams
are ideal. I choose tree map visualization, because it makes sense to visualize files which
take space on the storage by rectangles which take space on the screen. Also, compared
to i.e. circle packing, tree map visualizes large data better, because rectanges can use
100 percent of screen space, while circles can not.

Johnson and Shneiderman [4] have proposed two basic types of tree map layout. First
type is nested tree-map, containing nesting o�set to better visualize hierarchy. Second
type is common, non-nested tree map, eliminating the nesting o�set. Figure 3.3 pro-
vides the experimental implementation of this type of tree map. In the figure, we can
clearly see two basic problems. First, if we want to express the type information of files
with color, we need to add borders, otherwise the information would split. But how to
choose color and width of a border to not confuse the user? If we colorize border, user
may think that it expresses some other information, i.e. creator of a file. In the figure
is deeply nested directory structure, separated with black border. It visualizes size of
files, and their types as well. There is also information about hierarchy–it is obvious,
that smaller rectangles are children of the bigger ones covering them. But we can not
clearly see which ones are directories and which ones are children of specific directories.

Figure 3.3. Non-nested tree map. Directories are gray-colored.

21

3. Building the application .

The nested tree map solves this issue. Following Figure 3.4, I experiment with adding
o�sets to rectangles to make hierarchical information absolutely clear. Note that this
example uses the same data as shown in Figure 3.3, only visualizing the depth of four
levels. And just now it becomes clear that structure is mostly composed from directories
colored with gray.

I also removed borders and used shadows instead to separate the colors. According
to Ware [5], it would be dull to live in a gray world, but we would actually get along
just fine 99% of the time. We can divide color space into one luminance (gray scale)
dimension and two chromatic dimensions. And it is the luminance dimension that is
most basic to vision and understanding. Also, the light-sensing receptors in our eyes
help us to recognize depth, by making the deeper directories darker. Following this
statement, I set directories gray by default, manipulate the lightness by depth and
separate parents from its children using shadows.

Nested tree maps have one disadvantage against non-nested tree maps. They are not
able to visualize as many files. Added o�sets require some pixels which would otherwise
be used for more data. However, in this specific use case, user is not interested in
visualizing small files deeply hidden in hierarchy most of the time. In if he is, he can
still navigate deeper or navigate there from second visualization which will be more
navigation-oriented.

Figure 3.4. Nested tree map. Directories are gray-colored.

For the second visualization I have one task left–to visualize owners and their permis-
sions. I investigated Google Drive metadata object in the previous section and I identify
four types of permissions–owner, writer, commenter and reader. Most permissions are
self-explanatory. Commenter is given to the users as a permission to comment Google
files like docs, spreadsheets and so on.

I also want this visualization to be able to handle drive exploration better. Tree map
gives us information about hierarchy, but we are not able to really see the whole hierar-
chy in the nested tree map–it has its pixels restriction, while the node-link visualization
can be infinite.

22

. 3.3 Choosing the techniques

To visualize owners and their permissions in node-link visualization, colors can be
used. But how to colorize node, if it has multiple owners with their permissions is an
issue. Figure 3.5 shows one possible technique to do that by grouping. In my specific
case, I would group the graph by users and colorize areas behind with the chosen users
colors. Areas would overlap, if a node has more than one owner. This is not good,
graph might get chaotic and disarranged.

Figure 3.5. Common attribute is visualized by coloring the background.

Another potential technique is bubble chart. Each node in graph would be repre-
sented with inner bubble chart which contains circles representing users. Each circle
is colorized with specific user color and permission attribute is visualized by radius of
circle. Figure 3.6 presents this idea. I can visualize owners, writers, commenters and
readers in the 4:3:2:1 ratio.

Figure 3.6. Bubble chart representing one node and visualizing three owners with owner,
commenter and reader permissions.

23

3. Building the application .

Inner bubble charts in force layout is possible choice to do the task, but I also want
to give the user a better by-type visualization than tree-map. According to Ware
[5], a strategy for designing a visualization is to transform the data so it appears like a
common environment. It complements the perception along with using colors, lightness,
brightness, contrast and so on.

My experiment is to visualize file types with SVG drawings as nodes and leaves.
Application uses three SVG drawings so far–closed folder, opened folder and file. There
is room to add another SVG drawings for specific types, but I stick with those three in
this work. The final idea is to visualize types in force layout using SVG, additionally
colorize those SVGs by given type, and attach inner bubble charts next to them. Figure
3.7 presents an example outlining this idea on another data.

Figure 3.7. Force layout visualizing some information with colors, and another one with
attached inner graphs.

I call this visualization mind map, because it has mind-mapping nature–nodes look
like drawings. According to Buzan [6], mind map is a radial tree, diagramming key
words in a colorful, radiant, tree-like structure. There is no strict way of doing the
mind map, but Buzan recommends to stick to the following guidelines:

.Start in the center with an image of the topic, using at least 3 colors.

.Use images, symbols, codes, and dimensions throughout your mind map.

.Select key words and print using upper or lower case letters.

.Each word/image is best alone and sitting on its own line.

.The lines should be connected, starting from the central image. The lines become
thinner as they radiate out from the center.

.Make the lines the same length as the word/image they support.

.Use multiple colors throughout the mind map, for visual stimulation and also for
encoding or grouping.

.Develop your own personal style of mind mapping.

24

. 3.4 Project setup

.Use emphasis and show associations in your mind map.

.Keep the mind map clear by using radial hierarchy or outlines to embrace your
branches.

I won’t necessarily stick to all guidelines. For example, the tree in my visualization
is not radial. I use the force layout to use the screen space in the most e�cient way.
However, I start with the image of Google Drive logo. This lets user recognize the root
apart from the other files.

In the mind map I visualize type attribute by using colors, and owners attribute by
using the inner circles alongside the nodes. Circles are colored by the owner name.
This approach works until the specific number of the owners, for more than that the
colors begin to split, circles are smaller and it gets harder to identify specific owner. I
compensate this by giving the zoom behavior to bubble charts on hover.

Finally, I connect the views. Views use the shared HTML5 localStorage1) data and
they can run in separated windows. WHATWG [2] have introduced the local storage
in the HTML5 as client alternative to cookies. Unlike cookies, the storage limit is far
larger and information is never transmitted to the server. In addition, we can register
listeners to it, so all windows are updated, when storage data change.

Following this approach I let users to run the application on two displays and there-
fore use the full potential of their pixels. Additionally, it opens the window for the
application to scale and add more visualizations later without having a concern about
the screen space usage.

The views interact with each other in the following ways:

.Changing the color of an attribute in one view translates to another and vice versa

.Changing the depth of visualized hierarchy in one view translates to another view
and vice versa (depends on user)

.Actual node selected in one view may translate to another view and vice versa (de-
pends on user)

These interactions are handled by sidebar and custom context menu on node click.
I go to details in implementation section.

3.4 Project setup

3.4.1 Server

JavaScript has come a long way and can run on the server. Node.js2) with
Express.js3) o�er fast and simple setup, so I can setup application server in no time
and focus on the client part. The whole server implementation is in the project root,
in the server.js file. I don’t use back-end in this application, but I need some server
to run the project. This is the reason, why server implementation is very shot, and
without any API calls.

Server additionally provides server side rendering which can speed up and initial
load of application. It will be described in isomorphic section later.

1) http://www.w3schools.com/html/html5_webstorage.asp
2) https://nodejs.org/
3) http://expressjs.com/

25

http://www.w3schools.com/html/html5_webstorage.asp
https://nodejs.org/
http://expressjs.com/

3. Building the application .

3.4.2 Build system

According to Heilmann [7], we should avoid globals and modularize our JavaScript.
The days when we used to include the scripts in the HTML page are gone. The
common practice of today is to modularize JavaScript code, import dependencies and
let the build system bundle all the JavaScript code into one file. This reduces the
DNS operations and load on the server. Also we don’t have to include every new
created script in the HTML page. Code is additionally minified in the production.
Minification is the process of removing all unnecessary characters from the source code
without changing its functionality. Typically variables are shortened and white spaces
are removed, including comments and/or logs.

I use Browserify1) as the build system. Browserify traverses every import from the
entry JavaScript file and bundles the code into one single file. In order to do that
without problems, JavaScript code needs to be modular and without global conflicts.
Prusty [8] describes old ways of modularizing the JavaScript with immediately invoked
expressions, and new ways with named exports. Named exports, along with many other
great JavaScript features like classes, have been introduced by Ecma International [9],
as new JavaScript standard, and it is also used in this project. However, to reach the
full browser support, I use Babel2) to compile new ES6 standard to old ES5 standard.

All these tools are used under the Gulp3) task manager, so I can automate everything
and do not have to execute all the previously mentioned tools manually. Gulp magic
happens in gulpfile.js and I won’t go to more details.

3.4.3 React and Flux

Along with previously mentioned tools, I use React4) library to build user interface
and Flux5) architecture for business logic. Both are fairly new tools introduced by
Facebook and became very popular recenly. In this subsection I briefly describe how
they work and why I have decided to use them along with D3.

Both React and D3 share the same philosophy of “give me the data, tell me what
to do with them, and I figure out which parts of DOM to update”. The only di�er-
ence here is that D3 uses its update selections and React uses the virtual DOM di�
algorithm. React is based on reusable components with props and state. Props define
the component and state defines current component state. Every time the state of the
component changes, the component is re-rendered. I must emphasize that although
this work is about visualizations with D3, ironically, D3 will run under React. React
acts like a library, but with Flux it is a complete framework. Even though it looks like
this gives me a boundaries, I can easily call D3 methods from Flux components and
Flux actions from D3 components.

The following code snippet shows how a visualization component might look in this
application. Note that componentDidMount() and componentDidUpdate() are meth-
ods inherited from React, and their code fires after component has been mounted or
updated, respectively. In my application, these methods encapsulate D3 components
behavior.
1) http://browserify.org/
2) https://babeljs.io/
3) http://gulpjs.com/
4) https://facebook.github.io/react/
5) https://facebook.github.io/flux/

26

http://browserify.org/
https://babeljs.io/
http://gulpjs.com/
https://facebook.github.io/react/
https://facebook.github.io/flux/

. 3.4 Project setup

import D3Component from ’../d3/D3Component’; //ES6 modularity

//React component
class VisualizationComponent extends React.Component {

constructor(props) {
super(props);
this.D3Component = null;

}
componentDidMount() {

this.D3Component = new D3Component();
this.D3Component.draw(); //start visualization

}

componentDidUpdate() {
this.D3Component.update();

}

render() {
//this React component is just a div
//encapsulating my SVG visualization
return (

<div/>
);

}
}
export default VisualizationComponent; //ES6 modularity

This component is very simple and needs more code to make it work, but the goal
was just to give a basic idea. I won’t go further about React, because it is not a goal
of this work.

Flux is the application architecture that was introduced by Facebook along with
React, for building client-side web applications. It complements React’s composable
view components by utilizing a unidirectional data flow. Figure 3.8 explains how the
data flow in Flux.

Figure 3.8. Flux architecture explained by Facebook. In the case of this work, our React
and D3 components are in the view, stores contain state of the components and other
business logic like Drive API fetched data. Note that stores, actions and dispatcher are all

singletons.

27

3. Building the application .

3.4.4 Isomorphic applications with React and Node.js

My application is JavaScript heavy. I did everything I could to make it fast, from
minification and bundling to using DOM e�cient libraries like React and D3. But user
still needs to spend some time until all the assets are loaded. Isomorphism solves this
problem.

I have already mentioned in the Node.js section, that JavaScript can run on the
server. So we actually can run our React code on the server, while user waits for the
client-side code. React o�ers ReactDOM.renderToString() method, which can be found
in the server.js file. This method runs the React code on the server, returns it as
HTML, so user can see the UI while he waits for the client-side JavaScript. When the
client side JavaScript is loaded, it bootstraps on the top of the HTML and from this
point so on, application becomes client-side only.

3.4.5 Project structure

After I have introduced all the tools and features that I use, Figure 3.9 presents the
final project structure. All the client-side code is in the app/ folder. Along with Flux
architecture’s actions/, components/ and stores/, there are folders for services/, which
are used as an utilities, folder for D3 visualization components, folder for styles and
alt.js/ file with dispatcher. Bootstrap point of the application is in the main.js/ file.
svg folder contains classes responsible for creating SVG icons and in factory folder are
factories responsible for creating these SVG classes.

Figure 3.9. Project structure.

28

. 3.5 User-interface design

3.5 User-interface design

The great designer of Apple, Jony Ive [10] emphasizes the importance of prototyping
in his biography. “But when you made a 3-D model, however crude, you bring form to
a nebulous idea, and everything changes—the entire process shifts. It galvanizes and
brings focus from a broad group of people. It’s a remarkable process.”

Although I do not create 3-D prototype, I want to outline the importance of having
the application designed before starting the implementation. Application needs an user
interface for handling interaction with visualizations. I believe that even that tiny
portion of user interface should be designed before implementation to give the clear
vision of how the application will look.

I have created simple paper mock-ups done in the Balsamiq1) to give the idea of
the final look. It should be absolutely minimal, save the pixels for visualizations and
users should be able to completely hide it from the screen. Following figures display all
three use-cases of application use. Figure 3.10 previews initial load of the application.
Sidebar is initially hidden are can be opened or closed. Figure 3.11 provides the designed
mock-up for the mind map and tree map views.

Figure 3.10. Paper mock-up of the home page. Sidebar is initially hidden. This is the
only time when users see this page. After the drive structure is loaded, it is stored in

localStorage and tree map loads on home page.

1) https://balsamiq.com/products/mockups/

29

https://balsamiq.com/products/mockups/

3. Building the application .

Figure 3.11. Paper mock-up of the visualization. Sidebar contains slider for choosing the
depth. Additionally, there is checkbox to indicate whether to display the depth in the
other visualizations or not. Next, there is a list of an colored attributes. When user clicks
on attribute, a color picker shows up. Attributes are initially set up to the most fitting

colors provided by D3. At the end are two buttons for switching a visualizations.

3.6 Implementation

This section explains the logic and implementation of visualizations. I do not go into
deep details, just explain the basic idea how the application works under the hood.

There is a common interface for all the visualizations and visualizations extend from
this interface.

class Visualization {
create(){}
update(){}
delete(){}

}

The create method handles all initializations, update is executed when visualization
needs to be redrawn and delete does the cleanup. This is the place for all D3 code.
React components encapsulating these D3 classes abstract from this implementation
using bridge pattern described by Gamma et al. [11]. With this approach I can have
user-interface-related code and business logic code in React components and D3 code in
Visualization classes. The React component-D3 component communication is following:

class ReactComponent extends React.Component {
constructor() {

/*...*/
this.visualization = null;

}
componentDidMount() {

this.visualization = new Visualization();
this.visualization.create();

}
componentDidUpdate() {

30

. 3.6 Implementation

this.visualization.update();
}
componentWillUnmount() {

this.visualization.delete();
}

}

The business logic for user interface operations like updating colors in Sidebar and
so on is handled by Flux architecture. Implementation is in all app/stores/ files. When
action fires, components change state and re-render. componentDidUpdate() method is
evoked and D3 visualization updates as well.

3.6.1 Tree map implementation

D3 provides d3.layout.treemap() algorithm to create a new tree map layout. Default
settings are sorting by descending value, the default value accessor assumes each input
data is an object with a numeric value attribute, the default children accessor assumes
each input data is an object with a children array; the default size is 1◊1.

var treemap = d3.layout.treemap()
.children(function(d, depth) { return depth ? null : d._children; })
.sort(function(a, b) { return a.value - b.value; })
.ratio(height / width * 0.5 * (1 + Math.sqrt(5)))
.round(false);

My algorithm skips some of the default settings. I re-calculate children values to add
navigation behavior–children become at root level of size as we navigate deeper.

Also, D3 does not provide algorithm for nested tree maps and I have to calculate o�
sets by myself. The following code outlines adding o�sets to layout calculated by D3.

d._children.forEach(function(c) {
c.x = d.x + c.x * d.dx;
c.y = d.y + c.y * d.dy;
c.dx *= d.dx;
c.dy *= d.dy;
if (margin) {

if (c.x === d.x) {c.x += mrg; c.dx -= mrg*2;} else {c.dx -=mrg;}
if (c.y === d.y) {c.y += mrg; c.dy -= mrg*2;} else {c.dy -=mrg;}

}
c.parent = d;
ref.layout(c, false, margin);

});

In this case, c is child and d its parent. x and y are coordinates of a rectangle on
the screen and dx, dy are its width and height respectively. The idea is that if margin
variable is true, we are going to add o�sets. mrg variable is numeric value of the o�set,
in this case it is 10 pixels. If starting position of child is the same as starting position of
its parent, push it by o�set value and make it 2 times o�set smaller. If it is somewhere
else in the area, just push it.

This code has one issue–rectangles smaller than 2 times o�set value get negative
values and they are not drawn in drawing iteration. But user usually does not seek
very small files in tree map and if he does, he can navigate deeper in hierarchy and

31

3. Building the application .

they become visible.
This is the basic logic of how I draw nested tree map. Other implementation details

can be found in app/d3/TreemapImpl.js.

3.6.2 Mind map implementation

To create mind map, I use variety of layouts. The node-link force layout is created
by cola.js. I have described cola.js in the analysis, but I do not go into details because I
only use cola adapter for D3 force layout. The reason I use it is the more stable layout
without jitter. The code looks exactly same as it would by using d3.layout.force(). In
the following code I outline creating this layout using cola adapter.

var force = cola.d3adaptor()
//d3.layout.force()
.linkDistance(130)
.size([ref.width, ref.height])
.on("tick", function() {

ref.tick(this, ref);
});

ref holds the reference on this, because scope changes in iterations. Later in the code
I pass the nodes data and links data, where links is an array of arrays of two objects
being linked together. tick is function fired in time interval, trying to re-arrange the
force layout.

To create SVG icons I append the svg path with predefined values to the node position
calculated by force layout. I use the flyweight pattern described by Gamma et al. [11]
to save the memory, so in memory I have just three SVG objects being drawn multiple
times.

n.each(function(d) {
let svgComponent = FlyweightSVGFactory.GetFlyweight(d.children ?

d.type+"_OPEN" : d.type);
let el = d3.select(this);
for (let path of svgComponent.getPaths()) {

el
.append("svg:path")

.attr("d", path)

.attr("fill", function(d) {
return DriveDataUtils.findColorByAttr(ref.colorSettings,

d.type);
});

}
});

Next, I append bubble charts to every node to visualize owners and their permissions
to the given file using d3.layout.pack. Parent circle has no meaning and just reserves
the space for children, and children circles represent each owner name with color and
permission with its radius. Implementation of creating the each node is in createIcon
in app/d3/MindmapImpl.js file.

32

. 3.7 Demonstration of the application

3.7 Demonstration of the application

In this section I outline possible uses of both visualizations and sidebar controls along
with final pictures of both visualizations.

Following list explains common use cases:

.Clicking on hamburger icon in top left corner expands side bar.

.Clicking on Google Drive logo in side bar executes authentication and authorization
process of user and loads Google Drive files meta data. All client settings are reset.

.Clicking on the mind map and tree map buttons on the bottom of the side bars opens
application in new windows with specific visualization.

Following list explains use cases of tree map:

.Clicking on the tree map rectangle navigates deeper in hierarchy.

.Clicking on the tree map label on top navigates back in hierarchy.

.Right clicking on top tree map label shows context menu with following actions: show
in mind map.

.Hovering over the tree map rectangle shows more detailed information about the file.

. In the sidebar, clicking on the attribute text fires color picker with option to change
the color of the given attribute in tree map.

. In the sidebar, moving the slider manipulates tree map depth.

. In the sidebar, checking the check box under the slider enables to manipulate the
depth in other visualizations .as well

Following list explains use cases of mind map:

.Clicking on the mind map node svg icon expands or reduces it (depends whether it
is already opened).

.Hovering over the mind map node inner bubble chart zooms it.

.Right clicking on top mind map node svg icon shows context menu with following
actions: show in tree map, expand, reduce.

.Graph zooms in and out on mouse wheel.

.Dragging the nodes allow to rearrange them.

.Dragging outside the nodes moves whole graph.

. In the sidebar, clicking on the attribute text fires color picker with option to change
the color of the given attribute in mind map.

. In the sidebar, moving the slider manipulates depth of graph which is expanded.

. In the sidebar, checking the check box under the slider enables to manipulate the
depth in other visualizations as well.

Figure 3.12 and Figure 3.13 show final implementation of tree map and mind map,
respectively.

33

3. Building the application .

Figure 3.12. Final tree map visualization. View is navigated to Drive/DriveVisios/public
directory.

Figure 3.13. Final mind map visualization with zoomed-in inner bubble chart.

34

Chapter 4

Conclusion

In this work I have analyzed available JavaScript tools for visualizing data on the
web and I have chosen D3 library to implement an application for visualizing Google
Drive file system. Application uses two connected views which interact with data. First
view is mind map, which is technically node-link tree graph with force layout and inner
bubble charts, visualizing the hierarchy, file type attributes and file owners and their
permissions. Second view is tree map, visualizing the hierarchy, file type attributes and
file size.

The future work of this project is to add views. There are other attributes of Google
Drive files which can be visualized to help users with another use cases, i.e. created
time, number of files in directories and so on. Also aim is to upgrade the tree map with
more SVG icons to visualize file types.

The most related work is Mohiomap1). In addition to Google Drive, Mohiomap visu-
alizes Evernote, Dropbox and Box. In comes in paid plans and visualizes the file system
with mind mapping. Figure 4.1 shows visualized file system in Mohiomap.

Mohiomap is mind mapping visualization service and does not provide other visual-
izations apart from user activity visualization in dashboard. This is the reason why I
have decided to create this application–to give users more views and file attributes to
visualize.

Figure 4.1. Bubble chart representing one node and visualizing three owners with owner,
commenter and reader permissions.

1) https://www.moh.io/mohiomap/welcome/

35

https://www.moh.io/mohiomap/welcome/

References

[1] Kristin Koch, Judith McLean, Ronen Segev, Michael A Freed, Michael J Berry,
Vijay Balasubramanian, and Peter Sterling. How much the eye tells the brain.
Current Biology. 2006, 16 (14), 1428–1434.

[2] Web Hypertext Application Technology Working Group. HTML 5 . 22 January
2008.
https://www.w3.org/TR/2008/WD-html5-20080122/.

[3] Reinhard Diestel. Graph theory. 2005. Grad. Texts in Math. 2005, 101
[4] Brian Johnson, and Ben Shneiderman. Tree-maps: A space-filling approach to

the visualization of hierarchical information structures. In: Visualization, 1991.
Visualization’91, Proceedings., IEEE Conference on. 1991. 284–291.

[5] Colin Ware. Information visualization: perception for design. Elsevier, 2012.
[6] Tony Buzan. Make the most of your mind. Simon and Schuster, 1984.
[7] Chris Heilmann. JavaScript best practices. 6 March 2009.

https://www.w3.org/wiki/JavaScript_best_practices.
[8] Narayan Prusty. Learning ECMAScript 6. Packt Publishing Ltd, 2015.
[9] Ecma International. ECMAScript® 2015 Language Specification. June 2015.

http://www.ecma-international.org/ecma-262/6.0/.
[10] Leander Kahney. Jony Ive: The Genius Behind Apple’s Greatest Products. Pen-

guin, 2013.
[11] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:

Elements of reusable software components. 1995,

36

https://www.w3.org/TR/2008/WD-html5-20080122/
https://www.w3.org/wiki/JavaScript_best_practices
http://www.ecma-international.org/ecma-262/6.0/

Appendix A

Installation

Application requires Node.js and NPM to run. To install on Ubuntu server:
sudo apt-get install nodejs
sudo apt-get install npm

Copy the CD contents to folder name.
cd folder_name
npm start

37

Appendix B

Abbreviations and symbols

B.1 Abbreviations

API Application program interface.
DOM Document Object Model. Programming API for HTML a XML docu-

ments.
W3C World Wide Web Consortium.

HTML HyperText Markup Language.
SVG Scalable Vector Graphics.

NPM Node Package Manager.

38

	TITLE
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents/
	Tables/Figures
	Introduction
	Aim of thesis
	Structure

	Analysis of libraries
	Introduction
	Basic analysis of libraries
	Arbor.js
	D3.js
	Cola.js
	Cubism.js
	Google Chart Tools
	Kartograph
	NVD3.js
	Paper.js
	Processing.js
	Raphael
	Rickshaw
	Sigma.js
	Three.js

	Final overview
	Choice of framework
	D3.js in detail
	Introduction
	Selections
	Dynamic properties
	Appending the elements
	Data
	Enter and Exit
	Conclusion

	Building the application
	Introduction
	Google Drive API
	Choosing the techniques
	Project setup
	Server
	Build system
	React and Flux
	Isomorphic applications with React and Node.js
	Project structure

	User-interface design
	Implementation
	Tree map implementation
	Mind map implementation

	Demonstration of the application

	Conclusion
	References
	Installation
	Abbreviations and symbols
	Abbreviations
	Symbols

