
P E R U N

bc. richard dobřichovský

A Lightning Plug-in for The Foundry’s NUKE Compositor

Master’s Thesis

Department of Computer Graphics and Interaction
Faculty of Electrical Engineering

Czech Technical University in Prague

Supervisor: Ing. Jaroslav Sloup

May 2016



Richard Dobřichovský: PERUN, A Lightning Plug-in for The Foundry’s
NUKE Compositor, Master’s Thesis
c© May 2016

Set with the Classicthesis LATEXtemplate by André Miede.







A C K N O W L E D G E M E N T S

I would like to thank my advisor, Ing. Jaroslav Sloup, for his construc-
tive approach and advice. Also, I would like to thank my parents for
their full support during my studies.

D E C L A R AT I O N

I hereby declare that I have completed this thesis independently and
that I have listed all the literature and publications used.

Prohlašuji, že jsem předloženou práci vypracoval samostatně a že
jsem uvedl veškeré použité informační zdroje v souladu s Metod-
ickým pokynem o dodržování etických principů při přípravě vyso-
koškolských závěrečných prací.

In Prague, the 27th of May, 2016

v





A B S T R A C T

The goal of this thesis is to create a physically based lightning simu-
lator for use within the VFX industry. The thesis studies the physics
of real lightning creation and explores existing methods for its simu-
lation, both visual and physically based. We use the Dielectric Break-
down Model as our physically based method of choice and offer four
variations of a conjugate gradient solver used within to solve systems
of linear equations in order to calculate electric potential. Further, we
also discuss the rendering of electrical bolts and scene illumination in-
duced thereby. We implement our Perun lightning generator as both
a standalone application and a plug-in for The Foundry’s Nuke com-
positor. Finally, we demonstrate the use of the implemented plug-in
to composite lightning into several shots and offer an insight to the
process of doing so.

Keywords: Perun, lightning, simulation, Dielectric Breakdown Model,
NUKE, plug-in, video, VFX

A B S T R A K T

Cílem této práce je vytvoření fyzikálně založeného simulátoru blesků
jakožto efektu k použití ve filmové postprodukci. Tato práce nejprve
zkoumá fyzikální podstatu blesků a prezentuje existující metody pro
simulaci jejich tvaru, jak fyzikálně založené, tak visuální. Vybranou
fyzikálně založenou metodou pro tuto práci je metoda průrazu diele-
ktrikem; implementujeme čtyři varianty metody sdružených gradi-
entů pro řešení systémů lineárních rovnic k výpočtu elektrického po-
tenciálu. Dále se v práci zabýváme renderováním elektrických výbojů
a osvětlováním scén, jichž jsou součástí. Náš generátor blesků Pe-
run implementujeme jako samostatnou aplikaci i jako plug-in pro
kompositor Nuke. Nakonec demonstrujeme užití tohoto plug-inu
vložením vygenerovaných blesků do několika scén a objasňujeme
postup k tomu zvolený.

Klíčová slova: Perun, blesk, simulace, Dielectric Breakdown Model,
NUKE, plug-in, video, VFX

vii





C O N T E N T S

1 introduction 1

1.1 Motivation 1

1.2 Symbolics 1

1.3 Outline 2

2 physical properties of lightning 3

2.1 Plasma 3

2.2 Downward Negative CG Lightning Formation 4

2.3 Other forms CG Lightning 5

3 shape generation 9

3.1 Method Overview 9

3.2 The Dielectric Breakdown Model 15

3.3 Laplace’s Equation 17

3.4 Method of Conjugate Gradients 20

3.5 Adaptive Grid 21

3.6 Animation 23

3.7 Implementation 23

3.8 Benchmark 27

4 rendering 33

4.1 Bolt Shape Graph 33

4.2 Finding Branches 34

4.3 Drawing lines 35

4.4 Adding Glow 35

4.5 Scene Illumination 36

5 the foundry’s nuke plug-in creation 39

5.1 Overview 39

5.2 NDK C++ API 41

5.3 Implementation 43

5.4 Nuke Gizmos 44

5.5 Usability Testing 47

6 results 49

6.1 Sky 49

6.2 Sci-Fi 53

6.3 Jingle 54

7 discussion 55

8 conclusion 57

a implementation details 59

ix



x contents

a.1 Standalone Application 59

a.2 Nuke Plug-in 61

b enclosed cd 63

c list of symbols and acronyms 65

c.1 List of Symbols 65

c.2 List of Acronyms 66

references 67



L I S T O F F I G U R E S

Figure 1 A cloud-to-ground lightning strike. 4

Figure 2 Intracloud/intercloud lightning. 5

Figure 3 A visual breakdown of CG lightning forma-
tion. 6

Figure 4 Rotoscoped lightning 10

Figure 5 First CGI lightning 10

Figure 6 Grid configuration for physically based meth-
ods 13

Figure 7 Initial grid configuration for cloud-to-ground
lightning 16

Figure 8 Grid configuration to illustrate matrix construc-
tion 19

Figure 9 A generated lightning bolt and corresponding
quadtree 22

Figure 10 Screenshots from nVidia Visual Profiler 26

Figure 11 Benchmark results plot 29

Figure 12 A sample render 34

Figure 13 A screenshot of Nuke 40

Figure 14 A screenshot of gizmo controls 45

Figure 15 Internal structure of gizmo 46

Figure 16 Comparison with lightning in the sky 50

Figure 17 A comparison of CGI and real lightning 51

Figure 18 A screenshot of compositing in Nuke 52

Figure 19 Use of the plug-in in a company jingle 54

L I S T O F TA B L E S

Table 1 Benchmark results per iteration for η = 1 28

Table 2 Benchmark results per iteration for η = 2 28

Table 3 Benchmark results per frame for η = 1 30

Table 4 Benchmark results per frame for η = 2 30

xi





1
I N T R O D U C T I O N

1.1 motivation

Although lightning is not a natural phenomenon one would experi-
ence ever so often in real life, it would be hard to imagine a science-
fiction film without it. In fact, on average on Earth, a lightning
flash occurs more than 50 times per second, which is definitely not
marginal. Therefore we find it a valid topic to look into in terms of
computer simulation.

In film/video production, effects such as lightning are normally
added to the footage in post-production, as recording such effects
together with the scene itself would be rather impractical, or even im-
possible. Many effects found in science fiction films don’t even exist
in reality, or would be harder and more expensive to create physically
than as CGI.

It is surprising to see, how many today’s films or series incorpo-
rate some form of lightning: The Matrix Trilogy, Watchmen, Marvel’s
Agents of S.H.I.E.L.D. or Star Wars Rebels just to name a few. These
effects, either pre-rendered from 3D or generated directly in 2D, are
blended into the footage during compositing, i.e. assembling multiple
images to make a final image. Today, this is done digitally with a
wide range of software, one of the most widely used in professional
post-production being The Foundry’s NUKE. An effect that NUKE
does not have under the hood is lightning. This might not be a crit-
ically missing feature, as large studios will have their own, in-house
developed effects plug-ins and a team of software developers to create
effects tailored for the particular film in the making; smaller studios
though have to rely on expensive 3rd-party plug-in collections, buy
stock footage or use completely different software for compositing.
Therefore we decided to create a dedicated lightning effect plug-in
for NUKE to fill a small hole on the market.

1.2 symbolics

The project was named Perun, after the ancient Slavic god of thunder
and lightning and the highest god of the Slavic pantheon. The pre-
vailing theory is that Perun’s name comes from the Slavic verb perti
meaning “to beat”, although Téra offers a wider etymological view
on the subject in [33].

1



2 introduction

Most polytheistic religions have their own god of thunder and light-
ning—the Nordic Thor, the Celtic Taranis, the Greek Zeus or the Ro-
man Jupiter—but Perun was chosen to reflect our Slavic roots.

The symbol shown on the title page is called a thunder mark, a
symbol of Perun’s. This particular symbol and several other varia-
tions can be found engraved on chimneys or roof beams of many vil-
lage houses in Eastern Slavic countries. They were believed to protect
the buildings from lightning strikes.

Perun is the central character in Havlíček-Borovský’s satirical poem
Křest sv. Vladimíra [13], set in the time of tzar Vladimir I., who
sentences Perun to death for declining to thunder on his nameday.
The people are left without a god and therefore disobedient, so tzar
Vladimir I. issues a competition for a new god. Though the poem is
unfinished and does not explicitly end with Vladimir’s christening,
it is believed to also reflect christianisation, which occurred under
Vladimir’s reign in the region.

1.3 outline

The thesis can be broken down into several distinct parts. In chapter 2

we start with a review of the physical phenomenon of lightning, what
it is, what forms it can take and how it gets created in the atmosphere.

In chapter 3 we continue with an overview of existing methods
for lightning simulation in computer graphics and later present our
chosen physically based method for shape generation in detail.

Next, in chapter 4, we discuss the rendering of electrical bolts and
scene illumination in relation to practical compositing.

Chapter 5 first presents a survey of options available for Nuke plug-
in creation and later explains the use of the NDK C++ API for the
implementation of the Perun lightning plug-in for Nuke.

An essential part of the thesis is showcasing the use of the plug-
in in actual scenes—in chapter 6 we accompany the videos on the
enclosed CD with a text description explaining how the scenes were
composited.

Finally we analyse our achievements, asses the shortcomings and
offer several suggestions how the plug-in could be improved or ex-
panded in chapter 7.



2
P H Y S I C A L P R O P E RT I E S O F L I G H T N I N G

Although we do not experience lightning ever so often in our lives,
on average, lightning strikes the surface of the Earth more than 50

times per second in over 200,000 thunderstorms a day [19]. Apart
from that, lightning that strikes the Earth’s surface, referred to as
cloud-to-ground lightning (CGs, figure 1), only accounts for a quarter
of lightning flashes that occur in the atmosphere. The rest mostly
fall into the category of cloud discharges, dubbed ICs, consisting of
intracloud, intercloud and cloud-to-air discharges (figure 2). Lastly,
other unusual forms of lightning also exist such as ball lightning or
lightning effects that occur in higher levels of the Earth’s atmosphere.

Lightning is a closely studied phenomenon, although all mecha-
nisms are not yet well understood, especially for non-CG lightning.
This is mainly due to the fact, that it is near to impossible to measure
and analyse the processes that happen relatively far away, and with
almost no precise prediction possible as to when and where they will
occur. On the other hand, CGs can even be “artificially” induced—
or better, “made to strike where we want it to”—during a thunder-
storm, a meteorological rocket or balloon with string attached can be
launched to help the lightning take place at a specific point, making
measurements much easier. Rakov and Uman present an extensive
compilation of research on all types of lightning in their book [29].

In this project, we will primarily be dealing with CG lightning, al-
though ICs retain very similar properties to CGs, therefore we expect
the same principles can be used for their simulation.

2.1 plasma

It would be wise to start with an explanation of what lightning ac-
tually is, or, more precisely, what we see—plasma. Plasma is the
so-called fourth state of matter and can have many forms, as Kul-
hánek nicely demonstrates in the 13 chapters of his book [19]—each
dealing with a different setting. The term plasma was coined by Lang-
muir in 1928 [20] and Kulhánek presents a general definition, based
on Langmuir’s:

1. Plasma contains unbound positive and negative particles able
to conduct electrical current.

2. Plasma shows “collective behaviour”, i.e. reacts to electric and
magnetic fields and is capable of creating them.

3



4 physical properties of lightning

Figure 1: A cloud-to-ground lightning strike.

3. Plasma is quasineutral—the overall charge of the particles is
roughly zero on a larger scale.

Plasma is commonly created by ionising gases, which is usually
achieved by increasing temperature and/or pressure. In the process
of ionisation, electrons break free from their atom nuclei creating a
highly conductive mixture of ions.

Plasma is the most common form of matter in the Universe—the
few non-plasmatic objects in space are rock planets, moons or aster-
oids, Earth being one of the few places in the Universe, where plasma
is relatively rare, nevertheless still present: in the ionosphere, in light-
ning, the aurora borealis, or even artificially created in fluorescent
lamps that we use every day [19].

2.2 downward negative cg lightning formation

Downward negative cloud-to-ground lightning accounts for around
90% of all CG lightning. It is initiated from cumulonimbus clouds,
mostly referred to by people as simply “thunderclouds”—which is,
unlike most other folk denominations, actually accurate: the term
cumulonimbus is merely a conjunction of Latin cumulus (heap) and
nimbus (storm cloud).

A cumulonimbus cloud is polarised, with the top carrying a posi-
tive charge and the bottom a negative charge. Why this polarisation
occurs is not entirely known—the prevailing theory is that ice crystal
collisions enable electrons to jump from one to another resulting in
lighter, positively charged crystals to ascend and heavier, negatively
charged crystals to descend [19]. This polarisation creates an electro-
magnetic field which repels electrons on the Earth’s surface under the



2.3 other forms cg lightning 5

Figure 2: Intracloud/intercloud lightning.

cloud and attracts positively charged particles, creating a positively
charged patch which travels with the cloud itself.

Electrons from the lower part of the cumulonimbus start creating
negatively charged channels towards the Earth’s surface; this hap-
pens in steps, with an interval between 20 to 50 µs. In each step,
branching can also occur, resulting in the characteristic shape of the
stroke. Due to the step-characteristic of the process, the channel is
called the stepped leader. The same process, in a far smaller scale, hap-
pens at the surface with opposite polarity. When these channels meet,
a highly conductive path through the atmosphere is created and the
charge inequality between the bottom of the cloud and Earth’s sur-
face results in the return stroke, the current of which can peak up to
30 kA. During the return stroke, the temperature of the gas in the
channel rises up to 30,000

◦K and the gas gets ionised—creating the
luminous effect we observe. This leader-return stroke sequence can
happen several times in one flash, only the subsequent leaders are
called dart leaders, because they no longer travel in steps. Before sub-
sequent dart leaders are initiated, so called J- and K- processes occur
within the cloud; it is unclear whether they are crucial for dart leader
creation, but the serve as a medium to transport additional negative
charge towards the existing channel[29].

The overall duration of a flash is typically between 200 and 300 ms
and usually consists of 3-5 individual strokes, though as few as 1 or
as many as 30 can occur. A breakdown of the process described above
is depicted in figure 3.

2.3 other forms cg lightning

Depending on its direction and polarity, apart from downward neg-
ative, CG lightning can also be downward positive, upward nega-



6 physical properties of lightning

Figure 3: A visual breakdown of CG lightning formation. a) initial charge
distribution b) preliminary breakdown c) and d) stepped leader
propagation e) attachment process f) first return stroke g) J- and K-
processes h) dart leader propagation i) second return stroke



2.3 other forms cg lightning 7

tive and upward positive. The direction can be easily identified by
the branching effect present: downward lightning has a “stem” at
the cloud and branches toward the ground, upward branching in
the opposite direction. Upward lightning is observed on high build-
ings such as skyscrapers, with the percentage of upward lightning
increasing with structure height, statistically from approximately 80

m with 0% probability to structures higher than 500 m with 100%
probability—being only struck by upward lightning.

As mentioned earlier, 90% of CG lightning on Earth is downward
negative; the remaining 10% is mostly filled up by downward positive
lightning. Positive lightning simply differs from negative lightning
in polarity: for downward lightning, the stepped leader coming from
the cloud has a positive charge. According to Kulhánek, it is not
uncommon for the leader to first travel several kilometres horizon-
tally before turning to the ground, therefore sometimes being called
“lightning out of nowhere”. The energy involved in the strike is also
an order of magnitude higher and therefore far more devastating if it
strikes an unprotected object.

Statistically, upward lightning is relatively rare—but this is not
much of a surprise: skyscrapers only occupy a truly marginal area
of the Earth’s surface.





3
S H A P E G E N E R AT I O N

In this chapter, we discuss the creation of the lightning bolt’s shape.
It is amazing how much effort has to be put into merely producing
a wiggly line. First, we present a survey of approaches that deal
with lightning shape generation. Based on this survey, we then fur-
ther explore the details of the physically based method chosen for
implementation—the Dielectric Breakdown Model.

3.1 method overview

Surprisingly, a relatively wide range of methods already exists to pro-
grammatically generate lightning. In general, they can be broken up
into two main categories: those physically based, seeking to gener-
ate the shape of lightning by simulating electrical discharge in the
atmosphere, and those that merely attempt to visually match real-
world lightning. Naturally, both approaches have their advantages
and shortcomings which we will attempt to analyse in this section.

3.1.1 History

Historically, lightning intended to be used in film would be drawn
by hand and/or rotoscoped—such an attempt is shown in figure 4.
This was nothing exceptional as rotoscoping was a widely used tech-
nique to create visual effects prior to the advent of digital composit-
ing. A notable use of traditional rotoscoping would be the glow of
lightsabres in the Star Wars original trilogy, released between 1977

and 1983. Rotoscoping is of course still used in digital compositing
when automatic methods fail or when applying such methods would
be inefficient, such as creating a garbage matte.

Another approach at hand would be to reuse real photographs
or high-speed camera footage—a technique applicable to both tradi-
tional and digital compositing, although we are unsure to what extent
such an approach has been used in film production.

3.1.2 Visual Methods

Most probably the first attempt to computationally generate lightning
was made by Carpenter in 1980, who worked on synthesising frac-
tal geometry on a computer. The video Vol Libre, accompanying his
paper[4], primarily showcases his fractal methods to generate terrain
and, possibly as a side effect of the research, the use of the gener-

9



10 shape generation

Figure 4: Lightning in Karel Zeman’s 1958 film The Fabulous World of Jules
Verne (original title Vynález zkázy).

Figure 5: Lightning in Carpenter’s 1980 video Vol Libre, presented at SIG-
GRAPH ’80.



3.1 method overview 11

ated curves as lightning. A screenshot from Vol Libre is presented
in figure 5. Although not the lightning itself, his fractal methods
were soon used in production, the “genesis effect”—terraforming a
forsaken planet—in Star Trek II: The Wrath of Khan. The scene was
conducted by Industrial Light & Magic.

The principle of fractals though, i.e. repeating a pattern at finer and
finer scales, is used in some of the visual methods further described
in this section. For detailed reviews of fractals, the reader is referred
to [8] and [21].

Most papers describing visual methods refer to Hill, who analysed
tortuosities1 of several digitised strokes and concluded that the an-
gles between short segments have a Gaussian distribution with a
mean of 16

◦. Furthermore, he reported in his paper[14], that tortu-
osity depends neither on segment length nor on the position within
the stroke—simply speaking, that the characteristics of the lightning
bolt’s wiggling remain the same all the way from the cloud to the
ground.

By the study of photographs, Reed and Wyvill[30] come to the
same conclusions as Hill—that the angle between lightning branches
forms a normal distribution centred around 16

◦ and use a variance
value of σ2 = 1. In their method, using this assumption, they gener-
ate underlying shapes which they then replicate using fractal scaling.
They state that their method suffers from the use of a pseudo-random
number generator which makes it hard for the user to control branch-
ing consistently—a feature certainly required by an artist.

Kruszewski builds on this and attempts to overcome this ambiguity
of random number generation by using the random split tree method[6]
which effectively controls the way branching is performed[18]. On
top of that, Kruszewski adds tortuosity (or as they call it electrifica-
tion) to the generated straight lines—this is, once again, based on
fractals: in this case a two dimensional midpoint replacement algo-
rithm. If a line segment AB is longer than a set lmax, it is subdivided
into two segments AD and DB, where D is randomly selected within
a radius of point C which is the midpoint of line segment AB. This
is performed recursively until all line segments are shorter than lmax.
Additional tortuosity is a very important feature for visual methods,
as it allows to separate actual branching from, let’s say “visual prop-
erties of electricity”. In addition to that, it adds a separate and very
intuitive user control for the artist to use.

Glassner uses statistical data gathered from the analysis of light-
ning images to randomly choose line segments with various proper-
ties (length, angle between new and previous segment and whether
or not to create a new branch)[11]. Like Kruszewski, Glassner adds
additional tortuosity. We would like to mention the name Glassner
chose for the project: Digital Ceraunoscope. A ceraunoscope is “an in-

1 “Tortuosity is a property of curve being tortuous (twisted; having many turns)”[36]



12 shape generation

strument or apparatus employed in the ancient mysteries to imitate
thunder and lightning”[37]. Until coming across this article, we were
unaware of the fact that there actually is a single English word to
describe a lightning simulator.

In his master’s thesis [2], Bergl combines Reed and Wyvill’s method
with Lindenmayer systems (L-systems). Lindenmayer systems were
originally developed as a way of modelling plants[28]—although seem-
ingly unrelated, the natural phenomena are surprisingly similar, so
L-systems can also be adopted to model lightning branching. Vice
versa, also physically based methods by Kim et al. were used to gen-
erate plants, or used as a bias when modelling with L-systems[17].
Lindenmayer systems can be thought of as rewriting systems—starting
with an axiom (a symbol or string of symbols) and recursively using
a set of replacement rules to replace all occurrences of symbols in the
current string, a complex structure can be quickly generated. Sym-
bols may define a line of certain length, branching, a turn, a poly-
gon or any other feature required to model the desired phenomenon,
making it a very versatile system. It may seem that L-systems demon-
strate a lot of similarity to formal grammars: the main difference is
that rules are not applied sequentially, but in parallel, for all symbols
in the string at once. In order to generate sequences with a degree of
randomness, multiple rules for replacement for a single symbol have
to be allowed—this variant, dubbed Stochastic L-systems, is used in
Bergl’s thesis.

3.1.3 Physically Based Methods

In its essence, nature is continuous and, with today’s technologies,
it is impossible to simulate entirely and precisely. In most cases,
some sort of discretisation has to be applied in order to feasibly cal-
culate such a simulation. In physics, this is called a lattice model. The
phenomenon that physically based lightning generating methods at-
tempt to simulate is that of electrical breakdown. All the physically
based methods presented below are centred around a 2D or 3D grid,
together with parameters defining the electrical field they attempt
to simulate—boundary conditions. A starting point on the grid is
chosen (by the user), and in subsequent iterations new cells neigh-
bouring the present shape are picked (by the algorithm) to expand it.
The process of new growth cell selection and the way of possible grid
potential recalculation differs between methods. An example of such
grid is depicted in figure 6.

The first endeavour in simulating dielectric breakdown was Diffu-
sion-limited aggregation[8]. Inspiration for this method comes from
the electrolysis of copper sulphate (CuSO4), where Cu2+ ions drift
along Brownian paths towards the cathode, where they build up cop-
per deposit creating a fractal pattern. In the simulation, a “particle” is



3.1 method overview 13

Figure 6: An example of a grid configuration of a physically based method
after several iterations. Black cell: origin, gray cells: growth sites
now part of shape, gray circles: candidate sites.

released from a random point on a circle of radius r centred around
the origin. This particle performs a random walk through the lattice,
either ending up in one of the candidate sites, thus adding itself to
the shape as a growth cell, or leaving the circle and not contributing.
The particle moves through the lattice with an equal probability of 14
in each allowed direction (north, east, south, west). As is, this method
would not be directly applicable to lightning as it e.g. lacks control
over direction—the generated shape spreads uniformly towards the
boundaries.

A more general approach was introduced by Niemeyer et al.: the
Dielectric Breakdown Model[24] builds on calculating the electric po-
tential of grid cells by solving Laplace’s equation (see section 3.3);
then, based on potential differences, probability values are assigned
to candidate sites and a growth site is randomly chosen, weighted by
the probabilities. The growth site is added as a boundary condition
of the electric field and Laplace’s equation has to be re-solved. As
this was selected as our method of choice, the method itself as well
as its underlying concepts, such as solving Laplace’s equation, will
be described in much more detail further in this section. Kim and
Lin use this method in their research on physically based lightning
generation in [15] and further improve its performance by the use of
an adaptive grid[16]; Bickel et al. do so as well in a similar fashion in
[3].



14 shape generation

Solving Laplace’s equation is costly, so researchers attempted to re-
frain from doing so: Kim et al. derive an approximation for the case
when boundary conditions are set to be φ = 1 on a circle of infinite ra-
dius around the generated shape, growth sites of which set boundary
conditions of φ = 0. Calculating initial potential in a point is rather
expensive (involving the calculation of Euclidean distances between
the point and all boundary conditions; the infinite radius is replaced
by a user-settable value which influences the amount of branching),
but recalculating it after a new growth site is selected is much faster—
briefly stated, it is done by merely contributing the influence of the
new growth site/boundary condition. Furthermore, the method does
not require the calculation of potential in all grid cells—only candi-
date cells, making it very efficient, though iteration time greatly de-
pends on the number of candidates—as the simulation progresses,
iteration times increase significantly. Fortunately, its nature allows ef-
ficient adoption of GPU acceleration and even after 12000 iterations,
GPU iteration times remain constant while CPU times increase nearly
tenfold[7]. In the software/research project leading to this thesis[7],
we experimented with this method, attempting to apply it to differ-
ent charge configurations, specifically to generate a cloud-to-ground
lightning. Although the results could lead to usable images, we expe-
rienced rather erratic behaviour when setting parameters controlling
branching—leading to either too much or too little branching. We
finally opted to drop the method and concentrate on calculating the
potential across the grid by solving Laplace’s equation as mentioned
above.

Sosorbaram et al., instead of solving Laplace’s equation, use Cou-
lomb’s law for a system of discrete charges—introduced by boundary
conditions, and use it to calculate the potential in the grid cells[32].
To help randomness, they also add noise to the field. In contrary
to other methods, growth sites do not contribute to the field and
so the potential field does not get recalculated. In their approach,
Sosorbaram et al. choose random points around a leader, and subse-
quently select N of those with the largest progression probability (N
is a settable parameter influencing the amount of branching). Candi-
date points which fall within a radius R of any of the N points are
removed, the remaining become new leaders. R is another user pa-
rameter changing the character of branching—increasing N increases
branching, whereas increasing R decreases branching.

3.1.4 Existing Products

Two main products are available on the market: Adobe After Effects2

come with a built-in “Advanced Lightning” effect. The Sapphire plug-
in collection by Genarts consists of over 250 different effects plug-ins

2 a compositing suite by Adobe Systems Inc.



3.2 the dielectric breakdown model 15

and is well known known in the post-production industry—one of
the plug-ins, the “Zap” effect, also simulates lightning.

It is unclear what methods commercially available applications use,
as they do not openly present their work in order to sell their prod-
ucts. It is quite apparent though, that the methods used are based on
the visual approaches presented earlier, probably combining several
of them together. Both products seem to generate a very simple un-
derlying shape with no tree-like branching and add most of the “light-
ningness” via tortuosity (e.g. using the methods presented in [11] or
[18]). If more branching is set, more instances of these shapes appear
to be added to the “parent” jolt at predefined positions (with some de-
gree of randomness, but still following certain rules so that their dis-
tribution is more or less even), optionally with more decay if desired.
This way, it is relatively easy to create lightning with a lot of branch-
ing towards the target, which can be desirable in many sci-fi situa-
tions. On the other hand, doing this in a physically based method is
rather complicated or even impossible when only relying on physi-
cally based simulation. From our research, the only approach which
seems to intuitively achieve this to some extent is that of Sosorbaram
et al. It would be unfair though to present the lack of such a feature as
an a priori negative aspect of physically based methods: physically
based methods attempt to simulate lightning occurring in the real
world—in the atmosphere—whereas science fiction applications usu-
ally have no real physical background, but rather aesthetic inspired by
real-world occurrences of lightning put into situations which would
be impossible to achieve in (at least today’s) scientific experiments.

Sapphire do a good job animating jolts, but this apparently comes
from their way of creating the shape—the original underlying curve
(which could just be a simple Bézier curve) is modified slowly and
gradually, and only added tortuosity varies greatly in each frame,
thus creating an appealing continuous animation of “sci-fi” lightning.
Unfortunately, if branching is set, the points where branches leave
their parent jolt stay the same, so this feature is effectively usable
only with no or very little branching.

Apart from these, major post-production studios are likely to have
their own, in-house developed lightning generators: many science
fiction movies or TV series feature such a large amount of scenes
including lightning it makes sense to develop an in-house tool fitting
into the production pipeline and delivering results tailored to the
needs of the picture being produced.

3.2 the dielectric breakdown model

For the project, we chose to experiment with the Dielectric Break-
down Model, first described by Niemeyer et al. in [24], but expanded
and applied to practical simulation of natural phenomena including



16 shape generation

Figure 7: Typical initial grid configuration for cloud-to-ground lightning.
Light gray: origin/growth sites, dark gray: destination sites.

lightning by Kim et al. in a series of papers: [17], [15] and [16] as well
as Bickel et al. in [3].

Briefly, DBM is an iterational algorithm to simulate pattern growth
of an electric discharge. The algorithm uses a 2D grid of electric
potential values—figure 7 depicts a typical initial configuration. As
a result of every iteration, a new growth site is selected, gradually
creating a shape in a manner already illustrated in figure 6. If the
shape grows as far as the destination set, generation terminates.

First, in each iteration, the potential in every cell has to be cal-
culated, based on the boundary conditions incurred by growth and
destination sites. The potential of growth sites is set to φ = 0 and
destination sites to φ = 1. Determining potential across the grid is
achieved by solving Laplace’s equation:

∇2φ = 0. (1)

How that is done is explained in section 3.3. For now, let’s assume
we know how to do so: each grid cell has a value of electric potential
φ reflecting the current grid situation.

Next, candidate sites have to be determined: candidate sites are
all sites adjacent to growth sites (and logically not growth sites them-
selves). Because the bolt grows by one pixel (growth site) per itera-
tion, new candidates are found only within the 8-neighbourhood of
the new growth site.



3.3 laplace’s equation 17

Having candidates, we determine the probability pi of a candidate
being chosen:

pi =
(Φi)

η

n∑
j=1

(
Φj
)η (2)

where the sum in the denominator is a sum over potentials of all
candidate sites and η is a “branching” constant—the higher the value,
the faster the bolt reaches the destination, incurring less branching.
Setting η = 0 would not respect the values of electric potential across
the grid and therefore would result in complete randomness, creating
a so-called eden set. On the other hand, already η = 4 results in a
straight line, effectively leaving a reasonable domain of η ∈ [1, 3]. In
the project, we use two values, η = 1 for more branching and η = 2

for less branching.
Based on a random value v ∈ [0, 1], we choose a candidate accord-

ing to its probability—cycle through candidates until the sum of all
probabilities of previous candidates is greater than v.

Finally, the chosen candidate has to be removed from the candidate
set, added to the grown set and the grid updated. To effectively store
the shape and its branching in order to render it afterwards, we do
so in a graph, explained in section 4.1.

3.3 laplace’s equation

The primary problem in the field of electrostatics is to determine
properties of an electrical field based on a given charge distribution.
We will start with Gauss’s law which, in its differential form, states
the divergence of an electrical field as follows:

∇ · E =
ϕ

ε0
. (3)

where ∇ · E denotes the divergence, ϕ charge density and ε the per-
mittivity of vacuum. According to Faraday’s law, an electric field
has zero curl and therefore we can define electric potential φ as the
gradient

E = −∇φ. (4)

Putting that together we write

∇ ·∇φ = ∇2φ = −
ϕ

ε0
(5)

which in fact is so called Poisson’s equation, which we will later use
for animation in section 3.6. In a charge-free region—which is our
case for now—the right hand term −ϕε0 equals to zero which leaves
us with Laplace’s equation

∇2φ = 0. (6)



18 shape generation

For analytical solutions and more context in the field of physics, the
reader is referred to corresponding literature, such as [12]. Here we
will describe the derivation of the discrete form of the equation that
we later use to come up with a numerical solution. The derivation
uses the method of discrete differences. We show the derivation in two
dimensions, but an analogical approach can be applied in 3D. As we
have already mentioned in section 3.2, the simulation runs on a grid,
and we are required to determine the potential for each of the grid
cells. First, we rewrite Laplace’s equation in Cartesian coordinates

∇2φ =
∂2φ

∂x2
+
∂2φ

∂y2
= 0. (7)

Let’s now recall the definition of a first order derivative

f ′(x) = lim
h→0

f(x+ h) − f(x)

h
. (8)

Using the central difference scheme, we approximate the derivative

f ′(x) ≈
f(x+ 1

2∆x) − f(x−
1
2∆x)

∆x
(9)

where ∆x corresponds with the size of a grid cell in the simulation. By
applying this once more, we receive an approximation for the second
order derivative

f ′′(x) ≈ f(x+∆x) − 2f(x) + f(x−∆x)
∆x2

. (10)

Now let’s define our simulation grid: an M by N grid, a grid cell
φij referring to the potential φ(xi,yj), i ∈ {1, . . . ,M}, j ∈ {1, . . . ,N}.
Without loss of generality we will also define ∆x = ∆y = 1. So,
applying our approximation on equation 7 for a single grid cell, we
get

(∇2φ)ij ≈ φi+1,j− 2φij+φi−1,j+φi,j+1− 2φij+φi,j−1 = 0 (11)

therefore, the value of each grid cell is determined as

φij −
1

4

(
φi+1,j +φi−1,j +φi,j+1 +φi,j−1

)
= 0. (12)

which defines a system of M×N linear equations.
In order to actually define the electrical field we determine the po-

tential values for, we have to introduce boundary conditions, i.e. grid
cells, the potentials of which are known and do not change. A des-
tination site introduces a boundary condition φi,j = 1, whereas a
growth site φi,j = 0.

The system of linear equations is best represented in matrix form
Ax = b, where each row/column represents a grid cell (matrix A is
symmetric). We show how such a matrix is constructed on a sim-
ple, small-scale example—a 3×3 grid shown in figure 8. A will be



3.3 laplace’s equation 19

i=1

i=2

i=3

j=1 j=2 j=3

φ=0

φ=1φ=1 φ=1

Figure 8: An illustrative 3×3 grid configuration to show the creation of ma-
trix A. Gray cells mark boundary conditions.

a square 9×9 matrix, vectors b and x 9×1 column vectors. But first,
let’s consider a 3×3 grid with no boundary conditions: this would of
course not give any useful results, but serves as a good illustration as
to how matrix A is constructed:

1 −14 0 −14 0 0 0 0 0

−14 1 −14 0 −14 0 0 0 0

0 −14 1 0 0 −14 0 0 0

−14 0 0 1 −14 0 −14 0 0

0 −14 0 −14 1 −14 0 −14 0

0 0 −14 0 −14 1 0 0 −14

0 0 0 −14 0 0 1 −14 0

0 0 0 0 −14 0 −14 1 −14
0 0 0 0 0 −14 0 −14 1





x11

x21

x31

x12

x22

x32

x13

x23

x33



=



0

0

0

0

0

0

0

0

0



.

(13)

Now we will introduce boundary conditions as shown in figure 8.
In boundary condition cells, we do not want to calculate anything:
their corresponding rows and columns, as well as their entry in the b
vector will be zero. Next, let’s consider cells that neighbour boundary
condition cells: the boundary condition cell with a set value of φij
will always influence such a cell by 1

4φij. Therefore, the value of bij



20 shape generation

has to be increased by 1
4φij. For the grid configuration in figure 8 we

therefore get

1 −14 0 0 0 0 0 0 0

−14 1 0 0 −14 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 −14 0 0 1 0 0 −14 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 −14 0

0 0 0 0 −14 0 −14 1 0

0 0 0 0 0 0 0 0 0





x11

x21

x31

x12

x22

x32

x13

x23

x33



=



0
1
4

0

0
1
4

0

0
1
4

0



. (14)

3.4 method of conjugate gradients

The discretised version of Laplace’s Equation leaves us with a system
of linear equations Ax = b we are required to solve. It is impor-
tant to note on the structure and size of the system: on a N ×N
simulation grid we construct a N2 ×N2 matrix. Even for small grid
configurations such as 64×64, it would be infeasible to work with an
explicit representations of matrix A. From the analysis in the previ-
ous section, it can easily be seen, that each column or row contains
a maximum of 5 entries, thus being a nice sparse matrix. Several
ways of representing sparse matrices exist, more on that topic can be
found in section 3.7 below. Many methods exist for solving sparse
systems of linear equations—fortunately, matrix A is also symmet-
ric and positive-definite so we can apply the method of conjugate
gradients[31]—an effective iterative numerical method. In each it-
eration, the solution to the system xk is refined until a user-defined
tolerance or a maximum number of iterations is reached. Pseudocode
for the algorithm is offered below:

1: k := 0

2: ~rk := ~b

3: ~dk := ~b

4: ~xk := ~0

5: while ‖ ~rk‖ > tolerance and k < max_iter do
6: sk := A ~dk
7: α := rk·rk

dk·sk
8: xk+1 := xk +αdk
9: rk+1 := rk −αsk

10: β := rk+1·rk+1
rk·rk

11: dk+1 := rk+1 +βdk
12: end while



3.5 adaptive grid 21

The algorithm maintains three vectors in each iteration k: ~xk repre-
sents the approximate solution—after the while loop terminates, ~xk is
the solution. Vector ~rk denotes the residual, which is sought to be min-
imised and ~dk is the search direction. Coefficients α and β ensure the
choice of a good search direction, minimising ~rk and thus increasing
precision of the solution ~xk—for proof thereof and more theoretical
background, the reader is referred to Shewchuk’s report[31], where
he provides a complex analysis of the method.

It is quite evident that the computationally most expensive step is
the matrix-vector multiplication on line 6; therefore it is crucial for
this step to be implemented efficiently and in parallel. More on that
can be found in section 3.7.

When solving large sparse systems of linear equations, it is a com-
mon practice to use preconditioning. Knowing the structure of matrix
A, it is possible to rearrange the elements in the matrix in such a way
to allow much quicker convergence of iterative solving methods. Kim
and Lin use preconditioning in their work but note that for smaller
matrix sizes, the computational expense of preconditioning is larger
than the actual speed-up gained by the solver’s faster convergence.
In our project, we attempt to achieve running times which would not
distract the artist from their work: the largest grid configuration we
use is 256×256, on which it takes around 5 seconds to generate a
lightning bolt (more benchmarks in section 3.8)—much more often
though, an artist would choose lower resolution grid configurations
on which it is possible to achieve generation times even under 500 mil-
liseconds per frame. In their work, Kim and Lin do not concentrate
on this restraint and in turn run their simulations on much larger
grid configurations including 3D grids. In this relation, it is appar-
ent, that preconditioning would not speed-up the generation in the
case of our relatively low-resolution grid configurations. Furthermore,
in the next section, we describe the use of an adaptive grid (which
itself on the other hand offers significant speed-up). Unfortunately,
the patterns found in A matrices corresponding to the adaptive grid
configuration make it much trickier to implement preconditioning,
both on theoretical grounds and computationally. Therefore, we de-
cided not to implement preconditioning at all as we did not expect
any speed-up. For details on preconditioning, including the adaptive
grid case, the reader is directed to Kim and Lin’s paper [16].

3.5 adaptive grid

So far, we calculate potential values in all grid cells. However, the
number of cells of which that value is ever used in the simulation
is very low. Suppose a 256×256 grid: simulation might be done in
say 1200 iterations—resulting in 1200 growth sites and about twice as
many candidate sites. Together, that is only about 5% of the total. An



22 shape generation

(a) (b)

Figure 9: A generated lightning bolt (a) and a corresponding quadtee (b).

obvious first step is exploiting the nature of lightning and not using a
square, but rectangular grid: but that only increases the proportion to
10%, which is still not great. Also, when using η = 1, the rectangular
grid can get too narrow for some of the generated branching.

The solution is to use an adaptive grid: high spatial resolution is
only required in those areas, where the new shape is evolving and
around boundary condition cells. We choose to implement a quadtree
data structure(figure 9) a quadtree is a rooted tree, where each node
represents a square area. A node is either a leaf, or has four children:
SW, SE, NW, NE. In our implementation, we also require the tree to
be balanced: the size of neighbouring cells differs at most by a factor
of 2. This makes neighbour searches much easier—an operation we
do very often when constructing the A matrix for the simulation. For
details on quadtrees themselves, the reader is referred to [5]. Here,
we will concentrate on how quadtrees change the simulation grid and
matrix A.

Three situations can occur within the simulation grid: a neighbour
can be of the same size, 2 times larger or half the size. The first
case is analogical to the regular case: the influence of such a cell
remains the same. In the other two cases, the influence is set to 1

2

of what it would be in the first case. The value of the matrix entry
on the diagonal though (which was 1 in the regular grid case) has
to respect these relations and be set to the opposite of the sum of
cell influences—the sum of each row and column of matrix A equals
to zero. Surprisingly, setting different coefficients does not greatly
impact the simulation[16], at least not to an extent that the influence
could be visually characterised.

Apart from the fact that now a cell can theoretically use up to nine
matrix entries per row (as opposed to 5 in the regular grid case),
more implementation issues are introduced: in the regular case, ma-



3.6 animation 23

trix A only changed when a growth site newly became a boundary
condition—the corresponding row and column would be set to zero,
as well as the entry in vector b. With an adaptive grid, the number
of required operations can greatly increase: suppose we find a new
candidate and due to quadtree balancing we have to subdivide the
quadtree. Apart from the newly subdivided cells, all of their neigh-
bours have to be updated in the matrix as the former parent cell is
not valid any more. This is revised further in section 3.7.

3.6 animation

Real-world lightning is very quick: when compositing such lightning
into a scene, it will be shown on one frame only, possibly two. How-
ever, science fiction set-ups demand a dancing lightning bolt that can
keep on going even as long as seconds—therefore tens of frames. A
first assumption would be: just generate new frames and put them
in sequence. Unfortunately, this does not create pleasing results—
in its nature, the physically based shape generation method creates
greatly randomised patterns—putting these shapes in sequence just
makes an impression of the bolt unpleasantly oscillating. Hence we
would like to make every successive shape follow a similar general
path as its predecessor. Fortunately, this can be achieved by deposit-
ing a small charge along the main channel of the preceding shape in
the new simulation grid. This slightly attracts the generated shape
towards that of last frame’s, whilst maintaining a certain degree of
randomness.

In section 3.3, when deriving Laplace’s equation, we came across
Poisson’s equation: Laplace’s equation was only a special case of Pois-
son’s equation in a charge free region. Let’s recall Poisson’s equation

∇2φ = −
ϕ

ε0
. (15)

The interpretation for our case is decreasing the value in vector b by
a small amount if the corresponding cell neighbours one which was
part of the main channel in the previous frame.

This approach does introduce a slight performance issue: the quad-
tree structure described in the section above cannot be used as effec-
tively, as we require to keep the subdivision created in the previous
frame. We have found though, that it is possible to slightly lower the
precision of the conjugate gradient solver without visual impact on
the results, thus reducing the influence on performance.

3.7 implementation

For the shape generation process, we implemented four different ver-
sions of the methods described above, differing mainly by the solver



24 shape generation

used. First, we used a linear algebra library which included its own
conjugate gradient solver for the regular grid version, later on we
expanded it for use with an adaptive grid; for comparison we also
wrote our own conjugate gradient solver for an adaptive grid, and
finally we created a GPU-accelerated version using CUDA.

At the beginning, for simplicity or even proof-of-concept, we tried
to find a library for linear algebra which would:

• support BLAS3 operations,

• support sparse linear algebra,

• include an efficient conjugate gradient solver

• and offer parallelisation.

Such a library appeared to be Eigen4 so the first implementation at-
tempts focused on utilising Eigen. We started with the regular grid
version, which did not pose great difficulties after we got accustomed
to Eigen’s sparse matrices. Sparse matrices require great attention, as
their improper usage can introduce serious performance issues. In
Eigen’s implementation, random access operations require a rather
expensive binary search, so modifying a matrix after it has been cre-
ated is not a great idea. In the regular grid case, this is not a big
deal—in every iteration, we only have to set row and column en-
tries of one cell—which is 9 matrix random access operations in to-
tal. Even though still very expensive, these are negligible compared
to the solver. With an adaptive grid on the other hand, entries for
many more cells may require changes—if a cell gets subdivided in
the quadtree, the entries for all of its parent’s neighbours become in-
valid, as they now neighbour the child nodes, not the parent node.
This can even occur recursively, if the factor-of-two neighbourhood
rule happens to be broken after a subdivision (see section 3.5 for de-
tails).

Eigen introduces so-called triplets, tuples holding i, j indices and
a corresponding value, defining a non-zero element. From a list of
those (or any iterable container), Eigen can construct a sparse matrix
in O(n) time. Even though it still seems inefficient, building the ma-
trix from scratch before every solver run only requires a fraction of
time of what the solver itself does. Although we have a reasonable
way of building the sparse matrix, we still haven’t solved the prob-
lem of actually altering the values: for that, we created a supporting
data structure—a triplet list together with a vector of row beginning
indices. This allows efficient row removal and insertion—the triplet
list passed to Eigen does not have to be ordered. Removing a row
means deleting successive items in the linked list of triplets (accessed

3 Basic Linear Algebra Subprograms
4 http://eigen.tuxfamily.org/

http://eigen.tuxfamily.org/


3.7 implementation 25

in O(1) time due to the row beginning index), inserting can simply
be done to the end of the linked list. Also, neither our own CPU nor
the CUDA implementation, which we discuss further on, pose the
requirement on list ordering: in both versions we access the sparse
matrix by rows, therefore maintaining row order is sufficient (and is
done per-se in the row beginning indices vector). Therefore, this rep-
resentation served as the actual sparse matrix format. (For CUDA, we
also have to construct another sparse matrix in a defined format, but
once again, efficient row access is sufficient.)

Being put off by the heavy-handedness of Eigen, we decided to
implement our own conjugate gradient solver for comparison. The
implementation is dubbed “prog2”, because it was inspired by a pro-
gramming assignment[27], which was simply the second in the Par-
allel and Distributed Computing class at the University of San Fran-
cisco. For Level-1 BLAS operations (vector-vector) we stayed with
Eigen’s dense vectors; however matrix-vector multiplication follows
our sparse matrix representation as presented above. We use paralleli-
sation via OpenMP, parallelising the for cycle iterating over matrix
rows—each matrix row–vector multiplication is de-facto an indepen-
dent dot product.

The last to implement was a GPU-accelerated version using CUDA.
Nvidia offer two handy libraries, cuBLAS[25] and cuSPARSE[26]; the
first, as the name suggests, implements BLAS routines as CUDA
kernels, whereas cuSPARSE offers functions that manage operations
with sparse matrices on the GPU. Their usage is relatively intuitive:
both libraries follow the BLAS specification—for us, the most im-
portant were cuBLAS Level-1 routines axpy(), copy(), dot() and
nrm2(), and cuSPARSE Level-2 csrmv() (matrix–vector multiplication
~y = αA~x+β~y, where A is a sparse matrix in CSR5 format and ~x and ~y

are dense vectors). A matrix in CSR format is defined by 3 arrays and
an integer specifying the number of nonzeros (nnz). The first array is
of nnz length and stores the non-zero values themselves; the second,
of length m+ 1, where m is the number matrix rows, stores indices of
each row’s first element in the last (and first) array. The last element
of the second array stores the value of nnz. The last array contains
column indices. Of course, creating the matrix and copying it to GPU
memory creates certain overhead, however it is still always dispropor-
tionate with the time required by the conjugate gradient solver—this
can be seen in figure 10. What is a larger issue are the computational
kernels themselves and their CPU overhead: as our goal is to achieve
running times usable for compositing, the simulation grids we use are
relatively small, as well as the resulting matrix A—by far not small
enough to represent it as a dense matrix, but definitely on the smaller
side when it comes to use of sparse matrices today. As it can clearly
be seen in figure 10, on 128×128 grid configurations, the GPU spends

5 Compressed Sparse Row Format



26 shape generation

more time waiting for the kernels to be run than actually performing
the calculations, resulting in GPU utilisation only around 17% and
suboptimal performance. Fortunately, at least with larger grid config-
urations, the amount of required calculations increases and running
GPU times come close to those of the CPU on a 256×256 grid, out-
performing it on a 512×512 and larger grids as can be seen on the
performance chart in figure 11 and the tables in section 3.8. On the
512×1024 grid, GPU utilisation even reaches 80%. More performance
analysis will be presented in the next section.

(a)

(b)

Figure 10: Screenshots from nVidia Visual Profiler of one conjugate gradient
solver iteration running on a 128×128 (a) and 512×512 (b) grid.

Originally, we expected better performance of the GPU version,
greatly optimistic from the results obtained in the project [7] leading
to this thesis; however, the method finally chosen does not offer such
a degree of parallelisation. Furthermore, there is no way of making
operations asynchronous—both calculations and memory copies—in
the algorithms, every step requires the result from the previous. This
is true for both the solver (to perform another iteration, the result of
the previous has to be known) and the Dielectic Breakdown Model
(based on the result of the solver, we have to choose a growth site,
and only then can new candidates be found, matrix A updated and
the potential re-solved).



3.8 benchmark 27

The respective parts are implemented in several source files: the
main logic of the shape generation algorithm, as described in sec-
tion 3.2, can be found in laplacianGrid.cpp; all three CPU vari-
ants of the conjugate gradient solver (section 3.4) in cg_solver.cpp

and the CUDA implementation in cg_solver_cuda.cu; finally the
quadtree data structure is implemented in quadtree.cpp. Code docu-
mentation generated by Doxygen6 is available on the enclosed CD in
/doc/perun/ both as a PDF file and HTML.

3.8 benchmark

To compare performance, we ran all of the four solvers on a scale of
grid configurations starting at 64×64 and ending at 512×1024. It was
apparent that the regular grid Eigen solver would take too long on
grid configurations 256×512 and larger so these tests were not run;
the same applies for the Eigen adaptive grid version for the largest
512×1024 configuration.

Because of the shape generation process being randomised, the sim-
ulation can end after an arbitrary number of iterations. Even with
the same grid configuration and η, the total number of iterations can
vary greatly. Whilst an average total time could be representative
after many executions, we propose an alternative metric. We run a
smaller number of tests whilst measuring the average time per itera-
tion for each solver. In addition to that, we also determine an average
number of iterations across all solvers for the given grid configura-
tion. Finally, these values are multiplied to express the average time
per frame. As such we believe we obtain a much fairer comparison, as
times per iteration are independent of the total number of iterations
during the simulation and vary much less.

All benchmark tests were run on a Fujitsu Celsius W530 Power
with the following configuration:

• Windows 7 64-bit

• CUDA release 7.5

• Intel Xeon E3-1231 v3 @ 3.40 GHz (4 cores, 8 threads)

• 16.0 GB system RAM

• NVIDIA GeForce GTX 750 Ti, 4096MB RAM

Benchmark results are presented in tables 1 through table 4. In
figure 11 we also include a plot of the values in table 2.

6 http://www.stack.nl/~dimitri/doxygen/

http://www.stack.nl/~dimitri/doxygen/


2
8

s
h

a
p

e
g

e
n

e
r

a
t

i
o

n

Table 1: Average times per iteration in milliseconds, η = 1

Grid conf. 64×64 64×128 128×128 128×256 256×256 256×512 512×512 512×1024

REGULAR 1.500 2.668 7.011 13.494 44.540 – – –

EIGEN 0.407 0.916 1.781 5.473 10.138 26.322 62.575 –

PROG2 0.148 0.296 0.520 1.368 3.252 6.741 18.121 28.341

CUDA 2.203 2.323 2.543 3.801 5.364 8.259 16.644 26.026

Table 2: Average times per iteration in milliseconds, η = 2

Grid conf. 64×64 64×128 128×128 128×256 256×256 256×512 512×512 512×1024

REGULAR 2.544 3.982 10.207 26.435 61.923 – – –

EIGEN 0.580 1.043 1.868 6.268 11.192 26.917 69.984 –

PROG2 0.300 0.501 0.886 1.973 3.961 7.262 21.117 35.325

CUDA 3.894 3.125 3.716 4.521 6.178 8.970 18.009 28.290



3.
8

b
e

n
c

h
m

a
r

k
2
9

 0

 10

 20

 30

 40

 50

 60

 70

64x64 64x128 128x128 128x256 256x256 256x512 512x512 512x1024

T
im

e
 p

e
r 

It
e
ra

ti
o
n
 i
n
 m

ill
is

e
c
o
n
d
s

Grid Configuration

REGULAR
EIGEN

PROG2
CUDA

Figure 11: A plot of benchmark results in table 2—i.e. iteration times with η = 2.



3
0

s
h

a
p

e
g

e
n

e
r

a
t

i
o

n

Table 3: Shape generation running times per frame in milliseconds, η = 1

Grid conf. 64×64 64×128 128×128 128×256 256×256 256×512 512×512 512×1024

Av. # of it. 800 1,600 1,800 2,000 2,400 7,000 9,000 24,000

REGULAR 1,200 4,269 12,620 26,987 106,896 – – –

EIGEN 325 1,465 3,206 10,946 24,331 184,256 563,171 –

PROG2 119 473 937 2,735 7,805 47,190 163,092 680,177

CUDA 1,762 3,717 4,577 7,603 12,874 57,815 149,792 624,629

Table 4: Shape generation running times per frame in milliseconds, η = 2

Grid conf. 64×64 64×128 128×128 128×256 256×256 256×512 512×512 512×1024

Av. # of it. 200 350 400 900 1,000 2,000 2,700 6,000

REGULAR 509 1,394 4,083 23,792 61,923 – – –

EIGEN 116 365 747 5,641 11,192 53,833 188,958 –

PROG2 60 175 354 1,775 3,961 14,524 57,015 211,951

CUDA 779 1,094 1,487 4,069 6,178 17,940 48,625 169,739



3.8 benchmark 31

From the results it can be clearly seen how the inefficiency of ma-
trix construction for Eigen’s conjugate gradient solver severely affects
the performance on larger grid configurations. Also, it is apparent
that the CUDA implementation only starts to become interesting with
larger grid configurations where the advantages of massive paralleli-
sation can be exploited. It is possible that transferring more of the
computational process to the GPU would make the CUDA version
even more favourable compared to the CPU prog2 version, especially
for grid size even larger than those that have been tested. Because
the goal of this thesis was to create a handy compositor’s tool based
on physical simulation rather than concentrating on an as precise as
possible simulation, we did not pursue in verifying this assumption.

The benchmark results also show an interesting observation: times
per iteration are shorter with more branching (η = 1) than when less
branching is set (η = 2). We assume the reason for this could be
the influence the number of growth sites has on the solver: the more
growth sites there are, the less work the solver has to do—growth
sites correspond to zero rows/columns in the matrix and no solving
is required for them. Nonetheless, total running times are still of
course higher when more branching is set (η = 1) because the total
number of iterations increases significantly more than the decrease of
time per iteration.





4
R E N D E R I N G

In the previous chapter, we constructed the shape of the lightning
bolt which was so far represented as a grid carrying the information
on whether a grid cell is a growth site or not. While this is sufficient
for the Dielectric Breakdown Model, it is not enough to convincingly
render the generated lightning. On the grid, we do not know the
relationships between growth cells—e.g. which belong to the main
channel or which merely lie on a side branch. To overcome this, we
construct a graph of the lightning branching and later render the
graph edges as line segments. Finally, we use convolution to add
glow to the bolt. All rendering that we perform results in floating-
point image data: in its nature, lightning is an effect introducing very
high luminosity, much higher than even the human eye can distin-
guish, let alone a digital sensor. Therefore it seems logical to output
high dynamic range data exceeding the visible range, letting the com-
positor determine tone mapping within a given scene. The renders
from the standalone application are saved as EXR images.

4.1 bolt shape graph

In our implementation we use a rooted tree to record the branching.
Each node contains a pointer to its parent, an std::vector of chil-
dren, an id, value of the x and y coordinate of the vertex, branch type
and assigned luminance. We do not pose any restrictions on the num-
ber of children; from the grid configuration we use, a parent could
theoretically have up to 7 children, but practically 1, 2 or 3 children
mostly occur. In the shape generation algorithm, when a new growth
site is selected, its parent has to be determined by searching the cell’s
8-neighbourhood. There is no explicit way of knowing which of the
neighbouring sites should be the parent if more than one growth sites
are incident, but due to the lightning shape we seek to produce, north,
northwest and northeast parents are given priority. In the standalone
version (independent of Nuke), we also introduce the resolution mul-
tiplicator—a crucial parameter that influences rendering. Originally,
growth sites bear their simulation grid x and y coordinates, but we
would like to stretch the simulation grid and instead of rendering
the cells, draw lines between the cells’ coordinates. Therefore, the
original coordinates are multiplied by this parameter. A reasonable
multiplicator is 4, but even 8 produces feasible results in some cases.
At this point we also introduce jitter—just magnifying the simulation
grid would create visual artefacts based on its uniformity. Therefore

33



34 rendering

Figure 12: A sample render, shape generated on a 256×256 grid, η = 1,
resolution multiplicator 4.

instead of taking only the original coordinates, we modify them in
each direction by a random value between -0.5 and 0.5; in relation to
the simulation grid, this can be considered as randomising the graph
node’s position inside the original grid cell.

4.2 finding branches

Within the graph, we would like to assign different luminance values
to different branches. Obviously, the main channel should have a
much larger luminance than the side branches, even by an order of
magnitude. We divide branch types into 3 categories: the first being
nodes along the main channel, the second nodes along side branches
that fulfil branch length criteria (discussed further) and category 3 for
all other nodes. Determining graph nodes along the main channel is
straightforward. Once a destination site is reached in the simulation
and the simulation is terminated, all that has to be done is to traverse
the graph back up to the root from that site via the nodes’ parents.

Setting side branches requires a more elaborate approach. Pho-
tographs of lightning show that some side branches are much stronger
than others. Kim and Lin state that it is not clear as to how these
brighter branches are selected in reality, yet they propose that in the
simulation the longest side branches should be selected. Further-
more, we add a user modifiable cutoff variable which determines



4.3 drawing lines 35

a minimum length of such a type 2 branch. However, finding longest
branches actually involves performing a blind depth-first search of
the whole branching tree. As inefficient as it may seem, the graphs
generated are actually relatively small: on a 256×256 grid the tree
might contain around 1200 vertices. In any case, finding side branches
does not pose as a computationally expensive step compared to the
shape generation itself.

Finally, we introduce luminance decay. It can be seen even through
the study of photographs, that side channels fade away as they get
further away from the main channel. While this might not be physi-
cally accurate, we set a linear decay for every branch—starting with
the luminance set for the given branch type or the luminance of the
parent branch at the branching point (whichever is smaller) and grad-
ually ending at zero. Adding decay greatly increases believability
and we are surprised that this feature hasn’t been discussed in any of
the papers referenced in section 3.1.

4.3 drawing lines

In the real world, the diameter of the lightning bolt’s main plasma
channel is only several centimetres[29]. Kim and Lin suggest that
humans perceive the channel of light as much thicker because its
luminosity greatly exceeds the capabilities of the human eye. Another
factor could also be light scattering within the atmosphere, which is
bound to happen in almost all cases of thunderstorms.

Nevertheless, we still choose to begin the render with thin lines.
For that, we use Xiaolin Wu’s line drawing algorithm which pro-
duces one pixel wide anti-aliased lines. From our experiments we
conclude that it is not necessary to draw thicker lines: in most scenes,
the composited lightning stroke will only be several pixels wide at a
maximum; that can easily be attained by rendering the lines with a
higher luminance and later adding blur.

4.4 adding glow

Both Bickel et al. and Kim and Lin use the so called Atmospheric
Point Spread Function (APSF) to add glow to their renders. Inter-
estingly, Narasimhan and Nayar introduced the APSF as a method
to remove glow around light sources in images, induced by multiple
scattering of light in bad weather such as fog or rain[22]. Their goal
was to recover the shapes and depths of light sources in the image
and in turn clear the image of these undesired atmospheric effects,
which could greatly help e.g. in automated image processing. They
did however suggest that the method could also be used to simulate
weather effects and show use thereof in their paper.



36 rendering

Based on a set of weather parameters, the Atmospheric Point Spread
Function produces a convolution kernel to be convolved with the orig-
inal image. (In our case, where we aim to add glow; in the original
case, the kernel would be used to deconvolve the original image.) As
physically accurate as the APSF may claim to be, we did not gather
any benefit in its use. At first we experimented with its application
but did not achieve significantly better results opposed to applying
a series of simple Gaussian blurs. In principle, the APSF kernel is
nothing more than a sophisticated blur. Furthermore, in order for the
APSF to provide visually pleasing results, rather large kernels have
to be used, which is computationally expensive concerning the con-
volution. Also, the input parameters of the APSF are not as intuitive
as they may seem at first glance.

Therefore, we stayed with simple Gaussian blurs and merges with
the original image. Motivation for this was also the fact that Nuke of-
fers a straightforward efficient implementation of Gaussian blurs: not
exploiting it for the plug-in would be regretful. But most importantly,
such blurs introduce very intuitive control over the result—for every
blur, only two settings are used: the size and subsequent mixing with
the original. More on this will be presented in the next chapter on
Nuke.

Another important feature that has not been mentioned in the pa-
pers researched in section 3.1 is adding grain. Even when creating
full-CGI movies, grain gets added to the renders in post-production,
because we are just used to seeing it there. Even with the best digital
sensors today, noise is always present in the pictures acquired, both
still or moving. With moving pictures this is even more profound as
we clearly notice the noise as it changes in each frame.

4.5 scene illumination

Many of the methods discussed in section 3.1 set their purpose to
accompany computer generated imagery, in which case it is at hand
to exploit scene information (usually 3D) to attempt to introduce ac-
curate and at the same time efficient scene lighting. While this is of
course a valid path and a field of research seeking innovation, it is
still a somewhat idealistic presumption that such methods would be
used in any non full CGI scenes in today’s post-production pipelines.
There are several arguments to support this proposition.

First and foremost, such scene information is not available in most
cases. Many assets used in 2D compositing are in fact CGI and their
renders may also include depth passes; Nuke itself can even work
with the original mesh through the 3D framework it ships with. How-
ever, most shots an artist will be working with will be shots captured
by a cinematic camera, which of course do not include any other infor-
mation apart from pixel intensities across the captured image plane.



4.5 scene illumination 37

In such cases, traditional compositing techniques have to be applied,
all based on experience and know-how of the compositor.

This may possibly change in the future with the proposed Lytro
Cinema1—Lytro have been offering light field still-image cameras for
several years and last year announced their entry into the cinematic
world. At this year’s NAB show, they presented a prototype of their
camera and a teaser for their short film Life they are filming to exhibit
the technology. Light field cameras, or plenoptic cameras, capture
both the intensities and directions of light rays incident to the image
sensor. This in turn makes it possible to extract depth information
from the recorded data, or even make a basic 3D reconstruction of
the scene. Lytro showcase this on creating a depth-matte, showing
how their technology could even obsolete the use of greenscreens. It
is of course still to be seen how this technology will influence the film
industry and to what extent it will be adopted in the future.

Another interesting novelty is deep image compositing: instead of
just accompanying CGI renders with depth maps, pixels also carry
render information at more given depths along the z-axis. Such infor-
mation could of course help realistically illuminate a scene by light-
ning. Although Nuke readily supports deep image compositing op-
erations, it is still an emerging field, today adopted only by large VFX
houses in their production pipelines.

With the lack of scene information, masking and keying is still king.
As far as automatic methods and algorithms may go, they still rely
on the artist’s input, at least in film post-production: this may be
as simple an operation as visually checking the results of a render
and modifying the settings for a next attempt. Analysing the artistic
properties of an image is just something still impossible to achieve
with today’s computer technology.

But back to lightning. Lightning as such is very quick. Concerning
real-life atmospheric lightning, it is an effect that will find its place on
just a few frames of the shot. The viewer will register the lightning
bolt, and that it illuminates certain parts of the scene, but will never
question the details of that illumination. They will concentrate much
more on the dynamics and timing, and on the mood the effect creates
in the scene.

If we take into account the science fiction use, lasting much longer,
the desired effect on scene illumination is actually a relatively rapid
variation of lighting from frame to frame. Because of the longer
time the scene is exposed to such illumination, much greater care
has to be taken when creating the masks (and possibly animating
and transforming them by tracking elements in the original scene) as
the viewer could quickly notice imperfections—but that is a basic ne-
cessity in any compositing work. In many cases though, it is even
sufficient to avoid masking whatsoever, only varying gain over the

1 https://www.lytro.com/cinema

https://www.lytro.com/cinema


38 rendering

whole image (e.g. with a ColorCorrect node in Nuke), simulating the
effect of the lightning illumination spilling over the entire image sen-
sor. Such a simple approach was used in the sci-fi example included
on the CD in /video/scifi/.

In the other example scenes shown here and on the enclosed CD,
we use a combination of masking and keying to determine the area
that is to be illuminated. In the case of real-life lightning, the scenes
into which lightning is to be added in post-production will usually
include dramatic clouds with varying luminosities—which is ideal
for pulling some sort of key to influence cloud illumination.



5
T H E F O U N D RY ’ S N U K E P L U G - I N C R E AT I O N

Today, The Foundry’s Nuke is de-facto the industry standard in dig-
ital compositing. The Foundry’s Nuke is commercial software, sell-
ing at £2,570 per year for the basic version, going up to £5,655 for
Nuke Studio. Since April 2015, Nuke can also be run for free in non-
commercial mode with certain restrictions. In respect to this project,
one of these is unfortunately no 3rd party plug-in support. For de-
velopment and testing, access to commercial Nuke licence has been
made possible by R.U.R. studio in Prague.

Nuke projects (actually called scripts, as they are saved as human
readable, and even alterable, plain-text files) consist of node-based
workflows (unlike e.g. Adobe After Effects which is layer-based).
In Nuke, Nodes are objects visible to the user that represent image
processing operations and build up the Node Graph/Direct Acyclic
Graph (DAG) of image operators. Nodes have input and output ar-
rows to connect to other Nodes in the DAG to achieve the desired
visual effect. An example of a very simple node graph can be seen in
figure 13. Figure 18 shows a zoomed out view of a slightly more com-
plex node graph, one actually used to composite lightning generated
by the developed plug-in into a scene. (Practical use of the plug-in is
teared down in the next chapter.) Still, that node graph is relatively
small—it is rarely the case in post-production that adding such an
effect would be the only operation necessary.

A Node consists of one or more Operators (Ops). Operators do the
actual image processing, these operators can be seen as the classes
implemented by a plug-in developer and loaded into Nuke as shared
libraries.

The settings that appear in the properties panel in Nuke for each
node are called knobs. Apart from obviously being used as controls to
set parameters for the Ops, they can also be used just as simple data
storage. (How we make use of this is further explained in section 5.3.)

In this chapter we describe how we develop the plug-in and an ac-
companying gizmo (a gizmo is a node which internally packs a whole
part of the node graph, explained in section 5.4).

5.1 overview

Several different options exist for plug-in creation. The most str-
aightforward would be Python scripting, ideal for short tasks that
do not require much processing power. On the other side of the spec-
trum lies the Nuke Developer Kit, a C++ API allowing developers

39



40 the foundry’s nuke plug-in creation

Figure 13: A screenshot of Nuke and the PerunLightning plugin in a config-
uration generating a similar render as shown in figure 12.

to create Nuke plug-ins of far larger complexity and allowing to ex-
ploit the inner workings of Nuke. Another interesting approach is
the OpenFX API1—an open C standard for visual effects plug-ins,
making it possible for plug-ins written to the standard to be used in
other applications supporting OpenFX—apart from Nuke, these are
Blackmagic Fusion or Assimilate Scratch, to name a few. A recent ad-
dition to the mix is Blink script, another scripting interface available
in Nuke.

For this project, the Nuke Developer Kit seems to be the most obvi-
ous option and we indeed pursue in that direction, motivated by the
tight integration with Nuke as Nuke is our target platform. We dis-
cuss details about NDK in the next section; it would be unfair though
not to investigate other available options.

A popular choice for commerical VFX plug-in developers is Open-
FX, as it is then possible for them to sell their products to a much
larger audience with very little extra effort. A leading example can
be the effects bundle Sapphire by Genarts2. OpenFX was originally
developed by The Foundry and released under a BSD licence. Since
2009, it has been managed by The Open Effects Association, a non-
profit organisation, whose goal is to “develop and promote open stan-
dards across the visual effects community” [1]. There is no doubt that
the plug-in could also be developed as an OpenFX plugin. The API
reference [23], although somewhat crude at first sight, does provide
the necessary information and The Open Effects Association add a
Programming Guide for successful plug-in development. Apart from
that, some tutorials do exist online to aid OpenFX plug-in creation.

1 http://openfx.sourceforge.net/

2 http://www.genarts.com/sapphire/ofx

http://www.genarts.com/sapphire/ofx


5.2 ndk c++ api 41

A new addition to Nuke 8.0 was the Blink API and Blink script—
this is a very interesting approach for users with non-programming
backgrounds, as it efficiently parts the user from the underlying tech-
nical concepts while still using their full potential. Blink scripts are
written in a C-like style and because of the relatively small application
space—essentially image processing—Blink kernels are parallelised
and compiled on the fly and depending on their type and the avail-
ability of resources (multi-core CPU or an OpenCL enabled GPU). Be-
cause this is a relatively new feature, the user base and information
regarding Blink script is rather sparse, but, apart from the Blink API
reference document [9], The Foundry do offer a collection of sample
kernels3 to get started with. With the recent wide availability of CUD-
A/OpenCL capable GPUs, GPU parallel computing is finally finding
its way into common commercial software, a notable example being
NUKE itself, or the Cycles rendering engine, part of the free and
open-source 3D animation suite Blender. Therefore, we believe Blink
scripts may gain on popularity, because achieving parallelisation with
a Python script is near-to-impossible, and programming plug-ins in
C++ requires much more extensive programming knowledge (even
more so if parallel computing is in mind) and recompilation for each
platform and new version of Nuke.

The last to be mentioned is the Nuke Python scripting API. Un-
doubtedly the Python scripting API is a very powerful tool, but its
main application domain lies elsewhere: automatised node graph
manipulations, altering nodes’ settings or as import/export scripts.
Although probably not impossible, it would be rather ineffective to
create a rather complex image generating plug-in utilising the Python
API.

5.2 ndk c++ api

For a comprehensive overview of all options the API offers, the user
is of course directed to the NDK Developers Guide[10]. The API also
comes with a collection of example plug-ins which are crucial for
better understanding of the workings. In this section, we attempt to
summarise the parts of the API that are important for our implemen-
tation. Implementation details are then provided in section 5.3

Work of operators can be typically broken down to four main phases:
creation, validate, request and engine. In the creation phase, an instance
of the op is created, the knobs() function is called to construct user
knobs. These operations are inherited from the Op class and no action
has to be taken by the programmer except for defining the knobs.

When a user connects the node in the node graph, the op’s _va-

lidate() function is called. The main goal of an implemented _va-

3 https://www.thefoundry.co.uk/products/nuke/developers/90/BlinkKernels/



42 the foundry’s nuke plug-in creation

lidate() function is to set up IopInfo: records such as the image
format, bounding box, channels etc.

Nuke implements a so called “pull system”—operators’ functions
are only called when requested by nodes further down the node
graph—there is no need to do any image processing when no Viewer
or Write node (that would actually be rendering at the time) is con-
nected later in the graph.

Such nodes will call _request() on their inputs, and these are in
turn responsible for recursively calling _request() on their inputs—
but possibly with different parameters. The purpose of the _request()
function is to define a region of interest—a Viewer node may request
a single image row of its input, that being e.g. a Blur node. In order
for the Blur node to provide correct output though, it requires several
more rows above and below the image row that is to be rendered,
depending on the size of the convolution kernel. Therefore it would
also request these rows from its input.

Finally, if we are to actually produce image output, the engine()

function of the op is called. If knob values change, the whole validate-
request-engine sequence is repeated.

As indicated above, the fundamental image processing unit in Nuke
is a row, simply a row of pixels in an image plane. This has been cho-
sen by Nuke developers to make implementation of multi-threading
easy—in a standard scenario, the engine() function of an op would
be called in many worker threads for different rows.

As we have described in chapter 4, the heart of the rendering pro-
cess for our lightning generator is line drawing, which does not re-
ally correspond with Nuke’s concept of using rows as processing
units, as using such an approach would be extremely ineffective. For-
tunately Nuke offers more base classes with specific configurations
from which ops can be derived, in our case we derive the op class
for the plug-in from PlanarIop. The PlanarIop class replaces the
engine() function with renderStripe() which gives the developer
access to the whole image plane.

Furthermore, for the plug-in, we require an option to run shape
generation independently on rendering—only when the user chooses
to do so. For that, the NDK offers the Executable class to derive from.
When a button is pressed in the UI, the execution process commences.
The developer then has three important functions to implement: be-
ginExecuting() which is called first, execute() which is called once
for every frame in the desired frame range (setting the frame range
is best done with a Python script—using a PyScript knob to retrieve
other knob settings), and finally endExecuting, called before the end
of execution.

The Perun plug-in was developed with the Nuke 9.0v8 API; as of
May 2016 Nuke 10.0v1 has been released—fortunately, according to
the developers guide, nothing changes with respect to plug-in de-



5.3 implementation 43

velopment. Although not tested as thoroughly, the plug-in can be
compiled against and works in the new current version of Nuke.

Should the reader wish to try out the plug-in, a 15 day trial of Nuke
with no limitations may be obtained from The Foundry.

5.3 implementation

From the benchmarks presented in section 3.8 it is apparent that the
CPU implementation of our own prog2 solver indisputably outper-
forms the others on smaller grids. The Cuda version does slightly
precede prog2 with larger grids, but, from a practical perspective
concerning the plug-in, we expect much more frequent use of smaller
grids where computation time does not have to bother the artist and
slow them down in their work.

Building Nuke plug-ins with Cuda acceleration is possible, but also
absolutely undocumented. It is no surprise that this is not covered
in the NDK documentation, but we would have expected to find at
least a single post on the topic on a bulletin board elsewhere on the
Internet—but no. Nevertheless, in the project leading to this thesis,
we did look into this and managed to compile a plug-in using Cuda.
The main complication lies in the fact that Cuda code has to be com-
piled with the Nvidia Cuda Compiler (nvcc) but Nuke plug-ins have
to be built with Visual Studio 2010 on Windows or gcc 4.1 on Linux.
In order to create a functional Cuda-accelerated plug-in, it is neces-
sary to compile the Cuda part independently with nvcc as a separate
shared library, functions from which are then called from the actual
plug-in library, compiled to be compatible with Nuke.

Because we did not find any benefit in doing so, we decided not to
pursue in adding GPU-acceleration to the actual Nuke plug-in and
only use our prog2 solver for shape generation.

Most of the application structure remains similar to the standalone
version, although several elements had to be reorganised. The main
difference is the greater separation of the shape generation process
and the rendering process. Shape generation is computationally ex-
pensive and is best only performed once, whereas changing render
settings, such as channel luminance or tint, can comfortably be done
in real-time for the same shape. Therefore only changing the grid con-
figuration, branching setting or frame range requires new lightning
shapes to be generated. (Shape generation section in the plug-in/gizmo
UI as shown in figure 13 or 14.)

As indicated above in the previous section, our plug-in class is
derived from two base NDK classes: Executable and PlanarIop. The
former is used for shape generation and the latter for rendering.

We keep information about the generated shape internally within
the Nuke script. For that we utilize the Table knob: as the name sug-
gests, such a knob stores a table (2D array) with predefined columns.



44 the foundry’s nuke plug-in creation

We create two Table knobs, one for shape vertices, and the second for
shape edges.

Storing shape information is very important: once a shape is gen-
erated and the artist is satisfied with it, there is no reason whatsoever
to generate an alternative. Moreover, imagine the client approves the
scene or perhaps just the shape of the lightning itself—it has to re-
main exactly the same as it was approved, even if some other subtle
changes are requested to be made.

For rendering, instead of using our own class to manipulate with
floating point image data, we render directly to an instance of Nuke’s
internal ImagePlane class.

Internally, Nuke makes heavy use of caching, so that image pro-
cessing does not have to be repeated if nothing changes. Therefore,
every op utilises a hash, which changes if the hash of any node con-
nected to its inputs changes, or if any knob setting does. Special care
has to be taken with knobs that only provide data storage such as a
Table knob, as they do not automatically affect the hash—this has to
be done by the developer with the hash.append() function.

A feature we added to the plug-in as opposed to the standalone
version was the selection of a start and end point for the lightning.
For that, the NDK offers a practical XY knob, which also shows the
points in the viewer and allows the user to move them—a screenshot
is shown in figure 18. Implementation-wise though, this required us
to construct our own 2D transformation matrices to transform the
generated shape to the position set by the user.

5.4 nuke gizmos

Nuke also allows users and/or developers to create so-called gizmos,
collections of nodes with a specifically defined sets of controls. In
principle, a gizmo is a cut-out of a Nuke script/node graph to be
replicated within the same script or be used in other scripts. The
creator can define which of the aggregated nodes’ controls should
appear in the gizmo’s toolbar. From a developer’s point of view, this
can be regarded as a restriction to artists in order for them not to
misuse the intended features of the gizmo.

Creating a gizmo is pretty straightforward: first, the user selects
the nodes in the node graph which are to form the gizmo and makes
them a group (Other > Group from the Toolbar of Ctrl-G). This sub-
stitutes the selected nodes with a new node. The group of nodes this
node represents is in fact exactly the same as the gizmo—but creating
a gizmo makes it possible to also replicate it in different scripts. It is
of course important to add the desired controls to the gizmo’s UI: the
user can select any of the controls any of the contained nodes offer,
or even add new ones, and regroup them as desired in their new UI.



5.4 nuke gizmos 45

Figure 14: A screenshot of the gizmo controls.



46 the foundry’s nuke plug-in creation

Figure 15: The internal structure of the gizmo.

Figure 15 shows the internal structure of the gizmo created for the
plug-in. The main pipeline for the plug-in itself is the series of Gaus-
sian blurs with various settings. Their default settings are shown in
the Blurring section in figure 14—such settings produce renders sim-
ilar to the one presented in figure 12 in the previous section. The
user can of course modify these to suit their scene. The gizmo also
offers three optional inputs: a background image, a background il-
lumination mask and a merge mask. As can be seen in the gizmo’s
node graph in figure 15, these are of use only when a background
image is connected. Concerning illumination, the user can increase
or decrease gain on the background image—the gain slider in the Illu-
mination section of the gizmo controls maps to the master gain slider
of the ColorCorrect1 node. If the background illumination mask in-
put is connected, it is automatically applied. Finally, the Merge10
node controls merging with the background image, again with an
optional mask. Because this is a crucial operation, we leave all the
Merge node’s settings available to the user in the Merge section of the
gizmo’s UI.

Although the gizmo packs many convenient features in one node,
we still prefer to work with the sole plug-in, but that probably stems
from our detailed knowledge of the inner workings: we feel more
than comfortable modifying the settings in our scripts directly to suit
our needs. In addition to that, in general work with Nuke, we tend
not to use integrated node features that incorporate functionality of
other nodes available in Nuke; we prefer to stick to a workflow that
clearly exposes the process in the node graph. It is of course just a
personal preference though. An artist using the plug-in for the first
time may on the other hand appreciate the basic functionality of the
gizmo.



5.5 usability testing 47

5.5 usability testing

After creating a working prototype of the plug-in, we presented it
to several other compositors at the R.U.R. studio for comments. A
few points on what could be improved or added emerged from the
discussion.

Probably the most crucial feature not present at the time was set-
ting the start and end point of the bolt. This feature was added and
the implementation has already been described above. When using
the plug-in in the compositing process, this indeed proved to be a
very important and practical element.

In Nuke, it is common practice that even image generating nodes
have an optional input and basic control of its merging with the orig-
inal image. Implementation of such a feature was attained by adding
a merge node and its options to the accompanying gizmo—also al-
ready described in the previous section.

Inspired by the capabilities of the Sapphire Zap lightning plug-in,
it was suggested that apart from a start and end point, the lightning
shape could follow a designated curve. One approach to do so would
be to actually incorporate the curve into the simulation grid to attract
the shape being generated; a probably much simpler approach would
be just warping the generated image—which also seems to be the case
within Zap effect. This suggestion was not deemed as crucial so it has
not been implemented.

Users also expressed concern working with frame ranges offered
by the plug-in—if the frame range changes, lightning shapes for all
frames are generated anew. This behaviour stems from the stan-
dalone application; it is of course not always necessary to generate
new shapes, even if the frame range is expanded—we can still use
the last frame’s lightning’s shape graph as a basis for subsequent
frames. This modification though has not been incorporated into the
plug-in yet.

Instead we at least included the feature that the generated shape
stays valid outside the set frame range—the shape of the last valid
frame becomes frozen. This particularly comes in handy when com-
positing classic atmospheric lightning, where it is sufficient to gener-
ate no more than one shape and only animate the luminance knobs
within the few frames the bolt is to be shown in. Example use thereof
is presented in the next chapter.





6
R E S U LT S

In order to demonstrate the results that can be obtained by using
the plug-in, we selected three different scenes to prove the plug-in’s
wide scale of application. In the first scene, Sky, presented in sec-
tion 6.1, we exhibit the use of the plug-in to simulate atmospheric
cloud-to-ground lightning. The second scene, Sci-Fi, teared down
in section 6.2, shows the plug-in in a science fiction set-up, adding
artificial lightning to a scientific experiment. Finally, we show how
the plug-in could be used in a company jingle1. That is described in
section 6.3.

The actual Nuke scripts used to make the compositions are in-
cluded on the enclosed CD in /nuke/ together with the original foot-
age, the resulting videos are in /video/.

6.1 sky

As the first example, we choose to present artificial lightning in its
original form: atmospheric cloud-to-ground lightning. We use footage
of an actual storm recorded on video and attempt to composite in
lightning generated by the Perun plug-in. The Sky scene shows foot-
age where two lightning strokes occur—the first is the one generated
by the plug-in, the second stays as recorded on video. In figure 17

we show a frame by frame breakdown of both the original and the
composited effect.

In the original footage it is interesting to see how the stroke is vis-
ible at some intensity for as long as 7 frames, although that is only
true for the most prominent lightning occurrences captured. Dur-
ing this storm, we recorded more than an hour’s worth of video
and captured several lightning strikes; most of them though were
shrouded by clouds—only the main channel would be visible and it
would mostly show up on just one frame. Even though 7 frames seem
very long, it does correspond with the physics research presented in
chapter 2, where we state that the duration of the flash can be as long
as 200–300 ms. The footage was recorded at 30 frames per second,
which corresponds to roughly 233 milliseconds for 7 frames. Con-
cerning the bolts which were visible for a shorter amount of time,
two explanations are at hand: they did not consist of that many re-
turn strokes, therefore being visible for a shorter time, or, the intensity

1 A short sequence used in advertisements to present the company; although a jingle
usually refers to sound, in the VFX industry it is also used to describe an analogical
video sequence, usually incorporating the company logo

49



50 results

Figure 16: Composited generated lightning (left) next to lightning captured
on a digital camera (right).

of the return strokes was not high enough for the light to propagate
through the clouds present between the stroke and the camera.

This example does reveal a limitation of the plug-in—as such, it
is not possible to generate very long side branches. In some cases
of real-world lighting, such as the one presented, side branches span
even wider than the lightning’s visible height. Yet, not all lightning
bolts include side branches which are so long; furthermore, on video,
these would only be visible for one frame anyway—the viewer would
have to concentrate remarkably to actually knowingly witness them.

Moreover, Perun generates new random shapes in every run, fig-
ure 16 depicts yet another generated lightning bolt, this time seeming
even less artificial compared to the real bolt captured on video.



6.
1

s
k

y
5
1

(a)

(b)

Figure 17: A frame by frame breakdown of real-world lightning (a) and CGI lightning generated by Perun and composited into the scene (b).



5
2

r
e

s
u

l
t

s

Figure 18: A screenshot of the compositing process for the sci-fi scene. Notice the use of masks and start-end points for the lightning.



6.2 sci-fi 53

6.2 sci-fi

It is amazing to see how many today’s film productions actually use
lightning-like effects in science-fiction settings. It is indisputable that
such an effect has its place in the science-fiction world and therefore
it is imperative also to seek use for the plug-in therein.

The showcased scene itself originates from a boy scouts’ camp,
where it was recorded as part of the symbolic framework. Within
the narrative, it attempts to depict a scientific experiment aiming to
genetically enhance the subject. The children did not see the exper-
iment itself, but just the footage as if from a security camera in the
laboratory.

At the time of making, the Perun project was not production ready,
therefore an alternative approach had to be chosen: an obvious choice
was Advanced Lightning in Adobe After Effects. Now we seek to
recreate the lightning effect with the use of the Perun plug-in. Both
versions of the video are included on the enclosed CD in /video/sci-

fi/: scifi_render_ae.mp4 is the original After Effects version, sci-
fi_render_perun.mp4 is the new comp in Nuke with Perun lightning.

In the composition, several instances of the plug-in are used, as
depicted in figure 18. Two simple masks are used to designate the
area where the lightning effect is to be seen. Although the lightning
itself induces some glow to the scene, it is enhanced by varying gain
across the whole scene, as discussed in section 4.5.

Apart from illuminating the whole scene, it is also desirable to de-
pict the effect of the subject being “electrified” in the experiment. For
that, we used a simple luminance key on the subject’s white lab coat
together with a rough garbage matte to mask out the surroundings.
This serves as a mask to randomly increase and decrease gain on the
subject resulting in glow, supposingly originating from the energy
being “pumped” into the body.

The After Effects version may seem deliberately scamped, but this
is definitely not the case. The video sequence was created prior to
the Perun project being usable in production, but already with the
knowledge of and experience with compositing, and with respect to
research on lightning and its simulation.

It shows the application of the Advanced Lightning feature of Adobe
After Effects, attempting to exploit the branching features it offers.
The amount of branching can be set, but its animation cannot be con-
trolled that well—therefore the effect seems to end in the middle of
nowhere in some frames. It is true that more distinct bolts with less
branching could also have been generated in After Effects in a simi-
lar way as the Perun plug-in was used; nonetheless this proves that
facilitating branching towards the lightning’s target (a feature that
cannot be easily simulated by physically based methods as discussed
in section 3.1.4) is not necessarily such a useful setting.



54 results

Figure 19: A screenshot of the plug-in being used for a company jingle.

6.3 jingle

Lightning symbolises energy, electricity in particular. Therefore we
also attempted to incorporate the generated lightning into a jingle for
a company in the field of energetics. For that, we chose to experiment
with the logo of ČEZ, a. s.2. In their current jingle, used mainly as
the finale of their advertisements, ČEZ simply fade in their logo and
accompany it with text, also faded in.

As it is visualised—an integral square—the logo can be seen as
a sign to be illuminated—and that is what we seek to do with the
generated lightning. In the composited scene, the glow induced by
the lightning actually illuminates the logo, as if lighting it up from
behind. In some of our original attempts, we also tried a version
where the lightning would reach the white “E” from the front, going
over the orange background, but instead decided to pursue further
with the version a snapshot of which we present in figure 19.

2 The logo and trademark are the property of ČEZ, a. s.; the logo was created by
Studio Marvil, s. r. o. We do not hold any affiliation with either of these companies
and have chosen their graphics solely as a case study.



7
D I S C U S S I O N

We created a functional lightning plug-in for Nuke which we believe
could even be used in professional production as it does not show sig-
nificant visual shortcomings compared to other commercially avail-
able products.

Its physically based nature though does make it lack a certain de-
gree of flexibility that visual methods may offer—controlling branch-
ing specifics, such as where we would like the branches to go (this
may be a very rare requirement though), is rather difficult and the
user would have to generate new shapes until one that satisfies their
expectations appears.

Also, compared to visual methods, another downside of a phys-
ically based approach is computational complexity. Although we
manage to achieve running times that do not distract the artist ever
so much, these can still not be compared to visual simulations which
can, in some cases, be close to real-time, if not even being real-time
on modern hardware.

An interesting experiment would be to combine our physically
based method with elements used in visual methods (section 3.1.2).
Our proposition is to generate basic shapes with little branching on
small grids (for the process to be fast) which could later be combined
together to create more branching, possibly dependent on user in-
put where the user could effectively control the characteristics of the
branching. Simulation on small grids though would not generate
sufficiently detailed “electrical tortuosity”, but this could be easily
added via the fractal methods also discussed in section 3.1.2. Like
this it may be possible to generate even very complex shapes, but
with much faster running times. However, such an approach could
not be considered as completely physically based.

In the thesis, we do not mention sound although it is an inseparable
effect accompanying lightning. The Perun project simply focuses on
the visual side of lightning—mainly because sound and video post-
production would be dealt with in completely different stages of the
post-production pipeline: compositors rarely have sound data avail-
able to them. Another reason is that with atmospheric lightning, the
accompanying thunder is all but synchronised with the lightning due
to the differences in speed of sound and light. Science fiction light-
ning on the other hand would not use a thunder sound effect at all,
but instead some sort of an a electrical “buzzing” sound.

Although Nuke is the industry leading solution for compositing,
its pricing puts it into the solely professional segment of the market—

55



56 discussion

many smaller studios or freelancers may rely on cheaper solutions
that also allow them to do compositing work. Smaller studios or
freelancers would probably be the main target audience for a plug-
in such as ours, as they would not commonly have access to other
means of generating lightning. Therefore also adopting Perun as an
OpenFX plug-in or as plug-ins for other compositing programs could
significantly widen the potential audience that could make use of the
lightning generator.



8
C O N C L U S I O N

In the thesis, we created a physically based lightning generator to be
used in film/video post production, both as a standalone application
which produces EXR images and a plug-in for the Nuke compositing
program.

First, we presented a theoretical insight into how lightning is formed
in the real world—in the atmosphere—and described its properties
and types. We continued with a survey of existing methods of light-
ning simulation in the field of computer graphics, both visual and
physically based.

As a result of this research, we chose the Dielectric Breakdown
Model to build our lightning shape generation process on and pro-
vided an in depth description of the approach, together with the
specifics of our implementation. We implemented four variants of a
conjugate gradient solver, including a CUDA version running on the
GPU, and performed benchmark tests to analyse their effectiveness.

Next we discussed rendering of the generated electrical bolt taking
into account atmospheric effects. We further dealt with a practical
approach to scene illumination induced by generated lightning when
scene information is not available.

We provided an insight into The Foundry’s Nuke itself as a com-
positing program as well as an introduction into Nuke plug-in cre-
ation, focussing on the particularities of the Perun lightning plug-in’s
implementation. After developing a prototype plug-in, we performed
an informal usability test based on which we added several more fea-
tures to the current version.

Finally, to demonstrate practical use of the developed plug-in, we
used it to composite lightning into three different scenes showing the
plug-in’s adaptability. We also provided a video comparison with
real atmospheric lightning.

57





A
I M P L E M E N TAT I O N D E TA I L S

a.1 standalone application

a.1.1 Files and Classes

• cg_solver.cpp and cg_solver.h

– class CGSolver, the class which implements solvers using
the method of conjugate gradients

• cg_solver_cuda.cu and cg_solver_cuda.cuh

– class CudaSolver, the Cuda implemetation of the method
of conjugate gradients

• common.h

– definitions of terms and constants used within the whole
program

• graph.cpp and graph.h

– class DAG, the node of the graph data structure to store the
generated lightning shape

• imageFP.cpp and imageFP.h

– class ImageFP, the class for manipulation with with floating-
point images.

• laplacianGrid.cpp and laplacianGrid.h

– class LaplacianGrid, the main class which holds all the
neccessary methods and variables to simulate the Dielec-
tric Breakdown Model / Laplacian Growth

• perun.cpp and perun.h

– main project file and header with main() function.

• quadtree.cpp and quadtree.h

– class QuadTree, class to hold information about the quatree
itself with a pointer to the root node

– class QuadTreeNode, the actual quadtree node class.

59



60 implementation details

a.1.2 Installation

The project is written in C++ and was developed and tested in Mi-
crosoft Visual Studio 2010, project files for which are included for
compilation within Visual Studio. Apart from that, a Makefile is pro-
vided for compilation with gcc on Linux.

The program uses several libraries: Tinyexr1, a header only library
for EXR image manipulation located in the ./include directory; Eigen,
a library for linear algebra, left for the user to install; and finally Cuda,
also left for the user to install.

Compiled 64-bit binaries are included for Microsoft Windows and
Linux. Tested on Windows 7 and Ubuntu 14.04 LTS.

a.1.3 Usage

Perun can be run without any parameters: as such it will generate
one frame on a 64x128 simulation grid with low branching using the
prog2 solver. Furthermore, the user can customise the output through
user runtime parameters:

parameter outcome

-e ETA Branching factor. ETA = 1 more branching,

ETA = 2 less branching.

-f FRAMES Number of frames to animate.

-g Do not generate new shape.

-h HEIGHT Simulation grid height.

--help Display this help listing.

-l1 LUMINANCE Luminance of main channel. Default = 4.0.

-l2 LUMINANCE Luminance of secondary channels. Secondary

channels are those longer than TYPE_2_CUTTOFF.

Default LUMINANCE = 1.0.

-l3 LUMINANCE Luminance of ternary channels. Ternary chan-

nels are all others.

-r RESOLUTION Resolution multiplicator of rendered image.

Resulting image width will be WIDTH * RESO-

LUTION. Default RESOLUTION = 8.

-s SOLVER Solver to use. Valid options regular, eigen,

prog2 or cuda.

-t2 TYPE_2_CUTOFF Secondary channels cuttof. Default TYPE_2_CUT-

OFF = 20.

-w WIDTH Simulation grid width.

1 https://github.com/syoyo/tinyexr

https://github.com/syoyo/tinyexr


A.2 nuke plug-in 61

a.2 nuke plug-in

a.2.1 Files and Classes

• cg_solver.cpp and cg_solver.h

– class CGSolver, the class which implements the prog2 con-
jugate gradient solver

• common.h

– definitions of terms and constants used within the whole
program

• graph.cpp and graph.h

– class DAG, the node of the graph data structure to store the
generated lightning shape

• laplacianGrid.cpp and laplacianGrid.h

– class LaplacianGrid, the main class which holds all the
neccessary methods and variables to simulate the Dielec-
tric Breakdown Model / Laplacian Growth

• PerunLightning.cpp and PerunLightning.h

– class PerunLightning, the actual Op/Node class for Nuke

• quadtree.cpp and quadtree.h

– class QuadTree, class to hold information about the quatree
itself with a pointer to the root node

– class QuadTreeNode, the actual quadtree node class.

a.2.2 Installation

The project is written in C++ and was developed and tested in Mi-
crosoft Visual Studio 2010, project files for which are included for
compilation within Visual Studio. In order to create Nuke plug-ins
for Nuke 10.0v1 on Windows, plug-ins have to be compiled in Visual
Studio 2010. Apart from that, a Makefile is provided for compilation
with gcc on Linux, however gcc 4.1 is required to compile plug-ins
for Nuke 10.0v1 on Linux. Other gcc versions are not guaranteed to
work.

To compile the plug-in, the target version of Nuke has to be in-
stalled. This version uses Nuke 10.0v1.

The program uses the Eigen library for linear algebra which has to
be installed and the path set in Visual Studio or in the Makefile.

A compiled 64-bit DLL is included for Microsoft Windows.
The gizmo is platform-independent and also included on the CD.



62 implementation details

a.2.3 Usage

The plug-in (and the gizmo if desired) has to be copied to a directory
set in Nuke to search for plug-ins, by default the .nuke directory in
c:/Users/Username is the easiest choice on Windows. On Linux, this
would be /.nuke/. To bring up the plug-in in Nuke, with focus
on the node graph, pressing x will show a dialog to enter a TCL
command––typing “PerunLightning” will create a new node. Typing
“PerunGizmo” will bring up the gizmo.



B
E N C L O S E D C D

The CD as part of the thesis is enclosed with the printed written part.
It has the following directory structure:

• /bin/ contains compiled versions of both the standalone ap-
plication and the Nuke plug-in. Standalone application bina-
ries compiled for both Windows and Linux can be found in
/bin/standalone/; the /bin/nuke/ folder contains the Nuke
plug-in compiled for Nuke 10.0v1 on Windows—both the DLL
library (PerunLightning.dll) and the gizmo (PerunGizmo.giz-
mo).

• /doc/ contains reference guides for the code generated by Doxy-
gen. A HTML version and a generated PDF are included for
both the plug-in and standalone version code.

• /nuke/ contains the Nuke scripts used for demonstration scenes
as well as the original footage/elements.

• /pdf/ contains the electronic version of this document.

• /src/ contains the source code for both projects.

• /video/ contains rendered videos that demonstrate the use of
the plug-in.

63





C
L I S T O F S Y M B O L S A N D A C R O N Y M S

c.1 list of symbols

symbol meaning

kA kiloampere, a unit of current
◦K degrees Kelvin, a unit of temperature

pi probability of candidate i being chosen

E Electric field

ε0 Permittivity of vacuum

η a constant that influences brachng in DBM

µs microseconds, a unit of time

∇ gradient of a vector field

∇· divergence of a vector field

∇2 Laplace operator, ∇2 = ∆ = ∇ ·∇
φi electric potential in candidate site i

ϕ charge density

65



66 list of symbols and acronyms

c.2 list of acronyms

abbreviation meaning

API application programming interface

APSF Atmospheric Point Spread Function

BLAS Basic Linear Algebra Subprograms, a specification

defining a set of routines performing common linear

algebra operations

C++ A programming language

CG, CGs cloud-to-ground lightning

CGI computer generated imagery

CPU central processing unit, the processor of a computer

CSR compressed sparse row format, a format for storing

sparse matrices

CUDA a parallel computing platform by NVIDIA

DAG Directed Acyclic Graph

DBM Dielectric Breakdown Model, a physically

based method of electric discharge simulation

DLL Dynamic-link library

EXR a high dynamic range image format

GPU graphics processing unit, the graphics card of

a computer

HDR high dynamic range

IC, ICs icntracloud, intercloud or cloud-to-air lightning

NDK Nuke Development Kit

SDK software development kit

VFX visual effects



R E F E R E N C E S

[1] The open effects association homepage. URL http://

openeffects.org/.

[2] Tomáš Bergl. Modelování a vizualizace blesků. Master’s thesis,
Czech Technical University, 2008.

[3] Bernd Bickel, Martin Wicke, and Markus Gross. Adaptive simu-
lation of electrical discharges. In Vision, Modeling, and Visualiza-
tion, pages 209–216, Aachen, Germany, 2006. IOS Press.

[4] Loren C. Carpenter. Computer rendering of fractal curves and
surfaces. SIGGRAPH Comput. Graph., 14(3):109–, July 1980. ISSN
0097-8930. doi: 10.1145/965105.807478. URL http://doi.acm.

org/10.1145/965105.807478.

[5] Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried
Schwarzkopf. Computational Geometry, Algorithms and Applica-
tions. Springer-Verlag, Berlin, Germany, second, revised edition,
2000. ISBN 3-540-65620-0.

[6] Luc Devroye. A note on the height of binary search trees. J.
ACM, 33(3):489–498, May 1986. ISSN 0004-5411. doi: 10.1145/
5925.5930. URL http://doi.acm.org/10.1145/5925.5930.

[7] Bc. Richard Dobřichovský. Perun, a lightning plug-in for the
foundry’s nuke compositor, a4m39svp—software or research
project, 2015.

[8] Kenneth Falconer. Fractal Geometry: Mathematical Foundations and
Applications. John Wiley & Sons Ltd., Baffins Lane, Chichester,
West Sussex PO19 1UD, England, 1990. ISBN 0-471-92287-0.

[9] Blink API Reference. The Foundry Visionmongers, Ltd.,
2014. URL https://www.thefoundry.co.uk/products/nuke/

developers/90/blinkreference/.

[10] Nuke binary plugins Documentation. The Foundry Visionmon-
gers, Ltd., 2014. URL http://docs.thefoundry.co.uk/nuke/90/

ndkreference/Plugins/.

[11] Andrew Glassner. The digital ceraunoscope: Synthetic thunder
and lightning, part 1. IEEE Comput. Graph. Appl., 20(2):89–93,
March 2000. ISSN 0272-1716. doi: 10.1109/38.824552. URL http:

//dx.doi.org/10.1109/38.824552.

67

http://openeffects.org/
http://openeffects.org/
http://doi.acm.org/10.1145/965105.807478
http://doi.acm.org/10.1145/965105.807478
http://doi.acm.org/10.1145/5925.5930
https://www.thefoundry.co.uk/products/nuke/developers/90/blinkreference/
https://www.thefoundry.co.uk/products/nuke/developers/90/blinkreference/
http://docs.thefoundry.co.uk/nuke/90/ndkreference/Plugins/
http://docs.thefoundry.co.uk/nuke/90/ndkreference/Plugins/
http://dx.doi.org/10.1109/38.824552
http://dx.doi.org/10.1109/38.824552


68 references

[12] David J. Griffiths. Introduction to Electrodynamics. Prentice-Hall,
Inc., Upper Saddle River, New Jersey 07458, third edition, 1999.
ISBN 0-13-805326-X.

[13] Karel Havlíček-Borovský. Křest sv. Vladimíra. Jiří Chvojka,
Havlíčkův Brod, 1948.

[14] R. D. Hill. Analysis of irregular paths of lightning channels.
Journal of Geophysical Research, 73(6):1897–1906, 1968. ISSN 2156-
2202. doi: 10.1029/JB073i006p01897. URL http://dx.doi.org/

10.1029/JB073i006p01897.

[15] Theodore Kim and Ming C. Lin. Physically based anima-
tion and rendering of lightning. In Proceedings of the Computer
Graphics and Applications, 12th Pacific Conference, PG ’04, pages
267–275, Washington, DC, USA, 2004. IEEE Computer Society.
ISBN 0-7695-2234-3. URL http://dl.acm.org/citation.cfm?

id=1025128.1026050.

[16] Theodore Kim and Ming C. Lin. Fast animation of lightning
using an adaptive mesh. IEEE Transactions on Visualization and
Computer Graphics, 13(2):390–402, March 2007. ISSN 1077-2626.
doi: 10.1109/TVCG.2007.38. URL http://dx.doi.org/10.1109/

TVCG.2007.38.

[17] Theodore Kim, Jason Sewall, Avneesh Sud, and Ming C. Lin.
Fast simulation of laplacian growth. IEEE Comput. Graph. Appl.,
27(2):68–76, March 2007. ISSN 0272-1716. doi: 10.1109/MCG.
2007.33. URL http://dx.doi.org/10.1109/MCG.2007.33.

[18] Paul Kruszewski. A probabilistic technique for the syn-
thetic imagery of lightning. Computers & Graphics, 23(2):287 –
293, 1999. ISSN 0097-8493. doi: http://dx.doi.org/10.1016/
S0097-8493(99)00038-2. URL http://www.sciencedirect.com/

science/article/pii/S0097849399000382.

[19] prof. RNDr. Petr Kulhánek, CSc. Blýskání, aneb, třináctero
vyprávění o plazmatu. Aldebaran Group for Astrophysics, Praha,
2011. ISBN 978-80-904482-3-9.

[20] Irving Langmuir. Oscillations in ionized gases. Proceedings of the
National Academy of Sciences, 14(8):627–637, 1928.

[21] Benoit B. Mandelbrot. The Fractal Geometry of Nature. W. H. Free-
man and Company, New York, 1982. ISBN 0-7167-1186-9.

[22] Srinivasa G. Narasimhan and Shree K. Nayar. Shedding light
on the weather. In Proceedings of the 2003 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, CVPR’03,
pages 665–672, Washington, DC, USA, 2003. IEEE Computer

http://dx.doi.org/10.1029/JB073i006p01897
http://dx.doi.org/10.1029/JB073i006p01897
http://dl.acm.org/citation.cfm?id=1025128.1026050
http://dl.acm.org/citation.cfm?id=1025128.1026050
http://dx.doi.org/10.1109/TVCG.2007.38
http://dx.doi.org/10.1109/TVCG.2007.38
http://dx.doi.org/10.1109/MCG.2007.33
http://www.sciencedirect.com/science/article/pii/S0097849399000382
http://www.sciencedirect.com/science/article/pii/S0097849399000382


references 69

Society. ISBN 0-7695-1900-8, 978-0-7695-1900-5. URL http:

//dl.acm.org/citation.cfm?id=1965841.1965928.

[23] Bruno Nicoletti. The OFX Image Effect Plug-in API, 1.3, Program-
ming Reference, 2012. URL http://openfx.sourceforge.net/

Documentation/1.3/Reference/index.html.

[24] L. Niemeyer, L. Pietronero, and H. J. Wiesmann. Fractal dimen-
sion of dielectric breakdown. Physical Review Letters, 52:1033–
1036, 1984.

[25] cuBLAS Library User Guide. NVIDIA Corporation, 2015. URL
http://docs.nvidia.com/cuda/pdf/CUBLAS_Library.pdf.

[26] cuSPARSE Library. NVIDIA Corporation, 2015. URL http://

docs.nvidia.com/cuda/pdf/CUSPARSE_Library.pdf.

[27] Peter Pacheco. Programming assignment 2: The conjugate gradi-
ent method, parallel and distributed computing class, university
of san francisco, 2014. URL http://www.cs.usfca.edu/~peter/

cs625/prog2.pdf.

[28] Przemyslaw Prusinkiewicz and Aristid Lindenmayer. The Algo-
rithmic Beauty of Plants. Springer-Verlag New York, Inc., New
York, NY, USA, 1996. ISBN 0-387-94676-4.

[29] Vladimir A. Rakov and Martin A. Uman. Lightning: Physics and
Effects. Cambridge University Press, Cambridge, first edition,
2003. ISBN 0-521-58327-6.

[30] Todd Reed and Brian Wyvill. Visual simulation of lightning. In
Proceedings of the 21st Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH ’94, pages 359–364, New York,
NY, USA, 1994. ACM. ISBN 0-89791-667-0. doi: 10.1145/192161.
192256. URL http://doi.acm.org/10.1145/192161.192256.

[31] Jonathan R Shewchuk. An introduction to the conjugate gradient
method without the agonizing pain. Technical report, School of
Computer Science, Carnegie Mellon University, Pittsburgh, PA,
USA, 1994.

[32] Batjargal Sosorbaram, Tadahiro Fujimoto, Kazunobu Muraoka,
and Norishige Chiba. Visual simulation of lightning taking into
account cloud growth. In Computer Graphics International 2001,
CGI ’01, pages 89–98, Washington, DC, USA, 2001. IEEE Com-
puter Society. ISBN 0-7695-1007-8. URL http://dl.acm.org/

citation.cfm?id=647781.735220.

[33] Michal Téra. Perun – bůh hromovládce: sonda do slovanského ar-
chaického náboženství. Mervart, Červený Kostelec, 2009. ISBN
978-80-86818-82-5.

http://dl.acm.org/citation.cfm?id=1965841.1965928
http://dl.acm.org/citation.cfm?id=1965841.1965928
http://openfx.sourceforge.net/Documentation/1.3/Reference/index.html
http://openfx.sourceforge.net/Documentation/1.3/Reference/index.html
http://docs.nvidia.com/cuda/pdf/CUBLAS_Library.pdf
http://docs.nvidia.com/cuda/pdf/CUSPARSE_Library.pdf
http://docs.nvidia.com/cuda/pdf/CUSPARSE_Library.pdf
http://www.cs.usfca.edu/~peter/cs625/prog2.pdf
http://www.cs.usfca.edu/~peter/cs625/prog2.pdf
http://doi.acm.org/10.1145/192161.192256
http://dl.acm.org/citation.cfm?id=647781.735220
http://dl.acm.org/citation.cfm?id=647781.735220


70 references

[34] Lars Wåhlin. Atmospheric Electrostatics. John Wiley and Sons Inc.,
New York, NY, 1986. ISBN 0-471-91202-6.

[35] Pao K. Wang. Physics and Dynamics of Clouds and Precipation.
Cambridge University Press, The Edinburgh Building, Cam-
bridge CB2 8RU, UK, 2013. ISBN 978-1-107-00556-3.

[36] Wikipedia. Tortuosity — wikipedia, the free encyclopedia,
2016. URL https://en.wikipedia.org/w/index.php?title=

Tortuosity&oldid=716717413. [Online; accessed 8-May-2016].

[37] Wiktionary. ceraunoscope — wiktionary, the free dictionary,
2016. URL https://en.wiktionary.org/w/index.php?title=

ceraunoscope&oldid=36780126. [Online; accessed 8-May-2016].

https://en.wikipedia.org/w/index.php?title=Tortuosity&oldid=716717413
https://en.wikipedia.org/w/index.php?title=Tortuosity&oldid=716717413
https://en.wiktionary.org/w/index.php?title=ceraunoscope&oldid=36780126
https://en.wiktionary.org/w/index.php?title=ceraunoscope&oldid=36780126

	Acknowledgements
	Declaration
	Abstract
	Abstrakt
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Symbolics
	1.3 Outline

	2 Physical Properties of Lightning
	2.1 Plasma
	2.2 Downward Negative CG Lightning Formation
	2.3 Other forms CG Lightning

	3 Shape Generation
	3.1 Method Overview
	3.2 The Dielectric Breakdown Model
	3.3 Laplace's Equation
	3.4 Method of Conjugate Gradients
	3.5 Adaptive Grid
	3.6 Animation
	3.7 Implementation
	3.8 Benchmark

	4 Rendering
	4.1 Bolt Shape Graph
	4.2 Finding Branches
	4.3 Drawing lines
	4.4 Adding Glow
	4.5 Scene Illumination

	5 The Foundry's NUKE Plug-in Creation
	5.1 Overview
	5.2 NDK C++ API
	5.3 Implementation
	5.4 Nuke Gizmos

	6 Results
	6.1 Sky
	6.2 Sci-Fi
	6.3 Jingle

	7 Discussion
	8 Conclusion
	A Implementation Details
	A.1 Standalone Application
	A.2 Nuke Plug-in

	B Enclosed CD
	C List of Symbols and Acronyms
	C.1 List of Symbols
	C.2 List of Acronyms

	References

