
I

České vysoké učenítechnické v Praze
Faku|ta eIektrotechnická

katedra počítačové grafiky a interakce

prof. Ing. Pavel Ripka, CSc.
děkan

ZADANI DIPLOMOVE PRACE

Student: Bc. Eva Mayerová

Studijní program: otevřená informatika
obor: Počítačová grafika a interakce

Název tématu: lnteraktivní vizua!izace hierarchií oba|ových těles

Pokyny pro vypracování:

Prostudujte metody vizua|izace datových struktur a grafŮ. Navrhněte metodu interaktivní
vizua|izace hierarchií oba|ových tě|es (BVH). Soustřed'te se na vizua|izaci jak statických
v|astností BVH (h|oubka, p|ochy obá|ek), tak i dat získaných měřením (např. poěet navštívení
daného uzlu při výpočtu průsečíků). |mp|ementujte aplikaci využívajícÍ jazyk C++ a openGl
pro interaktivní náhled na vizua|izovaná data' Implementace bude vizualizovat topo|ogii
stromu a související data a zároveň umoŽní zobrazit vybrané uz|y BVH v prostoru
zpracovávané 3D scény. |mp|ementaci realizujte tak, aby bylo moŽné interaktivně studovat
irozsáhlé hierarchie obsahující něko|ik mi|iónů uz|Ů. lmplementaci otestujte na nejméně pěti
scénách a souvisejících BVH získaných rŮznými a|goritmy stavby BVH (v|astní BVH
inaměřená data poskytne vedoucí práce)' Vybrané výstupy zvizua|izace zdokumentujte
v dip|omové práci.

Seznam odborné |iteratury:

[1]BARLOW, T. AND NEVILLE, P.,2001, Acomparison of 2-D visualizations of hierarchies. IEEE Symposium on
Information Visualization, pp. 131-138, 2001

[2] GRIBBLE, C., FISHER, J., EBY, D., QUIGLEY, E., LUDWIG, G. Raytracing visualization toolkit. Proceedings
of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games - l3D, pp. 71-78,2012.

[3] DACHS, L' Visua|ization of Spatia| Data Structures. Dip|omová práce Čvut rrt, tgss.

[4] BITTNER, J., HAPALA, M., and HAVRAN, V. Fast insertion-based optimization of bounding volume
hierarchies. Computer Graphics Forum 32, 1, pp.85-100,2013.

Vedoucí: doc. Ji ří Bittner lng., Ph.D.

Platnost zadání: do konce zimního semestru 201712018

L .S .
r -

prof. |ng. fliří Zára, CSc.
vedo/tcí katedry

x

V Praze dne 29. 2.2016

Master Thesis

Czech

Technical

University

in Prague

F3 Faculty of Electrical Engineering

Department of Computer Graphics and Interaction

Interactive visualization of bounding

volume hierarchies

Bc. Eva Mayerová

Supervisor: doc. Ing. Jiří Bittner, Ph.D.

Field of study: Computer graphics and interaction

Subfield: Open informatics

May 2016

ii

Acknowledgements
I would like to thank doc. Ing. Jiří Bit-

tner, Ph.D. for very useful advices and

professional attitude. Next, I would like to

thank my dear friend Tomáš, who helped

me at the very beginning and with the

final corrections. The biggest thank goes

to my love Vratislav, who was patient

with me and was the best support while

I was working on this thesis. Finally, I

would like to thank my parents and family

for their support throughout my student

years.

Declaration
I hereby declare that the presented thesis

is my own work and that I have cited

all sources of information in accordance

with the Guideline for adhering to ethical

principles when elaborating an academic

final thesis.

I acknowledge that my thesis is subject

to the rights and obligations stipulated

by the Act No. 121/2000 Coll., the

Copyright Act, as amended, in particular

that the Czech Technical University in

Prague has the right to conclude a license

agreement on the utilization of this thesis

as school work under the provisions of

Article 60(1) of the Act.

In Prague on 26th May 2016

iii

Abstract
The thesis deals with current state of 3D

hierarchical data structures visualisation,

especially the bounding volume hierar-

chies (BVH). It summarizes current so-

lutions and based on this comes up with

a new one, which complements the short-

comings. The result is an application writ-

ten in C++, based on libraries OpenGL

4.3 and Qt 5.5. The application allows

the user to view created hierarchical data

structure for given scene. The BVH is

displayed either as a 2D view (tree) or di-

rectly as a part of the scene. The structure

can be observed on the basis of various

parameters, that are displayed using given

scalar values, as for example the size of

bounding volume or number of triangles

per sub-tree. These values are generated

by the application, but it is possible to im-

port any other. Finally, application is able

to display more bounding volume hierar-

chies for one scene, so user can compare

their quality.

Keywords: BVH, bounding volume

hierarchy, visualization, ray-tracing

Supervisor: doc. Ing. Jiří Bittner,

Ph.D.

Abstrakt
Práce se zabývá analýzou současného

stavu vizualizací 3D hierarchických da-

tových struktur, obzvláště pak hierarchií

obalových těles (BVH). Shrnuje současná

řešení a na jejich základě navrhuje nové,

které doplňuje jejich nedostatky. Výstu-

pem práce je spustitelná aplikace v jazyce

C++ využívající knihovny OpenGL 4.3

a Qt 5.5. Aplikace umožňuje interaktivní

prohlížení vytvořené hierarchické struk-

tury nad scénou a její zobrazení jak ve

2D pohledu (strom), tak přímo ve scéně.

Strukturu je možné pozorovat na základě

rozličných parametrů, které jsou dány ska-

lárními hodnotami, jako například veli-

kost obalového tělesa a počet trojúhel-

níků v podstromu. Tyto hodnoty jsou

pro zadaný strom generovány aplikací, ale

je také možné importovat jakékoliv další.

Pro jednu scénu je možné prohlížet několik

datových struktur zároveň a porovnávat

tak jejich kvalitu.

Klíčová slova: BVH, hierarchie

obalových těles, vizualizace, ray-tracing

Překlad názvu: Interaktivní vizualizace

hierarchií obalových těles

iv

Contents
1 Introduction 1

1.1 Bounding volume hierarchies in

rendering . 1

1.2 Goals of the thesis 3

2 Background 5

2.1 Ray tracing acceleration data

structures . 5

2.1.1 Object vs. spatial division . . . 5

2.1.2 Bounding volumes 7

2.2 BVH . 8

2.2.1 Construction methods 8

2.2.2 Traversal 10

2.2.3 Properties determining the

optimal BVH 10

3 Visualization of hierarchies 13

3.1 Organization chart 13

3.2 Tree ring . 14

3.3 Icicle plot . 14

3.4 Tree map . 14

3.5 Summary . 15

4 Application design 17

4.1 Functionality 17

4.2 GUI design 19

4.3 Input data format 20

4.4 Object design 21

5 Implementation 23

5.1 BVH representation 23

5.2 Visualizing nodes at lower levels 24

5.2.1 Conservative rasterization . . . 24

5.2.2 Implemented solution 26

5.3 Blending types 27

5.4 Picking . 29

5.5 Transfer function 30

5.6 OpenGL usage 31

5.6.1 Tree view widget 32

5.6.2 Scene view widget 33

5.7 GUI . 34

5.7.1 Signals and slots 35

5.8 Dependencies 35

6 Results 37

6.1 Tree view . 37

6.2 Scene . 39

6.3 Scene and tree statistics 40

6.4 Selected tree property 40

6.5 Blending mode 41

6.6 Tree appearance 41

7 Testing 45

7.1 Discussion 47

7.2 The comparison between different

BVHs . 48

Conclusion 51

Bibliography 53

A Application screenshots 57

B Format of input scalar values 59

C DVD content 63

v

Figures
1.1 Ray-traced image by NVIDIA R©

OptiXTM Ray Tracing Engine [Nvi09] 2

1.2 BVH structure visualization (left)

[GFE+12], ray traversal visualization

(right) [RMP15] 3

1.3 One of BVH traversal

visualizations. [AGGW15] 3

2.1 Ray-tracing scheme 6

2.2 Spatial subdivision (left) and

object subdivision (right) 7

2.3 The mostly used bounding volumes.

[Eri05] . 8

2.4 Bounding volume hierarchy with

the axis aligned bounding box as a

bounding volume 9

3.1 Different ways to visualize

hierarchy in 2D 13

3.2 Tree ring visualizations 14

3.3 Tree maps 15

4.1 Main window layout 18

5.1 Tree with normalized device

coordinates . 24

5.2 Standard rasterization (left) vs.

the conservative rasterization (right) 25

5.3 Intersection of bounding triangle

and axis-aligned bounding box . . . 26

5.4 Textures with different blending

functions . 28

5.5 Transfer functions with

corresponding colours in y axis . . . 30

5.6 Various exponents of transfer

function . 31

6.1 Screenshot of final application with

the scene named Hairball 37

6.2 Displayed information about the

selected node 38

6.3 Detailed scene view with the

selected bounding box 38

6.4 Selected BVH leaf in the scene

with displayed path to the root in

tree view . 39

6.5 Tree and node statistics 40

6.6 The combobox with tree

properties . 40

6.7 Tree view with different max

threshold value 41

6.8 Tree detail with blending function

set to minimum (left) and maximum

(middle) . 42

6.9 Different tree appearance styles . 43

7.1 Initial loading times (ms) 47

7.2 Trees built by a different builders 49

7.3 The sum of the children volume

relative to parent volume 50

vi

Tables
7.1 Testing scenes 46

7.2 Initial loading times (ms) 46

7.3 Average interaction response times

(ms) . 47

7.4 Average rendering times (ms) . . . 48

7.5 Average tree rendering times with

different display modes (ms) 48

vii

Chapter 1

Introduction

Computer graphics is a discipline that uses a computer to generate graphical

output. Input data used for the rendering are modeled, described and

organized in some data structure. In computer graphics, the emphasis is

usually placed on various parameters depending on the application. In game

development we prioritize the rendering speed at the expense of quality. In

contrast with this, architecture visualization or another field of industry needs

photo-realistic results and emphasises the quality of rendered images. For

this purpose some advanced rendering techniques are needed.

1.1 Bounding volume hierarchies in rendering

Before we describe the data structures that hold the geometry, the basic

rendering techniques are mentioned. The methods are usually classified into

two basic approaches. Rasterization and ray tracing.

Rasterization method renders an image using graphical primitives that are

passed through the graphics pipeline. The vertices, that are at the input

of this process are interpolated by groups according to the needed shape

(usually the triangles) and transformed into the raster space. These raster

points then become a fragments (the pixel candidates). It depends on the

other factors, especially if another object covers them, whether they become

the pixels and are actually rendered on the screen [Scrb]. Rasterization is

very fast and it is often used for real-time graphics applications.

1

1. Introduction ..

Figure 1.1: Ray-traced image by NVIDIA R© OptiXTM Ray Tracing Engine

[Nvi09]

The method important for this thesis is ray tracing. Ray tracing casts

rays from camera to scene, one for each pixel. The scene is tested for an

intersection with the ray. When the ray hits some object, it needs to be tested

if it is lit or lies in the shadow. According to many factors (that depend on

the actual chosen model) such as the reflection or the refraction coefficient,

colour of the object and the light source or the ambient and emissive light,

the final colour of the pixel is calculated. An example result obtained by ray

tracing is shown in the figure 1.1. In contrast with rasterization, this method

naturally simulates shadows and reflections.

Numerous data structures are used to hold the geometry. They can be clas-

sified into the spatial subdivisions or the object hierarchies. These structures

are explained in detail in chapter 2.

The bounding volume hierarchy, hereinafter referred to as BVH, is a

hierarchical data structure used to store a geometric data. Each primitive is

wrapped into a bounding volume that can be defined variously. It should be

chosen as the best compromise between the intersection test complexity and

the approximation of real shape. In our case, the bounding volume is chosen

as axis aligned bounding box. The idea can be seen at figure 2.4, taken from

[Wik].

The construction of BVH has a crucial impact on its efficiency. Bad

construction can cause for example an unbalanced number of intersection

2

.......................................1.2. Goals of the thesis

Figure 1.2: BVH structure visualization (left) [GFE+12], ray traversal visual-

ization (right) [RMP15]

Figure 1.3: One of BVH traversal visualizations. [AGGW15]

tests in the sub-trees. To avoid these situations, it is needed to understand

what defines the quality of created BVH and measure it. There are many ways

to visualize the hierarchies. In the chapter 3, we will discuss these methods

in detail. To see the example of possible visualization of the structure and a

ray traversal, see the figure 1.2 or 1.3.

1.2 Goals of the thesis

Main goals of this thesis and following chapters will be summarized now.

The chapter 2 describes the theoretical background, which is important

for understanding next parts of the thesis. It describes acceleration data

structures used for ray tracing and the bounding volume hierarchies more in

detail.

One of the goals is to discuss current solutions of hierarchy visualization.

Chapter number 3 describes some of the usually used tree visualisations and

compares them with each other. Finally it summarizes the observations and

3

1. Introduction ..
comes up with a solution suitable to our needs.

The design of application functionality, data formats and GUI are described

in chapter 4. It describes the needed functionality. From a given BVH, the

application creates a 2D view of the tree, so it is possible to see its topology.

Each node can also hold some scalar value, either dynamic or static, eg. the

number of triangles in the sub-tree. These values are displayed as a different

node colours by using predefined colour mapping. The visualization has to be

interactive, therefore it is allowed to scroll and move over the tree. In a closer

look, user can see a different information that may not be visible in full view.

The visualization of the scene is also important. The scene is imported into

the application together with the BVH data. When the user selects one of

the nodes in the 2D view, the corresponding area in the scene is highlighted.

Next, the chapter 5 describes the implementation details such as the data

representation, the OpenGL usage, GUI and more. Some advanced techniques,

like a triangle picking, which uses a ray tracer, are also described here.

The last chapter (6) depicts the created application from the user view. All

possible options, that can be modified in the application, are listed together

with some performance tests.

4

Chapter 2

Background

2.1 Ray tracing acceleration data structures

The ray tracing rendering times are getting significantly worse with increasing

number of scene objects, when used naively. The naive algorithm casts rays

from the camera and does an intersection tests with all of the triangles in the

scene. Therefore it is necessary to use some acceleration data structure to

reduce the number of these tests.

2.1.1 Object vs. spatial division

The acceleration is based on the division of the scene into smaller chunks, on

which the intersection tests are faster then on the whole scene [Scra]. Instead

of testing intersections with all of the triangles, we do intersection tests with

their bounding volumes. The possible bounding volume types are discussed

in section 2.1.2. Usually, the object division can be classified into two groups.

First of these groups is called space partitioning. The scene bounding

volume is divided into smaller non-overlapping regions that fully cover the

original spatial region. The cutting primitive is determined by chosen data

structure and other properties. Let us now shortly describe some of the

spatial partitioning data structures.

.KD-tree is a binary tree, where every node is k-dimensional point.

Every non-leaf node represents a hyperplane, that separates the actual

5

2. Background ..

Figure 2.1: Ray-tracing scheme

space into two regions. There are multiple heuristics to determine the

splitting plane and the splitting axis. It is widely used in computer

graphics for its logarithmic traverse, deletion and insertion time.

.Uniform grid separates space into a regular 3D boxes. The intersection

tests are only performed on primitives, that lies in the cubes, that are

traversed by the ray. The cell size is chosen according to the needs. Large

cells contain too many primitives and small cells may lead to too many

primitives spread over multiple cells. Uniform grids may be extended into

hierarchical regular grids similairly to other space partitioning structures.

.Octree is a 3D hierarchical data structure in which each interior node

has exactly eight children (Quadtree in 2D has four children in each

interior node). Octrees are less memory demanding than hierarchical

regular grids, because subtrees with no primitives inside are collapsed

into leaves.

Next division group is called object subdivision. In contrast with spatial

6

............................. 2.1. Ray tracing acceleration data structures

Figure 2.2: Spatial subdivision (left) and object subdivision (right)

subdivision, the region is not divided into new ones that completely cover it.

The primitives in a node are split into two groups. Afterward a bounding

volume is constructed for each group. These volumes, possibly overlapping,

form a new child nodes of the original one. This subdivision is also called a

Bounding Volume Hierarchy. For more details about this structure see the

section 2.2. The image 2.2 from [Hav15] makes the difference more clear.

2.1.2 Bounding volumes

There are many types of bounding volumes that can be used to encapsulate

the object. More complex shapes may give better approximation of the real

object shape, but the intersection test times and memory consumption are

worse.

Bounding spheres are the simpliest bounding volumes with the respect of

computing an intersection with a ray. The stored information consists only of

the sphere radius and the coordinates of its center. An intersection test with

the ray is really quick, but the culling does not correspond with the original

shape well in most cases.

A good compromise between intersection test time, memory consumption

and culling precision of an object is an axis-aligned bounding box (hereinafter

AABB). The data that have to be stored consist only of the minimal and

7

2. Background ..

Figure 2.3: The mostly used bounding volumes. [Eri05]

the maximal coordinates in each axis. Alternatively, center coordinates and

extension in each axis may be used.

Next object, called oriented bounding box, is similar to AABB, but it is

not aligned to the coordinate system axes.

The k-dops are better in approximation of the original shapes, but the

memory consumption is not negligible. The intersection tests are also more

complicated.

Convex hulls, of all the mentioned methods, are the best at approximating

the original shape. The intersecion tests with rays are much more expensive.

Their construction is also quite difficult.

Overview of these structures can be seen on figure 2.3. In our application,

we expect the bounding volumes to be the AABB.

2.2 BVH

Bounding volume hierarchy is a hierarchical data structure with bounding

volumes in interior nodes. The whole scene is located in a root and is

recursively separated into smaller parts that form the sub-trees. The division

of the scene depends on the selected bounding volume.

2.2.1 Construction methods

The tree can be constructed in many ways. A splitting is determined by the

SAH (surface area heuristic). This heuristic defines the cost function, that

should be minimized. Cost of a node is the sum of the traversing cost, the

cost of incident operations and cost of accessing the data in memory, each

8

...2.2. BVH

Figure 2.4: Bounding volume hierarchy with the axis aligned bounding box as

a bounding volume

multiplied by the number of these operations [MB90]. Three basic methods

of a BVH construction follows.

Top-down

The tree is constructed recursively from the whole set of data. It is quite

similar to KD-tree with the difference that two sub-trees can overlap. The

construction is done recursively by splitting the current node geometry into

two smaller groups. The recursion stops when the group contains less then

a specified number of primitives, the tree depth reaches a specified limit

or any other criteria. The time complexity of tree construction this way is

O(n log n).

Bottom-up

First, bounding volumes of all primitives separately are constructed to form

leaf nodes. Then, in each iteration, multiple nodes are grouped. The algorithm

stops when all nodes are connected under single root. Nodes are grouped

based on their distances to each other. This method is more difficult to

implement, but may produce trees with better quality in general. Time

complexity is up to O(n3).

9

2. Background ..
Incremental

On-line method, that builds the tree by inserting one primitive at a time.

Each primitive is inserted into partially constructed tree. It becomes a leaf,

which may also produce additional interior nodes. The time complexity is

similar with the top-down construction, but the quality of the tree may be

worse. The construction time complexity is O(n log n).

2.2.2 Traversal

The traversal means to find the closest primitive that intersects the ray.

Several methods can be used. Typically, a depth-first traversal method is

used when ray casting. The goal is to reach the closest primitive as quickly

as possible to minimize the traversal cost [FLF12]. There are some heuristics

to determine the child node which should be traversed first. For example,

deciding according to the distance to the children node centres.

. Stack-based method works recursively with maintaining a stack. This

method is often used for ray tracing. The problem can occur, when the

rays are traced in parallel with limited memory (such as on GPU). The

cost of maintaining a full stack for each ray can be very high [fAT14].

. Stackless method. Iterative method, where stack is usually replaced by

a state logic [HDW+11].

2.2.3 Properties determining the optimal BVH

When creating a tree, we put emphasis on certain characteristics, that are

important for the optimal use with ray tracing. These properties can be

divided into two groups.

. Static

Generally, the surface area of the envelope should be as small as possible

relative to its volume. The tree balancing is also important to maintain

the logarithmic depth. The balance can not be determined solely by the

10

...2.2. BVH
Algorithm Stack-based BVH traversal
procedure Traverse(node, ray)

if ray hits the node then

if node is leaf then

intersection test with all primitives inside

else

determine near and far child

Traverse(node.child[near], ray)

Traverse(node.child[far], ray)

end if

end if

end procedure

number of bounding volumes in the tree, but also by the distribution of

triangles. Otherwise, rays will not be distributed evenly. This brings us

to the dynamic properties.

.Dynamic

Properties defined by this group are detected directly by running the ray

tracing. It is eg. the average number of nodes traversed in search of the

intersection per ray. Another important feature is the average number

of traversed nodes per triangle.

Properties defined in both of these groups are visualized in the application,

so that the programmer can evaluate the quality of the generated tree.

11

12

Chapter 3

Visualization of hierarchies

Hierarchies are visualized many ways. It depends of course on the purpose of

the created tree. Nice comparison between 2D hierarchical visualizations can

be found in the article [BN01]. The author defined four basic ways to show

the hierarchy. The methods can be seen on figure 3.1, which has been taken

from the mentioned article.

Figure 3.1: Different ways to visualize hierarchy in 2D

3.1 Organization chart

This representation is very intuitive for the visualizing of a tree. If a tree

holds some complex information that should be displayed, this method can

be found less useful when displaying the hundreds of leaves so the information

could disappear. For our purpose we need only to display the colours, so this

limitation should not interfere us.

13

3. Visualization of hierarchies....................................

Figure 3.2: Tree ring visualizations

3.2 Tree ring

As author mentioned, this is a space-filling visualization method. It could

show the real size of a node, relative to the others. Nice examples can be seen

at figure 3.2, the left one found in the article [TM02], the right one at [Bos].

It is a good way to visualize the trees with larger arity (maximal number of

children per node). Unfortunately, this is not a good representation for BVH,

at least for our case, because the tree has mostly the arity of two. Secondly,

the colour information in the leaves should be quite confusing for the sharp

colour transitions between the non-neighbouring nodes.

3.3 Icicle plot

The icicle plot shows the node size as well as the tree ring, but unlike it, the

icicle plot contains empty spaces. This could be really useful for the BVH

visualization, since the arbitrary arity would work here.

3.4 Tree map

This is the filling-space method used for special purposes, such as a data

mining. The size of nodes should be proportional to the object real size. The

participants mentioned in the article [BN01] found this method the most

confusing. It is not also a good representation of BVH because the overlapping

of the nodes. Another visualization using tree map can be seen at 3.3. It was

14

...3.5. Summary

Figure 3.3: Tree maps

mentioned in the article [HMM00]. Colours represent the same tree depth.

3.5 Summary

Based on an experiment with a number of respondents, the article [BN01]

found the organization chart and the icicle plot as a two best rated visualiza-

tion methods. According to our needs, we would follow the organization chart

in a little combination with the icicle plot. There is no need to visualize the

connections between nodes, it will be straightforwardly seen like in icicle plot,

but the nodes at one floor will have the same width like in the organization

chart, even if they are not actually the same size. For this purpose we have

colours to visualize the size.

15

16

Chapter 4

Application design

4.1 Functionality

The application should allow the user to simultaneously view the scene and

the associated BVH. The main part of the window are two widgets that draw

on the screen using OpenGL functions. The first widget displays the 2D

view of the tree and the second one the current scene. The widgets use the

landscape orientation, because the BVH tree is also orientated landscape due

to its logarithmic depth. The third part of the window is a control panel.

The control panel GUI is described more in detail in 4.2. The layout design

can be seen in figure 4.1.

The backbone of the application is its interactivity with the user. It allows

to pick a node from the 2D view and show some statistics about it. It is

needed to display its bounding box. After picking a node, its dimensions are

displayed in the control panel and the node is visualized as a real box in the

scene. The user can also click into the scene and pick one of the tree leaves.

The path from the root to this leaf is displayed in the 2D view. The statistics

about the leaf are displayed in the control panel as well.

The tree node colours are displayed using a specific transfer function. The

input to the function is given by a scalar value, that is one of the tree

properties. Some of the tree properties, that are used to measure its quality,

were discussed in the previous chapter.

The application visualizes two kinds of data. The first are automatically

17

4. Application design

Figure 4.1: Main window layout

computed by the application when the BVH file is loaded. An additional

values can be imported by the user. The computed values follow.

. Surface area of the bounding box relative to the surface area of the root

. Volume of the bounding box relative to the volume of the root

. Surface area of the bounding box multiplied by the depth of the node to

the power of two, relative to the surface area of the root

. Volume of the bounding box multiplied by the depth of the node to the

power of two, relative to the volume of the root

. Number of triangles in the sub-tree

. Sum of children’s surface area relative to the parent’s surface area

. Sum of children’s volume relative to the parent’s volume

The sum of children’s volume relative to the parent’s volume displays

the overlapping of children. If this value is lower or equal to one, children

probably do not overlap so much.

18

.. 4.2. GUI design

The user can manipulate with both OpenGL widgets as well. The 2D view

of the tree can be moved by a right mouse button and scaled using a mouse

wheel. The scene can be manipulated the same as the 2D view. Additionally,

it can be rotated by holding a middle mouse button while moving it.

4.2 GUI design

The graphical user interface has to be clear and easy to understand. The most

used features have to be situated at the top of the control panel. Features,

that are important for the application are listed below.

.Tabs to switch the BVH are located at the top of the control panel and

are used for the switching between more imported trees that corresponds

to the scene.

.Tree statistics is the basic information about the tree, that the appli-

cation immediately presents to the user. It contains information such

as the number of triangles, the number of BVH nodes, the depth of the

tree or the average number of triangles per leaf.

.Displayed property is another key factor of the application. There are

multiple properties of the tree, so the user must be able to switch between

them. The user can do so in a combo-box widget. He can also set the

minimum and the maximum values using two sliders. These properties

are in varying range and their values might not be distributed uniformly.

As a consequence, the transfer function should not be linear. It is up to

the user to its characteristics. This possibility should be provided by a

spin box. The transfer function is described more in detail in chapter

5.5. This area also contains a button to load additional properties for

the tree.

.Blending function controls the appearance of pixels, which are covered

by multiple nodes. In various cases the user wants to see different data.

For this purpose, he can switch between predefined blending functions,

19

4. Application design
such as a minimum, a maximum or an average value. These options are

accessible by a radio buttons.

.Display mode changes the way the nodes are displayed. Available are

four options.

. Nodes displayed as a filled boxes. This is a default option.. Line representation, where only contours of a nodes are displayed.. Ellipses. In this mode each node is displayed as a filled ellipse

constructed of 16 line segments at its circuit.. The line representation of ellipses.

4.3 Input data format

The application loads all relevant data from a user specified file. The file

contains both the information about the geometry and the already constructed

BVH. The BVH is represented by an array of nodes, each carrying its bounding

box and children indices. The BVH node structure can be seen in the listing

4.1.

Listing 4.1: BVH node struct

typedef struct

{

f loat bounds [2] [3] ;

int32_t ch i l d ;

uint8_t ax i s ;

uint8_t i sLe f tCheaper ;

int16_t ch i l d r en ;

} BVHNode ;

The bounds define the maximum and the minimum coordinates of the

bounding box in all three axes. The axis variable defines the current splitting

axis. The value three means the node is a leaf. The child is an array index of

20

...4.4. Object design

the first child. The other children are organized sequentially following the first

one. If the node is a leaf, it is an index of the first primitive associated with

this node. The variable children defines the number of children nodes (or

the primitives). The attribute isLeftCheaper is not used in the application.

4.4 Object design

The application window consists of two panels that use OpenGL functions and

one panel with graphical user interface. The OpenGL panels are represented

by two different classes that inherit from QOpenGLWidget class. Each of these

widgets has its own OpenGL context. Furthermore, each has an instance of

class Render, specifically their descendants — TreeRender and SceneRender.

Class TreeRender has an array of pointers to instances of class BVHDrawer

and retains the index of the currently displayed BVH. Class BVHDrawer provides

drawing functions. It owns an instance of class Mesh. Its OpenGL buffers

are generated using class BVH, that contains the information about the tree.

Class BVH contains an array of BVHNode instances and an array of pointers

to instances of class ScalarSet. Class ScalarSet contains a scalar value for

each BVH node related to the current tree, which serve as an input to the

transfer function. These are the values visualized as BVH node colours.

21

4. Application design
The class SceneRender is defined analogically to the TreeRender. It con-

tains a pointer to the instance of class SceneDrawer. The class SceneDrawer

owns an instance of the class Scene, which holds the information about the

geometry. It contains an array of triangles and their indices to connect them

with respective BVH nodes.

22

Chapter 5

Implementation

5.1 BVH representation

The tree is stored in two structures. The first one is used to store the topology.

It holds the information about children and bounding boxes. The second

one is used for rendering and contains an array of the coordinates of the

node centers. These are then processed in the geometry shader, based on the

chosen display mode, to be rendered.

Positions of the nodes are calculated in the normalized device coordinates

(NDC). The view matrix is always set to identity, because the camera does

not move. The projection matrix is set to orthographic projection. The model

matrix varies because of the user moving and zooming the tree.

Normalized device coordinates are in the range (−1, 1)3. These coordinates

are further transformed into the window space coordinates, which depends on

the particular dimensions of the viewport. The calculation of node positions

is made by the breadth-first search. The height of the node is calculated first

and is constant for all of the nodes and determined by the maximum depth

of the tree. The width of the nodes are computed individually. The width

is given by the depth of the node and decreases exponentially as the depth

increases.

The tree is not complete, therefore some levels may not be completely

filled with nodes. Subsequently, it is not possible to calculate the horizontal

positions of the nodes sequentially with constant increment for each level.

23

5. Implementation...

Figure 5.1: Tree with normalized device coordinates

Finally, the horizontal position of the node is computed as its parent’s

horizontal position with offset based on the number of the parents’ children.

Example of the tree with the arity of two can be seen at figure 5.1.

5.2 Visualizing nodes at lower levels

The nodes at lower levels of the tree are computed to be thinner then one

pixel with this method. The standard rasterization, which is a default option,

leave these pixels empty. Empty spaces then appears at these places. They

are only filled with growing zoom factor. This problem can be solved multiple

ways. For example by rendering of the centroids of the nodes first, that are

exactly one pixel wide. Unofrtunatelly, the centroids would not fill the whole

height of a node and there still would be a lot of empty space in vertical

direction.

Next option, that could solve this problem, is to use the conservative

rasterization. This method draws even into the pixels, that are filled at least

with small part by the primitive, not the majority [Sto14].

Finally, it is up to the user, which information he would like to display. He

can choose between the average value of all pixel candidates, the minimum

or the maximum. The corresponding blending function is set accoding to the

needs. For more information about blending functions see the section 5.3.

5.2.1 Conservative rasterization

The width of individual nodes decreases as the depth of the tree increases.

Let us assume, that screen is separated into pixels and every pixel is defined

by its center. The pixels are usually treated as to be covered by the primitive,

24

.................................5.2. Visualizing nodes at lower levels

Figure 5.2: Standard rasterization (left) vs. the conservative rasterization (right)

when that primitive covers its center. To avoid this behaviour, we use a

technique called conservative rasterization.

This technique renders also the pixels, that are at least partially covered

by the primitive. The difference between the standard rasterization and the

conservative rasterization can be seen at the figure 5.2.

This rendering method is available in the OpenGL as a vendor specific

extension by NVIDIA. The use is simple, but the extension is dependent on

environment. There is also a possibility to make it work without a hardware

support by using a Geometry shader. In the article [JH] are described two

algorithms, that can be used. These algorithms have different performance

characteristics. Their common goal is to extend the given primitive by the

semi-diagonal of a pixel.

. The first algorithm computes an optimal bounding polygon of given

primitive. It is correct in filling the fragments, but it is also expensive.

It completely works in the geometry shader program and the vertices

must be replicated. The bounding polygon is computed by a splitting

the problem into three cases, according to the direction of normals of

edges adjacent to the given vertex. In the implementation, each edge

normal is represented by the semi-diagonal of the pixel of the same

quadrant, where the real normal is oriented. Next, the dot product of

the semi-diagonals of the adjacent edges gives the information about

25

5. Implementation...

Figure 5.3: Intersection of bounding triangle and axis-aligned bounding box

interrelation between them. If the dot product is larger than zero, the

normals are in the same quadrant. If it is less than zero, the normals

are in the neighbouring quadrant and if it is equal to zero, the normals

are in the opposite quadrants. Thanks to this information, we can now

pass the corresponding number of vertices to fragment program.

. The second algorithm is less expensive, because it passes only three

vertices out of the geometry shader program and discards the unnecessary

fragments in the fragment shader program. This makes it less expensive,

but it works bad with triangles with acute angles. The bounding polygon

of the primitive is computed as an intersection of the bounding triangle

and the axis-aligned bounding box of the primitive. The intersection

is visualized in the figure 5.3. The bounding triangle is computed in

the geometry shader program and then the fragment shader program

discards the fragments, that do not overlap the axis-aligned bounding

box. Computing the bounding triangle is done by moving each original

edge by the worst-case semi-diagonal. That is the one in the same

quadrant as the edge normal.

5.2.2 Implemented solution

The second algorithm is definitely better to our needs. It works faster, which

is a key factor for application, that needs to work in real time. In our case,

this algorithm can still be simplified.

Let us imagine the probably worst case input BVH. For millions of triangles,

26

.. 5.3. Blending types

it would have also millions of nodes. The depth of this tree would be maximally

around many dozens. Of course, if the tree would be totally unbalanced, the

depth can be up to half of the triangles. But do not consider these extreme

cases. The depth of the tree will be much lower then the number of pixels of

the window in vertical direction in almost every case. According to this fact,

we can neglect the conservative rasterization of triangles in vertical direction.

Now, the solution is truly simple. Instead of three vertices generated in

geometry shader, that are then passed to the fragment shader, we modify

these vertices by moving the x-coordinate of each by the half x-size of the

pixel.

When using lines as the rendering primitives, the conservative rasterization

is used by default.

5.3 Blending types

This section describes situations, where positions of more nodes than one

are computed to cover the same pixel. The displayed value is up to the user.

Application allows three types. The maximum, the minimum and the average

value of the pixel candidates. Common solution of these methods lies in

the rendering by multiple passes. First, the desired values are rendered to a

texture, which is used in subsequent rendering on the screen. The textures

with the maximum and the minimum values can be compared at figure 5.4.

Notice the bottom part of the tree, where the difference can be seen the most.

The values are in the range from zero (black colour) to one (white colour).

.Maximum value

Values are rendered to a texture with enabled blending, which function

is set to GL_MAX. The clear colour is set to zero value. The rendered

texture contains float values in range (0, 1). Next, the current frame

buffer is set to the default screen buffer. In the fragment shader, we

use the generated texture and put its values as an input values to the

transfer function.

27

5. Implementation...

(a) : GL_MAX

(b) : GL_MIN

Figure 5.4: Textures with different blending functions

.Minimum value

The process is the same as with the maximal value. The only difference

is in the blending function, which is set to GL_MIN and the clear colour,

which is, in this case, set to one.

.Average value

To compute the average value, we need to store the information about

sum of all contributors and their number. These two values are stored in

a two textures. Therefore, the rendering is made by three passes. The

first pass renders the sum of all contributors using the blend function

GL_ADD. Next, the number of them is rendered using the same blend

function. The difference is in the fragment shader, where the number

one is added every time. In the third pass we render to the screen. The

fragment shader program uses the two created textures and compute the

arithmetic mean.

28

... 5.4. Picking

5.4 Picking

The application allows the interconnection between the scene and the respec-

tive BVH. When the user clicks into the scene, the appropriate BVH leaf and

its triangles are highlighted. In the tree view the whole path from the root

to the leaf is highlighted. Let us now describe the process of selecting the

leaf in the scene.. The clicked coordinates are recorded in the window space, i.e. in the

range (0, width) and (0, height) of the window. These coordinates are

transferred to the NDC, that are in the range (−1; 1)3.

. The ray position is set to the point [0; 0; 0] in camera coordinates. The tar-

get ray position is transformed to the camera coordinates by multiplying

the window space coordinates the inverse of the projection matrix.

. Both of these parameters have to be transferred into a model coordinates.

This is achieved by multiplying the coordinates first by the inverse of

the view matrix and then the inverse of the model matrix.

. The ray direction is calculated by deducting the ray position from the

ray target. These values are used as an inputs to the function bool

pick(ray). Now the ray tracing starts.

. A stack-based algorithm is used. Its pseudocode can be seen in the

section 2.2.2. If the algorithm recursively reaches the tree leaf and the

ray intersects some of the triangles inside, the bounding box of the leaf

is displayed semi-transparently in the scene.

In the upper window, where the tree is displayed, the intersection calculation

is simplified. Node positions are specified in the NDC coordinates. Therefore,

it is just needed to convert the cursor position from the window space to

the NDC and multiply it by the inverse of the model matrix. The nodes are

traversed by the breadth-first search and tested for an intersection with the

cursor position.

29

5. Implementation...

Figure 5.5: Transfer functions with corresponding colours in y axis

5.5 Transfer function

The scalar data defining the tree are generally not uniformly distributed.

Subsequently, the median value does not have to be in the middle of data

range. It is needed to have some more sophisticated transfer function than

linear. The sensitivity, i.e. the difference between the function values of

the nearby function input values, should differ in a different parts of the

range. According to the fact, that we would like to define a function, that

is increasing variously, i.e. the function value of a middle point has to be

sometimes larger and sometimes smaller than the actual middle value, we

use a power function. The power functions with various exponents are

displayed at figure 5.5. The colours corresponding to the used colour palette

see in the figure 5.6.

A slider that defines the bounding values of the transfer function is dis-

cretized into constant number of steps defined from zero to the maximum

value. Following function is used to compute the real value from a slider.

The multiplicationConstant defines the actual range of the scalar values

divided by the maximal value of a slider. The additiveConstant defines the

difference between zero and the bottom value of the range.

30

.. 5.6. OpenGL usage

Algorithm Computation of power function value
function PowerFunction(value, exponent, maxV alue)

resizedVal = pow(value, exponent) / pow(maxValue, exponent - 1)

return multiplicationConstant * resizedVal + additiveConstant

end function

(a) : x1/2

(b) : x1

(c) : x2

(d) : x3

Figure 5.6: Various exponents of transfer function

5.6 OpenGL usage

The OpenGL functions are used to rende into two main widgets of the appli-

cation. The functions are already included in these widgets, because both of

them inherit from the class QOpenGLWidget, which is using OpenGL functions

by default. The current context is accessed by the call this->makeCurrent(),

which has to be used at each paintGL() and resizeGL() event. This is

caused by the switching between two widgets, which both have their own

OpenGL context. The OpenGL functions can be accessed by Qt, which

has its custom wrap to these functions. The use of pure OpenGL functions

can be done by including them from a specific OpenGL version. In this

case, we are using version 4.3, which is accessed by inheriting from the class

31

5. Implementation...
QOpenGLFunctions_4_3_Core.

5.6.1 Tree view widget

Geometry in this widget is generated by the BFS traversal. The computation

of single nodes is described in section ??. The data, that are used for the

next processing on GPU, are located in a vertex buffer objects (VBO) and

wrapped into a single vertex array object (VAO). These data serve as an

inputs to the GLSL vertex shader program. The vertex shader input data

consist of the node position, which is given only by the centroid of the node,

scalar value for the current node, half width and half height of the node. The

last two values are used in the geometry shader. Application works with

several geometry shaders that are used to change the tree appearance.

The tree is rendered using points as the primitives. It is established by the

call glDrawArrays(GL_POINTS, 0, primitivesNr), where primitivesNr

is the number of tree nodes.

Next, the MVP (model-view-projection) matrix is passed into the vertex

shader as a uniform variable. The view and the projection matrices are both

identities, so the MVP matrix is represented only by the model matrix.

The outputs of the vertex shader serve as the inputs of the geometry shader.

This part is used to generate another primitives based on the input points.

These primitives are then passed into the fragment shader. The type of

output primitives depends on the selected tree appearance, but let us now

discuss the version with the filled rectangles. The shader output primitive

is set to the triangle_strip and the number of output vertices is set to

four. The input values such as the half width of the node and the half height

of the node are used to compute the positions of rectangle vertices. The

corresponding scalar value is passed to the fragment shader and is constant

for these four vertices.

Fragment shader uses textures defined in section 5.3. If the value passed

from the geometry shader is equal to -1, it means that the working node

is actually selected, so it is rendered white. In other cases, the texture is

32

.. 5.6. OpenGL usage

used. One of the values passed from the geometry shader defines the fragment

position in the NDC coordinates. This value is used as a texture look up

coordinate. The corresponding value in the texture is then passed to the

function that defines the colour palette.

After a tree rendering, the visualization of the current transfer function

has to be rendered as well. It is done similarly. The vertex positions are

generated at first. These are computed by dividing the window height by

the number of steps in the sliders defined in the section 5.5. Each vertex

passed into the vertex shader consists only of one float value, that defines

the y-coordinate in the range (−1, 1). The next input value is a pair of floats

that define the scalar values in ith and the subsequent vertex that serves as

the inputs to the transfer function. In vertex shader, these values are without

modification passed into the geometry shader. The vertices are modified

there into a triangle strip. The width of the bar is defined here. Four vertices

are passed into the fragment shader. The two bottom vertices are associated

with ith scalar value and the top two with the subsequent scalar value. The

fragment shader maps these scalar values to colours defined by the colour

palette.

5.6.2 Scene view widget

The scene is rendered more straightforward then the tree view. The call

glDrawArrays(GL_TRIANGLES, 0, primitivesNr * 3); is used (primitivesNr

stands for a number of triangles in the scene). There are multiple values

that are used as the input variables of the vertex shader program. These

values are a vertex position, direction of a normal and a diffuse material

colour of current vertex. The uniform values are the model matrix and the

MVP matrix. The model matrix is used to transform the vertex position

from the model space to the world space. The world space coordinates of

the vertex are used to compute lighting. The values passed to the fragment

shader consist of the vertex position, the normal direction and the material

colour. To compute the lighting, the Phong illumination model [Pho75] is

33

5. Implementation...
used.

If the user selects one of the nodes in the tree view, the next element

rendered into the scene view is the bounding box of the selected node. The

rendering starts with a call glDrawElements(GL_TRIANGLES, indicesNr,

GL_UNSIGNED_INT, NULL) (indicesNr is the number of triangle vertices

passed to the vertex shader program). The cube has 6 faces, therefore the

number of triangles is 12. The number of triangle vertices is then 12*3. The

lighting model is not computed. The vertices are only transformed by the

MVP matrix. The bounding box is rendered semi-transparently, therefore

the blending function is enabled.

5.7 GUI

The GUI elements used in the application are provided by the Qt library.

The control panel design was described in the chapter 4.2. All of the graph-

ical elements must be a children of any widget. Because of this, the class

ControlPanel wraps all of the control panel elements. It has its own con-

tainer, which is an instance of class QWidget. All of the children elements are

attached to this container. Each widget has its own layout. The control panel

elements are placed in the vertical box layout defined by a class QVBoxLayout.

A layout class wraps the GUI elements, like the widgets or the items (i.e.

QSpacerItem is used on the bottom of the control panel).

The individual parts of the control panel are defined by a structures. The

elements of the control panel can be seen below.

class ControlPanel {

public :

ControlPanel () ;

QScrol lArea ∗ s c r o l lA r e a ;

QWidget ∗ conta ine r ;

CurrentTreeStats ∗ t r e e S t a t s ;

34

...5.8. Dependencies
CurrentNodeStats ∗ currNodeStats ;

ScalarValuesGUI ∗ s c a l a r s ;

BlendingType ∗blendingType ;

DisplayMode ∗displayMode ;

} ;

5.7.1 Signals and slots

To handle the events such as button press or change of a slider value, Qt

uses signals and slots. It is an alternative to the callback technique. We can

define, that some signal coming out of some object, is handled by a slot of

another object. The signals have to be placed in the header files under an

accessor signals, slots under an accessor slots. The signals and slots have

to be connected in the application. The example follows.

connect(button, SIGNAL(released()), this, SLOT(handleButton()))

5.8 Dependencies

The main part of the application is made using the OpenGL 4.3.

The application uses the Qt library for managing the window system and

the graphical user interface. Used version is the Qt 5.5 under a LGPL (GNU

Lesser General Public License v. 2.1).

35

36

Chapter 6

Results

This chapter discusses the functionality of the application. The implementa-

tion met all of the declared features mentioned in the introduction. At the

figure 6.1 see the final layout of the application. The individual parts of the

window are described below. The numbers in the figure correspond to the

sections in this chapter. The sections give more explanation.

Figure 6.1: Screenshot of final application with the scene named Hairball

6.1 Tree view

This widget is the most important part of the window. It displays the

imported tree and its topology. Nodes are displayed in different colours,

37

6. Results ..

Figure 6.2: Displayed information about the selected node

Figure 6.3: Detailed scene view with the selected bounding box

which are given by the transfer function. This function could be one of the

precomputed by the application, such as the bounding volume, the surface

area, the number of triangles, etc. or imported by the user. The user can

manipulate with the tree. The middle mouse button can be used to zoom

and see the details. The view can also be moved by holding the right mouse

button.

Left mouse button is used to select the node in the tree. When the node is

selected, it is highlighted by a white colour and the information is displayed

in the control panel. What happens, when the user selects the node is shown

in the figure 6.2. The bounding box is also displayed in the scene view. See

the detail in the figure 6.3.

The right side of the tree view is filled by the visualization of the user-

defined transfer function. The function is influenced by the selected bounds

and the chosen function exponent.

The button called Reset view is located in the top-left corner of the tree

view. This button sets the view to the initial position.

38

.. 6.2. Scene

Figure 6.4: Selected BVH leaf in the scene with displayed path to the root in

tree view

6.2 Scene

The scene view helps the user to better understand the partitioning of the

scene. When the node is selected in the tree view, its bounding box is rendered

into the scene view semi-transparently. If one of the triangles is selected by

the left mouse button, the appropriate leaf bounding box is rendered. The

path from the root to this leaf is displayed in the tree view together with the

information about the leaf in the control panel. The selected node and the

visualized path from the root can be seen at 6.4. The user can also manipulate

with the scene. The middle mouse button can be used for zooming. The view

can also be rotated by holding the middle mouse button. The example of the

visualization of the bounding box of the scene see in the figure ??.

The group of GUI elements, that can modify the scene view, is located in

the top-left corner of the widget. The button called Next view is displayed

if there is more then one camera defined for the current scene. The button

switches between the defined cameras. Two spin boxes are located bellow.

The one is called Near and the second Far. The values set in these boxes

define the near and the far plane of the view frustum. The far plane is initially

set to a multiple of the size of the root bounding box. It is up to the user to

change these values.

39

6. Results ..

Figure 6.5: Tree and node statistics

Figure 6.6: The combobox with tree properties

6.3 Scene and tree statistics

This widget shows another important information about the displayed tree.

When none of the nodes is selected, the general information is displayed, such

as the tree depth, the number of the nodes or the triangles in the scene. See

this widget in the figure 6.5. One of the rows is called Imported node count.

It displays the size of the imported node buffer. The Real node count is

the real number of nodes, which are traversed by the breadth-first search.

6.4 Selected tree property

The user can switch between the different scalar sets, that define some of the

tree properties. Initially, the precomputed properties can be selected in the

combobox displayed in the figure 6.6. The value range can be modified using

two sliders located below. The visual change caused by moving the top slider

can be seen in the figure 6.9.

40

.. 6.5. Blending mode

Figure 6.7: Tree view with different max threshold value

The transfer function can be modified by spin box that defines the exponent

of the transfer function. Initially, the value is set to one. The lower limit of

this value is zero. The example of differently defined transfer functions can

be seen in the figure 5.5. The currently defined transfer function is visualized

on the right side of the tree view.

6.5 Blending mode

The widget marked with the number five is used to define the blending

function. The difference between selected functions appears at lower depth,

where multiple nodes cover the same pixel. The individual options can be

switched by a radio buttons. Three functions are available. The maximum,

the minimum and the average value. The differences see at figure 6.8.

6.6 Tree appearance

To revitalize the appearance of the tree, the user can choose one of the four

display options. The options are defined by the selected geometry shader.

41

6. Results ..

Figure 6.8: Tree detail with blending function set to minimum (left) and

maximum (middle)

The possible tree designs are following. The individual nodes can be displayed

as filled rectangles, wired rectangles, filled ellipses or wired ellipses. The

chosen option determines the clarity of the visualization vs. the response

time of interaction. The results of measurement can be find in section 7.

42

..6.6. Tree appearance

(a) : Filled rectangles

(b) : Wired rectangles

(c) : Filled ellipses

(d) : Wired ellipses

Figure 6.9: Different tree appearance styles

43

44

Chapter 7

Testing

This chapter presents the application performance tests. The resolution of

the application was in all cases 1920x1030 pixels. The timers from the Qt

library with the milliseconds precision were used. The testing PC parameters

follow.. CPU: Intel Core i7-4710HQ, 2.50 GHz

.GPU: GeForce GTX 860M

.Memory: 16,0 GB

.OS: Microsoft Windows 10 Home, 64-bit

. Compiler: Microsoft (R) C/C++ Compiler Version 19.00

The application was tested with six scenes. Its overview, i.e. its names,

number of triangles and number of tree nodes can be seen at table 7.1.

The table 7.2 shows the time between opening the scene and loading of all

resources. It is also displayed in graph in the figure 7.1.

We also compared the average response times in the table 7.3, which shows

the average time between the user interaction with the application and its

response. The measuring starts when the user selects a node from the view

and ends when the application shows the information about it.

Finally, the rendering times of both of the widgets are compared in the

table 7.4. The values represent the average rendering time per frame. As

we can see, the tree view of the scene PowerPlant ceases to be smooth (if

45

7. Testing ..
scene name triangles BVH nodes

FairyForest 174,117 60,277

Conference 331,179 116,177

Buddha 1,087,474 383,159

HairBall 2,880,000 1,023,615

SanMiguel 7,880,512 2,769,557

PowerPlant 12,759,246 4,089,385

Table 7.1: Testing scenes

scene name file loading generating nodes creating scalar sets total time

FairyForest 18 16 30 135

Conference 36 35 56 237

Buddha 116 105 238 705

HairBall 302 302 638 1,842

SanMiguel 801 767 1,979 5,286

PowerPlant 1,322 1,191 3,140 8,305

Table 7.2: Initial loading times (ms)

we assume the application to be smooth with 25 frames per second). The

comparison between rendering times of different display modes is displayed

in the table 7.5.

46

.. 7.1. Discussion

Figure 7.1: Initial loading times (ms)

scene name pick triangle pick node

FairyForest 1 8

Conference 9 12

Buddha 41 30

HairBall 1,178 133

SanMiguel 551 498

PowerPlant 2,723 518

Table 7.3: Average interaction response times (ms)

7.1 Discussion

Based on the performance testing, the application renders smoothly the

scenes with a millions of triangles. It is also able to interact with the user

in a real-time. The tree rendering times differs with the chosen display

mode. The fastest rendering mode is the one with the filled rectangles. The

worst rendering times obtained the filled ellipses. The ellipses can clarify

the visualized information, but the rendering times are quite bad with larger

scenes. It is up to the user to select the compromise.

47

7. Testing ..
scene name tree view (filled rectangles) scene view

FairyForest 2 0

Conference 2 1

Buddha 9 2

HairBall 17 8

SanMiguel 41 19

PowerPlant 62 31

Table 7.4: Average rendering times (ms)

scene name filled rectangle wired rectangle filled ellipse wired ellipse

FairyForest 1 1 7 1

Conference 4 4 14 3

Buddha 8 10 45 12

HairBall 17 21 117 28

SanMiguel 40 51 308 68

PowerPlant 61 76 455 102

Table 7.5: Average tree rendering times with different display modes (ms)

7.2 The comparison between different BVHs

This section describes the visualization of two BVHs generated by a different

builders. Let us discuss the brief comparison of the visualizations that can

be seen in the figure 7.2.

The first thing we can see is the varying depth of the trees. The SweepSAH

tree has lower depth. It has also the lower number of the BVH nodes.

Therefore, it has more triangles per leaf on average then the tree generated by

AAC. When we display the bounding volumes of the interior nodes, we can

see, that this value decreases with increasing depth faster in the SweepSAH

generated tree then in the AAC tree. This can be observed also from the

value called sum of children volumes relative to the parent volume

that indicates the children’s overlapping. This value can be seen in the figure

48

............................. 7.2. The comparison between different BVHs

??. The tree built by AAC is not coloured as evenly as the SweepSAH tree.

That means, that the children overlap more in this case. As a consequence,

the SweepSAH tree is probably faster to traverse.

(a) : SweepSAH builder

(b) : AAC builder

Figure 7.2: Trees built by a different builders

49

7. Testing ..

(a) : SweepSAH builder

(b) : AAC builder

Figure 7.3: The sum of the children volume relative to parent volume

50

Conclusion

I compared most commonly used 2D hierarchy visualisations with the focus

on visualizing the bounding volume hierarchies. Few of the methods were

found suitable. The first of them is the organization chart, which was found

pretty useful for our application, thanks to the clarity and usability for the

BVH structure. The second one, called the icicle plot, is also suitable, because

it is displaying only the nodes, not the edges. The combination of these two

methods is used in our application.

Next, I made the application design with the respect to the goals of the

thesis. The application window is separated into three individual parts. The

tree view, the scene view and the control panel containing the GUI. The

main features of the application are the visualization of multiple BVH for

one scene, the import of the user defined scalar values and the possibility to

modify the transfer function.

I have implemented the designed application and dealt with some imple-

mentation issues. One of them was the representation of the rendered data.

With the decreasing width of a node with growing depth, the nodes at lower

levels were so thin thus are not displayed. This is solved using the conserva-

tive rasterization. Next issue was for example the displaying of the different

information at these places depending on the selected blending mode. The

values are rendered to a texture at first, therefore the rendering is made by

multiple phases.

I have tested the application with six scenes and compared the application

51

Conclusion ..
performance. It works smoothly with scenes about millions of triangles. It

can be used to optimize the constructed bounding volume hierarchies. The

user immediately sees the balancing of the tree. It is possible to determine

the tree quality thanks to the visualized colours, that represents the tree

features.

52

Bibliography

[AGGW15] Jefferson Amstutz, Christiaan Gribble, Johannes Günther, and

Ingo Wald, An evaluation of multi-hit ray traversal in a BVH us-

ing existing first-hit/any-hit kernels, Journal of Computer Graph-

ics Techniques (JCGT) 4 (2015), no. 4, 72–88.

[BN01] T. Barlow and P. Neville, A comparison of 2-d visualizations

of hierarchies, Information Visualization, 2001. INFOVIS 2001.

IEEE Symposium on, Oct 2001, pp. 131–138.

[Bos] Mike Bostock, Radial reingold–tilford tree, http://bl.ocks.

org/mbostock/4063550, Accessed: 11 May 2016.

[Eri05] Christer Ericson, Real-time collision detection, Morgan Kauffman

Publishers, 2005.

[fAT14] Szirmay-Kalos L. Áfra A. T., Stackless multi-bvh traversal for

cpu, mic and gpu ray tracing, 129–140.

[FLF12] Nicolas Feltman, Minjae Lee, and Kayvon Fatahalian, SRDH:

Specializing BVH Construction and Traversal Order Using Rep-

resentative Shadow Ray Sets, Eurographics/ ACM SIGGRAPH

Symposium on High Performance Graphics (Carsten Dachs-

bacher, Jacob Munkberg, and Jacopo Pantaleoni, eds.), The

Eurographics Association, 2012.

53

http://bl.ocks.org/mbostock/4063550
http://bl.ocks.org/mbostock/4063550

Bibliography ...
[GFE+12] Christiaan Gribble, Jeremy Fisher, Daniel Eby, Ed Quigley, and

Gideon Ludwig, Ray tracing visualization toolkit, Proceedings of

the ACM SIGGRAPH Symposium on Interactive 3D Graphics

and Games (New York, NY, USA), I3D ’12, ACM, 2012, pp. 71–

78.

[Hav15] Vlastimil Havran, Ray shooting and its applications, University

Lecture, 2015.

[HDW+11] Michal Hapala, Tomáš Davidovič, Ingo Wald, Vlastimil Havran,

and Philipp Slusallek, Efficient stack-less bvh traversal for ray

tracing, Proceedings of the 27th Spring Conference on Computer

Graphics, SCCG ’11, 2011, pp. 7–12.

[HMM00] I. Herman, G. Melancon, and M. S. Marshall, Graph visualization

and navigation in information visualization: A survey, IEEE

Transactions on Visualization and Computer Graphics 6 (2000),

no. 1, 24–43.

[JH] Lennart Ohlsson Jon Hasselgren, Tomas Akenine-Möller,

Gpu gems 2, chapter 42. conservative rasterization,

https://developer.nvidia.com/gpugems/GPUGems2/

gpugems2_chapter42.html, Accessed: 21 March 2016.

[MB90] J. David MacDonald and Kellogg S. Booth, Heuristics for ray

tracing using space subdivision, The Visual Computer 6 (1990),

no. 3, 153–166.

[Nvi09] Nvidia R© optixTM ray tracing engine unveiled at sig-

graph 2009 – and a different future for games ray trac-

ing, https://thepriorart.wordpress.com/2009/08/05/

nvidia-optix-ray-tracing-engine-unveiled-at-siggraph-200/,

August 2009, Accessed: 22 January 2016.

[Pho75] Bui Tuong Phong, Illumination for computer generated pictures,

Commun. ACM 18 (1975), no. 6, 311–317.

54

https://developer.nvidia.com/gpugems/GPUGems2/gpugems2_chapter42.html
https://developer.nvidia.com/gpugems/GPUGems2/gpugems2_chapter42.html
https://thepriorart.wordpress.com/2009/08/05/nvidia-optix-ray-tracing-engine-unveiled-at-siggraph-200/
https://thepriorart.wordpress.com/2009/08/05/nvidia-optix-ray-tracing-engine-unveiled-at-siggraph-200/

... Bibliography

[RMP15] R. MARCUS R. MARCUS and V. PROFILE, Real-time ray-

tracing part 2, http://robbinmarcus.blogspot.cz/2015/10/

real-time-raytracing-part-2.html, 2015, Accessed: 22 Jan-

uary 2016.

[Scra] Scratchapixel, Introduction to acceleration structures, http:

//www.scratchapixel.com/lessons/advanced-rendering/

introduction-acceleration-structure, Accessed: 8 May

2016.

[Scrb] , Rasterization: a practical implementation, http:

//www.scratchapixel.com/lessons/3d-basic-rendering/

rasterization-practical-implementation, Accessed: 19

January 2016.

[Sto14] Jon Story, Don’t be conservative with conservative ras-

terization, https://developer.nvidia.com/content/

dont-be-conservative-conservative-rasterization,

November 2014, Accessed: 19 January 2016.

[TM02] Soon Tee Teoh and Kwan-Liu Ma, Rings: A technique for visualiz-

ing large hierarchies, Revised Papers from the 10th International

Symposium on Graph Drawing (London, UK, UK), GD ’02,

Springer-Verlag, 2002, pp. 268–275.

[Wik] Bounding volume hierarchy, https://en.wikipedia.org/wiki/

Bounding_volume_hierarchy, Accessed: 20 January 2016.

55

http://robbinmarcus.blogspot.cz/2015/10/real-time- raytracing-part-2.html
http://robbinmarcus.blogspot.cz/2015/10/real-time- raytracing-part-2.html
http://www.scratchapixel.com/lessons/advanced-rendering/introduction-acceleration-structure
http://www.scratchapixel.com/lessons/advanced-rendering/introduction-acceleration-structure
http://www.scratchapixel.com/lessons/advanced-rendering/introduction-acceleration-structure
http://www.scratchapixel.com/lessons/3d-basic-rendering/rasterization-practical-implementation
http://www.scratchapixel.com/lessons/3d-basic-rendering/rasterization-practical-implementation
http://www.scratchapixel.com/lessons/3d-basic-rendering/rasterization-practical-implementation
https://developer.nvidia.com/content/dont-be-conservative-conservative-rasterization
https://developer.nvidia.com/content/dont-be-conservative-conservative-rasterization
https://en.wikipedia.org/wiki/Bounding_volume_hierarchy
https://en.wikipedia.org/wiki/Bounding_volume_hierarchy

56

Appendix A

Application screenshots

57

A. Application screenshots

58

Appendix B

Format of input scalar values

The following function is used to load the input scalar values. The file starts

with the number of the BVH nodes. The number of scalar sets present in

this file follows. Next, each scalar set starts with the length of its name, than

comes the name itself and finally the float array of values. The area value

should be present in every file. It is used as a control, if the values correspond

with the current BVH.

bool SceneImporter : : l o adSca l a r s (const s t r i n g &fi leName)

{

std : : i f s t r e am i nF i l e (f i leName , i o s : : b inary) ;

i f (! i nF i l e)

return fa l se ;

uint32_t actua lNodeSize ;

i nF i l e . read (reinterpret_cast<char∗>(&actua lNodeSize) ,

s izeof (uint32_t)) ;

i f (actua lNodeSize != bvh−>mNodes . s i z e ())

return fa l se ;

uint8_t c o l o r S e t S i z e ;

i nF i l e . read (reinterpret_cast<char∗>(&co l o r S e t S i z e) ,

s izeof (uint8_t)) ;

59

B. Format of input scalar values...................................

s i z e_t nameLen ;

char ∗setName ;

for (uint8_t i = 0 ; i < c o l o r S e t S i z e ; i++)

{

setName = NULL;

i nF i l e . read (reinterpret_cast<char∗>(&nameLen) ,

s izeof (s i z e_t)) ;

setName = new char [nameLen] ;

i nF i l e . read (setName , nameLen∗ s izeof (char)) ;

i f (strcmp (setName , " area ") == 0)

{

vector<f loat> areas ;

a reas . r e s i z e (actua lNodeSize) ;

i nF i l e . read (reinterpret_cast<char∗>(areas . data ())

, actua lNodeSize ∗ s izeof (f loat)) ;

for (uint32_t j = 0 ; j < actua lNodeSize ; j++)

{

i f (a reas [j] != bvh−>mBoxSizes [j])

return fa l se ;

}

a reas . c l e a r () ;

}

else

{

Sca l a rSe t ∗ s = new Sca l a rSe t () ;

s−>name . a s s i gn (setName , nameLen) ;

s−>co l o r s . r e s i z e (actua lNodeSize) ;

i nF i l e . read (reinterpret_cast<char∗>(s−>co l o r s .

data ()) , actua lNodeSize ∗ s izeof (f loat)) ;

60

...................................B. Format of input scalar values

bvh−>mScalarSets . push_back (s) ;

bvh−>norma l i z eSca la rSe t (bvh−>mScalarSets . s i z e () −

1) ;

}

delete [] setName ;

}

i nF i l e . c l o s e () ;

return true ;

}

61

62

Appendix C

DVD content

src..source codes

doc

thesis.pdf..the thesis

latex................................LATEXversion of the thesis

bin.............................runnable version of the application

data .. tested scenes

README.txt........................description of the DVD content

63

