

Bachelor’s Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Graphics and Interaction

Black Holes
Interactive Visualization

Ivan Platonov

Study Programme: Software Technologies and Management
Study Field: Web and Multimedia

May 2016
Supervisor: Ing. David Sedláček, Ph.D.

Acknowledgement / Declaration
I would like to thank Ing. David

Sedláček, Ph.D. for his help and guid-
ance, also I would like to thank Ing.
Jaroslav Sloup for his invaluable ad-
vices.

I declare that I worked out the pre-
sented thesis independently and I quot-
ed all used sources of information in ac-
cord with Methodical instructions about
ethical principles for writing academic
thesis.

. .
Ivan Platonov
In Prague 26. 05. 2016

Prohlašuji, že jsem předloženou prá-
ci vypracoval samostatně a že jsem
uvedl veškeré použité informační zdroje
v souladu s Metodickým pokynem o do-
držování etických principů při přípravě
vysokoškolských závěrečných prací.

. .
Ivan Platonov
V Praze dne 26. 05. 2016

iv

Abstrakt / Abstract
Tato bakalářská práce se věnuje vizu-

alizaci velmi vzácných a málo prozkou-
maných objektů vesmíru, kterými jsou
černé díry. Tato práce také popisuje ma-
tematické základy černých děr, Kerrův
časoprostor a metody sledování paprsků
v Kerrově časoprostoru. Pro přidání in-
teraktivity se v této práci používá Leap
Motion. Pro příznivý výkon byla pou-
žita technologie NVIDIA CUDA.

Klíčová slova: černé díry; vizuali-
zace; NVIDIA CUDA; OpenGL; Leap
Motion; interaktivita.

Překlad titulu: Interaktivní vizuali-
zace cerných děr

This bachelor thesis presents a com-
plete process of creating a real-time
visualization of some of the most unex-
plored objects in the universe – black
holes. It describes the basics of black
holes nature as well as Kerr spacetime
and ray tracing in this spacetime. As
the main source of interactivity was
used Leap Motion controller. For better
performance and more favorable inter-
activity NVIDIA CUDA technology was
used.

Keywords: black holes; visualiza-
tion; NVIDIA CUDA; OpenGL; Leap
Motion; interactivity.

v

Contents /
1 Introduction .1
1.1 Visualization .1
1.2 Interaction .1
1.3 Performance .1

2 Analyses .2
2.1 Theoretical background.2

2.1.1 Basic knowledges2
2.1.2 Visualization principles3
2.1.3 Scene structure.6

2.2 SIM5 library .7
2.2.1 Geodesic equations7
2.2.2 Ray-tracing.7

2.3 Choice of the motion con-
troller . 10
2.3.1 Microsoft Kinect 10
2.3.2 Leap Motion 10
2.3.3 Final choice 10

2.4 Analyses of the technologies . . . 11
2.4.1 Leap Motion API 11
2.4.2 NVIDIA CUDA 12
2.4.3 OpenGL 15

3 Application design. 16
3.1 Requirements. 16
3.2 Programming language and

platform . 16
3.3 Structure overview 17

3.3.1 Sequence diagram. 17
3.3.2 Compilation of multi-

ple languages 17
3.4 Leap Motion gestures 18

4 Implementation. 20
4.1 Application class 20
4.2 Camera structure 20
4.3 Notification class 20
4.4 Leap Motion Listener and

Handler . 21
4.5 KeyboardHandler class 23
4.6 ShaderProgram class. 23
4.7 Model computation 23

4.7.1 Creating a frame 23
4.7.2 Ray tracing. 24

4.8 Rendering . 25
5 Testing . 26
5.1 Gestures tests 26
5.2 Application output overview . . 27
5.3 Usability tests 29

5.3.1 Setup . 29
5.3.2 Participants 29
5.3.3 Questionnaire 30
5.3.4 Testing process and

findings 30
5.4 Benchmarking 31

5.4.1 Benchmark concept 31
5.4.2 Benchmark results 31
5.4.3 Conclusion of bench-

marking 31
6 Conclusion . 32
6.1 Future work . 32
References . 33

A Abbreviations . 35
A.1 Abbreviations 35

B CD Contents. 36
B.1 Software and libraries. 36
B.2 Text and documentation 36
B.3 Media files . 36

vi

Tables / Figures
4.1. Keyboard keys for interaction . 23
5.1. Gestures for interaction 26
5.2. Rendering time for one frame . 31

2.1. The black hole with an ac-
cretion disk around it.2

2.2. Light is falling inside the ro-
tating black hole3

2.3. Distance between two points3
2.4. Distance between Prague and

New York .4
2.5. Accretion disk around the

black hole .5
2.6. The view of the accretion

disk around the black hole
from the top .6

2.7. Camera position6
2.8. Visible distortions because of

a time delay .8
2.9. Finding a mid-plane crossing9

2.10. Leap Motion vs. Microsoft
Kinect . 10

2.11. The Leap Motion right-
handed coordinate system. 11

2.12. Automatic scalability 13
2.13. Heterogeneous Programming . . 14
3.1. UML Sequence diagram 17
3.2. Circle gesture 18
3.3. Scale gestures. 18
3.4. Camera rotation gesture 19
3.5. Inclination gesture 19
5.1. Initial position of the black

hole . 27
5.2. The view on the black from

the top . 28
5.3. The view from the accretion

disk with turned off light
spots . 28

5.4. The setup for testing 29

vii

Chapter 1
Introduction

A black hole is a region of spacetime where gravity is so strong that even photons of
light can not get out.

In most cases black holes are expected to form at the final stage of the evolution of
some very massive stars. At the end of star’s life cycle it collapses under the force of
their own gravity producing a black hole.

Black holes generally are invisible objects and we can visualize only the special ones.
Those black holes, which will continue to grow absorbing it’s surroundings because of
its strong gravity. Matter falling onto a black hole and heated by friction, will create a
thin disk of visible light which is called accretion disk.[1] [2]

1.1 Visualization
The gist of the project is visualization of the black hole’s mathematical model written by
Michal Bursa [3]. We will create physically accurate and good looking visualization of
the black hole that is based on that model. We are not going to use classic 3D polygonal
modeling paradigm, because our goal is to create visualization of pure mathematical
model. To be exact we need to visualize geodesic equations that are part of the ray
tracing inside the Kerr spacetime. To reach this goal we will use interesting techniques
and technologies.

1.2 Interaction
Static picture of a black hole looks great; however, it would be better if we add to it
some interaction. Within the confines of the our project we will create basic camera
movement in the space around the black hole. To control the camera the application
will use common input sources, such as keyboard and mouse, but also we will connect
hand tracking device to make the application even more entertaining.

1.3 Performance
If we speak about the time to draw mathematically accurate model of a black hole we
need a lot of performance. So in order to provide the best user experience at interaction
with a black hole, we need something more powerful and faster than CPU. We will use
NVIDIA-based GPU powered by CUDA technology. This will help us significantly
(up to 10 times) increase the performance and make the application even more fluent.
After the implementation we can compare both ways of frame creation and make a final
decision, that will tell us which technology better fits our goals.

1

Chapter 2
Analyses

2.1 Theoretical background
In this section we will take a closer look to the theoretical part of the application and try
to schematically describe the basics of the black holes. How it affects its surroundings
and what we need to do to create our visualization.

2.1.1 Basic knowledges
A black hole is an extreme astronomical object that is the final stage of the evolution
of some stars. Its gravitational field is so intense that it bends the path of light rays,
giving rise to visible distortions.

Figure 2.1. The black hole with an accretion disk around it.

The most prominent feature is the black hole’s event horizon. The event horizon is
the so-called “surface of no return”, a membrane that can only be crossed by ingoing
objects. Since nothing, including light, can escape the event horizon, its image appears
pitch black. [2]

Material, such as gas, dust that has come close to a black hole but not quite fallen
into it, forms a flattened band of spinning matter around the event horizon called the

2

. 2.1 Theoretical background

accretion disk. Although no-one has ever actually seen a black hole or even its event
horizon, this accretion disk can be seen, because the spinning particles are accelerated
to tremendous speeds by the huge gravity of the black hole, releasing their potential
energy in a form of heat and powerful x-rays out into the universe.[4]

2.1.2 Visualization principles
To understand what we are going to visualize lets make a short overview of the black
hole. As we already know the black hole is a region of spacetime and it works like a
gravity lens.

For better understanding lets take a look to the Figure 2.2. Red arrow represents
light and in the middle of the plane is a black hole. Because of the black hole’s huge
mass the light is ”falling” inside the black hole simply as water falls inside a hole.

Figure 2.2. Light is falling inside the rotating black hole.

Now it is time to explain why this is happening. To understand this lets take a look
at the Figure 2.3.

Figure 2.3. Distance between two points.

We have 2 points in the common Cartesian coordinate system. What we need to do
is to measure the distance between those points. How we are going to do that? The
answer is simple: we can calculate it using the Pythagorean theorem. And get the
equation:

S2 = (x2 − x1)2 + (y2 − y1)2

3

2. Analyses .
But what if we want to make a more general solution? We can define so-called metric
tensor. For instance:

gi j =
(

1 0
0 1

)
g is a simple matrix that describes Cartesian coordinate system in 2D.
Introduction of this metric allows us to define the previous equation like this:

S2 = g∆x∆x

where
∆x = xA − xB

For better understanding lets change the geometry of the space from flat 2D to a
curved surface of the Earth

Figure 2.4. Distance between Prague and New York.

On the Figure 2.4 lets try to measure the distance between Prague and New York city.
As we already know we can not directly pass a line between two points and measure its
length as we are working now on the spherical or geodesic surface. However if we know
the metrics we can easily fill the values that we have calculated for the Earth inside
the matrix and calculate the distance.

gi j =
(
r2 0
0 r2 sin2 φ

)
It will be approximately 6,568 km.
Now it is time to speak about Schwarzschild geometry. The Schwarzschild geometry

describes the spacetime geometry of empty space surrounding any non-rotating spher-
ical mass. One of the remarkable predictions of Schwarzschild’s geometry was that if a
mass M were compressed inside a critical radius rs, nowadays called the Schwarzschild
radius, then its gravity would become so strong that not even light could escape. The
Schwarzschild radius rs of a mass M is given by

rs = 2GM
c2

4

. 2.1 Theoretical background

where G is Newton’s gravitational constant, and c is the speed of light [5].
With help of a Schwarzschild geometry we can define spacetime metric, that is called

Schwarzschild metric :

gi j =


−1 + 2M

r2 0 0 0
0 (1− 2M

r2)−1 0 0
0 0 r2 sin2 Θ 0
0 0 0 r2 sin2 Θ sin2 φ


This results that the relativity influence by the Earth is only about 3cm.
So now we are ready to return to the black holes.
On the Figure 2.5 we can see the black hole with an accretion disk around it. Red

filled part of the disk is the part that is situated in front of the black hole. The part filled
with yellow is situated behind the black hole. White arrows represents the direction of
the rotation of an accretion disk. As we can see the matter of an accretion disk goes
to the top of the black hole, but in fact it doesn’t. This is caused by the gravity lens
effect that we were talking about.

Figure 2.5. Accretion disk around the black hole.

If we will look at this black hole from another angle on the Figure 2.6, we will see
that an accretion disk is still rotating strictly around the black hole. That happens
because of a light distortion. In our application we are going to visualize this effect.

5

2. Analyses .

Figure 2.6. The accretion disk around the black hole viewed from the top

2.1.3 Scene structure
As we learned before if we look at the black from different angles we can see different
views. But what if we move the camera around the black hole in XZ plane 2.7? The
black hole will remain the same. Because it’s accretion disk is symmetrical in X and
Z axis. So the only important and interesting camera rotation for us is rotation in Y
axis. However possibility to move camera around the horizontal plane still presents in
the application.

Figure 2.7. Camera position

Also we can move the camera around itself to watch the accretion disk from the side.

6

. 2.2 SIM5 library

2.2 SIM5 library
The core of the application is the mathematical library [3] written by Michal Bursa.
SIM5 library is an astronomical library written in C that provides such features as cal-
culation of geodesics, ray-tracing, calculation of photon trajectories and interpolation.
In fact this library provides the whole mathematical background of the black hole that
we will use in our application. Lets take an overview of the functions and features that
we use in our application.

2.2.1 Geodesic equations
A geodesic is a locally length-minimizing curve. Equivalently, it is a path that a particle
which is not accelerating would follow. In the plane, the geodesics are straight lines.
On the sphere, the geodesics are great circles (like the equator).[6]

To build such curve SIM5 lib offers geodesic structure, that we use to trace photons.
To build this structure we need the following parameters: inclination angle, distance
and coordinates of the observer. We will describe these equations with more details in
the next section.

2.2.2 Ray-tracing
Raytracing requires fast and accurate computations of photon trajectories through the
spacetime. There are plenty of possibilities how we can create a ray tracing. The
choice between one or the other method depends mainly on the target application or
the implementation requirements, also different methods provides different possibilities
of what can be seen, when speaking about the black holes.

The first method is based on computation of the direction of the pseudo-angular-
momentum. This is quite easy to implement and has relatively low computation com-
plexity that makes this method very fast. However using this method we cannot create
a real-time calculation of the accretion disk. We can only create the pseudo-Riemannian
optics, this method is fully described in the Riccardo Antonelli’s article [2].

Other solution is based on calculation of geodesic equations and integration for every
pixel of the frame. This simplified geodesic is specified by the impact parameters of
observer at infinity and the only parameter that we can change is the black hole spin
relatively to the camera.

Next possibility is to create a geodesic ray-tracer that is specified by a point and di-
rection (4-momentum vector) in the Kerr spacetime.[7] Kerr spacetime has two obvious
symmetries that arise from the fact that its metric does not explicitly depend on time
and azimuthal coordinate.[8] As it was already mentioned the Schwarzschild metric is
applicable only on non-rotating black holes. So in order to create a ray tracer for the
rotating black hole, we need to define another metric, which is the Kerr metric. In
Boyer–Lindquist coordinates (t, r, θ, φ), the Kerr line element can be written as:[7]

ds2 = −p2 ∆
Σ2 dt

2 + Σ2

ρ2 (dφ− 2ar
Σ2 dt)

2 sin2 θ + ρ2

∆ dr2 + ρ2dΘ2

with the definitions where we use units G = c = M = 1

∆ = r2 − 2r + a2, ρ2 = r2 + a2 cos2 Θ,

Σ2 = (r2 + a2)2 − a2∆ sin2 Θ

a = J

MC

7

2. Analyses .
After the separation of the Hamilton–Jacobi equation [9] for geodesics we get∫ 1√

R
dr =

∫ 1√
Θ
dΘ

where
R = [(r2 + a2)E − aLz]2 −∆[Q+ (Lz − aE)2 + δ1r

2],

Θ = Q− [a2(δ1 − E2) + L2
zcsc

2Θ]cos2Θ

All this computations could be performed with help of SIM5 library, of course there
are much more detailed computation inside of it, but for our purposes that knowledge
is enough.

As we were talking about vectors of the observer let us define a photon 4-momentum
vector of an observer in his local frame that we will use for the ray tracing:

k =


1

sinα cosβ
sin x sin β

cosx


We should notice that every calculation after this point are done in 4D spherical space.
The first 3 components of this vector are classic x, y, z axis. But the fourth component
is time.

(kt, kx, ky, kz)

Because of relativity objects around massive bodies could look different than we get
used to. Because of a time delay we can see the image distortions. To be more exact,
lets take a look at the Figure 2.8

Figure 2.8. Visible distortions because of a time delay

As we can see at the left side of the picture is a space-time without time delay. We
can see clear straight lines that comes from the center. But if we look at the right side
we can see that it takes some time for a photon to reach its destination, so there is a
visible light distortion there.

8

. 2.2 SIM5 library

To make this ray-tracing we need to create a geodesic structure.
The geodesic structure contains information about the black hole’s spin, observer’s

horizontal and vertical impacts, an inclination angle as well as cosine of inclination.
Also it has geodesic parameters: Carter’s constant, roots of R-integral, number of real
roots of R integral, roots and coefficients of T-integral, radius of radial turning point
(periastron) and the 4 momentum vector.[8]

Figure 2.9. Finding a mid-plane crossing

After the creation of geodesic, we can start solving equation for every pixel. With
help of geodesic find midplane crossing function we can check whether the ray crosses
an equatorial plane. The principles of this function are illustrated at the Figure 2.9,
where we can see the screen clipping plane, the black hole model with an accretion
disk around it and the vectors that are used to perform the ray tracing. Inside this
function we determine orientation of momentum vector (poloidal component of it) and
the following calculations are performed:

The left side of the equation that we have described at the beginning of this section∫ µ

0

dµ√
Θ

= P

And then the right side

P =
∫ ∞
r

1
R
dr

Next we call geodesic position rad function with the position parameter that we’ve
retrieved from geodesic find midplane crossing function. Inside this function we calcu-
late the radius at which the position integral gains value P. The return of this function
is radius of disk intersection and after a simple comparison with the radius of last stable
orbit and the inner disk we can decide whether light comes from that point or not.

After this step the ray tracing is done.

9

2. Analyses .
2.3 Choice of the motion controller

In this section we will speak about modern motion tracking technologies and devices.
We will compare and choose the suitable hand tracking device that will fit our goals.

2.3.1 Microsoft Kinect
The first candidate is Microsoft Kinect. Kinect is Microsoft’s motion sensor add-on
for the Xbox 360 gaming console. The device provides a natural user interface (NUI)
that allows users to interact intuitively and without any intermediary device, such as
a controller. The Kinect system identifies individual players through face recognition
and voice recognition. A depth camera, which “sees” in 3-D, creates a skeleton image
of a player and a motion sensor detects their movements. Speech recognition software
allows the system to understand spoken commands and gesture recognition enables the
tracking of player movements. [10] Kinect comes with SDK for Windows and supports
C++,C# and Visual Basic languages. Also there is an open source project called Open
Kinect, that supports other platforms such as Mac OS and Linux.

2.3.2 Leap Motion
Our second candidate is Leap Motion controller. The Leap Motion system recognizes
and tracks hands, fingers and finger-like tools. The device operates in an intimate
proximity with high precision and tracking frame rate and reports discrete positions,
gestures, and motion.

Figure 2.10. Leap Motion vs. Microsoft Kinect

The Leap Motion controller uses optical sensors and infrared light. The sensors are
directed along the y-axis – upward when the controller is in its standard operating
position – and have a field of view of about 150 degrees. The effective range of the
Leap Motion Controller extends from approximately 25 to 600 millimeters above the
device (1 inch to 2 feet).[11]

Leap Motion supports C++, C#, Java and many other languages. Also it supports
almost every platform and most modern game engines.

2.3.3 Final choice
Microsoft Kinect is very good and precise system; however, it is probably too big and
complicated for our goals. Also open source documentation is a bit overloaded. So in
this circumstances Leap Motion seams to be a better choice. It is tiny, precise, has
great structured documentation and fits our goals at 100 percent.

10

. 2.4 Analyses of the technologies

2.4 Analyses of the technologies
This section will unveil the technologies that we choose to develop our application.
It will overview and explain a choice of the particular technologies such as CUDA,
OpenGL and its frameworks.

2.4.1 Leap Motion API
The Leap Motion software runs as a service (on Windows) or daemon (on Mac and
Linux). The software connects to the Leap Motion Controller device over the USB bus.
Leap-enabled applications access the Leap Motion service to receive motion tracking
data. The Leap Motion SDK provides two varieties of API for getting the Leap Motion
data: a native interface and a WebSocket interface. [11] In our application we will
receive the Leap Motion data using a native interface using a dynamically loaded library.
So for final user the only thing that he or she have to do is to install Leap Motion drivers
and connect the device while using the application.

The Leap Motion controller tracks hands, arms and tool that are visible in the
camera’s field of view. To handle theirs movement Leap Motion API has a Frame
class that represents a frame that contains lists of tracked entities, such as hands,
fingers, and tools, as well as recognized gestures. In fact the Frame object is the root
of the Leap Motion data model.

Figure 2.11. The Leap Motion right-handed coordinate system.

The Leap Motion system uses a right-handed Cartesian coordinate system. The
origin is centered at the top of the Leap Motion Controller. The x- and z-axes lie in the
horizontal plane, with the x-axis running parallel to the long edge of the device. The
y-axis is vertical, with positive values increasing upwards (in contrast to the downward
orientation of most computer graphics coordinate systems). The z-axis has positive
values increasing toward the user. [11]

11

2. Analyses .
In our application we are going to use Hand model that provides information about

position, orientation, speed, angle, etc. about user’s hand. Hands are represented by
the Hand class.

The next thing is a gesture detection. The Leap Motion API provides Gesture
class that recognizes certain movement patterns of a hand. There are 4 basic types of
gestures: [11]

.Circle — A finger tracing a circle.Key Tap — A tapping movement by a finger as if tapping a keyboard key.Screen Tap — A tapping movement by the finger as if tapping a vertical computer
screen.Swipe — A long, linear movement of a hand and its fingers.Pinch — Detects the pinching between the thumb and any other finger.Grab — Detects the grabbing strength of the user’s hand

Each gesture contains its specific parameters such as MinLength, MinVelocity and
more. This helps programmer to create precise gesture detection for more accurate
usage in the application.

Also Leap Motion API provides motions. Motions are estimates of the basic types
of movements inherent in the change of a user’s hands over a period of time. Motions
include scale, rotation, and translation (change in position). Motions are computed
between two frames. We can get the motion factors for the scene as a whole from
a Frame object. Also we can get factors associated with a single hand from a Hand
object.[11]

2.4.2 NVIDIA CUDA

The performance of the application is very important. We have 2 possibilities how to
perform a ray tracing: the first one is CPU based computation and the second using
NVIDIA CUDA. Using the CPU provides us easy memory control and significantly
simple application maintenance. Lets take a closer look at the CUDA technology.

CUDA is a parallel computing platform and programming model invented by
NVIDIA. Every modern NVIDIA graphics card has this technology. Generally if
we speak about parallelism the main goal of the programmer is to create a scalable
application that will run on the multi-core processors. To do so usually we are using
threads and processes. Two different threads could run in true parallel mode and
could use physical cores of the CPU. However if we crate an application that will use
a GPU for that purposes it is very complicated process. GPU provides us hundreds
of graphic processors and to maintain this mechanism we need to continuously scale
the parallelism of the application to get maximum performance of increasing number
of processor of every particular computer. The CUDA parallel programming model
is designed to help programmers in this challenge, allowing programmers with knowl-
edges of C or Fortran programming languages to create applications with massive
parallelism with very low entry-level of knowledges. There are three key abstractions
- a hierarchy of thread groups, shared memories, and barrier synchronization - that
are simply exposed to the programmer as a minimal set of language extensions. These
abstractions allow threads to cooperate when performing a task and at the same time
allow automatic scalability of the application.

12

. 2.4 Analyses of the technologies

Figure 2.12. Automatic scalability

Indeed, each block of threads can be scheduled on any of the available multiprocessors
within a GPU, in any order, concurrently or sequentially, so that a compiled CUDA
program can execute on any number of multiprocessors, and only the runtime system
needs to know the physical multiprocessor count. The diagram 2.12 shows an abstract
model of CUDA’s scalability. A GPU is built around an array of Streaming Multi-
processors (SMs). A multi-threaded program is partitioned into blocks of threads that
execute independently from each other, so that a GPU with more multiprocessors will
automatically execute the program in less time than a GPU with fewer multiprocessors
[12].

As illustrated by Figure 2.13, the CUDA programming model assumes that the
CUDA threads execute on a physically separate device that operates as a co-processor
to the host running the C program. This is the case, for example, when the kernels
execute on a GPU and the rest of the C program executes on a CPU.

In our case to build a single frame of an application’s output we need to allocate
memory on the CPU side (host memory) and on the GPU side (device memory). Then
we need to copy that memory to the graphics card and start the kernel. CUDA C
extends C by allowing the programmer to define C functions, called kernels, that, when
called, are executed N times in parallel by N different CUDA threads, as opposed to
only once like regular C functions.

Therefore, a program manages the global, constant, and texture memory spaces
visible to kernels through calls to the CUDA runtime [12].

13

2. Analyses .

Figure 2.13. Heterogeneous Programming

Lets make a comparison of creation a frame using CPU and using CUDA.
for (iy = 0; iy < image_size; iy++) {

for (ix = 0; ix < image_size; ix++) {
double alpha, beta;
alpha = (((double)(ix)+0.5)/(double)(image_dim)-0.5) * 2.0*rmax;
beta = (((double)(iy)+0.5)/(double)(image_dim)-0.5) * 2.0*rmax;

To create an image using CPU we need to loop over array of pixels and calculate an
integral for each pixel.

But if we will try to perform this calculations using CUDA we need to copy the
preallocated memory using cudaMallocPitch function and start the kernel. Where we

14

. 2.4 Analyses of the technologies

get so-called pitches of an array and we can make computations on every row of that
array.

int ix = blockIdx.x*blockDim.x+threadIdx.x;
int iy = blockIdx.y*blockDim.y+threadIdx.y;
if ((ix>=N) || (iy>=N)) return;
float alpha = (((float)(ix)+.5)/(float)(image_size)-0.5)*2.0*rmax;
float beta = (((float)(iy)+.5)/(float)(image_size)-0.5)*2.0*rmax;

We need to calculate the size of the blocks and the grid to reach the best performance.
Unfortunately there is no precise way to calculate theirs size for every configuration, so
we need to test multiple values that would be a compromise.

So as we can see CUDA seems to be the best solution for our purposes and probably
the only one, if we want to create a real time ray tracing.

We will use CUDA Toolkit 7.5 which is the latest version at this moment.

2.4.3 OpenGL
OpenGL is a cross-platform API for rendering interactive 2D and 3D graphics applica-
tions. It supports many programming languages including C++, so it fits our choice
quite well.

GLUT is the OpenGL Utility Toolkit, library that provides windows management
features and monitoring of keyboard and mouse input. GLUT is a cross-platform library
so our application will remain platform independent. With help of this library we will
create a basic interaction with keyboard in our application [13].

Also OpenGL provides techniques and functions to work with shaders that are writ-
ten in GLSL programming language and runs on GPU. We will use shaders for color
adjustment and interpolation between frames. In our application we will use modern
OpenGL 4.

To load the images that will be used in GUI textures we use Simple OpenGL Image
Library (SOIL). That minimalistic library will help us load the .png or .jpg image files
and store them to textures as an array of pixels.

15

Chapter 3
Application design

In this chapter we will speak about application’s design, requirements and ways to
complete them.

3.1 Requirements
The application will be used for educational purposes at Astronomical Institute of
Czech Academy of Sciences. The main goal is to create an interactive and highly
entertaining application for adults and kids that will show them what is a black hole
and how does it look from different angles. From this goal we can derive functional
and non-functional requirements.

Functional:.black hole rendering using SIM5 library. change observer’s position using keyboard. create real-time light-movement animations around the accretion disk. turn on/off effects (photons, background, color) in real time.use NVIDIA CUDA for calculations.use Leap Motion to control the camera

Non-functional:.application should be entertaining. easy-to-use.acceptable frame-rate at least 25 fps.minimal resolution at 720p. fast and simple application execution

3.2 Programming language and platform
To keep code clean and uniform we choose C++ programming language. This allows
us to use SIM5 library without any conversions and the code of our application remains
fast and extendable. Also C++ is a very flexible programming language, that allows
to control memory and threads, which can help us to boost up a computing time of
the black hole mathematical model. The programming language C++ has great com-
patibility with OpenGL and NVIDIA CUDA technologies as well. So for our purposes
C++ is an ideal choice.

As a main platform we choose Ubuntu Linux, because of its freeness and GNU license
profits. In fact our application remains cross-platform, and it can be compiled on any
operating system without complications.

16

. 3.3 Structure overview

3.3 Structure overview

3.3.1 Sequence diagram
The key of the structure of the CUDA part of the application is minimalism. All
the GPU kernels and host functions are stored in a single file. This allows easier
maintenance and extendability of the application.

This allows us to easily precompile the CUDA part of the program and declare only
necessary functions, that we will use in C++ part in a single header file. Also in
this part we connect SIM5 library, with help of sim5-lib.h file. That contains all the
necessary internal includes of the library.

In C++ the basic structure of the application is represented by classes. This provides
us clean and well structured code, that we can easily extend and modify. To connect
the CUDA part of the application we simply include a single header file. After this we
are ready to make computations and can send parameters to the CUDA’s side.

The Figure 3.1 describes the process of a single frame creation and shows how the
different classes interacts with each other during this process. More detailed description
of each class follows next in this chapter.

Figure 3.1. UML Sequence diagram

3.3.2 Compilation of multiple languages
In the application we will use multiple languages and compilers. NVIDIA CUDA’s
compiler nvcc compiles sources with .cu extension so we must create a simple Makefile
that will precompile .cu source file that contains CUDA part of the application and will
output it to the .o object file that will be used in the C++ part of the application. After
this we need to link the created .o file to use it in g++ compilation. G++ is a C++
compiler that we use in our application. Final stage of our Makefile is to remove all the
unnecessary files left by compilers. After this steps we will receive a single binary file
of our application that we can easily execute.

17

3. Application design .
3.4 Leap Motion gestures

To achieve our goal we need to add gesture control to the application. Gestures should
be intuitive and easy to produce. Basically we have the camera rotation, zoom-in/zoom-
out and turn on/off the accretion disk movements. The reason why we have chosen these
gestures is described in the Chapter 5.

The first one is so-called circular gesture that turns off or on the spots rotation around
the black hole. This is gesture is illustrated on the Figure 3.2. When user rotate his
finger around its axis the light spots are turning off or on.

Figure 3.2. Circle gesture

The next type of gesture is a scale gesture that is illustrated on the Figure 3.2. When
user produces grab gesture with both hands and move them from the center to the sides
from each other, the camera moves forward producing camera’s zoom in action. If the
user move his hands like if he wanted to put them together and keeps grabbing his both
hands camera zooms out. Those gestures are analogical to the pinch-to-zoom gestures
in 2D that could be produced with help of fingers, but represented in 3D space with
hands.

Figure 3.3. Scale gestures

The third gesture is a camera rotation gesture that is illustrated on the Figure 3.4.
In order to initiate the rotation of the camera around its own axis user should move his
hand and then hand translation reflects the change in rotation of the camera so user
can look around the black hole in different axis.

18

. 3.4 Leap Motion gestures

Figure 3.4. Camera rotation gesture

And the last gesture is the inclination changing gesture that is illustrated on the
Figure 3.5. To activate this gesture user must pinch his thumb finger with any other
finger and move his hand in Y axis. If user moves his hand up or down the camera
rotates around the black hole that makes possible to see it from the top or bottom.

Figure 3.5. Inclination gesture

All of those gestures were selected after the testing with real users, where were 3
different variations of the gestures. These gestures seemed for testers very intuitive
and easy-to-use. Also from the programmers point of view those gestures are not too
complicated to implement so this solution fits our goals. More detailed overview of the
testing is described in the Chapter 5.

Also every icon that was shown in this section is used in the the application GUI,
to make a sensible feedback when user starts interaction with the application. These
icons makes the application self-describing and even more intuitive.

19

Chapter 4
Implementation

This chapter presents implementation of the application. Here will be detail explana-
tions of the most important parts of code as well as a general overview of the whole
application runtime.

4.1 Application class
The application class is the starting point of the program. In this class the application
instantiate the motion listener class, shader loader and links header file that contains
CUDA functions. Also here are situated the main loop and keyboard listener of the
GLUT window manager. In the application class we instantiate the shader program
class and setup the textures as well. After setting up window’s default width and height
we initialize black hole default parameters that the program will use after the start of
the application. Next thing is the texture setup, inside which we are going to draw our
black hole model.

4.2 Camera structure
The Camera structure provides the position, inclination, width of view, and light spots
flag. All these fields describe the future image of a black hole and are required when
generating the model. Light spots flag was placed here to minimize the input param-
eter of the calculatedImage() function and easier handling in LeapMotionHandler and
KeyboardHandler classes. You may ask why do we use a structure instead of class when
we are working with C++. The answer is simple, this structure is used also in the
CUDA part of the application, that receives it as parameter. So we don’t have to send
the raw variables between two languages. C++ structures are fully supported by the C
compilers and if we don’t add C++ only features such as member functions and classes
the structure will remain multilingual.

4.3 Notification class
The Notification class provides simple minimalistic notifications. Contains such meth-
ods as drawNotification() and setNotification() that are called from the input handling
classes, when user interacts with the application. Notification is a simple icon that
describes currently selected gesture and what will happen when user will change its
hand position. All those icons were described in the Section 3.4. When the handler
class detects the user input it calls the notification method that sets initial time of
the notification and draw the notification icon at the top left corner of the application
window for the specified time (that time is a constant and stored in the Constants.h
file).

20

. 4.4 Leap Motion Listener and Handler

4.4 Leap Motion Listener and Handler
The leap motion handler class contains plenty of useful methods, such as onConnect,
onFrame, onExir, and so on, that maintain gestures and hand movements independently
from the main loop of the rendering part of the application by using a different thread.
Lets make an overview of the most important methods of this listener. The first one is
SampleListener::onConnect, this method is called when the leap motion controller has
been connected and enables gesture detection and specifies which gestures will be used.
For instance: controller.enableGesture(Gesture::TYPE SWIPE) enables detection of a
swipe gesture.

The next method is SampleListener::onFrame, but for our purposes we are not going
to use it as listener. As it was already mentioned the Listener runs as a single thread
and all other application variables are located in different classes. This causes quite
complicated cross-thread handling for us. We need to synchronize all those threads
and manipulate with variables very carefully. To avoid this we will implement onFrame
method inside the LeapMotionHandler class, where we handle the frame rendering,
because we don’t need to calculate gestures or track hands before we can actually see
the result. As we already know Leap Motion API is using a Frame model, so this
method gets the most recent frame from the controller instance, which will be global
in this case and report some basic information. Also for further Motions handling
we need to store the previous frame, or in our case the 3rd frame before current.
The Frame instance allows us to do that simply inserting the parameter inside the
controller.frame() method. We have chosen the 3rd frame for better recognition and
frame drop prevention. However this value could be up to the maximum age 59.

const Frame frame = controller.frame();
const Frame previousFrame = controller.frame(3);

After this we need to get the HandsList object if the hand presents in the current
frame.

HandList hands = frame.hands();

From this point we can get the basic information about hand’s position, direction and
get access to the hand’s finger objects. To handle the inputed gesture or manipulation
with hands first of all we need to detect how many hands are in the frame, to do so we
call hands.count() method from the HandList object. If the number of hands is more
than 1 that means that we should handle the scale gesture, as it is the only gesture
that uses 2 hands. But if we will start to scale the picture from the first detection of
2 hands this may cause a usability problem. Because the camera will start to zoom in
and zoom out even when user doesn’t want to scale the image, for example if user had
zoomed in and now he wants to rotate the camera, so he need to move the second hand
away. But we still have 2 hands in the frame for that moment and further calculation
will produce an unwanted scaling. To prevent this we need to check if user had grabbed
both his hands, and only after this we will start the scaling. To do so we call float grab
= hand.grabStrength(); method and store it in a local variable. This parameter is the
holding strength of a hand grab. The strength is zero for an open hand, and blends to
1.0 when a grabbing hand pose is recognized. In our case we use 0.9 grab strength to
prevent an unwanted grab gestures. After the successful grab detection we get the actual
direction of both hands that could be done using the hand.translation(previousFrame)
method.

21

4. Implementation .
Leap::Vector linearMovementLeft = leftHand.translation(previousFrame);
Leap::Vector linearMovementRight = rightHand.translation(previousFrame);

The return value of this method is a Leap::Vector. This vector represents the change of
position of the hand between the current frame and the specified previous frame. The
Leap::Vector structure represents a three-component mathematical vector or point such
as a direction or position in three-dimensional space.[11] After this we need to get the
magnitude or length of this vector to get the scale factor (how much the image will be
scaled). This could be done with help of linearMovement.magnitude() method. After
we received the needed values we need to multiply the linear movement vector’s X value
of the left hand by the length of that vector and then sum it with the linear movement
vector’s X value of the right hand and its length. The calculated value represents the
current zoom in millimeters so in order to use it in our application’s metrics we need
to divide it by 20. This value was calculated after the tests. After this we are ready to
store new zoom in our camera’s zoom field and wait for the next input.

camera->zoom+=(linearMovementLeft.x*linearMovementLeft.magnitute())
+ (linearMovementRight.x*linearMovementRight.magnitute());

Also we don’t want to simultaneously detect the scale and camera rotation motions so
when we detect 2 hands in the frame we deal only with scaling skipping other motions.

The same process is required to compute the camera rotation gesture; however, as
we decided to use a hand grab to activate the scale mode we also will use the grab
gesture to activate the camera rotation action for the same reasons. For this we check
the previously calculated value of grabStrenth and if it is greater than 0.9, that means
that we should complete the camera rotation. The only difference is that we need to
compute the linear movement vector of one hand.

if(grabStrength > 0.9){
camera->y += ((linearMovement.magnitude()*linearMovement.y)/1000);
camera->x += ((linearMovement.magnitude()*linearMovement.x)/1000);

}

To calculate whether there were any inclination changing movements or not we
need to detect if there was a pinch gesture in the scene. To do so we call the
hand.pinchStrength(); method and if it is greater than 0.9 that means that the pinch
gesture was produced and we simply multiply the translation vector’s magnitude by
the translation vector’ Y value and divide this result by 1000 to fit our application’s
metrics. The magnitude of the translation vector is the L2 norm, or Euclidean distance
between the origin and the point represented by the (x, y, z) components of this Vector
object.[11]

camera->inclination+=(linearMovement.magnitude()*linearMovement.y)/1000;

After this we need to check if there was a Circular gesture in the frame. To do so
we create a GestureList object and with help of simple switch check the type of the
gesture.

const GestureList gestures = frame.gestures();

After the gesture was detected we check the direction of finger rotation in case of the
circular gesture and set the boolean variable, that represents whether the light spots
animation is enabled or not.

if (circle.pointable().direction().angleTo(circle.normal()) <= PI / 2) {
camera->lightSpots = true;

22

. 4.5 KeyboardHandler class

4.5 KeyboardHandler class
We use the Leap Motion controller to interact with the application; however, we still
can use the keyboard to do so. The KeyboardHandler class handles user’s input from
the keyboard and changes the scene parameters as well as LeapMotionHandler. All the
keys are described in the table below 4.1.

Key Action

W Increase inclination angle
S Decrease inclination angle
Q Zoom in
A Zoom out
H Rotate camera up
G Rotate camera down
X Rotate camera left
C Rotate camera right
Z Reset the scene
F Turn off/on light spots

Table 4.1. Keyboard keys for interaction.

KeyboardHandler uses simple GLUT key listener function and with help of a camera
structure and switch over the pressed key changes the scene parameters.

4.6 ShaderProgram class
The Shader Program class contains a vertex shader object, fragment shader object and
the compiled shader program. After instantiation of the Shader Program class the
constructor is called, which receives as argument the type of the shader and the source
of the current shader as string. In the constructor the shader program is compiled,
attached and linked for further using in the application.

4.7 Model computation
The computation of the black hole model takes it place inside the CUDA’s part of the
application.

4.7.1 Creating a frame
First of all we need to allocate memory for an array of pixels that will be processed in
future by the GPU side of the application. The size of the array is derived from the
C++ part of the application and equals size of the application window.

float *image = (float*) calloc(image_size * image_size, sizeof(float));

Then we need to start so-called spot routine, to create a light spots around the black
hole. Those spots will rotate until the turn-off gesture will be detected. After that
we need to set up the corresponding inputed parameters such as camera direction and
position and set them at the 4-momentum vector that will be used for ray tracing. Next
we need to prepare the GPU memory and copy an empty array of the future pixels.
Also after each action we need to handle the errors that may occur. Very important

23

4. Implementation .
step here is that we need to allocate memory only once, because the memory allocation
for every frame takes significantly more time than allocation at the beginning of the
execution.

size_t pitch;
cudaMallocPitch((void**)&d_image, &pitch, N*sizeof(float), N);
err = cudaGetLastError();
if(err!=cudaSuccess) fprintf(stderr);
image_output[0]=1.0;
cudaMemcpy2D(d_image, pitch, image_output, N*sizeof(float),
N*sizeof(float), N, cudaMemcpyHostToDevice);
err = cudaGetLastError();
if(err!=cudaSuccess) fprintf(stderr);

Finally after this setup we calculate the block and grid sizes and start the kernel.

dim3 grid(iDivUp(N,BLOCKSIZE),iDivUp(N,BLOCKSIZE));
dim3 block(BLOCKSIZE,BLOCKSIZE);
gpu_kernel<<<grid,block>>>(a, inc, rms, rmax, d_image, pitch, N, t,
image_size, spots);

To calculate the grid and block sizes we use a simple equation ((a % b) != 0) ? (a /
b + 1) : (a / b), where a is the initial size of the block and b is the initial size of the
grid. For our purposes we use the same size of the block and grid and it equals 16. This
number was chosen after testing the performance and it showed the best results.

Inside the kernel we are executing the ray tracing which theory was described in the
2.2.2 section.

4.7.2 Ray tracing
Ray tracing starts inside the kernel.

__global__ void gpu_kernel(float a, float inc, float rms, float rmax,
float* d_image, size_t pitch, int N) {

int ix = blockIdx.x*blockDim.x+threadIdx.x;
int iy = blockIdx.y*blockDim.y+threadIdx.y;
if ((ix>=N) || (iy>=N)) return;

ix and iy variables are indices of the inputed array of pixels. To get them we need to
multiply the block id and the block dimension and after this calculate the sum of the
result and the thread id.

After calculation of the indices we need to compute the impact parameters

float alpha = (((float)(ix)+.5)/(float)(image_size)-0.5)*2.0*rmax;
float beta = (((float)(iy)+.5)/(float)(image_size)-0.5)*2.0*rmax;

these parameters are just image coordinates scaled to rmax and shifted so, that the
origin of the black is in the center of the image. Next we declare a 4-momentum vector
and create the rotation matrices. After the creation we multiply particular rotation
matrices from the right by 4-momentum vector to adjust the rotation of the camera.

n[0] = (-alpha / sqrt(sqr(r_obs) + sqr(beta) + sqr(alpha)));
n[1] = (-beta / sqrt(sqr(r_obs) + sqr(beta) + sqr(alpha)));
n[2] = (-r_obs / sqrt(sqr(r_obs) + sqr(beta) + sqr(alpha)));
double rotateX[3][3], rotateY[3][3];

24

. 4.8 Rendering

Also we need to transform this vector to coordinate frame with help of on2bl(n2, k,
&tetrad obs); function. After we create geodesic gd instance, where the calculated
integrals will be stored. Next we initialize photon trajectory for particular impact
parameters.

geodesic_init_src(a, r_obs, m_obs, k, 0, &gd, &status);

After this we call geodesic find midplane crossing(&gd, 0); function to find where the
photon crosses equatorial plane and next we get radius of disk intersection from the
position parameter

r = geodesic_position_rad(&gd, P);

After this we iterate over the spots array. This part has the highest complexity in the
whole frame creation process. Because we must iterate over the array of the spots in
every frame for each single pixel and change the pixel brightness according to the spot
brightness. Also we should handle each spot after each frame of the application when
it is time to remove the old spot and create a new one. This process is implemented in
the host side of the program. However, after the calculation the brightness of the spots
we need to compare the radius of the black hole and radius of a geodesic in order to
detect where the accretion disk cannot exist, thus radiation is zero. Also we should to
apply the relativistic correction to the disk and calculate the brightness of the photons
that make one orbit around the black hole and may bring light from the bottom side of
the disk. After this we can finally calculate the result and store it to the pixels array.

4.8 Rendering
The rendering part of the application is located in the Application class.

After we retrieve an array of float values that indicates brightness of each pixel of a
black hole we write those values to the texture with help of glTexImage2D() OpenGL
function and map the texture through the whole application window. After that we
free up memory to prevent its leaks. These steps repeat for every single frame.

glEnable(GL_TEXTURE_2D);
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, image_size, image_size,
0, GL_LUMINANCE, GL_FLOAT, image);
free(image);

Also here we are starting to use our shader program, that was compiled earlier in the
Shader Program class. Using the OpenGL function glUniform1i() we bind our texture
to be processed with the shader program.

glUniform1i(glGetUniformLocation(shaderProgram, ’’texture1’’), 0);

Inside the vertex shader we simply assign and pass the texture and variables to the
fragment shader.

layout (location = 0) in vec3 position;
layout (location = 1) in vec3 color;
layout (location = 2) in vec2 texCoord;

In fragment shader we finally compute the output color of each fragment.

color = texture(texture1, TexCoord)* vec4(modColor, 1.0f);

25

Chapter 5
Testing

In this chapter we will see the final result of the application’s implementation and
how CUDA can improve the performance. Also we will describe the usability test and
overview the usability problems that were found.

5.1 Gestures tests
Gestures are the main input method of the application. So in order to provide the best
experience for users the first test was a gesture test. Gesture tests was similar to the
usability test, but they were performed by the developers. The goal of this test is to
detect usability problems at the application design stage. These tests took place when
the application was at beta version. 2 participants was selected to decide which gestures
will be used in the application. Those participants had a basic knowledges about the
application and what it should do, also they had experience with interactions with Leap
Motion controller. First of all the table of gestures and actions was created and after
this started the implementation of all of those gestures. The following Table 5.1 shows
which gestures were selected to be tested.

Gesture Action

1 Swipe up Increase inclination angle
2 Swipe down Decrease inclination angle
3 Grab and move and zoom Zoom-in/out and camera rotation
4 Pinch and move Inclination and camera rotation
5 Grab and zoom with 2 hands Zoom-in/out
6 Grab and move Rotate the camera
7 Pinch and move in Y axis Change inclination angle
8 Circular gesture Turn off/on light spots
9 Circular gesture Zoom-in/out
10 Detect perpendicular palm and move Camera rotation

Table 5.1. Gestures for interaction.

After the testing 4 gestures were selected for further processing: #5, #6, #7, #8.
They were used in the final version of the application. The other gestures had the
following problems:.Gestures #1 and #2 that were using the provided Swipe Gesture of the Leap Motion

API showed that swipe constant motion is too unpredictable and not precise. In
order to activate them user had to move his hand fast and we can only change the
inclination linearly..Gesture #3 showed that the zooming with help of pull and push actions is not
the most precise and easy gesture, when user tries to zoom in an unwanted camera
rotation happens that makes the usage of the zoom function too complicated.

26

. 5.2 Application output overview

.Gesture #4 was not precise when the user moved his hand to the sides. Leap
Motion controller detects pinch gesture with thumb and any other finger, so when the
hand moves to the sides, sometimes an unwanted camera rotation happens. However
pinch and move in Y axis gesture was fine and precise so it was selected for further
processing..Gesture #9 seemed not to be intuitive and precise..Gesture #10 is not the most comfortable gesture to produce, also it would be difficult
to implement. Because we had to calculate the palm’s normal to detect whether there
were any motion gestures.

Pinch and grab gestures are so-called activators, after theirs detection we start the
motion processing. We are using them for a reason. The reason is that we don’t want to
detect user’s hand motions every time the hand appears in the frame. It would be not
comfortable to sit near the table with constantly detecting controller and every motion
with a hand will evaluate the camera movement. So this could make the interaction
with the application almost impossible.

5.2 Application output overview
After the application start the camera is placed in front of the black hole. The light
spots are activated and user can rotate the camera, zoom in or zoom out as well as
change the inclination angle.

Figure 5.1. Initial position of camera and black hole’s accretion disk.

If we’ll change an inclination angle we can see the black hole from the top. Next
picture 5.2 shows how the photons of light are continuously falling inside the black hole.

27

5. Testing .

Figure 5.2. The view on the black from the top.

Figure 5.3. The view from the accretion disk with turned off light spots.

28

. 5.3 Usability tests

As we can see on the picture 5.3 the light spots are generating randomly around the
black hole and then orbit it until the black hole absorbs them. From this point of view
we can see that the light from the bottom side of the black hole is going to the top of
it because of a gravity distortion. In this case the black hole works like a lens.

5.3 Usability tests
Our goal was to find usability problems and see what the real people who are not familiar
with the black holes and relativistic physics will feel when they use the application. This
section will describe the testing process, setup and the participants.

5.3.1 Setup
The testing was performed at the Triangle study room of the Faculty of Electrical En-
gineering of the Czech Technical University in Prague at the Department of Computer
Graphics and Interaction. There were involved 3 participants in test. There was a
PC with installed Ubuntu Linux distributive on it and all the necessary software that
needed. On the desk were keyboard, mouse and Leap Motion controller already con-
nected to the PC. Important note is that there were only participant and the instructor
in the room, so nothing could disturb the participant from the testing process.

Figure 5.4. The setup for testing

5.3.2 Participants
All the participants are students of the Czech Technical University in Prague and all
of them are about the same age (21-23). No one of the participants has ever seen the
application before or even understood what the black hole is. The only knowledge that
they have is that the black is a mysterious object in the universe. Also nobody have
ever used the Leap Motion controller, so it was the first experience for the participants.

29

5. Testing .
The first participant was a student of the Faculty of Transportation Sciences and as

was already mentioned had no experience with the application. However, with good
knowledges of physics the participant understood the basics of the nature of the black
holes in a short period of time before testing.

The second participant was a student of the Faculty of Electrical Engineering and also
had no experience with black holes. This participant has no knowledges of astrophysics
and even had no clue about the gravity. So for him it was the very first introduction
to this problem.

The third participant was also a student of the Faculty of Electrical Engineering and
also had no knowledges about the black holes.

5.3.3 Questionnaire
The questionnaire contained 4 simple questions:.What is your age?.What is your education?.Do you know anything about the black holes?.Have you ever tried to interact with the hand tracking device?

Users completed it before the test. After the test we asked users another 5 simple
questions:.Did you like the application?.Did you feel frustrated during the test?.Have you learned something new about the black holes?.The gestures that were used for interactions seemed for you intuitive and easy-to-use?.Would you like to use this application again?

According to the user’s answers we have created the overview of findings that is
described in the next section.

5.3.4 Testing process and findings
After the short briefing and questionnaire all the participants had the basic knowledges
about the black holes and gestures that they may use. The goal of the testing was to
test if those gestures are intuitive and easy-to-use. We asked each participant to make
the following actions:.Zoom in the camera.Rotate the camera left.Zoom out the camera.Change the camera’s inclination.Turn off the light spots.Turn on the light spots.Reset the scene

All of the participants had no problems with the gestures, but the second participant
noticed that turning the light spots rotation should be continuously. In the current
state of the application when this effect turns on or off, the light spots instantly appear
or disappear. The first participant also noticed that for better understanding where
the camera is situated there might be a background, that helps users to orientate in
the world coordinates.

30

. 5.4 Benchmarking

5.4 Benchmarking
In the following section we will create simple benchmark to compare the performance
of the application at different resolutions and see if CUDA makes an improvement or
not.

5.4.1 Benchmark concept
The concept is simple: setup application to start at needed resolution and add
output to the text file after rendering each frame. This will show us how long it
takes CPU or GPU to create a frame in real-time. For the ease of use we will use
square aspect ratio. After the test we will find out an average values for further
processing. To make the benchmarking more reliable we will use multiple setups with
different configurations, that will allow us also to test the scalability of the application.

Technical specifications of the first PC that was used for benchmarking:.CPU: Intel® Core™ i5-4690K (Haswell).Memory: 2x Kingston 8GB DDR3 1600MHz.Video card: NVIDIA GeForce GT 730 (384 cuda cores)

Technical specifications of the second PC that was used for benchmarking:.CPU: Intel® Xeon™.Memory: 64GB DDR3 1600MHz.Video card: NVIDIA GTX Titan (2688 cuda cores)

For easier recognition we will mark the first PC as A and the second as B.

5.4.2 Benchmark results
After the benchmarking we can create next comparison table 5.2 that shows average
frame-rate at different resolutions for CPU and CUDA computations.

resolution CPU@A CUDA@A CPU@B CUDA@B

100x100 10 71 17 98
300x300 8 64 13 86
600x600 1 44 5 63
1000x1000 0.2 27 1 48
Table 5.2. Average frame-rate in frames per second for CPU and CUDA computations

according to resolution.

5.4.3 Conclusion of benchmarking
As we can see from the previous subsection CUDA makes a dramatic improvement in
the performance and provides us FPS that could be used in real-time visualization.
However the complexity of the application remains high and at higher resolutions we
can see a huge decreasing of FPS for both rendering methods. For sure there is needed
an optimization for CUDA compatibility in the spots-generating part of the application.

31

Chapter 6
Conclusion

The goal of this project was to visualize physically accurate black hole model and add
interactivity with help of motion controller and keyboard. This was achieved with help
of Michal Bursa’s library [3] and implementation of the application. The application
provides easy-to-use, clear interface with controls and gestures that can be easily used
even by kids. The application uses CUDA technology for better performance and
provides excellent user experience. With help of technologies such as OpenGL, GLUT
and GLEW the application remains cross-platform and stable.

The application supports Leap Motion controller, that can be easily connected to
a USB port of a computer, without any necessary configurations. The application
performs Kerr ray tracing and renders the output in real time without any delays at
the resolution up to 720p. Light spots animation improves user experience and makes
the application even more entertaining, also it can be easily turned off or on. All
functional and non-functional requirements that are described in Chapter 3 have been
completed. Leap Motion gestures that have been chosen seemed fluent and intuitive
for testers. The benchmarking shows that CUDA technology provides much faster
rendering time than rendering using CPU. The application remains cross platform and
can be easily extended.

6.1 Future work
The next step in this project is further optimization of the CUDA part of the application
and optimization inside the library. The results of the usability tests showed that there
is still space for improvements, such as background, that could show user so-called
”gravity lens” effect and the light spots fluent turn off/on effect. The scale gesture
recognition should be optimized to detect hands motions more precisely. Also the
application GUI should be improved, for instance add the start guide that will describe
the basics of the application and how to use gestures.

32

References
[1] Sean M. Carroll. Lecture Notes on General Relativity, December 1997.

http://preposterousuniverse.com/grnotes/grnotes-seven.pdf.
[2] Riccardo Antonelli A real-time simulation of the visual appearance of a

Schwarzschild Black Hole..
http://spiro.fisica.unipd.it/˜antonell/schwarzschild/.

[3] Michal Bursa Prague Relativistic Astrophysics.
http://astro.cas.cz/michal-bursa.

[4] Luke Mastin Event horizon and accretion disk.
http://www.physicsoftheuniverse.com/topics_blackholes_event.html.

[5] Andrew Hamilton More about the Schwarzschild Geometry, February 2006.
http://casa.colorado.edu/˜ajsh/schwp.html.

[6] Wolfram MathWorld Aeronautical Terminology.
http://mathworld.wolfram.com/Geodesic.html.

[7] Jason Dexter and Eric Agol A fast new public code for computing photon orbits
in a Kerr spacetime, Department of Physics, University of Washington, Seattle,
WA 98195-1560, USA; Department of Astronomy, University of Washington, Box
351580, Seattle, WA 98195, USA. 2009 April 27.

[8] M. Bursa Raytracing in Kerr spacetime: correct formulae for azimuthal and time
coordinates (Research Note), Astronomical Institute of the Czech Academy of Sci-
ences (ASU), Bočnií II 1401/1, 141 00 Prague, CZ, 2016 May 4.

[9] S. Chandrasekhar Mathematical theory of black holes, Oxford University Press,
1983.

[10] TechTarget Kinect.
http://searchhealthit.techtarget.com/definition/Kinect.

[11] Leap Motion Developer API Overview.
https://developer.leapmotion.com/documentation/cpp/devguide/Leap_Overview.
html.

[12] NVIDIA. CUDA Parallel Computing Platform.
http://www.nvidia.com/object/cuda_home_new.html.

[13] OpenGL. OpenGL - The Industry’s Foundation for High Performance Graphics.
https://www.opengl.org/about/.

33

http://preposterousuniverse.com/grnotes/grnotes-seven.pdf
http://spiro.fisica.unipd.it/~antonell/schwarzschild/
http://astro.cas.cz/michal-bursa
http://www.physicsoftheuniverse.com/topics_blackholes_event.html
http://casa.colorado.edu/~ajsh/schwp.html
http://mathworld.wolfram.com/Geodesic.html
http://searchhealthit.techtarget.com/definition/Kinect
https://developer.leapmotion.com/documentation/cpp/devguide/Leap_Overview.html
https://developer.leapmotion.com/documentation/cpp/devguide/Leap_Overview.html
http://www.nvidia.com/object/cuda_home_new.html
https://www.opengl.org/about/

Appendix A
Abbreviations

The list of abbreviations that were used in this thesis.

A.1 Abbreviations
SM Streaming Multiprocessors.

GUI Graphical user interface.
GPU Graphics processing unit.
CPU Central processing unit.
SDK Software development kit.
API Application program interface.
FPS Frames per second.
OS Operating system.

CUDA Compute Unified Device Architecture.
GLUT The OpenGL Utility Toolkit.
GLEW The OpenGL Extension Wrangler Library.

SOIL Simple OpenGL Image Library.
GLSL OpenGL Shading Language.

PC Personal computer.

35

Appendix B
CD Contents

B.1 Software and libraries
.LeapMotionLibrary.SOIL.SIM5lib.Executable binary.Source files of the project.Makefile to compile the sources

B.2 Text and documentation

.Project doxygen documentation (HTML and TEX versions).PDF version of the thesis.TEX sources of the thesis.README file with installation instructions

B.3 Media files
.Screenshots of the application

36

	TITLE
	Acknowledgement/Declaration
	Abstrakt/Abstract
	Contents/
	Tables/Figures
	Introduction
	Visualization
	Interaction
	Performance

	Analyses
	Theoretical background
	Basic knowledges
	Visualization principles
	Scene structure

	SIM5 library
	Geodesic equations
	Ray-tracing

	Choice of the motion controller
	Microsoft Kinect
	Leap Motion
	Final choice

	Analyses of the technologies
	Leap Motion API
	NVIDIA CUDA
	OpenGL

	Application design
	Requirements
	Programming language and platform
	Structure overview
	Sequence diagram
	Compilation of multiple languages

	Leap Motion gestures

	Implementation
	Application class
	Camera structure
	Notification class
	Leap Motion Listener and Handler
	KeyboardHandler class
	ShaderProgram class
	Model computation
	Creating a frame
	Ray tracing

	Rendering

	Testing
	Gestures tests
	Application output overview
	Usability tests
	Setup
	Participants
	Questionnaire
	Testing process and findings

	Benchmarking
	Benchmark concept
	Benchmark results
	Conclusion of benchmarking

	Conclusion
	Future work

	References
	Abbreviations
	Abbreviations

	CD Contents
	Software and libraries
	Text and documentation
	Media files

