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Abstract

Computing global illumination is essential for synthesis of realistic looking images. Global
illumination algorithms are however very computationally expensive and up until recently
unfeasible to realize in real time.

The subject of this thesis is implementation of Cascaded Light Propagation Volumes.
Introduced by Kaplanyan and Dachsbacher in 2010, this algorithm takes a fluid-simulation-
inspired approach to approximating global illumination in fully dynamic environments. The
implementation is incorporated into a rendering package and tested on several scenes. It
produces visually pleasing results at interactive to real-time frame rates.

Keywords: global illumination, indirect illumination, cascaded light propagation volumes,
real-time rendering

Abstrakt

Výpočet globálního osvětlení je nezbytný k syntéze realisticky vypadajících obrazů. Algo-
ritmy globálního osvětlení jsou ale velmi výpočetně náročné a ještě v nedávné době nereali-
zovatelné v reálném čase.

Náplní této práce je implementace Cascaded Light Propagation Volumes. Tento algo-
ritmus, představený Kaplanyanem a Dachsbacherem v roce 2010, používá iterativní schéma
inspirované technikami pro simulaci tekutin k věrohodné aproximaci globálního osvětlení v
plně dynamických prostředích. Implementace algoritmu je zabudována do zobrazovací ap-
likace a otestována na několika scénách, kde podává vizuálně uspokojivé výsledky s malými
časovými nároky.

Klíčová slova: globální osvětlení, nepřímé osvětlení, cascaded light propagation volumes,
rendering v reálném čase
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Chapter 1

Introduction

Computer graphics, the creation of images using computers, is a field with a broad impact.
In manufacturing industry, computer aided design tools are used to bring new products to life
with speed. Visualization using computer generated imagery is essential in today’s science,
medicine and engineering. Virtual and mixed reality systems, digital art and education also
benefit from advances in this field. Finally, computer graphics is leveraged to a great extent
in the film and video-game industry.

1.1 Motivation

Computer generated imagery can be applied in various ways but individual applications pose
different constraints on underlying algorithms for image synthesis. Generating photo-realistic
images ultimately comes down to simulating physical processes that take place when light
interacts with matter. The physics of light are understood well enough but the processes
involved are often too complex to be practical to simulate on current hardware. Depending
on the application, concessions have to be made.

If there is ample time, an algorithm that produces high fidelity results by accounting
for majority of physical phenomena can be employed without a problem, even if it takes
tens of minutes to synthesize a single image. On the other hand, if time is of the essence,
an entirely different array of techniques using a coarser approximation of reality must be
used. Real-time rendering is a subfield of computer graphics which explores such methods.
Most common real-time rendering applications are video-games and various virtual or mixed
reality simulations. In these scenarios, images must be generated fast enough to allow the
user a comfortable interaction with the environment (time budgets up to roughly 33 ms).

Global illumination poses a major obstacle in real-time rendering algorithm design. In
this context, global illumination refers to the capacity of a method to account for both direct
and indirect illumination. Direct illumination accounts for up to one light-surface interaction
before light reaches an observer. Computing direct illumination is relatively simple, but
light may only ever reach surfaces directly visible from some light source; the rest is not
lit at all. Indirect illumination accounts for many subsequent light-surface interactions.
After scattering multiple times, light may reach surfaces that are not lit directly. Indirect
illumination is difficult to evaluate but is responsible for many real life phenomena such

1



2 CHAPTER 1. INTRODUCTION

(a) (b) (c)

Figure 1.1: Global illumination: indirect illumination substantially improves visual fidelity
of an image. (a) Direct illumination. (b) The first bounce of indirect illumination. (c) Direct
and indirect illumination combined.

as soft shadows, color bleeding and caustics. Figure 1.1 illustrates the impact of indirect
illumination on the visual the fidelity of an image.

Historically, in real-time rendering, indirect illumination was either precomputed or
crudely approximated at runtime. Where viable, precomputation is a natural solution to
the problem of constrained time budget, because it moves the complex computation step
before the application is run; the precomputed solution only needs to be fetched and applied
during runtime. One disadvantage of this approach is, that it only yields correct results for
static scenes and the complete scene layout must be known at the precomputation time.
For dynamic scenes, precomputing indirect illumination is not an option. Fortunately, re-
cent rendering hardware generations provide enough power to support techniques previously
considered infeasible. Also, with high demand for dynamic environments in video games,
novel algorithms emerge, designed precisely to meet this particular set of requirements.
Nonetheless, these approaches are still coarse approximations of reality and their robust
implementation, maximizing performance and minimizing artifacts, remains a non-trivial
effort.

1.2 Goals

The goal of this thesis is to survey algorithms suitable for computing indirect illumination on
current hardware at real-time speeds and implement a modern rendering package integrating
one such algorithm: Cascaded Light Propagation Volumes. Additionally, performance of the
resulting implementation is to be thoroughly evaluated and compared to the ground truth.

1.3 Structure

The thesis is structured in a way to allow an initiated reader to skip sections on famil-
iar material, while a novice is still presented with the bare minimum theory to appreciate
techniques explored later. The chapter 2 explores the basics of image synthesis: it deals
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with light, light-matter interaction and computation of illumination. The following chap-
ter 3 introduces a number of approaches for dealing with indirect illumination in real-time
with special focus on the Cascaded Light Propagation Volumes algorithm. The chapter 4
elaborates on the rendering application design choices. Implementation details are explored
in chapters 5 and 6, the former focused on the core rendering system in detail, the latter
dedicated to the rest. Performance characteristics of the implemented algorithm and visual
fidelity of images it produces are evaluated in the penultimate chapter 7. The final chapter
8 then concludes the thesis with a summary and suggestions of future work.
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Chapter 2

Image synthesis

Photo-realistic images are generated by simulating real, physics-based interactions that occur
between light and matter. While graphics algorithms use a suitably simplified physics model,
having a grasp of the underlying theory is useful, because it makes it easier to see where
the simplifications come from and why they work when they do. This chapter reviews the
relevant rudiments. A quick introduction of useful geometry constructs is followed by the
basics of light-matter interaction and how it is abstracted in computer graphics. The final
part deals with computation of illumination.

2.1 Spherical coordinates

In image synthesis, we often deal with functions whose parameters are directions. A common
way to represent a 3D direction is with a unit vector in Cartesian coordinates. Other useful
representations for directions exist, which are sometimes more advantageous to use because
they allow for easier simplification of expressions and introduce fewer degrees of freedom
when used as function parameters.

Spherical coordinates map directions to points on a sphere whose surface is parametrized
with polar angle θ and azimuth ϕ (figure 2.1a). The relationship between the Cartesian (~rC)
and spherical (~rS) coordinates of a direction ~r is expressed in the following equation:

~rC = (x, y, z) x, y, z ∈ [0, 1], x2 + y2 + z2 = 1

~rS = (θ, ϕ) θ ∈
[
0,
π

2

]
, ϕ ∈ [0, 2π]

~rC → ~rS : ~rS → ~rC :

θ = arccos z x = sin θ cosϕ

ϕ = arctan
y

x
y = sin θ sinϕ

z = cos θ

(2.1)

5
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(a) (b) (c)

Figure 2.1: (a) Relationship between spherical ([θ, φ]) and Cartesian ([x, y, z]) coordinates
of a direction ~r. (b) A differential solid angle. (c) Relationship between a differential solid
angle and a differential surface from the equation 2.3.

2.2 Solid angle

An angle denotes the length of an arc on a unit circle. Similarly, a solid angle denotes the
size of an area on a unit sphere. A solid angle is measured in steradians [sr], a dimensionless
unit. Let A be the area of a projection of an object onto a sphere with the radius r, then
the solid angle Ω is defined as:

Ω =
A

r2
. (2.2)

A differential solid angle d~ω is another useful quantity. It represents an infinitesimally
small solid angle around a direction. The direction of d~ω points to the center of projection of
the differential surface on a unit sphere; the size of d~ω is equal to the area dA = sin θdθdϕ of
the differential surface on a unit sphere (figure 2.1b). Note the term sin θ, which comes from
the [θ, ϕ] parametrization and accounts for the fact that sphere surface patches have smaller
area closer to poles. Finally, a differential solid angle can be computed from a differential
surface as follows:

d~ω =
cos θdA

r2
, (2.3)

where dA is the differential area of the differential surface, and θ and r are its orientation
and distance as shown in the figure 2.1c.

2.3 Light transport

Light transport deals with processes that occur when energy transfers between media that
affect visibility. This section is dedicated to exploring these processes and how they are
commonly modeled in computer graphics and real-time rendering specifically.

2.3.1 Light

In general, light refers to electromagnetic radiation. More precisely, visible light is a name
for the subset of electromagnetic radiation with wavelengths of length from roughly 400 nm
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to 700 nm. Radiation in this portion of the electromagnetic spectrum is visible to a human
eye.

Light exhibits characteristics of both waves and particles, a property called the wave-
particle duality. Depending on the context, light is better described using concepts appropri-
ate to waves or particles, but is exactly neither. The elementary light particle, the quantum
of light, is called a photon. The speed of light in vacuum c is precisely 299 792 458 m s−1;
the value is precise because the meter is defined in terms of c.

In computer graphics, a highly abstracted model of light based on ray optics is com-
monly used where light propagates rectilinearly along rays through homogeneous media. At
interfaces between two dissimilar media, a light ray may reflect, transmit or get absorbed.
Finally, the speed of light is ignored.

Two terminologies are available when discussing light and energy transport. The first
one, radiometry, describes optical radiation. Optical radiation is electromagnetic radiation
with wavelengths between 0.01 µm and 1000 µm subdivided into regions corresponding to
ultraviolet, visible and infra-red light. The other terminology is photometry, which is only
concerned with visible light. Photometric quantities correspond to radiometric quantities but
are additionally weighted by the spectral response of the human eye. Of the two, radiometry
is the terminology more prevalent in computer graphics.

Due to the wave nature of light, all radiometric quantities are some function of wave-
length. Definitions presented below are for a single wavelength. To compute the values for
some real light, which is rarely composed of radiation of only a single wavelength, one needs
to integrate over the range of wavelengths of interest. In practical applications, a discrete
subset of wavelengths is selected (e.g. red, green and blue) and computation carried out for
each element individually.

Radiant energy
Q = ne[J], (2.4)

is the total energy of all photons inside a volume. n is the number of photons inside the
volume and e is the energy carried by a single photon. Radiant flux

Φ =
dQ

dt
[W], (2.5)

is the rate of change of energy per time unit. Irradiance

E(x) =
dΦ

dA
[W m−2], (2.6)

is the total energy incoming from all directions at a point x per time unit. Note that E
depends on the surface normal as it only makes sense to consider directions over the upper
hemisphere. Radiosity

B(x) =
dΦ

dA
[W m−2], (2.7)

is the total energy emitted in all directions at a point x per time unit. Like irradiance,
radiosity depends on the surface normal. Radiant intensity

I(~ω) =
dΦ

d~ω
[W sr−1], (2.8)
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is the total energy emitted in a given direction per time unit. Radiance

L(x, ~ω) =
d2Φ

cos θdAd~ω
[W m−2 sr−1], (2.9)

is the total energy arriving from the direction ~ω at a point x. Due to the normalization by
cos θ, radiance is invariant to the surface orientation at x. Given the absence of participating
media (in vacuum), radiance stays constant along a ray, which makes it very useful quantity
in light transport computation.

To give an example of a photometric quantity, luminous flux for the wavelength λ is
defined as:

ΦV (λ) = Φ(λ)V (λ)[lm], (2.10)

where V (λ) denotes the spectral response of the human eye.

2.3.2 Light-matter interaction

When light encounters matter, it scatters in many directions. In the real world, light is
reflected and transmitted depending on a number of factors like wavelength, time and the
incident and outgoing direction. Nature of this interaction may also vary across the sur-
face and depend on the incoming and even outgoing position. If a position on the surface
is expressed using two parameters, accounting for all aforementioned factors yields a ten
dimensional function. While comprehensive, such function is not practical for use in simula-
tion on current hardware due to its high dimensionality. To get a usable abstraction, some
parameters of the general scattering interaction are neglected.

Time and wavelength domains, necessary for modeling phosphorescence and fluorescence,
are usually ignored because materials exhibiting such properties are rare or handled specially.
Subsurface scattering refers to a phenomenon, where light scatters below the surface of an
object and then leaves at a position possibly different from the one at which it entered.
Examples of real world materials with such properties are skin, wax, milk and marble. If
correct handling of these materials is required, spatial variation can be disregarded, lead-
ing to a six dimensional Bidirectional Scattering Surface Distribution Function (BSSRDF).
Conversely, ignoring the phenomenon yields a six dimensional Bidirectional Texture Function
(BTF), where the incoming and outgoing position of the scattering event are considered to
be identical.

There are two simple ways to eliminate the two spatial degrees of freedom present in
BTFs. The first is to subdivide the surface into parts over which the function is spatially
constant. The second is to encode the spatially varying factors (e.g. albedo) into a two
dimensional texture. The four dimensional representation resulting from this approach is
called a Bidirectional scattering distribution function (BSDF). BSDF can be further decom-
posed into a Bidirectional Reflectance Distribution Function (BRDF) and a Bidirectional
Transmittance Distribution Function (BTDF). Only BRDFs are important to the methods
explored in this thesis.

2.3.3 BRDF

Generally speaking, a BRDF describes reflective properties of a material for incident and
outgoing direction at a point. According to the formal definition:
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(a) (b)

Figure 2.2: (a) Bidirectional Reflectance Distribution Function. (b) Visualization of the
Blinn-Phong BRDF diffuse (green) and glossy (red) terms for a selected incident direction
(cyan). Obtained using BRDF Explorer [Dis15].

fr(x, ~ωi, ~ωo) =
dLo(x, ~ωo)

dE(x, ~ωi)
=

dLo(x, ~ωo)

Li(x, ~ωi) cos θid~ωo
, (2.11)

a BRDF states what fraction of energy coming from the incident direction ~ωi (over the
differential solid angle d~ωi) at point x is reflected in the outgoing direction ~ωo. The figure
2.2a above relates the BRDF arguments visually.

The integrand over the hemisphere:

ρ(x, ~ωo) = a(x, ~ωo) =

∫
~ωi∈H(x)

fr(x, ~ωi, ~ωo) cos θid~ωi, (2.12)

is a quantity called albedo or directional hemispherical reflectance and states how much light
is reflected in the direction ~ωo given uniform unit incoming radiance over the hemisphere.
Adhering to the law of conservation of energy, physically correct BRDFs have albedo in
the range [0, 1], where zero and one represent materials that absorb and reflect all light
respectively. All physically correct BRDFs also obey the Hemholtz law of reciprocity:

fr(x, ~ωi, ~ωo) = fr(x, ~ωo, ~ωi), (2.13)

meaning they are invariant to swapping the incident and the outgoing direction. Additionally,
the range of a BRDF is the set of all non-negative values. For example, the BRDF for a
perfect mirror would yield infinity in the principal reflection direction and zero everywhere
else.

Under certain assumptions, dimensionality of a BRDF can be reduced further. Materials
whose BRDFs are invariant to rotation around normal at the scattering point are called
isotropic. A three dimensional BRDF:

fr(x, ~ωi, ~ωo) = fr(x, θi, θo, (ϕi − ϕo)), (2.14)

is sufficient for isotropic materials. Materials like human hair or polished aluminum which do
not exhibit this invariance are called anisotropic. Finally, diffuse (i.e. Lambertian) materials
reflect light into all directions equally. Their BRDFs are invariant with respect to both the
incident and outgoing direction, resulting in a constant function:

fr(x, ~ωi, ~ωo) =
ρd
π
, (2.15)
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where ρd denotes the diffuse reflectance property of the material. Facades, walls and paper
are examples of close-to-ideal diffuse reflectors.

Historically, most BRDFs employed in real-time rendering have been of the empirical
origin. Empirical BRDFs are arbitrary functions without any grounding in the underlying
physics of light transport. They are motivated by the need for fast evaluation and tend to
model some small subset of materials reasonably well. The Blinn-Phong BRDF [Bli77] is
perhaps the most well known empirical BRDF used in real-time rendering. It is defined as:

fr(x, ~ωi, ~ωo) = ρd + ρs
coss θh
cos θi

, (2.16)

where θh is the angle between the incident direction and the normal at x, ~h = (~ωi+~ωo)/2 is
the half-vector and s is glossiness. It combines two elementary interactions: diffuse reflections
via the ρd element and glossy reflections via the cosine lobe part (figure 2.2b). It models
plastic materials reasonably well.

In recent years, as the power of consumer hardware increased, there has been a strong
shift towards more physically motivated BRDFs even in real-time rendering. In contrast
to empirical BRDFs, physically motivated BRDFs obey energy conservation and Hemholtz
reciprocity laws. While the model for diffuse reflections usually stays the same (Lambertian),
glossy reflections are modeled using micro-facet theory. In micro-facet theory, surfaces are
composed of many tiny micro-facets, each of which only reflects light in a single direction
according to its normal. Micro-facet BRDFs typically have following form:

fr(x, ~ωi, ~ωo) =
F (~ωi,~h)G(~ωi, ~v,~h)D(~h)

4(~n · ~ωi)(~n · ~v)
, (2.17)

where F models the Fresnel effect, G models the visibility and D models the directional
distribution of micro-facets. Physical fidelity and evaluation complexity of the BRDF de-
pends on particular choice of these terms. Working with physically motivated BRDFs carries
several benefits: control parameters are more intuitive, the results are more predictable with
less surprising edge cases and the overall visual quality is higher in the common case. An
example of a physically motivated BRDF currently in use in production real-time rendering
is the Disney principled BRDF [BS12].

2.4 Computing illumination

To compute global illumination in a scene, it is instructive to first start with local reflections.
Let x be a scene surface point and ~ωo an arbitrary outgoing direction. The total radiance
reflected at x in ~ωo can be expressed using the reflectance equation:

Lo(x, ~ωo) = Le(x, ~ωo) +

∫
~ωi∈Ω

Li(x, ~ωi)fr(x, ~ωi, ~ωo) cos θid~ωi, (2.18)

where Li(x, ~ωi) is the radiance incoming at x from the incident direction ~ωi. The total
radiance reflected in ~ωo is thus equal to the sum of radiance emitted in ~ωo and radiance
reflected from all possible incident directions in ~ωo.
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(a) (b) (c)

Figure 2.3: Image obtained via path-tracing using (a) 25, (b) 450 and (c) 7000 samples per
pixel.

2.4.1 The rendering equation

Because radiance is constant along the ray (x, ~ωi), it follows, that for some point y on the
ray

Li(x, ~ωi) = Lo(y,−~ωi), (2.19)

must hold. The point y is intuitively the nearest intersection of the ray (x, ~ωi) with the
scene. Let r(x, ~ω) be a function returning such intersection. Assuming that cases where no
intersection exists are handled smoothly, the equation 2.18 can be rewritten as follows:

Lo(x, ~ωo) = Le(x, ~ωo) +

∫
~ωi∈Ω

Lo(r(x, ~ωi),−~ωi)fr(x, ~ωi, ~ωo) cos θid~ωi. (2.20)

All instances of the incoming radiance have been eliminated, expressed recursively as the
outgoing radiance in the opposite direction at some other scene point.

Rewriting the equation 2.20 one last time without radiance subscripts yields the rendering
equation [Kaj86]:

L(x, ~ωo) = Le(x, ~ωo) +

∫
~ωi∈Ω

L(r(x, ~ωi),−~ωi)fr(x, ~ωi, ~ωo) cos θid~ωi. (2.21)

It describes a stable state of energy distribution within the scene. It states, that the illu-
mination of a given scene point, as observable from an arbitrary position, depends on the
scene as a whole. Algorithms that try to find a stable energy distribution within a scene
with respect to the rendering equation are called global illumination algorithms.

2.4.2 Evaluating the rendering equation

Given a virtual camera, synthesizing an image amounts to computing L(x, ~ωxToCamera) for
all scene points x visible from the camera according to the equation 2.21. However, the
presence of the recursive integral makes direct evaluation infeasible for all but the most
trivial cases.
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Path-tracing computes an unbiased estimate of the solution using the Monte Carlo esti-
mator:

L(x, ~ωo) = Le(x, ~ωo) +
1

N

N∑
n=1

L(r(x, ~Ψn),−~Ψn)fr(x, ~Ψn, ~ωo) cos θi

p(~Ψn)
, (2.22)

where N is the number of trials (samples) and ~Ψn is the incident direction vector generated
from some hemispherical probability distribution function p. Russian roulette, where the
albedo is taken as the absorption probability, is used to terminate the recursion. The solution
may be inaccurate due to variance, which can be observed in resulting image as a high-
frequency noise. To reduce the variance and thus obtain visually acceptable images, the
number of trials must be very high. The figure 2.3 shows the impact the number of samples
has on the image quality in a simple scene. Path-tracing is a fundamental algorithm, an
interested reader should consult [PH10] for a thorough introduction.

Traditional, rasterization-based, real-time rendering focuses on evaluation of the direct
illumination part of the rendering equation. Direct illumination refers to only the first
bounce of light — only the first expansion of the integral. To signify this, recursion in the
equation 2.21 is eliminated:

L(x, ~ωo) = Le(x, ~ωo) +

∫
~ωi∈Ω

Le(r(x, ~ωi),−~ωi)fr(x, ~ωi, ~ωo) cos θid~ωi. (2.23)

Additionally, because of the usually small number of constrained dynamic light sources em-
ployed, it makes more sense to express the integral as a sum over contributions from indi-
vidual light sources:

L(x, ~ωo) = Le(x, ~ωo) +
∑
s∈S

Vs(x)Ls(x)fr(x, ~ωi, ~ωo) cos θi, (2.24)

where s is a light source from the set of all light sources S, Vs(x) is the visibility function for s
and Ls(x) is the radiance emitted by s in the direction of x. While direct illumination can be
computed efficiently, it only reveals surfaces that are lit directly or have emissive properties.
Some approximation of the omitted indirect illumination component is still necessary to
prevent regions of a scene from appearing incorrectly black in the synthesized image. The
following chapter 3 surveys concrete indirect illumination approximation methods employed
in real-time rendering.



Chapter 3

Real-time indirect illumination

Due to a limited time budget, indirect illumination in real-time rendering is typically not
computed very accurately. Believability is often prized higher than correctness, especially if
it comes with lower performance impact. Although many techniques approximating indirect
illumination in real-time have been developed over the years, there is no silver bullet. Selec-
tion of an appropriate method is a compromise between performance impact, visual fidelity
and the level of scene dynamism it must support. This chapter presents a non-exhaustive
overview of real-time indirect illumination techniques.

3.1 Ambient light

Ambient light is the crudest approximation of indirect illumination. Light that was scattered
many times is modeled using a scene-wide ambient light source of fixed a intensity Ia. When
computing illumination, each point is additionally brightened by ρdIa, where ρd is the diffuse
reflectance at the point. The result is flat, uniform, direction-less illumination across a
surface. Ambient light is cheap to compute, trivial to implement but very lacking in fidelity.

3.2 Light maps

Indirect illumination in scenes with few moving parts is often best precomputed. Before the
application runs, an arbitrarily slow algorithm such as radiosity or photon-mapping is used
to compute the view-independent part of indirect illumination for all surfaces in a scene.
The solution is then stored into textures called light maps. Applying the stored illumination
at runtime amounts to fetching a value from a texture and multiplying it with the diffuse
reflectance property of the surface material.

The biggest advantage offered by light maps is the high level of visual fidelity. Only
the objects that were present during the precomputation stage may be lit using light maps
and only as long as they remain static. Since the light map data cannot be applied to
moving objects, dynamic scene elements often stand out in an unpleasant way because of
the discontinuity in illumination. Long computation times also mean slow iteration when
modifying scene lighting parameters.

13
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(a) (b)

Figure 3.1: Light probes: (a) A real world light probe arranged in a cube map. (b) Positioning
light probes (yellow spheres) in a scene for precomputation in the Unity 5 game engine.
Images courtesy of Paul Devebec and Unity Technologies.

3.3 Light probes

One major disadvantage of the light mapping solution from the section 3.2 is that it does
not work with moving objects. Light probes, also known as ambient cubemaps, attempt
to rectify this shortcoming. A light probe stores incoming indirect illumination for each
direction (figure 3.1a). When computing illumination at a point, the light probe is simply
sampled in the direction of the surface normal.

To better capture detail, in the precomputation phase, light probes can be captured in
strategic locations throughout the scene to enclose the areas reachable by dynamic objects
as shown in the figure 3.1a. To compute indirect illumination at a point, four light probes
forming an enclosing tetrahedron are selected. Each probe is sampled then using the ap-
proach described earlier and the final value computed using tetrahedral interpolation via
barycentric coordinates.

3.4 Ambient occlusion

Ambient occlusion (AO) refers to how exposed a point is to ambient light. The amount of
ambient occlusion at a point x is an integral over the upper hemisphere:

AO(x) =
1

π

∫
~ω∈Ω

Vx(~ω) cos θd~ω, (3.1)

where Vx is the visibility function at x and θ is the angle between the normal at x and ~ω.
Once AO(x) is available, the accessibility factor α = 1 − AO(x) can be used to modulate
indirect illumination received at x. Visualization of visibility factors is depicted in the figure
3.2b.

One approach to evaluating the integral in equation 3.1 is Monte Carlo ray-casting. Rays
are shot over the hemisphere at x; intersections closer than a selected visibility function radius
r signify occluders. It follows that the resulting AO value is dependent on the choice of r as
illustrated in the figure 3.2a.
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Figure 3.2: Ambient occlusion: (a) Impact of the visibility function radius on computed
AO factor. Of the two visibility functions Vx and V ′x only the latter reports any occluders.
(b) Visibility factors for scene surface obtained using SSAO in real-time; image courtesy of
[BS08].
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Figure 3.3: Shadow mapping: (a) Distance to light equals the value in shadow map, x is lit.
(b) Distance to light is greater than the value in shadow map, x is in shadow.

In real-time rendering, ambient occlusion is either precomputed in an approach similar
to light mapping or computed at runtime. Screen Space Ambient Occlusion (SSAO) [BS08]
is an algorithm that leverages data stored in the depth buffer to approximate per pixel AO
every frame. The SSAO and its variations are commonly deployed in real-time rendering
applications thanks to their ability to seamlessly handle dynamic objects, independence on
scene complexity and acceptable performance impact.

3.5 Shadow maps

Shadow mapping [Wil78] is a technique for adding hard shadows to spot and directional
lights. A shadow map is an image of the scene from the point of view of the light. Each
shadowmap texel stores the distance to the nearest surface along its corresponding view ray.
To determine whether a point x is lit or in shadow, the distance Ds stored in the shadow
map texel corresponding to the view ray passing through x is first retrieved. The distance
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(a) (b) (c) (d) (e)

Figure 3.4: Reflective shadow maps: (a) depth, (b) world space position, (c) normal, (d)
reflected flux, (e) resulting image with approximate indirect illumination. Image courtesy of
[DS05].

between x and the light source Dx is then computed. If Dx is larger than Ds it means that
some surface along the same view ray is closer the to light source and x is in shadow (figure
3.3b); otherwise, x is lit (figure 3.3a).

Although the basic algorithm is simple, production grade implementations must address
a number of problems stemming from the limited precision of stored depth values, limited
resolution of the shadowmap and other issues. There are many extensions improving on some
aspect of the original algorithm. For example cascaded shadow maps [Dim07] use multiple
shadow maps to provide better shadow resolution in areas near the camera; percentage closer
filtering [RSC87] can mitigate aliasing artifacts along shadow edges; and percentage closer
soft shadows [Fer05] can believably approximate soft shadows—to name just a few.

3.6 Reflective shadow maps

Reflective shadow maps, an algorithm introduced by Dachsbacher et al. [DS05], uses an
extended shadow map structure to simulate a single bounce of indirect illumination. A
reflective shadow map (RSM) is a set of textures rendered from the light’s point of view
storing depth, position, normal and reflected flux (figure 3.4a-d). Each reflective shadow
map texel (depth, normal, position and flux) represents a hemispherical virtual point light
(VPL). When computing illumination for a point, the first bounce of indirect illumination
is approximated by illuminating the point with a randomly selected subset of VPLs (figure
3.4e). The position of the shaded point is projected to the reflective shadow map and VPLs
are chosen from texels within its neighborhood. This does not guarantee that the point and
the VPLs are also close to each other within the scene, but the selection doesn’t need to be
very accurate. The point-VPL visibility is ignored.

3.7 Instant radiosity

Instant radiosity [Kel97] is a technique designed to compute diffuse indirect illumination at
interactive to real time speeds. It operates by generating a number of VPLs throughout the
scene and using them to approximate indirect illumination.
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Figure 3.5: Instant radiosity stages: (a) VPLs are created by shooting light particles from
light sources (no bounces are shown). (b) Diffuse indirect illumination at x is estimated by
evaluating contributions from VPLs.

Figure 3.6: Instant radiosity via imperfect shadow maps: A scene point cloud is distributed
among the set of VPLs and rendered into an imperfect shadow map atlas (top right). A
pull-push algorithm is employed to fill holes present in the shadow maps due to the coarse
point representation. Image courtesy of [RGK+08].
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3.7.1 VPL generation

In the first stage, VPLs are distributed throughout the scene using a quasi random walk.
Initially, each light source is sampled for starting position and direction of light particles
to be shot. The shooting itself is done via ray-casting. VPLs are generated at ray-scene
(particle-scene) intersections and the corresponding light particles are either absorbed or
continue to bounce. The absorption probability, as well as the number of particles to shoot,
is determined using the mean scene reflectivity. The figure 3.5a illustrates this process.

3.7.2 Indirect illumination accumulation

In the second stage, diffuse indirect illumination for each visible point is computed by sum-
ming up illumination from generated VPLs; shadows maps are used to resolve visibility. The
process is illustrated in the figure 3.5b.

3.7.3 Achieving real-time performance

To achieve real-time performance, the original instant radiosity algorithm needs to be ad-
justed in several places. Instead of using a quasi-random walk to distribute the VPLs, a
reflective shadow map is rendered for each light source. VPLs are then sampled from its
texels either randomly or using some heuristic. To resolve visibility, the original algorithm
renders a full shadow map for each virtual light. Given the amount of lights needed to get
stable results, this approach is not viable in real-time. Instead, the imperfect shadow maps
[RGK+08] technique can be employed. A low resolution parabolic shadow map is created
for all VPLs at once by rendering a scene point cloud. Points of the cloud are distributed
among individual shadow maps, each of which receives only a subset of points (figure 3.6).
As a result, the generation is fast, but resulting shadow maps contain holes. The holes are
filled with the help of a pull-push algorithm [MKC07]. When computing indirect illumina-
tion, only a small subset of VPLs is evaluated for each point due to performance constraints.
Finally, geometry aware blur filter is applied to the indirect illumination image to reduce
noise.

Instant radiosity with imperfect shadow maps can be used to approximate the first bounce
of diffuse indirect illumination at real-time speeds in dynamic scenes. Its downside is, that
the quality of the resulting images is very sensitive to algorithm parameters. Additionally, it
is not free from artifacts such as light leaking through walls due to the approximate nature
of information stored in imperfect shadow maps.

3.8 Voxel cone tracing

Voxel cone tracing [CNS+11] is a voxel based algorithm aiming to approximate diffuse and
glossy indirect illumination at real-time speeds. The algorithm works with a voxel represen-
tation of the scene stored in an octree. Direct illumination information is injected into the
octree with the help of a structure similar to a reflective shadow map. To compute indirect
illumination at a point, cones are traced in several directions to sample light intensity values
stored in the octree.
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Figure 3.7: Voxel cone tracing: (a) Injecting light into the octree. (b) Irradiance mipmapping
inside the octree. (c) Collecting diffuse and glossy indirect illumination via cone tracing. (d)
Diffuse indirect illumination. (e) Glossy indirect illumination. Images courtesy of [CNS+11].
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3.8.1 Scene voxelization

To create the scene voxel octree representation, meshes are rasterized three times, once
along each main axis. Each shader fragment thread generated by rasterization subdivides
the octree top to bottom as necessary and writes fragment data into a leaf. Surface normal
is represented using Isotropic Gaussian lobes while reflectance is stored as a scalar per color
channel.

Once all meshes are voxelized, data stored in octree leaves is mip-mapped into inner
nodes. Static scene elements need to undergo the voxelization process only once, dynamic
elements are re-voxelized every frame to account for the change of position or material
properties. Octree data for dynamic elements is stored at the end of the structure so that it
can be updated efficiently after each re-voxelization.

3.8.2 Capturing direct illumination

Direct illumination information is captured using light-view maps. A light-view map is
created for every light source in much the same way as one would create a reflective shadow
map (section 3.6). The light-view map information is then injected into octree leaves using
a fragment or compute shader. Incoming light direction is represented using Gaussian lobes;
incoming light intensity as an rgb three-tuple (figure 3.7a). Since multiple texels may land
in the same voxel (octree leaf), atomic operations are used to maintain consistency.

Once direct illumination from all lights has been injected into leaves, the data is filtered
into inner nodes to create a mip-map hierarchy (figure 3.7b). Direct illumination information
needs to be re-injected after every change to light sources or to the structure of the scene
octree.

3.8.3 Computing indirect illumination

Indirect illumination at a point is collected by approximate cone tracing. Depending on the
material, several cones covering the entire hemisphere are traced. Diffuse reflective properties
are modeled by wide cones spaced across the hemisphere; glossiness, on the other hand, is
represented by a long tight cone in the reflection direction.

An arbitrary BRDF can be approximated using the right combination of cones. Illumi-
nation from a single cone is computed by marching along the principal cone direction ray
and aggregating contributions from individual steps using the classical emission-absorbtion
model [EHK+04].

At each step, the octree level (node) to sample is selected depending on the cone span
(the larger the span the higher the level). Sampled surface normal and incoming light
direction Gaussian lobes are convolved with the a Gaussian lobe representing the cone span
at the current step. Resulting lobe is evaluated in the direction towards the surface point,
yielding the fraction of intensity reflected in that direction. Multiplying this factor with
the sampled node reflectance and incoming light intensity gives the final radiant intensity
reflected towards the surface point.
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(a) (b) (c)

Figure 3.8: Point-based global illumination: (a) Scene and associated point cloud. (b)
Emissive materials as light sources. (c) Per pixel GI resolve produces contact shadows.
Images courtesy of [KFC+10].

3.8.4 Performance and quality

Voxel cone tracing can approximate both diffuse and glossy indirect illumination. It can deal
with dynamic scenes by re-voxelizing elements and re-injecting light on the fly. Majority of
the scene should still remain static to achieve real-time speeds.

While the algorithm yields smooth a believable results, they are not free from artifacts
due to the discretization inherent in voxel based approaches, light leaking through thin
objects being the most common one. Examples results for diffuse and glossy materials are
shown in the figure 3.7d and 3.7e.

Performance wise, the algorithm achieves near real-time speeds on high end hardware.
The main disadvantage of the octree approach is, that current rendering hardware is not
particularly suited to the heavy pointer chasing inherent in navigating the octree throughout
the voxelization, injection, filtering and cone tracing stages. A cascade of several three
dimensional textures moving with the camera could be used in place of the octree to alleviate
this problem, but larger voxels would lead to more pronounced light leaking.

3.9 Point-based global illumination

Point-based global illumination (PBGI) [KFC+10] is a real-time technique for computing
both diffuse and glossy indirect illumination inspired by the Point-based approximate color
bleeding [Chr08] algorithm used in the film industry.

(PBGI) operates as follows: First, a cloud of sample points is obtained by rendering
the scene into a vertex stream (figure 3.8a). The sample cloud does not need to be espe-
cially dense, so using high resolution meshes is impractical. Instead, it is better to either
use tessellation control meshes or level-of-detail meshes, depending on the overall applica-
tion architecture. Generated samples are cached and only regenerated if necessary. With
world position, normal, tangent and material information available for each sample a set of
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equations is solved:

Lout[i] = Lin[i]ρ

A[i] = −Lin[i]S[i]

Lin[i] =
∑

j∈P,j 6=i

Lout[j]F [j, i] +A[j]Fa[j, i],

where

Lout[i] : light emitted forward from sample i
Lin[i] : light received by sample i
A[i] : light emitted backward by sample i (antiradiance from [DSDD07])
S[i] : shadow factor for sample i
ρ : surface reflectance
P : set of all point samples
F [i, j] : disk to disk radiance transfer forward form factor for samples i-j.
Fa[i, j] : disk to disk radiance transfer backward form factor for samples i-j.

In an approach similar to [McT04], three irradiance values aiming in directions spaced around
the sample normal are computed. Convenient extrapolation of irradiance values for any di-
rection is needed to facilitate normal mapping and is also used to simulate glossy reflections.
Once the per sample irradiance values are available, they are upsampled (for level-of-detail
meshes) or tessellated (for subdivision surfaces) into a vertex stream and the scene is ren-
dered. At a point, diffuse indirect illumination is computed by converting tangent space
normal into coefficients for the three precomputed irradiance values. Glossy indirect illumi-
nation is approximated by treating the three irradiance values as intensities of a directional
lights oriented around the normal and summing up their contributions.

The PBGI algorithm computes coarse approximation of diffuse and specular indirect
illumination. The solution it provides suffers mainly from light leaking related artifacts and
tone shifts as a result of using anti-radiance to solve visibility instead of an explicit method.
One way to ameliorate this is by grouping the samples into clusters and manually specifying
inter-cluster dependency factors.

3.10 Cascaded light propagation volumes

Cascaded light propagation volumes [KD10] is a grid based, fluid simulation inspired tech-
nique for approximating diffuse and glossy indirect illumination in fully dynamic scenes at
real-time speeds. The algorithm works with two grids: a geometry volume and a light vol-
ume. During initialization, reflective shadow maps are used to fill light volume cells with
virtual point lights and geometry volume cells with blocker information. Light is then itera-
tively propagated through the light volume; geometry volume data may optionally be used
to occlude light and generate additional light bounces. To retrieve indirect illumination at
a point, the light volume is evaluated for a given position and surface normal.
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3.10.1 Light and geometry volumes

Light volume is an axis aligned Cartesian grid. Located at the center of each light volume cell
is a virtual point light with the directional intensity distribution I(~ω) encoded in spherical
harmonics (SH). Geometry volume is a also a Cartesian grid; its resolution and cell size
are identical to those of the light volume. Geometry volume cells may contain blockers,
which occlude light. The amount and orientation of blockers inside a cell is represented
by the directional distribution B(~ω) encoded in SH. Each geometry volume cell also stores
diffuse reflectance of blockers inside the cell. The reflectance value is used for simulation of
additional light scattering events; it is also useful for visualization of the geometry volume
contents.

Geometry volume position is shifted exactly half a cell size relative to the light volume
position. This way, light volume cell corners line up with geometry volume cell centers,
which will later enable efficient retrieval of data stored inside the geometry volume.

3.10.2 Light and blocker injection

The purpose of this step is to fill light volume with initial light intensity distribution and
store volumetric representation of the scene inside the geometry volume; both are needed for
the next step.

Every frame, light and geometry volumes are cleared. Reflective shadowmap (RSM) is
rendered for each light source. RSM texels represent surface elements (surfels), each with
their own depth (Dp), normal (~np), diffuse reflectance (ρp) and diffuse reflected intensity
(Φp). Surfels are used to populate both the light and the geometry volume.

To inject a surfel to light or geometry volume its position in the volume Pp is first
reconstructed from Dp and light camera parameters used to render RSM. Surfel weight
factor

Wp = AsA
−1
c (3.2)

is also computed from surfel area As and volume cell face area Ac. Wp is used to scale
surfel contribution to volume data in order to make the injection process independent of the
volume cell size and RSM resolution.

When injecting a surfel into the light volume, its position Pp is first shifted slightly
along the surfel normal and surfel to-light direction to mitigate self-lighting artifacts. Next,
the light volume destination cell is determined from the shifted Pp. A virtual point light
corresponding to the surfel is then created with directional intensity distribution

Ip(~ω) = WpΦp〈~np · ~ω〉+. (3.3)

Ip(~ω) is projected to low order spherical harmonics and stored in the destination cell. Con-
tributions from all surfels falling into the same light volume cell are summed.

Geometry volume population is done similarly to light volume population: Destination
volume cell is computed from surfel position Pp and surfel blocker distribution function

Bp(~ω) = Wp〈~ns · ~ω〉+ (3.4)
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(a) (b) (c)

Figure 3.9: Light propagation 2D view: (a) Light intensity from the source cell is propagated
to its neighbors along main axial directions. (b) Propagation is done by computing the flux
onto a destination cell face reprojecting it to a point light and accumulating the result. (c)
Propagated light is occluded using the volumetric scene representation of the scene in the
geometry volume. Thanks to the light and geometry volume positions being shifted with
respect to each other, geometry volume data can be retrieved efficiently using hardware
texture filtering. Image courtesy of [KD10].

(a) (b) (c)

Figure 3.10: Cascaded Light Propagation Volume features: (a) Generating more light
bounces by reflecting light distribution inside the light volume off of the blockers in the
geometry volume. (b) Glossy indirect illumination can be approximated by marching the
light volume along the reflected view ray. (c) Multiple light propagation volumes are used
in a cascade configuration to efficiently cover large areas while maintaining detail close to
camera. Images courtesy of [KD10].

is projected to SH. Both ρp and Bp(~ω) are stored in the destination geometry volume cell.
Blocker distribution contributions from surfels falling into the same cell are summed, while ρp
contributions are aggregated using max operator. Because the same surface may be captured
by multiple different RSMs, surfels from each distinct RSM are first injected into a separate
intermediate geometry volume. The intermediate geometry volumes are then aggregated
into a final geometry volume using the max operator. Note that the surfels injected onto the
geometry volume do not need to come only from RSMs. For example when doing deferred
shading, surfels from the g-buffer can be injected too.

3.10.3 Light propagation

In this step, light intensity injected into the light volume from RSMs is now propagated to
simulate light bouncing through the scene. The approximate volumetric representation if the
scene stored in the geometry volume can be used to occlude propagated light and simulate
more light bounces.

The propagation is carried out using successive local iteration steps. A light volume
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serves both as an input and an output of each iteration: iteration output is fed as input
to the following iteration. The input of the first iteration is the light volume obtained by
RMS injection. The light volume containing the final distribution of indirect illumination
corresponds to the sum of outputs from all iterations and the initial injected intensity.

In every iteration, light in each cell is propagated along grid’s main axial directions (figure
3.9a). Given a source cell, a neighbor destination cell and a face of the destination cell, a
single propagation step is computed as follows (figure 3.9b): First, the flux Φf reaching the
face from the source cell is approximated as:

Φf =
∆ωf

4π
Is(~ωsf ), (3.5)

where ∆ωf is the solid angle subtended by the face as seen from the center of the source cell,
Is(~ω) is directional intensity distribution of light inside the source cell and ~ωsf is the direction
from the center of of the source cell to the center of the face. Essentially, the intensity in
the direction ~ωsf is interpreted as the average intensity over the solid angle. Next, a virtual
light is created at the center of the destination cell to model Φf . The directional intensity
distribution of this new light corresponds to:

Il(~ω) =
Φf

π
〈~f · ~ω〉+, (3.6)

where ~f is the direction from the center of the destination cell to the center of the face.
Finally, Il(~ω) is projected to SH and stored inside the destination cell. The afore-described
elementary propagation step is executed once for every face of every six-neighborhood neigh-
bor of every cell.

The propagation algorithm can be extended by accounting for blocking geometry (figure
3.9c). Let fsd denote the center of the face shared by the source and the destination cell.
The blocker distribution at the interface of the source and the destination cell Bsd(~ω) is
approximated by sampling the geometry volume at fsd. Because the geometry volume is
shifted by half the cell size, this amounts only to averaging values of cells located in vertices
of the shared face. During the elementary propagation step, the blocking potential β in
the propagation direction is evaluated as β = Bsd(−~ωsf ) and Φf , the flux reaching the
destination face, is attenuated using the factor 1− β.

More light bounces can also be generated during the propagation (figure 3.10a). For
a source-destination cell pair, let Br(~ω) be the blocker distribution and ρr the reflectance
at the center of the destination face furthest from the source cell. During the elementary
propagation step, diffuse illumination of the blocker geometry can be estimated as Br(−~ωsf ).
This can be used to model the reflected diffuse illumination as a virtual light located at the
center of the destination cell with directional intensity distribution:

Il(~ω) = ρr Br(~ω) Br(−~ωsf ), (3.7)

which is then projected to SH and accumulated in the destination cell.

3.10.4 Relighting

To compute diffuse indirect illumination at a point x, spherical harmonics coefficients of the
indirect illumination distribution Ix(~ω) are first retrieved from the final light volume using
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trilinear interpolation. Ix(~ω) is then evaluated in the negative direction of the surface normal
~nx.

To mitigate self-illumination and light leaking artifacts stemming from the low frequency
nature of the approximation a dampening factor can be applied to the value computed in the
previous paragraph. The dampening factor is based on directional derivative of the spherical
harmonics coefficients. Let c stand for the vector of spherical harmonic coefficients of the
intensity distribution and ∇nc be the vector of coefficients of the directional gradient. The
dampening is proportional to the magnitude of c and the deviation between c and ∇nc.

Glossy indirect illumination approximation can be obtained by ray marching along the
reflection direction (figure 3.10b). The approach is to march along the reflection direction at
a point with steps equal to the cell size. At each step, the intensity distribution is retrieved
from the light volume and evaluated in the negative reflection direction. The approximate
glossy indirect illumination is obtained as the average of step contributions weighted by
inverse square distance from the point.

3.10.5 Solution stabilization

The propagation volume may either be placed at fixed position or, especially in larger scenes,
move with the camera. In the latter case, the volume is centered at the camera and then
translated slightly along the view direction. This results in a scheme, where majority of the
volume is always in front of the viewer but some space is reserved in the area behind the
camera so that the indirect illumination may come from behind. To avoid flickering, the
volume does not move smoothly with the camera but is instead snapped to multiples of the
cell size.

While high resolution volumes are required to capture detail, the number of propagation
iterations necessary to distribute the indirect illumination throughout the scene rises with
the decreasing cell size. Rather than using one massive, high resolution volume, a large area
is more efficiently covered with a set of volumes of increasing size organized in a cascade
(figure 3.10c). Cascade levels all have the same dimensions and each moves with the camera
in the afore-described fashion. All operations except for relighting are done in each cascade
level separately. To avoid jarring transitions, indirect illumination coming from areas near a
cascade level border is faded out.



Chapter 4

Application design

Having reviewed the theory and surveyed related techniques in previous chapters, it is now
time to design the demo application — a rudimentary game engine with focus on the render-
ing system. This chapter discusses the design of individual application components. Starting
with this chapter, this font is used to denote programming language classes and methods.

4.1 Interfacing with rendering hardware

Practical real-time rendering applications use dedicated hardware, a graphics processing unit
(GPU), to accelerate computation. Initially, GPUs exposed only fixed functionality. A user
would tweak a limited set of parameters and pass in set a vertex attributes for rendering.
The GPU would then rasterize the primitives, be it triangles, lines or points, and compute re-
sulting color for covered image pixels according to a built in illumination model. As the time
progressed, GPUs became increasingly programmable, allowing to replace portions of the
previously fixed function pipeline with custom behavior specified in user-written programs
called shaders. Finally, besides the programmable functionality of the rasterization pipeline,
GPUs nowadays also expose completely decoupled, general purpose compute functionality
operating on arbitrary pieces of data.

GPU functionality is accessed through a dedicated application programming interface
(API). The API allows client applications to perform common tasks like uploading and
downloading data to and from the GPU, setting fixed functionality parameters and dis-
patching rendering and compute tasks. Two types of GPU APIs exist: The first are graphics
APIs, which understand the notion of submitting primitives for rasterization and use special-
ized abstractions for GPU memory suited to rendering tasks (e.g. textures, vertex attribute
buffers). The other are compute APIs, which focus on conveniently exposing general purpose
computation facilities. A programming language used to write GPU programs is typically
specific to a given API. It is possible to combine certain compute and graphics APIs in a
single application and share resources between them at the cost of extra synchronization
between the two API drivers. To avoid this performance penalty, newer versions of graphics
APIs expose the general compute functionality through their own interfaces.

The landscape of available graphics APIs is varied. On the personal computing class of
hardware, OpenGL [Khr15a] is the only cross-platform option. A caveat with OpenGL is

27
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Figure 4.1: Rendering hardware abstraction layer components.

that not all platforms implement the most recent version of the API; moreover, the same
code paths may have different performance characteristics depending on the implementation.
On Windows operating systems, the proprietary Microsoft DirectX [Mic15] graphics API is
available and well supported. On mobile hardware, both Android and iOS systems use
OpenGL ES [Khr15b] with newer iOS systems using Metal [App15]. In the video game
console world, Xbox systems use a modified version of DirectX while PlayStation exposes
its very own set of APIs.

The preceding non-exhaustive overview makes it clear that an application targeting mul-
tiple platforms needs a rendering hardware interface layer of its own. Even in the rare single
platform scenario, crafting an abstraction over the underlying graphics API is the sensible
decision from the software engineering point of view: only the parts of the API actually rel-
evant to the application are exposed and the abstraction layer may provide arbitrary extra
functionality such as profiling or validation.

In the demo application, rendering system will not communicate with a specific graph-
ics API directly, instead, in the spirit of the previous paragraph, it will only work with a
generic Rh* abstraction layer consisting of several interfaces. Concrete implementations of
those interfaces will pass the commands to a specific graphics API. Rh* abstraction layer
components are depicted in the figure 4.1. At the core of the system lies a RhDevice, which
is used to create GPU memory resources in the form of RhTextures and RhBuffers; graph-
ics and compute shaders encapsulated by RhProgram objects; and graphics pipeline fixed
function state descriptors RhRasterizerState, RhBlendState and RhDepthStencilState.
The RhDevice also provides access to a RhCommandList instance, which represents a stream
of commands to the GPU. The RhCommandList can be used to upload and download GPU
data, bind resources, set pipeline states, draw primitives and dispatch compute shaders.

4.2 Rendering

It is the sole responsibility of the rendering subsystem to synthesize the final image from
the current scene data. The demo application only uses a simple scene representation com-
posed of primitives and lights. To render a scene, all primitives are drawn and illumination
contribution from all lights is iteratively accumulated.
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Figure 4.2: Scene representation hierarchy and how it uses Rh* components in orange.

4.2.1 Scene representation

The world as seen by the rendering subsystem is encapsulated in a Scene. Figure 4.2 depicts
relationships of classes used to describe a Scene.

A ScenePrimitive represents an instance of renderable geometry. It consists of a ref-
erence to MeshData and Material objects and a transformation, which is unique to the
instance. A MeshData object corresponds to a drawable mesh. It specifies mesh vertex at-
tribute data and their layout in the form of a VertexSource and also stores mesh topology,
index data and object space bounds. Information on how to shade a primitive is contained
inside of a Material, which is just a reference to a RhProgram and rendering resources, like
RhTexture and RhBuffer, to use with it.

Lights in a Scene map to SceneLight objects. Three light source types are supported:
Directional lights, modeling distant lights with high intensity; point lights — infinitesimally
small, omni-directional lights; and spot lights, which are essentially point lights, but only
effective within a specified cone or pyramid around a principal direction. All information
related to a single light is stored inside a SceneLight structure. In addition to its type
SceneLight also stores the light’s transform, shadow configuration info, intensity, falloff and
light propagation volume interaction data.

Also included in a Scene is a reference to a single SceneLightPropagationVolume, which
describes parameters of the light propagation volume in the scene, if there is any.

Primitive and light data within a Scene is organized in flat arrays, so that caches are
well utilized when submitting primitives for rendering. No part of the rendering subsystems
is allowed to modify the scene data in any way. Instead, agents from higher level subsystems
are responsible for adding, updating and removing primitives and lights through methods of
the Scene class.

Instructions on how to render an image of a scene are encapsulated in the SceneView
class. It specifies a Scene to render, parameters of a virtual camera and resolution of the
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Figure 4.3: Representation of the light propagation volume structures in the application;
Rh* components in orange.

final image.

4.2.2 Light propagation volume representation

When describing the Cascaded Light Propagation Volumes algorithm in section 3.10, we
mentioned that the light and blocker directional distribution functions are stored encoded
into spherical harmonics, or more precisely real spherical harmonics.

Real spherical harmonics use normalized Associated Legendre Polynomials to define an
orthonormal basis over a sphere, allowing for a memory efficient, approximate representation
of directional functions. The family of Associated Legendre Polynomials consists of band
functions defined by two integer parameters. An n-th order SH approximation of a function
uses n first bands of polynomials to represent the function. The more bands are used the more
accurate the approximation but also the higher the number of coefficients required to store
the approximation. n2 real coefficients are needed to store n-th order SH approximation of a
function. For more background on SH, their evaluation and usage, interested reader should
consult [Slo08] or [Gre03].

In the demo application, second order SH approximation is used. The corresponding
four coefficients fit nicely into four channels of a rendering hardware texture. Also, the math
associated with evaluating the approximation is computationally inexpensive.

Figure 4.3 illustrates how a light propagation volume cascade is represented inside the
application: A VolumeData structure defines a Cartesian grid using grid cell size, resolution
and position. Inside a LightData object, three 3D RhTextures store the per-grid-cell the
light directional distribution — each color channel is stored in a separate texture. Similarly,
a GeometryData instance contains two 3D RhTextures: one for the blocker directional distri-
bution function and one for diffuse reflectance. VolumeData, LightData and GeometryData
together form a LightPropagationVolumeData object. While only one LightData instance
is stored per LightPropagationVolumeData instance, multiple GeometryData instances may
be necessary to correctly aggregate blockers from independent sources. Finally, one to three
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LightPropagationVolumeDatas are encapsulated in a LightPropagationVolume, which rep-
resents a complete light propagation volume cascade.

4.2.3 Renderer architecture

There are many ways to structure rendering logic. Perhaps the most intuitive approach is to
render scene objects one by one. To draw an object, activate the GPU program corresponding
to its BRDF, set per object program parameters and finally submit triangle vertex data to
the rendering API. On the GPU side, illumination for each rasterized fragment is evaluated
and resulting color stored in the corresponding frame buffer pixel. This is called forward
rendering.

One disadvantage of forward rendering is that, under certain circumstances, it leads to a
lot of unnecessary computation. For example, when multiple fragments corresponding to the
same pixel are evaluated in the back-to-front order, only the computation for the fragment
with position closest to camera is useful (unless multiple fragment contributions are used to
composite the final color). Additionally, evaluating contributions from all lights for every
fragment can be wasteful because point and spot lights actually affect only a limited sphere
or cone shaped area.

In complex scenes with many lights, where performance caveats of forward rendering can
prove prohibitive, a deferred approach may work better. In deferred rendering, scene objects
are first rendered into a geometry buffer (g-buffer). The g-buffer is a set of textures, where
each texture stores some piece of information necessary to evaluate illumination (normal,
reflectance, etc). Once the g-buffer is ready, illumination contribution from lights is accu-
mulated in individual rendering passes. For each light, illumination is only evaluated in the
relevant parts of the scene by fetching data from corresponding parts of the g-buffer.

The deferred rendering approach is not without its own shortcomings. First, since the
g-buffer data used for illumination information is the same for all pixels, all scene object are
forced to use the same BRDF. This limitation can be worked around somewhat by storing a
material id in the g-buffer, which decides what BRDF to use. Second, the g-buffer only gives
information on on the first surface a given camera ray encounters, which makes implementing
effects such as transparency solely through simple deferred shading impossible. Finally, the
memory bandwidth of storing and fetching g-buffer data may itself prove to be a bottleneck;
high resolution g-buffer will also leave a large memory footprint.

Deferred and forward rendering are just two of the many possible approaches to design-
ing a renderer, some other, slightly more advanced techniques include tile-based deferred
rendering [Lau10], deferred lighting [Lau10] and Forward+ [HMY12].

In the demo application, scenes are rendered by implementations of the ISceneRenderer
interface. DeferredShadingRenderer implements ISceneRenderer in terms of the deferred
approach discussed earlier. To obtain an image of a scene, the renderer is supplied a virtual
camera in the form of a SceneView and a RhCommandList, through which it interfaces with
rendering hardware.

In the first step, all ScenePrimitives are rendered into a g-buffer, encapsulated in a
GBuffer structure. LightPropagationVolume is then cleared and injected with blocker infor-
mation from the g-buffer. Subsequently, scene lights are processed. For each light, a shadow
map is generated. Stencil pre-pass is then executed to mark pixels of the g-buffer that are
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Figure 4.4: Demo application object hierarchy; rendering subsystem components in blue.

affected by the light, after which the illumination contribution is computed for marked pix-
els; the shadow map generated earlier is used to resolve visibility. Independently, a reflective
shadow map is also generated for the light and injected into the LightPropagationVolume
to provide both direct illumination and blocker information. Once all lights have been
processed, several propagation passes are run on the LightPropagationVolume. Indirect
illumination is accumulated for all g-buffer pixels in a final full-screen pass by sampling the
propagated light volume data.

4.3 Object and component model

While a Scene is a good representation of the world as seen by the rendering system, it is
far too rigid and specialized to be usable on an application-wide level. Object-component
hierarchies are a good solution to the problem of integrating multiple orthogonal subsystems
such as sound, graphics, animation, physics and so on. The idea is to use an object as a
representative for a world entity with a unique identity. Besides identification, objects do
not provide any functionality on their own, but they are instead used to group components.
Specialized components define the object by plugging into aforementioned subsystems or
adding custom functionality. Hierarchical parent-children relationships can be defined either
between objects themselves or with the help of components. The particulars on how to
realize such system differ but the general object-component approach is commonly seen in
game frameworks such as Unity [Tec15] or Unreal [Gam15].

The demo application’s take on the object-component pattern is summarized in the figure
4.4. The World structure functions as a top level container for Objects. Once an Object
is added to a World, its Components can be queried and new attached through the interface
it exposes. By default, an Object only contains the Transform component, which specifies
position, orientation and scale relative to its parent Transform. Hierarchical relationships
can be established by setting one Transform as a child of another. The MeshRenderer and
Light components serve to interface with the rendering subsystem. It is their responsibility
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to add, remove and update ScenePrimitives and SceneLights in the Scene attached to the
active World. Finally, the Camera component defines a virtual camera which can be used to
render the scene and the Clpv component manages a SceneLightPropagationVolume.

4.4 Asset management

In this context, asset is used to refer to arbitrary data used by application. Examples include
models, sounds or animation tracks. Asset management encompasses loading, caching and
release of assets, ideally in a manner that minimizes memory consumption and media storage
access.

The demo application utilizes three types of assets: TextureAsset, MaterialAsset and
MeshAsset, which are used to store rendering texture, material properties and triangle ver-
tex data respectively. Assets share a common Asset interface, through which they are
stored in an AssetManager, a cache for loaded assets. Assets can be added to the man-
ager manually, but are automatically added when loading models from files through the
LoadModelAsObjectHieararchy method of AssetManager. When loading a model, the ac-
tual work of parsing the file and loading associated textures is delegated to dedicated third
party libraries. The third party loaded data is then converted to the object-component
hierarchy representation used the application.

4.5 Implementation technologies and third party libraries

The C(++) languages are the traditional go to option when looking to do performance
intensive tasks close to the metal. The CPU side of the demo application is implemented
in C++. In this particular case, the decision is motivated mainly by personal preference
and not performance reasons — most intensive computations are likely to take place on the
GPU.

The application relies on third party libraries to carry out several tasks. Image loading
functionality is handled by the ResIL [Res15] library. ResIL has a simple C interface and
support for a wide variety of image file formats. Besides images, the application needs to
access model and material definitions. This responsibility is delegated to the Open Asset
Import Library (Assimp) [Ass15], a powerful, open source scene file loader. The Assimp can
parse almost any 3D file format and present its contents to the client application through a
set of common structures. In order to facilitate dynamic adjustment of scene and algorithm
parameters, the application relies on the ImGui [Oma15] library to draw simple immediate
mode GUIs directly in code. Finally, the OpenGL Mathematics [Chr15] library is used for
low level matrix algebra computations.

The demo application comes with a single implementation of the Rh rendering hardware
abstraction layer. OpenGL was selected as the backing graphics API because of the free
cross-platform portability it offers. OpenGL context creation and extension management
are not concepts incorporated into the core API because they depend on the actual platform
operating system. Fortunately, several third party libraries exist that abstract the platform
dependent tasks under a common interface. To query and load OpenGL extensions available
on particular hardware, the application leverages the OpenGL Extension Wrangler Library



34 CHAPTER 4. APPLICATION DESIGN

(GLEW) [GLE15]. OpenGL context creation is handled by the GLFW [GLF15] library,
which is also used to access other platform dependent functionality such as window creation,
CPU timing and input handling.



Chapter 5

Rendering system implementation

The DeferredShadingRenderer class constitutes the bulk of the rendering subsystem. High
level overview of the data flow within the system is depicted in the figure 5.1. Following
sections contain a breakdown of individual steps taken to synthesize an image.

5.1 G-buffer generation

In the FillGBuffer method, a g-buffer is generated by rendering all ScenePrimitives into
the GBuffer render target collection. The GeometryPass shader is used to output diffuse
and specular reflectance, glossiness, normal and depth values per fragment.

5.2 G-buffer data injection

GBuffer data can be used to populate the light propagation volume with blocker informa-
tion. Because it is inefficient and unnecessary to inject a full resolution GBuffer, diffuse
reflectance, normal and depth textures are first downsampled several times. In the demo
application, textures are repeatedly downsampled to half their resolution until their larger di-
mension is less or equal to 128. The data is then injected into the LightPropagationVolume
using approach described in the section 5.3.5. GBuffer downsampling and injection is imple-
mented in the LpvInjectGBuffer method; the LpvDownsampleGbuffer shader handles the
downsampling process GPU-side.

5.3 Processing lights

Once the GBuffer has been initialized, all SceneLights in the Scene are passed to the
ProcessLight method, where the following sequence of steps is executed.

5.3.1 Shadowmap generation

If the light is marked to have a shadow, a shadowmap is generated. First, a projection trans-
form is created for the light. For directional lights, parameters for orthographic projection
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Figure 5.1: Steps taken to generate an image — high level overview.
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that tightly fits the scene to the shadowmap viewport are computed from light orientation
and scene bounds. For spotlights, perspective projection transform is created from light’s
cutoff angle. In both cases, light intensity, orientation and scene bounds are used to compute
near and far plane locations that tightly fit the scene in order to maximize the depth buffer
precision. Once a projection transform for the light has been computed, all ScenePrimitives
marked as shadow casters are rendered using the DepthOnly shader, which only writes depth.

Point lights are handled by splitting them into six separate spot lights with a 45◦ cutoff
angle. The shadowmap is stored in a cubemap texture and six passes are used to populate
all cubemap faces with depth data one by one.

5.3.2 Direct illumination

The LightPass shader computes direct illumination of a GBuffer texel by a given light
source. It retrieves GBuffer material data for texel and evaluates shading for the normalized
Phong BRDF. Light visibility is optionally resolved using the previously generated shad-
owmap. Results are written into the resolve part of the GBuffer. Additive blending is used
to accumulate contributions from all light sources.

The above computation is optimized to only process GBuffer texels actually affected by
the light source. First, the area in which the light has any effect is approximated with a simple
object: a sphere or a box for a point light; a pyramid for a spotlight. Exact scale, position
and orientation of the light area object are computed from the intensity and transform of the
light. This light area object is then rendered with following pipeline stencil state: for front
facing triangles, decrement stencil if depth test fails; for back facing triangles, increment
stencil if depth test fails. After this pass, only GBuffer texels inside the area affected by the
light are flagged with non-zero stencil value. The light area object is finally rendered using
the LightPass shader described above; the stencil test is set to only pass for non-zero stencil
values.

5.3.3 Reflective shadowmap generation

If the light is marked to interact with the light propagation volume, a reflective shadowmap is
generated at this point. The generation process is similar to shadowmap generation described
in the section 5.3.1: ScenePrimitives are rendered from the point of view of the light. Depth
value, surface normal, diffuse reflectance and reflected radiance from diffuse light-surface
interaction are stored. The LpvReflectiveShadowmap shader implements this step.

Point lights are handled by splitting them into six separate spotlights and executing steps
in sections 5.3.3 through 5.3.5 for each spotlight individually.

5.3.4 Light injection

Light injection is initiated by invoking the LightPropagationVolumeData’s InjectLight
method with radiance, normal and depth RSM textures. Layered rendering is used to perform
the injection. LightData textures are first bound to the rendering pipeline as layered render
targets, each z slice of the 3D light volume texture corresponding to one layer. The LpvInject
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shader is then activated and number of points equal to the number of texels in the RSM is
submitted for rendering.

Inside the vertex shader, the built-in gl_VertexID attribute is first converted to a 2D
texel coordinate. The coordinate is then used to retrieve corresponding depth, intensity and
normal values from bound RSM textures. World position of the surfel is reconstructed from
its depth and transformed to volume texture coordinates. The coordinates are then shifted
slightly towards the light and along the surfel normal to minimize self-lighting. Surfel weight
factor is computed from view space depth. The data is then passed to the geometry shader.
There, the render target layer to store the final fragment data is selected depending on the
z element of the volume texture coordinates.

In the fragment shader, the SH representation of the virtual point light is computed in
the following manner: Cosine lobe oriented in the direction of the surfel normal is projected
to SH and resulting SH coefficients are scaled by surfel intensity and weight factor. Three
SH coefficient four-tuples are written — one for each color channel. Additive blending is
used to accumulate contributions from multiple virtual lights landing into the same volume
cell.

Note that if the light propagation volume contains multiple cascade levels, light is injected
into each individual cascade level separately

5.3.5 Blocker injection

To initiate blocker injection, the LightPropagationVolumeData’s InjectBlockers is in-
voked with desired diffuse reflectance, normal and depth RSM textures. When injecting
blockers, new GeometryData instance is used to accumulate contributions from separate
sources (section 3.10.2). Other than that, the process itself is almost identical to light injec-
tion and is implemented in the same LpvInject shader.

In the vertex shader, surfel depth, diffuse reflectance and normal are retrieved from
respective textures. Surfel position is reconstructed, volume texture coordinates and surface
weight factor are computed. Destination render target layer is selected in the geometry
shader from the volume texture z coordinate. In the fragment shader, blocker distribution
SH is computed as a projection of a cosine lobe oriented in the direction of the surfel normal
and scaled by the surfel weight. SH coefficients and surfel diffuse reflectance are stored. To
aggregate data from surfels landing in the same volume cell, additive blending is used for
SH coefficients and max blending for diffuse reflectance values.

5.4 Merging blocker information

If blocker information was injected from multiple sources, more than one GeometryData (ge-
ometry volume) instance is present for each LightPropagationVolumeData (cascade level).
In such case, data from intermediate volumes is iteratively merged to form one final geometry
volume.

To merge two volumes, resources from two GeometryData instances are bound to the
rendering pipeline and the LpvMergeGvs compute shader is executed. GPU side, blocker and
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reflectance data for a given grid cell is fetched from both volumes. The data is then aggre-
gated using the max operator and written back into one of the source volumes designated as
accumulator.

Merging N volumes is accomplished by designating the volume 1 as an accumulator and
executing the previously described merge step once for each of the remaining N −1 volumes.

5.5 Light propagation

In the section 3.10.3, the propagation process was originally explained in terms of a scatter
operation: For each source cell, compute the amount of light propagated to each of its six
neighbors. Implementing the scatter scheme on the GPU, however, would lead to a very
undesirable memory access pattern of one read and six atomic add operations per volume
cell. Alternatively, the propagation can be expressed as a gather operation: for each cell,
compute the amount of light it receives from each of its six neighbors. In this form, the
algorithm can be realized using much more reasonable six reads and one write per cell.

A single propagation step is implemented as a gather operation in the LpvPropagate
compute shader. The algorithm from section 3.10.3 is realized in GLSL code with support
for both the indirect illumination occlusion and extra light bounce simulation features. Inside
the shader, precomputed constants and hardware trilinear interpolation are used to optimize
performance. Besides outputting the propagation results, which will serve as an input for the
subsequent propagation iteration, the per iteration results are also added to an accumulator,
which will at the end store the final indirect illumination solution.

Light propagation in a single cascade level is initiated by invoking the Propagate method
of the LightPropagationVolumeData class with the desired number of iteration steps. Dou-
ble buffered temporary LightData are used to store inputs and outputs of intermediate
propagation iterations; the front and the back buffer are exchanged after each iteration. The
local LightPropagationVolumeData’s LightData instance serves to accumulate the result.
Similarly to injection, if the light propagation volume cascade contains multiple levels, each
individual level must be propagated separately.

5.6 Indirect illumination

To retrieve the indirect illumination from a light propagation volume, clients invoke the
DeferredRelight method of the LightPropagationVolume class. This routine realizes a
deferred additive pass over the GBuffer, in which the surface is lit with previously propagated
light.

The GPU side computation is implemented in the LpvRelight shader: Surface attributes
are first retrieved for a given GBuffer surfel. Volume texture coordinates are computed from
surfel world position, which is reconstructed from the surfel depth and camera parameters.
SH coefficients representing the per color channel light directional distribution are retrieved
from three 3D light volume textures using the computed volume texture coordinates. The
incident radiance is then computed by integrating the product of the light intensity distri-
bution and cosine lobe oriented in the direction of the surfel normal over the hemisphere.
Thanks to the SH representation of both functions, this amounts to a dot product.



40 CHAPTER 5. RENDERING SYSTEM IMPLEMENTATION

To mitigate light leaking and self illumination due to large cell sizes, final illumination can
be dampened. The dampening factor is derived from central difference of the SH coefficients
computed at small offsets along the surfel normal per color channel. Maximum over square
magnitude of the difference vectors is taken as the dampening factor.

The MarchGlossIntensity shader routine implements the Glossy indirect illumination
approximation feature by marching through the light volume along the refection direction
ray. Longer rays with more steps are used for glossier surfaces. Step contributions are
weighted by inverse distance from origin.

To facilitate smooth transitions between cascade levels and areas completely outside of
the light propagation volume, contribution from a each cascade level is faded out in locations
close to its border. To do this, an inlier factor of a cascade level is computed from the 3D
texture coordinate. The factor decreases from one to zero in the border area of the 3D
texture. As mentioned in the section 3.10.5, when moving with camera, the grid positions
of individual cascade levels are snapped to their respective cell sizes to reduce flickering
artifacts. For inlier factor computation, hoverer, coordinates into a virtual unsnapped volume
grid are used. This way, the inlier factors for world position vary smoothly with each camera
movement, and not only when the volume grid is resnapped.

If more than one propagation volume cascade is available, illumination coming from in-
dividual cascade levels is evaluated separately, each with its own inlier factor. The final
illumination is then computed as an average over all cascade levels. Note that glossy illumi-
nation is only computed for the finest cascade level.

5.7 Post-processing

Once all previous steps have completed, the resulting image is processed by Mophological
anti-aliasing (MLAA) [Res09] algorithm to smoothen jagged edges. MLAA works in three
passes: In the first pass, edge elements in the image are detected using color, depth or
normal based thresholding. Per pixel blend weights are then computed by analyzing edges
reconstructed from edge elements obtained in the previous step. Finally, blend weights
are used to smoothen edge texels by blending their neighborhood texel values into them.
The MlaaDetectEdges, MlaaComputeBlendWeights and MlaaBlendResult compute shaders
implement the three stages of the algorithm.

The anti-aliased image of the scene is then the gamma-corrected using the GammaCorrect
shader, after which it is ready to be presented.
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Auxiliary systems implementation

6.1 Rendering hardware interface

One implementation of the Rh* abstraction layer is provided, backed by the OpenGL version
4.3 API. The overall process of converting the functionality expressed in the Rh* interface is
fairly straightforward: OpenGlRhDevice implements both the RhDevice and RhCommandList
interfaces. Opaque OpenGL handles are wrapped using corresponding RhBuffer, RhTexture
and RhProgram implementations. Vertex array object configuration, i.e. how vertex buffer
data are interpreted inside a shader, is encompassed in a single RhInputLayout. Pipeline
state objects map to a set of OpenGL state values and so on.

To minimize the number of state changes propagated to the actual driver, active OpenGL
state is tracked on the CPU side in the OpenGlRhState class. State setting (via OpenGL
routines) is delayed until a command to draw primitives or dispatch a compute operation
arrives. When that happens, all changed resource binding a pipeline state is committed to
the driver through appropriate API invocations. This way, the number of state changes is
further minimized by only committing state used to perform some work.

To make switching between different pipeline states slightly more convenient, state object
singletons can be accessed through template classes. Typically, with an object such as
RhDepthStencilState, only one instance per combination of parameters (depth test on/off,
depth compare function, stencil operation, etc.) ever needs to be created. With C++
templates, the one singleton per parameter combination design can be easily achieved by
using a static variable inside a static method inside a template class. This approach is
realized for example in the RhStaticDepthStencilState class.

6.2 Objects and components

At the very top of the object-component hierarchy designed in the section 4.3 resides the
World class, which serves as a container for root instances of the Object class. Objects are
never allocated directly, but rather immediately created within a specified World using its
CreateObject method. Inside an Object, its components are stored by their runtime type
in a hash table. The implementation leverages the standard C++ runtime type information
system, namely the typeid operator, to create a per type unique TypeToken value. Similarly
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to Objects, instances of Component subclasses are never allocated directly. They are instead
added to an object by invoking the AddComponent method with a specified TypeToken.

Both Objects and Components can be marked for destruction using their Destroy meth-
ods. The destruction itself is postponed until the very end of the frame to minimize the
likelihood of following a dead object or component reference. Clients may choose to respond
to predefined events in the component’s life-cycle by overriding dedicated virtual methods.
Events interceptable this way include per frame update, transform change, attachment to an
object or destruction. Finally, replication of entire object hierarchy subtrees is supported in
the Object’s Clone method. The method performs a deep copy of the object including all
its children in the transform hierarchy.

6.3 Asset loading

External 3D models are loaded into the demo application’s runtime via AssetManager’s
LoadModelAsObjectHieararchy method. First, the Assimp library is used to parse the
specified 3D file format, returning an instance of the aiScene structure. The model di-
rectory is then searched for <model-name.ext>.ppinfo file. In this file, a user can specify
additional operations to execute for the imported model such as computing flat or smooth
normals, flipping triangle winding and ignoring certain objects. Once all custom operations
are executed, meshes contained in the imported scene are classified according to their vertex
attribute layout. Vertex attribute buffers, one per vertex attribute layout, are then up-
loaded to the GPU in interleaved format yielding a VertexSource object. MeshData objects
containing necessary draw information are then created for distinct scene meshes. Finally,
the node hierarchy inside the aiScene structure is traversed and reconstructed as a tree
of Objects, each with a corresponding Transform and MeshRenderer components. During
this process, referenced materials are converted into instances of the Material class. If a
particular material references any textures, images are loaded into memory using the ResIL
library and uploaded onto the GPU as RhTextures.

Object hierarchy snippets can be stored inside .prefab files and reused throughout multi-
ple scenes. Individual demo test scenes are defined inside .scene files, which contain definition
of the demo World and additional meta parameters like camera move speed, near/far planes
and optional skybox. Both .prefab and .scene files use the same JSON-inspired format to
describe object hierarchies. A recursive top down parser for .scene and .prefab files is imple-
mented in the InitializeFromConfig method of the ClpvDemo class.

6.4 Application life-cycle

When the application is run, the first step is to create a system Window and initialize platform
message handlers. This task is delegated to the GLFW library. Once the initialization is
complete, the application enters the MainLoop::Start method which it doesn’t leave until
the client requests the application to quit.

During one main loop iteration, platform messages indicating events such as cursor move,
window resize or a key press are first processed. Afterwards, all Components currently active
in the application have their Update method executed. Updates are batched per component
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type. Once all components are updated, the scene is rendered. Debug visualizations and
GUI are then drawn over the scene image and the result is presented. At the end of the
frame, the queue of objects and components that were marked for destruction during the
frame is processed until no remain.

After leaving the main loop, all Objects are destroyed and cached assets are released
before returning from the main function.

6.5 Profiler

GPU and CPU side timing responsibilities are handled by the Profiler class. Statistics for
a single frame are delimited by calls to Start and EndFrame methods. Between these two
calls, clients signal start and end of named CPU or GPU timespan using a dedicated set of
methods. The timespans may be arbitrarily nested and chained, yielding a tree structure.
For each frame, Profiler additionally keeps an instance of RhStats structure, containing
stats on the number of draw and compute commands executed during the frame.

For CPU side timing Profiler relies on the precision platform timer exposed by the
GLFW library; GPU timing is supported using the RhTimer interface, a GPU stopwatch
abstraction built using graphics API timestamping functionality. CPU and GPU statistics
for last 500 frames are stored in a circular buffer. Clients may either read raw information
from the timing trees or the call Profiler::ShowBreakdownmethod to display a visualization
depicted in the figure C.2.

6.6 Rendering system support

6.6.1 GPU program utilities

Resources used in a RhProgram are referred to using logical indices, which must be queried
with the shader-side name of the parameter. While a good design, the indices need to be
required after each shader recompilation with a lot of repetitious code. For this reason, the
framework provides the GlobalShaderDefinition and ShaderResourceBlockBase classes.

A shader resource block layout inheriting from ShaderResourceBlockBase can be defined
using a set of macros to specify each individual program resource. GlobalShaderDefinition
then associates a shader source file with a runtime Shader object and a particular subclass
of ShaderResourceBlockBase. Defining a GPU program this way conveys two main ad-
vantages: Easy access to the compiled program singleton and typesafe binding of program
resources via associated resource block type.

Recompilation of programs defined using GlobalShaderDefinition can be manually
forced through debug GUI, which is very useful during development. This is taken one step
further on the Windows OS version of the application, where the recompilation is triggered
automatically in response to a shader source file change.
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6.6.2 Render target reuse

Many temporary render targets are used while rendering the final frame. Render target
pooling is a technique which reduces GPU memory footprint by encouraging render target
reuse. Whenever a texture render target is needed somewhere in code, a request is made
to the RenderTargetCache with a RenderTargetDesc specifying the properties of the tex-
ture to retrieve. The caller then receives a handle to a CachedRenderTarget, which it may
use for an arbitrary amount of time. Once the user relinquishes the ownership of the ac-
quired render target, it returns to the RenderTargetCache and may be freely reused by
others. CachedRenderTargets that haven’t been used for a specified number of frames are
automatically evicted from the cache and associated GPU resources are destroyed.

6.7 Reference path-tracer

A rudimentary path-tracer is implemented in the PathTracer class to serve as the reference
global illumination algorithm. Path tracing is accelerated by a KdTree containing all scene
object triangles. Three position, normal and texture coordinate vectors are stored for each
triangle along with a material id. The structure is built on the CPU using the midpoint-split
strategy.

Path-tracing itself takes place on the GPU, realized in the PathTrace compute shader.
Ray-triangle intersections are resolved using the supplied kd-tree data. Both push-down and
short-stack [HSHH07] kd-tree traversal techniques are implemented, but short-stack is not
actually used as it only seemed to decrease performance on tested GPUs. Normalized Phong
BRDF and light types used in the main application (point/spot/directional) are supported.
Russian roulette and a max depth parameter are used to terminate path generation.

6.8 Debug visualization

To ease the development process, the framework exposes several Debug visualization facilities
in the debug namespace. Support for drawing debug scene-depth-aware lines is provided
through a set Draw* calls. This functionality is useful when displaying object bounding boxes,
light effect volumes, camera positions and similar. During the frame, lines are accumulated
in a CPU side buffer, which, at the end of the frame, gets uploaded onto the GPU and used
to draw all lines in one draw call. For line sets that are prohibitively large to submit every
frame, a LineBatch can be created once and then submitted efficiently multiple frames. The
demo application uses this functionality to display kd-tree bounds.

To verify content of CachedRenderTargets, the OverlayRenderTarget method can be
used overlay texture contents over the final frame image. Basic layout algorithm ensures
that multiple displayed textures don’t overlap each other. The debug GUI supports dy-
namically displaying and hiding of render targets which have been tagged in code using the
ExposeRenderTarget call.

GPU programs are supplied for visualization of light propagation volume data. Cascade
coverage visualization mode shows how individual light propagation volume cascade levels
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affect the scene. Blocker and light distribution SH in geometry and light volumes is visual-
ized using spheres colored from red to green depending on the function value in the given
direction. Instanced rendering is used to generate spheres for all volume grid cells in the
VisualizeSHGrid shader. The voxelized scene representation stored in the final geometry
volume can also displayed, each non-empty voxel visualized as a cube with the stored voxel
diffuse reflectance. This visualization option is implemented in the VisualizeVolume shader,
which uses the geometry shader stage to generate a cube for every voxel on the fly.

6.9 GUI

The ImGui library is used to render the demo application GUI. The GUI consists of four main
windows depicted in figure C.1. Most important is the object hierarchy inspector, which can
be used to view and edit Object Components. Also useful is the debug info window, which
shows latest frame timing, GPU stats and contains a list of CachedRenderTargets available
for visualization. Remaining two windows are used to control path-tracing mode and display
control hotkeys. Profiler per frame timing breakdown is also visualized using ImGui.
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Chapter 7

Evaluation and verification

In this chapter, the implemented Cascaded Light Propagation Volumes is tested on several
scenes of varying geometrical and lighting complexity. Algorithm performance and quality
of the resulting image is analyzed and compared with a reference solution computed via
path-tracing.

7.1 Scenes

The testing dataset consists of six scenes. 3D models used in the scenes were acquired
from the McGuire Graphics Data repository [Mor15] and various other free online model
repositories [tur15, t3d15]. Table 7.1 contains detailed scene parameters. Individual scene
thumbnails are shown figure 7.1 .

The first scene is a simple Cornell box setup with a single moving spotlight. It is designed
to illustrate color bleeding and inspect stability of the solution for a moving light source.
Light propagation volume position is fixed in this scene, only a single cascade level is used.

The second scene, titled Bleeding and Gloss (B&G), features several rotating cubes with
differently colored, high contrast faces. Illumination is provided by a single directional light
source. Purpose of this scene is to stress test the stability of the solution in a scene with
dynamic objects. Scene floor is also assigned material with varying glossiness to test the
glossy indirect illumination ray-marching. Light propagation volume in this scene is also a
single fixed cascade level.

The third scene features a slightly modified version of the Conference Room model by
Anat Grynberg and Greg Ward. Blinders covering windows were removed and the originally
one-sided walls and ceiling were fixed using simple box meshes. The scene is lit by a single
directional light source which enters the scene by the newly uncovered windows. A single
moving model of a dwarf is used to obstruct the incoming light. This is the first of the more
complex scenes and the last one to use a single fixed light propagation volume.

The fourth scene, Dabrovic, is set in the Marko Dabrovic’s version of the Sponza palace
atrium. It is additionally filled with a high number of static scenery objects and a few moving
animal models. Lighting simulates a night time scenario: three moving spotlights are used to
illuminate the scene. Light propagation volume cascade with three levels attached to camera
is used to compute indirect illumination.
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The fifth scene tests the algorithm with point lights and moving objects. Two point light
sources are placed inside the Sibenik cathedral interior and each is surrounded by a circle of
rotating objects. This scene also uses the three level light propagation volume cascade.

The final, sixth scene is set in the Crytek Sponza palace atrium model. Several moving
objects are added to the atrium and first floor. Illumination is provided by a directional light
modeling sun and a point light circling around the atrium ground floor. Light propagation
volume with three cascade levels and moving with camera is used in this scene.

7.2 Testing environment

The demo application was compiled with the Microsoft Visual C++ Compiler 2013 in release
mode as a 32bit executable. The tests were run on two different machines: powerful desktop
machine (GTX980) and a lower mid range laptop (930M). Spec details of each hardware
setup are listed in the table 7.2.

GTX980 930M
GPU GeForce GTX980 GeForce 930M
CPU Core i7-2600K Core i5-4210M
RAM 16GB 8GB
OS Windows 7 64b Windows 7 64b
Driver v355.98 v355.98

Table 7.2: Testing hardware setup details

7.3 Performance evaluation

This section discusses performance characteristics of our Cascaded Light Propagation Vol-
umes implementation. All timings presented are from the GPU, measured with timestamp
queries. The values are averages over samples from 30 frames. Measurements were taken in
windowed mode with the application set to run as fast as possible (no fps cap). Tables 7.3
and 7.4 list test scene timings for 512× 512 and 1024× 1024 resolutions respectively.

7.3.1 G-buffer blocker injection

There are two factors affecting the time complexity of the g-buffer blocker injection (IGB)
stage: g-buffer resolution and number of cascade levels. The g-buffer is always downsampled
to roughly 128× 128 resolution before injection. The downsampling is realized by successive
halving, so an extra downsampling iteration is necessitated roughly each time the resolution
doubles. This is however only a minor cost.

The major factor in g-buffer injection is the number of cascade levels because blocker
information is injected into each level individually. This is clearly illustrated in the measured
data: The IBG step is two to three times faster in the Conference scene than in the Sibenik
and Sponza scenes because the latter two have a light propagation volume with three cascade
levels, whereas Conference only has only one cascade level.
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Scene IGB GRSM IL IB PRP REL TOTAL
GTX980, 512× 512 px

Cornell N/A 0.01 0.19 0.10 0.36 0.03 0.71
B&G N/A 0.01 0.03 0.03 2.16 0.09 2.34
Conference 0.06 0.14 0.02 0.02 0.42 0.05 0.73
Dabrovic N/A 0.24 0.48 0.42 2.23 0.05 3.42
Sibenik 0.17 17.66 2.22 2.27 2.96 0.06 25.34
Sponza 0.16 1.69 1.17 1.23 3.02 0.05 7.32

930M, 512× 512 px

Cornell N/A 0.04 0.43 0.30 0.37 0.18 1.32
B&G N/A 0.04 0.19 0.16 7.21 0.57 8.17
Conference 0.43 1.55 0.16 0.13 0.80 0.29 3.36
Dabrovic N/A 2.37 2.21 1.84 11.24 0.35 18.01
Sibenik 0.91 11.04 9.29 7.52 12.44 0.43 41.63
Sponza 1.02 12.68 6.48 5.28 15.42 0.44 41.32

Table 7.3: Scene timings for 512×512 resolution. IGB: G-buffer downsampling and injection.
GRSM: Reflective shadowmap generation. IL: Injecting RSM texels to light volume. IB:
Injecting RSM texels to geometry volume. PRP: propagation. TOTAL: sum of all steps.
All values are in ms.

7.3.2 Reflective shadowmap generation

Complexity of the reflective shadowmap generation stage (GRSM) depends on the number
of reflective shadowmaps generated, their resolution and the number of triangle primitives
rendered. One RSM suffices for each spot and directional light. Point lights are much more
expensive in this context, since they require six separate RSMs to be rendered. Essentially
the Total RSMs triangles statistic in the table 7.1 should constitute a reasonable relative
measure of complexity of this step. And it actually does, except for one outlier: the Sibenik
scene on the GTX980 hardware, whose GRSM step takes an order of magnitude longer
to execute than the same step for the theoretically more complex Sibenik scene. A brief
inspection reveals, that ScenePrimitives in the Sibenik scene are very granular and over
1200 draw calls are made to render a single RSM, which is a lot for a scene of this size. But
the ordinarily vastly inferior 930M hardware handles GRSM for Sibenik just fine, relatively
to other scenes. Essentially, the main problem here is that the primitive submission logic in
the demo application is extremely primitive: no frustum culling is performed so all primitives
are always rendered; and the primitives aren’t sorted by their material, shader or distance
from camera at all. Submitting so many primitives in arbitrary order can lead to a lot of
resource switching and GPU pipeline state invalidation, which could have more pronounced
effect on the more advanced GPU. So to find out what really causes the horrible slowdown,
one would start with the primitive submission optimization and see what happens.

7.3.3 Light and blocker injection

Inject light (IL) and inject blockers (IB) should scale linearly with the number of RSM texels
times the number of cascade levels. We would expect the (IL) stage to take slightly longer
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Scene IGB GRSM IL IB PRP REL TOTAL
GTX980, 1024× 1024 px

Cornell N/A 0.01 0.17 0.16 0.36 0.08 0.78
B&G N/A 0.01 0.03 0.03 2.14 0.32 2.53
Conference 0.10 0.14 0.02 0.03 0.42 0.15 0.86
Dabrovic N/A 0.24 0.59 0.46 2.23 0.15 3.68
Sibenik 0.20 15.99 2.78 2.02 2.58 0.14 23.71
Sponza 0.22 1.16 1.65 1.21 3.03 0.16 7.44

930M, 1024× 1024 px

Cornell N/A 0.05 0.46 0.32 0.38 0.66 1.86
B&G N/A 0.04 0.19 0.16 7.24 2.16 9.78
Conference 0.78 1.56 0.16 0.13 0.81 1.04 4.46
Dabrovic N/A 2.37 2.45 1.98 11.41 1.27 19.47
Sibenik 1.74 11.04 9.25 7.49 12.61 1.43 43.55
Sponza 1.88 12.75 8.14 6.20 15.63 1.55 46.15

Table 7.4: Scene timings for 1024× 1024 resolution. See table 7.3 for legend.

because the shader does extra computation shifting VPLs to light and writes two times more
data than the (IB) stage. While the GTX980 hardware is likely too fast to care, the data
measured using the 930M shows that the (IB) stage is consistently faster. Change in display
resolution should not affect IL and IB stages at all. Indeed the data does not show any
consistent pattern, any fluctuations likely be due to variance.

7.3.4 Propagation

In the propagation step (PRP), each volume cascade level is processed separately, indicating
linear scaling with the number of cascade levels. Before the propagation begins, geometry
volumes are merged. The merging is iterative, one iteration executed for each intermediate
geometry volume beyond the first. Once the merging is done, the propagation itself begins. A
preset number of iterations is executed and every iteration, all light propagation volume cells
are processed. This step this expectedly scales linearly with three factors: the aforementioned
number of cascade levels; number of cells per cascade; and the number of propagation steps.
The Total EPS statistic from the table 7.1 should roughly correspond to the time spent in
the PRP stage. Note the timing for the PRP stage of the scenes Dabrovic and Sibenik in
any timing set. Both have the same number of cascades, number of propagation iterations
and number of cells per cascade, yet PRP is consistently slower for Sibenik. The difference
is time spent merging geometry volumes: for Dabrovic scene, only 6 (3 cascades × (3 RSMs
- 1)) merge steps must be executed, whereas 36 (3 cascades × (12 RSMs + G-buffer - 1))
are needed for Sibenik.

7.3.5 Relighting

The relight (REL) step is a full-screen g-buffer pass, so the timings are definitely expected
to scale linearly with the number of texels in the g-buffer. We can confirm this easily by
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comparing the timing datasets for 512× 512 and 1024× 1024 resolution. The performance
of the relight shader additionally depends on the number of cascade levels, and whether
gradient dampening and glossiness ray-marching features are enabled. Resolution of the
light propagation volume also plays a role since smaller 3D textures fit better into GPU
memory caches.

The Cornell scene serves as a baseline: it has one cascade level and REL stage has no
extra features enabled. It is consistently the fastest. The B&G scene still uses only one
cascade level but it has much finer resolution and also uses the ray-march gloss feature. We
can observe a slowdown from the Cornell to the B&G by the factor of three to four in all
timing datasets. Toggling the ray-march gloss feature on-and off reveals, that it is solely
responsible for the extra time. The conference scene also uses only one cascade level and the
gradient dampening feature, which turns out inexpensive compared to ray-marched gloss.
If we compare the number of texture fetches executed by the ray-march and dampening
techniques, we see that it is expected: gradient dampening uses 6 texture fetches, whereas
ray-march in the B&G scene may perform up to and over 24 texture fetches depending on the
exact number of steps. Dabrovic, Sibenik and Sponza scenes use no extra features during the
relight step but data is fetched from three cascade levels. On GTX980, this is performance-
wise roughly as expensive as turning on gradient dampening for a single cascade level, on
930M even more so.

7.4 Quality analysis

−0.16

0

0.16

(a) (b) (c)

Figure 7.2: The Cornell scene: (a) CLPV (b) Path-traced reference (c) difference a - b.

In this section we analyze the correctness of indirect illumination computed using CLPV
a inspect how algorithm parameters affect the quality of the solution. Stability of the solution
under motion is also evaluated.

Figures 7.2 to 7.7 compare an image generated using the CLPV algorithm to a path
traced reference solution for test scenes from table 7.1. Path-tracer was set to terminate
path-generation after the second scattering event to match the CLPV possibilities.

Light leaking through thin geometry is visible in the majority if scenes, most notably the
front vertical block in the Cornell scene (figure 7.2), tree group in the Sibenik scene (figure
7.6) and point light illumination leaking through the floor on the left side of the Sponza scene
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Figure 7.3: The B&G scene: (a) CLPV (b) Path-traced reference (c) difference a - b.
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Figure 7.4: The Conference scene: (a) CLPV (b) Path-traced reference (c) difference a - b.

(figure 7.7). This is inherent weakness of the discretized representation of the scene. Using
occlusion in the propagation process and gradient dampening during relighting mitigates the
issue in some cases, but not every time. Figure 7.8 shows how in the Conference scene, the
attenuation factor helps to get rid of almost all light leaking through the wall; in the B&G
scene, it however introduces major artifacts.

The other problem we encountered is, that the propagation scheme smears the illumina-
tion distribution in all directions heavily just after a few iterations. One result of this is that
higher frequency details are lost — floor areas that receive color from the lit cubes in figure
7.3 are well defined in the reference image but smeared in the CLPV solution. Other, more
visible, result of this smearing is self illumination, also best illustrated in the B&G scene on
the over-brightened back wall and lit cubes.

To account for light traveling over longer distances, the CLPV algorithm must either use
a grid with large cells or execute many propagation iterations. The figure 7.9 illustrates how
the number of propagation steps affects the solution in a simple scenario. We can see the
indirect illumination reaches more distant areas of the scene (with respect to the the initial
injection point) with more propagation steps. The related case of varying cell sizes and
leaving the number of propagation steps fixed is shown in the figure 7.10. We observe, that
the effective distance the light travels expectedly decreases with smaller cell sizes, additionally
using too fine a grid causes artifacts in the areas receiving direct illumination, likely due to
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Figure 7.5: The Dabrovic scene: (a) CLPV (b) Path-traced reference (c) difference a - b.
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Figure 7.6: The Sibenik scene: (a) CLPV (b) Path-traced reference (c) difference a - b.

self illumination.
One of the problems we observed with our implementation of the CLPV algorithm is

that no single LPV grid configuration fits ideally all scenes. We finally settled on three
cascade levels, each with 32× 32× 32 resolution. Cell size in the finest grid is rougly 30cm
and doubles with each following cascade level. 12 to 16 iterations are used to propagate
illumination through each level. This configuration seems to work reasonable well in the
Dabrovic, Sibenik and Sponza scenes.

The algorithm is stable under camera motion as can be seen in the Sibenik, Dabrovic
and Sponza scenes. Remaining scenes use a fixed LPV grid, so camera motion is a non-issue.
The algorithm is however sensitive to sudden high-contrast changes in the inject VPL colored
intensity. The propagated indirect illumination then flickers in areas near the LPV grid cells,
in which the sudden injection fluctuation took place. This issue is immediately visible in the
B&G scene in motion. As differently colored faces of the rotating cube receive illumination
and their surfels are injected into different LPV cells, visible flicker occurs on the scene floor.
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Figure 7.7: The Sponza scene: (a) CLPV (b) Path-traced reference (c) difference a - b.

(a) (b) (c) (d)

Figure 7.8: Gradient based attenuation: (a) Conference: disabled. (b) Conference: enabled.
(c) B&G: disabled. (d) B&G: enabled.

(a) 4 steps (b) 8 steps (c) 16 steps (d) 32 steps

Figure 7.9: Cornell scene: Fixed 8×8×7 LPV grid resolution, varying number of propagation
steps.
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(a) 8× 8× 7 (b) 15× 16× 15 (c) 31× 32× 29 (d) 59× 62× 57

Figure 7.10: Cornell scene: Fixed 16 propagation steps, varying LPV grid resolution. Top
image row shows voxelized scene from geometry volume to provide cell size reference. Note
that the grid is regular, a but some visualization lines did not pass the depth test when
rendering.



Chapter 8

Conclusion

Global illumination algorithms are essential for generating high fidelity images. They account
for indirect illumination generated by multiple light scattering events, which is responsible
for visual phenomena the human eye is trained to expect from the real-world. In real-time
rendering, for largely static scenes, the best solution to computing indirect illumination is
to compute it before the application runs. This is however not possible in dynamic scenes,
where geometry, surface properties, lighting or camera position might change every frame.
With recent rendering hardware advances; it has become possible to efficiently approximate
indirect illumination in dynamic scenes.

8.1 Summary

The reviewed real-time indirect illumination algorithms usually presented a trade-off between
visual fidelity of the solution and time necessary to compute it. They also differed in the level
of scene dynamism they supported. In this thesis, we focused on implementing the Cascaded
Light Propagation [KD10] algorithm. CLPV works by injecting direct illumination into a
volume grid and them propagating it in an approach similar to grid based fluid simulation
techniques.

Our implementation of the CLPV technique achieves interactive frame rates on lower
mid range and real time speeds on higher end rendering hardware. The algorithm is fully
GPU-bound as that is where all the work takes place. The rendering time dedicated to
the algorithm can be controlled by adjusting the number of cascades level, grid resolution,
number of injected VPLs, propagation steps as well as by toggling the glossiness ray-march,
gradient attenuation and GV occlusion features. Fully dynamic scenes are supported, requir-
ing no preprocessed information. Moving camera, geometry and light sources are handled
seamlessly.

The technique is unfortunately not free from artifacts. Light leaking through thin objects
and self-illumination are an inherent result the coarse discretization of the scene due to
relatively large cell sizes and the lack of complete representation due to limited area covered
by the g-buffer and reflective shadow maps. Additionally, the low order spherical harmonic
representation of illumination distribution function as well as the coarse 6-axial propagation
scheme make it hard to capture any higher frequency and local detail. However, perhaps
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the most inconvenient issue is, that the same parameters used to control the algorithm
performance described in the previous paragraph also affect the results in a hard to predict
manner. It is therefore often hard to come up one parameter configuration that would works
equally well in multiple scenes. Qualitatively, the algorithm is able to produce visually
pleasing results with impressively pronounced light bleeding. The results themselves do not
approach the quality of the path traced solution, as is expected since the CLPV algorithm
only aims for a fast, visually pleasing approximation.

8.2 Future work

Several enhancements come to mind that could readily improve the quality of images gen-
erated by the current implementation. Since the light propagation volumes are not suitable
for capturing local lighting events, algorithm authors themselves recommend supplement-
ing the indirect illumination obtained from light propagation volume with a screen space
light transfer solution. Either basic screen space ambient occlusion [BS08] or more advanced
techniques [BSD08, RGS09] could be leveraged to add the sought after local detail.

The other relatively simple extension would be adding support for area lights and light
emitting particles. Supporting area light sources would only amount to sampling the source
surface for virtual point lights and injecting them into the light propagation volume. Simi-
larly, light emitting particles could be injected as virtual point lights directly.

Performance-wise the RSM rendering could benefit from frustum culling and better prim-
itive submission ordering as mentioned earlier. Resulting RSM could also be importance
sampled for VPLs instead of blindly injecting each texel. All shaders could also take ad-
vantage of actually optimizing the instructions required to accomplish their task. Finally,
relighting step could be sped up by only executing it on g-buffer texels inside the light prop-
agation volume. An approach identical to the one described in the section 5.3.2 could be
used to stencil out texels that need processing.
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Appendix A

List of Abbreviations

API Application Programming Interface
BRDF Bidirectional Reflectance Distribution Function
CLPV Cascaded Light Propagation Volumes
CPU Central Processing Unit
g-buffer Geometry Buffer
GPU Graphics Processing Unit
GUI Graphical User Interface
LPV Light Propagation Volume
RSM Reflective shadowmap
SH Spherical harmonics
SM Shadowmap
VPL Virtual Point Light
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Appendix B

Nomenclature

~ω arbitrary direction
ϕ azimuth
fr Bidirectional Reflection Distribution Function
d~ω differential solid angle
θi incident angle
~ωi incident direction
~ωo outgoing direction
θ polar angle
Type programming language type system element or method
ρ reflectance, albedo

65



66 APPENDIX B. NOMENCLATURE



Appendix C

Image Gallery
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68 APPENDIX C. IMAGE GALLERY

Figure C.1: The application GUI and debug features. Scene hierarchy inspector and active
object detail window (top-left). Controls and Path-tracer windows (top-center). Debug info
window with latest frame time measurements and render target visualization panel (top-
right). Selected scene object bounds rendered with wireframe (center). Visualized g-buffer
normal channel render target (bottom-left). See the manual.pdf document enclosed with the
project for details.

Figure C.2: CPU and GPU time measurements can be displayed in a hierarchical visualiza-
tion.



69

Figure C.3: Cornell scene global illumination via CLPV. (top) Indirect illumination. (bot-
tom) Direct and indirect illumination.
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Figure C.4: B&G scene global illumination via CLPV. (top) Indirect illumination. (bottom)
Direct and indirect illumination.
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Figure C.5: Conference scene global illumination via CLPV. (top) Indirect illumination.
(bottom) Direct and indirect illumination.
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Figure C.6: Dabrovic scene global illumination via CLPV. (top) Indirect illumination. (bot-
tom) Direct and indirect illumination.
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Figure C.7: Sibenik scene global illumination via CLPV. (top) Indirect illumination. (bot-
tom) Direct and indirect illumination.
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Figure C.8: Sponza scene corridor global illumination via CLPV. (top) Indirect illumination.
(bottom) Direct and indirect illumination.



Appendix D

Contents of Attached CD

sefcipe2_thesis/ - project directory
|--data/ - application resources
| |--models/ - 3D model database
| |--prefabs/ - definitions of common scene objects
| |--scenes/ - definitions of testing scenes
| |--shaders/ - GPU program sources
| ‘--textutes/ - scene skybox textures
|--doc/html/ - Doxygen-generated code documentation
|--msvs/ - Microsoft Visual Studio 2013 project resources
|--src/ - source code
| |--clpvdemo/ - demo application specific source code
| ‘--tse/ - reusable framework source code
|--thesis/ - pdf and latex sources of this thesis
|--win32release/ - Win32 binaries of the demo application
|--clpvdemo.bat - launch script for enclosed Win32 binaries
|--contents.txt - contents of the project directory
‘--manual.pdf - demo application manual
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