
MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

473276Personal ID number:Kotov IgorStudent's name:

Faculty of Electrical EngineeringFaculty / Institute:

Department / Institute: Department of Computer Graphics and Interaction

Open InformaticsStudy program:

Human-Computer InteractionBranch of study:

II. Master’s thesis details

Master’s thesis title in English:

Non-linear Playback of Collection of Audio Samples for Video Games

Master’s thesis title in Czech:

Nelineární přehrávání v rámci množiny zvukových vzorků v kontextu videoher

Guidelines:
Audio effects in video games are generally either “one-shots”, i.e. one-off triggered audio effects which are played back
whenever a finite and time-limited action happens (e.g. a footstep, a gutshot, etc.), or “sustained sounds”, which are played
as long as an action is in progress and its acoustic activity should be illustrated to the player (e.g. running car engine,
howling wind, rain).
Investigate the state of art of implementation of sustained sounds in video games. Investigate current technologies used
in this context (e.g. FMOD Studio) and how they enable the video game developers to parametrize the playback of those
sounds in real time, so that they can make the sound reflect immediate changes in the video game. Investigate various
methods of audio synthesis, especially wavetable (PCM-based) synthesis and granular synthesis, which enable that the
sounds in the video games are generated using existing recordings (samples).
Design and implement a system which would enable a non-linear playback of those recordings. The system may
automatically identify suitable loop points and cross-fade points between different samples. Implement an API to this
system so that it may be used in the context of video games (FMOD Studio, Unity, or other platforms). Test the implemented
system by (1) running a perception test with at least 5 participants, and by (2) implementing a very simple video game
illustrating the use of such a mechanism. The exact extent and scope is to be discussed with the supervisor of the thesis.

Bibliography / sources:
Karen Collins (2013) Playing with Sound. MIT Press

Name and workplace of master’s thesis supervisor:

doc. Ing. Adam Sporka, Ph.D., Department of Computer Graphics and Interaction

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: __________Date of master’s thesis assignment: 15.02.2019

Assignment valid until: 20.09.2020

prof. Ing. Pavel Ripka, CSc.

Dean’s signature
Head of department’s signaturedoc. Ing. Adam Sporka, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VICPage 1 from 2CVUT-CZ-ZDP-2015.1

CZECH TECHNICAL UNIVERSITY

IN PRAGUE

FACULTY OF ELECTRICAL

ENGINEERING

Department of Computer Graphics and Interaction

Open Informatics

Diploma thesis

Non-linear Playback of Collection of Audio
Samples for Video Games

Author: Bc. Igor Kotov
Supervisor: doc. Ing. Adam Sporka, Ph.D.

Prague, 2019

iii

Declaration

I hereby declare that I have completed this thesis independently and that I have
used only the sources (literature and webpages) listed in the enclosed bibliography.

Prague, 31. May 2019
.......................................

signature

Acknowledgements

I would like to express my deepest gratitude to my supervisor, doc. Ing. Adam
Sporka, Ph.D., for his kind and willing guidance over the course of research and
writing of this thesis. I would also like to thank all participants of the perception
testing for their time and interest.

Bc. Igor Kotov

Název práce: Nelineárńı přehráváńı rámci množiny zvukových vzork̊u
v kontextu videoher

Autor: Bc. Igor Kotov

Obor: Otevřená informatika

Druh práce: Diplomová práce

Vedoućı práce: doc. Ing. Adam Sporka, Ph.D.

Fakulta elektrotechnická ČVUT

Abstrakt: Tato diplomová práce se zabývá návrhem, implementaćı a testováńım
algoritmu pro zpracováńı digitálńıho signálu, který by mohl detekovat všechny
možné body přechodu v hudebńım souboru s pevným rytmem tak, aby jeho ne-
lineárńı přehráváńı na základě těchto přechod̊u bylo bezproblémové a přirozené.
Tento algoritmus by mohl být použit v r̊uzných oblastech elektronické zábavy, jmen-
ovitě v adaptivńım zvukovém designu pro videohry.
Nejprve je uveden přehled současných populárńıch technik pro realizaci interak-
tivńıho zvuku s př́ıpady použit́ı vzorku. Diskuse se pak zaměřuje zejména na po-
jem nelineárńıho přehráváńı zvukových soubor̊u přes přechod a dotýká se několika
metod zvukové syntézy. Poté je poskytnuta nezbytná podkladová práce, analýza
výzev, které představuj́ı úkoly programováńı a navrhovaná řešeńı. Dále je podrobně
popsána implementace algoritmu a podp̊urná technologická rozhodnut́ı. Využit́ı
nového př́ıstupu je pak demonstrováno na jednoduché GUI aplikaci. Testováńı
vńımáńı je prováděno, jeho metoda a výsledky jsou diskutovány. Následně je
ukázková ukázka použit́ı algoritmu pro účely procedurálńıho zvuku demonstrována
na demo hře, která se oṕırá o problémově přizp̊usobené API. Dále jsou navržena
perspektivńı vylepšeńı uvedené techniky.

Kĺıčová slova: pracováńı digitálńıch signál̊u; procedurálńı audio; adaptivńı hudba;
Unity; zvukové srovnáńı

Title: Non-linear Playback of Collection of Audio Samples for
Video Games

Author: Bc. Igor Kotov

Abstract: This master thesis is concerned with designing, implementing, and
testing a digital signal processing algorithm that could detect all possible transition
points within a rigid-beat music file so that its non-linear playback based on those
transitions is seamless and natural. That algorithm could be employed in various
fields of electronic entertainment, namely, in adaptive sound design for videogames.
First, an overview of currently popular techniques for realizing interactive audio is
given with sample use cases. Then, the discussion focuses particularly on the notion
of non-linear audio file playback via transitioning and touches several methods of
sound synthesis. After that, the necessary background of the work is provided,
the analysis of challenges that the programming task poses as well as of suggested
workarounds is done. Next, the algorithm’s implementation and the supporting
technological choices are thoroughly described. Then, the usage of the new approach
is demonstrated on a simple GUI application. Perception testing is carried out, its
method and results are discussed. Afterwards, sample usage of the algorithm for
the purposes of procedural audio is demonstrated on a demo game that relies on
a problem-tailored API. Finally, prospective enhancements of the shown technique
are proposed.

Key words: digital signal processing; procedural audio; adaptive music; Unity;
sound comparison

Contents

1 Introduction 1

2 Survey 3

2.1 FMOD Studio fundamentals . 3

2.2 FMOD Studio features for interactive audio design 5

2.3 Playback transitioning . 6

2.3.1 Transitioning within sound themes 7

2.3.2 Transitioning between sound themes 8

2.4 Audio synthesis . 11

2.4.1 Wavetable synthesis . 11

2.4.2 Sample-based synthesis . 12

2.4.3 Granular synthesis . 13

2.4.4 Audio synthesis for playback non-linearity 14

2.5 Recapitulation . 14

3 Analysis 17

3.1 Essentials of audio sampling . 18

3.2 Fourier Transforms . 19

3.3 Spectrum similarity metrics . 20

3.3.1 Bin-by-bin comparison . 21

3.3.2 Single-attribute encoding . 22

3.3.3 Compressed-attribute entity 24

3.4 Beat-restricted processing of sample chunks 26

3.5 Findings . 27

4 Algorithm implementation 29

4.1 Technical Choices . 29

4.2 The algorithm . 30

4.2.1 Calculating the beatmap . 30

4.2.2 Forming audio segments . 31

4.2.3 Creating segment images . 31

4.2.4 Comparing segments . 32

4.2.5 Precise segment alignment . 33

4.2.6 Transitioning . 33

4.3 The application . 34

4.3.1 Unity workspace . 35

4.3.2 Application files . 36

i

4.3.3 Application GUI . 36

5 Testing 41
5.1 Perception testing . 41

5.1.1 GUI application’s testing mode 41
5.1.2 Procedure . 42
5.1.3 Results . 42

5.2 Preprocessing speed testing . 44

6 Demo game and API 47
6.1 Game description . 47
6.2 Game files . 48
6.3 Game-API interaction . 48
6.4 Demo game run . 49

7 Conclusion 51
7.1 Future plans . 52

APPENDICES 54

A Abbreviations 55

B CD Contents 57

C User manual 59
C.1 Interacting with the GUI application 59
C.2 Playing the demo game . 60

D Segment image contents 61

E Description of methods 63
E.1 Methods of GUI application classes 63

E.1.1 Processor class methods . 63
E.1.2 AudioPlayer class methods 64
E.1.3 UI class methods . 64

E.2 Methods of demo game classes . 66
E.2.1 API class methods . 66
E.2.2 MusicPlayer class methods 66
E.2.3 EventListener class methods 66
E.2.4 MovementManager class methods 67

ii

List of Figures

2.1 The editor window of FMOD Studio. Two tracks are created, each populated

with four audio clips. 4

2.2 Mixer window of FMOD Studio. Ten groups of tracks and two return chan-

nels are created. The groups ”WALLA” and ”MUSIC” send part of their

signal to the return tracks with effects set up. Outputs from all groups and

returns are routed to the main output – the master bus. The master bus

has two effects chained – compressor and limiter. 4

2.3 Example of volume automation within FMOD Studio. The curve drawn

defines the volume that the ”Choir” track will be played on depending of

the value of parameter ”Health”. 5

2.4 Modulating track parameters within FMOD Studio. The volume and the

pitch of an audio clip are modulated according to corresponding AHDSR-

envelopes preset for each of the two properties. 6

2.5 Example of start offset randomization of the clip. The offset is set to 45%

with a modulation of 50%, which means that every time the sound is trig-

gered, it will start from a random sample laying in between 20% and 70%

of clip duration. 8

2.6 Example of using FMOD Studio tools for transitions within and between

sound themes. The first row under the timeline ruler contains a time-

signature-and-tempo marker. The second row hosts three loop regions and

two transition markers. Six labels denoting the starting points for different

sound scenes are placed in the third row. Each of the last two rows has

five transition regions for instant playback transfer. The panel ”Logic” in

the bottom displays the passing condition for transferring from ”To Stem2

Start” region – variable ”LevelIntensity” is expected to have a value in be-

tween 30.1 and 70. 9

2.7 Basic waveforms used for wavetable synthesis. 11

2.8 Popular VST-plugins for wavetable synthesis: a) – Massive, b) – Serum . . 12

2.9 iZotope Iris 2 sample-based synthesizer 13

2.10 Quanta granular synthesizer . 14

iii

3.1 Sampling of audio signal. On the left side of the figure the incoming analog

signal is shown, that is caused by air pressure sound waves hitting the sensi-

tive surface of a recording device (technical details omitted here). Sampling

period T shows the time difference between two subsequent voltage mea-

surements. After going through an analog-to-digital converter, the shape

of a sound wave is stored as a series of those snapshots (samples). Sample

frequency fs is then defined as fs = 1/T . The greater sampling rate is, the

better computer representation corresponds to the original signal. 18
3.2 The function of Fourier Transform. A continuous soundwave is separated

into sinusoid-type functions which are later associated with particular fre-

quencies of a sound range. 19
3.3 Using certificates for fingerprint encoding of trees. Even though graphs G1

and G2 look different, their certificates Cert(G1) and Cert(G2) completely

match, indicating that the graphs can be considered as isomorphic (struc-

turewise ”equal”). 23
3.4 Polynomial interpolation over various sets of data points. The initial points

are depicted in black, with the corresponding polynomials passing though

them are shown with blue lines. The mathematical representations of de-

rived polylines are given as functions y = f(x) 23
3.5 Seven frequency bands of human’s hearing range. 25
3.6 Spectral snapshots of some musical (a, b) and non-musical (c, d) sound files.

The most of acoustic content is generally found in the region between 50 to

2000 Hz. 25

4.1 The distribution of frequency bins involved in image compilation across the

spectrum. 32
4.2 Solution project window in Unity: 1 – GUI window, 2 – Object Hierarchy,

3 – Properties tab, 4 – Project explorer / console tab 35
4.3 Elements of application GUI: 1 – BPM field, 2 –Time signature slider, 3 –

Beat offset field, 4 – Transitioning method slider, 5 – Transitions’ calculation

button, 6 – Transition data export button, 7 – Playback bar, 8 – Playhead,

9 – Transition entry point marker, 10 – Transition exit point marker, 11 –

Transition destination marker, 12 – Play/pause button, 13 – Stop button,

14 – Transfer trigger/cancel button, 15 – Transitioning beats’ toggles, 16 –

Follow-up mode toggle, 17 – Perception test mode button. 37

6.1 Demo game scene: a) – At the start of the game, b) – At the end of the game 48

iv

List of Tables

2.1 Some of the middleware-specific features used for transitioning in
adaptive audio . 10

2.2 Non-linearity of playback in transitioning and audio synthesis 14

3.1 Possible sizes of frequency bins of a spectrum data obtained from FFT. 22

4.1 Description of application’s GUI elements 38

5.1 Perception test results . 43
5.2 Application preprocessing steps’ execution times and transfer calcu-

lation times measured for of six test audio files 45

A.1 Used abbreviations and their definitions 55

D.1 Some of the middleware-specific features used for transitioning in
adaptive audio . 62

E.1 Methods of application class Processor 63
E.2 Methods of application class AudioPlayer 64
E.3 Methods of application UI class . 65
E.4 API class methods . 66
E.5 Methods of MusicPlayer class . 66
E.6 Methods of EventListener class . 67
E.7 Methods of MovementManager class 67

v

Chapter 1

Introduction

In the modern electronic entertainment industry, the role of audio becomes more
and more difficult to overestimate. Historically, the potential of sound was known
to affect humans: provoke their emotions, shape their thoughts, touch their feel-
ings – sometimes, without one even noticing the mental change. Nowadays, sound
designers in the field around the world try to make use of that perceptional phe-
nomenon to make virtual environments more immersive, more exciting, more alive
for players and viewers, introducing audio not just as a supportive – but instead,
as an experiential dimension of a composition. The spreading notion of employing
music and sound effects to work together with graphics to boost the artistic impact
has since been spoken of as interactive audio (sometimes also ”procedural”, ”adap-
tive”, or ”generative” audio). Generally, that term intends bringing either, some, or
all of the following features into a product:

• Making the characteristics of the perceived sound dependent on the current
content of (events in) the scene (or making them appear as such to the listener);

• Providing the mechanism such that the sounds of repeated ”one-time” actions
(e.g. footsteps) and steady continuous events (e.g. mountain river stream) are
perceived as non-repetitive and natural;

• Allowing user to affect composition’s audio by sending different (combinations
of) trigger signals to it.

Procedural audio systems are made to deliver an exceptional diversity of sound –
but, instead of playing back loads of raw source files repeatedly, they aim to construct
new, lifelike sound patterns and sequences by processing a relatively small amount
of existing data in elaborate ways. The concept of generating music based on previ-
ously programmed rules is quite old, however – the very first computer games were
already relying on sound generator chips like Texas Instruments SN76489, General
Instrument AY-3-8910 or Yamaha OPL3. These offered basic synthesis with the help
of oscillators, filters, ADSR-envelopes (attack-decay-sustain-release envelopes) and
modulators [1]. Today, the market presents plenty of software tools for high-level
programming of adaptive music and sound effects (SFX). The most popular IDEs
(integrated development environments) up to date, – FMOD Studio, Wwise and
Elias Studio, – do not only have all the aforementioned fundamental components

1

but encapsulate mechanisms that help significantly increase programming possibili-
ties (see chapter 2).

This master thesis considers the most important and, currently, the least flexible
of those mechanisms – the concept of transitions. The goal of the work is to build,
implement and evaluate a new algorithm that could help expand the capabilities of a
context-aware transitioning during interactive music design. The algorithm should
locate frequencywise similar moments within a rigid-beat musical audio file and
output data containing locations of acceptable samples (grains of playback) which
can be interpreted as transition points or loop region border points in higher-level
software. To achieve the goal, the following tasks should be completed:

• State-of-the-art techniques for realizing interactive audio in electronic enter-
tainment products (and transitioning in particular) should be investigated,
their scopes of use, advantages and limitations should be reviewed;

• The notion of non-linear file playback as one of the techniques used in proce-
dural audio design should be introduced;

• Necessary background for practical work should be researched, analysis should
be conducted of the challenges that the algorithm programming task poses and
of possible ways of facing those challenges;

• The algorithm’s implementation and the supporting technological choices should
be described;

• The performance of the new approach should be demonstrated on a simple
application with graphical user interface (GUI);

• Perception testing should be carried out in order to evaluate the correctness
of the algorithm, the steps and the results of testing have to be discussed;

• Sample practical usage of the algorithm for the needs of procedural audio
should be shown in a simple demo game relying on a custom problem-tailored
API (application programming interface);

• The prospective enhancements of the shown technique should be be suggested.

2

Chapter 2

Survey

Currently, the adaptive audio behaviour in videogames and other entertainment
software is mostly set up and controlled via designated middleware. The three most
advanced and most relevant solutions today are FMOD Studio, Wwise and Elias
Studio. In the following two sections, the features that these IDEs offer to help bring
the interactivity into the sound system of a game are illustrated at the example of
FMOD Studio1. In the third section of the chapter, the non-linear approach to
playback through transitions is addressed in particular. In the fourth section, an
overview of three popular techniques of audio synthesis as small-scale non-linear
playback methods is given. In the last section, recapitulation is done.

2.1 FMOD Studio fundamentals

In order to understand how FMOD Studio serves the purpose of designing interactive
game audio environments by providing its own problem-tailored tools, it is necessary
to briefly look at the basic components of the software. Along with its analogues on
the market, FMOD Studio functionality revolves around the same core principles as
that of most digital audio workstations.

The main workspace in the IDE is arranged in a set of so-called ”tracks” – the
independent layers of sound that can be populated with audio clips. The sound
perceived at every immediate moment is made up by combinations of processed
inputs from all the tracks. The position at which audio is played is dictated by the
playhead, which, in its turn, can either be linked to the timeline or to the values
of in-game variables (see section 2.3). Figure 2.1 shows sample editor window of
FMOD Studio.

In order to give sound designers control over separate tracks that make up the
output signal, the mixer feature is introduced. It allows to calibrate volume levels
between audio stems, fine-tune their panning, and apply various effects to them
(more on effects later in this section). Moreover, the mixer supports grouping of
multiple tracks which makes it easier to share common settings between a num-
ber of layers. Finally, users are presented a possibility to establish custom signal
routing between tracks and track groups at any place of signal processing pipeline.

1All three aforementioned middleware products have different user interface layouts and workflow
mechanics, however the concepts they rely upon are the same. FMOD Studio was chosen for an
overview as the one being mostly used among major game development studios [2].

3

2.1. FMOD STUDIO FUNDAMENTALS

Figure 2.1: The editor window of FMOD Studio. Two tracks are created, each populated
with four audio clips.

Layering and mixing of multiple complex signals and audio tracks assists to build
up soundscapes of different intensities, characters and moods.

Additionally, FMOD Studio comes with a variety of stock effect plugins that
can be inserted into signal routing chains to modify the input in a certain way
before letting it pass further. Just like in DAWs (digital audio workstations), those
plugins help increase the diversity of produced sounds and timbres. The effects
include equalizing, compression, spatial saturation, 3D panning, pitch correction,
phasing, distortion, LFO (low frequency oscillation) modulation and others2. Chains
of multiple effects can be also assigned to a special type of track – a return channel.
That gives one the ability to manipulate the clean and the processed version of signal
separately. An example of mixer window is depicted in figure 2.2.

Figure 2.2: Mixer window of FMOD Studio. Ten groups of tracks and two return channels
are created. The groups ”WALLA” and ”MUSIC” send part of their signal to the return
tracks with effects set up. Outputs from all groups and returns are routed to the main
output – the master bus. The master bus has two effects chained – compressor and limiter.

2Neither FMOD Studio, Wwise nor Elias Studio support the integration of third-party VST-
plugins, however, Wwise has paid proprietary plugins available for download.

4

CHAPTER 2. SURVEY

2.2 FMOD Studio features for interactive audio design

With multitracking, routing, mixing and plugin-tweaking possibilities forming its
foundation, FMOD Studio delivers specialized features for dynamic audio-shaping
that set it apart from regular DAWs. Firstly, almost every parameter of an audio
clip, track, track group or effect can be automated or/and modulated. Automation
is used to predefine how certain property should change depending on playhead posi-
tion. This is done by drawing value automation curves for corresponding properties.
A good example of turning to this technique is a military shooter game, where a
low-pass filter can be placed on the SFX bus of the mix with its frequency property
linked to the level of player’s health. That way, the more player’s health level drops,
the less high frequencies are audible to the gamer, which reflects the natural par-
tial loss of consciousness and hearing that a solider would experience in a real-life
situation. Another example of automating track volume is shown in figure 2.3.

Figure 2.3: Example of volume automation within FMOD Studio. The curve drawn defines
the volume that the ”Choir” track will be played on depending of the value of parameter
”Health”.

Modulation can be used to specify how the parameter should change over the
course of playback of the corresponding audio file. FMOD Studio features three
types of modulators: random (make a property value fluctuate unpredictably within
specified range), AHDSR (apply an attack-hold-decay-sustain-release envelope to
the associated parameter) and sidechain modulators (link the modulating behaviour
to signals received from other sources of the mix). The most primitive use case
for modulation is humanizing repetitive one-shot sounds like footsteps or gun shots
– here, the pitch and the volume of audio file are slightly randomized so that the
sound is realistically slightly different each time it is played back. More sophisticated
setups can have multiple types of modulators chained and accompanied by a number
of automation curves. Figure 2.4 illustrates an example of using modulation.

Another advantageous tool that can be found in FMOD Studio and similar IDEs
are multi-sound containers. The name speaks for itself – those structures are special
types of audio clips that can contain more than one sound file. As such clip is
being repeatedly triggered, it can either play its contents in order or pick one file
randomly each time. This feature is commonly used together with pitch and volume
modulation when working with one-shot SFX to avoid monotonousness in the tone.

5

2.3. PLAYBACK TRANSITIONING

Figure 2.4: Modulating track parameters within FMOD Studio. The volume and the pitch
of an audio clip are modulated according to corresponding AHDSR-envelopes preset for each
of the two properties.

The technique finds another popular application in background game music, when
each container corresponds to a separate instrument in the arrangement and hosts its
own set of homogeneous, yet mutually different sounds. That variability in timbers
achieved by this move makes the whole composition appear more organic and more
lively to the listener. All the functionality covered in this section so far unleashes
much more of its potential when employed together with the system of playback
transitions. This concept is closely investigated in the following section.

2.3 Playback transitioning

Transitioning is a powerful instrument that is arguably the foremost within contem-
porary interactive music design paradigm. Having been evolving over time within
adaptive audio middleware, the technique bases on an extremely basic principle. A
transition is understood as a jump of a playhead from and to a certain point on a
timeline. Provided that the timeline has audio-clips and sound containers placed
across it and possibly distributed between multiple tracks, transferring from one
moment of playback to another makes the whole composition unfold in a different,
sometimes unpredictable manner. As opposed to the normal way of reproducing mu-
sic, where audio samples are processed subsequently from start to end, transitioning
in adaptive music is referred to as a non-linear playback method.

One of the key goals of modern IDEs like FMOD Studio is to let its users con-
struct transition systems that would organize generating of dynamic sound patterns
based on advanced logic, but at the same time would be invisible to the consumer
in their operation. In other words, ideally, the player should never be able to tell
if there even was a transition – what is heard should be thought of as a complex,
life-like soundscape that transforms along with the everchanging game world. At
every second of time, game audio is made up from a set of diverse timbres and voices
that suggest certain emotional context to players and make them feel the specific
way. In that sense, each subjectively different state of game audio falls under the
term ”sound theme” (or ”sound scene”). The ”seamlessness” that developers try to

6

CHAPTER 2. SURVEY

get to can be looked into from two contrasting perspectives and is defined depending
on whether the motivation for transition is staying within the same sound scene or
transferring between different ones.

2.3.1 Transitioning within sound themes

One type of challenge that designers face is keeping the playback going in conditions
of somewhat stable audio environment, i.e. when no drastic changes are supposed
to be made to the mood of the music arrangement or to the character of the sound
effects. When it comes to game music, the most obvious, though extensively used
approach is to define so-called loop regions3 – these are audio clips4 (or parts of
those clips) that are being iteratively played back in a linear fashion the way that
the transition is always made from the last sample of a region to the first sample
of the same region. If during its repetition a loop perfectly extends itself (i.e. it is
hardly possible to determine when the playhead jumps by ear), then such region is
spoken of as ”a seamless loop” (or, alternatively, ”perfect loop” or ”synchronized
loop”).

Usually, seamless loops are composed/recorded and prepared even before the
phase of interactive sound design. As those loops should later form a cohesive
music piece, sound producers, relying on their personal artistic taste, have to make
sure that tempos, keys, time signatures and durations of those segments match
or correlate with one another musically. Of course, composers should also have
comprehensive knowledge of what game they are writing for and what kind of tune
would fit a particular setting. All audio loops are then imported into adaptive
music IDEs with time signature and tempo settings adjusted in accordance to what
they were on the production step. That way the arrangement parts align with the
project’s timeline grid and can be easily put inside of loop regions.

For one-off and sustained SFX, offset randomization comes in handy as another
method of within-scene transitioning. It picks a different start sample for an audio
clip every time it is triggered. This trick can be complemented by turning on the
looping, so that once the last sample of the clip is played, the playhead jumps to a
random position inside a predefined region. An example of such strategy would be
adding sounds to a number of identical game objects that all have to be audible at
the same time, e.g. burning torches. With randomization, it is possible to get by
a single audio file for all of the object instances: because the playback starts at a
different point of the clip each time, the outputs from multiple sources do not blend
into one but create a pleasant, volumetric effect5 (see figure 2.5).

3Looping regions are sometimes used for sustained sound effects too – for instance, an audio file
of a creaking windmill could be set up to be replayed over and over. Of course, other techniques,
such as randomized modulation, should be used to guarantee realistic audio experience in that case.

4What is stated about audio clips here and later in this section applies to multi-sound containers
as well.

5Proper 3D-panning of the sound should be set up with the linkage to the position of player’s
character to achieve realistic panoramic soundscape.

7

2.3. PLAYBACK TRANSITIONING

Figure 2.5: Example of start offset randomization of the clip. The offset is set to 45% with
a modulation of 50%, which means that every time the sound is triggered, it will start from
a random sample laying in between 20% and 70% of clip duration.

2.3.2 Transitioning between sound themes

The huge part of procedural audio transitioning that is performed in games today is
motivated by the need to move from one sound scene to another in order to reflect
more or less significant changes that occur in the virtual world.

Let us see how between-theme transitioning is handled in FMOD Studio. First
of all, theme label is put at a certain position of the timeline to identify the moment
of time where the playback of a particular sound scene should start. After that,
a transition marker has to be added with the jump destination selected. With
that done, the playhead will navigate to a corresponding label (i.e. to the start
of a designated sound scene) upon reaching the marker. Instead of single labels,
loop regions could be chosen as destinations for transition markers. Obviously, that
requires those regions to be defined beforehand.

In praxis, it is unlikely that sound designers would want the transitions to happen
every time a transition marker is met. During gameplay, it is often unforeseeable
how long a certain sound scene will last (that is to say, only within-theme transfers
will be taking place) and when it will shift to some other scene. For that reason, the
game has to somehow communicate its current state to the sound system so that it
knows when to allow a transfer.

This issue is resolved by enabling the adaptive music middleware to access values
of determinative variables from the source code of the game or/and synchronized
game engine (e.g. Unity, Unreal). The transition markers are now being provided
with a list of conditions, with each condition defining acceptable values for observed
variables. At the moment where the playhead reaches such marker, the conditions
are checked and, depending on whether they are met or not, the playhead skips to
a new position or continues moving unaffected.

In addition to that, FMOD Studio features the support of transition regions.
While the playhead moves inside this type of region, the prescribed conditions for
transition are being continuously tested each frame. A jump to a set destination
is made immediately if all requirements for variable values appear fulfilled. That
tool is especially helpful when those values are expected to change several times

8

CHAPTER 2. SURVEY

during the playback of an average-length clip, enabling audio system to become
more responsive, instantly adapting to occurring in-game events.

A sample setup demonstrating the use of labels, markers, loop and transition
regions is shown in figure 2.6.

Figure 2.6: Example of using FMOD Studio tools for transitions within and between sound
themes. The first row under the timeline ruler contains a time-signature-and-tempo marker.
The second row hosts three loop regions and two transition markers. Six labels denoting
the starting points for different sound scenes are placed in the third row. Each of the last
two rows has five transition regions for instant playback transfer. The panel ”Logic” in
the bottom displays the passing condition for transferring from ”To Stem2 Start” region –
variable ”LevelIntensity” is expected to have a value in between 30.1 and 70.

The scope of existing techniques for non-linear playback can be further widened
by the possibilities that each piece of adaptive audio middleware offers exclusively.
An overview of some of this extra functionality is given in table 2.1.

9

2.3. PLAYBACK TRANSITIONING

Table 2.1: Some of the middleware-specific features used for transitioning in adaptive
audio

10

CHAPTER 2. SURVEY

2.4 Audio synthesis

Loosely speaking, the notion of transitions can be seen as a higher-level or a bigger-
scale version of sound synthesis, the term which describes generating new audio
(electronic) signals in designated computer software from somewhat basic starting
components provided. The overview of three types of synthesis that most resemble
non-linear sample playback via transitioning is given in this section.

2.4.1 Wavetable synthesis

The idea of wavetable audio generation is grounded on the principle of looping within
a given set of one-cycle waveforms [3]. The waveforms that form this set can be the
four basic ones (sine, square, triangle and sawtooth waves, see figure 2.7) or of more
advanced shapes morphed form those four primitives. When one or more waves
are put in the set (named ”wavetable”), the playback is composed from periodic
reproduction of wavetable sonic contents such that the following parameters can be
automated:

• The wave that is currently being played;

• The rules of switching between different table positions;

• AHDSR-envelopes of participating waves and behaviour of filters;

• LFO modulation and phasing settings.

Figure 2.7: Basic waveforms used for wavetable synthesis.

The endless configuration variability that comes with all present controls allows
for creation of very complex and rich sounds and timbres. Nowadays, software tools
for wavetable synthesis mainly exist in the form of VST-plugins, each of those offers a
unique set of instruments to regulate wavetable synthesis, independently modifying
and randomizing the parameters of tables’ contents over time. The most widely
known plugins are Massive by Native Instruments and Serum by Xfer Records.
Their user interfaces that demonstrate featured functionality are shown in figure
2.8.

11

2.4. AUDIO SYNTHESIS

Figure 2.8: Popular VST-plugins for wavetable synthesis: a) – Massive, b) – Serum

2.4.2 Sample-based synthesis

Sample-based audio synthesis is very similar to wavetable generation. The major
difference is that instead of being constructed using basic waveform oscillators, new
sounds are made by processing previously created, usually short files (not more than
few seconds long) called samples (not to be confused with voltage values that form
signal waves in audio sampling) [4]. Those files can be layered on top of each other
and manipulated in a lot of ways, such as:

• Defining the static or dynamic fashion in which active playback samples are
chosen;

• Specifying the content of samples that is played in time-frequency domain;

• Processing samples with distortion, flanger, reverb, delay and other effect plu-
gins;

• Assigning AHDSR-envelopes to sounds;

• Establishing signal sends in between samples;

• Randomizing the parameters of controls mentioned above.

A good example of a sample-based synthesizer is Iris 2 VST-tool by iZotope.
Its interface window is depicted in figure 2.9. In fact, this approach is so famous
that most of the contemporary DAWs (like Pro Tools, Ableton Live, Studio One
3) already come with stock extensions intended for the reviewed type of synthesis.
Those plugins are often referred to as samplers.

12

CHAPTER 2. SURVEY

Figure 2.9: iZotope Iris 2 sample-based synthesizer

2.4.3 Granular synthesis

Just like sound generation based on prerecorded samples, granular synthesis operates
over custom user audio files. However, the feature that makes this method special
is that it works on a microsound scale. The source sample is initially divided into
little parts – grains – of length of about 1 to 50 milliseconds [5]. From that point
on, the resulting sound perceived during sample playback is defined by:

• The order and the speed in which the grains are played;

• Sizes and positioning of grains;

• Envelope and modulation grain settings;

• Added processing effects and their scope of reach (whether the whole sample
or individual grains are affected).

This list can be continued with hundreds of controls that modern granular syn-
thesizers have. Employing those mechanisms allows to both obtain timbers that
finely alter the precepted characteristics of raw samples or transform them into
something totally unlike. The interface layout of one of the popular solutions today
– Quanta by Audio Damage – is shown in figure 2.10.

13

2.5. RECAPITULATION

Figure 2.10: Quanta granular synthesizer

2.4.4 Audio synthesis for playback non-linearity

The three reviewed types of audio signal synthesis are closely connected to the
concept of transitioning – as a matter of fact, all these techniques help to produce
brand new audio sequences by interacting with basic sound entities. A brief summary
of how considered synthesis types and usage of transitions bring non-linearity into
playback is given in table 2.2.

Table 2.2: Non-linearity of playback in transitioning and audio synthesis

2.5 Recapitulation

Thus far, the methods of transitioning within and between sound themes and signal
synthesis described in this section form a solid foundation for creative design deci-
sions, notably when combined with each other and with other instruments and com-
ponents. However, speaking of transitions, the one big issue that has not still been
addressed is that all major IDEs for interactive audio provide means for context-
aware transitioning, but do not ensure it by default. That means, for a sample

14

CHAPTER 2. SURVEY

generative audio system to operate in a natural, flexible and dynamic way, a lot of
preliminary work has to be manually done inside DAWs and the middleware itself by
music/sound producers and designers. These efforts include, but are not limited to:

• Producing seamless loops of audio for music arrangements;

• Setting up the procedural sound engine to conform to arrangement settings of
time signature and tempo;

• Distributing audio clips between tracks and sound themes, aligning them prop-
erly with the bars and beat of the timeline ruler;

• Placing labels for sound theme regions;

• Defining the borders for loop regions and transition regions;

• Creating transition markers.

An attempt to make up for this deficiency is made in this work. The idea is to
design and implement a system that could eliminate the need to assign transition
points by hand. It should provide a method to automatically locate key samples
inside of an input audio file, that could be later interpreted as transfer markers (or
otherwise) in higher-level software.

The solution this master thesis centers upon is partially inspired by the ”Smart
transition analysis” feature that was introduced by the developers of Elias Studio (see
table 2.1). While this algorithm solely aims to suggest transitions at least audible
moments of the playback, the new approach being proposed attempts to detect
moments that are similar perception- and frequencywise. That helps to increase
the number of appropriate playhead jump locations and make the technique more
robust to clips of diverse musical content (when Smart analysis in Elias Studio
becomes useless when a processed audio clip has no or too few moments of silence).

15

2.5. RECAPITULATION

16

Chapter 3

Analysis

The mechanism of transitions is crucial for state-of-the-art generative game audio
design and is embedded into most of popular middleware titles. The investigation of
capabilities that FMOD Studio, Wwise and Elias Studio have in that aspect shows
that existing instruments for non-linear playback give one flexible enough control
over the sound environment. This is achieved similarly in all the products of the
triad: previously composed audio clips are packed in groups to form themes (or
scenes) – complex soundscapes of a distinct mood and feel – when played together.
Although implementation details differ, each of the IDEs under attention supports its
own tools to help designers label different themes on the timeline, so that the system
knows where they sit and how to get to a certain scene when it becomes necessary.
The transitions are then handled in correspondence to preprogrammed logic, which
is also highly adjustable due to presence of various controls and parameters and
ability to link and/or randomize the behaviour of most of them.

The modern concept of between- and within-scene transitioning relies heavily
on the positioning of border markers that constrain acceptable playback regions.
Regardless of how labeling is realized in particular software, the common flaw persists
– all the setting has to be done manually by a responsible person. This circumstance
slows down the workflow and, when interactive audio system is sophisticated and
has a lot of sound themes, may even make the creative process tedious and hold
back the whole game development cycle.

This diploma thesis is concerned with compensating for this drawback by de-
signing, implementing, and testing a digital signal processing (DSP) algorithm that
could help automate the task of determining the placement of transition markers.
This algorithm should take an input music file and provide means for locating the
most preferred points in it that could be used as source and destination positions
for both within-theme and between-theme transitioning.

Any kind of non-linear music playback is expected to maintain natural, musical
flow, contain no abrupt audio cuts and cues that could reveal the artificiality of per-
ceived sound. Taking that into account, setting up the desired required functionality
comes down to discovering pairs of samples that would act as shortcuts to similarly
sounding moments in an input file in the first place. Once such pair is registered, it
may be denoted as either suitable for transitions between different parts (”themes”
at a local scale) of the file, or appropriate for transfers inside a specific part.

17

3.1. ESSENTIALS OF AUDIO SAMPLING

3.1 Essentials of audio sampling

Before laying out possible technical approaches to the solution, it is important to
understand the essence of how modern digital music is made and consumed by
humans. When a sound recording is taken, the power of analog signal received from
real world is sampled, i.e. measured with a defined frequency. Today’s most common
sampling rate used in audio CD music production is 44100 Hz [6]. The choice of
such a number is based on the Nyquist-Shannon Theorem, which states that ”every
continuous-time signal can be sampled and perfectly reconstructed from its samples
if the waveform is sampled over twice as fast as its highest frequency component” [7].
That means, since the highest limit of human’s hearing range is around 20 kHz, it
is necessary to capture the analog signal at least 40000 times per second to reach
sufficient fidelity. A slightly more high-resolution standard of 44.1 kHz has gained
its popularity due to historical reasons.

Capturing incoming signal that often allows analog-to-digital converters to accu-
rately picture the geometry of sound waves within the full audible spectrum and store
that audio data in a machine-readable format (see figure 3.1). When the recording is
played back, the sound waves are reconstructed based on the sample data. Because
human’s hearing system is itself analog, we accordingly digest music and sounds in a
continuous manner. We do not think of or discriminate between individual samples
in the file – instead, we absorb what we hear by forming patterns, sequences and
making out remarkable and somewhat persistent tones. A single sample in isolation
contains literally no valuable musical information for a listener and is distinguished
as a click (if heard at all). That means that picking out individual grains from the
playback and comparing them between each other makes no sense.

Figure 3.1: Sampling of audio signal. On the left side of the figure the incoming analog
signal is shown, that is caused by air pressure sound waves hitting the sensitive surface
of a recording device (technical details omitted here). Sampling period T shows the time
difference between two subsequent voltage measurements. After going through an analog-to-
digital converter, the shape of a sound wave is stored as a series of those snapshots (samples).
Sample frequency fs is then defined as fs = 1/T . The greater sampling rate is, the better
computer representation corresponds to the original signal.

On the contrary, a series of subsequently played back samples can be interpreted
as a discretized sound wave reproduced with a certain degree of truthfulness and does
hold meaningful data that can be processed. However, this data is quantitative, that
is, it only has the voltage values changing over time. The analysis that is required for
the desired functionality of target algorithm is interested in qualitative information,
which is, in case of music and sound, frequency spectrum information. That means,

18

CHAPTER 3. ANALYSIS

there has to be a way to move between temporal and frequential domains.

3.2 Fourier Transforms

The modern theory of digital signal processing makes extensive use of a technique
called Fourier Transform. It aims to project an analog waveform from time-voltage
into frequency-magnitude coordinate space. To do so, it decomposes input signal
into a sum of sinusoidal basis functions. Each of these periodical functions accounts
for a certain frequency within the spectrum of processed sound (see figure 3.2) [8].

Figure 3.2: The function of Fourier Transform. A continuous soundwave is separated into
sinusoid-type functions which are later associated with particular frequencies of a sound
range.

When Fourier Transform is performed over a finite collection of equally-spaced
measurements, such as over samples of a digital signal, it is referred to as Discrete
Fourier Transform (DFT). Operating over a chain of samples, DFT is able to de-
termine the frequencies that make up the total signal, as well as degrees of their
contributions to it. While temporal dimension exists in the input data and plays
an important role in the conversion, it is disregarded as the result frequency char-
acteristic is formed. The spectrum appears to represent averaged tonal content over
the duration of a sample sequence that was provided to the algorithm. It is worth
pointing out that DFT is typically executed over a number of playback snapshots
less than the sampling rate, which means the timespan of a processed chunk of audio
is relatively small and can well be neglected. In practice, the size n of chunk is often
chosen to be a power of two (e.g. 1024, 2048, 4096 samples), because this allows to
carry out a special algorithmic approach of DFT which goes after the name of Fast
Fourier Transform (FFT). That method is widely preferred due to being extremely
fast and computationally cheap (with the complexity of O (n · logn)) and hence can
be easily run on virtually any relevant computer hardware [9].

It is important to realize, though, that no DFT solution is capable of providing
volume information of every single frequency (there is simply an infinite number
of them inside the spectrum). In other words, discrete time-to-frequency domain
translation assumes granularity on both sides. The way FFT deals with this is by
dividing the whole observed range (which is defined as half of the sampling rate)
into equal frequency intervals – so-called ”bins”. Given N samples on input, FFT

19

3.3. SPECTRUM SIMILARITY METRICS

produces

nb =
N

2
(3.1)

values, each of which represents average magnitude for the corresponding bin.
For instance, doing Fast Fourier Transform over a 1024-sample chunk taken from a
recording that has been made with a sample rate ωs of 48000 kHz will let one obtain

nb =
1024

2
= 512 (3.2)

spectrum values, each keeping the relative volume information of

ωb =
ωs · 0.5

nb
=

48000 · 0.5
512

= 46.875Hz (3.3)

of sound inside one of 512 bins. The total range represented in the output is
from 0 Hz to 24000 Hz – the sampling rate in the formula is divided by 2 for that
very reason.

With sample rate held constant, the increasing number of waveform measure-
ments participating in FFT improves output resolution, as bins become narrower.
At the same time, this causes the algorithm to average the produced spectrum image
over a longer time period, which means a risk of missing important subtle changes
in tone arises. At this case, the choice of input segments’ length has to be fairly
justified by the specification of a DSP task.

Let us now get back to the programming purpose of this work. The fact that ap-
plying Discrete Time Transform to short-time sample sequences provides a spectral
fingerprint of somewhat momentary interpretation prompts that the smallest units
of a sound file that are made subject to mutual comparison should be segments
(”groups”, ”chunks”, ”fragments”) of (subsequent) samples. Those chunks should
be small enough to assure locality of output spectrum data.

3.3 Spectrum similarity metrics

Another aspect of the researched problem that can not be overlooked is defining the
distance metric between two spectrum outputs. When an audio clip is being broken
down into a collection of chunks, each separate segment can be seen as a distinct
item with a number of attributes two times smaller than the number of samples
used to form a chunk – those values are clearly frequency bin averages. There come
three apparent ways of taking advantage of this data to design a measure for mutual
spectrum arrays’ similarity:

• Leave all the attributes intact and perform element-by-element comparisons
between chunks, when the final metric might be the average, sum or the ab-
solute maximum of all computed differences;

• Attempt to somehow exclusively encode the sequence of bin values as a whole,
i.e. reduce the number of attributes to one;

20

CHAPTER 3. ANALYSIS

• Derive a new, smaller set of attributes from the existing set according to a
reasonable logic, so that the second collection of properties still captures most
of the significant frequency information about the sound. After that, perform
bitwise comparison of updated attributes.

3.3.1 Bin-by-bin comparison

The naivest fashion in which spectra could be set against each other requires no
preliminary steps. Having two equal-length1 bin arrays as input, the algorithm
could individually find absolute (or squared) Euclidean distances for each pair of
magnitude values that represent same frequency range. That is, the first bin of the
first spectrum is compared to the first bin of the second spectrum, then the common
array index is incremented by one and the process repeats until every pair of bins
has its own distance score. As a final step, those scores could be added up2 to obtain
a single similarity value.

The major drawback of this strategy is its computational complexity. Obtaining
similarity scores for all n bins among two spectrum arrays takes up time of O(n).
That is decently fast on its own, but the state of the matter is worsened by the
following two circumstances:

• Since the fragments that the source audio file is being partitioned into are
relatively tiny in size compared to the file duration, their number will be huge.
Therefore, the processing algorithm would have to deal with loads of possible
combinations of chunks to compare. For instance, a sixty-second-long music file
(t = 60) with a sample rate of omegas = 44100 Hz split into non-overlapping
segments of length N = 1024 will provide a total of

Ns = bωs · t
N
c = b44100 · 60

1024
c = 512 (3.4)

of those segments to process and

Nc =
Ns · (Ns − 1)

2
=

2583 · (2583− 1)

2
= 3334653 (3.5)

of comparisons to make [10]. Taking into consideration a number of bin values
received from each chunk, the overall time complexity jumps to unsatisfactory

O

(
N

2
·N · N − 1

2

)
→ O(N3) (3.6)

1Lengths are expected to match so that the values of the bins across both spectra can be grouped
into pairs that relate to the same frequency content.

2Picking the maximum of individual bin difference scores as an ultimate similarity measure is
going to cause misleading results. For example, two almost equal signals with just a single difference
in a narrow frequency band could be identified as totally different due to the greatest distance value
taking prevalence and not being compensated by close-to-zero ones. Calculating the arithmetic
mean to normalize sum of scores over their quantity is redundant because the compared spectra are
of same size.

21

3.3. SPECTRUM SIMILARITY METRICS

• When putting sequences of audio samples into groups, we would typically want
to do that in a way that neighboring groups share some of the voltage values,
or, in other words, overlap in No samples. That helps to significantly increase
the coverage of all sound wave shapes that can be observed during playback.
Theoretically, the most robust move would be to make two subsequent seg-
ments differ only in one sample (No = N � 1). However, this tactic will cause
too many chunks to be formed – the number will be almost the same as the to-
tal number of samples in a file. This degree of precision, luckily, is not needed
for the purposes of current type of sound analysis. An overlap of 25%, 33% or
50% can well be chosen. When the chunks are formed with intersection, their
total number N ′

s increases substantially so that

N ′
s

Ns
≈ N

N �No
(3.7)

• In order to achieve finer granularity in frequency bin representation of spectra,
bigger sizes of chunks could be chosen. Table 3.1 contains the information
about some of the possible bin sizes.

Table 3.1: Possible sizes of frequency bins of a spectrum data obtained from FFT.

When increasing chunk size, time and memory requirements of an algorithm
based on element-by-element comparison would grow cubically, as it has been
deduced.

The mentioned factors indicate that straight-up juxtaposing of spectrum values
is inefficient.

3.3.2 Single-attribute encoding

The alternative approach to measuring similarities of spectra is reminiscent of one of
the techniques in graph theory, where some graphs3 can be represented via a unique
string of zeros and ones called ”certificate” – that string explains the structure of
graph (i.e. how nodes are interconnected via edges) and can be ”unwrapped” back
into the corresponding network-like diagram [11]. The character-by-character com-
parison of such hashes is then done to determine whether the graphs are isomorphic
3.3. For the current problem, however, that kind of ciphering appears infeasible

3The solution is commonly implemented for trees but is sometimes modified to fit more complex
types of graphs.

22

CHAPTER 3. ANALYSIS

because all values inside spectral output are independent and do not fall into any
hierarchy or other relationship that could be captured in a single entity.

Figure 3.3: Using certificates for fingerprint encoding of trees. Even though graphs G1 and
G2 look different, their certificates Cert(G1) and Cert(G2) completely match, indicating
that the graphs can be considered as isomorphic (structurewise ”equal”).

The inspiration for one more tactic of single-attribute encoding roots in polyno-
mial interpolation. Given a finite set of points in a 2D space, this method attempts
to generate a polynomial function of lowest possible degree that passes through all
the points and literally serves as a guideline to help restore the positions of missing
data samples (see figure 3.4) [12] [13].

Figure 3.4: Polynomial interpolation over various sets of data points. The initial points are
depicted in black, with the corresponding polynomials passing though them are shown with
blue lines. The mathematical representations of derived polylines are given as functions
y = f(x)

If we think of a set of frequency bin magnitude values of FFT output as a
sequence of x-values of an unknown function, we might be able to perform polynomial
interpolation over them to construct an equation that would correspond to a polyline
fitted to include each source data point. Comparing two spectrums, we could then

23

3.3. SPECTRUM SIMILARITY METRICS

regard those functions as their signature attributes. We could come up with certain
test frequency values that were not present in the source spectrum array, put them
into two compared functions as abscissas and compare the resulting y-values. Again,
we could accumulate acquired distance scores into a final value.

Unfortunately, this does not seem like a viable plan either. Even if the chunks
of audio clip samples are fed to FFT by groups of 1024 and are transformed to
512 spectrum values4, that would mean that target functions would have to be
polynomials of degree 511. Calculating such function is a time-consuming task –
one of the fastest implementations, Lagrange’s interpolation, has a complexity of
O (n · logn)) [14]. Subsampling, i.e. using smaller quantities of points will lead to
partial loss of frequency information and, furthermore, fitted polyline will deviate
even more from the original spectrum shape. On top of that, the need to compute
y-values for trial data would make the comparison cycle take even longer to execute.
Decreasing the number of test values lessens the reliability of algorithm’s outcome.
Finally, the entire comparison code loop might have to be repeated a large num-
ber of times due to the duration of the source audio file (and, consequently, many
combinations of chunks to count similarity degrees of).

The disadvantages of reviewed bin-by-bin and single-attribute comparison meth-
ods bring about the necessity of inventing another metric, that would both be easy
to compute and use for the programming purpose.

3.3.3 Compressed-attribute entity

To compensate for the weaknesses and take advantage of the strengths of two pre-
viously discussed approaches to the comparison of spectral characteristics of sound
fragments, a combination of these strategies can be employed. The idea is, using
a foundation of frequency magnitude values, a special signature entity, a so-called
”image”, should be complied for each processed audio segment. The image should:

• On one hand, be compressed from indicative attributes and encapsulate all
relevant spectrum data inside itself, so that the frequential snapshot of audio
signal is represented with a high enough level of detail;

• On the other hand, be designed in a way that optimizes calculations of dis-
tance scores by providing the algorithm with means to minimize elementwise
comparisons.

To satisfy the listed requisites, balance has to be found between the size of
frequency data involved in building a spectral fingerprint and the significance of
each stored value. By significance we mean how useful a certain data point is in
helping to reflect audible differences between to chunks of audio. Surely, this is a
subjective criterion and therefore has to have common-sense reasoning behind its
definition.

It is well-known that human’s hearing range spans from about 20 Hz to around
20 kHz. This interval is usually broken into seven frequency bands (see figure 3.5).

4Setting chunk size below that number (i.e. 512 samples or less) would make little sense as in
that case each of 256 spectrum values will represent a bin of approximately 86 Hz (at a 44.1 kHz
sample rate), which is too low of a resolution for music analysis – the difference is frequency between
neighboring musical notes can be as faint as 9 Hz (see subsection 4.2.3).

24

CHAPTER 3. ANALYSIS

Most of harmonic and non-harmonic sounds that we hear in everyday life are un-
evenly distributed across these bands. The sound energy that is transmitted with
music and other types of sustained audio is generally concentrated within bass, low-
midrange and midrange bands. As we move further to the right along the frequency
axis, the signal would gradually become less prominent on average (see figure 3.6).

Figure 3.5: Seven frequency bands of human’s hearing range.

Figure 3.6: Spectral snapshots of some musical (a, b) and non-musical (c, d) sound files.
The most of acoustic content is generally found in the region between 50 to 2000 Hz.

This fact leads to a conclusion that frequency bin values of an FFT spectrum
output are of varying importance to the construction of spectral fingerprint. Specif-
ically, that hints the following solution: only those bins that correspond to frequen-
cies within most utilized range should be incorporated into the target entity intact.
Those spectrum values that represent less noticeable frequencies can be combined
with each other in groups of ascending size (as importance of a connected spectrum
band goes down). Most of sub-bass-range and brilliance-range values of FFT out-
put can simply be disregarded. This neglect is justified because adding such data to
the segment characteristic will not allow to explain much extra difference between
chunks – the compared segments will likely have almost matching, small magnitudes
of border spectrum frequencies.

The technique described above makes it possible to considerably reduce the num-

25

3.4. BEAT-RESTRICTED PROCESSING OF SAMPLE CHUNKS

ber of attributes that make up the identifying image of an audio chunk, while still
capturing valuable tonal information about it.

The comparison of such images could be done in an elementwise fashion. After
all pair bin distances are calculated and added up into a decisive score, there should
exist a threshold value that would determine whether two segments are viewed as
”similar enough” to be included into the set of possible transition points or not. This
criterion should demonstrate persistent behaviour, i.e. no matter which content and
volume input files might have, roughly same percentage of comparison pairs should
be left out as not having passed the required limit. To achieve this, the minimum
passing value for chunk alikeness can be defined as some small percentage of average
magnitude of the entire audio file. This kind of normalization evens out the unwanted
effects.

However, the circumstances that were reviewed in subsection 3.3.1 still apply to
the ”compressed-attribute comparison” approach. Processing of large amounts of
sample fragments is quite memory- and time-demanding. For that reason, it seems
preferable to impose a rule that would wisely reduce the number of comparisons.
One of applicable techniques here is snapping future transition points to the rhymical
grid of the song file. This strategy is addressed in the next section.

3.4 Beat-restricted processing of sample chunks

As it was discovered in the chapter 2 of this thesis, today’s most relevant middleware
for generative music mainly relies on rhythm-based transitioning. The jumps of the
playhead happen at the moments when it reaches the start (or the end) of primary
time signature measures – a beat or a bar. That convention was made to correlate
with of the way that the songs and other pieces are consumed by humans. The
natural habit of our brain to systematize the information we perceive subliminally
causes us to detect beat patterns, and, speaking of transitions, to more likely expect
the soundscape change at the beginning of a grid measure than anywhen else.

When applied to the current programming problem, the beat-constrained tran-
sitioning will improve the solution in two ways:

• The probability of unexpectedly sudden, unpleasantly sounding transitions will
be decreased, because no pair of similar segments will be labeled as source and
destination if the chunks are taken from randomly located timestamps;

• The algorithm’s performance will be elevated, because the initial number of
chunks to do the frequency analysis of and compare will be reduced dramati-
cally – all samples that lay far from key timeline grid markings will be ignored
when forming fragments.

To lower false positive rate5 of transfer point selection even more, the processing
engine might also require that each tuple of audio chunks that is involved in com-
parison contains segments that both relate to the same beat of the bar. That would
ensure that, at an example of a 4/4-signature-song, if a hop is made from the end
of beat four, the playhead always jumps to the start of beat one and no other.

5By false positive we mean two samples that were selected as acceptable source and destination
for the transition, but empirically turned out to not provide smooth transfer.

26

CHAPTER 3. ANALYSIS

Surely, to link transition moments to the rhythm of the played recording, the
mechanism should have the information about where different signature markings
are in the time domain of that song. We refer to a structure that stores such data as
”beatmap”. The creation of a beatmap and its application to the choice of segments
is discussed in the chapter 4.

3.5 Findings

The analysis of the challenges that the algorithmic task of this thesis sets forth has
shown that:

• The input file should be processed in subsequent, overlapping groups of audio
samples of power of two, not individual samples. That would permit the use
of Fast Fourier Transform, which helps obtain a frequential characteristic of a
small portion of signal – a binned spectrum;

• An expressive compressed representation (”image”) of the spectral array has
to be created for each processed chunk. The image should be calculated using
significant bin values taken from the FFT output. The number of attributes
in a complete image should be considerably less than the number of spectrum
bins to keep performance plausible;

• The ultimate similarity score of a pair of segments should be defined as a sum
of Euclidean distances between corresponding values of the two images;

• The program should only form a list of acceptable transition points out of
segments whose alikeness value is above a certain normalized threshold. That
limit could be defined as some small fraction of an average loudness of the
song (or of other akin metric);

• All allowed transitions should occur snapped to the rhythm grid of a music
file. That should provide more organic and seamless, beat-preserving playhead
transfers and save up computational and temporal efforts (out of many chunks
the file is divided into, only a little number of relevant ones are selected).

A decision was made to use these ideas as the ground for the follow-up practical
work. Firstly, that contained the development of GUI application, which demon-
strates the operation of the transition points’ detection algorithm on its own (chap-
ters 4 and 5). Secondly, it included the creation of a simple 2D-game based on a
problem-tailored API to showcase one example of how suggested technique could be
applied to serve the purposes of adaptive game audio in custom projects (chapter
6).

27

3.5. FINDINGS

28

Chapter 4

Algorithm implementation

Modern software solutions for adaptive game sound design are built upon the notion
of non-linear playback of audio samples via transitioning. Along with the creative
freedom that those IDEs provide for developers, they do not provide means for
analyzing the structure and the content of project files. Hence, a lot of workspace
configuration has to be done by hand for transitions to be smooth and rhythmical. To
tackle this problem, a new algorithm is proposed in this master thesis that performs
automatic detection of possible points for tempo-linked transfer and saves this data
for future use. In this chapter, the technical choices assisting the implementation
are explained first. After that, the details of the actual realization are discussed.
Finally, an overview of a simple application that visualizes algorithm’s functionality
is given.

4.1 Technical Choices

The choice of software technologies and other tools used for the implementation
of target algorithm is motivated by the programming objectives. As the main
working environment, Unity was decided on. Unity is arguably the most popular
2D/3D/VR/AR game engine that a lot of indie developers and bigger studios turn to
in their projects attracted by the broad range of capabilities it offers and a relatively
steep learning curve it has [15] [16]. For the purposes of current implementation,
the following features of Unity are important:

• The graphical components of a scene can easily be assigned scripts that would
control the properties of on-screen objects. That comes in handy when creating
a graphical user interface for the demo application;

• The IDE supports direct reading of audio clips and has built-in functions to
retrieve sample data from sound files;

• All three most-favoured procedural music middleware titles – FMOD Studio,
Wwise and Elias Studio – have officially supported plugins for integration with
Unity. That may become useful in future, if the necessity emerges to quickly
pass the information about transfer points from the developed application to
the adaptive sound engine;

29

4.2. THE ALGORITHM

The primary scripting API (application programming interface) of Unity is writ-
ten in C#, so the creation of custom source code is also done in that programming
language. For working on scripts, any text editor fits, but to take advantage from
workflow-boosting features like syntax highlighting, automatic code formatting and
predictive typing, one has to look for specialized applications. The choice here was
Visual Studio – the leading multi-language IDE in the field [17].

Even though Unity has native functions for accessing sample data of an audio
clip, it is only able to get hold of the actual frequency content in real time [18]. The
proposed solution entails preprocessing, so third-party had to be looked into. After
investigating a number of libraries for magnitude-driven FFT analysis, a library
named ”DSPLib” was included into the project. The benefits of this framework
remarkable for the scope of implementation task are [19]:

• The library is distributed under free MIT License;

• The package is lightweight and contains the basic methods for performing
Fourier Transform and FFT, at the same time offering advanced flexibility in
their parametrizing;

• DSPLib comes equipped with service functions that find average and root
mean square values of spectra. These operations could be used to find values
that are set as segment similarity threshold during comparison procedures.

When exectuing Fourier transforms, the library is working with complex num-
bers. The supportive package for that data type cannot be found inside of Unity, so
it was downloaded from the official Microsoft GitHub repository [20] and configured
to compile in the game engine.

The last piece of software that was occasionally accessed over the course of the
application testing and debugging is the Studio One 3 digital audio workstation.
This choice is of researcher’s personal preference.

4.2 The algorithm

The final implementation of the target algorithm generally conforms to the guidelines
laid down in section 3.5. Only several small modifications have been made to its
parts as the source code was being written. All of the steps of the algorithms’
pipeline are presented in the subsections below.

4.2.1 Calculating the beatmap

First of all, to correctly locate playback moments at which rhythm-based transition-
ing can take place, the algorithm first has to know where beats and bars start in a
song, i.e. match different signature divisions with their time-domain positions. Cor-
rectly determining such parameters as tempo, number of beats per bar and number
of beats per minute (BPM) during preprocessing is spoken of as Beat Detection.
This problem is, in fact, considered to be currently unsolved1. For the purposes of

1Beat is a highly subjective perceptional characteristic of a sound and can not even be properly
defined to computer systems. No unified model for detecting beat by preprocessing frequency

30

CHAPTER 4. ALGORITHM IMPLEMENTATION

current programming task, it was decided the mentioned values will be taken from
user as input. The choice of time signatures will be limited to two most popular
ones today: 3/4 and 4/4.

When a song is fed to the algorithm, it might not start immediately at zero sec-
onds, but a little later, instead. Alternatively, the beat might not kick in straight-
away. Having key rhythmic parameters of the song, it is possible to calculate such
an shift via frequency analysis with a consequent search of transients2, but for the
sake of keeping source code as simple and concise as possible, the offset value is
obtained from the user as well.

Once provided with values for tempo, BPM and time signature, the algorithm fills
up the beatmap, which in memory is represented as an array of timestamp values,
where each corresponds to a starting point of a subsequent beat. This information
is used in the next step when grouping series of samples into chunks.

4.2.2 Forming audio segments

In the current implementation, chunk size of 4096 is chosen. This allows to get a
spectrum of length 2048 and, with a standard sample rate of 44.1 kHz, a binning
resolution of 10.77 Hz per value (see table 3.1). This range is small enough to capture
most of the differences in magnitudes of frequencies relating to some of the closest
neighbouring musical notes (see next subsection).

The segments are formed starting from the first sample of an audio file. They
overlap with a fraction of 25% – that means that the first fragment is collected from
samples 1 to 4096, the second one contains samples 1025 to 5120, etc. If at the
very end of the file there are not enough samples to compose a chunk, they are
disregarded.

However, not all assembled groups enter the comparison. Here the previously
created beatmap comes into play. The algorithm finds the time-domain borders of
each chunk and determines whether any of the rhythm-linked timestamps lay within
this interval. Only those segments that fall close to the moments where beats and
bars start are sent to FFT analysis, where their voltage values are converted to
spectra. What is more, each qualified chunk is assigned a number, which signifies
the within-bar beat it belongs to. This is used at later stages to establish beat-
preserving transfers.

4.2.3 Creating segment images

As it was defined in subsection 3.3.3, an image of a segment is a set of indicative
attributes that is derived from the spectrum array and that captures most of the
significant frequency information about the chunk. In the implementation, an image
of length 64 is constructed from 73 key bins of each FFT output in the following
way:

analysis currently exists, because in different music compositions the beat is sonically different, i.e.
created using different instruments, patterns and tricks. Employing machine learning to develop
and train such a model is a hard challenge as well, because the behaviour and the appearance of
beat within the song is unpredictable. However, this topic is beyond the research scope of this
master thesis.

2In acoustics and audio, a transient is a high-amplitude, short-duration sound at the beginning
of a waveform that usually occurs in musical sounds in the beginning of a new time measure [21]

31

4.2. THE ALGORITHM

• The first characteristic 62 values are copied from bins as-is;

• The prelast image value is calculated as an average of the next three key
spectrum values;

• The last image value is received as an average of eight last selected bins.

The indices for taken spectrum values are picked so that the represented ranges
cover the frequencies of one or two of musical notes. In fact, the technique captures
all notes from D3 to D7 individually. As FFT provides poorer resolution in lower
ranges, the investigated bins are distributed unevenly across the whole audible span
– most of the elected measurements sit very densely in the bass, lower-midrange and
midrange bands, getting sparser towards the upper-midrange and presence regions
(see figure 4.1). The two values at the end of image are bin averages due to those
bins being located in brilliance band of human’s hearing range – there is no need for
a great degree of precision there. The information about selected spectrum values
and their contributions to a segment image can be found in appendix D.

Figure 4.1: The distribution of frequency bins involved in image compilation across the
spectrum.

4.2.4 Comparing segments

After images for participating chunks are calculated, all possible pairwise combina-
tions of segments are subject to comparison.

The difference metric between two fragments is found by computing element-by-
element Euclidian distances between the same-index elements of two segment image
arrays and adding up those distances. To classify chunks as similar or unlike, their
comparison score is set against a threshold Ts. It is defined as

Ts = RMS · fRMS (4.1)

where RMS is a root mean square magnitude value of all spectra received by
FFT on the segment formation step, and fRMS is a fraction from zero to one.

32

CHAPTER 4. ALGORITHM IMPLEMENTATION

If the dissimilarity score of a certain couple of fragments appears to be below
Ts, the pair is thought to have met the requirements of likeness and proceeds to the
alignment step, otherwise the tuple is left out of the further operation.

The greater the value of fRMS is, the easier it is for segments to fit under the
threshold and be considered appropriate for transitioning, and vice versa. Making
the fraction too big would significantly increase false positive rate. On the other
hand, setting fRMS overly small can decrease the number of qualified segments
remarkably (which will result in a more time spent waiting for an initiated transition)
or bring it down to absolute zero. It was practically discovered that the best outcome
is achieved when giving that multiplier a value between 0.01 and 0.3. For such range,
the algorithm typically eliminates 94% to 99% of all possible transitions, but the
rest bit is enough for more than satisfactory performance. The effects that different
choices of fRMS has on transfer points detection are proven in chapter 5.

4.2.5 Precise segment alignment

The alignment of transition segments is an extra step that was not originally planned
for implementation but came out as profitable during the practical work. The core
idea of this move is to refine a pair of source and destination transfer points to
correspond to the exact same locations within the duration of a bar. The thing
is, the size of chunks that are compiled at the start of the algorithm is not at all
related to a beatmap of the song. Therefore, is very unlikely for the first sample
of each observed chunk to match the exact signature measure on the timeline. The
segments do belong to certain beats – but it does not entail they perfectly line up
with them.

When a couple of similar fragments enters the step, it is first computed by how
many samples and in which direction the source segment deviates from its ideal
prescribed-by-beat placement. Then, the destination chunk is aligned in relation to
its closest beat the way that the shift becomes the same among fragments’ starting
points.

Let us think of an example of two segments passed to the alignment stage: the
first one is linked to beat 3 of bar 1 and begins 1100 samples before that beat, and
the other one lays 100 samples before beat 3 bar 9. That tiny desynchronization
might seem negligible, however, when trying to attempt to transition between the
chunk starting points that are left intact, one would be disappointed, as human’s
ear would be extremely sensitive to such rhythmical inconsistency and the transfer
itself would be perceived as abrupt and unnatural. Whereas if the timing of second
segment is adjusted so that its leftmost value is also 1100 samples early relative to
beat 3 bar 9, then the transition would sound much more pleasing.

4.2.6 Transitioning

As soon as akin segments are aligned, their two leftmost values become the source
and the destination for a viable transition and are put in a separate data structure –
we will denote is as ”transfer table”. It is completely up to the user how and where
to take advantage of the algorithm’s final output (the discussed realization of the
programming task provides means to save obtained data into a Comma-Separated

33

4.3. THE APPLICATION

Values file3). Below, one possible usage is suggested that can be experimented with
in the test application.

Let us assume the audio clip is playing, and at that moment the user comes
up with a certain position they want the playhead to jump to. That serves as a
command to the program to access the transfer table and search for an appropriate
pair of samples to jump between. In the implementation, the determination of
suitable pair is done as follows:

• The location of the playhead at the time of initiated transition is captured;

• The algorithm scans source samples in the transfer table and maximally picks
the predefined number of those (in our implementation it is equal to 50) that
are in front of the playhead and is closest to it. If no entry points are found
between the current playback marker and the end of the audio file, it is assumed
that no transitioning path is feasible;

• If a source sample is found, a list of all possible hops from that sample is ex-
amined to find all of those that would appear before the predefined destination
point and, again, would be the least distant from it. If at least one such exit
point is spotted, the algorithm saves found entry and destination samples to
the data structure of possible transfer options;

• The list of possible options is scanned to obtain Nw value for each of the
selected pairs < sentry, sexit >. This value shows how many samples will have
to be played (”waited for”) before the playhead gets from the current playhead
position to the required destination with a transition that the pair specifies.
It is defined as

Nw = (sentry − scurr) + (sdest − sexit) (4.2)

Where sentry and sexit are numbers of transition’s entry and exit points, scurr
is current playhead position, and sdest is the destination sample;

• The pair with a minimum value of Nw is passed to the audio player as the
preferred transition. In its turn, the player moves the playhead to the second
sample of a tuple once the playback reaches the value of the first sample of
the pair.

In the test application, both forward and backward transitions are supported.
The placement of transition samples calculated by the coroutine above is shown via
application GUI.

4.3 The application

This section covers the aspects of how the programming solution is encapsulated
into a sample GUI application within Unity game engine.

3Each pair of entry-exit samples for transitioning is placed on a separate line and the values are
split by commas.

34

CHAPTER 4. ALGORITHM IMPLEMENTATION

4.3.1 Unity workspace

The window of the application project open in Unity with its main components
labeled by numbers is shown in figure 4.2.

Figure 4.2: Solution project window in Unity: 1 – GUI window, 2 – Object Hierarchy, 3 –
Properties tab, 4 – Project explorer / console tab

The graphical user interface window (figure 4.2, label 1) is the main area where
the behaviour of application is visualized. All UI elements are described in detail in
subsection 4.3.3.

The hierarchy tab (figure 4.2, label 2) shows the list of all (groups of) objects
that are created in the scene. The current implementation has four objects:

• Main Camera – a service component that provides the background for the user
interface layout;

• Canvas – a parent entity for all interactive and static UI objects that are visible
in the application;

• Event System – a compulsory helping object for the canvas;

• ApplicationObject – the object that ensures the main functionality of the
application. All source code scripts are attached to and executed on this
entity. That way, it acts as a bridge between the raw algorithm and its actual
realization.

Each of listed objects has a list of properties, that can be seen and edited using
Properties tab (figure 4.2, label 3). That workspace area is also used to provide an
input music file to the processing pipeline.

The File Explorer tab allows to navigate through the hierarchy of project files and
drag-and-drop necessary ones into objects’ property fields. At the same window, the
console can be accessed where compilation/runtime errors, warnings and debugging
messages appear (figure 4.2, label 4).

35

4.3. THE APPLICATION

4.3.2 Application files

As displayed in figure 4.2, the project assets folder consists of three main directories.
Plugins folder has only one Numerics package file inside that is needed to support
computations involving complex numbers. In the Scenes catalogue, there are two
files – they store the vital information about the application scene and the demo
game scene (see section ref6), such as default object layout and initial visualization
preferences. The directory Resources contains three subfolders. The first two contain
custom-created or imported user files that support the functionality of the developed
application and the demo game. The third one is named Transitioning Tables.
The CSV files compiled by Processor to save the information about transfer point
locations for future use are put inside that subfolder.

Inside the Application catalogue, the following contents are packed:

• The core of current realization – C# scripts reside in the Scripts subfolder.
In total, three source code files are linked to the ApplicationObject. The first
one defines class Processor, which is responsible for executing the proposed
algorithm and providing the required output – a set of appropriate transition
points. This information and several other calculated parameters are handled
in AudioPlayer class to control the playback, both casually and in a non-linear
manner. The UI script is in duty for establishing mutual connection between
the data model of the solution and its visual representation. On one hand, this
class adjusts the application appearance in correspondence to changes in in-
program variables and audio playback. On the other hand, it provides means
to manage user interactions with GUI such as tweaking of settings by sending
response commands to Processor and AudioPlayer;

• Some of the custom icons and images used to build user interface are placed
in the Sprites subfolder;

• The Audio Files subdirectory host various music files that were used over the
course of implementing the solution for debugging, testing and that can be
used for demonstration purposes;

• The CSV files compiled by Processor to save the information about transfer
point locations for future use are put into the subfolder.

The brief description of all programming methods utilized in the application
within Unity scripts is given in the appendix E.1. The source code itself is in the
Project folder on the CD provided with a hard copy of this master thesis. The
contents of the CD are listed in appendix B.

4.3.3 Application GUI

The graphical user interface of the application serves multiple purposes:

• Helps control the linear playback of an audio clip and observe current playhead
position;

• Gets BPM, time signature and beat start offset values from user’s input that
the main algorithm needs to fill up the beatmap;

36

CHAPTER 4. ALGORITHM IMPLEMENTATION

• Presents the user with an opportunity to specify desired transfer destination,
see the calculated entry and exit points, trigger and cancel transitions;

• Allows the user to modify default non-linear transferring behaviour by manip-
ulating advanced controls.

All elements of GUI are shown in figure 4.3 and thoroughly described in table 4.1
according to how they are numbered in the figure.

Figure 4.3: Elements of application GUI: 1 – BPM field, 2 –Time signature slider, 3 –
Beat offset field, 4 – Transitioning method slider, 5 – Transitions’ calculation button, 6
– Transition data export button, 7 – Playback bar, 8 – Playhead, 9 – Transition entry
point marker, 10 – Transition exit point marker, 11 – Transition destination marker, 12 –
Play/pause button, 13 – Stop button, 14 – Transfer trigger/cancel button, 15 – Transitioning
beats’ toggles, 16 – Follow-up mode toggle, 17 – Perception test mode button.

37

4.3. THE APPLICATION

Table 4.1: Description of application’s GUI elements

The user manual explaining the setup needed for interacting with the application

38

CHAPTER 4. ALGORITHM IMPLEMENTATION

is given in appendix section C.1.

39

4.3. THE APPLICATION

40

Chapter 5

Testing

One of the most important concerns of this master thesis is design and implementa-
tion of the algorithm that would serve as a foundation for automated context-aware
transitioning utilized in adaptive music systems for games. In order to evaluate
the proposed programming solution for correctness and robustness, testing must be
done. The choice of testing methodology can be motivated by one of the initial
principles of procedurally generated audio – the flow of musical composition should
remain steady, smooth and natural. In other words, none of non-linear playback
jumps should not be noticeable to the listener. Those performance characteristics
are highly subjective and therefore evaluation may show contrasting results when
made by different people. Taking this circumstance into account, it looks reasonable
to set the focus of the testing on the perceptional aspect.

The perception tests are carried out in order to accomplish the following goals:

• Assess the accuracy (”invisibility”) of transitioning provided by the suggested
technique;

• Evaluate the robustness of the proposed method on different inputs and outline
the recommended scope of use;

• Detect if the algorithm is subject to anomalistic behaviour and, if yes, deter-
mine the factors that cause such exceptions;

• Inspire prospective improvements to the realized technique.

5.1 Perception testing

5.1.1 GUI application’s testing mode

To perform the perceptional evaluation, a special testing mode was introduced to
the GUI application. It is aided by extra functions added to the target application.

When testing mode is enabled, the following happens:

• The playback of an input file is launched from the beginning;

41

5.1. PERCEPTION TESTING

• The algorithm is forced to randomly set the desired destination and perform
a follow-up transition sequence1. If it happens that there is no viable pair of
transfer points, another generation attempt is made after a short delay and
the search is repeated;

• Once a relatively big number of jump sequences are complete (for the purposes
of current testing, a value of 10 was chosen), the playback is stopped;

• The total number of transfers made is saved for future reference.

That way, each of the musical compositions being constructed by dedicated meth-
ods in the application comes out as a random compilation of parts of a source clip. If
we would suppose that the proposed transfer point detection algorithm was perfect,
it would mean that audible sound created during each test trial would be perceived
as a new cohesive composition with no abrupt cuts or other unpleasantly sounding
artifacts. The examination of the algorithm’s quality comes down to determining to
which extent this assumption holds in praxis.

5.1.2 Procedure

For each testing session, 18 trials were made. During each of them, the implementa-
tion organized non-linear playback via transitioning inside one of six sonically differ-
ent music files across the three different settings of the segment similarity threshold
Ts (defined in subsection 4.2.4).

To decrease researcher bias, the solution was tested on five participants (aged 19
to 25). Each of them was suggested to listen to each of the 18 generated playback
sequences played in a random order and, at the end of each audition, to state how
many times they noticed that ”something was wrong with the playback”. The task
was formulated that informally because it neither restricts the participants to lock
their attention on a narrow set of characteristics of presented audio nor overwhelms
them with any kind of sophisticated criteria. The only thing that matters for the
evaluation is how smooth the playback is and how ”invisible” the transitions are to
listener’s ears.

The number of perceived transitions was set against the actual number of transfer
occurrences (this value was written down for each trial run at the end).

5.1.3 Results

The results of testing along with the information about the original music files used
for test recordings are shown in table 5.1.

1Follow-up transitioning entails a series of non-stop playhead transfers. In the developed ap-
plication, enabling this setting allows to reduce the time needed to get to the selected timeline
destination.

42

CHAPTER 5. TESTING

Table 5.1: Perception test results

Generally, the algorithm has shown a good level of transitioning accuracy. As
it is seen in the table, the percentage of perceived transitions generally tends to
decrease as the value of threshold for transition selection gets lower. On the other
hand, the number of occurring transitions decreases as well. In our testing set,
songs 2, 5 and 6 turned out to be the ones for which the least number of viable
transitions was discovered by the implemented technique. On the strictest fRMS

setting, no transitions were found at all over the course of corresponding trials for
those recordings. One possible explanation for this behaviour is that those pieces
where the songs that were not produced professionally but were made by amateurs
that may have overlooked the procedures of record mastering and normalization.
That circumstance caused the comparison technique based on root mean square
value (RMS) to detect considerably smaller amounts of similar segments.

Surprisingly, the implementation performed best on file 1, which is an instru-
mental of a dense pop mix. On average, three transfers out of four were completed
absolutely unnoticed by the participant. After auditioning test sequences made up
from files 3 and 4, some of the listeners mentioned that the only wrong thing they
heard during playback were short clicks, and that ruined the experience. This might
have happened because those scores involve piano and strings as instruments, and
hence contain many segments where a sustained sound is playing. In that case, a
little mismatch in a soundwave dispositions (which is natural for live string instru-
ments) may have come out as unpleasant playback artefacts. One way to remove the
clicks or make them less prominent would be to perform transitions with crossfades.
Instead of doing sharp jumps between the moments of audio within the same clip,
the game audio engine could be set up to move the playhead between two identical
music files. To make a transfer, the playback of currently active file is gradually

43

5.2. PREPROCESSING SPEED TESTING

zeroed out, while at the same time the volume of the second clip is increased. At
the next transition, the second clip softly blends back to the first and so on.

Another pleasing finding is that the algorithm does not discriminate between
music of different tempos and two of the supported time signatures – its operation
is not affected by these settings. This means that the beatmap calculation is being
done correctly and the integration of support of various time signatures is just a
matter of small code modifications.

The conducted user testing has inspired two possible improvements to the al-
gorithm that would help further improve the seamlessness of transitioning. First,
when the chunks are compared, it is not only their spectra similarity that may be
inspected but the ratio of overall signal magnitudes as well. This measure would
eliminate the cases when the transition is perceived as a rapid change of playback
volume. Moreover, a value of acceptable magnitude difference could be made depen-
dent on the frequency that it is measured at. That way, for example, midrange and
upper-midrange bands may be assigned less strict thresholds, as each piece of music
is commonly more stable in bass range and more diverse in higher frequencies. That
would allow the playhead to jump between different music themes revolving around
similar low-frequency content.

Another prospective enhancement would be to ensure locating possible transition
positions by comparing segment groups and not individual chunks as the current
approach prescribes. For instance, segments 1, 2, 3 could be set against segments
12, 13, 14 when the similarity score is computed for chunks 1 and 12, 2 and 13, 3 and
14 separately and then accumulated into a single metric of alikeness. This would
enable the comparison algorithm to analyze audio files at a bigger scale, which might
make the detection of similar complex, time-stretched sounds possible. It appears
that the more segments will used to form a group, the more the algorithm will
deviate from being a local-scale search tool to being a pattern-matching instrument.
Of course, balance should be found between the size of comparison groups and the
computational load, as this advanced technique will entail the multiplied number
of required image comparison operations. Spectral similarity threshold should will
have be adjusted as well to conform to new selection scheme.

The last suggestion regards the aspect of how Ts is defined. The testing has
shown that for some audio files very few transitions fit under the necessary value.
That circumstance prompts that a better solution should somehow normalize Ts

over the set of several sonic parameters of each individual song. Those properties
may as well be computed for different frequency bands separately. Alternatively,
their values may be found locally for each of relatively big parts that the source
file can be subdivided to, so that each segment comparison relies on the similarity
threshold that corresponds to the area where compared chunks reside.

5.2 Preprocessing speed testing

Even though execution speed is not the primary criterion for evaluating the quality
of the developed algorithm, this type of performance testing was still conducted
to get the outline notion of how fast the implementation is able to accomplish the
programming task. That aspect can not be ignored because the faster the solution is,
the shorter time will be required to initialize it within into game audio engine, and,

44

CHAPTER 5. TESTING

consequently, to launch the game. It is obvious that faster loading times provide
higher user satisfaction.

For the testing, the execution times of main preprocessing methods inside Pro-
cessor application class were measured. As variable parameters, input audio file
and fRMS value were picked. Five measurements were made for each testing combi-
nation. The average results obtained are shown in Table 5.2. Beatmap calculation
times are not given as those appeared to be almost instant for each of the trial cases.

Table 5.2: Application preprocessing steps’ execution times and transfer calculation
times measured for of six test audio files

Overall, the algorithm has demonstrated impressive performance – for current
implementation, it takes no more than 10 seconds on average to create a transi-
tioning table for a three-and-a-half-minute long audio file. A certain linear corre-
lation between input file length and waiting time can be drawn – the execution
went almost two times faster when done on shorter files 5 and 6. Also, the test-
ing has revealed that the choice of fRMS has no significant effect on computation
time – the segment alignment technique handles various quantities of chunks equally
good. The FFT and chunk image compilation expectedly appeared to be the most
resource-demanding tasks out of all observed ones. This leads to a conclusion that
the preprocessing time is mostly dependent on the total number of chunks that are
formed according to beatmap, chunk size and overlap settings at the start of the
algorithm’s operation.

45

5.2. PREPROCESSING SPEED TESTING

46

Chapter 6

Demo game and API

The implementation of the proposed transfer point detection algorithm was visual-
ized and tested via a GUI application. This allowed to conduct perceptional testing
(the smoothness of calculated transitions) and computational performance evalua-
tion. However, in praxis, the algorithm will never be run on its own – instead, it
supposed that it will be used to aid the creation of an interactive music system for
games.

To showcase how the solution can be used to serve purposes of procedural audio
design, a designated application user interface was created inside Unity engine. The
idea of API is to provide the user with an easy way to take advantage of the algorithm
within any custom project by passing it several input parameters and obtaining
certain output that can be used in game. That way, all computationally and logically
heavy operations take part behind the scenes of the project, on the API side.

As a foundation for this API, the core audio processing functions from the Pro-
cessor class of the implementation package were taken. They were complemented
by several public methods that could accept song information variables from the
user and return appropriate transition point locations when the need for a transfer
emerges during gameplay. After that, a very simple 2D-game was created that relies
on the API to interactively change background music depending on the state of the
game.

6.1 Game description

The game features a playable character, an enemy character and a target flag. All
three objects are placed on a flat ground. The objective of the character has to kill
the enemy and reach the target flag. The player can move the character left and
right with arrow keyboard keys. The character kills an enemy by coming close to it
(see figure 6.1).

47

6.2. GAME FILES

Figure 6.1: Demo game scene: a) – At the start of the game, b) – At the end of the game

6.2 Game files

Inside the Game subdirectory of Resourses folder of the Unity project are three
catalogs. The first, Audio Files, contains a single file ”Igor Kotov - Demo Game
Music.mp3”, which is a one-minute musical score arranged exclusively for the game
by the author of this thesis. This song is used as a source audio clip that helps build
a primitive API-based interactive audio system for the game. Catalogue Sprites has
the raster assets used to visualize the objects of game environment. All gameplay-
controlling scripts and the interface script reside in Scripts folder.

It should be noted that all 2D-sprites used to build the game were either taken
from publicly available asset packs distributed under Creative Commons Attribution
Unported 3.0 licence or made individually by the author of this thesis [22] [23].

The foundation for the demo game is formed by the following classes:

• API – the application programming interface class. Handles all the program-
ming logic related to audio processing and the search of transition samples;

• EventHandler – monitors properties of game objects to determine if the game
state has changed and communicates those changes to the MusicPlayer class;

• MovementManager – performs the movement of the game character by taking
keyboard key inputs from the player;

• MusicPlayer – simulates game’s audio system controller. Contains user calls
of public API methods to add information about music themes, request the
calculation of transitioning tables and the search for appropriate entry and exit
transition points when directed to do so by the EventHandler class. Performs
playback transitioning relying on data returned by the API class.

The brief description of all programming methods utilized in the demo game
within Unity scripts is given in the appendix section E.2.

6.3 Game-API interaction

To use the implementation’s algorithm through API, the programmer first has to
pass this data to the API via calculateTransitioningTables method:

48

CHAPTER 6. DEMO GAME AND API

• The audio clip;

• The BPM value for the song;

• The number of beats per bar (only 3/4 and 4/4 scales are supported currently;
if a value of 3 is passed, the time signature is thought to be 3/4, if a value of
4 is passed, it is assumed to be 4/4);

• The beat offset value;

• The desired threshold value Ts. It is suggested that Ts lays in between 0.01
and 0.3. The lower the threshold, the more transitioning points will be found
in an audio file, but the higher false positive rate can be, and vice versa.

Once API receives all those fields, it computes the transitioning table and stores
it for future use. The user is then required to add timestamp borders for music
themes within the audio file on the game side (i.e. from the MusicPlayer class).
Those markers are used in two ways:

• To define transition destination when asking API for a pair of preferred transfer
points;

• To maintain the playback by looping over theme segments when no scene
changes are taking place.

Since this setup is done, the music player is now capable of reacting to game
state changes by turning to the interface class to get transfer points and non-linearly
move the playhead based on the obtained positions so that current in-game audio
corresponds to a new music theme. The user can claim transition samples by calling
the getTransitionSamples API method, providing current playback time and desired
destination time as input arguments. The game-API interaction is further explained
in the next section, where interactive audio system is being set up and tested for
the demo game.

6.4 Demo game run

As soon as the demo game enters the runtime mode, the music player submits the
soundtrack file, its tempo-related properties and the user-set threshold value for seg-
ment comparison via calculateTransitioningTables method. The transitioning table
then computed by the API. After that, three music themes are added. Those corre-
spond to possible game states and are called ”exploration”, ”danger” and ”victory”.
The game states have the same names.

During gameplay, current state is set by the following rules:

• At the very start of the game, the state is set to ”exploration”;

• If the player’s character is close to the enemy, the state is ”danger”;

• If there are no enemies nearby player’s character and he has not yet reached
the target flag, the state is ”exploration”;

49

6.4. DEMO GAME RUN

• If the character makes his way to the flag, the mode is set to ”victory” and
the game ends.

For debugging purposes and to provide a better visualization of adaptive audio
at work, the ground surface in game is colored in green and brown, black and red
or black and white, which is done to visualize how EventHandler class is expected
to switch game states according to occurring events:

• If the player is in the green and brown zone (i.e. far from the enemy), the
game should always stay in exploration mode;

• If the player is touching black and red ground, danger mode should be triggered
if the enemy is not yet killed;

• If the player is inside black and white region, victory mode should be activated
and the game should end.

When it so happens that during gameplay the game state changes, the music-
Player class calls getTransitionSamples method of API. As input arguments, current
playback position is provided along with the timestamp that corresponds to the start
time of the music scene that the transition has to be made to. That way, the API
will search for the fastest way to get from the old music theme to the beginning
of a different theme that agrees with the newly set game state. Once the interface
class returns selected entry and exit points, music player begins to keep track of the
playback and performs the transition when prescribed.

The event-driven adjustability of created game’s audio system proves that the
transfer point detection algorithm designed and implemented in this work can be put
to use to establish simple procedural audio behaviour within custom user projects
in the field of electronic entertainment.

The user manual explaining the setup needed for running the demo game is given
in appendix section C.2.

50

Chapter 7

Conclusion

The research conducted over the course of work on this diploma thesis revolved
around the concept of non-linear playback of audio samples via transitioning, a
method which is currently the foundation of modern paradigm of adaptive music
design for electronic entertainment.

First, an overview of relevant procedural audio techniques was made to introduce
the domain under interest. The discussion touched upon the features that popular
designated middleware titles such as FMOD Studio offer to aid generative sound
design, and the notion of transitioning was investigated in particular. In addition
to this, a brief insight into audio synthesis was provided – it was mentioned as
another tool that aims to challenge the traditional start-to-end playback to create
brand new audio patterns and timbres. The drawbacks of current transitioning
mechanisms were listed that motivated the main goal of this thesis, which was to
suggest, implement and test an algorithm that would assist automatic context-aware
playhead transfers within music files by locating appropriate entry and exit positions
for smooth and seamless transitions.

After that, the necessary background for follow-up work was explored by taking
a look into the basics of sound sampling and processing. This helped to brainstorm
the matter and come up with the approach to solving the formulated problem.

Then, the developed algorithm, which entailed determining the degrees of fre-
quential similarities between small groups of source file samples, was proposed, and
all its steps were thoroughly described. The technical choices for algorithm’s imple-
mentation were justified – and Unity game engine was picked as the main execution
environment.

One part of practical realization was an application with graphical user interface
which illustrated the functionality of the suggested method in various modes. The
GUI provided a framework for controlling the playback, scheduling and canceling
playback transitions, as well as restricting transfers to certain positions within the
song’s rhythmic grid and affecting the number and the preciseness of viable jumps
depending on the selected value of sample segment similarity threshold.

The correctness of the algorithm’s operation was proven by perception testing,
where participants were suggested to spot transitions while listening to on-the-fly
composed compositions built by moving the playhead around test music files ac-
cording to precalculated entry-exit pairs of transfer points. The implementation
has demonstrated a good level of non-linear playback invisibility, organizing most

51

7.1. FUTURE PLANS

transfers in an unnoticeable manner. A number of possible future improvements
to preprocessing procedure, that were inspired my user testing, were put forward.
Additionally, the algorithm’s execution speed was measured for a number of com-
binations of variable performance parameters. The results turned out to be more
than satisfactory, with an average of ten seconds of time needed to compute the
transitioning scheme for a typical three-minute long music piece.

To showcase how realized technique could be applied in practice to serve the
purpose of creating adaptive audio systems within custom projects, the core algo-
rithm functionality was encapsulated into an API which usage was demonstrated on
an example of a simple developed Unity game. During the gameplay, the changing
properties of in-game objects can cause game engine to switch between different
game states. In response to that, game’s music system is capable of making calls to
API methods to quickly adapt the sound environment to the new state by transi-
tioning. The application programming interface performs all necessary calculations
behind the scenes and returns a pair of entry and exit points that can be used to
non-linearly move to a new music theme when needed.

Taking into account all aforementioned achievements, it can be claimed that the
goal of this master thesis has been accomplished.

7.1 Future plans

The implementation of transfer point detection algorithm described in this work can
be further improved in the following ways:

• The smoothness of calculated transitions be rectified by elaborating on the
possible modifications laid down in subsection 5.1.3;

• The speed of preprocessing routine can be increased by optimizing the source
code both logically and programmatically (i.e. making sure that appropriate
class hierarchies are build and the right data types and structures are chosen);

• The scope of algorithm’s practical usage can be expanded by using the source
code of the created API to create standalone and integrated software compo-
nents such as VST-plugins, graphical and command-line applications. In the
long run, the foundation devised in this thesis may be involved in a new IDE
for adaptive sound design.

52

Bibliography

[1] Procedural Audio for Video Games: Are we there yet? https://www.

gdcvault.com/play/1012645/Procedural-Audio-for-Video-Games. [on-
line 20.3.2019].

[2] FMOD Games. https://www.fmod.com/games. [online 20.3.2019].

[3] R. Bristow-Johnson. Wavetable Synthesis 101, A Fundamental Perspective. Au-
dio Engineering Society (AES), 1996.

[4] J. Strawn. Digital Audio Signal Processing: An Anthology. A-R Editions, 1985.

[5] C. Roads. Microsound. The MIT Press, 2001.

[6] Digital Audio Basics: Sample Rate and Bit Depth. https://www.presonus.

com/learn/technical-articles/sample-rate-and-bit-depth. [on-
line 1.4.2019].

[7] Nyquist Sampling Theorem. http://musicweb.ucsd.edu/~trsmyth/

digitalAudio171/Nyquist_Sampling_Theorem.html. [online 2.4.2019].

[8] Fourier Transformation and Its Mathematics. https://towardsdatascience.
com/fourier-transformation-and-its-mathematics-fff54a6f6659. [on-
line 5.4.2019].

[9] Sparse Fast Fourier Transform. https://groups.csail.mit.edu/netmit/

sFFT/. [online 5.4.2019].

[10] Richard A. Brualdi. Introductory Combinatorics (5th ed.). Pearson Prentice
Hall, 2010.

[11] D.L. Kreher, D.R. Stinson. Combinatorial Algorithms: Generation, Enumera-
tion and Search. CRC press LTC, 1998.

[12] D. Mayers. An Introduction to Numerical Analysis. Cambridge University
Press, 2003.

[13] Introduction to Polynomial Interpolation. https://sameradeeb-new.

srv.ualberta.ca/introduction-to-numerical-analysis/

polynomial-interpolation/. [online 17.4.2019].

[14] The complexity of evaluating interpolation polynomials. https:

//www.sciencedirect.com/science/article/pii/0304397585900787?

via%3Dihub. [online 18.4.2019].

53

https://www.gdcvault.com/play/1012645/Procedural-Audio-for-Video-Games
https://www.gdcvault.com/play/1012645/Procedural-Audio-for-Video-Games
https://www.fmod.com/games
https://www.presonus.com/learn/technical-articles/sample-rate-and-bit-depth
https://www.presonus.com/learn/technical-articles/sample-rate-and-bit-depth
http://musicweb.ucsd.edu/~trsmyth/digitalAudio171/Nyquist_Sampling_Theorem.html
http://musicweb.ucsd.edu/~trsmyth/digitalAudio171/Nyquist_Sampling_Theorem.html
https://towardsdatascience.com/fourier-transformation-and-its-mathematics-fff54a6f6659
https://towardsdatascience.com/fourier-transformation-and-its-mathematics-fff54a6f6659
https://groups.csail.mit.edu/netmit/sFFT/
https://groups.csail.mit.edu/netmit/sFFT/
https://sameradeeb-new.srv.ualberta.ca/introduction-to-numerical-analysis/polynomial-interpolation/
https://sameradeeb-new.srv.ualberta.ca/introduction-to-numerical-analysis/polynomial-interpolation/
https://sameradeeb-new.srv.ualberta.ca/introduction-to-numerical-analysis/polynomial-interpolation/
https://www.sciencedirect.com/science/article/pii/0304397585900787?via%3Dihub
https://www.sciencedirect.com/science/article/pii/0304397585900787?via%3Dihub
https://www.sciencedirect.com/science/article/pii/0304397585900787?via%3Dihub

BIBLIOGRAPHY

[15] I researched the market share of game engines on Steam. https:

//www.reddit.com/r/gamedev/comments/8s20qp/i_researched_the_

market_share_of_game_engines_on/. [online 27.4.2019].

[16] DeepMind partners with gaming company for AI research. https://www.

dailydot.com/debug/unity-deempind-ai/. [online 29.4.2019].

[17] The most popular IDEs? Visual Studio and
Eclipse. https://www.infoworld.com/article/3217008/

the-most-popular-ides-visual-studio-and-eclipse.html. [on-
line 2.5.2019].

[18] Algorithmic Beat Mapping in Unity: Preprocessed
Audio Analysis. https://medium.com/giant-scam/

algorithmic-beat-mapping-in-unity-preprocessed-audio-analysis-d41c339c135a.
[online 24.3.2019].

[19] DSPLib - FFT / DFT Fourier Transform Library for
.NET 4. https://www.codeproject.com/Articles/1107480/

DSPLib-FFT-DFT-Fourier-Transform-Library-for-NET-6. [on-
line 13.4.2019].

[20] Microsoft/referencesource/System.Numerics/System/Numerics/Complex.cs.
https://github.com/Microsoft/referencesource/blob/master/System.

Numerics/System/Numerics/Complex.cs. [online 13.4.2019].

[21] P. Stepanishen. Handbook of Acoustics J. Malcolm. John Wiley & Sons, Inc.,
1998.

[22] Cat Fighter Sprite Sheet. https://opengameart.org/content/

cat-fighter-sprite-sheet. [online 29.5.2019].

[23] Cute Monster Sprite Sheet. https://opengameart.org/content/

cute-monster-sprite-sheet. [online 29.5.2019].

54

https://www.reddit.com/r/gamedev/comments/8s20qp/i_researched_the_market_share_of_game_engines_on/
https://www.reddit.com/r/gamedev/comments/8s20qp/i_researched_the_market_share_of_game_engines_on/
https://www.reddit.com/r/gamedev/comments/8s20qp/i_researched_the_market_share_of_game_engines_on/
https://www.dailydot.com/debug/unity-deempind-ai/
https://www.dailydot.com/debug/unity-deempind-ai/
https://www.infoworld.com/article/3217008/the-most-popular-ides-visual-studio-and-eclipse.html
https://www.infoworld.com/article/3217008/the-most-popular-ides-visual-studio-and-eclipse.html
https://medium.com/giant-scam/algorithmic-beat-mapping-in-unity-preprocessed-audio-analysis-d41c339c135a
https://medium.com/giant-scam/algorithmic-beat-mapping-in-unity-preprocessed-audio-analysis-d41c339c135a
https://www.codeproject.com/Articles/1107480/DSPLib-FFT-DFT-Fourier-Transform-Library-for-NET-6
https://www.codeproject.com/Articles/1107480/DSPLib-FFT-DFT-Fourier-Transform-Library-for-NET-6
https://github.com/Microsoft/referencesource/blob/master/System.Numerics/System/Numerics/Complex.cs
https://github.com/Microsoft/referencesource/blob/master/System.Numerics/System/Numerics/Complex.cs
https://opengameart.org/content/cat-fighter-sprite-sheet
https://opengameart.org/content/cat-fighter-sprite-sheet
https://opengameart.org/content/cute-monster-sprite-sheet
https://opengameart.org/content/cute-monster-sprite-sheet

Appendix A

Abbreviations

The abbreviations used in this work and their definitions are listed in table A.1.

Table A.1: Used abbreviations and their definitions

55

56

Appendix B

CD Contents

The CD provided with the hard copy of this master thesis contains the following
items:

• thesis.pdf – The thesis research paper file;

• Project – a folder of the source Unity Project. Has all code scripts, images,
audio clips and other files that were used during practical part of this work.
The description of the most important catalogues and files is given in subsec-
tion 4.3.2 and in section 6.2;

• demoGameRun.mp4 – a video file that demonstrates the work of the imple-
mentation algorithm for the needs of adaptive audio within a sample game
setting.

• demoGameRunComments.txt – a text file that describes the demoGameRun
video. All comments are complemented with the assosiated timestamps, which
explain what happens in a certain moment of video playback.

57

58

Appendix C

User manual

In this appendix, the list of instructions are given that could be followed to launch
and interact with the created GUI application and the demo game.

To access the project flies and scenes, Unity game engine of version 2018.2.15f1
or newer has to be installed on the host PC. Then the subfolder ”Rhythm-based
transitioning” of folder ”Project” located on the attached CD should be opened
in Unity environment. This could be done either by pressing ”Open” button on
Unity start screen or going to ”File”→ ”Open Project” from the environment’s top
toolbar.

C.1 Interacting with the GUI application

To run the GUI application, the user has to do the following:

1. Navigate to ”Assets/Scenes” folder using the Project explorer tab (located in
the bottom-left corner by default);

2. Double-click on ApplicationScene file to open the application scene;

3. Click on the ApplicationObject inside the object hierarchy panel (located on
the top center by default) to display its properties in the Properties tab (to
the right of the hierarchy tab);

4. Go to ”Assets/Resources/Application/Audio files”, drag and drop one of the
selected sound files into the AudioClip field of Audio Source component in the
Properties Inspector. Custom files could be put into the Audioclip field as
well, but they have to be to the ”Audio files” directory first;

5. Press Scene Play/Stop button (centered on the very top of Unity workspace).
The interactions with interface can now be made. The detailed description of
GUI elements is given in table 4.1;

6. The run of the application can be stopped by pressing the Scene Play/Stop
button again.

59

C.2. PLAYING THE DEMO GAME

C.2 Playing the demo game

To run the demo game, the user has to go through the following steps:

1. Navigate to ”Assets/Scenes” folder using the Project explorer tab;

2. Double-click on GameScene file to open the game scene;

3. Press Scene Play/Stop button. The game is now started and the music within
it is played. The user can move the charachter via left and right arrow keys
on the keyboard and hear how game music changes in correspondence to the
game events. The way it is done is broken down in section 6.4;

4. The run of the game can be stopped by pressing the Scene Play/Stop button
again. When the game is completed, it is required to restart it to get back to
gameplay.

60

Appendix D

Segment image contents

Before the comparison of sample segments is done in the implementation, the images
of chunks are formed. Table D.1 shows which samples of FFT spectrum output are
taken to construct a segment image and how they are used.

61

Table D.1: Some of the middleware-specific features used for transitioning in adap-
tive audio

62

Appendix E

Description of methods

In this appendix, a brief description of all created programming methods within
Unity scripts is given, both for the test application and the demo game.

E.1 Methods of GUI application classes

E.1.1 Processor class methods

The description of methods defined for class Processor of GUI application is given
in table E.1.

Table E.1: Methods of application class Processor

63

E.1. METHODS OF GUI APPLICATION CLASSES

E.1.2 AudioPlayer class methods

The description of methods defined for class AudioPlayer of GUI application is given
in table E.2.

Table E.2: Methods of application class AudioPlayer

E.1.3 UI class methods

The description of methods defined for the user interface class of GUI application is
given in table E.3.

64

APPENDIX E. DESCRIPTION OF METHODS

Table E.3: Methods of application UI class

65

E.2. METHODS OF DEMO GAME CLASSES

E.2 Methods of demo game classes

E.2.1 API class methods

The description of methods defined for API class used in the demo game is given in
table E.4.

Table E.4: API class methods

E.2.2 MusicPlayer class methods

The description of methods defined for MusicPlayer class of the demo game is given
in table E.5.

Table E.5: Methods of MusicPlayer class

E.2.3 EventListener class methods

The description of methods defined for EventListener class of the demo game is
given in table E.6.

66

APPENDIX E. DESCRIPTION OF METHODS

Table E.6: Methods of EventListener class

E.2.4 MovementManager class methods

The description of methods defined for MovementManager class of the demo game
is given in table E.7.

Table E.7: Methods of MovementManager class

67

	Introduction
	Survey
	FMOD Studio fundamentals
	FMOD Studio features for interactive audio design
	Playback transitioning
	Transitioning within sound themes
	Transitioning between sound themes

	Audio synthesis
	Granular synthesis

	Analysis
	Essentials of audio sampling
	Fourier Transforms
	Spectrum similarity metrics
	Bin-by-bin comparison
	Compressed-attribute entity

	Beat-restricted processing of sample chunks
	Findings

	Algorithm implementation
	Technical Choices
	The algorithm
	Calculating the beatmap
	Forming audio segments
	Creating segment images
	Comparing segments
	Precise segment alignment
	Transitioning

	The application
	Application files
	Application GUI

	Testing
	Perception testing
	GUI application's testing mode
	Procedure
	Results

	Preprocessing speed testing

	Demo game and API
	Game description
	Game files
	Game-API interaction
	Demo game run

	Conclusion
	Future plans

	APPENDICES
	CD Contents
	User manual
	Interacting with the GUI application
	Playing the demo game

	Segment image contents
	Description of methods
	Methods of GUI application classes
	Processor class methods
	AudioPlayer class methods
	UI class methods

	Methods of demo game classes
	API class methods
	MusicPlayer class methods
	EventListener class methods
	MovementManager class methods

