
Czech Technical University in Prague

Faculty of Nuclear Sciences and Physical Engineering

Automatic Box Layout in I3T Tool

Automatické rozmis´ování propojených

modul· v nástroji I3T

Bachelor's Degree Project

Author: Marek Nechanský

Supervisor: Ing. Petr Felkel, Ph.D.

Language advisor: Mgr. Hana �ápová

Academic year: 2018/2019





- Zadání práce -



- Zadání práce (zadní strana) -



Acknowledgment:
I would like to thank Petr Felkel for his expert guidance and express my gratitude to Hana
�ápová for her language assistance.

Author's declaration:
I declare that this Bachelor's Degree Project is entirely my own work and I have listed all the
used sources in the bibliography.

Prague, July 8, 2019 Marek Nechanský





Název práce:

Automatické rozmis´ování propojených modul· v nástroji I3T

Autor: Marek Nechanský

Obor: Aplikovaná informatika

Druh práce: Bakalá°ská práce

Vedoucí práce: Ing. Petr Felkel, Ph.D., �eské vysoké u£ení technické v praze, Fakulta elektro-
technická, Katedra po£íta£ové gra�ky a interakce

Abstrakt: D·leºitou roli p°i pochopení grafu hraje jeho gra�cka representace. Vykreslení grafu
by m¥lo být závislé na typu grafu. Hodn¥ speci�cký typ grafu je puºíván v programu nazvaném
Interactive Tool for Teaching Transformations. Tento program je pouºívaný k výuce transformací
a uºivatel by m¥l jednozna£n¥ z vykresleného grafu poznat, co graf reprezentuje. Existuje spousta
technik na vykreslování graf·, ale pouze typ rozmis´ování zvaný Sugiyama-style graph drawing
je vhodný pro tento typ grafu. Tato technika je hodn¥ obecná a implementace m·ºe být navrºena
speciáln¥ pro grafy v tomto výukovém programu.

Klí£ová slova: Rozloºení grafu, Rozmis´ovací techniky, Sugiyama-style graph drawing, Vizuali-
zace grafu

Title:

Automatic Box Layout in I3T Tool

Author: Marek Nechanský

Abstract: A drawing of a graph has an important impact on understanding of the graph. The
drawing should be di�erent for various types of graphs. A very speci�c type of graph is used
in a program called Interactive Tool for Teaching Transformations. This program is used for
teaching transformations and the user should de�nitely understand what a graph represents
from a layout of the graph. There are many techniques for creating a layout of a graph, but only
a technique called Sugiyama-style graph drawing is suitable for this application. This technique
is very general and the implementation can be designed for graphs in this program.

Key words: Graph visualisation, Graph Drawing, Layout techniques, Sugiyama-style graph draw-
ing





Contents

1 Introduction 13
1.1 Interactive Tool for Teaching Transformations . . . . . . . . . . . . . . . . . . . . 13

2 Research 15
2.1 Graphs in I3T . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Programs with similar graph structures as I3T . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Diagram creating websites . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2.2 Public Implementation of Graph Algorithm Library and Editor . . . . . . 19
2.2.3 Graphviz - Graph Visualization Software . . . . . . . . . . . . . . . . . . . 20
2.2.4 Blender . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.5 Unreal engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Requirements of a proper graph layout . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 Layout Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.1 Interactive layout techniques . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.2 Semi-autonomous layout techniques . . . . . . . . . . . . . . . . . . . . . 23
2.4.3 Autonomous layout techniques . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Refactorization of classes representing I3T modules 31
3.1 Current state of the classes representing modules . . . . . . . . . . . . . . . . . . 31
3.2 Changes to the classes representing modules . . . . . . . . . . . . . . . . . . . . . 32

4 Implementation of the layout techniques 37
4.1 Interactive techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Semi-autonomous technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 Autonomous technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.1 graph structure used in the technique . . . . . . . . . . . . . . . . . . . . 39
4.3.2 Cycle removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.3 Layer assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.4 Order creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3.5 Coordinate assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Testing of layout techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Summary 47
9



A Results of layout techniques 49
A.1 Interactive layout techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
A.2 Semi-autonomous layout technique . . . . . . . . . . . . . . . . . . . . . . . . . . 53
A.3 Autonomous layout technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

B contents of the enclosed CD 59

10



List of Figures

2.1 Window of I3T with basic scene . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2 Modules with speci�c structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 transformation modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Basic diagram created in Lucidchart . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Sequence cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.6 Screen cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.7 Deformed projection in a screen module . . . . . . . . . . . . . . . . . . . . . . . 26
2.8 An example of two modules with a di�erent start and end edge directions . . . . 29

3.1 An example of a sender operator module . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 An edge crossing with four modules . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 An edge crossing with three modules . . . . . . . . . . . . . . . . . . . . . . . . . 43

A.1 Example of a usage of horizontal alignment . . . . . . . . . . . . . . . . . . . . . 49
A.2 Example of a usage of horizontal distribute . . . . . . . . . . . . . . . . . . . . . 50
A.3 Example of a usage of even horizontal distribute . . . . . . . . . . . . . . . . . . 50
A.4 Example of a usage of vertical alignment . . . . . . . . . . . . . . . . . . . . . . . 51
A.5 Example of a usage of vertical distribute . . . . . . . . . . . . . . . . . . . . . . . 51
A.6 Example of a usage of even vertical distribute . . . . . . . . . . . . . . . . . . . . 52
A.7 Example of a usage of distribute . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
A.8 First version of the layout technique on a part of a scene called armAnimated . . 54
A.9 Final version of the layout technique on a part of a scene called armAnimated . . 54
A.10 First version of the layout technique on a scene called 01_modelTransformation-

Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
A.11 Final version of the layout technique on a scene called 01_modelTransformation-

Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
A.12 Laid out scene called 03_rotateAroundPoint . . . . . . . . . . . . . . . . . . . . . 56
A.13 Laid out scene called 03_rotateAroundPoint-1 . . . . . . . . . . . . . . . . . . . . 56
A.14 Laid out scene called 05_lookAt . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
A.15 Scene 09_frustumMultiMonitor laid out by a user . . . . . . . . . . . . . . . . . 57
A.16 Scene 09_frustumMultiMonitor laid out by the layout technique . . . . . . . . . 57
A.17 Laid out scene called 10_quaternionMatrixComparison . . . . . . . . . . . . . . . 57
A.18 First version of the layout technique on a scene called 10_quaternionMatrixCom-

parison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

11



12



Chapter 1

Introduction

A layout of a graph has consequences on the understandability of the graph. The preferable
layout can di�er for di�erent usage of a graph and properties of a graph can also change the
preferable layout. The more speci�c are graphs, which should be laid out by a technique, the
more specialized should the technique be.

Graphs, which will be studied in this project are directed graphs with exceptional directed
cycles. Even though they are generally not planar, they can be structured in a way that their
layout is more readable than when all the nodes are placed inappropriately. Users of various
applications do not pay attention to the structure of their work and they focus on the func-
tionality. That is why there are refactoring tools in integrated development environments or
alignment features in Powerpoint. Target of those functionalities are to let user utilize correctly
the application and afterwards it organizes their creation to be easier to work with in the future.
The result of this thesis should be a tool that can help users in the same way as refactoring or
alignment, however on the graph structures.

The objective of this project is improving the user interface for part of Interactive Tool for
Teaching Transformations (hereinafter referred to as I3T) that can be described as a graph of
transformations and operators. Speci�cally, The target is to design and implement algorithms,
which can help user to lay out graphs. These algorithms should improve the understandability
of the application and the e�ectivity of the learning process when using I3T. Layout techniques
will be tested by users to make them as user-friendly as possible. To create these functionalities
improvements will be necessary in the base code of I3T and will result in refactoring parts of
the code concerning graphs. The target of this refactoring is to increase readability of code for
future development and to remove mistakes caused by ine�cient code.

1.1 Interactive Tool for Teaching Transformations

I3T is a software used for teaching 3D transformations and their usage in a visual and in-
teractive way. I3T was created by Michal Folta in 2016 as a masters thesis at the Department
of Computer Graphics and Interaction, Faculty of Electrical Engineering, Czech Technical Uni-
versity in Prague. Since then Folta's supervisor Ing. Petr Felkel, Ph.D. continues leading the
development of the whole project [1].

I3T has a graphical user interface (hereinafter referred to as GUI) divided to two parts: a
scene and a workspace. In the workspace a user can create and connect modules representing
mathematical operations. Matrices, which can be result of these operations, can be used on
3D objects to change their properties. All modules are represented as boxes with data. These

13



boxes can be connected by curves that represent the connection of an output of one operation
to an input of another operation. Transformed objects are rendered in a 3D scene view, which
is interactive and the user can easily understand what the transformations did to the object.

Even though I3T is complete software in terms of functionality, there are many drawbacks
in its visual appearance and its interactivity with a user. There are already drafts of visual
improvements and upgrading of an interactivity is the objective of theses supervised by doctor
Felkel.

14



Chapter 2

Research

In this chapter, graphs, used in I3T, are in-depth described in the Section 2.1. There are a
few paragraphs dedicated to applications using similar graphs and graph structures like the ones
in I3T 2.2. There is a section dedicated to requirements of a proper graph layout 2.3. After that,
interactive, semi-autonomous and autonomous layout techniques are described 2.4.

2.1 Graphs in I3T

Figure 2.1: Window of I3T with basic scene

Graphs that can be seen in I3T have nodes represented by modules with a rectangular shape
and edges are curves connecting modules. Modules represent mathematical operations, such as

15



(a) A screen module (b) A camera module (c) A trackball module

(d) A �oat cycle module

Figure 2.2: Modules with speci�c structures

(a) matrix transformation module (b) quat transformation module

Figure 2.3: transformation modules

16



matrix multiplication, cosine of an angle. Modules have inputs and outputs. Inputs represent
variables for the operation of the module and outputs are usually the outcome of the operation.
Output of one module can be connected with a curve representing an edge to an input of another
module. Most modules have 4 basic parts: an input part, output part, label part and central
part. The input part contains one or more inputs and it is on the left side of a module and the
output part contains one or more outputs and it is situated on the right side of a module. If a
module has the label part it is always situated on the top side of a module. On the left side of
the label part is a name or label of a module. On the right side of the label part can be more
inputs and outputs. The central part usually displays data, which comes out on outputs of the
module. For example, a matrix for a matrix multiplication or a �oat for a cosine of an angle. In
some modules, a user can change the output of the module using GUI of the central part.

Inputs and outputs of a module are represented by rectangles with an arrow on them. The
arrow represents a direction of an input/output and it changes how the curve representing edge
will be drawn. Direction of these arrows is usually to the right. This fact implies the �ow of the
graph [8]. Therefore, an edge should have its source on the left side and its sink on the right side
of a workspace. A module, which is on the end of an edge should be more on the right in a �nal
layout than the one on the start of the edge. There are three modules with di�erent directions of
inputs or outputs. Sequence modules has an input and two outputs in the label part. Outputs
direction is up and the input direction is down. The camera module has an output in the label
part with the upward direction. In addition to that, there are two sub-modules in the central
part, which have the same input and two outputs as a sequence module. A Screen module does
not have the label part and its output is in the input part going leftwards. When an input or
output of a module is mentioned in the following text, it means the module or the node, which is
on the other endpoint of an input or output edge respectively. The place, where the edge begins
and ends are called input tab and output tab, respectively.

The I3T workspace have three types of modules. The �rst type are transformation modules.
They do not have any inputs and outputs and they only have a central and label part. They
represent transformations such as a translation or rotation. A matrix of a transformation module
is displayed in a central part and the key parts of the matrix can usually be changed. Their
usage is to be put in sequence modules, which are the second type. Sequence modules represent
a transformation that is applied to an object as seen in Figure 2.1. Transformation modules
can be dragged inside a sequence module. The multiplication of these transformation modules
is the matrix of the sequence module. An object can be bound to a sequence module. Vertices
of the object are then transformed by the matrix of the sequence module. Sequence modules
have a special input and output in the input and output parts. Two sequence modules can be
connected by them. The matrix of the module on the start of the edge is multiplied by the
matrix of the other module and then stored as the matrix of the other module. This type of
input or output is called multiplication input or output. This can be done multiple times. For
example, there are three sequence modules, where �rst module is connected to the second module
and second one to the third one with multiplication edges. The matrix of the �rst module is
the multiplication of transformations in the �rst module. The matrix of the second module is
the multiplication of the multiplication of transformations of �rst module and multiplication
of transformations of the second module. The matrix of the third sequence module has the
multiplication of all transformations in all three sequence modules. This property can be used
to create a graph of a scene with sequence modules. Sequence modules have two outputs in the
label called storage output and matrix output. The storage output is a matrix, which is created
by the multiplication of transformations in a sequence module. The matrix output is the matrix

17



of a sequence. Sequence modules have one input in the label part. It is called storage input and
it takes a matrix and works with it like with matrices of transformations.

The third type of modules are operators. Each operator represent a di�erent operation.
Their inputs are used as operands of an operation and outputs are results of the operation, e.g.,
multiplication of two �oats have two �oat inputs and a �oat output, which is the multiplication
of values that are on inputs. Operators that outputs matrices can be connected to a sequence
module to put the matrix inside the sequence module, in order to change properties of an object
bound to the sequence module.

Special modules are camera, screen, trackball and �oat cycle modules, which have a very
di�erent structure and have to be used di�erently 2.2. The camera module has a complicated
central part, which is not important for this project. It has an output tab in the output part,
which is connected to all sequence modules without a multiplication input. This connection
represents that all the vertices displayed on the screen have to be multiplied from the left by
a perspective and view matrices. A screen module has only a central and input parts. It has
one input and one output. The input is a camera module and output is an aspect ratio of the
screen. In its central part, the scene, which is captured by the camera of the camera module, is
displayed.

A trackball module has a unique and interactive central part, where a user can choose a
rotation or create its own rotation by rotating a trackball. It has only one output and that is
the rotation matrix created by the central part. The Float cycle creates a �oat, which is sent to
the output, which starts on one value and each tick it increases its value by a step and when the
target value is reached, the value is reset to the starting one. Its main output is the changing
value. It has other complicated inputs and outputs, which can alternate the cycle, but they are
not important for this project.

This structure of modules is very similar to how programmers change object's position and
form with matrices and mathematical operations in 3D computer graphics. Mathematical oper-
ations result in matrices that are multiplied in some order and then the �nal matrix is multiplied
by homogeneous coordinates of vertices of an object. Even though it is a good representation of
operations that are used in the computer graphics programming the structure might be a little
confusing, because there are matrices inside sequence modules,which do not work when they are
out of a sequence module and other matrices that cannot be put inside sequence modules, but
they have inputs and outputs and have to be connected by an edge to the sequence modules.
Fortunately, there is a nice short video about the usage of I3T on the I3T web [1], which explains
basics of the program very easily.

2.2 Programs with similar graph structures as I3T

There are a lot of programs or web pages that contain graphs with similar structure. UML
diagrams or �owcharts and many more types of graphs have the similar properties as graphs
that are used in I3T. The most important structure di�erence are directions of edges. The �xed
position of input and output tabs within modules is not usual. Nevertheless, we can study and
apply similar techniques and methods, that make those graphs more user-friendly, to graphs in
I3T.

18



Figure 2.4: Basic diagram created in Lucidchart

2.2.1 Diagram creating websites

First website, whose target is creating diagrams, is Lucidchart [4]. Although Lucidchart's
purpose is very di�erent than the one of I3T, there are very useful tools that make graph creation
and placement easier. The whole workspace area has grid background that is used by users to
place nodes on the same line and have reasonable spaces between nodes. When node is being
dragged around the workspace, lines appear to indicate with which nodes the current node is
aligned as seen in Figure 2.4. Functions like this can help users to lay out nodes in a structured
way. There are also various functions that arrange selected nodes and edges. "Auto Layout" is
a set of functions that create new layout for the selected nodes and even though function like
this might be useful in I3T it is not very well implemented in Lucidchard. Most of algorithms
used for the arranging in LucidChart destroys the structure of a graph. A set of functions called
"Align Objects" moves selected nodes so that they are horizontally or vertically arranged. Users
might also choose which part of nodes should be on the same line and these simple functions can
easily improve readability of selected parts of the graph.

2.2.2 Public Implementation of Graph Algorithm Library and Editor

Public Implementation of Graph Algorithm Library and Editor or Pigale in short is a c++
program containing graph algorithms [5]. It uses many di�erent drawing and layout techniques
such as orthogonal layout and visibility layout. These techniques are usable on I3T graphs and
they can create user-friendly and readable layout. On the other hand these layouts cannot be

19



used on graph with as graphical representation as those in I3T. In Pigale, nodes are represented
by a rectangular with variable size. Algorithms can work with the size to create a better layout.

2.2.3 Graphviz - Graph Visualization Software

Graphviz is an open source graph visualization software [6]. It creates graphs and diagrams
using commands. It has many di�erent features and functionalities for di�erent types of graphs.
Most important tool is dot. It creates layered drawings of directed graphs. Its purpose is to create
readable and user-friendly layout from an input. Why is this tool important for this project is
described in the Section Autonomous layout techniques 2.4.3.

2.2.4 Blender

Program containing graphs, that are closer to I3T in terms of theme, is Blender. Blender is
a free and open source 3D creation set [2]. Structure of graphs in Blender is the same as the
structure of the operator structure in I3T. This type of graph is used to adjust properties of
some entity, e.g., properties of material or texture. Blender does not have many usable function
on its own, but there are plugins helping with graph editing and laying out.

Notable plugin is called NodeArrange. It has many functions for rotating scaling and moving
nodes. Very useful from user perspective is a function that distributes nodes. It destroys collisions
between nodes and creates space between them. This can be also used in horizontal or vertical
form, which moves all node from barycenter, which creates more space for edges and makes the
graph more readable. NodeArrange can also create simple layout, which respect directions of
edges and it tries to move nodes connected by an edge closer. It is implemented by similar
algorithm as in dot. Even though the graphs from Blender are similar to graphs in I3T in this
layout function the graph is worked with like the graphviz graphs and even though the idea is
correct, it cannot be easily applied on I3T graphs. Another plugin that is very helpful when
laying out graphs is Node Wrangler. Its main functionalities are aligning nodes. This type of
alignment is also used in Lucidchart and they are applied well on the structure of Blender graphs.

2.2.5 Unreal engine

Comparable graphs are used in program called Unreal engine [3]. It is a game engine and
it uses for events such as mouse clicks, where the nodes contain functions and edges indicate
parameters of nodes. Unreal engine's graphs have a lot of in common with Blender's graphs.
There are also implemented aligning functions with adjustable space between nodes and also
many di�erent types of alignment. For example nodes can be aligned to the top node or to the
bottom node. Also the nodes can be aligned by their center, top or bottom. And these functions
are also present for the vertical usage. There are also distribute functions for horizontal and
vertical usage, which create space between the nodes. In short Blender and Unreal engine has
very similar graphs and also almost same functions for graph editing.

2.3 Requirements of a proper graph layout

The target of layout techniques is to ful�ll requirements of the proper graph layout. Most of
these requirements should be ful�lled by autonomous layout techniques. Interactive and semi-
autonomous techniques should help a user to ful�ll them, but the result is dependent on the
work of the user. The main target of techniques is readability of the graph, but it has to be

20



separated to achievable components. These components are often same for all graphs, but a few
components are speci�c for certain type of graph or certain usage of graph [20]. All requirements
have their exceptions, but these exceptions are so rare that the technique cannot always detect
them. Another problem is with ful�lling these requirements simultaneously, because usually
there is no prefect layout and a technique has to decide which is more important for the layout.
Therefore, these requirements are meant to improve the vast majority of graph drawings. All
the requirements that are not special for I3T graphs are from articles [9, 19,20].

1. Basic requirement that is present for all types of graphs is the minimization of edge cross-
ings. If the graph is planar then the drawing should not have edge crossings. If the graph is
not planar the technique should �nd the least amount of edge crossings and use that layout.
Deciding edge crossings is not a trivial problem for most graphs. For graphs with special
properties, such as graphs in I3T, this requirement can be simpli�ed. This simpli�cation
is used in the autonomous layout and it is described in the Section 2.4.3.

2. Another basic requirement is the minimization of the area of a graph. Even though this
requirement is very important, in many cases it is solved �rst and then it might be worsen
by ful�lling other requirements. This minimization can be achieved by dividing this re-
quirements into two smaller requirements. First is the minimization of the lengths of edges.
This can be easily achieved by moving nodes that are connected by edge as close to each
other as they can. Second requirement is that the Nodes in a graph should be distributed
evenly and the graph should be as symmetric as possible. The target is to avoid unused
space inside the area of a graph. This cannot be always achieved, because if the directions
of edges are in upwards direction, the graph will not be symmetric and it will be more �lled
in the top position.

3. Another requirement is to keep the edges as straight as possible and if a bend or a curve
is needed, then the bend should not be sharp or the curve should be smooth. This can
be achieved by prioritizing straight edges and if the edge cannot be straight the technique
tries to give the edge enough space to make the bend smooth. This can create a problem
with previous requirement and the priorty between them has to chosen.

4. Some usages of graphs prefer having the graph in the rectangular shape with speci�c aspect
ratio. This requirement can be used, for example, when the graph should �t on a paper
or on a slide of a presentation. This is not a problem for I3T graphs. Workspace has
zoom, therefore observing whole graph is not the problem and a user can move around the
workspace with mouse and focus on important parts.

5. If there is a size of a representation of a node in a graph, then there should be enough
space between the nodes. The space should be big enough so representations of nodes are
not colliding. The space between node representations should be big enough to �t edge
representations and some more space to increase readability.

6. In I3T, sequence modules have special meaning in the graph and they should be visible
and the previously mentioned requirements should be prioritized for them. They should be
connected by a straight edge and the distance between them should be very short. Edges
in I3T have constant direction therefore the graph should respect this direction. Also the
edges in I3T are not represented by straight lines, therefore there has to be more space
between nodes.

21



7. The starting and ending direction of curves representing edge in I3T is often to the right.
This means that for each node in an I3T graph its outputs should be more on the right
than the node. This requirement is a good starting condition. If a layout, where this
requirement is ful�lled, is created, other requirements can be processed without changing
the basic structure.

2.4 Layout Techniques

Layout techniques we decided to add to the I3T can be separated into three di�erent cate-
gories: interactive, semi-autonomous and autonomous. The purpose of interactive techniques is
to help the user to move multiple nodes in a precise way. Semi-autonomous layout techniques are
used for larger parts of a graph. They should transform a graph in a way that it looks similar,
but some requirements are done better. Autonomous techniques change the whole layout of the
graph and user cannot be sure what the result will be before using it. They should ful�ll most
if not all the requirements for a proper graph layout for the targeted graph. First two types
of techniques are usually used on parts of a graph, but autonomous techniques are meant to
be used on a whole graph. This division also indicates the complexity of di�erent categories,
because interactive techniques are usually easy to implement and autonomous techniques contain
complicated algorithms.

2.4.1 Interactive layout techniques

As mentioned above, interactive layout techniques are simple and they change the graph in
a way that the user intends them to. These techniques should help the user to create structured
graph with less steps. Speci�cally, they should arrange nodes selected beforehand by the user
to an easy and understandable structure. These techniques are not meant to be used on whole
graphs or a lot of modules, because their goal is to help with the movement of small groups
of nodes, such as walks within the graph or a small sub-graphs of a graph. There are a lot of
di�erent interactive techniques because every software discussed above has some. Majority of
them are not very useful in I3T and therefore only the techniques that help with the speci�c
structure of graph the I3T uses are mentioned.

First interactive technique is alignment in one direction (vertical or horizontal). This tech-
nique aligns all selected nodes to one line(vertical or horizontal). There are many di�erent points
that could be on one line and there should be di�erent techniques for these. For horizontal align-
ment, the top, bottom, center of all selected nodes or their connection (edge) should be aligned.
It can be used after creating modules to have them nicely in one line before thinking about more
complex structure.

Next technique distributes selected tabs in one direction (vertical or horizontal). It �nds a
node in the center of selected nodes in chosen direction, and moves all other tabs away or closer
to it in a way that the gap between a node and a node next to it is always the same. It does
not change position in other direction than the chosen one. The goal of this technique is similar
to the �rst one's and it only helps move the modules quickly and precisely. Last interactive
technique can be also vertical or horizontal. It distributes modules in the speci�ed direction.
The di�erence is that nodes with the lowest and highest coordinate in the direction will stay on
their place and other modules are evenly laid out between these nodes with same same space
between them. This might be the more usable technique than the normal distribution. It can
be used, when selected nodes have a boundary, where they should be laid out.

22



2.4.2 Semi-autonomous layout techniques

Semi-autonomous layout techniques have a few properties similar to the interactive layout
techniques. They also tries to move modules the same way as the user would. They are more
complicated and its functionality might vary on the implementation. Its purpose is not that
speci�c as for the interactive techniques. The layout after the application of this technique
might be di�erent than expected by a user. The technique �tting I3T distributes nodes in both
directions. This can be done in many ways and it can be used for more purposes. The most
suitable technique is the one that does not change the order1 of the nodes and only tries to create
more space between them. It is done by �nding the middle module and moving all the modules
away from it. The problem is how far they should be moved. If one module is not moved enough
there could still be collision between modules. If one module is moved too far it could destroy the
whole mental map of the graph [10]. Modules are processed from the ones closer to the middle
module to the ones that are far away. This method could still break the mental map if the graph
is complicated, but the purpose of this method is not to lay out complex graphs, but to help
improve the distribution of a part of graph that can be moved to the right position afterwards.

2.4.3 Autonomous layout techniques

Autonomous layout techniques read a structure of the given graph and output a drawing of
the graph. The output contains positions of nodes and descriptions of curves in the graph [9].
Curves in the I3T are described by positions of connected nodes, therefore we use these techniques
to place the nodes to the optimal layout. These techniques do not preserve mental map [10]
and therefore user cannot expect previous layout to in�uence the layout created by this type
of technique. Despite that, autonomous techniques follow rules that are used by users when
creating their own layout, which are implications of requirements of a proper graph layout. If
a technique is designed and implemented well, the user's expected result should be similar or
worse than the result of the technique.

There are many types of graphs and each of them has di�erent structure and optimal lay-
out. For example the layout for a rooted tree is di�erent than the layout for Directed acyclic
digraphs [9]. Also the meaning behind nodes and edges is important for the layout. Graphs,
whose nodes represent countries and edges are between countries that are neighbors, can be laid
out using force-directed algorithm [11], which uses forces between nodes and iterates until the
layout is consistent. This approach cannot be used on a graph, where the direction of the edge
has some meaning. That is why there has to be a di�erent layout for a di�erent usage. Another
approach is to detect fragments in the graph, for example cycles, sequences or branching. These
fragments are usually easy to order and lay out and recursively this could be done for smaller
fragments. Unstructured fragment of a tree could be lay out by some basic algorithm [18]. Un-
fortunately this approach does not work well with I3T graphs, because of the number of di�erent
unstructured fragments and their common appearance. This algorithm is used on the graphs
that have only one source and one sink nodes. Another idea was to recreate these rules to �t
the graphs we use, but due to the complexity of the I3T graphs this could not be done in better
method than the one used.

I3T graphs have similar structure to directed acyclic graphs. Even though directed cycles oc-
cur in these graphs, they are very speci�c and easy to handle. They have �xed starting and ending
directions of a curve representing edges. These graphs can be laid out with hierarchical drawing

1An order is a part of a layout of nodes. It de�nes relative positions of nodes. For example, a �rst node is on

the left of a second node and a third node is above the second node.

23



or sometimes called layering-based drawing or Sugiyama-style drawing. Hierarchical drawing
puts nodes on vertical resp. horizontal lines called layers depending on their input/output edges,
then �nds the best permutation of nodes in the layers, which is called order and �nally places
nodes on coordinates [9]. Other approach are grid-based algorithms, which require one input
nodes and one output nodes (nodes that only have multiple outputs or inputs) [12].

According to the experimental study [12]layering-based algorithm, which is used in a Graphviz
tool called dot, has the best results for all the main criteria. That is total area of the layout, total
and max edge length, edge-crossing and total edge bends. This algorithm does not respect screen
ratio, but graphs in I3T do not work with screen ratio and its proportions are not always the
same, therefore this attribute is not very important for us. Area of the graph for the algorithm
is comparable to the area of the visibility algorithm(grid-based algorithm). Even though area of
the graph should be minimized, general readability is more important and because of the size of
modules in I3T, area of the graph considering nodes as points is not relevant.

For reasons written above the most suitable option for the autonomous layout technique in
I3T is the algorithm from dot. It is a speci�c algorithm using the Sugiyama-style drawing [13].
The Sugiyama-style drawing has four general steps 1. In the �rst step it removes cycles from the
graph. Speci�c algorithms of the drawing do not work properly if not used on an acyclic graph,
therefore to prevent mistakes of the algorithm, this has to be the �rst step. In the second step it
creates layers and organizes nodes of the graph to the layers. The basic idea behind layers is that
each node in a layer with index i has its inputs in a layer with index smaller than i and outputs
in a layer with index higher than i. Rank of a node is the index of a layer, which contains the
node. It could not be accomplished if there was a cycle in the graph. Second step also creates
dummy nodes and edges, which are added between nodes with long span edges. The purpose
of dummy nodes and edges is to make space for a long edge in the graph and because edges do
not take any space in the layout technique, nodes have to be made. The third steps �nds the
best permutation of nodes in layers to minimize the edge crossing. Layers with arranged nodes
in them are called order in a graph. Very often algorithms using this drawing iterates over all or
most permutations and with decides if the permutation is better than the other ones or not. In
the forth step the technique gives coordinates to nodes in a graph according to the order of the
graph and edges in the graph. Then the dummy nodes and edges are deleted. This step can be
interpreted in many ways and the algorithms usually di�er in this step.

Algorithm 1 Steps of Sugiyama-style drawing

1: procedure arrange()
2: remove_cycles()
3: assign_layers()
4: create_order()
5: assign_coordinates()

The �rst step is the preprocessing of a graph, where we need to make it acyclic. A cycle in
the graph makes the rank assignment inconsistent [7]. Optimal rank assignment of a graph is
the one that each node in a graph has all inputs in the layer with smaller index and outputs with
larger index than the node, but if there is a cycle in the graph this condition cannot be ful�lled.
In dot, cycle removal uses depth-�rst search. This algorithm marks nodes in a depth-�rst search
using the orientation of edges and when it reaches a marked node there has to be a cycle in the
used walk. When the cycle is found, the last edge the walk is temporarily removed from the
graph and added back after the whole process is completed. This process is done until the whole

24



graph is traversed. Another approach of the depth-search �rst method is to reverse an edge that
goes to the marked node instead of removing it. In some cases reversing the edge could lead
to the problems with the �nal layout. For example, there might be a wrong rank assignment,
because the algorithm does not know which node of the cycle should have the smallest rank. If
the edge is removed it cannot in�uence the layout, therefore if the removed edge is important
for the drawing of the graph reversing method should be used. Dot uses removal of the cycle
edges because in the simple structure, that it provides, these edges are not important for the
�nal layout. Another method used for a cycle removal is a simple heuristic algorithm [8, 15],
which goes through all the nodes of the graph and reverses incoming edges or outcoming edges
if there are more of them in the graph. An edge cannot be reversed multiple times therefore all
edges that are connected to the processed node are temporarily removed. This algorithm runs
fast and is much easier to implement than the algorithm used by dot algorithm but the reversal
of that many edges might infulence the �nal layout too much and therefore this cycle removal
algorithm is useless for our purpose.

Figure 2.5: Sequence cycle

Figure 2.6: Screen cycle

Cycles are very special and unique in I3T, because of the purpose of the nodes. For most
modes a cycle would mean that the value in a module would by a�ected by its value and therefore
it would iterate to its limit, but this error is prevented by not allowing user to create this type of
a cycle. This is true for the most of the nodes, because most of the nodes represent mathematical
operations and their inputs and outputs are operands in this operation. Unfortunately, there
are two exceptions to this statement. The �rst occurrence of a cycle is when there is a walk
of sequence modules connected with multiplication inputs and outputs. One module on a walk
outputs matrix,which is stored in it, to the sequence that is before it in the walk 2.5. This

25



Figure 2.7: Deformed projection in a screen module

output is not using its multiplication and it is only using the transformations that are in the
sequence or the matrix input and therefore its value is not a�ected by modules on the walk.
To remove this cycle without destroying the structure, the edge that is the matrix output of
the sequence that causes the cycle should be reversed. It is not always trivial to spot the edge
that should be reversed but reversing wrong edge could a�ect the layout. If the right edge is
reversed the structure is better than before reversal, because the node on the start of the edge
should have higher rank than the node on the end of the edge and also these nodes should be
directly connected to ensure an in�uence of this connection in the �nal layout. A cycle can also
be created while using screen and camera modules 2.6. The input of the screen module is the
camera module, the screen module outputs aspect of the screen, which is �oat and it can be
connected to a operator module and the operator module or its directed successor can then be
input for the camera module as a matrix input for its view or projection transformation. This
cycle should be in every usage of the screen and camera modules, because the projection matrix
in the camera module should use aspect of the screen in order not to show the projected object
deformed 2.7. This cycle can be removed by reversing the edge from a screen module to the
operator module. Screen module is supposed to have higher rank than the operator therefore,
reversing helps the structure. The disadvantage is that the input of an operator module will be
an edge going from the right part of the layout to the input part of a module that is on the left
in the layout, which does not look good. This cannot be solved by a layout technique and it is
the problem of the I3T, which is hard to solve and it is not target of this project. Using these
two methods we can eliminate all the cycles that are in the I3T, but at least one general cycle
removal algorithm should be implemented to ensure that in the future versions of I3T, where
might be more modules, this part of the layout algorithm still works. This step is very essential,
because next steps would fail or might not stop running if the graph had a cycle.

The second step tries to minimize the sum of the lengths of the edges and to create an
optimal division of nodes of a graph to layers. A rule for layers is that each node should have
its inputs in previous layers, therefore in the layer with smaller index and outputs in foregoing
layers. To ensure the minimization of lengths of edges in a graph, the di�erence between a
rank of a node and a rank of its input should be minimal. In the position assignment step, all
nodes in the same layer get similar x coordinate, therefore it is very important to create the best
layers in order to achieve a good layout. Following algorithms ful�ll these criteria with the best
time complexity and optimal result. Unfortunately optimal result might be subjective concept
and it is di�erent for various graph types and usages. And the algorithms described in this
paragraph are used for directed acyclic graphs with similar structure as I3T graphs. Dot uses

26



the network simplex algorithm. It starts with �nding a feasible spanning tree, which contains
edges with minimal slack, which is the di�erence of minimal length and the actual length. Then
�nds optimal spanning tree, where no cut is negative using edge weights. If the cut is negative,
it divides the tree to a tail and head components and �nds an edge with a minimal slack in the
current state, which connects these components. If there is not a negative cut in the tree, ranks
are assigned to the tree and corresponding layers are created [7].This algorithm is not proven to
run in polynomial time but in practice, it is fast. Its disadvantages are its unpredictability and
unknown run-time. Another algorithm with similar results is the longest path algorithm [8, 14],
which �nds all sources, which are nodes with no inputs, and puts them in the �rst layer. Then all
the unassigned nodes that have all their inputs assigned to the already processed layers are put
in the next layer. If there is no node that can be put in the current layer, the layer is �nished and
we start �lling the next one. This process goes until all the nodes are assigned. An advantage of
this algorithm is its simplicity. Although we might not get the optimal minimization of lengths of
edges, it guarantees the minimal di�erence between ranks of nodes on an edge.The procedure is
understandable and applicable by the user, which increases the readability of the graph. Another
algorithm is called Co�man-Graham layering algorithm [14]. This algorithm tries to create the
optimal hierarchy with the maximal size of layers and is very similar to the previous algorithm.
Maximal size of layer is not a very useful property in our case, because choosing the maximal size
could in�uence the drawing without improving any requirement of a proper layout. Therefore,
the most suitable algorithm is the longest path algorithm. here is a disadvantage to its approach.
All the sources are in the �rst layer, therefore they all have the same x coordinate in the �nal
position assignment. It might be an advantage for some graph types, but I3T graph sources often
are not placed on the �rst x coordinate in the graph. This can be �xed with a simple addition
to the algorithm. After the assignment of layers, all nodes are gone through again, but we start
from nodes in penultimater layer and we try to �nd the maximal rank of the node, which does
not break the rule for layers. This part of the algorithm does not change properties of layers and
it still ful�lls conditions of layers and it shortens unnecessarily long edges. In the foregoing steps
dummy nodes, which are representing an edge going through multiple layers, will be needed.
They have same properties as normal nodes but they have limitations. A dummy node always
has one input and output, which can be the node on the start of the long edge or another dummy
node or the node on the end of the long edge. They have �xed size that the edge needs in order
not to be covered by some module. Even though the width of a curve representing the edge in
the graph drawing is in most cases very thin, usually the size of the dummy node is bigger. This
proprety helps a user to see the curve properly without searching for it between other modules.
To �nd these long edges we need to go through all edges in a graph and �nd all edges, whose
endpoints are not in adjoining layers. If we �nd the edge, dummy node is created for each layer
that is between the start and end nodes of the edge then we set all the connections between the
nodes and continue searching other edges.

Algorithm 2 The third step of the layout technique from

1: procedure order_layers()
2: best_order = init_order()
3: for iteration = 1→ max_iteration do
4: order = order_by_barycenter(iteration)
5: if edge_crossings(order) <= edge_crossings(best_order) then
6: bestOrder = order
7: order_of_graph = best_order

27



The third step orders nodes in layers. The purpose is to minimize edge crossing in the layout.
Vertex ordering or Multi-layer crossing minimization are NP-hard problems even for the simplest
cases like two layer graphs. Therefore, heuristic algorithms are used to solve these problems [7].
The most used solutions to these problems are the barycenter or the median functions [8]. The
pseudo-code of the barycenter method is in Algorithm 2. First we need an initial order of nodes
in each layer and this order is stored as the best order. That means layers are now represented
by a partially ordered set of nodes, where each node has its index within its layer. Then we
iterate an integer from zero to a chosen constant. In even iterations nodes are processed starting
from second layer to the last layer and in each layer all nodes are sorted. nodes in a layer are
sorted by a median or barycenter of the position of their inputs in the previous layer. In the odd
iterations we go from the penultimate layer and end in the �rst layer and in each layer all nodes
are sorted by a median or barycenter of the position of their outputs in the next layer. Due to
dummy nodes, inputs of nodes are always in the previous layer and outputs of the are always
in the next layer. In each iteration, crossings of the best order and current order are compared
and the better one is stored as the best order.In some implementations, the algorithm exchanges
the adjacent nodes and if the order with the exchange has less crossings it is preserved otherwise
the nodes are changed back. This is before comparing the best order with current order in each
iteration. This part of the algorithm needs the algorithm to use more iterations to �nd the best
order, as its changes might not reduce the number of crossings immediately, but after a few
iterations it could lead to a better order. Unfortunately, storing and testing all orders with their
future state would be expensive, therefore this part is not using its full potential. Despite that,
the method statistically helps the layout and in can be very fast. The biggest drain is the edge
crossings when the exchange is completed. It has to be well optimized, because it is called for
each node in each iteration. In practice techniques with and without the last part are used and
it depends on the structure of the graphs whether it is needed. It does not make the layout
worse if enough iterations are used. In the best case last iterations should result in the same
order with the least amount of edge crossings, because it means that all the nodes are in the are
perfectly placed to the order and they do not need to be moved. unfortunately, for the more
complex graphs with a lot of branching, this does not happen and it means that there is not the
best order and the last one that has the least edge crossings is chosen and worked with in the
next step.

The last step places nodes on their �nal position using the order created in the steps described
above. This is the step that di�ers for di�erent usages of the graph, and also where the target and
parts of algorithm di�ers from the one in dot. The purpose of this step is to use the order, which
ful�lling layout requirements, to place nodes without breaking any important properties and
ful�lling those requirement of a proper graph layout that are speci�c for the usage of the graph.
On the one hand, placing nodes on the plane using order might be a trivial task, on the other
hand, there are more complex targets of the placement such as minimizing the size of the graph,
making sure that long edges are as straight as possible and also maintaining good properties of
the order [8]. The method used in Sugiyama drawing is called Priority method. First it gives
nodes basic coordinates, which are computed from the order and sizes of nodes. After this step,
we only work with the y component of node position. Then it iterates in the same way as in the
previous step. Each node in a layer gets a priority depending on how many inputs or outputs
they have. Inputs and outputs are considered in odd and even iterations, respectively.Then node
tries to move to the barycenter or median of their inputs/outputs positions moving only nodes
with smaller priority. Important requirement is that node cannot jump over another node, it
can only push it [17]. Therefore, the order created in previous step is conserved. This is the

28



basic idea behind the method, but there can be added more methods to create better layout.
In dot after each iteration the sum of lengths of the edges in the graphs are compared and the
better variant is chosen for the next iteration. This might be very useful if the requirement of
minimization of the area of the graph is very important. However, for the purpose of I3T graphs
readability is much more important and giving graph more space is not a big drawback and
risking that the graph would be cramped is not worth for our application. In dot there are also
more functions creating better layout for general directed acyclic graph. Most of their methods
are unusable in I3T as they do not respect requirements of a proper I3T graph layout.

Figure 2.8: An example of two modules with a di�erent start and end edge directions

One of the biggest di�erences between I3T graphs and the graphs in dot is that edges connect-
ing nodes have constant direction, therefore algorithm has to respect this direction and create a
layout that uses this direction as the uniform direction for most edges. The basic properties of
the edge is that it begins on the right side of a module with a direction to the right and ends
on the left side of a module with a direction also to the right. There are special cases, such as,
sequence modules that have inputs that are on the top side of the module and their direction
is down. Also they have outputs that start on the top side of a module and their direction
is up. The Screen module has its output on the left side of its module and its direction is to
the left. When creating order in the layers and placing nodes on the plane we have to consider
these direction. For example, the node that has its output on the top side of it module and
it is connected to the left side of another module has to have lower y coordinate as well as it
should be lower in the layer than without considering these directions2.8. With this property,
there are a lot of problems, because Sugiyama drawing does not work with directions and adding
more constrictions is not always easy. How this problem is handled is described in detail in the
Implementation chapter.

29



30



Chapter 3

Refactorization of classes representing

I3T modules

I3T is a complicated software with a complex class hierarchies. The developement of I3T
continues and the implementation of main functionalities need to be understandable by a devel-
oper. We chose to refactor the implementation of modules in I3T, in order to improve readability
and expandability of the current structure. This �rst half of this chapter is about problems and
possible solutions of the class hierarchy. In the second half, the implementation of the chosen
solution is described.

3.1 Current state of the classes representing modules

There are a few di�erent types of modules in I3T 2.1. Almost all the modules have a com-
mon parent called HintForm, which represents a rectanglar module with a label part. HintForm
de�nes the visual structure of the modules and it is very general. Its successors are more spe-
ci�c and they represent di�erent types of modules. There are OperatorForm, MatrixFormBase,
CameraTransformationForm and TransformationForm. The only module that is not a successor
to HintForm is SceneTab, which represents screen modules.

Even though the class structure of modules de�nes its objects perfectly, there are a few
things that could be done better. First problem is with the number of classes, which represent
individual modules. There are 84 classes for operator modules and 13 classes for transformation
modules. Only a few of those classes have very di�erent structure from others with the same
ancestor. Modules have labels for inputs, outputs and for the whole module. These labels cannot
be changed by the code, hence not even in the GUI. Naming of some classes is inconsistent and
sometimes the names do not relate to what are they representing.

OperatorForm represents all operator modules and unusual modules like the trackball and
the �oat cycle. Classes representing operator modules that directly inherit from OperatorForm
are usually called OperatorForm with a su�x containing the name of the operator, for exam-
ple: OperatorFormDeterminant for the operator module creating a determinant of a matrix or
OperatorFormMatrixSender for a matrix sender. These operators are almost perfectly de�ned
by OperatorForm and thus they only need three methods to distinguish themselves from other
operators. These methods are as follows: constructor, getCopy and updateTrasmitterValues.
Constructor needs a lot of information about the module in order to work. This information
consists of number of inputs and outputs and their types, a label, a keyword of the module
and a tag text. These values are hard-coded to individual constructors. The getCopy method's

31



purpose is to create a new instance of its module and return it. The method needs all the con-
structor parameters and the type of the operator. The updateTransmitterValues method tells
module how to change its values when its inputs or input values are changed. This method di�ers
substantially for each module.

Figure 3.1: An example of a sender operator module

OperatorFormSender is a class derived from OperatorForm and it represents a modules,
whose data can be changed using the user interface and sent along edges to other modules. These
modules are called senders. Typical senders are those that send data types of I3T, e.g., a matrix or
�oat 3.1. All of these have a speci�c class with the same methods as operators, but these methods
are very similar and only a few words are changed for each sender. Atypical senders are the �oat
cycle and the trackball represented by classes OperatorFloatCycle and OperatorOrbitRotate,
respectively. Even though these two classes inherit from OperatorFormSenders, their structure
is complicated and their visual and interactive usage is di�erent from other senders, which can
be seen in Figures 2.2c and 2.2d. That is why they have to be treated separately.

MatrixFormBase is a class derived directly from HintForm and its successors represent all
transformations which are currently in I3T. Its abstract succesor is MatrixForm, which repre-
sents matrix transformations and its chlidren are individual transformation modules 2.3a. These
modules have a di�erent number of methods, di�erent member data and the methods they share
have di�erent implementations. Another succesor to MatrixFormBase is the class called Ma-
trixFormQuat, which represents a transformation module that performs a rotation using quater-
nions 2.3b. MatrixFormQuat's structure has the same problems as the other transformations
modules and its di�erent visual representation creates even more diversity.

3.2 Changes to the classes representing modules

Classes mentioned in the previous section are problematic. They might slow down the future
developement of the software, because of their un�exibility and unnecessary complexness.

The main problem that is present in all of the mentioned classes is a duplicate code. The
major phenomenon is the duplication of classes with the same methods, which are not even
that much di�erent and they often di�er only in constants that are hard-coded to individual
classes. If the getCopy method was to be changed just by one line, the rework would have to be
done separately in each class representing an operator module. Adding a new operator module
requires a lot of copy-pasting and therefore a developer is more inclined to make mistakes.

For the number of classes that are present in the hierarchy, reading and learning from the
documentation is not easy. There are more than ten di�erent descendants of OperatorForm, it is
easy to miss the important descendant called OperatorFormSender, which is very di�erent from
other descendants that are almost the same. Even though this problem is mainly in the classes
of modules, it spreads more around the project.

32



Another example of a duplicate code is present in functions creating scenes from �les. Pasrsing
�les is done separately for each class representing a module and it is often hard-coded very
ine�ciently. An example is the method reading an operator module form a stream, which
contains the two same lines being used for each operator.

Programs that need objects with very similiar but not always the same properties have usually
three approaches. The �rst approach is to make one class that has all the similiar properties
and many descendants that contain the di�erences. Another one is creating a class that is very
general and the di�erences are passed by a constructor or in class methods. The last solution is
to use a template on one general class, which will hold dissimiliarities.

The �rst approach would be good if these objects do not have much in common. There has
to be a lot of data and methods, which are speci�c for individual classes. This is implemented
in I3T and it is not e�cient for this purpose.

The second one could be good if the methods were not di�erent. Di�erences would lead to
pointers to methods and individual methods implemented and passed by a constructor to the
class. All the data that is di�erent can be stored and passed through the constructor or stored
as constants and used by the constructor. This approach could lead to the problem of detection
of a module that the class represents and in case of refactoring the I3T tool, it would create a
lot of changes not just in the hierarchy of classes, but also in the functionality of the program,
because in other solutions individual objects can be detected by dynamic cast.

The last option is creating templates, which represent di�erent modules. Working with
templates is usually harder than with the code of previous solutions. Debuggers usually do not
have understandable errors for templates and developement environments usually do not detect
problems with templates. Therefore the template has to be implemented properly in order not
to slow down the developement. Despite that it has many advantages. Only the methods that
are di�erent have to be implemented and we do not have to work with function pointers. Data
for di�erent modules can be stored separately as an array of constants and passed to the class by
an index in the template parameter. Adding more objects is easy, because only the di�erences
have to be implemented. Problem with templates is that the parameter of a template cannot be
a variable, therefore, there has to be hard-coded creation of each module, which takes a lot of
code. This is not a refactoring problem and it would need reworking a lot of functionalities to
be solved .

Before creating templates, a lot of small refactoring had to be done a. A lot of the same code
was replaced by simple functions. As a result, the function reading a speci�c operator module
from a �le is an if statement checking the keyword, a call of the method with a parameter of the
type of the operator (the parameter was later replaced by the template) and the general code for
all modules. All the getCopy methods were reduced to a single macro with a few parameters,
which was inserted instead of the function. Even though this macro removed a lot of a duplicate
code and overall reduced the size of the whole structure, it did not make the code better. The
programmer, who is not familiar with the function of the macro and its usage, might be confused.
Unfortunately, this refactoring could not be used by any approach mentioned above. That is
why this change had to be reverted.

As there are many ways how to create templates for this problem, the main idea of templates
will be now introduced and then there will be more speci�c information for di�erent types of
modules, which are operator, sender and transformation modules, in separate paragraphs. For
each module type, an enum was created. Then there is a structure holding all the data of a
module. The last part is an array of instances of this structure with speci�ed values. Enums are
used as an index to the array and also as the template parameter for a tempate class. The index

33



is used for each method to know what data the method should access. Most of the methods are
general for all modules of a particular type. The usage of speci�c data and di�erent methods are
made as speci�cation of the method.

Due to the structure of the �oat cycle and the trackball modules, we decided not to change
them and refactor only the typical sender modules. The current hierarchy contains an unchanged
class OperatorFormSender and a class SenderNode, which inherits from the OperatorFormSender.
SenderNode is a template class and its parameter is an enum called SenderType that indicates
which sender is the current instance, e.g. SenderType::FloatSender is the enum for a �oat sender
module.

The new Sender structure was created and it contains: a keyword of the sender, its default
label, data type of the sender and its input tab name, which is defaultly set to "in". SenderType
also provides indices for the static vector of instances of the structure Sender called senders. There
is no specialization in the template and also neither switch nor if statements were necessary to
distinguish the individual senders. All data (�oat for �oat sender, matrix for matrix sender) is
stored as a 4x4 matrix and each sender knows which part of the matrix it is using, e.g. a �oat
sender module uses the �rst element of the �rst row, a vector of 3 �oats sender module uses the
�rst three �oats of the �rst row of the matrix. This approach is not the most e�cient, but there
is no other way to store a general value in the project. This ine�ciency means that for each
sender we might maximally use 15 more �oats, which is not much compared to the size of the
whole structure. Each sender has its default name, which is displayed on the top of the module.
This name can be changed from outside of the class or set in the constructor. There are major
di�erences between senders and the other operators and thus they cannot be merged without
using too much specialization.

Even though all senders could be represented by a nontemplate class, we decided to create
the template to make it easier to add a new sender module and also to respect the structure of
the program, which now contains templates.

Templates for operators were done very similarly. A new template class OperatorNode was
created. The enum is called OperationType, a new structure is called Operation and a vector
of Operation instances is called operations. Operation contains a keyword, a default label, a
number and types of inputs and outputs, a default tag and vectors of input and output names.
The constructor and the getCopy methods are general for all operators.Only the updateTrans-
mitterValues method has to be specialised for each operator. Variable names of input and output
tabs were added to the logic of operators . Before this change the labels were hard-coded. Now,
there are default type names(for a �oat or a matrix), default labels of input and output tabs for
each operator. Names can be also set with a parameter in the constructor or changed during the
module's existence. The tag is now deafult for each operator module and also can be changed
using the constructor or accessed later.

The problem with transformation modules is much more complicated. Two templates classes
had to be created: AddTransformationForm and TransformationNode. AddTransformationForm
is the class for the dialog creating and editing transformations. They both use the same enum as
a template parameter. The name of the enum is TransformationType, for TransformationNode
the structure is called TransformationData and the vector of the data is called transformation-
Data. Another structure and a vector had to be created for AddTransformationNode and they
are called AddTransformationData and addTransformationData, respectively. Transformation-
Data contains a title of the transformation, a vector of indices of elements that are enabled in
the matrix, a matrix type and �ve booleans, which serve for locking and synergies. Explaining
them is not important for this project. AddTransformationData contains a name of the dialog,

34



names of the �elds in the dialog box and dimensions of the dialog. AddTransformation has only
few specializations, which are as follows: a constroctor for a lookAt transformation (all other
transformation dialogs have rows with two columns containing a name of the �eld and an in-
put �eld, but lookAt has rows with four columns, where �rst is a name, then there are input
�elds for individiual �oats of a vector). SetToDegrees and setToRandians methods are di�er-
ent for transformations that uses angles. In the general constructor there are if statements for
each type of transformation, because the data of the dialog has to be stored in the same space.
This space is a matrix and in a constructor each transformation needs to know how to store
this data. In TransformationNode there is a lot of specialization. Each transformation module
needs getMatrixFromValues and getTitleString methods, because they cannot be generalised.
This is not a problem, because they are very short. For transformations using angles, there are
setToRadians and setToDegrees methods specialisations. There are few transformations with
unique specialization, such as modules representing rotations having methods setLimits or cal-
culateSynergyValues specialised for their unique functions for rotations. During the refactoring
of transformations one functionality was changed in the AddTransformationNode. That is when
in the settings the used angles are changed to degrees or radians, the numbers in the dialog are
changed too to �t the same transformation before the change in settings. Before the change of
the functionality the value would stay the same, which represents di�erent angle. In addition,
when the user tries to edit a transformation module, the AddTransformationNode dialog shows
the numbers used in the transformation instead of the numbers that were stored during the last
usage of the dialog. These changes are very minor and they were agreed to be improvements to
the program.

35



36



Chapter 4

Implementation of the layout

techniques

This chapter is about implementation details of layout techniques described in Section 2.4.
Even though the techniques were already explained, there are parts of algorithms, which might
not be evident from the description or which are special for this implementation, that should be
clari�ed.

In all techniques need a class representing all the modules. The Tab class represents every
rectangular area with a border frame in I3T. It contains all the necessary data, such as position
and size of the area. If we need more speci�c information about a module, we use if statements
with dynamic casts. This allows us to access data speci�c for a certain module. We have to
use Tab pointers to work with general modules, because of the SceneTab, which does not inherit
from HintForm.

An implementation of each technique has 3 steps. The �rst step are popups for layouts that
are implemented in the SpaceTabPopup class. These popups make sure that a layout technique
can be selected from the right click on the workspace and then when the technique is chosen the
second step is called.

The second step is a method of TransformationSpaceScrollTab. This method uses selected
tabs and calls the third step or if the technique is trivial, it lays out all the selected tabs and skips
the third step. After the tabs are layed out a static method named TabSpace::changeMessage
has to be called in order to save a current state of the scene to the undo/redo system.

The third step is the function or a set of functions that lay out tabs, which they get from
their parameters. Positions of modules and also curves between the modules are updated in this
step. Functions of this step are the implementation of a layout technique. These functions have
their own header and source �les if needed or they are in layout.h and layout.cpp �les. There
are functions already implemented for updating curves of all the modules. Using dynamic cast
on a tab the curve can get updated after a change of any module.

4.1 Interactive techniques

As mentioned above, interactive techniques are trivial and their implementation is often not
very interesting. Despite that, the algorithms will be brie�y described . All the interactive
techniques have two usages: horizontal and vertical. The horizontal usage of techniques will
be described in this section. The only di�erence in the usages is the coordinate, which is used.
When the vertical technique changes the x coordinate, the horizontal changes the y coordinate.

37



Algorithm 3 The last part of the horizontal distribution algorithm
1: previous = center
2: for i = ((number_of_tabs− 1)/2)− 1 to 0 do
3: sorted_tabs[i]→x = previous→x− sorted_tabs[i]→size.x− gap_size
4: update_curves(sorted_tabs[i])
5: previous = sorted_tabs[i]

6: for i = ((number_of_tabs− 1)/2) + 1 to number_of_tabs do
7: sorted_tabs[i]→x = previous→x+ previous→size.x+ gap_size
8: update_curves(sorted_tabs[i])
9: previous = sorted_tabs[i]

The allign technique only sets the same y position for all the selected modules. The technique
is used to allign the objects on one line. Therefore, the positon that is chosen is not important.
Modules are already selected and moving all the selected objects is in I3T. To prevent unnecessary
movement, the �rst selected module's position is chosen. These techniques have their second and
third step in one fuction in the TransformationSpaceScrollTab. Both functions from the �rst
and the second and third steps are called verticalAllign or horizontalAllign in the �les mentioned
above. The next implemented technique is a basic distribution. They start with �nding the
center, which is the module, whose x coordinate is the median of x positions of all the selected
modules. The center is found by sorting the vector of selected tabs and using the one with
an index equal to a number of selected tabs minus one, all divided by two and this value is
converted to an integer and used as the index of the center. Then we move tabs by method from
the Algorithm 3 . Functions implementing this techniques are called horizontalDistribution and
verticalDistribution. The last technique is the even distribution. First the vector of selected
tabs are sorted by x coordinate. Then the space between the �rst and last modules in the
sorted vector is computed and subtracted by the sum of the sizes of the selected modules and
divided by the number of modules minus one. This value is used as the gap between every two
modules adjoining in the sorted vector. Therefore the �rst and the last modules stay in place and
adjoining modules have the same gap between them. This technique is implemented in functions
called evenHorizontalDistribution and evenVerticalDistribution.

4.2 Semi-autonomous technique

The only semi-autonomous technique is the distribute technique. It starts with �nding a
module that is closest to the barycenter of the positions of all the selected modules. This module
is called center. All the modules are sorted by the distance from the center module. Then all
the modules are processed in sorted vector from the �rst to the last. They move away from
the centre until they do not colide with any already processed module. The di�cult part in
the implementation is the moving away during the collision. In this part the moved module is
supposed to be moved minimally out of the collided module plus a little more to create a gap
between them. Hence, the exact position has to be computed. This is done by �nding the size of
a recangle, which is the instersection of the modules. Then we compute how many steps of unit
vector going from the center to the moved module we need. Then the module is moved by the
number of steps and also moved by a constant to create a gap. This procedure is done until the
module is no longer in collision with any other already processed module. All the major functions

38



are called distribute and in the layout.h and layout.cpp is the function called removeCollision,
which implements the di�cult part described above.

4.3 Autonomous technique

The autonomous technique, which has been described in Section 2.4.3, is much more compli-
cated than the other techniques. Even though the steps of the techniques were already explained,
the implementation is sometimes di�erent.

4.3.1 graph structure used in the technique

Before the technique can be implemented, we have to create a graph structure. A graph
structure of modules is already in I3T, but creating a graph with nodes that are special for this
purpose is much more practical, because much data has to be stored in the nodes. Adding this
data to module classes wastes resources during normal run-time. There is also problem with edge
usage. Di�erent modules use di�erent objects to represent input and output tabs. Furthermore
the connection between output and input tab is not universal for all module classes. This makes
the usage of a graph unnecessarily di�cult . An example of this problem is an edge between two
operator modules. In this example we have a pointer to the �rst module and we want to get the
other module pointer. For this example there are only two modules in the scene and only one
edge.

First we have to go thought all the OperatorCurveTab pointers in the operatorOutputs of
the �rst module. These pointers are tabs, which represent the output tab on the �rst module.
Then we call the getOutComponent method on all the OperatorCurveTab pointers . Then we
search for the vector of CurveTab pointers, which we get from this function, that is not empty.
The size of the vector is one, because there is only one edge going from the module, and the
CurveTab, which it contains, is the input tab on the second module. Then we have to cast the
CurveTab to the OperatorCurveTab and call its getOperator method. This method returns an
Operator pointer, which has to be casted to the OperatorForm. The pointer that we get from
the cast is the second module. Even though the procedure is similar for all edge, it is not the
same and the usage this procedure for each usage of an edge is very ine�cient.

To avoid this ine�ciency, we created a new graph structure, which is used only for this layout
technique. Nodes of a graph are instances of the structure called Node, which contains a Tab
pointer, data necessary for the subsequent steps and two vectors of objects representing input
and output edges. The Tab pointer has the address of the module, which is represented by the
Node. The node data needed in the layout algoritm is: the position and the size of the module,
an input and output priority, an index of the current layer and the boolean indicating if this
node is a sequence module without the multiplication input, which is called possibleDFSStart.
The structure representing an edge is called Connection. Each module on the edge has its own
connection therefore, there are two connections for each edge. The Connection class contains
a Node pointer, which points to the Node on the other side of the edge, an outcoming and
incoming direction of the edge, y di�erence and connection index. The incoming and outcoming
direction are the directions of the the input or output tab in the connection for the node using
the connection and for the node, which is on the other side of the edge. the y di�erence variable
is later used to tell if the module using this connection wants to be above or bellow the Node on
the other side of this connection. The connectionIndex is the same for two connections of one

39



node only if the connection comes out of the same output tab. This information is used to count
edge crossings in the later part of the algorithm.

All the parts of this implementation are in �les autonomouLayout.h and autonomousLay-
out.cpp. All the functions and structures are implemented inside a class called AutonomousLay-
out. It contains previously mentioned structures, vector of Tab pointers, two vectors of Node
pointers, and a vector of vectors of Node pointers. The Tab pointers are addresses of the mod-
ules, which should be laid out. The �rst vector of Node pointers are the nodes representing the
modules. The second vector of Node pointers are the dummy nodes, which are created after
the second step of the layout technique. The vector of vectors of Node pointers is the matrix
of nodes, which all the nodes will be laid into. It helps all the modules to be assigned in their
positions. In other words, the matrix serve as layers in the technique. It is used in the second,
the third and the fourth steps. AutonomousLayout contains constants, which de�ne the number
of iterations in the third and the fourth steps, and functions implementing the technique.

The problem of creating connections between all the nodes in the graph can be separated to
three parts. The �rst part is how to get from the Tab pointer of one module to all the CurveTab
pointers, which represent input tabs of modules that are on the other side of an edge, which starts
in the �rst module. The second part is almost the same, but we try to �nd all the CurveTab
pointers, which represent output tabs of modules, which represent the start of an edge going
to the �rst module. The third part is how to get a Tab pointer representing module from a
CurveTab Pointer, which represents the output or input on the module.

First two parts are very similar. They are implemented in a setOutputs, setInputs, setTrans-
formationInputs and setTransformationOutputs methods, which are member methods of Node.
They involve running through vectors of CurveTab pointers and calling getOutComponent or
getInComponent. One output tab can have multiple edges and that is why getOutComponent
returns a vector of CurveTab pointers and getInComponent returns CurveTab pointer. The pro-
cedure is a little di�erent for four types of modules. The types are operator, sequence, camera
and scene modules. In These steps we declare connectionIndex to each connection. These steps
always calls a getConnection method, which returns a connection, which represents the edge.
This connection is stored to the input or output vector inside the Node object. The order in
which are di�erent CurveTab pointers processed is very important, because the order of con-
nections in input and output vectors is important for the edge crossing counting in the third
step. The �rst connection in the output vector means that the module on the other side of this
edge is supposed to be in the highest position out of all outputs to avoid edge crossing. The
second connected module should be below the �rst one and so on. It works the same way for
the inputs vector. The possibleDFSStart variable is assigned in the setOutputs method, when
creating connections.

The third part is implemented in the getConnection method. This method gets a CurveTab
pointer of an input or output tab of a module, which is supposed to be stored in the connection,
and returns the Connection pointer representing an edge. First the CurveTab pointer is casted
to an OperatorCurveTab pointer. Then we call a getOperator method on the OperatorCurveTab
pointer. It returns an Operator pointer, Which can be a Tab pointer of the module or a pointer
to a part of the module. That is why we have to work with the pointer di�erently if it is a Tab,
an OperatorMultiOut or an OperatorStorage pointer. From these pointers, getting a pointer to
the tab representing the module is a call of few methods. This method also assigns directions of
the start and the end of the connection. This part also assigns the y di�erence variable, which
is computed di�erently if the module is on the end of the directed edge or on the beginning of
the directed edge.

40



When we are processing the output edge of a module and the edge is going upwards from the
module and it goes to the right, when it enters the other module as represented in Figure 2.8.
When we are processing the edge from this perspective, the �rst module should be bellow the
other one, therefore the y di�erence should be negative. When we are processing the edge from
the perspective of the other module. The y di�erence of this connection should be positive.
Even though the directions are same in both ways, they are just exchanged and that creates
the di�erence between an input and output connection. The y di�erence is a sum of the two
directions if the module storing this connection is the on the end of the edge. It should be the
opposite value otherwise.

This procedure has two big exceptions. The �rst one is that in every sequence module, there
is an invisible edge between its matrix storage output and an invisible multiplication input. It
is used for the functionality of the module and it is not used in GUI. We do not want to store
this connection, therefore we have to check if an output of a sequence module is not the same
module. If it is, we discard this connection. The second exception is with a multiplication output
of a camera module, because this edge cannot be detected from the module on the other side
of the edge. Therefore we add the connection representing this edge to the other module when
processing the camera module.

4.3.2 Cycle removal

The �rst actual step in the technique is a cycle removal. This step has three parts. In each
part a di�erent type of a cycle is solved. The �rst one is a cycle with the a scene module. This is
solved by �nding all nodes representing a scene tab and running a depth �rst search. If it ends
with �nding the same node again, we reverse the edge going from the scene module in the graph.
This step is implemented in the �ndAndReverseSceneCycle and the �ndSceneCycle methods.
The second step handles cycles created with sequence modules. We start a depth �rst search in
all nodes, which we have the variable possibleDFSstart set to true. If the search �nds the node,
which has been already processed, it reverses the last edge it used to get to this node. This step
is implemented in the �ndAndReverseSequenceCycle method. The third step is the general cycle
removal. In this step a depth �rst search is used on all the nodes. If any node is found twice
during the depth �rst search run, the last used edge us removed and the search continues. This
step is implemented in the �ndAndRemoveCycle method. The methods removing speci�c cycles
are called from the removeCycles method.

4.3.3 Layer assignment

The second step is a layer assignment. It is implemented in a function called assignLayers.
We want to put all the nodes in the vector of vectors of Node pointers using an algorithm.
The implementation follows the Longest path algorithm and there are no special or interesting
implementation details. After this step we have to remove unnecessary long edges and create
dummy nodes to represent long edges in layers. The implementation of the removal of long edges
goes through nodes in the layers. It is important that we start from the last layer and continue
with the nodes in the previous layers, because this assures the determinism of this algorithm and
also it can reduce the edge length in one run. We run though all the outputs of the processed
node and we keep track of the minimal layer index I of output nodes. After we processed all the
outputs, we move the node to the layer with the index I minus one. This is implemented in the
function called removeLongEdges.

41



Adding dummy nodes is done by going through all long edges. That means edges, which
are not between nodes in adjacent layers. We have to go through all outputs of all nodes to
�nd these edges. If we �nd this edge, we create enough dummy nodes for the edge to have its
representation in form of dummy node in each layer between nodes connected by the long edge.
When the dummy node is added its input and output priorities are set to max. This is used in
the fourth step to keep the long edges straight. The new dummy node always have their input
and output direction going to the right. Therefore, directions and yDi�erence variables have to
be recalculated for nodes connected by this long edge. The size of any dummy node is zero for
x coordinate and a constant for the y coordinate. The x coordinate is zero, because we do not
want to change the size of the graph in the x coordination with the nodes that does not need
any space. The y coordinate of the size creates a little vertical space for the edge. Creation of
dummy nodes is implemented in the addDummyNodes and createDummyNode methods.

4.3.4 Order creation

The third step is creating an order in layers. It is done by ordering nodes in the layers using a
barycenter method. We follow a technique described in Section 2.4.3, but there are few changes
to it. The �rst change is when computing a barycenter. To improve the order we need to take a
few properties into consideration. An order of edges going from and to a module and a direction
of an edge. We can improve the layout if add a number to the barycenter variable if the edge is
not the �rst one. This is done by adding the subtraction of the connection index to the number
of connections. In the same way we solve the direction of edges. If the connection has a positive
y di�erence, then the we add to the barycenter 0.1. The numbers that are used could be altered.
These values created the best layout on a tested scenes. If these additions create an edge crossing
it would not be the best order and the change might be reverted in the next iteration.

After we have a vector of barycenter variables for a whole layer. We sort the layer in a
way that the lowest barycenter is on the �rst index. The problem is when we have a module
without an input or output. The barycenter of the inputs of the module without inputs is zero
by this implementation. To prevent having these nodes on the �rst index, we mark them and
then preserve their index in the layer. This could create another problem, which are the nodes
that do not have any inputs or outputs, which should have the lowest index. This is done by
checking this property and then putting them on the lowest indices of the layer.

Figure 4.1: An edge crossing with four modules

The last intersting function in this step is a function that counts edge crossings. There are
three types of crossings in I3T. The �rst crossing is between four modules is seen in Figure 4.1.
The second one is when two outputs of a module are in the opposite order than the order of

42



Figure 4.2: An edge crossing with three modules

output tabs on the module as seen in the Figure 4.2. The last one is the same as the second
one, but for inputs. These three types have to be solved individually. In all three types we run
through all the modules and check the property of their inputs or outputs. When the crossings
is compared between the current one and the best one, we assign the current one to the best one
even if the number of crossings is same. This is not typical for this drawing technique, but even
if the crossing is the same, the structure of the order should be better. Both options with and
without the equality option were tested. And the one we chose to implement found the better
layout.

Functions used in this step are called orderLayers, barycenter, orderLayersByInputs, order-
LayersByOutputs, countEdgeCrossings and isInOrder.

4.3.5 Coordinate assignment

The last step in the technique is a coordinate assignment. We use the priority method. First
we place all nodes on a grid, which ful�lls a order created in the previous steps. The layer
starts at the x coordinate de�ned by a size of nodes in previous layers. The nodes have their x
coordinate centered between their layer and the next layer. Then we assign the input and output
priorities to all the nodes. All the dummy nodes have max input and output priority and all the
other nodes have their priority equal to the number of inputs or outputs for the input priority or
output priority, respectively. We add one to the input and output priority to the nodes, which
represent sequence modules. This means that the sequences have a priority when being moved,
but they cannot alter the order. Modules, which have much more inputs or outputs will still
have the priority to be moved more than the sequence with one input or output. This achieves
better placement for the subgraph created by sequences connected by multiplication inputs and
outputs, but it will not move the more complex and important parts of the graph.

Then we iterate over all layers forth and back. In the forth iterations we use input priorities
and barycenters of y coordinates of inputs of modules as their target position and in the back
iterations we use the output ones. In each iteration we sort all layers by their priority. When
there are two nodes with the same priority, we can compute their target position to sort them
better. If these target positions are above their current positions, we can put the one with a
lower index in their layer higher to the sorted layer. This makes sure that the node, which moves
�rst moves away from the other one and creates some space to the other node. This method is
also used for other options. This will reduce the amount of iterations needed for a layout.

When we have a sorted layer, we run through all the nodes in the sorted layer. We compute
the target position of a node and then decide if the node should move up or down. There is
a function for each direction that will try to move the node, but if there is a node in the way

43



of the move, it will call this function on the node in the way and compute its target position.
The target position is the target position of the �rst node plus the size of the node (the �rst
one when moving down and the second one when moving up) plus a constant, which creates a
space between nodes. This goes on until some node can be placed on their target position. In
this case all the nodes try to move as much as they can with the space created by the move of
all the nodes. The requirement is that only the node with the lower priority than the �rst node
can be moved.

This step is implemented in functions called assignCoordinates, setXCoordinates, setBa-
sicYCoordinates, setNodePriorities, compareByInputPriority, compareByOutputPriority, com-
pareByPriority, barycenterOfInputs, barycenterOfOutputs, moveNodeUpByInputs, moveNode-
DownByInputs, moveNodeUpByOutputs and moveNodeDownByOutputs.

After this step all positions of modules are updated and also the edges between the modules
are updated. Then the graph created for this technique is deleted from memory.

4.4 Testing of layout techniques

All the layout techniques in I3T were tested. Three users of I3T were testing them. Interactive
techniques have trivial implementation. The testing involved choosing techniques, which would
be best addition to the program. The semi-autonomous technique was chosen for its general
usability. The �rst implementation was rejected and the part of the technique, which moves the
collided module had to be reworked. The previous implementation does not have good results
for larger graphs and the mental map was often destroyed.

The autonomous layout technique was tested during the development. The �rst and second
steps were not changed. These steps do not have any subjective properties and they are working
properly. The third and forth steps were tested together. Users judged layouts of graphs, which
are used as results in the next section. The main improvement is the behavior of dummy nodes,
usage of edges with strange starting and ending directions. The di�erent number of iterations
in the last two steps were tried. The best result is when there are 24 iterations in the third
step and 5 iterations in forth step. 24 iterations are enough to create a good order and it is fast
enough. If more than 5 iterations were used in the last step, the chance that the technique would
�nd a consistent placement is low. Graphs are either usually placed in less than 6 iterations
or they have a structure, which cannot be placed perfectly. The di�erence between the �nal
implementation and the implementation before testing can be seen in Figures A.8 to A.11, A.17
and A.18. Even though the algorithm works on most tried scenes, there are always special scene,
which are hard to lay out. In Figure A.15 is a graph laid out by a user. In Figure A.16 is the
same scene laid out by the technique. This scene have special requirements for a proper graph
layout. And it is hard to detect these type of graphs.

4.5 Results

Results of an interactive technique are not subjective and they either work properly or they
do not. From Figures A.1 to A.3 we can see that the implementation is the expected result
of the techniques studied in research. Results of an semi-autonomous technique are subjective.
The semi-autonomous technique implemented to the I3T de�nitely resolves collisions between
modules and it moves modules in an intuitive way. This technique struggles on graphs with more
modules. The usage of this technique can be seen in Figure A.7.

44



The target of the autonomous technique is to create a layout, which is usable and readable
by a user. These criteria are subjective. The technique ful�lls or at least tries to ful�ll all the im-
portant requirements of a proper graph layout. In addition to that, all the unexpected behaviors
were tracked and solved. After the completion, scenes, which are used for the demonstration of
the usage of the I3T tool, were laid out by the technique and then tested by users. This testing
helped �nalizing constants in the third and the forth steps. These constants change the priority
of a sequence over all other modules, the in�uence of a direction of an edge on the functions
sorting nodes in the layer and also on the function computing the position of a module using the
barycenter method. This in�uence had to be compared to the in�uence of the order of inputs
and outputs on the module. In Figures, the comparison of the layout before and after testing
can be seen. Some scenes, which were used for testing, laid out by the algorithm can be seen in
the Figures A.9, A.11 to A.14 and A.17.

45



46



Summary

The main purpose of this project was to research layout techniques that can be implemented
in I3T. It includes �nd requirements of a proper graph layout for graphs that are used in I3T.
The the technques, which are used on graphs similar to the graphs in I3T were researched. The
result is a set of layout techniques implemented in I3T.

Interactive and semi-autonomous layouts were found usefull by users. Their implementations
are fast and results are optimal. The main technique implemented in I3T is the autonomous
layout technique. The technique is called Sugiyama drawing. This technique had to be changed
in order to create a proper layout for I3T graphs. The importance of a sequence module had to
be implemented. The technique had to be able to work with the starting and ending direction
of edges, the �xed starting and ending positions of an edge on a module had used. And other
smaller properties of the I3T graphs had to be considered in the implementaion.

The small part of this project was refactoring of classes representing modules. It reduced the
amout of code and also the number of classes was decreased. The readability and extendability
of I3T code was increased.

47



48



Appendix A

Results of layout techniques

A.1 Interactive layout techniques

Figure A.1: Example of a usage of horizontal alignment

49



Figure A.2: Example of a usage of horizontal distribute

Figure A.3: Example of a usage of even horizontal distribute

50



Figure A.4: Example of a usage of vertical alignment

Figure A.5: Example of a usage of vertical distribute

51



Figure A.6: Example of a usage of even vertical distribute

52



A.2 Semi-autonomous layout technique

Figure A.7: Example of a usage of distribute

53



A.3 Autonomous layout technique

Figure A.8: First version of the layout technique on a part of a scene called armAnimated

Figure A.9: Final version of the layout technique on a part of a scene called armAnimated

54



Figure A.10: First version of the layout technique on a scene called 01_modelTransformation-
Graph

Figure A.11: Final version of the layout technique on a scene called 01_modelTransformation-
Graph

55



Figure A.12: Laid out scene called 03_rotateAroundPoint

Figure A.13: Laid out scene called 03_rotateAroundPoint-1

Figure A.14: Laid out scene called 05_lookAt

56



Figure A.15: Scene 09_frustumMultiMonitor laid out by a user

Figure A.16: Scene 09_frustumMultiMonitor laid out by the layout technique

Figure A.17: Laid out scene called 10_quaternionMatrixComparison

57



Figure A.18: First version of the layout technique on a scene called 10_quaternionMatrixCom-
parison

58



Appendix B

contents of the enclosed CD

CD

SOURCE...................................................Folder containing source �les of I3T

document.pdf..................................................Pdf containing this document

59



60



Bibliography

[1] Web page of I3T[online].[cited 24.March 2019]. Available at:http://i3t-tool.org/

[2] Web page of Blender[online].[cited 24.March 2019]. Available at:https://www.blender.org/

[3] Web page of Unreal engine[online].[cited 24.March 2019]. Available at:https://www.
unrealengine.com/en-US/what-is-unreal-engine-4

[4] Web page of Lucidchart[online].[cited 24.March 2019]. Available at:https://www.
lucidchart.com/

[5] Web page of Public Implementation of a Graph Algorithm Library and Editor[online].[cited
21.June 2019]. Available at:http://pigale.sourceforge.net/

[6] Web page of Graphviz[online].[cited 21.June 2019]. Available at:http://www.graphviz.org/

[7] Documentation of the drawing technique used in graphViz [online]. [cited 24.May 2019].
Available at:http://www.graphviz.org/Documentation/TSE93.pdf

[8] MAZETTI, Viktor a Hannes SÖRENSSON. Visualisation of state machines useing the
Sugiyama framework. Göteborg, Sweden, 2012. Master of Science Thesis. Chalmes Univer-
sity of Technology[online]. Available at:http://publications.lib.chalmers.se/records/
fulltext/161388.pdf

[9] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, Ioannis G Tollis, Algorithms for
drawing graphs: an annotated bibliography, Computational Geometry [online]. 1994, vol.
4, num. 3[cit. 3.2.2019]. Available at: :http://www.sciencedirect.com/science/article/
pii/092577219400014X

[10] Kazuo Misue and Peter Eades and Wei Lai and Kozo Sugiyama, Layout Adjustment and
the Mental Map, Journal of Visual Languages & Computing[online]. 1995. vol. 6, num.
2 [cit. 29.1.2019]. Available at: :http://www.sciencedirect.com/science/article/pii/
S1045926X85710105

[11] H. Gibson, J. Faith, P. Vickers, A Survey of Two-Dimensional Graph Layout Tech-
niques for Information Visualisation, Information Visualization[online].2012, vol. 12, p.
324 - 357[cit. 6.2.2019]. Available at:https://journals.sagepub.com/doi/abs/10.1177/
1473871612455749

[12] Di Battista G. et al. (1997) Drawing directed acyclic graphs: An experimental study. In:
North S. (eds) Graph Drawing. GD 1996. Lecture Notes in Computer Science, vol 1190.
Springer, Berlin, Heidelberg

61

http://i3t-tool.org/
https://www.blender.org/
https://www.unrealengine.com/en-US/what-is-unreal-engine-4
https://www.unrealengine.com/en-US/what-is-unreal-engine-4
https://www.lucidchart.com/
https://www.lucidchart.com/
http://pigale.sourceforge.net/
http://www.graphviz.org/
http://www.graphviz.org/Documentation/TSE93.pdf
http://publications.lib.chalmers.se/records/fulltext/161388.pdf
http://publications.lib.chalmers.se/records/fulltext/161388.pdf
http://www.sciencedirect.com/science/article/pii/092577219400014X
http://www.sciencedirect.com/science/article/pii/092577219400014X
http://www.sciencedirect.com/science/article/pii/S1045926X85710105
http://www.sciencedirect.com/science/article/pii/S1045926X85710105
https://journals.sagepub.com/doi/abs/10.1177/1473871612455749
https://journals.sagepub.com/doi/abs/10.1177/1473871612455749


[13] Kozo Sugiyama, Methods for Visual Understanding of Hierarchical System Structures, IEEE
Transactions on Systems, Man, and Cybernetics, 1981, vol. 11. num. 2, p.109 - 125. ISSN
0018-9472

[14] R. Tamassia,Handbook of Graph Drawing and Visualization. Discrete Mathematics And Its
Applications, Taylor and Francis, 2010. ISBN 9781138034242

[15] B. Berger and P. W. Shor, Approximation algorithms for the maximum acyclic subgraph
problem, Information Processing Letters. 1994, vol. 51, num. 3, p. 133 -140. ISSN 0020-0190

[16] P. Eades and N. C. Wormald, Edge crossings in drawings of bipartite graphs,
Algorithmica[online]. 1994, vol. 11, pp. 379 � 403 [cit. 20.5.2019]. Available
at:https://www.researchgate.net/publication/220223342_Edge_Crossings_in_
Drawings_of_Bipartite_Graphs

[17] K. Sugiyama,Graph Drawing and Applications for Software and Knowledge Engineers.
Series on Software Engineering and Knowledge Engineering, World Scienti�c,2002. ISBN
9810248792

[18] Thomas Gschwind, A linear time layout algorithm for business process models, Journal of
Visual Languages & Computing[online]. 2014, vol. 25, num. 2, p. 117 - 132[cit. 3.2.2019].
Available at:http://www.sciencedirect.com/science/article/pii/S1045926X13000797

[19] Emden Gansner, A Technique for Drawing Directed Graphs, Software Engineering, IEEE
Transactions on[online]. 1993, vol. 19, p. 214 - 230[cit. 7.2.2019]. Available at:https://www.
researchgate.net/publication/3187542_A_Technique_for_Drawing_Directed_Graphs

[20] R. M. Tarawneh, A general introduction to graph visualization techniques, OpenAc-
cess Series in Informatics[online]. 2012, vol. 27, p. 151 - 164[cit. 3.2.2019]. Available
at:https://www.researchgate.net/publication/286342713_A_general_introduction_
to_graph_visualization_techniques

62

https://www.researchgate.net/publication/220223342_Edge_Crossings_in_Drawings_of_Bipartite_Graphs
https://www.researchgate.net/publication/220223342_Edge_Crossings_in_Drawings_of_Bipartite_Graphs
http://www.sciencedirect.com/science/article/pii/S1045926X13000797
https://www.researchgate.net/publication/3187542_A_Technique_for_Drawing_Directed_Graphs
https://www.researchgate.net/publication/3187542_A_Technique_for_Drawing_Directed_Graphs
https://www.researchgate.net/publication/286342713_A_general_introduction_to_graph_visualization_techniques
https://www.researchgate.net/publication/286342713_A_general_introduction_to_graph_visualization_techniques

	Introduction
	Interactive Tool for Teaching Transformations

	Research
	Graphs in I3T
	Programs with similar graph structures as I3T
	Diagram creating websites
	Public Implementation of Graph Algorithm Library and Editor
	Graphviz - Graph Visualization Software
	Blender
	Unreal engine

	Requirements of a proper graph layout
	Layout Techniques
	Interactive layout techniques
	Semi-autonomous layout techniques
	Autonomous layout techniques


	Refactorization of classes representing I3T modules
	Current state of the classes representing modules
	Changes to the classes representing modules

	Implementation of the layout techniques
	Interactive techniques
	Semi-autonomous technique
	Autonomous technique
	graph structure used in the technique
	Cycle removal
	Layer assignment
	Order creation
	Coordinate assignment

	Testing of layout techniques
	Results

	Summary
	Results of layout techniques
	Interactive layout techniques
	Semi-autonomous layout technique
	Autonomous layout technique

	contents of the enclosed CD

