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Abstract
This master thesis focuses on automatic
label placement. Labels can be positioned
over a given object (Internal Labeling) or
next to it and connected by a line (Exter-
nal Labeling). I attempt to combine the
two methods and position the labels in
a mixed fashion. When I place the label
next to the object, I try to pick such a
position, that the line to connect it is not
necessary.

First, I present existing methods in the
text. Subsequently, I analyze the prob-
lems related to mixed label placement. I
carry out the implementation based on
the analysis and test it with six models of
various complexity. I evaluate with users
in the end.

Keywords: automatic label placement,
labeling, external labeling, internal
labeling, mixed labeling

Supervisor: Ing. Ladislav Čmolík,
Ph.D.

Abstrakt
Tato diplomová práce se zabývá automa-
tickým rozmístěním popisků. Popisky mo-
hou být umístěny přes daný objekt (angl.
Internal Labelig) či vedle daného objektu
(angl. External Labeling), přičemž jsou s
ním spojeny čárou. V této práci se pokou-
ším zkombinovat tyto dva přístupy a po-
pisky umísťovat smíšeně. Zároveň se sna-
žím popisky umístěné vně objektu umístit
tak, aby k jejich asociaci s ním nebyla
čára potřebná.

V textu práce nejprve uvádím existující
přístupy k této problematice. Následně
analyzuji problémy spojené se smíšeným
umísťováním popisků a na základně ana-
lýzy provádím implementaci. Funkčnost
algoritmu je otestována na šesti modelech.
Se třemi z nich je provedena uživatelská
studie.

Klíčová slova: automatické umístění
popisků, popisky, externí popisky, interní
popisky, smíšené popisky

Překlad názvu: Integrace interních a
externích popisků

vi



Contents
1 Introduction 1
1.1 Motivation and Contribution . . . . 2
1.2 Structure of the thesis . . . . . . . . . . 2
2 Related work 3
2.1 Internal labeling . . . . . . . . . . . . . . . 3
2.2 External labeling . . . . . . . . . . . . . . 5
2.2.1 Boundary labeling . . . . . . . . . . 5
2.2.2 Convex labeling . . . . . . . . . . . . . 6
2.2.3 Non-Convex labeling . . . . . . . . 8

2.3 Mixed labeling . . . . . . . . . . . . . . . . 9
2.4 Chapter summary . . . . . . . . . . . . 10
3 Design 11
3.1 Problem description . . . . . . . . . . . 11
3.2 Techniques in general . . . . . . . . . 12
3.2.1 Jump Flooding . . . . . . . . . . . . 12
3.2.2 Scattering . . . . . . . . . . . . . . . . . 13
3.2.3 Summed area table . . . . . . . . . 14

3.3 Overview of the method . . . . . . . 15
3.4 Label candidates . . . . . . . . . . . . . . 18
3.4.1 External label candidates . . . 18
3.4.2 Internal label candidates . . . . 19

3.5 Modelling the criteria . . . . . . . . . 21
3.5.1 Label salience . . . . . . . . . . . . . 21
3.5.2 Anchor salience . . . . . . . . . . . . 27
3.5.3 Leader line length . . . . . . . . . . 27
3.5.4 Label to model overlap . . . . . 28
3.5.5 Label to label overlap . . . . . . 28

3.6 Selection of area for labeling . . . 29
3.7 Finding the best candidate . . . . . 30
3.8 Overlap elimination . . . . . . . . . . . 30
3.9 Chapter summary . . . . . . . . . . . . 31
4 Implementation 33
4.1 Implementation technologies . . . 33
4.1.1 OpenGL . . . . . . . . . . . . . . . . . . 33
4.1.2 JOGL . . . . . . . . . . . . . . . . . . . . 33
4.1.3 GLSL . . . . . . . . . . . . . . . . . . . . 34
4.1.4 Tiger . . . . . . . . . . . . . . . . . . . . . 34

4.2 Algorithm overview . . . . . . . . . . . 34
4.3 Determining the label candidates 36
4.4 Evaluating the criteria . . . . . . . . . 37
4.4.1 Label box salience - external 38
4.4.2 Label box salience - internal . 40
4.4.3 anchor salience . . . . . . . . . . . . 41

4.5 leader line length . . . . . . . . . . . . . 41
4.6 Overlaps . . . . . . . . . . . . . . . . . . . . . 42

4.7 Selection of area for labeling . . . 43
4.8 Finding the best candidate . . . . . 44
4.9 Overlap elimination . . . . . . . . . . . 45
4.10 Chapter summary . . . . . . . . . . . 45
5 Results 47
5.1 Tested models . . . . . . . . . . . . . . . . 47
5.2 Labeling results . . . . . . . . . . . . . . 48
5.3 Influence of the weights . . . . . . . . 55
5.4 Performance . . . . . . . . . . . . . . . . . 58
5.4.1 Testing hardware . . . . . . . . . . 58
5.4.2 Performance results . . . . . . . . 58

5.5 Chapter summary . . . . . . . . . . . . 59
6 Evaluation with users 61
6.1 Study design . . . . . . . . . . . . . . . . . 61
6.2 Testing models . . . . . . . . . . . . . . . 63
6.3 Results of the study . . . . . . . . . . . 65
6.4 Chapter summary . . . . . . . . . . . . 68
7 Conclusion 69
7.1 Future work . . . . . . . . . . . . . . . . . . 70
Bibliography 71

vii



Figures
1.1 Hand created labeling of a chart
from gapminder.org. Source[13]. . . . 2

2.1 Results obtained through the
method of Freeman. Source [14]. . . . 4

2.2 Results obtained via the method of
Ropinski et al.[29]. Source [29]. . . . . 4

2.3 Results obtained via the method of
Kouřil et al.[21]. Source [21]. . . . . . . 5

2.4 Results obtained via the method of
Bekos et al. Source [5]. . . . . . . . . . . . 6

2.5 Results obtained via the extended
method of Bekos et al. Source [24]. . 6

2.6 Ring, radial, and silhouette-based
layout as utilized by the method of
Ali et al [4]. Source [4]. . . . . . . . . . . . 7

2.7 Comparison of the methods of Ali
et al. (a) and Čmolík and Bittner (b).
Source [10]. . . . . . . . . . . . . . . . . . . . . . 7

2.8 Label layout produced by the
method of Čmolík and Bittner [11].
Source [11]. . . . . . . . . . . . . . . . . . . . . . 8

2.9 Result obtained by Stein and
Décoret. Source [32]. . . . . . . . . . . . . . 8

2.10 Result obtained by Wu et al.
Source [35]. . . . . . . . . . . . . . . . . . . . . . 9

2.11 Result obtained by Götzelmann et
al. Source [16]. . . . . . . . . . . . . . . . . . 10

3.1 Jump flooding of information
contained in the red pixel by either
doubling the step size (a) or halving
it (b). Source [28]. . . . . . . . . . . . . . . 13

3.2 Summed aread table. Source [19] 14
3.3 Recursive doubling in 1D. Source
[19] . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 The internal label candidates (a),
the internal Voronoi diagram of the
extreduded silhouette (b), the
external label candidates (c). . . . . . 18

3.5 Propagating an id on a 10x2 grid
using variation of jump flooding . . 20

3.6 Possible problems with ambiguity 22
3.7 Possible problems with ambiguity
solution . . . . . . . . . . . . . . . . . . . . . . . 22

3.8 Example id buffer (a) and the
outline (b) calculated from it . . . . . 24

3.9 Possible problem with the
ambiguity of internal label
placement . . . . . . . . . . . . . . . . . . . . . 25

3.10 Possible problem with ambiguity
of internal label placement . . . . . . . 25

3.11 Optimal internal label placement 26
3.12 Discarded internal and external
label candidates, shown in light
colour, after an internal (a) and an
external label (b) was placed. . . . . 31

4.1 Algorithm walk through with
buffers involved in separate steps . 34

4.2 Internal and external label
candidates visualized. . . . . . . . . . . . 36

4.3 Label salience - external. . . . . . . 38
4.4 Label salience - internal . . . . . . . 40
4.5 Internal and external label
candidates visualized. . . . . . . . . . . . 41

4.6 Leader line length . . . . . . . . . . . . 42
4.7 Label to label overlap and label to
model overlap masks. . . . . . . . . . . . . 43

5.1 Models used for testing. . . . . . . . 47
5.2 Results for the testing scene with a
set of spheres. . . . . . . . . . . . . . . . . . . 48

5.3 Results for a testing scene with a
set of spheres of different sizes. . . . 50

5.4 Results for scene containing the
model of the digestive system. . . . . 51

5.5 Results for scene containing the
model of the human head. . . . . . . . 52

5.6 Results for scene containing the
model of the wheel fork. . . . . . . . . . 53

5.7 Results for scene containing a
model of a wheel fork. . . . . . . . . . . . 54

5.8 Effects of the weights w2a and
w2b. . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.9 Effects of weight w2. . . . . . . . . . . 56
5.10 Effects of weights w3 and w4. . . 57
5.11 Average time required to calculate
the label layout based on the number
of labels objects. . . . . . . . . . . . . . . . . 59

6.1 The introductory scene for the user
testing, containing the model of the
digestive system. . . . . . . . . . . . . . . . . 64

viii



6.2 The first test scene for the user
testing, containing the model of the
human head. . . . . . . . . . . . . . . . . . . . 64

6.3 The second test scene for the user
testing, containing the model of the
wheel fork. . . . . . . . . . . . . . . . . . . . . . 65

6.4 The third test scene for the user
testing, containing the visualization
of dependency between income and
life expectancy. . . . . . . . . . . . . . . . . . 65

6.5 The number of errors . . . . . . . . . . 66
6.6 Time to click one label . . . . . . . . 66
6.7 Easiness of attributing a label to
the correct part . . . . . . . . . . . . . . . . . 67

6.8 Confidence in attributing the label 67
6.9 Perceived speed of attributing the
label . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Tables

ix





Chapter 1
Introduction

Complex models consisting of a large number of parts appear in a multitude of
domains. Illustration of these models conveys information about their spatial
arrangement. In order to communicate the function of individual components,
these models comprise of, a textual description is required. Labels represent
the means of connecting the textual description with the visual representation
of these objects.

Based on the position of the labels, we talk about internal, external, or
mixed labeling. The internal labels are positioned over the parts, therefore
using proximity to communicate relation with a given part of the model.
They are commonly used in cartography to mark area features since maps
generally utilize all of the available space. Hence the labels must overlap
the graphic elements. In contrast, the external labeling methods place labels
on the outside of objects, almost exclusively utilizing leader lines to connect
them with a given part. There exists a variety of external labeling methods,
suitable for various purposes. Applications include boundary labeling of maps,
3D scenes, 3D models, textbook illustrations, and many others that I will
describe in more detail in the subsequent chapter. Combination of internal
and external labels yields a mixture of the two styles, producing the most
general case of labeling - mixed labeling.

Labeling should support various styles in order to efficiently communicate
relations between labels and individual parts of the model. According to Tufte
[33], labeling should integrate all the necessary information into graphics itself
to prevent the user’s eye from darting back and forth between the underlying
textual material and the graphic.

Label layout, i.e., positioning of the labels, should exhibit several basic
properties as described by Ali et al. [4] It should be readable, unambiguous,
aesthetically pleasing, real-time, frame-coherent and compact [4]. More
precisely, labels should be placed in such a manner, so there is no visual
interference, and the user can read them with no difficulties. The positioning
of the labels can pose problems pertaining to the association among the labels
and the objects. While this is not typically a problem if the labels are placed
externally and connected with lines, when this is not the case, significant
issues may arise. Since the results are made to be viewed by a user, they
should also be aesthetically pleasing, not lessened by the presence of visual
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1. Introduction .....................................
clutter. Labels should not take up any extra space around the illustration. It
is especially important if the results are meant to be embedded into a text,
as accompanying illustrations.

1.1 Motivation and Contribution

This work can be viewed as a continuation of my bachelor’s thesis [26], where I
explored the problem of external labeling of 3D objects. Some approaches are
carried over from it, meaning that I have more space to focus on innovation,
as I am already familiar with a part of the problem. The aim of this thesis
is to design an algorithm capable of combining the methods of internal and
external labeling. Ability to place labels in a more versatile fashion allows for
more efficient usage of space and reduction of visual clutter. Which follows
the aforementioned requirements for the label layout, as all of the qualities can
be improved when compared to the methods restricted to one type of labels.
Possible use cases for this algorithm are rather broad, including labeling of
packed scenes, such as the one depicted in Figure 1.1, static illustrations, and
3D models, to name just a few. As the algorithm operates in real time for
medium complexity scenes, it is suitable for use in interactive applications,
where the user needs swift feedback.

Figure 1.1: Hand created labeling of a chart from gapminder.org. Source[13].

1.2 Structure of the thesis

In chapter 2 of this thesis, I assesses existing methods of both internal and
external labeling in order to inspire the subsequent design of the algorithm.
In chapter 3, I bring an overview of the algorithm and describe its steps.
Subsequently, in chapter 4, I describe the implementation of the algorithm,
followed by the implementation details and visualization of the auxiliary data
structures the algorithm utilizes. The following chapter 5 asses the results
produced by the algorithm and evaluates its performance on scenes of different
complexity. I perform a user study in chapter 6 to evaluate the results from
a user standpoint. Finally, I summarize the work on this thesis in chapter 7.
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Chapter 2
Related work

In this chapter, I describe various methods published over the years. Further-
more, I address the suitability of these methods for the desired algorithm.
I divide the discussion based on the positioning of the labels into sections
on internal, external, and mixed labeling methods. A substantial part of
the literature is concerned with the labeling of point features. While their
relevance might not be too high, as my focus lies with the labeling of area
features, they are listed here anyway to paint a more holistic picture of the
methods zoo.

2.1 Internal labeling

In case that the scene we mean to label contains only disjoint parts able
to accommodate the entirety of the label surface, the internal labels are
the preferred option. This prerequisite is met in case of maps, although
there are quite a few use cases from the field of information visualization.
According to Hartman et al. [18], the internal labels can be aligned to a
horizontal line, or they can be curved, thus indicating the shape of the labeled
object. The internal labeling is most commonly utilized to describe area
features in the cartographic domain. The guidelines in this domain have
been long established by Yoeli [36]. Research communities developed many
approaches to place the labels for maps automatically. Agarwal et al. [2]
model the labels as rectangles parallel with horizontal axes. They attempt
to find positions of the rectangles so that they do not overlap each other.
Freeman [14] presented an algorithm capable of automated cartographic text
placement. Freeman attempts to label point, line, and area features following
the rules and conventions of the cartographers. Freeman resolves ambiguous
label positions based on priorities for the label groups. Figure 2.1 depicts the
results obtained by his method.

3



2. Related work.....................................

Figure 2.1: Results obtained through the method of Freeman. Source [14].

Further uses of the internal labeling can be found in massive CAD models,
as demonstrated by Prado and Raposo [27] or to annotate surfaces in medical
illustrations, as shown by Ropinski et al. [29]. Ropinski et al. attempt to
provide additional shape cues by fitting the labels into the depth structure of
their objects, as depicted in Figure 2.2.

Figure 2.2: Results obtained via the method of Ropinski et al.[29]. Source [29].

Kouřil et al. [21] presented a method of labeling a large number of hierar-
chically organized features in an interactive 3D environment. The features
they label are multi-instance and multi-scale. Thus, the label is not placed for
only one feature but it represents all of the instances. The results generated
by their method are depicted in Figure 2.3.
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................................... 2.2. External labeling

Figure 2.3: Results obtained via the method of Kouřil et al.[21]. Source [21].

2.2 External labeling

External labeling algorithms place the labels close to the objects they mark
and connect them with a line segment. A point of the line segment, which
connects to the object, is called an anchor, while the line itself is called a
leader line. An appropriate anchor must be selected, so it is easily attributable
to the object. There are substantial differences among the external labeling
algorithms. Thus there arises a need to divide them further. I categorize
them into individual sections based on how close to the object they can
place the label. Boundary labeling techniques place the labels around the
illustrations, as I describe in section 2.2.1. A class of algorithms, which label,
predominantly, 3D models, utilizes a projection of the convex hull of the
model and places labels at its boundary. I describe these methods in section
2.2.2. Last section 2.2.3 presents algorithms that do not constrain the label
positions like the algorithms in the previous sections and can place the labels
anywhere in the scene.

2.2.1 Boundary labeling

The method presented by Bekos et al. [5] places the labels around the
boundary of a rectangular area. They use several different types of leader
lines in this process. There exist one-sided [7] and two-sided versions [24] of
the boundary labeling problem. Results obtained via the method of Bekos et
al. [5] can be seen in Figure 2.4.
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2. Related work.....................................

Figure 2.4: Results obtained via the method of Bekos et al. Source [5].

Bekos et al. [24] extended their previous algorithm. In this extended
version of the algorithm, the position of the anchors is not fixed, but they are
constrained to the predefined rectangular boxes. Results of their approach
are depicted in Figure 2.5.

Figure 2.5: Results obtained via the extended method of Bekos et al. Source [24].

2.2.2 Convex labeling

Methods in this section utilize the convex hull of the model and place the
labels around it. Ali et al. [4] presented a method that produces the labeling
of any given model in real time utilizing its convex silhouette. Positions of
anchors are calculated first, and these anchors are subsequently labeled. They
support a variety of layout styles, some of which are depicted in Figure 2.6.
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................................... 2.2. External labeling

Figure 2.6: Ring, radial, and silhouette-based layout as utilized by the method
of Ali et al [4]. Source [4].

The method presented by Čmolík and Bittner [10] also produces real-time
labeling. Furthermore, it computes the positions of the anchors and the labels
simultaneously. Because of this fact, and employment of a larger number of
criteria when evaluating the fitness of leader lines, they obtained aesthetically
improved results compared to the method of Ali et al. [4]. The comparison
of the results produced by these two methods is depicted in Figure 2.7.

Figure 2.7: Comparison of the methods of Ali et al. (a) and Čmolík and Bittner
(b). Source [10].

Čmolík and Bittner [11] presented the algorithm for labeling of ghosted
models, as they extended their previous work. They solve the problem by
not placing the anchors in the regions where the labeled objects are too
transparent or where they are occluded by opaque objects. Thus, the users
can correctly associate the label to the corresponding object. Results of their
method are depicted in Figure 2.8.

These approaches are partially suitable for the tasks I mean to solve but
carry certain limitations imposed on them by the need of convex silhouette.
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2. Related work.....................................

Figure 2.8: Label layout produced by the method of Čmolík and Bittner [11].
Source [11].

2.2.3 Non-Convex labeling

The methods presented in this section can place the labels anywhere in the
scene and thus utilize all available free space.

Stein and Décoret [32] presented a greedy algorithm for labeling of a fixed
set of anchors attached to 3D objects. Overlap of the labels with the objects
is prevented with the utilization of the summed area table and shadow regions.
Example of their results is depicted in Figure 2.9. Approach with the summed
area table applies to our task, as it enables overlap detection and therefore,
its prevention.

Figure 2.9: Result obtained by Stein and Décoret. Source [32].
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.................................... 2.3. Mixed labeling

Wu et al. [35] presented an algorithm utilizing a zone-based approach for
labeling metro maps. The results they obtained are depicted in Figure 2.10.
They position the labels in the scene without crossing the metro lines. The
labels are connected to the objects with leader lines if necessary.

Figure 2.10: Result obtained by Wu et al. Source [35].

2.3 Mixed labeling

Götzelmann et al. [16] proposed an algorithm for labeling interactive 3D
models with both internal and external labels. In their approach, they first
perform a region-based segmentation based on color. On this segmented
image, they perform skeletonization, construct skeleton graph, and extract
stroke path candidates from it. The best candidate is selected upon evaluation
of a set of criteria. Qualities such as steepness, curvature, path length, and
surrounding space are evaluated. Thus enabling the selection of the best path
segments, where the text is rendered. Results obtained by their approach are
depicted in Figure 2.11.
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2. Related work.....................................

Figure 2.11: Result obtained by Götzelmann et al. Source [16].

Götzelmann et al. proposed further methods for mixed labeling of inter-
active 3D scenes [15][17]. These methods share the core idea. For a given
object, they calculate optimal internal and external label positions. Layout
manager chooses which label to place. However, the internal label must fully
overlap its object. Thus an internal label might not exist. To add, as they
evaluate internal and external labels independently, an overlap of an internal
label with a leader line can occur.

2.4 Chapter summary

I described a large number of methods utilized in the field of labeling. I
included internal labeling methods in section 2.1, external labeling methods
in section 2.2, and mixed labeling methods in section 2.3. Of course, not all
existing methods were mentioned in this chapter.

I aim to position the labels both internally and externally, and as such,
the most appropriate methods are those of Götzelmann et al. [15][16][17].
However, these methods still have certain limitations. They must place the
internal labels entirely inside of the object they label. To add to that, cases,
when the leader line overlaps the label, can occur.

I intend to remove these shortcomings by allowing internal label positions
only partly overlapping its respective object and not allowing the label to
leader line overlaps. Therefore, the method proposed in this work has the
potential to contribute to the already existing palette of labeling algorithms.
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Chapter 3
Design

In this chapter, I describe the algorithm and the problems that connect to it.
Firstly, in section 3.1, I describe the task at hand. In the subsequent section
3.2, I bring an overview of the general techniques, which I will often use,
albeit in some altered version, in the following sections. Section 3.3 brings
an overview of the algorithm, coupled with an outline of the problems that
arise from some particular requirements on the label layout. All subsequent
sections focus on describing the solutions to the problems outlined in section
3.3.

3.1 Problem description

This section describes the problem I tackle in this master thesis. In the
beginning, there is a scene containing some objects to which I would like to
assign labels. It might be a 3D model, a static image or, for example, a map.
The particular form of the data depicted in the scene is not too important,
as long as there is a way to distinguish between the foreground and the
background, i.e., the information carrying data I would like to label and the
empty space between them. I require the object segmentation because I need
to know which objects are present at a given position in the scene, and I store
this information in the id buffer.

The task is to assign the labels to the selected or all of the objects in the
scene. In this thesis, I consider three possible ways in which I can link a label
and an object it is supposed to label. I can place the label internally; this
means that it, at least partially, overlaps the object it marks. In this case,
only proximity of the label to the object conveys the association, as there is
no line connecting the two to aid it.

Another option is to place the label externally, next to the labeled object,
and connect it with a leader line to ease the recognition of the link between
the two. In this case, the labels are placed on an extruded outline of the
objects. This way, I prevent overlaps and assure short leader lines, which is
one of the requirements of an external label layout [4]. Furthermore, there is
only a negligible waste of free space, i.e., such a position in the screen space
where no objects are present, and the external labels are placed with higher
versatility.
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3. Design........................................
A situation might arise that the leader line is not needed. For example,

an object might be spatially isolated from others present in the scene. Since
there are no competing objects for the association by proximity, there is no
need for the leader line, and I can remove it. This type of situation might
occur even in more densely populated regions of the scene. Lack of competing
objects in a given region of the scene is sufficient to discard the use of the
leader line. This method of placing the label externally but without the
unnecessary leader line constitutes the third way of label placement.

3.2 Techniques in general

There are two techniques, which I frequently utilize in the calculation of the
data I require for some step of the algorithm. Although not used in the most
general form, but rather with some alterations made to customize them for
the particular use case, I employ these techniques in a large number of steps
of the algorithm. Furthermore, they ensure sufficient speed of the calculation
required for the algorithm to run at interactive frame rates. The following
subsections take a closer look at these techniques, which are called jump
flooding and scattering. I also include an overview of summed area table,
since I encode many textures in this form. I decided to put this section
here, so that you, the reader, can familiarize yourself with them before the
discussion of the algorithm. This way, the description of the algorithm is
more fluent and allows for an accessible understanding.

3.2.1 Jump Flooding

Jump flooding is an algorithmic paradigm suitable for parallel calculations.
I can use it when calculating the Voronoi diagram, distance transform, or
summed area tables. This paradigm is generally useful when we are faced
with a task to spread information contained in any given pixel over the whole
grid, in our case, usually, represented as a texture. Some possible usages of
this technique were introduced by Rong and Tan [28], who demonstrated its
possible usages by calculating Voronoi diagrams.

Let us consider a grid of pixels with arbitrary values. Our target is to
propagate the values of all the pixels into every point of this grid. If we would
like to solve this problem for just one pixel, a simple way to achieve this would
be to flood from this pixel outward. In the first wave, only the neighboring
pixels would receive the content; in the second wave, the content would be
spread to the pixels neighboring those pixels. Effectively, the information
is spread in steps of length one. Rong and Tan [28] deal with this task by
propagating the information in rounds with varying step lengths. They either
start with large step size and halve it, or a small one and double it. In each
step, the information from every pixel is spread in horizontal, vertical, and
diagonal directions.

12



................................. 3.2. Techniques in general

Figure 3.1: Jump flooding of information contained in the red pixel by either
doubling the step size (a) or halving it (b). Source [28].

Figure 3.1 shows how this works when propagating a single pixel to all the
other pixels in the grid. Jump flooding takes only d(n)e steps on a grid with
dimensions of n x n, compared to n steps it would take by the simple method
outlined at the beginning of this section. This technique is advantageous
and by changing what pixels do with the information and what direction
they propagate the information to, various computations can be sped up.
If we want to calculate a Voronoi diagram from a set of seeds, we keep the
lowest distance from each seed in each pixel. The summed area table can
be calculated by propagating the information only to the right and up while
adding the value stored in the pixels with the propagated one.

3.2.2 Scattering

In general-purpose computing on graphics processing units (GPGPU) ap-
plications, the programmable pipeline of the graphics card is utilized for
various kinds of operations. These are generally highly parallel in nature.
The fragment processors can perform gather operation, as it corresponds to a
simple texture search. However, they are not able to scatter the data, as the
output address is fixed to a specific location in the target buffer. Meanwhile,
vertex processors can change the location of the current vertex, and therefore
are capable of scatter operation, to some degree [20].

Scheuermann and Hensley [31] proposed an approach for efficient histogram
generation. They use scattering for this task. They consider an input image,
for which they want to compute a histogram, i.e., sort the pixels of the image
into buckets based on their brightness. They render one point primitive for
every pixel of the input image and perform the bin selection in the vertex
shader. A bin is a location in a 1D bin texture. The fragments are rasterized
into locations they desire. They configure hardware blend units to add the
incoming fragments and thus obtain the histogram.

This approach can be modified for various use cases. I can add the values of
the pixels as Scheuermann and Hensley [31] did. Or I can select the maximum
value by redirecting all of the pixels of the input image at one location but
into different depths and use the depth test to keep only the fragment with
the lowest/highest depth. I can also render a line instead of the one pixel

13



3. Design........................................
primitive. When the line is rasterized, there are more fragments per pixel in
the input image — effectively adding the pixel value to more buckets.

3.2.3 Summed area table

The summed area table, SAT for short, is a data structure and an algorithm
utilized for efficiently calculating the sum of values of a rectangular subset
of a grid. It was first introduced by Frank Crow [12] in 1984. Input to the
algorithm is a rectangular grid. The algorithm outputs a rectangular grid
of the identical dimension to the input grid. Every point of the output grid
contains the sum of values of the input grid over rectangle determined by
the point itself and bottom left corner. Therefore, the summed area table
is also known as the integral image. The value S(x, y) of the point with the
coordinates (x, y) in the summed area table is:

S(x, y) =
x∑

x′=0

y∑
y′=0

i(x′, y′) (3.1)

where i(x, y) is the value of the input grid at coordinates (x, y).

Calculating the sum of the values of the input grid, the black rectangle
in Figure 3.2, is an easy operation with the summed area table since the
following is true:

∑
XL≤x≤XR
aYB≤y≤YT

i(x, y) = S(XR, YT )− S(XR, YB)− S(XL, YT ) + S(XL, YB) (3.2)

Thus, calculating the sum of a rectangular subset of a grid requires only
four lookups to the summed area table.

Figure 3.2: Summed aread table. Source [19]
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Summed area table calculation

From the definition of the summed area table, it is evident that its calculation
is not a difficult task. However, for purposes of this thesis, the implementation
must be fast enough to allow for real-time performance of the proposed method.
Therefore a GPU implementation is required. Hensley et al. [19] proposed
a method to calculate the summed area table in O(dlog(n)e) time, where n
is the maximum from the width and the high of the grid. They utilized a
technique known as recursive doubling.

Figure 3.3: Recursive doubling in 1D. Source [19]

Figure 3.3 depicts the progress of calculation in a 1D problem. In the first
step, the value from the pixel left of it is added to every pixel. In the second
step, the step size doubles, and the value of the pixel located two grid cells to
the left is added to every pixel. Step size is doubled with every iteration. For
a 2D problem, the algorithm functions in a vertical and a horizontal phase.
First, it calculates row sums in the horizontal phase. Subsequently, values
obtained in the previous phase are summed column-wise. Implementation
usually utilizes two textures. One texture to read from and one to write to.
These textures are swapped after every iteration.

3.3 Overview of the method

I will first define the necessary terminology for the task at hand. Given a
model M comprising n parts Oi, i ∈ {1, ..., n} located in a scene, I consider
a projection of the models M into the screen space S and denote it as A.
Furthermore, I denote the projection of part Oi as Ai, an area where the
projection of part Oi is present. M can be a 3D model or a 2D image. I only
require the projection of M to be known, as it is stored in the id buffer and
utilized for the calculations. I will refer to the part Oi of the model also as
the object Oi. For semi-transparent objects, I use the approach of Čmolík
and Bittner [11], who discard portions of the Ai, where the object is too
transparent or where it is occluded by another opaque object.

Furthermore, I require a short textual annotation ti for each object Oi, a
label, which should be placed in the scene to aid recognition of a given part.
I assume the dimension di of ti to be known prior to the calculations of the
algorithm (di = (wi, hi) is a vector of the label width and the label height). I
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call the projection of the boundary of the extruded model M into the screen
space the extruded silhouette.

I denote li as a label candidate for area Ai. I denote the label box (imaginary
rectangle encompassing the label) corresponding to the label candidate li as
Li. Dimension of the label box Li is the dimension di of the label text ti.
Label candidate can be internal or external and I denote them lIi and lEi,
respectively. However I will use only designation li, as it is apparent whether
I in fact mean lIi or lEi.

Label candidate li is a pixel in S. To every label candidate li corresponds
a unique position of Li in S. In the following text I use Ai to describe both
the projection of the object Oi as well as the external label candidates, as
the two set are identical.

The algorithm can be roughly described by the pseudo-code in Algorithm
2.

Result: Positions of the labels for the given scene
For each area Ai, i ∈ {1, ..., n} establish label candidates;
Evaluate the fitness of each label candidate according to the labeling
criteria;
while There is an unlabeled area left in A do

Select unlabeled area Ai with the lowest capacity C(Ai);
Discard the unsuitable candidates based on overlaps;
Find the best internal label candidate for Ai;
if fitness of the best internal label candidate lower than user
threshold t then

Find the best externall label candidate for Ai;
if external label candidate exists then

Discard the internal candidate;
else

Keep the internal candidate based on user preference;
end

end
if label was placed internally then

Discard external label candidates for Aj , i 6= j where
candidate leader line would interset the placed label;

else
Discard internal label candidates of Aj , i 6= j where the
candidate would interset the leaderline of the placed label;

end
end

Algorithm 1: Algorithm overview
Firstly, I need to determine the internal and external label candidates. For

Oi, I consider every pixel of Ai to be a candidate for an anchor of the external
label, and also a label candidate li. I am trying to position the external labels
in a way so that they are touching the extruded silhouette with one of their
corners. Since there is precisely one leader line lli connecting an anchor point
with the closest point of the extruded silhouette, depicted in Figure 3.4b,
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there is exactly one leader line associated with each anchor point. Therefore,
the task of finding lli is the same as finding an anchor to which the lli is linked.
I assume the position of the label box Li to be dictated by the direction of lli .

The situation for internal labels is similar. I consider label ti of Oi internal
if it overlaps Ai at least partially (Li ∩Ai 6= ∅) and is associated by proximity
and not by a leader line. It is sufficient to choose one particular point of the
label to represent the label candidate since dimension di is known. I selected
bottom left corner of the label to be this point. To calculate all of the internal
label candidate for object Oi, I need to extend area Ai down by the and left
by the dimension di. This yields area AIi, each pixel of which represent an
internal label candidate. This area is depicted in Figure 3.4a.

After the label candidates are known, I need to be able to evaluate their
fitness. For this purpose, I impose criteria on them. Criteria differ based on
the type of candidate. However, they are mainly based on the evaluation of
the ambiguity of the label candidate with respect to the labeled object.

The external label candidates are subjected to the following criteria:. Leader line length – leader line should be as short as possible.Anchor salience – the anchor should be a salient point of Ai. External label salience – the label should be placed in a position,
where it can be associated with Ai with as little ambiguity as possible.. External label overlap - the label does not overlap area A, nor does
it overlap other labels.

Meanwhile, the internal labels are evaluated based on the following criteria:. Internal label salience - the label box Li should overlap the object
Ai as much as possible, and at the same time the overlap with Aj 6= Ai

should be minimal for all j ∈ {1, 2, 3, ..., n} \ i. Further, a portion of the
label candidate that is external (Li∩ (S\ (A))) should be associated with
Ai with as little ambiguity as possible.. Internal label overlap - the label does not overlap other labels.

After I evaluated all the label candidates, the main loop of the algorithm
can run and iteratively place labels in the scene. First, an area to be labeled
must be selected. For this purpose, I take a weighted sum of the internal
label candidates, called a capacity C(Aj), for each area Aj . I select the area
Ai with the smallest capacity C(Ai) from yet unlabeled areas. Subsequently,
I try to place the internal label. If it is not possible to place it, or the fitness
of the selected candidate is lower than a user set threshold t, I attempt to
place an external label. If the external label cannot be placed, based on the
user preference, the internal label can be placed instead, if it exists. The
main loop of the algorithm runs until there are no unlabeled areas left.
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3.4 Label candidates

The first step of the algorithm is to determine the label candidates. The
algorithm is GPU evaluated. Therefore it is suitable to represent a candidate
as a pixel in the screen space. I also want to eliminate transfers between
CPU and GPU. Representing candidates as pixels in some buffer in the GPU
memory does accomplish that. However, the particular form of the candidate
representation differs based on whether I deal with an internal candidate for
a label or an external one.

Figure 3.4: The internal label candidates (a), the internal Voronoi diagram of
the extreduded silhouette (b), the external label candidates (c).

3.4.1 External label candidates

I represent the external label candidate by its anchor. Each anchor has
exactly one closest point on the outline of the model. This is depicted in
Figure 3.4b, where the anchor a has a closes point l on the outline. The
position of the label box is dictated by the two, with a corner of the label
box being the point l. Therefore, a leader line, which is determined by an
anchor and a point on the outline, can be viewed as being fixed to its anchor.
Moreover, by fixing the position of the label box to the direction of the leader
line, I can achieve it dictated by the position of the anchor. Consequently,
one external label candidate corresponds to one anchor. Based on the angle
between the leader line from point a to point l and the horizontal axes, a
different corner of the label box touches the leader line. For the angle in
the interval (0◦, 90◦] it is the bottom left corner, in the interval (90◦, 180◦]
it is the bottom right corner, in the interval (180◦, 270◦] it is the top right
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corner, and in (270◦, 360◦] it is the top left corner. Figure 3.4 (c) depicts
these different label orientations. For each object Oi, its anchors are all of the
points of Ai, except for the ones discarded due to occlusion by other objects,
or abundance of transparency, utilizing the method of Čmolík and Bittner
[11], as was mentioned in the algorithm description section.

3.4.2 Internal label candidates

Internal label candidates are somewhat more difficult to obtain. Whereas
in case of external label candidates for Oi, it was simply all of the points
in the area Ai, in case of the internal label candidates, it will have to be a
superset of Ai. Since any label that would even partially overlap the area Ai is
considered a label candidate for Oi, I need to reflect this in the set of internal
label candidates. I define the bottom left corner of the label candidate to be
the identifying point of the whole candidate, as the position of the bottom
left corner coupled with the known dimensions of the label sets a unique label
position. Label dimension for area Ai are di = (wi, hi), where di is a vector
of the label dimensions, wi is the label width and hi is the label height. By
extruding the area Ai by the wi left and the hi down, I obtain the set of
internal label candidates for Oi - AIi. This idea is depicted in Figure 3.4c.

I can calculate all the AIi, i ∈ {1, 2, ..., n} efficiently and simultaneously
by a modifying the jump flooding Algorithm. In general case of the jump
flooding, every pixel of the grid, in this case of the screen, has an access to
the value of every other pixel of the grid at some point during the algorithm
run. However, it is not necessary in this case, as only the values of the pixels
incoming from the right and up, which are closer than wi or hi, respectively,
are relevant for any given pixel. Consequently, I can obtain AIi from Ai by
propagating the information of all the pixels in the screen space S only a
limited distance to the left a down.

I can divide the propagation into two independent phases by first prop-
agating the pixel values to the left and then down. For either one of the
directions, the following holds true. By halving the step size from initial
s0 = 2K ,K ∈ N down to sK = 1, where sk is step size in iteration k of the
jump flooding algorithm, the total distance the value from any pixel can be
propagated to is:

dp(k) =
K∑

j=0
2j = 2K+1 − 1 (3.3)

By adding the one pixel that the value originated from, it is apparent
that it has now been distributed to 2K+1 pixels in total. Therefore, it
would not be hard to obtain AIi from Ai if the dimension of the label was
di = (wi = 2ki0 , hi = 2ki1), ki0, ki1 ∈ N. However, this is not always the case.
Fortunately, I am equipped with building blocks of size dp(N) = {1, 3, 7, 15, ...},
which I can combine to obtain any number x ∈ N. Furthermore, it is apparent
that decomposition
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x =
p∑

l=0
dp(l) =

p∑
l=0

Kl∑
j=0

2j (3.4)

requires at most log(x) + 1 terms. This, in turn, yields an upper bound on
the time complexity, as the number of passes, horizontal and vertical, in the
jump flooding algorithm is strictly constrained by:

O(log(wi) ∗ (log(wi) + 1) + log(hi) ∗ (log(hi) + 1)) (3.5)

This is much faster than a naive approach that would propagate a value by
the distance of 1 in each iteration. Or a distance transform utilizing weighted
Chebyshev metric, which would run in log(ns) steps, ns being the number
of pixels of the screen row, but would have to be computed for every label
separately, as every label would require different weights for the metric. It is
also not possible to store the origin of the propagated pixel and perform just
one complete loop with initial step size sufficient to cover the whole screen
and stop the propagation of those pixels that would get out of bound, given
by the dimensions of the label. The problem is that for each id, there might
be a different origin for the pixel.

Figure 3.5: Propagating an id on a 10x2 grid using variation of jump flooding

Figure 3.5 shows the propagation of one seed on a 10x2 grid. Because the
dimension of the grid is quite small, the number of steps is above expectation,
as iterations with small step size are repeated. Also, the width is 10 pixels;
this means that there are 9 extra pixels where the seed needs to be propagated.
Decomposition of 9 into the new base i 9 = 7+1+1, or 9 = 4+2+1+1+1 in
terms of step sizes. Distribution of pixel value in both horizontal and vertical
direction is also possible but will not result in a significant speed up.

Candidates for every object Oi can be calculated simultaneously by intro-
ducing propagation mask. It directs which ids should be propagated in a
given step. Step sizes are chosen so that every id is propagated exactly the
right distance.
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3.5 Modelling the criteria

Sets of pixels representing both the internal and external label candidates
are now calculated for every object Oi. The external label candidates for
area Oi are equal to its projection, the area Ai. The internal label candidates
AIi are computed from Ai by jump flooding. In order to select one of these
candidates for every object, Fitness function must be introduced. This section
list the criteria utilized for the selection of label candidates. While there are
some differences between the criteria for internal and external labels, they
are based on similar requirements. The labels should be attributable to their
objects with minimal ambiguity. Since this thesis strives to label without
leader lines, if possible, ambiguity plays a significant role. Each criterion is
modeled as a fuzzy set with a membership function:

Ci : S→ [0, 1] (3.6)

The value of Ci(lj) describes how well the label candidate follows a given
criterion. If the value is high, the candidate is suitable, if it is low, the
candidate is unsuitable from the point of view of the criterion. For the
aggregation of individual criteria into fitness function F , I utilize Multiple
Criteria Decision Making based on fuzzy logic [6]. Criteria are aggregated in a
non-compensating way. This means that strongly meeting one criterion does
not compensate for not meeting another. In order to modify the strength
of each criterion, I utilize weights. Criteria are aggregated with Natural
Fuzzy Conjunction (Natural T-Norm), which corresponds to the standard
multiplication. Fitness of the label candidate is given by the fitness function
F , which is defined as follows:

F (l) =
6∧

i=1
Ci(l)wi =

6∏
i=1

Ci(l)wi (3.7)

where wi is the weight of criterion Ci. The criteria utilized to determine the
fitness of internal and external label candidates are not identical. Furthermore,
for all of the pixels, which are not label candidates the value of all criteria is
equal to zero.

3.5.1 Label salience

The salience of the label as a whole is a pivotal criterion in evaluating
label ambiguity. When leader lines are not utilized to link a label with a
corresponding part, the salience of the label candidate is the only measure
of how ambiguous the position of the label for a given object Ai would be.
I distinguish two types of salience - internal and external. Internal label
salience aims to describe the level of ambiguity in the placement of internal
label, while external label salience describes ambiguity in the placement of the
external label. Since I consider a label to be internal even if it only partially
overlaps A, external label salience criterion is applicable to it as well.
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External label salience

Figure 3.6 depicts possible problems with the ambiguity of label placement.
If the labels are placed in a manner shown in Figure 3.6a, it is impossible
to correctly assign them to the labeled objects. When label positions shift
slightly, identification of which label belongs to which object becomes much
easier, as depicted in Figure 3.6b.

Figure 3.6: Possible problems with ambiguity

The solution to why this is the case is depicted in Figure 3.7. The Voronoi
diagram is constructed here with the individual regions having the appropriate
color tones. Therefore, I am lead to conclude that the labels should have a
maximal overlap with the region of object they label, all the while having a
minimal overlap with the regions of objects, they do not label.

Figure 3.7: Possible problems with ambiguity solution

Prior to the solution, I provide an overview of the terms utilized in the
following text. I define the outline Pi of the area Ai as Pi = ∂Ai, where
∂Ai represents a boundary of Ai. The outlines of all areas serve as seeds to
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calculate the Voronoi diagram of the scene. Region Ri, meaning points x ∈ S
closer to Pi than to any other Pj , j 6= i is defined as follows:

Ri = {x ∈ S|(∀j 6= i)(d(x, Pi) ≤ d(x, Pj))} (3.8)

where d is a distance function, in this case euclidean distance, and d(x, Pi)
(i.e. the distance of a point from a set) is defined as:

d(x, Pi) = min{d(x, y)|y ∈ Pi} (3.9)

There are two requirements that a label should meet, as mentioned in the
preceding text. At first, I will model them separately, so there is no confusion
as to what they describe. The first requirement states that the label should
overlap the region of the objects it marks as much as possible. Following
criterion models this requirement:

C1a(Li) = S(Ri ∩ Li)
S(Li)

(3.10)

where Li is a label box of a label candidate for area Ai and S() is a surface
function. Meaning that S(Li) is the area of the label box and S(Ri ∩ Li) is
area of the label box located in region Ri.

The second requirement states that the label should overlap regions Rj , j 6=
i as little as possible. I can model this criterion as a lack of overlap. By not
overlapping the region Rj at all, the label candidate will meet the criterion
perfectly. Based on this, the criterion for Rj reads:

C1bj
(Li) = 1− S(Rj ∩ Li)

S(Li)
(3.11)

However, there is not only one other region a label could overlap, but
there are more of them. I can utilize fuzzy conjunction to aggregate the
requirements for all the Rj , j 6= i as follows:

C1b(Li) =
n∏

j=1,j 6=i

(1− S(Rj ∩ Li)
S(Li)

) (3.12)

To obtain the criterion C1, I aggregate the partial requirements modelled
by C1a and C1b. The result reads as follows:

C1(Li) = S(Ri ∩ Li)
S(Li)

×
n∏

j=1,j 6=i

(1− S(Rj ∩ Li)
S(Li)

) (3.13)

Voronoi diagram of the scene S can be obtained in two simple steps. First,
I need to calculate the outlines ∀Pi, i ∈ {1, 2, 3, ..., n}. This can be achieved
by detecting the discontinuities in the id buffer. Figure 3.8a depicts an
illustration of the id buffer, while Figure 3.8b shows the discontinuities in the
buffer - the outline.
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Figure 3.8: Example id buffer (a) and the outline (b) calculated from it

The outline serves as seeds for calculation of the Voronoi diagram. I
utilize the method of Rong and Tan [28] for this task. Calculation of the
Voronoi diagram, or at least its faithful approximation, is a fast operation.
However, determining the surface overlap of the label box Li with any given
region Rj poses problems. Accessing all of the pixels that comprise the label
box in a fragment is an option but would result in poor performance. The
Voronoi diagram cannot be encoded as summed area table, because each bit
of each pixel is reserved for an object with a given id, and summed area table
calculation would result in overflows and therefore would not be possible.

One possible solution I came up with is to create a tile texture, in which
each tile holds a mask containing a unique region Rj . Pixel value in the i− th
tile at position (x, y) is:

tixy =
{

1 if (x, y) ∈ Ri

0 otherwise
(3.14)

The value tixy communicates information whether region Ri is present at a
given position in S. Indexation of the tiles in the tile texture is not particularly
important, as long as it is reproducible. The tile texture can be encoded as a
summed area table. This, in turn, allows for efficient calculation of S(Rj∩Li),
because only four texture lookups are needed.

However, there is no way to know which tiles should be accessed. Conse-
quently, all the tiles need to be checked. I can overcome this problem by an
approach similar to that of in section 3.4.2. I can take the Voronoi diagram
as an input. From it, I compute the tile ids that need to be accessed for every
candidate. I save them to a new buffer.I calculate it by propagating each id
left and down by the width of the widest label and height of the highest label,
respectively. When deciding which tiles to access I can read the value from
this buffer first. Meaning of the value is: if it contains an id i, then the label
probably overlaps region Ri. It is not a certainty that the overlap is present
because I used the largest dimensions of the label.

Internal label salience

There are significant problems that might occur when placing the label
internally. It is associated with the object it marks only by proximity.
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Position of the label over the object cannot be arbitrary, as some positions
present ambiguous states.

Figure 3.9: Possible problem with the ambiguity of internal label placement

Figure 3.9 shows a possible issue with ambiguity for internally placed labels.
This sort of labeling is not acceptable, because it fails to communicate the
label object association. Criterion similar to anchor salience proposed by Ali
et al. [4] regarding anchor salience is needed to solve this problem. However,
if only one point of the label candidate would be used to decide the optimal
position, the resulting label positions will be suboptimal. Furthermore, the
placement of the labels might be ambiguous. As Figure 3.10 shows, only
positioning the center of the label boxes over the most salient point of the
respective areas produces suboptimal results.

Figure 3.10: Possible problem with ambiguity of internal label placement

I must introduce a more intricate method of evaluating label salience.
External salience of a label, as described in section 3.5.1 is based on assessing
the ratios of the label present in different regions. Internal salience of a label
is more complex. Internal anchor salience is the distance from the nearest
boundary of some area ∂Aj . For salience to have the shape of a membership
function, I normalize it by the largest salience. Also, as I am interested in
the salience of internal areas, I define the salience of points in S \ A to be 0.
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More formally by normalized salience s(x) of the point x, I understand the
following:

s(x) =


min{d(x,y)|y∈

⋃n

i=1 ∂Ai}
maxz∈A min{d(z,y)|y∈

⋃n

i=1 ∂Ai}
if x ∈ A

0 otherwise
(3.15)

where d(x, y) is a distance function. In this case, Euclidean distance. Whereas
the anchor salience describes a property of a single point - an anchor, I need to
describe salience of an area - a label box. Point salience does not sufficiently
describe the whole label. Any point of the label box area does not convey
representative information about the partitioning of the label into distinct
areas Aj .

For this reason, I need to aggregate information about the salience of all
the points comprising the label box, into one value. I do this by taking the
mean salience over the whole label box. However, the label box might be
positioned over multiple areas Aj . If I am attempting to label area Ai, I need
to maximize the mean salience over this area. The same is not true for areas
Aj , j 6= i, as any overlap with them is undesirable. Figure 3.11 depicts an
optimal solution, where labels are placed over salient areas of their respective
objects.

Figure 3.11: Optimal internal label placement

Similarly to section 3.5.1, the internal salience criterion needs to reflect
two requirements. The labels should be placed over the objects they label,
and the labels should not be placed over the objects they do not label. Form
of the criteria is therefore identical to that of C1 and it reads:

C2(Li) = Sa(Li, i)×
n∏

j=1,j 6=i

(1− Sa(Li, j)) (3.16)

where Sa(Li, j) is the mean salience of the candidate label box Li for area Ai

with respect to area Aj and Sa(Li, j) is calculated as follows:
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Sa(Li, j) = 1
|Li|
×

∑
x∈Li⊂S

(s(x)) (3.17)

where |Li| is the number of pixels the label box comprises of.
I split the criterion C2 into two parts. The criterion C2a allows controlling

the influence that the salience of the label with respect to the object it labels.
It models the first requirement of the two.

C2a(Li) = Sa(Li, i) (3.18)

The criterion C2b can be used to prevent any overlaps with foreign objects.
It models the second requirement of the two.

C2b(Li) =
n∏

j=1,j 6=i

(1− Sa(Li, j)) (3.19)

Salience for every point x ∈ S can be efficiently calculated along with the
calculation of Voronoi diagram by jump flooding, as shown by Rong and Tan
[28]. As in section 3.5.1, there arises a problem how to efficiently calculate the
sum

∑
x∈Li⊂S (s(x)). It is possible to encode the buffer containing salience of

points as summed area table. However, when retrieving the information back,
I cannot decompose the sum over the label box into partial sums over Ai. The
solution is the same as in section 3.5.1. I distribute the information about
point salience into individual tiles, based on id, each of which corresponds to
a unique object. Furthermore, I encode the tile texture as a summed area
table, which enables me to perform lookups efficiently for every id. To reduce
the number of tiles into which a lookup needs to be performed, I utilize the
precomputed id structure from section 3.5.1.

3.5.2 Anchor salience

External labels placed with leader lines utilize criteria similar to those of Ali
et al. [4] and many others. Anchor salience is one of the criteria imposed on
anchors. It forces the selection of a label candidate with an anchor that is
clearly attributable to the labeled object. The problem with anchor salience
was already discussed in section 3.5.1. Anchor salience is the distance to the
nearest point from the

⋃n
i=1 ∂Ai normalized by the largest salience - dmax.

The criterion on anchor salience thus reads:

C3(li) = d(a,
⋃n

i=1 ∂Ai)
dmax

= s(a) (3.20)

where a is an anchor corresponding to a label candidate li.

3.5.3 Leader line length

According to Ali et al. [4] a label should be close to the corresponding object.
Čmolík and Bittner [10] utilize the same method and require the leader lines
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to be as short as possible. Leader line length can be easily calculated by
distance transform of the extruded silhouette of area A serving as seeds, as
accomplished by Rong and Tan [28].

Furthermore, the distance function utilized to determine the distance of the
anchor from the boundary can vary, based on the required label layout. It can
be Euclidean distance or some modification of Chebyshev distance for layout
with leader lines oriented vertically or horizontally. Choice of the metric in
turn affects leader lines themselves. Different points on the silhouette can be
closest to a given anchor based on the metric. As with anchor salience, the
length of the leader lines must be normalized for it to serve as a membership
function. The criterion for leader lines reads:

C4(Li) = 1− |a− e|
dmax

(3.21)

where a is an anchor corresponding to the label candidate li and e is the
closest point on the silhouette. Vector l = e−a is the leader line corresponding
to the label candidate li.

3.5.4 Label to model overlap

External labels should not overlap any of the objects. I can accomplish this
by creating an occlusion mask of the scene. Any pixel of the occlusion mask
can have two values - one or zero based on the following rule:

p(x, y) =
{

1 if (x, y) ∈ A
0 if (x, y) ∈ S \ A

(3.22)

where p(x, y) is the value of the pixel in occlusion mask at position (x, y).
Criterion modeling overlap of the external label with the model is as follows:

C5(Li) =
{

1 if
∑

(x,y)∈Li
p(x, y) = 0

0 otherwise
(3.23)

By encoding the occlusion mask a summed area table, I can achieve
significant speed up. Only four lookups are needed to determine whether a
label overlaps the model - area A, i.e., the sum in C5.

3.5.5 Label to label overlap

Label to label overlap can be eliminated by introducing an occlusion mask
for the labels. The labels occlusion mask must be kept separate from the
scene occlusion mask. This is because both the internal and external labels
cannot overlap other labels but only the external labels cannot overlap the
model. Meanwhile, the internal labels must do so. The occlusion mask for
the labels can be initiated with zeros for every pixel p(x, y) = 0,∀(x, y) ∈ S
and updated to one if a label is placed over the position. The value p(x, y) of
the pixel on position (x, y) is therefore:
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..............................3.6. Selection of area for labeling

p(x, y) =
{

1 if ∃LP i, (x, y) ∈ LP i

0 otherwise
(3.24)

where LP i is already placed label for area Ai. The criterion for label-to-label
overlap therefore reads:

C6(Li) =
{

1 if
∑

(x,y)∈Li
p(x, y) = 0

0 otherwise
(3.25)

By encoding the occlusion mask for the labels as a summed area table, look
ups can be sped up significantly. Furthermore, as shown by Pavlovec [26],
there is a simple way to update the summed area table, as long as the update
is restricted to a rectangular area. This method requires only one pass through
the shader program.

3.6 Selection of area for labeling

At this point, the label candidates have been established, see section 3.4, and
there is a system in place to evaluate the fitness of individual internal and
external label candidates, as discussed in section 3.5.

The order in which the labels are positioned over the scene is important
because my approach is based on a greedy optimization, and it cannot recover
from a bad partial solution. Furthermore, when a label is positioned over
the scene, I must discard some of the label candidates. If the label is placed
externally, then internal label candidates that would overlap the leader line
of the placed label must be discarded. If it is placed internally, then external
label candidates with a leader line overlapping the internal label must be
discarded. The number of candidates for each label is changed after each
iteration when a label is placed into the scene. I will discuss this in more
detail in section 3.9.

In order to select an unlabeled area Ai for which the label should be placed
next, I calculate the capacity of all the areas and select the unlabeled area
with the lowest capacity. By the capacity of an area, I understand the sum
over fitness function applied to label candidates.

C(Ai) =
∑

li∈AIi

F (li) (3.26)

where F (li) is the value of the fitness function on label candidate li and AIi

is the set of internal label candidates for Ai. However, since I calculate the
sum over the internal label candidates, effectively only C2 and C6 is applied
and C(Ai) is simplified to:

C(Ai) =
∑

li∈AIi

Cw2
2 (li)× Cw6

6 (li) (3.27)

where w2 is the weight of the criterion C2. Area for which the label should
be placed next is selected as:
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Anext = arg min

Ai⊂A, Ai not labeled
C(Ai) (3.28)

As discussed above, after a label for Anext is placed in the scene, capacities
of areas Ai change. Therefore they need to be recalculated. It is possible
to efficiently add up all of the weighted values of candidates for given area
Ai, and thus obtain the capacity C(Ai) by scattering as discussed in 3.2.2. I
send the fitness values of the label candidates into bins corresponding to the
areas and add them up.

3.7 Finding the best candidate

After the area Anext, which is to be labeled next, is selected, the best label
candidate of this area must be chosen. At first, only internal label candidates
are considered. To choose the best one of them, the fitness function F must
be evaluated for every one of them. Although, for internal labels, effectively
only criteria C1, C2 and C6 are evaluated.

The best internal label candidate for a given area Ai, in this case Anext, is
therefore calculated as:

loptI
i = arg max

li∈AIi

F (li) (3.29)

where AIi is the set of internal label candidates for area Ai. If the fitness
of the best label candidate F (loptI

i ) is above the user defined threshold t, I
place the label of the label candidate loptI

i in the scene. If the fitness is below
the threshold t, then I search for the best external label candidate, which is:

loptE
i = arg max

li∈Ai

F (li) (3.30)

In this case, all of the criteria in the fitness function F must be evaluated
except for C2, which is only for internal labels. If the external label candidate
loptE
i exists, I place it in the scene.
Label candidates li are represented by pixels in a buffer. Therefore the

pixel with the highest value can be found utilizing scattering, see section
3.2.2, by sending all of the candidates li at one position in a buffer with a
depth equal to the fitness of the candidate F (li). Taking the one with the
highest depth value, I find loptI

i or loptE
i , respectively.

3.8 Overlap elimination

When a label is placed in the scene, it will inevitably interfere with some of
the label candidates. The label-to-label overlap is taken care of by courtesy
of criterion C6. However, some problems might still occur. If the last label
was placed externally, its leader line could eliminate some of the internal
label candidates for other areas. Likewise, if the label was placed internally,
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it might eliminate some of the external label candidates with leader lines
crossing the internal label.

The label box can be represented as four line segments and a leader line
is just another line segment. Furthermore, the line segments comprising the
label box boundary are parallel with horizontal or vertical axes, respectively.
Consequently, the computation of the intersection between the leader line
and the label box is not complicated. Therefore, I can eliminate unsuitable
internal and external label candidates easily.

Figure 3.12: Discarded internal and external label candidates, shown in light
colour, after an internal (a) and an external label (b) was placed.

Figure 3.12a shows discarded internal label candidates, while Figure 3.12b
shows discarded external label candidates. This includes those candidates
discarded on bases of criterion C6.

3.9 Chapter summary

At first, section 3.1 takes a closer look at the problem I am solving in this thesis.
Subsequently, in section 3.2 I discuss the general algorithmic approaches,
which I utilize later on. In the followings section 3.3, I bring an overview of
the proposed method and illustrate the algorithm by the pseudocode in the
Algorithm 1. Subsequent chapters discuss individual steps of the algorithm in
more detail. At first, I establish both internal and external label candidates
in section 3.4. These candidates are represented by single pixels in their
respective buffers.

I go on and in section 3.5 I model the criteria with which I evaluate the
fitness of individual labels candidates. I pay special attention to criteria that
regard label salience, see section 3.5.1, as the method for evaluation of the
label box salience, is one of the main contributions of this thesis.

In the following section 3.6 I present the method of determining the order
in which the objects should be labeled. Order in which the labels are placed
is important because the algorithm utilizes a hungry optimization approach
and cannot recover from a bad partial solution. In the subsequent section 3.7,
I describe a method to find the best label candidate for the area Ai with the
lowest candidate sum, calculated in the previous step. The label candidate li
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3. Design........................................
for area Ai with the highest values of the fitness function F (li) is placed in
the scene. Whether it is placed internally or externally depends on the value
of the fitness function and existence of an external label candidate for Ai.

Some label candidates for the remaining unlabeled areas must be discarded
after the label li is placed in the scene. Consequently, in section 3.8, I present
a mechanism of how to discard label candidates that would cause undesirable
label - label or label - leader line overlaps.
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Chapter 4
Implementation

In this chapter, I will describe the algorithm as designed in chapter 3. Imple-
mentation copies the design very well. Therefore, I will limit the discussion
almost exclusively to the issues pertaining to the implementation details.

4.1 Implementation technologies

This section describes the technologies that I will utilize for the implementa-
tion. The main library is the Tiger library, which requires all of the three
other technologies mentioned to function properly. I implemented the actual
code with the following versions:.OpenGL: 3.1. JOGL: 2.2.2.GLSL: 3.30 compatible

4.1.1 OpenGL

OpenGL is cross-platform, cross-language API (application programming
interface) for creating 2D and 3D graphics [34]. It is implemented for almost
all computer platforms. Apart from the hardware implementations, there
are also software ones, which necessarily possess lower computational power.
OpenGL is widely used also because of the extensive documentation, which is
available at its official websites. The core functionality of OpenGL is rendering
to frame buffer. Its run is directed by calling functions and procedures.

4.1.2 JOGL

JOGL is a wrapper library, which enables usage of OpenGL commands in
Java. Ti access OpenGL, it utilizes JNI (Java Native Interface) calls. It
offers access to standard GL and GLU (OpenGL Utility). However, the
GLUT (OpenGL Utility Toolkit) library responsible for window calls is not
accessible. There is a logical reason for this, as Java has its own libraries for
this purpose, namely AWT, Swing, and SWT. Furthermore, Java provides its
NEWT(Native Windowing Toolkit)[1]
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4.1.3 GLSL

GLSL is a higher programming language, based on the syntax of C. In fact,
GLSL is a set of closely related languages. It is utilized for the creation of
shaders for every programmable part of the pipeline, namely for fragment and
vertex shaders. Similarly to C, it supports cycles, branching, and user-defined
functions. However, recursion is not allowed. Shaders are allowed to access
certain parts of states of OpenGL.

4.1.4 Tiger

Tiger is a library designed to make the development of multi-pass rendering
effects in OpenGL easier. It accesses OpenGL via wrapper library JOGL [9].

4.2 Algorithm overview

The following section gives an overview of the algorithm 2, as described in
section 3.3. To recapitulate, I give the algorithm once again, now using the
terminology of chapter 3. The algorithm is GPU evaluated. All the utilized
structures are kept in the GPU memory to ensure fast calculations. Since I
also store the id buffer in the GPU memory, I cannot label more than 128
objects (4x32bit color components). Every object has its own bit in the id.

I already described the function of the algorithm in section 3.3. To avoid
repetition, now I will illustrate it with the help of the buffers utilized in the
computation.

Figure 4.1: Algorithm walk through with buffers involved in separate steps

Figure 4.1 depicts the auxiliary buffers for the labeling procedure. Top
two rows depict the preprocessing phase when all the necessary information
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Result: Positions of the labels for the given scene
∀Ai, i ∈ {1, ..., n} establish both the internal and the external label
candidates;
∀xi ∈

⋃
AIj

evaluate fitness F (xi);
∀xe ∈

⋃
Aj

evaluate fitness F (xe);
while There is an unlabeled area left in A do

Apply occlusion masks, i.e., C5 and C6;
∀Ai, i ∈ {1, ..., n} calculate C(Ai);
Select Anext = arg minAi⊂A, Ai not labeledC(Ai);
Calculate loptI

next = arg maxli∈AInext
F (li);

if F (loptI
next) < t. then

Calculate loptE
next = arg maxli∈Anext

F (li);
if F (loptE

next ) == 0 or Anext == ∅ then
Discard loptI

next;
else

Keep loptI
next based on user preference;

end
end
if label was placed internally then

Discard the external label candidates of Aj , i 6= j where the
candidate leader line would interset the placed label.;

else
Discard the internal label candidates of Aj , i 6= j where the
candidate would interset the leader line of the placed label.;

end
end
Algorithm 2: Algorithm for the mixed labeling in pseudo code

is precomputed. In this whole section, I consider a simple 3D scene for
demonstration purposes.

First, I compute the occlusion mask of the scene, encode it as a summed
area table, and store it in the occlusion mask buffer. Together with the
scene, I required the id buffer as an input. It represents the external label
candidates. I calculate internal label candidates from it and store it in the
internal candidates buffer. From the id buffer, I also calculate the outlines of
the objects. Subsequently, I use them to calculate the Voronoi diagram of the
scene and store it in the Voronoi buffer. Simultaneously, with the calculation
of the Voronoi diagram, I calculate the internal salience for all areas Ai. I
distribute the salience into tiles based on the id from the id buffer, encode it
as a summed area table and store it in the internal salience buffer. Note that
they are linked by the position in the buffers. I do the same for the Voronoi
diagram and store it in the voronoi tile buffer. I also compute a structure to
reduce the number of lookups in the tiles and store it in the lookup buffer.

After this preprocessing phase is complete, I evaluate the criteria and store
them in equilibrium buffer. Note that overlap criteria are evaluated later
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in the calculation. After this, I select an area Ai with the lowest capacity
and store its id in the minsum buffer. Subsequently, I choose the best label
candidate from Ai, respectively AIi, and store it in the placed buffer. After
this, I update the occlusion mask for labels, which is stored in occlusion mask
labels buffer.

Furthermore, I eliminate the internal label candidates, which would intersect
the leader line of the placed label and the external label candidates with
leader lines that would intersect any placed internal label. The candidates
are not discarded but rather masked out. I store this mask in the intersection
buffer.

The mixed labeling algorithm is implemented in the classMixedLabeling.java
in package tiger.effects.labeling.

4.3 Determining the label candidates

The first step of the algorithm is to determine the label candidates. I consider
a simple scene, as depicted in Figure 4.2a. I also receive id buffer, depicted
in Figure 4.2b, as an input.

(a) : Scene (b) : External candidates buffer (Id
buffer)

(c) : Internal candidates buffer (d) : Internal candidates for one object
in context of the scene

Figure 4.2: Internal and external label candidates visualized.
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External label candidates are thus established since they are represented by
the id buffer. Internal label candidates are also calculated from the id buffer.
I do this by the method of jump flooding, as I discussed in section 3.4.2. To
obtain the internal label candidates (AIi) from the external ones (areas Ai),
I must spread them by the width of the label left and by the height of the
label down. It can happen that the intersection of two areas is not empty
Ai ∩Aj 6= ∅. Therefore candidates on identical position might be propagated
a different distance based on their id.

Result: Internal label candidates
Input: id buffer, List ld of dimensions of label di

wCumul ← 1;
hCumul ← 1;
while ld not empty do

Create idMask where all the labels are present;
dminW ← label dimension with the lowest width from ld;
Do one complete jump flooding pass, propagate idMask to
distance dminW −Wcumul;
Wcumul← dminW ;
remove ids of labels with width lower or equal to Wcumul from
idMask and from the list of label dimensions;

end
Do the same for height;

Algorithm 3: Internal label candidates calculation
Algorithm 3 functions in two phases. The horizontal phase propagates

the label candidates left by the with of the corresponding label. After it is
finished, the vertical phase propagates candidates down by the height of the
corresponding label. Figure 4.2c depicts the internal label candidates. It is
apparent, that the candidates for the area with the green id were propagated
less than the other ones. This is the case because the text of the corresponding
label is shorter. Figure 4.2d shows the internal label candidates for one area
in the context of the scene.

Functionality for determining the internal label candidates is implemented
in the class Erosion5.java of package tiger.effects.distance.

4.4 Evaluating the criteria

After establishing the label candidates, I must evaluate their fitness with
fitness function F . While all the criteria that a given candidate is subjected
to are evaluated, not all of them are evaluated at the same time. Some are
precomputed and some are evaluated when necessary. Every criterion Ci

has its own weight wi to modify its importance, thus affecting the fitness
of candidates. Generally, a different candidate is selected with a different
configuration of weights. I provide sliders for the user to modify the weight
settings and thus create different label layouts.
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4.4.1 Label box salience - external

Label box salience in the external areas S \ A is pivotal, as it measures the
ambiguity of placement of the label candidate. It is modeled by the criterion
C1. As I discussed in section 3.5.1, the salience of the label box is dependent
on its partitioning among the Voronoi regions of the objects in the scene.
Therefore, I must compute the Voronoi diagram of the scene.

(a) : Scene (b) : Outlines of the objects in the scene

(c) : Voronoi diagram of the scene (d) : Tile buffer - each tile is one region
of the Voronoi diagram

Figure 4.3: Label salience - external.

Figure 4.3a shows the scene. Figure 4.3b depicts the outlines extracted
from the id buffer. The outline extraction is done in the fragment shader
Outline.frag in package tiger.effect.labeling. The function of the shader is
simple. It searches for discontinuities in the id buffer. If any value of the
neighboring pixels differs from the pixel value, the pixel is part of the outline.
Outline of what objects it is a part of depends, on which bits in the pixel
values differ.

The outline serves as seeds for calculating the Voronoi diagram. I calculate
it by jump flooding [28]. The functionality to calculate the Voronoi diagram
is implemented in the class Erosion3.java in the package tiger.effects.distance.
The Voronoi diagram of the scene is depicted in Figure 4.3c, and I store it in
the voronoi buffer.

Voronoi diagram solves the problem of the partitioning of the screen space S
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into individual regions Rj corresponding to their respective objects. However,
partitioning of the label box Li of any candidate li must still be determined.
Looking at every pixel of the label box Li is a possibility, albeit not a fast
one to evaluate. I solve this problem by creating tiles, as depicted in Figure
4.3d. Every region Rj corresponds to one tile. Values of the pixels are given
by Equation 3.14. I store the tiles in voronoi tile buffer. The distribution into
tiles is implemented in the fragment shader tilesDataCopy.frag in the package
tiger.effects.labeling. I encode the tile buffer as a summed area table. Now it
takes only four lookups in each tile to determine the area of the overlap of Li

with Rj .
However, an unnecessarily large number of tiles has to be accessed in order

to obtain the partitioning of the label box Li. In order to reduce the number
of tiles that need to be accessed, I compute a lookup buffer and store it in
the lookup buffer. I do this by taking the width wmax of the widest label and
height hmax of the highest label and propagating ids in the Voronoi diagram
down and left. This is implemented in the class Erosion4.java in the package
tiger.effects.distance. The algorithmic idea behind calculating the lookup
buffer is identical to that of Algorithm 3. It could even be applied to solve this
case by introducing a single fictitious label with dimension d = (wmax, hmax)
and placing it in the list of label ld, while replacing the id buffer with the
Voronoi buffer. The value of a pixel in the lookup buffer represents the ids of
the regions Rj a label candidate li could possibly overlap if positioned with
its lower left corner over the pixel. By reading this value first, I can prevent
a significant number of subsequent reads from the voronoi tile buffer.
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4.4.2 Label box salience - internal

The salience of internal areas, by this I mean area a ⊂ A, is the method
I utilize to assess the ambiguity of the internal label box candidates. It is
modeled by the criterion C2, as I described in section 3.5.1. This is possible
by the transition from the salience of a point to the salience of an area.

(a) : Scene (b) : Outlines of the objects in the scene

(c) : Internal salience buffer (d) : Salience tile buffer - every tile
contains salience of anchors for some
object

Figure 4.4: Label salience - internal

Figure 4.4a depicts the example scene, while Figure 4.4b depicts the outlines
obtained from the id buffer identically to the previous section. I calculate
the point salience while calculating the Voronoi diagram, since during the
calculation, I need to store for each pixel not only to which region Rj it
belongs to, but also the distance to the closest seed of the outline. For every
pixel, this distance represents its salience. Figure 4.4c depicts the salience of
individual points. I store the distance data in the distance buffer 1.

However, I am interested only in the salience of internal pixels,i.e. pixels
x ∈ A, so I set the pixel values xe = 0 ∀xe ∈ (S \A). I face a similar problem
to that of the previous section. I must partition the label box Li into areas
of individual objects Aj . Again, I can sum up over individual pixels, but this
approach is very slow. I distribute the salience into individual tiles based on
id from the id buffer. Each tile corresponds to some area Aj and contains the
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saliences of the points that make up Aj . I encode the tiles as a summed area
table and store it in the internal salience buffer. Now, for every label box Li

I can determine the salience sum of its pixels in a given area Aj with only
four lookups. I can further reduce the number of tile lookups by utilizing the
lookup buffer from the previous section.

4.4.3 anchor salience

I model the anchor salience by the criterion C3. I require anchors to be
salient points of their respective areas, as I discussed in section 3.5.2. This
aids attribution of the label to the object it labels. I already calculated the
salience of all points x ∈ A in the previous section. Thus the criterion C3 can
be evaluated. Figure 4.5b illustrates the salience of the anchors.

(a) : Scene (b) : Anchor saliency

Figure 4.5: Internal and external label candidates visualized.

4.5 leader line length

Leader lines should be as short as possible. This criterion is utilized in
many external labeling algorithms [4][11][10]. It aims to make sure that the
label and the object it labels are close together. Leader line length can be
computed by distance transform (calculating the Voronoi diagram with a
different metric). This is done by the method of jump flooding, to produce
the result as fast as possible. The implementation is located in the class
Erosion2.java in the package tiger.effects.distance.

However, the external labels are located on the extended silhouette. Length
of the leader line is measured from the anchor point to the point on the
extruded silhouette of the model. Therefore, I cannot use the outline extracted
from the id buffer, but it must be extruded first. I store the result in the
distance buffer 2 and utilize it to evaluate criterion C4.
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(a) : Scene (b) : Leader line length (for horizontal
leader lines)

Figure 4.6: Leader line length

Figure 4.6 depicts the scene and corresponding distances to the extruded
outline (illustrated in Figure 4.6b). The distance is dependent on the user-
selected layout, as the layout affects the metric utilized to calculate the
distance transform.

4.6 Overlaps

Labels should not overlap each other, as readability is one of the basic
requirements on the label layout [4]. External labels should not overlap even
the labeled object. To prevent this, I utilize a pair of occlusion masks. Pixels
in these masks carry information about objects and labels present in the
scene.

Figure 4.7b depicts an occlusion mask for the scene 4.7a. I calculate it from
the id buffer. The calculation is straightforward, as a pixel in the occlusion
buffer can have only two value - 1 or 0 and the value is 1 for every x ∈ A,i.e.,
such pixels in the id buffer where the value in id buffer is not 0. This is
done in the fragment shader SATDataPrepare.frag located in the package
tiger.effects.labeling.

Furthermore, I encode the occlusion mask as a summed area table and save
it in the occlusion mask buffer. Overlap of the external labels with any object
in the scene can now be determined by 4 lookups in the occlusion mask buffer.
This is because the label has a rectangular shape. The overlap is detected if
the sum of all pixels over the label box is greater than zero. Therefore, the
criterion C5 is efficiently evaluated.

After a label, or more as in Figure 4.7c, is placed in the scene, there is a
risk that the subsequent label will overlap it. To prevent this, I introduced
the criterion C6 in section 3.5.5. I write the information about the label
position in the occlusion mask label buffer 4.7d. The information in the buffer
is encoded as a summed area table to allow an efficient label to label overlap
evaluation. The occlusion mask label buffer starts as a clear buffer and after
a label is placed into the scene, it is updated. The update modifies the buffer,
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(a) : Scene (b) : The occlusion mask buffer - oc-
clusion mask of the scene

(c) : Scene with the internal labels
placed

(d) : The occlusion mask label buffer

Figure 4.7: Label to label overlap and label to model overlap masks.

so that the property of the summed area table remains intact, while the
information is written to it. This is done in a single pass of the fragment
shader SATupdate.frag located in the package tiger.effects.labeling. There is
no need to recalculate the summed area table from the occlusion mask label
buffer.

The occlusion mask label buffer is updated every time a label is placed in
the scene.

4.7 Selection of area for labeling

Order in which the algorithm places the labels in the scene is essential. As
the hungry optimization I use cannot recover from a bad partial solution, as
I mentioned in section 3.6.

I compute the capacity C(Ai) for every area Ai. I select the unlabeled area
with the smallest capacity to be the next one, and its label will be positioned
in the scene. The idea behind this approach is that areas with small capacities
are more susceptible to running out of space where to place the labels, and
thus the label candidates. Whereas the high capacity areas will have enough

43



4. Implementation....................................
candidates remaining even if some are no more.

The area capacities are calculated by scattering. Similarly to Scheuermann
et al. [31], I perform the bin selection in the vertex shader and configure
the hardware blend units to add the incoming fragment values. A bucket
corresponds to an area Ai in this case. The fitness function F is evaluated
for every label candidate (either in the id buffer) or in internal candidates
buffer. Each label candidate li is redirected (by vertex shader) to an address
in the sum buffer based on the id of area it is a candidate for. The fragment
has the value of the fitness function F (li) written in its color. Fragments for
those label candidates that would cause label to label or,in case of external
candidates, label to model overlap are discarded. Blending settings on the
GPU ensure that the values of the fitness are added together. The sum buffer
servers as a set of bins. Each candidate li contributes F (li) to the bin of its
area Ai.

This functionality is implemented in the vertex shader SphereAreaSum.vert
and the fragment shader sphereAreaSum.frag in the package tiger.effects.labeling.

After capacities C(Aj) are computed for every area Aj , the unlabeled area
Anext with the lowest capacity C(Anext) is selected. This is done by redirecting
the capacities of unlabeled areas Ci to one position in minsum buffer. In fact,
minsum buffer has only one address, as no more is needed. Each fragment
has the id of the area it represents written in its color component. The depth
of each fragment is 1

1+C(Aj) . And the depth test is responsible for selecting
the id of the area with the lowest sum (highest depth).

This functionality is implemented in the vertex shader minSum.vert and
the fragment shader minSum.frag in the package tiger.effects.labeling.

4.8 Finding the best candidate

After an area Anext with the lowest capacity Cnext is selected, I must choose
its best candidate. I do this by scattering, in a similar fashion to the selection
of the area with the lowest capacity. I redirect the candidates into the placed
buffer at a position corresponding to the id of currently labeled area. The
fragment contains the candidate information determining the exact position
of the label. Depth of the fragment is corresponding to the fitness F of the
candidate. Note, that F : S → [0, 1]. Fragments of candidates that would
cause overlaps label to label or label to model for external candidates are
discarded. Depth test keeps only the best label candidate for area Anext.
First, I do this for internal label candidates and if the fitness F (loptI

next) of the
best label candidate loptI

next is lower than the user set threshold t, then I find
the best external label candidate loptE

next .
The functionality is implemented by the vertex shader max.vert and the

fragment shader max.frag for external labels and by the vertex shader maxIn-
ternal.vert and the fragment shader maxInternal.frag for internal labels. All
shaders are located in the package tiger.effects.labeling.
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4.9 Overlap elimination

Both Internal and external label candidates which overlap already placed
labels and external label candidates that overlap the model were already
masked out during the calculation of the area capacities Cj and selection of
the best label candidate.

However, there is another undesirable overlap scenario that I must counter.
After an internal label is placed in the scene it can eliminate some other
external label candidates because it overlaps their future leader line. Similarly,
after an external label is placed in the scene, it can eliminate some internal
label candidates because they would overlap its leader line.

I remove the candidates for which either of the two cases occurs. This
is accomplished by the fragment shaders leaderlinesIntersection.frag and
leaderlineIntersection_1.frag in the package tiger.effects.labeling.

4.10 Chapter summary

Chapter 4 describes the implementation of the mixed labeling algorithm. At
first, I discuss the technologies utilized to carry out the implementation in
section 4.1. In the following section 4.2 I recapitulate an overview of the
proposed mixed labeling method. I go on and explain individual steps.

First, I must establish the internal and external label candidates, as dis-
cussed in section 4.3. The external label candidates are already stored in id
buffer, as they are an input of the algorithm. For every area Ai, I calculate
the internal label candidates li from the external ones by propagating them
left and down by the dimension of the label di. I use jump flooding to make
the calculation faster. I store the internal label candidates in the internal
candidates buffer.

Subsequent section 4.4 brings an overview of the methods utilized to
calculate the values of the membership functions C1, ..., C6 for any given
candidate.

After the label candidates are established, I evaluate their fitness and select
an unlabeled area Anext with the lowest capacity C(Anext) in section 4.7. I
do this by scattering [31].

In the following section 4.8. I describe the process, how the best candidate
is selected. I select the best internal label candidate loptI

next for Anext from
AInext. If the fitness of the candidate F (loptI

next) is lower than the user defined
threshold t I find the best external label candidate loptE

next . I place the best
candidate in the scene.

The final section 4.9 discusses problems connected to the label to leader
line overlap. After the best label candidate is placed in the scene, some of the
remaining label candidates are no longer viable. The algorithm iteratively
places the labels in the scene until there are no unlabeled areas Ai left. I give
the user the option to set weights of the criteria and affect the label layout
through the process.
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Chapter 5
Results

I present the results obtained with the algorithm in the following section.
First, I present models which I will subject to testing in section 5.1. Some of
which are on a simple side. Nevertheless, they Illustrate the possibilities of
the mixed labeling algorithm well, thus are beneficial to include.

5.1 Tested models

I included six models in total. They are depicted in Figure 5.1. The first two,
Figures 5.1a and 5.1b, are model scenes to test the behavior of the algorithm
and effects of the criteria and their weights.

(a) : Spheres (b) : Complex spheres (c) : Gapminder

(d) : Head (e) : Wheel fork (f) : Digestive system

Figure 5.1: Models used for testing.

Figure 5.1c depicts a visualization based on data from gapmider.org, which
examines the dependency between income and life expectancy. Figures 5.1d,
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5. Results .......................................
5.1e and 5.1f depict 3D models. These are included to demonstrate that the
proposed algorithm can deal with the labeling of semi-transparent objects.

5.2 Labeling results

The first model comprises of fifteen spheres. I include this scene mainly
to demonstrate capabilities of the algorithm in terms of labeling objects
externally without the use of the leader lines.

(a) : External with leader lines (b) : External without leader lines

(c) : Mixed with leader lines (d) : Mixed without leader lines

(e) : Internal (f) : Ambiguous labeling

Figure 5.2: Results for the testing scene with a set of spheres.
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................................... 5.2. Labeling results

Figure 5.2a shows strictly external labeling. Label boxes maximize the
criterion C1 and position themselves in positions in the scene, where they are
easily attributable to their respective objects. Maximizing criterion C1 is in
this case equivalent to minimizing ambiguity, as it should be. Figure 5.2b
depicts the same scene, but without leader lines.

Figures 5.2c and 5.2d depict mixed labeling of the scene with and without
the use of the leader lines, respectively. As the spheres are almost identical,
the minuscule differences in fitness function F for individual labels, which
cause them to be placed internally or externally, can be attributed mainly to
the limited screen resolution. If I move the model around the screen it causes
different labels to be placed internally.

However, this is due to the fitness values for the individual candidates
being very close to the threshold t. The mixed labeling algorithm attempts to
place the internal labels first. The external labels are placed only on the basis
of internal candidates fitness being lower than the threshold t. Unfortunately,
this poses a certain limitation on the algorithm. Some of the external labels
clearly occupy, even if ever so slightly, more ambiguous locations than others.
It would benefit the layout if these labels would be placed internally instead.
Namely, the sphere in the center of the scene could have their labels internal.
Figure 5.2e depicts all of the labels placed internally. This is a suboptimal
solution, in my opinion, as the labels occlude the spheres. However, there are
not many features of the spheres worth examining.

Figure 5.2f depicts an example of the scene, where I produced ambiguous
labeling by inverting the value of criterion C1, i.e., taking 1− C1. Labels 6,
8, 9, 11 and 12 are positioned in ambiguous areas. We can attribute them to
the correct object with some effort. However, this should not be the case for
any illustration which uses labels.
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5. Results .......................................

(a) : External with leader lines (b) : Internal

(c) : Mixed with leader lines

Figure 5.3: Results for a testing scene with a set of spheres of different sizes.

Figure 5.3 shows a scene with spheres of various sizes. This scene is more
complicated than the previous one. Figure 5.3a manages to label all of the
spheres and it is possible to attribute all of the labels to the correct objects.
In case of all labels being internal, depicted in Figure 5.3b, it is challenging
to associate the labels with the objects and it is hard to be certain about the
matching. While we can easily identify the labels for the large spheres, the
same is not the case for the smaller ones, where labels are positioned rather
densely. Mixed labeling in Figure 5.3c combines the best of both. We can
associate every label to an object, be reasonably certain about it and utilize
some additional positions not available for strictly external labeling.
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(a) : External with leader lines (b) : Internal

(c) : Mixed with leader lines

Figure 5.4: Results for scene containing the model of the digestive system.

Figure 5.4 depicts a model of the digestive system. The external label
layout, depicted in Figure 5.4a, is very well organized and we can attribute
every label without difficulties. In contrast, the internal labeling in Figure
5.4b does not exhibit identical properties. It is not clear, to which objects
some of the labels belong. Some objects are occluded by the labels.
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5. Results .......................................
However, labels of large objects can be assigned with ease, As in the case of

the previous Figure 5.3. Figure 5.4c combines the two. We can assign every
label to the correct object, as the small objects are labeled externally. We
also managed to increase the compactness of the illustration, which is one of
the requirements on labeling, according to Ali et al. [4].

(a) : External with leader lines (b) : Internal

(c) : Mixed with leader lines

Figure 5.5: Results for scene containing the model of the human head.

Figure 5.5 depicts the human head. Even though it is a model that is
rendered utilizing semi-transparency, the internal labeling in Figure 5.5b is
reasonable. Only pituitary and spinal cord are hard to assign. It this case, we
can deduce what do the labels mark, because we are already familiar with the
objects. External labeling, depicted in Figure 5.5a solves the problem of the
small objects. Figure 5.5c shows the mixed labeling of the head. Only those
internal labels which are clearly attributable to their objects are retained from
the internal labeling. External labels complement them very well, labeling
those objects, for which the internal labels would be ambiguous.
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(a) : External with leader lines (b) : Internal

(c) : Mixed with leader lines

Figure 5.6: Results for scene containing the model of the wheel fork.

Wheel fork, depicted in Figure 5.6, is the last of the semi-transparent
models. It is the most complex one and is hard to label utilizing any method.
We can assign all the labels in the case of Figure 5.6a. However, we must pay
very close attention to the positions of the anchors. Internal labels, depicted
in Figure 5.6b, fail at the task of labeling the model. There is not enough
space for almost any label, apart from the fork_body, holder and the tube.
Those are exactly the three labels with internal placement in Figure 5.6c.
External labels are almost identical to those in Figure 5.6a. However, the
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5. Results .......................................
mixed labeling model utilizes some additional space, which is not accessible
to the model with only external labels.

(a) : External with leader lines (b) : Internal

(c) : Mixed with leader lines

Figure 5.7: Results for scene containing a model of a wheel fork.

Figure 5.7 depicts the labeling produced for an illustration based on the
data from the gapminder1. If the labels are placed only externally, there is
no space left for some of them and the internal label take their place. This
scene contains the largest number of labeled objects from the testing scenes.

1https://www.gapminder.org/
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5.3 Influence of the weights

I show the influence of weights on the label layout the algorithm produces.
As there are many possible weight settings, I include only a few examples
depicting the function of individual criteria and their weights.

(a) : w2a = 1, w2b = 1 (b) : w2a = 1, w2b = 3

(c) : w2a = 1, w2b = 5 (d) : w2a = 1, w2b = 20

Figure 5.8: Effects of the weights w2a and w2b.

I can model internal salience of the label, as described by the criterion C2,
as being composed of two components. One that forces the labels to overlap
the object they label - C2a, while the other one forces them not to overlap the
objects they do not label - C2b. Criteria C2a and C2b, with their respective
weights w2a and w2b, affect the internal label positions as depicted in Figure
5.8. The increasing weight w2b forces the labels to the empty space around
the model.
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5. Results .......................................

(a) : w1 = 0 (b) : w1 = 0.5

(c) : w1 = 1

Figure 5.9: Effects of weight w2.

Figure 5.9 depicts the effects of the increasing weight w1 of the external
salience criterion C1. As the weight increases, the labels are forced into more
salient positions.
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(a) : w3 = 0.5, w4 = 1 (b) : w3 = 1, w4 = 1

(c) : w3 = 2.5, w4 = 1 (d) : w3 = 0.5, w4 = 2.5

Figure 5.10: Effects of weights w3 and w4.

Figure 5.10 depicts the effects of w3 - anchor salience weight and leader
line length weight w4. These two criteria are contradicting each other, as
higher salience means longer leader line and vice versa.
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5. Results .......................................
5.4 Performance

I discuss the performance of the algorithm in this section. The time the
algorithm needs to calculate the layout is an important indication pertaining
to both the quality of the design and the quality of the implementation.
Furthermore, the render time limits possible use cases for the algorithm.
According to Nielsen [25], if the response time is below 100ms, the application
gives the results immediately. If the algorithm takes significantly more than
that, it is not feasible to use it in interactive applications.

5.4.1 Testing hardware

The performance of the algorithm was evaluated with the following hardware
& software configuration..CPU: Intel Xeon W-2125 @ 4.00GHz, 4cores, 8.25MB L3 cache.GPU: NVIDIA TITAN Xp, 12GB of GDDR5X RAM, 3840 unified

shaders, 240 texture units.RAM: 64GB DDR4 @ 2667MHz.OS: Windows 10 Pro 64-bit. Java: JDK 1.8.OpenGl: OpenGL 3.1.OpenGl: version 3.30 compatible

Resolution of the windows was 800×600 for every scene tested and garbage
collection in JVM suppressed by setting -Xmx16g -Xms16g.

5.4.2 Performance results

The Algorithm was tested for scenes of various complexity, containing between
6 and 46 objects that were supposed to be labeled. I described the testing
hardware in the previous subsection 5.4.1. Figure 5.11 depicts the average
time needed to place label a for all of the objects in the tested scene. The
lower error bars are for all the labels placed internally. Meanwhile the upper
error bars are for all the labels placed externally.
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Figure 5.11: Average time required to calculate the label layout based on the
number of labels objects.

The algorithm requires less than 100ms for all tested scenes. According to
Nielsen [25], the results can be considered as obtained almost immediately.
Therefore, the algorithm is suitable even for use in interactive applications.
Even significantly weaker hardware can suffice for response times of less than
100ms for models with a small number of parts.

5.5 Chapter summary

I presented the results that the mixed algorithm produces in this chapter. The
positions of the labels are vastly affected by the user-set weights of individual
criteria, which in turn modify the fitness F (li) of individual label candidates.
I described the influence of weights on the label layout in section 5.3. Section
5.4 describes the performance of the algorithm. It was able to place labels
under 100ms for all labels and thus is suitable for use in the environment,
where interaction with the user is key.
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Chapter 6
Evaluation with users

Speed of the algorithm is not the only metric to measure, how well does it
perform. Substantially more critical is how the end user perceives the results
generated by it. After all, it is the user for whom the various labeling related
applications of the algorithm are intended. I designed a user study to test,
how do users respond to the label layouts generated by the algorithm.

6.1 Study design

The design of the study is important. It affects, what kind of results I hope
to obtain from the study. I propose three main methods of labeling a given
scene. The labels can be placed in three following fashions:.M0: Internal - all labels are placed internally.M1: External - all label are placed externally.M2: Mixed - some labels are placed internally, while the rest is placed

externally

I would like to see whether the users perceive any differences between the
three methods. Therefore, I measured the two following variables..Time t - How long did it take for the participant to select a label for a

designated part of the model. Error e - How often do participants make a mistake

Participants were shown a Likert survey after finishing each model to collect
more data relevant to their perception. They chose answers to the following
statements:. easiness - I found the label layout well arranged.. confidence - I was able to quickly assign a label to the correct part.. speed - I was sure when assigning the labels to the parts.
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6. Evaluation with users .................................
Participants had standard Likert scale choices:. Strongly agree. Agree. Neither agree or disagree. Disagree. Strongly disagree

Likert scale base questionnaires are suitable in this case because they allow
for statistical evaluation. Therefore, I can make statistical conclusions about
the opinions of the participants on the labeling methods.

I will utilize confidence intervals to evaluate whether there are statistically
significant differences among the samples means, i.e., whether the participants
make fewer errors with one method than with the others or whether one the
method is faster.

If the confidence intervals for different methods do not overlap, then there is
a statistically significant difference between the sample means. I also calculate
the confidence interval for the difference between the samples. If it does not
contain zero, then there is a statistically significant difference between the
sample means.

I utilize different confidence intervals to evaluate the statistical significance
of the results for every variable. I transform the number of errors for each
model and method into error rates by the LaPlace method, recommended
by Lewis and Sauro [23]. I calculate the confidence intervals for the error by
adjusted Wald intervals. This approach is recommended by Agresti and Coull
[3]. In case of confidence intervals for time, I calculate them as confidence
intervals for task completion, as suggested by Sauro and Lewis [30]. I will
evaluate the results from the Likert surveys utilizing the t-distribution. It
provides the best confidence interval regardless of the sample size [22].

I will conduct the statistical evaluation with the confidence level 1−α = 95%,
where α is the level of significance, in my case α = 5%.

I decided to use the between-subject design, as its advantages outweigh
the disadvantage. I must test with a large enough number of participants so
that the results of the study carry weight.

Since I plan on testing with a lot of users, I opted for remote testing.
The data from the participants will be collected by a web service designed
specifically for the collection of the data for the purposes of experiments
involving users. The application was created by Antonina Lebedeva [22] and
is free for anyone to use. I will use already running service instance of it,
called Sfix1. .

1Sfinx is currently [May-20-2019] running at address https://sfinx.felk.cvut.cz/
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Sfinx is a web service for collecting data from empirical studies. It allows
for the collection of various kinds of data and automatically processes them
utilizing confidence intervals [8].

The experiment itself consisted of 3 parts. At first, the participant is
presented with an introductory web page containing the description of what
to expect from the experiment. I require gender and age from the participant.
After the participant provides the requested information and submits the form,
the first model is displayed. It is only a trial model so that the participant
has a chance to get familiar with the controls.

After the participant clicks on the start button, one part of the model
is highlighted in light green. The participant clicks on the label, which is
marking the part in his/her opinion. If the participant thinks there is no
label for the part, he/she clicks on the no label button. Similarly, in case
of a split decision, he/she clicks the I cannot decide button. Upon a click
on the label or one of the buttons, there is a one-second delay, and the next
part is highlighted. After every part of the trial model has been highlighted,
the participant is prompted to continue to the user study. The participant is
then shown the subsequent model, three models in total. The walkthrough
is identical to that of the test model. For each model, the time it took the
participant to click on the labels is recorded together with mistakes participant
made. After the participant completes any model, A Likert survey follows.
The participant fills out the survey and continues to the next model until
the test is finished. Models which I used for the testing are included in the
following section.

6.2 Testing models

The test was conducted on three different models with one introductory
model so that the participants can familiarize themselves with the controls.
The model of the digestive system, depicted in Figure 6.1, was shown to the
participants first. They could try how the controls of the test environment
respond to their inputs and get to know the testing procedure.

63



6. Evaluation with users .................................

(a) : External with
leader lines

(b) : Internal (c) : Mixed with leader
lines

Figure 6.1: The introductory scene for the user testing, containing the model of
the digestive system.

The first testing model was the head, as depicted in Figure 6.2.

(a) : External with
leader lines

(b) : Internal (c) : Mixed with leader
lines

Figure 6.2: The first test scene for the user testing, containing the model of the
human head.

The second testing model was the wheel fork, as depicted in Figure 6.3.
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(a) : External with leader lines (b) : Internal

(c) : Mixed with leader lines

Figure 6.3: The second test scene for the user testing, containing the model of
the wheel fork.

The third, and the last, testing model was the gapminder, as depicted in
Figure 6.4.

(a) : External with leader lines (b) : Internal

(c) : Mixed with leader lines

Figure 6.4: The third test scene for the user testing, containing the visualization
of dependency between income and life expectancy.

6.3 Results of the study

I discuss the results of the study in this section. When comparing methods, I
consider the mixed labeling (method M2) to be the baseline approach, as the
combination of the internal and external labels is the main focus of this thesis.

65



6. Evaluation with users .................................
I conducted the study, as I described in section 6.1. Total of 63 participants
(mean age: 27.9 years, SD: 10.6 years) took part in the experiment — all
regular users of computers.

(a) : The number of errors per model
and method

(b) : The number of errors compared
with the method M2

Figure 6.5: The number of errors

Figure 6.5a depicts percentage of errors made by the users on individual
models, as well as overall. The participants made a lot of mistakes when faced
with the model of the wheel fork. In contrast, the gapminder illustration
posed no problems for the participants. The semi-transparency of the models
likely contributed to the outcome. Figure 6.5b depicts differences in error
rate compared to methods M2. The mixed labeling (method M2) performed
better overall. The difference was statistically significant when compared
with the method M0.

(a) : Time to click one label per model
and method

(b) : Times compared with the
method M2

Figure 6.6: Time to click one label

The time it took for the participants to select one label is depicted in
Figure 6.6a for every model. Overall, the method M2 performed worse than
the remaining two. The result is statistically significant, as zero is not part of
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the confidence interval for the difference for all models, as depicted in Figure
6.6b.

(a) : Per method and model (b) : Compared with the method M2

Figure 6.7: Easiness of attributing a label to the correct part

Figure 6.8a depicts the opinions of the participants on how easy it was
to assign a label to a given part. Method M0 (internal labeling) performed
worse than method M2 (mixed labeling). However, the difference is not
statistically significant.

(a) : Per model and method (b) : Compared with the method M2

Figure 6.8: Confidence in attributing the label

Overall, the difference in the confidence of the participant in selecting
the correct label for a given part was not statistically significant, as shown
by Figure 6.8. However, participants were not confident when attributing
the internal label for semi-transparent models. And the confidence of the
participants is significantly worse for the internal labels compared with the
mixed labels in this case.
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(a) : Per model and method (b) : Compared with the method M2

Figure 6.9: Perceived speed of attributing the label

Figure 6.9 depicts the results of the survey for the question of speed.
Overall, no method is statistically worse than the method M2. However,
participants felt that assigning a label to the corresponding part takes them
significantly more time in case of the head and the wheel fork.

6.4 Chapter summary

I designed and conducted a user study with a total of 63 participants (mean
age: 27.9 years, SD: 10.6 years). I described the design of the study in
section 6.1 and included the tested models in section 6.2. The study did
find a statistically significant difference in error rates between M0 and M2.
There was a statistically significant difference in times between the mixed
labeling method M2 and the remaining two. Participants took a longer
time to identify the label in case of the mixed labeling scenes. The Likert
questionnaires suggest that the participants found internally labeled models
to be inferior to those labeled with the mixture of internal and external labels,
as shown in Figures 6.7, 6.8, and 6.9. However, no difference in means is
statistically significant.
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Chapter 7
Conclusion

I pursued a GPU evaluated mixed labeling algorithm in this thesis. The
algorithm operates in real time for medium complexity models and is capable
of producing label layouts with both internal and external labels. It utilizes a
novel approach to evaluate salience of the whole surface of the label box with
respect to every object in the scene and their Voronoi regions. Evaluation
with users revealed a statistically significant difference in error rates between
the layouts labeled only with the internal labels and those labeled with the
mixed labeling style.

I described various approaches to the topic of labeling over the long history
of the subject in chapter 2. In the next chapter, I described the problem,
which I was solving, in more depth. I followed up the description with a
general overview of the techniques I utilize to calculate the necessary data
structures. Afterward, I presented an overview of the algorithm and described
the design of the individual steps of the algorithm in the subsequent sections.
Chapter 4 mirrored the previous chapter but viewed the algorithm from the
perspective of the implementation. I described what information I stored in
the distinct buffers and how I utilize it in the algorithm.

I presented various label layouts which I generated with the algorithm in
chapter 5. In total, I used six models for the demonstration of the functionality
of the algorithm. I demonstrated how the assessment of external label salience
improves the label layouts and contributes to unambiguous label positions.
Thus the labels do not need to be connected with leader lines in scenes, where
it is desired. I also measured the performance of the algorithm on models
with up to 46 labeled objects. All of the label layouts were generated in less
than 100ms.

The last chapter 6 presented the results of the evaluation with the users. I
designed a user study to evaluate how the end consumers - the users perceive
the various label layouts. I tested scenes with only internal, only external,
and mixed label positions. Participants had to correctly assign the labels to
their respective parts in the shortest time possible. I collected error rates
and completion times together with the data from the Likert questionnaires,
in which the users had to rate the label layout. I collected the data on their
perception of easiness, confidence, and speed with which they selected the
labels. I statistically evaluated all of the collected data. I found that there is
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7. Conclusion......................................
a statistically significant difference in error rates between the internal label
layout and the mixed label layout.

7.1 Future work

The algorithm this thesis presented has a large number of possible usages, as
it places the labels in a versatile fashion. However, its results can be further
improved. Namely, the recognition of the situations when it is possible to
place an external label without the leader line confidently can be improved.
The algorithm can be further extended for the use in scientific application
such as document visualization. The number of labels that the algorithm
can place is limited as of now. The use of texture arrays could remove this
limitation.
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