




Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering

Department of Computer Graphics and Interaction

Configurable Utility for Synthetic Dataset
Creation

Konfigurovatelný nástroj pro tvorbu syntetických dat

Tomáš Bubeníček

Supervisor: doc. Ing. Jiří Bittner, Ph.D.
Field of study: Computer Graphics
August 2020



ii



Acknowledgements

I would like to thank to my family for
support, the Toyota Research Lab mem-
bers for aid during the development of the
practical part of this project, and also my
supervisor, Jiří Bittner, for his guidance
not only during development but during
writing this thesis.

Declaration

I declare that I have completed the work
on my own and that I cited all used liter-
ature and sources.

Prague, August 13, 2020.

—

Prohlašuji, že jsem předloženou práci
vypracoval samostatně, a že jsem uvedl
veškerou použitou literaturu.

V Praze, 13. srpna 2020.

iii



Abstract

When evaluating existing computer vi-
sion algorithms or training new machine
learning algorithms, large datasets of var-
ious images with ground truth, the ideal
known solution to the currently solved
problem, need to be acquired. We re-
view existing real-life datasets contain-
ing ground truth, which are used in com-
puter vision, and explore how they were
acquired. We then recount different syn-
thetic datasets, and survey the different
ways such data can be calculated. We
propose a tool to simplify generation of
such data, and implement such tool as
an extension of the Unity editor. Our
implementation is able to use textured
3D models to generate image sequences
with additional labeling, such as surface
normals, depth map, object segmentation,
optical flow, motion segmentation among
others. We use the tool to create a set of
three example datasets.

Keywords: Synthetic dataset
generation, Ground truth computation,
Optical flow, Game engines in Machine
learning

Supervisor: doc. Ing. Jiří Bittner,
Ph.D.
Karlovo Namesti 13,
121 35 Praha 2,
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Abstrakt

Při vyhodnocování funkcionality algo-
ritmů z oboru počítačového vidění či při
trénování nových algoritmů za pomocí me-
tody strojového učení, velké množství al-
goritmů obsahujících dodatečné ground
truth výstupy, které reprezentují ideální
výsledek daných algoritmů. V této práci
jsme analyzovali existující datatové sady
určené pro počítačové vidění. Zkoumali
jsme, jak jsou taková data získávána jak ve
skutečném světě, tak pomocí simulací. Na-
vrhli jsme nástroj na zjednodušení tvorby
syntetických dat tohoto typu a naimple-
mentovali jsme ho jako rozšíření editoru
Unity. Naše implementace je schopná vy-
užít texturované 3D modely a na jejich
základě generovat mimo jiné informaci
o povrchových normálách, hloubkových
mapách, sémantické segmentace, optic-
kého toku a pohybových maskách. S vyu-
žitím našeho nástroje jsme vygenerovali
tři ukázkové datové sady.

Klíčová slova: Generování syntetických
dat, Výpočet ground truth, Optický tok,
Herní enginy ve strojovém učení

Překlad názvu: Konfigurovatelný
nástroj pro tvorbu syntetických dat
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Chapter 1

Introduction

One of the open problems of computer vision and image processing is gener-
ating or approximating augmented image data based on images acquired by a
regular RGB camera. Augmented image data such as semantic segmentation
help machines separate parts in factory lines, using optical flow data for video
compression reduces redundancy, and depth and normals data are useful for
approximating a 3D scene topology. Acquiring these augmented image data
is often very difficult, cost-prohibitive, or sometimes even impossible. Many
different algorithms exist with different levels of success. The modern state
of the art research currently focuses on using machine learning and neural
networks for generating the data from camera images. Figure 1.1 shows the
result of one such algorithm, SegNet[1], which is able to augment the image by
segmenting it into different sections based on different categories of objects.

Both for evaluating a given algorithm and training supervised machine
learning algorithms, ground truth data are necessary. When evaluating, we
can compare the output of the algorithm with the expected ground truth
output based on the gold standard tests. When training supervised machine
learning algorithms, the algorithm is tweaked by using training example pairs
of possible inputs and expected outputs. For both of these uses of ground
truth data we require large datasets, which are often hard to obtain.

1



1. Introduction .....................................

Figure 1.1: An example of the SegNet[1] algorithm, which generates semantic
segmentation maps from a single RGB camera image.

For some uses, such as object categorization, broad, often human-labeled
datasets are already publicly available. However, for some augmented image
data (such as optical flow), the real measured ground truth is often sparse
or not measurable by conventional sensors in general. For this very reason,
synthetic datasets which are acquired purely from a simulated scene are also
used.

1.1 Goals

We have several goals in this project. We wish to explore the currently
available datasets for machine learning. Then we want to identify and describe
the ground truth data for computer vision which the datasets contain. After
we have full grasp on which type of data are necessary for scene understanding,
our goal is to describe how we can generate such data using methods based
on computer graphics. Our biggest goal is then to design and implement a
tool which simplifies the generation of datasets for computer vision, as we
believe such tool could be of use to the general vision research community.
Our final goal is to generate a set of datasets which show the functionality of
the tool itself.

2



................................... 1.2. Thesis Structure

1.2 Thesis Structure

In chapter 2, we discuss different already existing datasets used in the com-
puter vision field. We mention both real-life and synthetic datasets, talk
about tools which can be used to generate synthetic datasets, and explain
the different ways how specific ground truth outputs can be represented.

The next chapte 3 explains how the data contained in synthetic datasets
are generated. We discuss simulating the camera and the scene. We talk
about how ground truth data for such synthetic scene are calculated.

In chapter 4, we talk about the broader design choices which were made
when designing the tool to generate datasets containing ground truth. We
select on which framework the tool is built and the structure of the generator
itself.

Chapter 5 presents the implementation details of the tool. We talk about
how each ground truth output is calculated in code and touch on framework-
specific changes which were made in the calculations discussed in chapter 3.

Chapter 6 describes the usage of the tool, some of the datasets we generated
and the tool’s performance during generation. We also talk about the issues
with the current implementation of the tool itself.

We conclude the thesis with chapter 7, where we compare the completed
tasks with the assignment. We also talk about the future work which can be
done on the described implementation and in the field.
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Chapter 2

Related Work

This chapter presents already existing datasets and utilities used to create
such datasets. In later section, we also talk about the possible representation
of ground truth data for machine learning. We understand ground truth
to be different information provided by direct observation of real-life or a
simulation and the ideal expected result of algorithms for computer vision.

2.1 Datasets for Machine Learning

Data used for object segmentation are probably the biggest and most common
datasets currently available. For example, the COCO (Common Objects in
Context) [23] dataset contains over 200 thousand human-labeled real-life
images and is useful for training networks to recognize objects located in
photos. An example of a labeled image from such dataset can be seen in
figure 2.1.

Real-life datasets containing depth are less common, but still readily ob-
tainable, and can be useful for scene reconstruction. A combination of LIDAR
and camera mounted on a car is usually the source of these datasets. This

5



2. Related Work ....................................

Figure 2.1: An example from the COCO dataset [23].

(a) : The top image shows the camera view and
the bottom image contains the depth information
acquired using LIDAR. Note how the depth in-
formation is sparse in comparision to the camera
image.

(b) : The car, equipped with
cameras, an inertial measure-
ment unit and a LIDAR scan-
ner, was used to capture the
dataset.

Figure 2.2: An image from the KITTI datasets [15][26] and the car used to
capture it.

6



............................. 2.1. Datasets for Machine Learning

Figure 2.3: An example from the Waymo dataset [33] with the LIDAR data
overlayed on top of the image.

type of measurement is the case for the KITTI datasets [15][26] created by
the Karlsruhe Institute of Technology (seen in figure 2.2), and the Waymo
dataset [33], created by the Google sister company Waymo for autonomous
driving car development (seen in figure 2.3). ScanNet [9], a different dataset
with depth information, sources such data differently, using off the shelf
components such as a tablet and a 3D scanning sensor and provides the
complete reconstructed 3D scenes together with the depth information as
seen in figure 2.4. A common issue in these datasets is that due to the use
of a LIDAR sensor mounted on a different position than the camera itself,
the depth information is often sparse and doesn’t contain information for all
pixels of the camera view. The framerate of the LIDAR sensor is usually also
not synchronised with the camera framerate.

One segment where there are issues in obtaining real-life datasets is optical
flow information. Optical flow data describe the change of position of the
surface represented by a pixel in two successive frames. A few datasets contain
real measured data, such as the Middlebury dataset [2], released in 2007. The
camera shows small scenes covered with a fluorescent paint pattern captured
under both visible and UV light. Since the fluorescent paint is evident under

7



2. Related Work ....................................

Figure 2.4: The ScanNet dataset [9] was created by using a depth sensor and
contains hand annotated 3D semantic segmentation of indoor scenes.

Figure 2.5: An example from the real-life section of the Middlebury dataset [2],
acquired by using a special scene with fluorescent paint applied. Image on left
represents the camera view and image on the right shows the optical flow field
encoded as colors.

the UV lighting, the ground truth data was recoverable. As this method
is complicated to reproduce, only eight short sequences using this method
exist. A frame from this dataset is visible in figure 2.5. KITTI [15][26], also
containing real-life optical flow data, calculated the data with the help of a
LIDAR and egomotion of the car. Due to the way the calculation works, the
framerate of the flow data is tenth the framerate of the camera itself and is
only available for static parts of the scene.

8



............................. 2.1. Datasets for Machine Learning

Figure 2.6: The Yosemite Flow Sequences [3] dataset is an early synthetic
datasets used to evaluate optical flow estimation, released in 1994.

Capturing the optical flow in real-life scenes is a difficult task, so most
other datasets build on synthetic generation. The first synthetic datasets used
for evaluating optical flow estimation algorithms date back as early as 1994,
where Barron, J. et al. used a Yosemite Flow Sequences dataset showing a
3D visualization of the Yosemite mountain range in [3] (seen in figure 2.6). In
Middlebury [2], the eight remaining short scenes available are synthetic scenes
rendered using the realistic MantaRay renderer. FlyingChairs [10] is another
noteworthy synthetic dataset, later extended into FlyingThings3D [25] –
simple objects (e.g. chairs) floating along random trajectories are rendered
using a modified version of the open-source Blender renderer which allows
the reading of optical flow data. Surprisingly, this abstract movement which
has no relation to the real behavior of moving objects (the objects intersect
each other) has been shown as an effective way of training neural networks.
Synthetic datasets can also be built to emulate existing real-life datasets.
Such is the case with the Virtual KITTI datasets [14][6] which contains scenes
emulating the existing KITTI datasets.

Use of a modified Blender renderer also allows for datasets based on scenes
from open-source animated shorts, Sintel [5] and Monkaa [25]. Although the
use of the preexisting projects is excellent for more diverse outputs, it can also
cause issues – camera behavior such as a change in focus may not be desirable
for some usages. The last analyzed dataset that might be of interest is the
CrowdFlow dataset [30] which shows aerial views of large crowds of people
rendered in Unreal Engine as seen in figure 2.7. This dataset shows that for
some uses, datasets specialized for a single task could be beneficial. In this

9



2. Related Work ....................................

Figure 2.7: The CrowdFlow dataset [30] shows aerial views of outdoor scenes.
It includes optical flow and trajectories of up to 1451 people.

Figure 2.8: The DeepFocus dataset [36] contains images rendered using ras-
terization together with depth maps and corresponding images with accurately
simulated defocus blur.

case, the dataset targets tracking behavior in large crowds. A selection of
datasets containing optical flow ground truth information is seen in figure 2.9.

More recently, machine learning also begins to find more use not only in
computer vision, but also in the field of computer graphics. For example,
DeepFocus [36], a machine learning algorithm that emulates realistic depth
of field defocus blur faster than other systems generating such blur using
physically based methods. The algorithm was trained on a publicly available
dataset, with ground truth depth of field blur generated in the Unity game
engine using an accumulation buffer, and can be seen in 2.8. We include a
comparison of a selection of publicly available datasets in table 2.1.

10



............................. 2.1. Datasets for Machine Learning

(a) : Middlebury dataset [2] (b) : FlyingThings3D dataset [25]

(c) : Sintel dataset [5] (d) : Monkaa dataset [25]

Figure 2.9: Different synthetic datasets containing optical flow data. The
datasets 2.9a and 2.9b use relatively simple scenes, while the datasets 2.9c and
2.9d are based on existing animated short films.
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COCO [23] X > 300, 000
Middlebury [2] ½ X X 52
KITTI [15][26] X1 X1 X1 X X ≈ 15, 000
Waymo [33] X X X X ≈ 200, 000
FlyingChairs [10] X X ≈ 20, 000
FlyingThings3D [25] X X X X X ≈ 20, 000
Monkaa [25] X X X X X ≈ 8, 000
Sintel [5] X X X X X X ≈ 8, 000
CrowdFlow [30] X X ≈ 3, 000
DeepFocus [30] X X ≈ 5, 000
1 Sparse data for a limited frame subset only

Table 2.1: A table comparing a selection of available datasets.

11
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Figure 2.10: A scene from the CARLA [11] autonomous car simulator.

2.2 Generators

Several utilities for simplified creation of computer vision datasets already ex-
ist. Some of them are a part of more massive simulators, such as CARLA [11],
an autonomous car simulator (seen in figure 2.10), or AirSim [32], a simulator
for autonomous drones and cars (seen in figure 2.11). Both of these utilities
are built using Unreal Engine and provide both C++ and Python APIs to
control vehicles in the scene. The APIs also allow retrieving of synthetic
image data from virtual sensors attached to the vehicles. Their primary
purpose is not the generation of new datasets but simulating entire road or
sky scenes for virtual vehicles to move in, so the types of augmented image
data are limited mostly to basic types such as depth or segmentation maps.

There are some preexisting plugins for game engines that enable the acquisi-
tion of augmented image data. One of which is NVIDIA Deep learning Dataset
Synthesizer (NDDS) [34], which, built on Unreal Engine, provides blueprints
to access depth and segmentation data, along with bounding box metadata
and additional components for creation of randomized scenes. An example of

12



......................................2.2. Generators

Figure 2.11: A snapshot from AirSim [32] autonomous drone and car simulator,
showing different ground truth camera outputs.

a dataset generated with NDDS can be seen in figure 2.12. Another option
built on top of Unreal Engine is UnrealCV [29], which, compared to NDDS,
exposes Python API to capture the images programmatically and directly
feed them to a neural network. The API allows interacting with objects in
the scene, setting labeling colors for segmentation and retrieving of depth,
normal, or segmentation image data. The system is virtually plug-and-play,
where the plugin can be added to an existing Unreal Engine project or game
and start generating augmented image data.

By default, the Unreal Engine does not provide access to motion vector
data, which represents backward optical flow from current to the previous
frame. Nevertheless, since the source code is available (under a proprietary
license), such functionality can be enabled by modifying the source code and
recompiling the engine. Unreal Optical Flow Demo [19] presents a patch
enabling the functionality used in Unreal based robot simulator Pavilion [20].

The last generator analyzed is a simple plugin for the Unity game engine.
ML-ImageSynthesis [37] is a script providing augmented image data for
object segmentation, categorization, depth and surface normal estimation.
Compared to other previously mentioned plugins, it also provides backward
optical flow data, which is obtained from Unity motion vectors. An example
of the outputs generated by the plugin can be seen in figure 2.13.

13
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Figure 2.12: An example of a dataset generated using the NVIDIA Deep learning
Dataset Synthesizer containing stereo views, per-pixel segmentation, depth and
surface normal information [18].

Figure 2.13: Example outputs from the ML-ImageSynthesis Unity plugin.

2.3 Representing Ground Truth

In the existing datasets, there are several different approaches how to represent
the ground truth data. For object segmentation the COCO dataset [23] uses
simple 2D polygons to mark down the outline of each object labeled in
the image. Image segmentation can be also understood as assigning each
individual pixel on screen a label which is the same for each pixel sharing a
given characteristic. Most synthetic datasets (if not all) follow this principle
and represent segmentation by a simple three channel raster image, where
each color is understood to be a unique label.

14



.............................. 2.3. Representing Ground Truth

The raster image representation has a downside in size, as it is many
times bigger than representing just boundaries of the segmented image, but
is considerably easier to synthesize, as the generator can simply use the
same rendering pipeline that was used for the RGB camera image, just with
modifications to output the same value for each object. This representation
is also more desirable for the use in modern machine learning algorithms.
For example the COCO dataset API provides functionality to convert their
polygon representation into raster masks.

Both the polygon and raster representations of segmentation have issues
with scenes where a pixel represents more than only one object. As all real
scenes can contain transparencies, depth of field and motion blur, these
scenes will often not be represented correctly using these approaches. In
addition, raster representation suffers from aliasing on boundaries, as each
label is represented as a unique color. For polygon representation, simply
allowing the polygons to overlap would solve a part of the issue. In that
case we would be able to tell whether a pixel represents two objects at once,
but we still wouldn’t be able to tell how much each object influences the
pixel. For raster representation, another possibility is to use separate images
as different depth layers of the segmentation. This representation is called
Layered Depth Images (LDI) and was first described in [31]. Such raster
representation can be for example generated with Z-buffer rendering using
a depth peeling technique described in [12]. The image is rendered once
for each layer, using the previous layers depth buffer to limit the closest
rendered point. A side-view example of this rendering approach can be seen
in figure 2.14. However, this approach still cannot easily represent motion or
defocus blur, as Z-buffer rendering techniques only emulate such effects using
post processing.

Similar needs are often found in film production, where precise anti-aliased
masks are required for different tasks during postproduction (e.g. recoloring
already rendered objects). Several specialized formats for saving such mask
already exist, with the current industry-standard being Cryptomatte [13]. It
is an open standard and has support in a large number of visual effects and
compositing software (Blender, V-Ray, OctaneRender, RenderMan, Houdini,
Nuke, Fusion. . . ). As a base, the format uses OpenEXR multichannel images,

15
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NVIDIA Proprietary 

Figure 4 provides a more diagrammatic view of depth peeling.   The diagrams there 
are analogous to the images in Figure 3, except we are now looking at a cross section of 
the view volume and highlighting each layer.  It is evident from the view in Figure 4 that 
the depths vary within each layer, and the number of samples is decreasing.  The peeling 
process clearly happens at the fragment level, so the pieces are generally not whole 
polygons. 

The process of depth peeling is actually a straightforward multi-pass algorithm.  In 
the first pass we render as normal, and the depth test gives us the nearest surface.  In the 
second pass, we use the depth buffer computed in the first pass to “peel away” depths that 
are less than or equal to nearest depths from the first pass.  The second pass generates a 
depth buffer for the second nearest surface, which 
can be used to peel away the first and second 
nearest surfaces in the third pass.  The pattern is 
simple, but there is a catch.  We need to perform 
two depth tests per fragment for it to work! 

Multiple Depth Tests 
The most natural way to describe this technique 

is to imagine that OpenGL supported multiple 
simultaneous depth units, each with its own depth 
buffer and associated state.  We diverge from 
Diefenbach’s dual depth buffer API in that we 
assume there are n depth units, all writeable, that 
are executed in sequential order.  The first depth test 
to fail discards the fragment and terminates further 
processing.  The pseudocode in Listing 1 
implements depth peeling using two depth units. 

In each pass except the first, depth unit 0 is used 
to peel away the previously nearest fragments while 
the depth unit 1 performs “regular” depth-buffering. 
We decouple the depth buffer from the depth unit 
because it simplifies the presentation of the 

0             depth             1 

Layer 0 Layer 1 Layer 2 

0             depth             1 0             depth             1 

Figure 4.  Depth peeling strips away depth layers with each successive pass.  The frames 
above show the frontmost (leftmost) surfaces as bold black lines, hidden surfaces as thin 
black lines, and “peeled away” surfaces as light grey lines. 

for (i=0; i<num_passes; i++) 
{ 
 clear color buffer 
 A = i % 2 
 B = (i+1) % 2 
 depth unit 0: 
  if(i == 0) 
   disable depth test 
  else 
   enable depth test 
  bind buffer A 
  disable depth writes 
  set depth func to GREATER 
 depth unit 1: 
  bind buffer B 
  clear depth buffer 
  enable depth writes 
  enable depth test 
  set depth func to LESS 
 render scene 
 save color buffer RGBA as layer i 
} 

Listing 1.  Pseudocode for depth 
peeling using multiple simultaneous 
depth buffers. 

Figure 2.14: Depth peeling principle from [12] in each successive pass. The
images show the view of a scene from side, with the camera looking in from the
left. The currently drawn frontmost surface is a bold black line, hidden surfaces
are thin black lines and "peeled away" surfaces are light grey lines.

Figure 2.15: An example of error introduced by antialiasing depth values. Side
view, columns represent the pixels. Right image represents the actual geometry,
left image shows incorrect value introduced by antialiasing.

into which it encodes either object ID, namespace ID, or material ID matte.
The format could also be repurposed with relative ease to represent segmen-
tation masks for images, as tools for generating such file are widely available.
Interpreting such data can cause some complications, because the format is
relatively hard to understand.

For depth information, similar issues with regards to transparencies, depth
of field or motion blur occur. When rendering with antialiasing, incorrect
values appear on boundaries, as antialiasing would just average the two
distinct (but correct) values with an incorrect value, as seen in figure 2.15.
Just as with the previous situation, visual effects industry often works with
depth information to insert new objects to a scene during post production. An
open standard to represent such images exists. The OpenEXR file format [21]
has support for "deep images", in which each pixel can store an unlimited
number of samples, each associated with a distance from viewer, or depth.
Deep image workflow is also possible in a number of visual effects and
compositing software (V-Ray, OctaneRender, Houdini, Nuke. . . ), therefore
tools for generating OpenEXR deep images are widely available. However,

16



.............................. 2.3. Representing Ground Truth

interpreting deep images could pose a problem, as even though OpenEXR is
a open-source format, libraries for reading the format are often limited and
for example no existing Python libraries support deep images.
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Chapter 3

Synthetic Data Generation

In this chapter, will describe different parts of the simulation. We talk about
the steps necessary to simulate the realistic camera view, the world itself
and finally, we discuss the different approaches to generate additional ground
truth outputs for the camera view.

3.1 Simulating the Camera

When creating synthetic datasets, much care should be taken not only when
generating high quality augmented image data such as segmentation but also
with simulating the view of a real camera, for which we generate the ground
truth images. We can understand simulating the camera as simulating the
camera sensor, its optics and geometry and the movement of the camera.

First, we focus on describing the sensor itself. In a real camera, light,
passing through the camera optics, is captured by a sensor. We can represent
the light falling on the sensor as an continuous image function f(x, y), where
x and y are the coordinates on the surface of the sensor. The sensor samples
from this function, usually in a regular raster, and outputs a quantized value

19
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Figure 3.1: Illustration of the camera obscura pinhole camera from James
Ayscough’s A Short Account of the Eye and Nature of Vision (1755, fourth
eidition).

of the sample as the individual image pixels. The sensor measures the values
in a given time period – exposure. Longer exposure means often a brighter,
less noisy image, but moving objects appear blurred.

When looking at the optics and geometry of a camera, we first must
understand how to simulate an ideal camera with no distortion of the view.
The pinhole camera model describes such camera geometry. The model is
based on a camera obscura (figure 3.1), an optical phenomenon where if a box
contains a small hole on one side, the light coming through the hole projects
the outside view on the back side of the box. With the geometric model,
we imagine the hole being represented by a single point through which all
the light rays projecting the image must pass through. The projected image
through an ideal pinhole, as used in the geometric model, is uniformly sharp
and contains no distortion, and is often used to reasonably well approximate
the behavior of actual cameras. It is relatively easy to project on the image
plane, as each point in space in front of the image plane is projected only to
a single point on the plane.
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View
plane

Thin
lens

Surface
point

z0 z1

Figure 3.2: The thin lens geometry model focuses all light from a single point
in the focal distance to a single point in the view plane.

Real camera sensors usually require more light than what can usually pass
through the small pinhole of the camera obscura, so bigger lenses focusing
light on the sensor are used. This allows sensors to operate properly, but
causes unfocused objects to appear blurry. In real cameras, the system of
lenses focusing light on the sensor can be very complex and is often simplified
by using a thin lens model. The simplified model works with a lens which
has zero thickness and focuses all light hitting the lens from a single point on
the focus plane to a single point on the image plane.

Most camera systems can be relatively well simulated by projecting on an
image plane by using either of these methods, but in case of camera optic
systems which include strong distortion this is not possible. The pinhole
model and the thin lens model are both unable to properly simulate wide-
angle lenses such as the fisheye lens, since they are unable to project points
on the plane going through the camera center which is parallel to the image
plane. If we want to simulate such projections, it’s often possible to simulate
6 thin lens cameras aligned in such a way that their image planes form a
cube, and then distort the cube based on the lens we want to simulate (since
the cube contains an accurate 360° view of the scene).

Generating realistic and semi-realistic images is a well-researched field.
Modern approaches, such as Physically Based Rendering [28] seek accurate
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modeling of the flow of light to achieve highly accurate and realistic images.
As we want our datasets to be able to train algorithms that apply to real-life
situations, we should aim to generate the reference camera images as realistic
as possible. This means including effects such as depth of field, motion blur,
caustics, or even issues in the camera mechanism such as optical aberrations
or noise.

Systems that generate realistic images these days most often use raster-
ization methods for real-time interactive rendering and ray tracing based
methods for more physically accurate but slower (often offline) rendering.
Rasterization is based on projecting objects on the image plane using the pin-
hole camera model, and usually simulates defocus blur during post-processing.
When generating datasets, real-time rendering or interactivity of the scene
is not a priority, as we want to save the dataset on disk for later use. Using
ray-tracing based algorithms such as path tracing to render the realistic
camera view is ideal for creating the simulated view of a real camera.

3.2 Simulating the World

The camera gives us access to images from the simulated world, and if we
wish to generate as realistic images as possible, we must take close care that
the world looks and behaves realistically as well. The world simulation then
can include physics simulation, which makes sure objects in the scene do not
intersect each other, weather simulation, simulating the behavior of rain and
other atmospheric phenomena or agent simulation, controlling the behavior
of vehicles and other actors in the scene.

The person creating the dataset should be able to configure the behavior of
the world based on the needs of the dataset. Some datasets require simulating
crowds of people (such as in the CrowdFlow dataset [30]), some datasets
require simulating vehicle traffic (similar to the KITTI datasets [15][26]),
while some datasets should visualise highly abstract scenes (similar to the
FlyingThings3D dataset [25]).
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As the structure of the world and the behavior of the simulation is heavily
dependent on the target dataset, we do not describe the process in detail.
The scene can be defined inside a 3D modeling software or a scene editor of
a game engine, similarly to the world behavior, which can be baked as an
animation in modeling software or run real-time inside a game engine.

3.3 Simulating Ground Truth Measurements

Methods for generating ground truth outputs can be considerably more
straightforward than the systems used to generate the camera view itself,
as the ground truth is only a subset of all the information included in
the realistic camera view. Realistic effects such as antialiasing or depth of
field would often be detrimental to the ground truth data when stored in
a simple 2D image. For example, such effects break categorization labeling
in segmentation masks (although representing such data with more complex
data structures is possible, as discussed in section 2.3). Therefore, we can
utilize more straightforward methods to generate ground truth data based on
rasterization. In the next sections, we describe how different ground truth
data are calculated.

3.3.1 Depth Output

One of the more straightforward outputs to generate is depth information
for each pixel in the image. With such output, one can calculate the camera-
relative position of each point in the image by using the depth information in
conjunction with the screen space position of the point and the knowledge
of the image’s field of view angle. For raytracing, the exact ray intersection
point in world space is directly available. For rasterization, the Z-buffer
non-linearly encodes the distance of each pixel from the camera plane.

There is a significant distinction between the distance from the camera
plane and the distance from the camera center. One might think the depth
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Figure 3.3: The difference between measuring the distance from the camera
plane and the camera position. The green line shows points with unit distance
from the camera near plane. The red curve shows the unit distance from the
camera itself.

in the image is the same as its distance from the camera (in this case, the
camera position), but in fact, the depth information describes the distance
from the camera plane instead. The figure 3.3 shows this distinction. The
green line on the top shows points with unit distance from the camera near
plane, while the red curve shows the unit distance from the camera itself.

Converting between these two representations of distance is relatively easy
when the camera parameters are known, but the distinction is still relatively
important. In most cases, the output we want is the distance between
the camera plane and the point, which when using rasterization with the
perspective projection is directly encoded in the Z-buffer by this formula:

zLinear = 2.0 ∗ zNear ∗ zF ar

zF ar + zNear − zNonLinear ∗ (zF ar − zNear)

where zNonLinear is the value from the Z-buffer in range [0, 1], and zNear

and zF ar are the near and far plane distances of the projection matrix.

3.3.2 Normals Output

The information about the normals of all visible surfaces can help with new
understanding of the scene. We could calculate an approximation of the
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normals as a gradient of the depth output, but this approach could cause
issues with scenes with high-frequency changes in depth (such as when viewing
a chainlink fence). Normals are also directly accessible during rendering, as
they are relied upon when shading the image. Calculating the normals
separately from the depth output allows us to represent them accurately
when normal information is separate from the geometry itself. This happens
for instance when we interpolate normals between vertices using smooth
shading or when we use normal mapping.

Yhere are multiple ways we can represent the normals inside the dataset.
One way is to return the normal vectors in relation to the camera rotation
only (in view space), and the other is to display the normals modified by
the perspective transform (in screen space). The difference between the two
outputs can be seen in figure 3.4. When displaying normals in relation to the
view (displayed on the left), flat surfaces share the same value in the output.
On the other hand, when displaying normals modified by the perspective
transform, the value is perceptionally correct and as such changes over flat
surfaces. The post-perspective transform representation of normals can be
used to directly visualise the normals on the image, while the view-space
representation is more useful for segmenting the image, as flat surfaces have
the same value.

Converting between the different representations of normals can be done
by using the camera relative position of the point in space which can be
calculated by using the depth output.

3.3.3 Bounding Box Outputs

One of the goals of computer vision is to detect where objects are located in
an image and in the scene itself. For that, selected objects or object categories
should have both camera relative 3D bounding boxes and screen space 2D
bounding boxes made available.
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Figure 3.4: The difference between view space oriented normals (left) and screen
space oriented normals (right). The images show a view through a long hallway,
with the normals mapped as RGB colors. With view space oriented normals, the
normals of the flat walls stay the same color, while with screen space oriented
normals the color isn’t constant, indicating their direction changes.

We build 2D screen-space bounding boxes from minimum and maximum
screen coordinates of the transformed vertices during rasterization. As such,
they are relatively straightforward to acquire when the entire rendering
pipeline is under user control. Often, though, this is not the case. For
example, with the OpenGL rasterization pipeline, the vertex transformation,
which happens inside the vertex shader, is directly connected to other parts
of the pipeline. Its outputs (the transformed vertices) are not available to
be read directly. It is often necessary to reimplement the transformation
elsewhere and calculate it separately from rendering, either on CPU or as a
GPU compute shader.

When implementing the transformation for rigid objects, using the objects
convex hull can also speed up the computation. The bounding box of the
convex hull and of the object itself is identical, and the convex hull will often
contain considerably fewer vertices. Convex hull computation is a relatively
costly computation (often O(n log n)) and is not suitable for non-rigid objects.
It can also return incorrect values due to floating-point precision issues. This
optimization, although often useful, should not be set by default for all objects
because of these issues.
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Figure 3.5: A comparison between an object aligned bounding box (left) and a
tight bounding box (right). The airplane icon provided under public domain by
Burak Kucukparmaksiz.

For 3D bounding boxes, the calculation is considerably more straightfor-
ward, as rigid objects do not change size in time. Therefore, we set their
size per object before the dataset creation. As tight 3D bounding boxes are
used most often in current datasets, one might assume that we should limit
the tool only to output tight bounding boxes as well, but this is not the
case. Bounding boxes are currently most often used to represent cars, for
which tight bounding boxes make the most sense – the front plane of the box
represents the front of the vehicle, and we want to align the bottom plane
of the box with the ground. However, for some other vehicles, we would
like to create object detectors for, this would not apply for tight bounding
boxes. The figure 3.5 shows a situation where a tight bounding box does
not correctly represent the vehicle. Therefore, 3D bounding box orientation
should be provided together with the model.

Some care should be taken when saving bounding box information on
objects in the scene. The scene can contain many objects, for most of which
we do not need to generate bounding boxes. Therefore, we should be able
to generate bounding objects per object or object category. Objects are also
often nested in a scene graph hierarchy, and we must make sure that, when
creating bounding boxes of non-leaf nodes, we include all its child meshes.

3.3.4 Segmentation Outputs

Image segmentation is the process of dividing the image into different segments
that contain pixels that share a particular feature. Instance segmentation
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separates the image into segments in such a way that each unique object in
the image belongs to its unique segment. Similarly, we can use any other
semantic feature to segment an image. For example, an image of a street can
contain several segments based on predefined categories such as road surface,
footpath, or buildings.

As discussed in section 2.3, we can also understand segmentation as assign-
ing each image pixel a unique label. When preparing the scene, we can assign
a specific color label to an object, and when drawing the object, draw only
the assigned color instead of shading the object. With some segmentation
outputs, we can rely on the computer to automatically label objects. Object
segmentation can be achieved by automatically giving each object a unique
label. Motion segmentation can label objects that are moving in the scene,
and segmenting unique materials or meshes is also possible. Segmenting the
scene in different human-understandable categories requires the objects to be
categorized manually before the dataset creation.

3.3.5 Amodal Segmentation Masks

Instance segmentation map contains masks for all visible objects in one image.
When an object is partially occluded, the masks are occluded as well. When
viewing partially occluded objects, one might assume what shape the object
has in the occluded region. In the visual perception field, the phenomenon
that humans are capable of estimating occluded shapes is well observed and
called amodal completion [24]. As we want to create algorithms that are
as good (or even better) at understanding the scene, we should be able to
generate ground truth data for partially occluded parts of the scene. There is
a relative lack of amodal instance segmentation datasets, and such a dataset
could prove useful [22].

Rendering an amodal mask of a single object is a relatively simple task,
as it the same as rendering the scene with only the given object. Issues may
arise when the amount of objects rendered in the scene is high, as we must
create a separate mask image for each object. If we want to limit the number
of different images we have to generate, multiple approaches are possible.
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First, it is possible to render multiple objects into the same image under the
condition that they do not overlap. We calculate which objects do not overlap
by comparing their separately calculated 2D bounding boxes. Second, we can
render onto the same buffer multiple times, each time into either a different
channel or, using the additive blending mode in the rasterization pipeline,
using different bits inside a single channel. This way, with an RGBA image
with 8 bits per channel, we can get up to 32 different layers on which we can
draw amodal masks of different objects (or different sets of non-overlapping
masks).

3.3.6 Optical Flow

Understanding movement in a sequence of images is an essential task in
understanding the scene itself. Optical flow describes the distribution of
apparent velocities of movement of visible patterns in a sequence of images. It
is often used to estimate object motion, as it represents the relative movement
of objects and the viewer [17]. Discontinuities in such optical flow also help
when segmenting images into regions of corresponding objects.

Using this definition optical flow doesn’t directly carry information about
the movement of objects in the scene itself, but only about the movement of
"visible patterns", and therefore finds its uses also during video compression.
For example when using the MPEG video compression, a process called
motion-compensation is used. Each frame is split into 16× 16 macroblocks,
and each macroblock contains a motion vector describing movement of the
block, together with information on how the block differs from a previous
(or future) frame. Optical flow can then be used as a basis on which the
macroblock motion vectors are calculated [7].

The relationship of optical flow and object motion is not fully specified by
this definition. For example, a rotating uniformly colored lambertian sphere
does not contain any visible patterns. Its optical flow is static and does not
represent the actual object motion in the scene. If we target our ground truth
output of this category at scene movement estimation, our output should
not just describe the apparent velocities of movement of visible patterns,
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but actual velocities of the projection of visible surfaces (pixels) onto the
image plane. The vector field describing the motion of surfaces is sometimes
called motion field [35], but in almost every dataset or benchmark (such as in
Sintel [5]), the motion field output is labeled as optical flow. As we wish to
keep in line with existing research, we label our output as optical flow as well.

Such per-pixel optical flow is relatively easy to compute and is often used
in game engines to approximate motion blur during post-processing [27]. We
transform both using the transformation matrix of the current frame and
the previous frame during the rasterization process. The difference between
the two transformed screen-space positions is the resulting optical flow. Let
MCur and MP rev be the current and the previous transformation matrices
from world space to screen space, v be the transformed vertex, and X(v,M)
be the transformation operator. From [7] for each vertex in the scene, the
optical flow when going from MCur to MP rev is

∆vscreen = X(v,MCur)−X(v,MP rev).

As the surfaces between vertices are traditionally flat triangles, we interpo-
late the optical flow of any point on the surface of a triangle from the optical
flow of the vertices of the triangle. This computation results in backward
flow information for the current frame. If we want to compute forward flow,
we can use MNext instead of MP rev, representing the transformation matrices
of the objects in next frame.

This calculation applies similarly for stereo disparity, where instead of
working with two transformation matrices representing view from the same
camera during different points in time, the two matrices represent the view
from two separate cameras.

Another related term to optical flow is scene flow. Whereas we understand
optical flow as a field of 2D vectors representing the movement of points on
the screen we are projecting the scene on, scene flow is a 3D field representing
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the actual movement of points in space, including the movement in the camera
view aligned Z axis.

3.3.7 Occlusions

When viewing a scene from two distinct points in time or space, it is often
needed to find corresponding points between the images. Between different
moments in time, optical flow vectors connect such points, and disparity
vectors connect them between different camera views. Not all points have
such correspondences, as they may not be visible in the other images. Such
points then cannot be, for example, used to calculate distance using binocular
disparity. A way to mask out such occluded points is then necessary. Occlusion
output then highlights which points visible in one image are occluded in an
image from a different point in time or space.

Such a situation is relatively easy to detect using a modified raytracing
renderer: Send out rays from the camera, when the rays hit a solid surface,
send out a ray from the hit point towards the camera we are checking for
occlusions. When checking for an occlusion between multiple points in time,
we transform the point according to the the movement of the object the point
belongs to before sending the ray towards the camera.

With rasterization, it is slightly more difficult to check such information
in a single pass precisely. There are multiple ways of approximating such
outputs. For stereo disparity, we can use a system similar to direct lighting
calculation to get a precise mask: When rendering, replace the camera we are
checking the occlusions against with a light source. We then see the visible
points from the other camera in the lit part of the image, and occluded points
are in shadows. When using accurate shadowing techniques such as shadow
volumes the results are precise [8]. However, they are limited to occlusion
from polygon shapes (shadow volumes do not support objects using an alpha
cutout textures such as a tree leaf). Shadow volumes emulate shadows by
manually calculating a 3d mesh representation of the unlit volume, which we
then use to decide whether a surface is lit or in shadow.
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Figure 3.6: A perspective aliasing issue as seen in Unity - shadows closer to the
camera show an error

Other less accurate methods for casting shadows can be used, such as
shadow mapping. Shadow mapping works by rendering the scene’s Z-buffer
from the light source’s point of view and mapping it on the surface of the
scene. When rendering, we then compare the distance from the light point
in the shadow map texture with the distance from the light point and the
currently rendered point. If the distance is higher, we consider the currently
rendered point to be in shadow. In shadow mapping, situations can arise
where we output an error greater than one pixel in size at the border of the
shadow. For example, we see a perspective alias when looking at the shadow
mapped texture near the camera (as seen in figure 3.6), or a projection alias
when we cast a shadow on a plane almost parallel to the light direction (as
seen in figure 3.7).

These methods get slightly more complicated when calculating temporal
occlusions between two moments in time. However, we can use the shadow
volumes or the shadow map from the previous frame with both approaches
instead of that from the current one. The issue with no support for cutout
textures with shadow volumes and accuracy issues with shadow mapping can
still occur.

Another option is to calculate occlusions in a post-processing step using
already existing outputs. For example, if we have both scene flow and depth
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Figure 3.7: A projection aliasing issue as seen in Unity - shadows on surfaces
parallel to light direction show error

output available, calculating the occlusions is done trivially by comparing
the depth of each point with the depth of the given point when shifted by
the scene flow vector of the given point. This relies on the scene flow vectors
being three dimensional, but if only 2D optical flow information is available,
is not applicable.

If scene flow is not available, it is still possible to use 2D optical flow to
reach an approximate level of certainty on whether or not is the point visible
in the next frame. For example, when the object segmentation of the point
and the point its optical flow vector points to in the other image are not the
same, we can definitely say it has been occluded by another object. If we
want to check whether the object is not self-occluding the point, we can use
a separate buffer, on which we render for each pixel the local 3d coordinates
of the object and then compare those.

The post-processing approach is not without issues, however. We are
working with regularly sampled images, and the optical flow or scene flow
vectors are pointing at precise points in the image, which almost never align
with the samples. Therefore, it is impossible to properly decide whether a
point is visible in the other image. When calculating object occlusion, a
situation as seen in figure 3.8 can occur. As interpolating would break the
labeling of the samples, we can check the four closest samples instead and
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Figure 3.8: An issue occurs when using post-processing to calculate the occlu-
sions when the optical flow vector does not point directly at a measured sample.
In this case, looking at the corner sample of the red shape, even though the
point does belong to the red area, we can only have a ¼ confidence about it’s
situation when following its flow vector (represented by an arrow in the image)
to the next frame, since three of the four nearby samples belong to a different
area

give a "confidence rating" whether the point is occluded. When working
with depth map or the local 3D coordinates, linear interpolation can be
used, and similarly a confidence rating can be returned instead of binary
visible/occluded value.

3.3.8 Motion Segmentation

Motion segmentation is the task of identifying independently moving objects
and separating them from the background [4]. Deciding whether a rigid object
is in motion can be done by comparing the position and rotation of the object
between two frames.

Question comes on how we should handle non-rigid objects. There are
multiple different approaches on what to label as a moving object. When a
part of a non-rigid object is moving, should we label only the moving parts, the
entire object, or only label the object when its position or rotation changes?
In our implementation, we decide to label the entire object only when its
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position and rotation changes, but it could be also possible to label each
pixel independently, either by directly calculating the difference similarly to
calculating optical flow, or (when access to rasterization pipeline modification
is limited) by using the existing optical flow output and subtracting flow
induced by the camera movement.

3.3.9 Camera Calibration

With all these relatively complex outputs, additional information about the
camera should be also provided. First and foremost, both intrinsic and
extrinsic camera parameters should be available for each camera view. In
computer vision, intrinsic camera parameters are represented by a 3 × 4
calibration matrix K in this form:

K =


αx γ u0 0
0 αy v0 0
0 0 1 0



For rendering using rasterization, the matrix representing the internal
parameters of the camera is a 4 × 4 projection matrix P . When using the
OpenGL framework, the matrix is written in this form:

P =


2n
r−l 0 r+l

r−l 0
0 2n

t−b
t+b
t−b 0

0 0 −(f+n)
f−n

−2fn
f−n

0 0 −1 0



At first, the two matrices may seem very different, but they represent
the same process, and in fact, are equivalent, just with the third row of the
projection matrix removed, as the calibration matrix only projects onto a
plane and is not used for Z-buffer rendering. The parameters αx and αy

represent the focal length scaled by the final projection space, u0 and v0
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represent the center of the image and γ represents the skew factor of the
image, which in case of the OpenGL projection matrix is 0. The z direction
is flipped in OpenGL, and so the last row contains −1 instead of 1.

As the projection matrix represents more information about the projection
used, sharing the matrix directly instead of converting it to the calibration
matrix form is preferred. The parameters used to construct the matrix should
be provided as well, because the matrix is often not user defined by using the
t, b, l, and r terms, but those terms are computed from the screen shape and
the desired vertical field of view.

Extrinsic camera parameters are represented by an identical 4× 4 matrix
both for rendering in computer graphics and calibration in computer vision.
The matrix is in this form:

R3×3 T3×1

01×3 1


4×4

Where R and T are the extrinsic camera parameters, defining the rotation
and position of the world with respect to the camera (the matrix is the inverse
of the camera’s transformation matrix). Therefore, we provide both the matrix
and in addition separate information on the rotation and translation of the
camera in world space.
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Chapter 4

Design of the Data Generator

In this section, we discuss the broader design choices that were made when
developing the ground truth generator and the scenes used for machine
learning.

4.1 Platform

When considering the design of the utility, we considered three different
platforms:

. Blender. Unity. Unreal Engine

All of these platforms are capable of rendering realistic images, which is one
of the main requirements of this project. Blender has an integrated unbiased
PBR path-tracer Cycles, and Unity and Unreal Engine use a high-quality
integrated PBR rasterizing pipeline, with the possible use of external path
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tracing plugins such as OctaneRender. All three platforms were already used
for the creation of datasets for machine learning. A part of the requirements
is the ability to generate optical flow data, so systems directly allowing access
to motion vector data are preferred.

Blender path-tracer allows for direct access to motion vector output via
a vector pass in the settings and has a support of a limited scripting API
for plugins, but for access to most data, direct changes in the source code
would be required. As it is an open-source application, these changes are
easily possible and have been previously made for the creation of specific
datasets, such as the FlyingChairs3D dataset. It is an application purely
targeted at 3D rendering and modeling. It does not contain a game engine,
which means it can only render prebaked animations, and the scene cannot
change interactively. The UI is also targeted for 3D editing and isn’t that
user-friendly to newcomers without prior experience and would be relatively
challenging to accommodate for purposes of dataset generation.

Unreal Engine 4 is often used as a base platform for different simulators
such as CARLA or AirSim. It provides a way of writing applications, either
using a modified version of C++ or the Blueprints Visual Scripting system
(combining both is possible, but can pose challenges), in addition to having
direct access to the engine source code, which can be modified. Without
modification, the engine does not allow the reading of motion vectors. Custom
shader programs are only possible to be created by the use of a visual shader
graph programming language, but custom nodes for the shader graph can be
created with HLSL programming language. As it is a game engine, it allows
exporting the completed utility as a separate executable without the need
to install the editor itself. Use of the path-traced renderer OctaneRender
is possible, though limited, since rendering is only allowed inside the editor
while the gameplay simulation is not running.

Unity is a proprietary game engine, which is, like the Unreal Engine, also
used for machine learning simulation. The scripting language used for creating
applications for Unity is C# and currently has no integrated visual scripting
options outside of proprietary plugins. The engine also allows writing shader
programs using a variant of the HLSL language, which also provides access
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to motion vector data. Direct access to the source code is limited, and no
modifications are allowed by the license. OctaneRender can be used for
path-tracing of scenes inside the Unity editor and can be used to record
gameplay for later rendering in a standalone application.

Pros Cons

Blender Established - FlyingThings3D Not targeted for application creation
Fully open source No proper motion vector access
Raytracing support Large modifications required

Unreal Engine 4 Established - CARLA, AirSim No proper motion vector access
Blueprint and C++ scripting Limited documentation
Source available Difficult for newcomers
Raytracing using OctaneRender Limited shader programming

Unity Scripting using C# Source code not available
Good documentation
Raytracing using OctaneRender
Shader programming using HLSL

Table 4.1: A Comparison of different considered platforms to base the generator
on

We have selected Unity as the platform to develop the application on,
mainly because of more straightforward access to motion vectors and better
integration with third party path tracing renderer OctaneRender.

4.2 Software Design

The project consists of two separate parts: A Unity plugin designed to
generate ground truth data and a set of scenes useful for training neural
networks. The figure 4.1 shows which parts of the system are responsible for
each output.
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Figure 4.1: Diagram of data output sources.

4.2.1 Ground Truth Generation System

Our primary focus for the project is creating a system for generating realistic
images augmented with additional metadata. We propose a Unity plugin
called unitygtgenerator, which provides such capabilities. The plugin itself is
composed of several C# scripts. A scene set up for ground truth generation
contains a single instance of a GT Manager component and each camera set
up for generating ground truth data has an instance of the Unity GT Gen
component attached.

The GT Manager component contains the code managing the entire dataset
generation. It manages scene-wide settings, such as the frequency and time
when during the simulation we generate ground truth data, and configures
objects in the scene for easier tracking. The saving of images themselves is
triggered for all
Unity GT Gens at the same time by the GT Manager and the dataset always
contains the ground truth data from all cameras for each frame.

The Unity GT Gen component manages which type of ground truth data
the system should generate. It contains a list of different outputs the camera
will generate and their respective settings. Some cameras can have a different
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set of ground truth outputs prepared for different use cases (e.g. a camera
can be set up to preview the current state of the scene, but as its view isn’t
planned to be used while training, only a limited number of ground truth
outputs for it can be generated). Each different type of outputs is then
implemented as a separate class. The type of generated data the camera
attached component outputs is configurable via a human-readable file outside
the scene description, so even people with no knowledge of how to modify
the Unity scene should be able to configure their desired outputs.

The classes generating individual outputs all build on a standardized
interface, which allows a simpler definition of new output types. Before
implementing different possible ground truth outputs, we should have a
strong grasp on which augmented image data are currently being extracted
from images using state-of-the-art algorithms and how they are represented.
We target generation of all these systems:

.RGB camera output, containing the simulated view of a camera,. Segmentation outputs (object, category), assigning each pixel into
a category based on the object that occupies the given pixel,.Motion segmentation mask, labeling each pixel that belongs to a
moving object in scene,.Optical flow (backward and forward), labeling for each pixel where
the point represented by the pixel is located in the previous or next
frame of the dataset,.Occlusions, labeling for each pixel whether the point represented by
the pixel is visible in the previous or next frame of the dataset.Depth and normal map outputs, describing the distance of each
point from camera and its normal,. Specularity and transparency map, possibly with other information
about the materials of points visible in the scene,.Camera parameters, describing the camera calibration and position
in the scene..
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The interface includes a standardized way to call the constructor, with

additional settings given using a JSON object, and a way to expose default
settings for the given output. It also exposes a save function, which the main
Unity GT Gen script triggers at the end of each frame, which will save the
data about the current frame.

An additional output is a path-traced output using the third-party Oc-
taneRender for Unity plugin, with which the plugin interacts. This way we
will be able to generate ground truth rasterized outputs relatively quickly,
and will be able to provide high quality realistic camera view, which includes
effects that are hard to emulate using Unity’s rasterizer, such as motion blur
or depth of field. The internal structure of the plugin can be seen in figure 4.2.

unitygtgenerator

UnityGTGen 
camera 1

UnityGTGen 
camera 2...

OctaneRender 
for Unity Plugin

Output generators
for camera 1:

● RGB
● Flow
● ...

Output generators
for camera 2:

● RGB
● Depth
● ...

GTManager Starts ORBX 
recording

Figure 4.2: The generator consists of one GTManager and one UnityGTGen
instance for each camera. Each UnityGTGen then manages its own list of classes
responsible for generating ground truth outputs.
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4.2.2 Scenes for machine learning

The Unity GT Gen component is a plug and play component, and should be
be compatible with any camera in any already existing Unity scene. However,
for some networks, a specialized scene might prove more useful – for example,
the CrowdFlow dataset targets on visual crowd analysis. We propose several
simple scenes.

CTUFlyingThings is a simple scene that is very similar to the already
existing FlyingThings and FlyingChair3D datasets. It contains a random
assortment of models flying around in space. The difference from the datasets
mentioned earlier is that the models are not intersecting each other but
bounce off each other. Because the models can be user-selected, it should be
easily possible to modify the scene to generate datasets benefitial for specific
uses (e.g., a dataset for tracking of purely flat objects).

Together with Toyota Research Lab at the Czech Technical University
in Prague, we propose several other more complex and naturalistic scenes
in the CTUDriving project. The scenes are targeted at computer vision
for autonomous vehicles, and contain small road networks with randomized
buildings, vehicle paths, and densely populated parking lots.
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Chapter 5

Implementation

In this chapter, we describe the implementation of the ground truth data
generator and its different outputs. We talk separately about the system
responsible for dataset generation and the graphical user interface.

5.1 Backend

In this section, we describe the implementation of the system generating
the ground truth data. We talk about the individual classes behind the
generation and show short code snippets explaining the generation and
encoding of ground truth information.

5.1.1 UnityGTGen

As a base for the implementation, we used ML-ImageSynthesis as an inspira-
tion. Since Unity has released it under the MIT license, we were able to reuse
some parts of the code, such as helper functions for optical flow visualization
and shader code to create already supported data types. The author of the
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5. Implementation ...................................
tool included all the different behavior in one uber-shader, which contained
branches for separate outputs. As we wanted the output types to be easily
extendable, we separated the shader code into several distinct shader files.

The main component handling the ground truth data creation is the
UnityGTGen class. The component, attached to a camera, reads a human-
readable JSON config file and creates instances of the data generating classes.
Having the configuration stored outside the object itself (and outside the
scene description) allows multiple cameras to share the same settings and
sharing the configuration between different projects. The script itself has no
hardcoded list of available outputs since the name of the classes representing
outputs is listed in the config file. Instead, we use a feature of C# called
Reflection, where the system searches for implementations of the outputs
as classes in the GTGenOutputs namespace and instantiates them based on
which outputs are mentioned in the config file.

As we want to be able to generate data from multiple cameras at once,
there can be multiple instances of the script in the scene.

Output Types

All different data outputs inherit from the base class OutputInterface. This
class describes all public methods and variables, which the UnityGTGen
script uses when generating data.

All output types are required to have the following public members:

. A constructor which takes the current camera and config as parameters,. defaultConfig JSON string, which describes possible config values and
their defaults,. requires property, which returns a list of outputs and their configuration,
which the current output requires,. jsonconfig JSONObject property, which describes the current config
of the output,
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Figure 5.1: An example of the RGBImage output, rendered using the Unity
rasterizer.

. Save() method, called every frame when an output should be generated,. SceneChange(objectList) method, called whenever the scene changes.

RGBImage output. The primary output type saves the camera view using
all shaders set in Unity, thus generating a lit, shaded output. As an additional
configuration, the user can disable post-processing or shadow mapping for this
output. The default unity shader are based on Physically Based Rendering,
and so the rasterized output can be often used as an approximation of the
realistic view of the camera, although of lower quality than path-traced images.
An example of a view from the RGBImage output can be seen in figure 5.1.

Simple Outputs Using Replacement Shaders

Unity Camera objects have an option enabling the replacement of shaders
using the Camera.SetReplacementShader() method. The specified shader
then takes care of rendering the scene. Additionally, separate subshaders for
different render types can be defined to treat opaque, transparent, or cutout
materials differently. For these outputs, a class SimpleShaderOutput was
created, from which outputs based on replacement shaders can inherit base
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functionality. The shaders themselves are relatively simple. Similarly to the
implementation in ML-ImageSynthesis, we base them on an already existing
Unity internal shader, Internal-DepthNormalsTexture.shader, with only
differences in the behavior of the Output() function. Sadly, the meta-language
Unity uses to describe shader program behavior, ShaderLab, does not easily
support code reuse, and therefore most of the different shader implementations
share large amounts of code outside the Output() function.

In this section, different outputs based on the principle of replacement
shaders are described.

Depth output. This output generates an image with depth encoded and
shares some code from the existing ML-ImageSynthesis shader. The shader
reads the z-buffer and decodes the linear distance from camera by using the
COMPUTE_DEPTH_01 macro, which is included in Unity. Additionally, custom
near and far plane distances can be set, differing from the planes’ distances in
the primary camera. The depth is either encoded directly (thus only spanning
values of 0-255, seen in figure 5.2), or multichannel using the given conversion:

1 float lowBits = frac( depth01 * 256);

2 float highBits = depth01 - lowBits / 256;

3 return float4 (lowBits , highBits , depth01 , 1);

Normal output. This output displays normal vectors in view space of all
visible points and can be seen in figure 5.3. As normal vectors span values
from [−1; 1], conversion to the [0; 1] range must happen:

1 float3 c = normal * 0.5 + 0.5;

2 return float4 (c, 1);

Object, Mesh and Layer segmentation masks. Simple segmentation out-
puts can be rendered merely by adding a unique material property to each
object in the scene. As some objects share materials, we add them using
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Figure 5.2: An example of the depth output, closer objects are drawn darker.

MaterialPropertyBlock feature of Unity materials, allowing multiple ob-
jects to share the same material with slightly different properties. We encode
each unique segmentation label as a color property. We directly draw in a
fragment shader and write the label color to a separate text file together with
the label name.

This system is relatively simple and allows not only to be used to create
object instance segmentation, but also to segment images based on different
criteria. We can segment based on the mesh they are using (so two unique
instances of the same shape share labeling), or even label the image based on
user-defined criteria, such as the Unity layer in which the object is contained.

Motion Segmentation. For motion segmentation to be possible, we need to
track whether each object moves during the simulation. To track information
about each object in the scene, we attach a SceneObject component to every
object in the scene, which then tracks whether or not the position or rotation
of a given object changes between frames. This information is then during
rendering sent to the shader, which then labels moving objects white and
non-moving objects black. An image of this output is seen in figure 5.5.
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Figure 5.3: An example of the normals output. The XYZ vectors in view
space are remapped to the RGB color space such that pure blue is a surface
perpendicular to the camera view axis.

The current implementation works well with rigid objects but can cause
issues for non-rigid objects, as we can consider deformation to be motion as
well. As the term motion segmentation is relatively vague when talking about
non-rigid objects, we have decided to only label objects as moving when their
position or rotation changes.

Local and skinned coordinates. Information on 3D coordinates of a point in
the local space of a rigid object is useful not only when calculating occlusions
(as explained in section 3.3.7) and when tracking the movement of points in
a more extended sequence of images. With object segmentation, tracking the
position of an entire object in the image is easy. By encoding local coordinates,
tracking the points on the surface of the object is also possible. Each point is
then uniquely described by the object it belongs to and the 3D coordinates
in the local space of the object.

The rendering pipeline uses the local coordinates of each point (defined in
model space) during rendering, and therefore, it is easy to expose them. The
only issue that can arise is from the limited way the fragment shader can
output values: The shader program is only allowed to output a four-element
vector, which the GPU then converts to a color image, such that the clamped
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Figure 5.4: An example of an object segmentation map output.

output values of [0, 1] are mapped to the minimal and maximal intensity of
the represented color1. We calculate the axis-aligned bounding box of the
mesh and map the coordinates so that the output values lie in the limited
output range of fragment shaders when encoding as an image. The code
below shows such mapping:

1 float4 mapColor ( float3 input) {

2 float3 retvec ;

3 retvec = (input - BoundsLower ) / ( BoundsUpper - BoundsLower )

;

4 return retvec ;

5 }

This approach works well to track points on objects that are rigid and do
not change shape during the simulation. Points which are on objects that
deform their shape between frames (such as on skinned meshes in Unity) do
not have static local coordinates, so a different approach is needed. Instead
of using the local model space coordinates after the deformation, we output
the coordinates of each point before the deformation happened. That way,
the value of the point is still unique for each point. If the deformation
happens directly in a vertex shader, we can use the local input coordinates

1As we will discuss in the section on computing optical flow, it is possible to read the
unclamped values outside this range, but with some performance issues.
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Figure 5.5: An example of the motion segmentation output. The scene is the
same as in the RGBImage output example in figure 5.1

(mapped to a [0, 1] interval) and output it unchanged to the fragment shader
for displaying.

Unity’s skinned mesh deformation happens outside the programmable
vertex shader, and as such, our implementation works differently. When
initializing, the mesh is modified, so that the vertices encode their model
space coordinates both in the vertex position and vertex color information.
This solution could cause issues if the material in the unmodified camera
output uses the vertex color information. However, all the standard Unity
shaders do not support vertex color by default, so this issue should not come
up often. The output from the local coordinates output can be seen in
figure 5.6.

Material information. Unity standard material uses multiple input textures
to simulate the surface’s realistic appearance. Therefore, some of the input
textures themselves can be useful as ground truth information for different
algorithms. For example, drawing the albedo texture directly on the mesh
instead of shaded can help train delighting algorithms.
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Figure 5.6: An example of the local coordinates output. Each point on an
objects surface encodes the local coordinates of that point in object space.

As our primary goal is to generate ground truth data for computer vision
and scene understanding, we provide a transparency map for objects in the
scene, which can the training systems use as an ignore mask for places where
a single pixel samples multiple different points in the scene. Such a mask
is easy to generate, as we can directly use the alpha channel of either the
texture or the color of the object in a shader.

1 fixed4 texcol = tex2D(MainTex , frag.uv);

2 float val = texcol .a * _Color .a;

3 return float4 (val , val , val , 1);

Optical Flow and Motion Vectors

When implementing optical flow outputs, we implemented three approaches
using different features of the Unity engine. The resulting approaches support
different features and have different bit depths.

Unity motion vectors. Most game engines have an option to calculate
optical flow from the current frame to the previous when calculating per-
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Figure 5.7: A color encoded output from the Unity motion vector based optical
flow output. Color corresponds with the vector direction while the intensity
represents the vector magnitude, based on encoding originally in [16].

object motion blur under the title "motion vectors". In Unity documentation,
"motion vectors track the per-pixel object velocity from one frame to the next".

An implementation generating optical flow using this Unity feature already
exists in [37], where the output is encoded using HSV encoding as described
in [16]. The system encodes the directional vector using polar coordinates
and encodes the direction in the hue and the vector magnitude in the color
intensity. We reimplement the generation (seen in figure 5.7), where our
system can also output pixel-precise movement in the Middlebury .flo binary
file format [2]. To get the precise pixel values, as well as values outside the
clamped [0, 1] range, we copy the GPU texture to a CPU buffer and iterate
over it in a script, directly writing to the binary file (instead of saving the
texture to an image using a Unity builtin function). The creators of the .flo

file format did not include any compression, so saving of the output is relatively
slow. Because the computation works with relative screen coordinates in the
range [−1, 1] and .flo uses absolute pixel distance, we also remap the output
to the screen resolution range.
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The implementation using the default Unity motion vectors has a relatively
significant issue of only describing one direction of the optical flow. If we
want the flow in both directions, we need to implement the motion vector
calculation on our own. Based on the description of motion vectors from
Unity’s documentation, one might also assume the output represents forward
flow, but it does not. Unity calculates the vectors pointing from the current
frame to the previous and flips their value. This limitation is not an issue
when using motion vectors only to simulate motion blur, but for dataset
training, the data would be incorrect when treated as forward flow.

Custom optical flow calculation. If we want to have the actual forward
optical flow, one issue arises: when rendering the current scene frame, we do
not know where the objects will be in a future frame. Instead of rendering
forward flow for the current frame, we remember the state of the previous
frame and render that frame’s forward optical flow, pointing from the previous
frame to the current one.

We already save the position and rotation of each object in the previous
frame because of the motion segmentation output. Our next implementation
of optical flow calculation uses a vertex shader to transform the rendered object
both using the current and previous transformation matrix and calculates the
optical flow in the fragment shader. By switching the current and previous
matrices in the vertex shader, we can switch whether the shader renders
optical flow from current to the previous frame, or from previous to the current
frame Because perspective division only happens on the rendered vertices
during the fixed rasterization step and the differently transformed vertices
are not rendered directly, we must manually divide it by the w component in
the shader:

1 float3 curpos = (i. curpos .xyz / i. curpos .w);

2 float3 prevpos = (i. prevpos .xyz / i. prevpos .w);

3 float3 motion = ( curpos - prevpos ) * 0.5;

4 // magnitude of 1 is the size of the screen

This solution works well with rigid objects, but not with non-rigid skinned
meshes. We can set the skinned meshes in Unity to be double buffered so
that that the engine calculates the motion vectors correctly. However, this
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buffer with vertex data from the previous frame is not available in the vertex
and fragment shader when rendering an image directly.

Custom motion vector shaders. Luckily, we can fix the issue with non-rigid
skinned meshes by using a different type of shader. Unity shaders written
in ShaderLab can have different tags attached to them, describing for what
purpose each subshader code snippet (written in HLSL) is. One assignable
tag is a LightMode Pass tag, which describes in which render pass should
the engine use the shader. For example, the Unity standard shader contains
several subshaders for forward rendering – One which renders the scene with
main and ambient light, and one which renders the scene additively with
per-pixel lights, one render pass per light.

It is possible to override the default shader for calculating the motion
vectors by assigning a LightMode = MotionVector Pass tag. When used,
fragment shader does not draw to a color buffer attached to the camera,
but instead to a RGHalf Motion Vector buffer. More importantly, when
rendering skinned meshes, the previous vertex positions and several other
(undocumented) properties, such as the previous transformation matrices of
the object, are provided to the vertex shader.

We reimplemented the previous version of the shader to render into the
Motion Vector buffer instead of the color image buffer. Then we can display
the buffer by using the same shader as for rendering the original Unity Motion
Vectors directly. This approach solves the issue, as non-rigid objects now
have calculated both backward and forward optical flow.

Using the Unity managed Motion Vector buffer to draw the optical flow
does have limitations when rendering into an image directly. When rendering
to an image, we can decide the format and bit depth of the texture we render
to. The Motion Vector buffer is hardcoded always to use the RGHalf format,
which only contains two 16-bit channels of floating-point numbers. The
implementation that draws to the image buffer directly uses RGBFloat, and
therefore is more precise, due to using 32-bits per channel. It could output
scene flow as well, as we can use the third channel to encode the z direction.

56



...................................... 5.1. Backend

With the custom Motion Vector calculation, we can calculate the scene flow
for non-occluded parts of the scene by using optical flow and depth output in
conjunction, but the occluded parts of the scene are missing such information.

Another disadvantage when relying on the integrated Unity motion vector
buffer is the fact that the optical flow has to always represent two neighboring
frames. The solution in section 5.1.1 can be expanded to calculate optical
flow between arbitrary frames, since we use our own matrices for the previous
frame for which we calculate the flow.

Occlusions. Unity does not have built-in support for shadow volumes, and,
as described in section 3.3.7, calculating occlusions by the use of shadow
mapping would cause an error with an inconsistent size at the border of the
shadows. We have decided to use a post-processing approach in calculating
occlusions. Implementing the shadow volume algorithm in Unity should
be possible. However, as we want to support objects with an alpha cutout
texture, shadow volumes would not be ideal for all scenes, although it would
result in more precise occlusion maps.

We read the generated optical flow of one frame and object segmentation
and local coordinate outputs of two neighboring frames to generate an oc-
clusion map. First, we handle object-object occlusion by comparing each
point with the point shifted by the optical flow vector in the neighboring
frame. Because of the raster sampling of the neighboring frame, we check
the four closest samples of the shifted point and return the confidence value as

1 float testFour ( sampler2D target , float2 target_uv , float4

knownValue )

2 {

3 float2 pixelpos_target = target_uv * TexelSize .zw;

4 float2 uv_target_11 , uv_target_12 , uv_target_21 ,

uv_target_22 ;

5

6 uv_target_11 .x = uv_target_12 .x =

7 (floor( pixelpos_target .x) + 0.5) * TexelSize .x;

8

9 uv_target_11 .y = uv_target_21 .y =

10 (floor( pixelpos_target .y) + 0.5) * TexelSize .y;
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11

12 uv_target_21 .x = uv_target_22 .x =

13 (ceil( pixelpos_target .x) + 0.5) * TexelSize .x;

14

15 uv_target_12 .y = uv_target_22 .y =

16 (ceil( pixelpos_target .y) + 0.5) * TexelSize .y;

17

18 float ID_occlusion = 0.0;

19

20 ID_occlusion +=

21 tex2D(target , uv_target_11 ) != knownValue ? 0.25 : 0.0;

22 ID_occlusion +=

23 tex2D(target , uv_target_12 ) != knownValue ? 0.25 : 0.0;

24 ID_occlusion +=

25 tex2D(target , uv_target_21 ) != knownValue ? 0.25 : 0.0;

26 ID_occlusion +=

27 tex2D(target , uv_target_22 ) != knownValue ? 0.25 : 0.0;

28

29 return ID_occlusion ;

30 }

Afterward, we (optionally) handle self-occluding objects by using the local
coordinate output. Using this output, we do not need to use any custom
sampling, as we can rely on GPU driven texture interpolation. As there might
be some issues due to floating-point precision errors (both in the sampled
local coordinate output textures and in the optical flow texture), we return a
confidence value based on the distance between the two read local coordinates.

1 if ( SelfOcclusion ) {

2 float d = distance (Loc_cur , Loc_prev );

3 self_occlusion = clamp(pow(d ,2) * 4, 0, 1);

4 }

When we have both the object-object and self-occlusion confidence values,
we conservatively use the maximum value of both outputs as the final occlusion
map value, as the mask will most likely be used to label set of pixels which
we ignore during the learning process, and we do not wish to learn from any
occluded pixels. An example of the occlusions output is visible in figure 5.8.
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Figure 5.8: The occlusions output marks all pixels with a confidence rating
whether or not the pixel is visible in the next or the previous frame.

Text Based Outputs

To have full scene understanding, we not only need per pixel image information,
but additional per-object information can be of use as well. As such, we
provide several non-image based outputs that help with understanding the
scene itself.

Camera parameters. We expose the camera parameters of the camera
associated with the UnityGTGen component in a JSON file generated for each
frame. The file contains information about the image (such as the image
resolution), intrinsic camera parameters (such as the projection matrix and
field of view), and extrinsic parameters (such as the view matrix and world
space position and rotation).

Tagged object info. When we want to expose information on scene objects,
an issue can arise if there are many objects in the scene. Instead of outputting
information on all objects in the scene, we should allow users to select which
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objects should output additional information. For this, we use a tags system
and only information on objects with a specific tag assigned are outputted.

Unity has a built-in system for assigning tags to objects in the scene, but
the system is limited to only allow one tag per object, so we expand the
SceneObject component to contain a list of user-assignable tags. The Tagger
Object Info output then generates a JSON file for each frame, which contains
information about all objects of a given tag in the scene (using both the
Unity tags system and our custom tags). By selecting a tagged object, we
also select all of its children in the Unity scene hierarchy.

For each object of a given tag, we first check whether its renderer bounds
are within the camera viewing frustum. If the renderer bounds are outside,
Unity’s rendering pipeline guarantees that the object itself is not visible in
the image, and we do not provide additional info about it. If the object is
within the viewing frustum, we provide information about the center of its
bounds in screen space and the distance from the camera.

Afterward, we optionally provide information about the 2D and 3D bound-
ing boxes. For both of these, a helper component BoundingBoxHelper is
used. The component gets automatically assigned to all tracked objects. It
calculates a 3D axis-aligned bounding box and a convex hull of the object,
which we then use to calculate the 2D screen space bounding box at runtime.
In some cases, we want to align the bounding box differently or disable the
convex hull simplification (in case of floating-point precision errors). The auto-
matic generation can be in those cases overridden by assigning the component
to a model manually and changing its settings.

When outputting the 3D bounding box, no extra calculation is necessary,
and we output the size of the bounding box directly. The position and rotation
of the bounding box is transformed by the position and rotation of the object
itself. For 2D screen space bounding boxes, we iterate over every vertex of
the convex hull (or optionally the object itself, when hull simplification is
disabled) and calculate the bounds as such:

1 var points = hull.mesh. vertices ;
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2 foreach (var point in points )

3 {

4 var worldpoint = object . transform . TransformPoint (point);

5 var screenpoint = m_Camera . WorldToScreenPoint ( worldpoint );

6

7 screenpoint .y = m_Camera . pixelHeight - screenpoint .y;

8 xmin = Mathf.Min( screenpoint .x,xmin);

9 ymin = Mathf.Min( screenpoint .y,ymin);

10 xmax = Mathf.Max( screenpoint .x,xmax);

11 ymax = Mathf.Max( screenpoint .y,ymax);

12 }

We also optionally include world space coordinates of the object and its
local-to-world-space model matrix.

On Handling Transparency

As discussed in section 2.3, using a raster image to represent the ground truth
information comes with a disadvantage of not being able to output ground
truth on semi-transparent objects accurately. On pixels with transparent
objects, ground truth would have to represent multiple objects at the same
time. Our solution is to give each image output an alpha threshold setting.
The user can set an alpha cutoff value, and the shader generating the output
will then treat partially transparent objects with transparency below the
threshold as fully transparent.

Realistic Path Traced Camera View

Additional to these outputs, we use the OctaneRender for Unity plugin
to create a path-traced output with realistic lighting. The plugin includes
a PBR Recorder utility, which can record a Unity scene running through
the editor, either directly path-traced during gameplay as PNG images
or saved in an intermediary ORBX file format for later rendering in the
OctaneRender Standalone utility. When directly path-traced, the images lack
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Figure 5.9: Image outputs with increasing levels of lighting realism. Left to
right: Unity rasterizer with no shadows, Unity rasterizer with hard shadows
created using shadow mapping, OctaneRender path-tracer. The path-traced
image correctly simulates soft shadows and global illumination, which are missing
in the rasterized images. It also includes an accurate motion and defocus blur.

motion blur. Therefore, we use the ORBX recorder mode to save the scene
into a separate ORBX file which includes the animations and render the final
results separately. Rendering to the separate scene description file also allows
us to change certain parameters such as camera shutter speed or exposure
after the simulation itself was completed. Comparision of visual differences
with and without path-tracing can be found in figure 5.9.

When using the OctaneRender path tracer, we can also use more com-
plex materials, for which we can more precisely define parameters such as
transparency, subsurface scattering or index of refraction. Such materials,
though, are not accessible in Unity and cause the transparency output to
return incorrect values.

5.1.2 GT Manager

When using multiple cameras, some options are common between all cameras,
for instance the time and frequency when the ground truth images should be
generated. The GTManager class is a manager component, which takes care
of configuring behavior which should be common between all outputs in the
scene.
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One such behavior is deciding when the outputs should be generated, and
the duration of the output generation. We allow generation to be set to run
constantly, in a single frame, or in a given frame count or time duration. The
manager also defines common folder, in which all of the different camera
outputs are saved.

The manager also takes care of additional behavior, such as warning the
user that they’re trying to generate a new dataset when the changes in the
scene weren’t commited to git. The user can start the ground truth generation
inside the manager inspector GUI.

5.1.3 Interfacing with OctaneRender

Although the built-in Unity renderer can approximate real images relatively
well, it still has some limitations, the main being the absence of realistic
motion blur and depth of field simulation. To overcome such limitations and
get a more realistic physically based image, we use an third party path-tracing
renderer OctaneRender. The renderer has limited integration with the Unity
game engine through the OctaneRender for Unity plugin, which is developed
by OTOY, the company behind OctaneRender.

The plugin adds several new components inside Unity, one of which being
the PBR Render Component, through which we can configure a path traced
viewport to the scene. By default, there are two ways of getting path traced
output from Octane, either by rendering directly in edit mode, or by rendering
during the Unity play mode through OctaneRecorder component. As we
want to render the scene during simulation, which happens inside the play
mode, we can use the OctaneRecorder to set a duration in which the frames
are rendered and render the images there.

Unity runs the simulation by stepping through discrete moments in time
and when rendering directly inside the OctaneRender for Unity plugin, this
approach makes it impossible to render motion blur. However, OctaneRe-
corder can, instead of rendering the scene directly, save the scene to an ORBX
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scene description file, which, when rendered separately, can include motion
blur by interpolating the stored animations.

One of the limitations of the OctaneRender for Unity plugin is that the API
lacks proper documentation and is only distributed as a single .dll file with no
source code. Therefore, we used a C# decompiler inside the JetBrains Rider
IDE to explore the publicly available methods of the plugin and directly call
them inside GT Manager when rendering the ground truth outputs enhanced
by OctaneRender.

Another limitation of the plugin is the fact that it only allows rendering
from a single camera. We want to be able to generate the ground truth
information for multiple cameras at the same time, and because of that, we
need to replay the scene multiple times to record the OctaneRender managed
cameras separately. Saving the motion of all the objects and recording the
entire scene to separate ORBX files can create very large files with duplicate
information. To avoid saving these large ORBX scene file multiple times,
instead of replaying the entire scene, we only record the camera movement
and record it in an empty scene, generating much smaller files. Then, we use
the Lua scripting capability of OctaneRender Standalone to copy the camera
movements from the small ORBX files into the main file containing all the
scene information. This main file is then used for final rendering.

5.2 User Interface

Workflow with the ground truth generator is based on workflow inside the
Unity editor, which the tool extends. The Unity editor allows for creation
of standalone apps, so we limit the generation only to the editor itself. The
reason was that OctaneRender for Unity plugin, on which we rely when
creating the path-traced realistic output, doesn’t support rendering of the
exported standalone, and so the ground truth generator would be severely
limited when exporting the standalone app. Creating the tool as an editor
extension instead of running standalone allows the user to always have full
control over the scene for which they generate the ground truth.
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The Unity editor allows the user to create a 3D scene with an object
hierarchy and modify the object behavior by assigning components to them.
The components represent C# scripts, and their public properties are by
default visible in the user interface. We can override the default GUI by
creating an Editor class with a CustomEditor attribute linking it with the
script to which the editor belongs.

When creating the settings GUI, we first focused on the UnityGTGen

component. The component, attached to a camera, uses a JSON based file
to configure which outputs will the camera generate. The custom editor GUI
then enables selecting which file will be loaded and manipulating with the file
outside a text editor. The editor also allows editing the JSON information
directly, such as adding which outputs the user will be generating, and
allows configuring the outputs themselves. When adding new output types,
the editor lists all implemented output types and displays them. When
configuring a specific output, it also shows all available options by querying
the implementation of the given output. The interface of the UnityGTGen

component is visible in figure 5.10.

When a scene and its outputs are set up, the GTManager component is the
main module the user interacts with. Global settings such as when the ground
truth is generated can be set in the user interface, and the user can launch
the generation itself by using a button in the component inspector. The
component also takes care of recording the scene when using OctaneRender
for Unity plugin, allowing users to generate path traced output with realistic
lighting. The interface of the GTManager component is visible in figure 5.11.

Currently, there is no command line interface to run the tool, but as Unity
supports executing C# scripts from the command line, such functionality
could be added. Optionally, more feature rich API’s could be also added, with
functionality similar to UnrealCV [29]. Additionally, we have experimented
with controlling the tool through the AutoHotkey automation system.
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5. Implementation ...................................

Figure 5.10: User interface of the UnityGTGen component allows the user to
select which camera config file will be used and edit the file inside the editor.

Figure 5.11: User interface of the GTManager component allows the user to
set when the ground truth will be generated and start the generation. It also
optionally allows launching the generation with the OctaneRender for Unity
plugin.
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Chapter 6

Results

In this chapter, we state the results of the project. We describe the function-
ality of the tool used for dataset generation from the users point of view, and
finally, we present three example datasets, which we generated using the tool.

6.1 Using the utility

We have designed and implemented a utility to generate datasets which
include camera view and various ground truth data as described by the
implementation in chapter 5. Together with the tool, we created a user
documentation in the form of a GitLab wiki, which we distribute both as a
PDF and a separate HTML page together with the tool itself. In this section,
we describe the usage of the tool to generate a dataset.

We distribute the utility as a plugin for the Unity game engine. When
a user wants to create a dataset, they first need to make sure their scene
works in the supported version of Unity 2019.3.5f1 and that the scene can
run non-interactively.
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6.1.1 Installing and Generating First Dataset

The plugin has two dependencies, the OctaneRender for Unity plugin, created
by OTOY and available through the Unity Asset Store, and the Editor
Coroutines package, distributed through the Unity Package Manager. After
installing both these dependencies and setting up OctaneRender through its
installer scene, we can set up the ground truth generation plugin itself.

Adding the plugin to a Unity project is straightforward. We add the folder
containing the plugin to the Assets folder in the Unity project file structure,
either by copying directly or by cloning from the git repository of the project.

After including the plugin folder, we add the GT Manager prefab from
the plugin to the scene. The prefab, containing a game object with the GT

Manager component attached to it, can be used to configure which frames
from the scene run will be saved to the dataset.

To set up cameras in the scene so that they generate the ground truth,
we attach the Unity GT Gen component to a camera object. Inside the
inspector, we can set up the format of the generated ground truth. We set the
resolution shared between all outputs from the camera and can add any of
the implemented ground-truth outputs, which are described in section 5.1.1.
For each output, we can then change its specific settings.

Finally, to generate the dataset itself without the use of OctaneRecorder,
we open the GT Manager component in the Unity inspector and click on
"Record without Octane". If we want to include the path-traced camera
view from OctaneRender, we need to set up the OctaneRender PBR Render
Target to use the camera for which we generate the ground truth and use the
OctaneRecorder window to set up the duration and recording mode of the
rendering. Finally, we can use the GT Manager to record the scene together
with OctaneRecorder by using the Octane foldout menu.
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Setting Up OctaneRender

When setting up OctaneRender for Unity plugin, we add a PBR Render
Target to the scene and in the Camera foldout select which camera in the scene
will be rendered. Inside the PBR Render Target, there is a lot of different
options, but some are important for the output to work as an extention of
our dataset. Under Film settings→Resolution, the resolution (or at least its
aspect ratio) should be the same as the resolution we set inside the ground
truth generator. The render target settings can influence the speed of the
rendering quite a bit, and lowering the maximum sample count and enabling
denoising can create sufficiently realistic images for basic dataset creation
(although higher sample counts are still useful).

6.2 Example Datasets

In this section, we show several small datasets created during the development
of the tool. The datasets all target teaching and evaluating machine learning
algorithms for computer vision, but are all intended for different uses. We
do not treat them as final datasets for training algorithms (due to the low
number of frames in each dataset), but more as examples of the types of data
the tool can generate. A comparison of the ground truth data in our example
datasets and a selection of currently available datasets is shown in table 6.1.
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CTUFlyingThings X X X X X X X X X X 600
Dense X X X X X X 270
Traffic X X X X X X X X 700
FlyingThings3D [25] X X X X X ≈ 20, 000
KITTI [26] X X X1 X1 X X X ≈ 15, 000
COCO [23] X X2 ≈ 200, 000

1 Only sparse data available.
2 Select categories are segmented by hand.

Table 6.1: Comparison of different ground truth outputs included in the example
datasets and a selection of currently available datasets.

6.2.1 CTUFlyingThings

The first generated dataset, which we call CTUFlyingThings, is a dataset
inspired by the FlyingChairs [10] and FlyingThings3D [25] datasets. In the
original datasets, a set of random rigid objects float in front of the camera.
The motion of the objects is always planar and the objects intersect each
other. In our dataset, we use the rigid body simulation that is a part of the
Unity game engine. Gravity does not influence the simulation, so they still fly
around the view of the scene, but instead of objects intersecting, they bounce
off each other. The objects’ initial position, rotation, and scale is randomized
and the camera moves on a hemisphere viewing the center of the simulated
scene.
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.................................. 6.2. Example Datasets

(a) : OctaneRender output

(b) : Unity RGB (c) : Depth

(d) : Normals (e) : Object Segmentation

(f) : Backward optical flow (g) : Forward optical flow

Figure 6.1: An example from the CTUFlyingThings-Example dataset with a
selection of different ground truth outputs. The optical flow is visualised by
color, hue encodes the direction and saturation encodes the vector size.
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We generated a short sequence with a random distribution of objects and

their motions. We provide an RGB view generated using the Unity rasterizer,
instance segmentation masks, optical flow information based on modified
unity motion vectors, normals, and depth information. We also include a
realistic path traced view generated using OctaneRender and a Cryptomatte
pass for all the images. The Cryptomatte output can be used to create a
precise antialiased mask for each object in the image using Blender.1 Example
image outputs from the dataset can be seen in figure 6.1.

6.2.2 CTUDriving

As part of the research at the Toyota Research Lab at the Czech Technical
University, several other students have created a semi-procedurally generated
city scene with traffic simulation. We have used a work-in-progress version of
the scene to create two different example sequences. One focuses on traffic
driving through the scene, and the other focuses on object detection and
enumeration in dense scenes.

We base both of the scenes on a road network with buildings and road
meshes generated procedurally using the CityEngine software, a modeling
application designed to generate 3D urban environments.

Dense Scene Dataset

The dense scene dataset shows a large parking lot, which is randomly popu-
lated with different cars. For each frame of the dataset, the camera selects
a random position and rotation. For this dataset, we provide object seg-
mentation map and 2D and 3D bounding boxes for all vehicles parked in
the scene. We do not provide optical flow or other motion information, as
the dataset does not contain an image sequence but many unique images
instead. The scene contains around eighty cars and is targeted to train both

1We can automate the process of Cryptomatte extraction by using a plugin created by
Jonáš Šerých, which is available at https://gitlab.com/serycjon/cryptomatte_export/
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.................................. 6.2. Example Datasets

(a) : Path traced OctaneRender output

(b) : A mask of a single car created from the CryptoMatte output

Figure 6.2: The view of the Dense scene dataset from the CTUDriving scene

detection and density estimation. The dataset contains 290 images, There
are several publicly available datasets for car density estimation based on
images from real-life traffic cameras, but none of them as far as we know
contains 2D bounding boxes for partially occluded vehicles. Example image
outputs from the dataset, together with a mask that can be extracted from
the CryptoMatte output is seen in figure 6.2.
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Traffic Dataset

The example traffic dataset is a sequence of 700 frames, each of which shows
several different from a car with four cameras attached to it. We generate
RGB view using the Unity rasterizer, instance segmentation naps, motion
segmentation, optical flow information, normals and depth information. We
include realistic path traced view generated using OctaneRender including
the Cryptomatte output. Example images from the dataset can be seen in
figure 6.3.

Figure 6.3: The traffic dataset includes four cameras attached to a car. The top
image shows the current layout of the scene, while the four images below show
front, back, left and right path-traced views of the scene.
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This is currently the biggest dataset generated using the tool, and during
the generation, some issues concerning the occlusions output were found.
Therefore, we do not include the incorrectly calculated output. The issue
is that we use the local coordinates output during the computation, but
that output does not have enough of a floating point precision to correctly
represent the large meshes of the buildings.

6.2.3 Performance

The hardware specification of the device the datasets were generated on are
as follows:

.CPU: AMD Ryzen 7 3700X.GPU: NVIDIA GeForce RTX 2080 Ti (2×).RAM: DDR4 64GB (4×16GB). Storage: Kingston SKC2000M8/2000G SSD.Motherboard: Gigabyte X570 Aorus Pro

The performance of the utility heavily depends on which outputs we
generate. When generating the images, the generation itself rund on the GPU
and can be done in real-time. When saving the output, the texture must
be read from the GPU memory and then encoded into a PNG or a different
supported format using the CPU, which is a relatively slow operation. Using
the Unity profiler, we can see that reading a 1920× 1080 texture to the CPU
memory can take between 40 to 200 milliseconds, possibly due to pipeline
stall, as the CPU thread has to wait for the GPU to finish rendering. This
issue could be optimized by batching all the rendering commands and all the
memory read commands to run separately so that the pipeline stall is less
likely to happen.

When encoding the images located in CPU memory and saving them to
an SSD storage, we use the Unity included EncodeToPNG() function. The
performance of this function is a bottleneck, as it can take around 100 to 200
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milliseconds to store one FullHD image. Encoding optical flow information in
a .flo file is also speed inefficient, as the file format uses no compression and
the file can take up over 16 megabytes per one FullHD frame. If we want to
include both forward and backward flow and simulate the scene at 30 frames
per second, we get almost 1 gigabyte of data for one second of simulation.
This value is greater than the write speed of most commonly available storage
devices, and so a different format to represent optical flow might be necessary.

The most time-demanding part of generation occurs when we use the
OctaneRender for Unity plugin to render realistic path-traced RGB camera
outputs. The render time depends on the number of samples set in the
render settings and the scene structure itself. When rendering, the plugin
first imports the Unity scene hierarchy and materials and converts them to
the internal representation used by OctaneRender. If there are many unique
materials used in the scene, this can take several minutes, but it happens only
once before the render starts. Rendering of individual frames can then run,
which can take several seconds or even minutes per frame. We can speed up
rendering by limiting the number of samples and enabling AI denoising inside
OctaneRender, limiting the number of light bounces, lowering the resolution
or by simplifying the geometry of mesh lights.

6.3 Limitations

The tool has several limitations, which could cause problems when generating
datasets from certain scenes in Unity. First, the project is built for the Built-In
Render Pipeline inside Unity and we have not fully tested support for the two
other render pipelines currently distributed with Unity (the Universal Render
Pipeline and the High Definition Render Pipeline). Therefore, scenes originally
built using those render pipelines may have problems while rendering.

There are some limitations in the current implementation of the shader
based ground truth outputs. Because of the way how Unity compiles shaders
inside the editor and allocates buffers, the first two to three frames of every
sequence are invalid and show many serious errors. In our implementation,
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the Occlusions output currently does not support nonrigid skinned meshes.
Rendering this ground truth output for objects such as humans is not possible.
The output also works incorrectly when larger meshes (such as buildings in
the CTUDriving Traffic example dataset) are present in the scene, as it relies
on precise local coordinates, which are not available due to floating point
precision issues.

The segmenting into user defined categories is also currently limited by
segmenting based on Unity layers, and therefore is limited to 32 unique labels,
as that is the maximum number of layers Unity supports. When rendering
the forward optical flow, the values in the skybox are incorrectly flipped and
show backward flow, though this can be fixed by flipping the values when
parsing, as skybox is colored black in the object segmentation mask.

Some techniques used to optimize rendering of scenes can also break the
ground truth outputs. For example, a common technique relies on replacing
the models in the scene for less complex models when the objects are further
away from the viewer (level of detail). Our implementation of segmentation
would consider the two different models of the same object as entirely different
objects, instead of treating them as one instance. Similarly, optical flow would
be incorrectly calculated, as it operates with the model which is currently
used.

Many of the limitations also come from the reliance on OctaneRender
for Unity plugin to generate the path traced images. The plugin itself also
supports only the Built-In Render Pipeline, and can often crash when set up
incorrectly. Our current implementation of the multi-camera recording (which
the plugin officially doesn’t support) is a relatively complex and requires a
lot of human intervention (for example, manually running a script to merge
the different ORBX files).

An issue also comes up when rendering a scene with a large number of
objects through the plugin. During the set up of some outputs (such as Object
Segmentation), we assign each material in the scene an unique property block
that contains some information for ground truth generation, which causes
the OctaneRender for Unity plugin to import them one by one, taking much
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longer than when such output isn’t generated. This could be solved by saving
the scene simulation as and animation and recording the ground truth data
separately from the OctaneRender output during subsequent replays of the
scene.
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Chapter 7

Conclusion

In this chapter, we recapitulate the project. We describe the achieved goals
and possible future work on the project.

7.1 Project Summary

We introduced the problem and included a short motivation for the project.
We described our goal of creating a tool simplifying synthetic dataset creation.
We explored different existing datasets, both real-life and synthetic, and
explored which tools are used to create different datasets and how the different
ground truth data can be represented.

We introduced different subjects of simulation. We discussed the RGB
camera simulation, briefly talked about the world simulation, and described
different ways we can measure ground truth data inside the simulation.
We recounted depth, normals, bounding box, segmentation, optical flow,
occlusions, and camera calibration outputs. We discussed different ways the
outputs can be understood, and how we, based on our understanding, could
generate the outputs and what pitfalls can occur during the generation.
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We selected Unity as a framework on which we built the tool used to

generate datasets. We outlined the structure of the individual components
the tool consists of and which parts are responsible for generating which
ground-truth outputs. We described which ground truth information we
target and specified a few example scenes that demonstrate the tool’s usage.

We detailed the implementation of the tool in section 5. We recounted the
generation of each ground truth type, including code snippets. We described
the interaction with OctaneRender for Unity plugin and describe the graphical
user interface of the tool.

We presented the resulting tool and described its primary usage. We
then presented three example datasets, each targeted at a distinct computer
vision task. We compared the generated datasets with a selection of existing
datasets. Finally, we described the performance of the tool.

7.2 Future Work

We plan to further work on the tool, by implementing additional outputs, such
as the amodal segmentation mask output discussed in 3.3.5 or stereo disparity
and occlusions. We also wish to allow users to define segmentation by using
the tags system, instead of segmenting only based on the objects in Unity
hierarchy. We also hope to automate the interaction with OctaneRender
better, so that no human interaction is necessary when generating scenes with
multiple camera views. Finally, we plan on using the tool to generate datasets
based on more complex scenes at the Toyota Research Lab and release the
datasets as part of a computer vision benchmarking challenge. We also wish
to release the tool as part of the dataset, hoping that more Unity scenes
benificial for machine learning will be created using the tool.
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Appendix B

Content of the Accompanying Medium

. thesis-Bubenicek.pdf – the PDF of this document. latex\ - LaTeX source code (compiled in Overleaf with pdfLaTeX and
TeXLive 2019).. src\ - Source code of the Unity plugin, install by copying inside the
Assets folder.. wiki\ - Offline copy of the gitlab wiki documentation of the tool, includ-
ing a version exported to html and pdf.. example-project\ - Example project with the CTUFlyingThings scene.. example-datasets\ - Small selection of the generated datasets. As the
full datasets take up several gigabytes, contact me if you wish to access
the full version (bubentom@fel.cvut.cz or tombuben@gmail.com).
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