Bachelor Project

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Computer Graphics and Interaction

Weathering of rocks

Weathering simulation of sandstone formations

Vojtéch Cimbura

Supervisor: Ing. Jaroslav Sloup

Field of study: Open informatics
Subfield: Computer games and graphics
May 2020

ii

cvuT ZADANI BAKALARSKE PRACE

CESKE VYSOKE
UCENI TECHNICKE
V PRAZE

I. OSOBNI A STUDIJNi UDAJE
e N
PFijmeni: Cimbura Jméno: Vojtéch Osobni Cislo: 474637

Fakulta/Ustav: Fakulta elektrotechnicka
Zadavajici katedra/istav: Katedra pocitacové grafiky a interakce

Studijni program: Oteviena informatika

Studijni obor: Pocitacové hry a grafika
\ J
Il. UDAJE K BAKALARSKE PRACI
~N
Nazev bakalarské prace:
Simulace zvétravani hornin
Nazev bakalafské prace anglicky:
Weathering of rocks
Pokyny pro vypracovani:
Seznamte se s fyzikalnimi a chemickymi procesy zvétravani hornin a metodami jejich simulace pouzivanymi v pocitatové
grafice [1-5]. Provedte resersi existujicich metod a porovnejte je z hlediska simulovanych procesl zvétravani. Vytvorte
interaktivni aplikaci, ktera bude simulovat zvétravani hornin a sedimentaci erodovaného materialu.
Funkénost a moznosti metody demonstrujte alespon na tfech riznych scénach a vysledky porovnejte se skute¢nymi
fotografiemi. Zhodnotte pamétovou a operacni slozitost implementace.
Implementaci provedte v C/C++ s vyuzitim OpenGL.
Seznam doporucené literatury:
[1] McKay T. Farley: Fast Spheroidal Weathering with Colluvium Deposition. Master thesis, Brigham Young University,
2011.
[2] Matthew Beardall, Mckay Farley, Darius Ouderkirk, Jeremy Smith, Michael Jones,Parris K. Egbert: Goblins by Spheroidal
Weathering. Eurographics Workshop on Natural Phenomena, pp. 7-14, 2007.
[3] Michael D. Jones, McKay Farley, Joseph Butler, Matthew Beardall: Directable weathering of concave rock using
curvature estimation. IEEE Transactions on Visualization and Computer Graphics, vol.16, num.1, p.81-94, 2009.
[4] A. Peytavie, E. Galin, J. Grosjean, S. Mérillou: Arches: a framework for modeling complex terrains. Computer Graphics
Forum, Vol. 28, No. 2, pp. 457-467, 2009.
[5] E. Galin, E. Guérin, A. Peytavie, G. Cordonnier, M.P. Cani, B. Benes, J. Gain: A review of digital terrain modeling.
Computer Graphics Forum, Vol.38, No.2, pp. 553-577, 2019.
Jméno a pracovisté vedouci(ho) bakalarské prace:
Ing. Jaroslav Sloup, Katedra pocitacové grafiky a interakce
Jméno a pracovisté druhé(ho) vedouci(ho) nebo konzultanta(ky) bakalarské prace:
Datum zadani bakalaiské prace: 12.02.2020 Termin odevzdani bakalarské prace:
Platnost zadani bakalarské prace: 30.09.2021
Ing. Jaroslav Sloup podpis vedouci(ho) ustavu/katedry prof. Mgr. Petr Pata, Ph.D.
L podpis vedouci(ho) prace podpis dékana(ky))

CVUT-CZ-ZBP-2015.1 Strana 1z 2 © CVUT v Praze, Design: CVUT v Praze, VIC

ll. PREVZETi ZADANI

Student bere na védomi, Ze je povinen vypracovat bakalarskou praci samostatné, bez cizi pomoci, s vyjimkou poskytnutych konzultaci.
Seznam pouzité literatury, jinych pramenu a jmen konzultant(je tfeba uvést v bakalarské praci.

Datum prevzeti zadani Podpis studenta

CVUT-CZ-ZBP-2015.1 Strana2z 2 © CVUT v Praze, Design: CVUT v Praze, VIC

Acknowledgements

I would like to extend my sincere thanks
to my supervisor, Ing. Jaroslav Sloup,
for his guidenance and valuable advises
and suggestions. I am also grateful to my
family for their kind support and under-
standing. To my friends, thank you for
listening, offering me advice, and support-
ing me through this entire process.

Declaration

I declare that this work is all my own work
and I have cited all sources I have used in
the bibliography.

Prague, 22. May 2020

Abstract

This bachelor thesis discusses rock weath-
ering simulation techniques in the field of
computer graphics and suggests an imple-
mentation of an application dealing with
this subject. An application producing
realistic rock formations might find use
in computer-generated animations and
games, because modelling of specific rock
formations and at the same time keeping
the realism of the modelled object can be
demanding.

Keywords: Computer graphics,
Simulation, Weathering, Spheriodal
weathering, Erosion

Supervisor: Ing. Jaroslav Sloup
Karlovo nameésti 13

121 35 Prague 2

Czech Republic

vi

Abstrakt

Tato bakalarska prace pojednava o simula-
cich zvétravani v ramci pocitacové grafiky
a soucasné navrhuje implementaci apli-
kace, kterd umoznuje simulaci zvétravani
skal. Aplikace umoznujici automatickou
generaci vérohodnych a redlnych skalnich
utvartt muze najit uplatnéni ve videoher-
nim i filmovém primyslu, protoze ruc¢ni
modelovani skalnich Gtvart a zaroven za-
chovani co nejvétsi realisticnosti modelu
je ¢asové narocna a slozitd ¢innost.

Kli¢ova slova: Pocitacova grafika,
Simulace, Zvétravani, Sférické zvétravani,
Eroze

Preklad nazvu: Simulace zvétravani

hornin

Contents

1 Introduction 1l

2 Geological principles of sandstone

landforms
2.1 Basic weathering types
2.1.1 Physical and mechanical
weathering
2.1.2 Chemical weathering
2.1.3 Biological weathering

2.2 Spheroidal weathering

2.3 Cavernous weathering
2.4 Fractures within a rock 8
2.5 Gravitation impact on a rock.... [9|
3 Related work 11
3.1 Data representation possibilities

3.2 Spheroidal weathering simulation

3.3 Spheroidal and Cavernous
weathering simulation

3.4 Spheroidal weathering on GPU .

vii

3.5 Material stack based simulation
with rockfall

4 Analysis and Solution

4.1 Application structure..........
4.1.1 Voxel grid.................
4.1.2 Voxel grid scale

4.2 Configuration files

4.3 Data export..................

4.4 Spheroidal weathering
implementation.................

4.5 Material deposition
implementation.................

4.6 Gravitation force impact
implementation.................

4.7 Fractures propagation
implementation.................

5 Results

5.1 Goblin

5.5 Memory requirements and

complexity evaluation
6 Conclusion 41

6.1 Future work and possible

improvements [41]
Bibliography 43
A User interface 47|

B Third party programs references,
application usage 51

B.1 Used third party programs and

libraries
B.2 Usage and source code

C List of attachments 53

viii

Figures

1.1 Left: A goblin in Goblin Valley
State Park, Utah, USA (from [I]),
Right: Goblins created by spheroidal
weathering (from [2]).

1.2 Left: The Bohemian Switzerland
National Park (from [3]), Right: A
rock city created by spheroidal and
cavernous weathering (from [2]). ...

2.1 Pressure release causes the rock to
break off into leaves or sheets along

joints (from []).

2.2 Frost wedging illustration (from

2.3 A stalagmite was formed due to

dissolution (from []).
2.4 Left: Tree roots in rock, Anna

Ruby Falls, GA, USA; Right:

Closeup of lichen, Stone Mountain,

GA, USA (both from [4]).......... (§
2.5 A goblin in the Goblins National

Park, Utah, USA (from [6])........

2.6 Rock erosion caused by cavernous
weathering, Altdahn Castle in the
Palatinate Forest, Germany (from

ix

2.7 Macrocrack propagation under
normal stress at 3.0 MPa, from left
to right: a) first tension macrocrack
I1; b) second tension macrocrack 12;
¢), tension macrocracks joined by
shear cracks II, leading to final

rupture (from [8]). 9

2.8 Result of experiments with
sandstone rock formations. Top left
picture shows the Delicate arch in

Utah, USA (from [9]).

3.1 Voxel data-structure (from [10]).

3.2 Material stack based
data-structure (from [I1]).

3.3 The architecture of goblin
simulation program presented in

3.4 The spheroidal weathering process;
Left: Before; Right: After the
simulation (from [2]).............

3.5 Cavernous weathering principle;
Left: Before; Right: After the
simulation (from [2]).............

3.6 Code path with Core 1 executing
different instructions set (from [12]).

3.7 Material layers stabilization
according to the angle of repose for
different materials (from [I1]).

4.1 The application flow visualized.

4.2 a) Gaussian distribution for layer
weathering rates, b) Gaussian
distribution for voxels within the

layer. i

4.3 Left: A voxel grid with default
density, Right: A 2x denser voxel

grid. ...

4.4 Limits of variables located in
configuration file.

4.5 A rock city exported to ParaView

4.6 Left: A goblin after the simulation
is finished, Right: The same goblin
exported to ParaView.

4.7 A 2D view in a Width x Depth
plane on Phase I and II voxels, yellow
color represents the currently
processed voxel.

4.8 Deposition algorithm principle
visualized., 25|

4.9 Generated voxel grid in initial
state, Left: gravitation force applied,
Right: without gravitation force. .

4.10 A goblin after 25 simulation steps,
Left: simulation with gravitation
force applied, Right: simulation
without gravitation force.

4.11 Left: Generated fracture in a
fracture-only rendering mode, Right:
the whole rock exported to ParaView
with visible fracture. 28

5.1 Elapsed time measured at each 5

step. ... 30|

5.2 Left: The generated voxel grid,
Right: The rock after 50 simulation

steps. ... 31

5.3 Left: The rock visualised in
Blender, Right: The reference picture
(from [1], edited).

5.4 The same goblin created in our
application and visualized in Blender,
Left: 2x bigger scale, Right: 5x
bigger scale.

5.5 Overhanging Point, Bruce
Peninsula National Park, ON,
Canada (from [I3]).

5.6 Overhang - elapsed time measured
at each 5" step.

5.7 Left: The generated voxel grid,
Right: The rock after 50 simulation

steps. ... (34

5.8 Closeups of the simulation results,
rendered in our application.

5.9 Left: Closeup of the rock visualised
in Blender, Right: The reference
picture (from [14], edited).

5.10 Left: Closeup of the rock
visualised in Blender, Right: The

reference picture (from [13],
edited).

5.11 Arch - elapsed time measured at
each 5% step.

5.12 Left: The generated voxel grid,
Right: The rock after 50 simulation
steps.

5.13 Left: The rock visualised in
Blender, Right: The reference picture
(from [I5], edited).

5.14 Rock city - elapsed time measured
at each odd step.

5.15 Left: The generated voxel grid,
Right: The rock after 15 simulation
steps.

5.16 Left: The rock visualised in
Blender, Right: The reference picture
(from [16], edited).

A.1 The Application Log window.
A.2 The Main Menu window. 48|
A.3 File browser window. 48

A4 Tools window is displayed when a
simulation scene is rendered.

49

Xi

Tables

5.1 Computer specifications.
5.2 Goblin - Elapsed time of each
algorithm during the simulation. . .
5.3 Overhang - Elapsed time of each
algorithm during the simulation. . .
5.4 Arch - Elapsed time of each
algorithm during the simulation. . .
5.5 Rock city - Elapsed time of each
algorithm during the simulation. . .

5.6 Time complexity of our algorithms,
N is the number of voxels, b is the
branching factor and d is the length

of the path.
5.7 Spheroidal weathering algorithm -

computational time comparison.
A.1 Camera movement in the scene.

Chapter 1

Introduction

Landscape is unique on every place on Earth and changes with latitude,
longitude and climate. People studied the impact of natural forces on the
landscape throughout the years in order to predict the landscape development
in the future. With the development of computer graphics, attempts to
simulate the landscape in the virtual world has become a popular topic.
Nowadays, it is possible to recreate many kinds of real landscape, which is
particularly useful for movie industry or computer games. Several approaches
to the landscape simulation were invented, however, there is still a small
amount of landforms not easily reproducible, especially when automatic
generation is required. A goblin, or hoodoo, is considered one of those.
Goblins are usually formed by a combination of spheroidal weathering and
erosion. Thanks to the goblin’s unusual shape, the geological processes behind
the forming of goblins were precisely investigated and algorithms capable
of goblin creation were created. A comparison of a real goblin and goblins
created thanks to an algorithm implementing spheroidal weathering and
erosion can be seen in Figure 1.1

Figure 1.1: Left: A goblin in Goblin Valley State Park, Utah, USA (from [I]),
Right: Goblins created by spheroidal weathering (from [2]).

1. Introduction

In Figure there is a spectacular view on a rock formation called rock city,
which was also created thanks to weathering and erosion. The photography is
accompanied by a simulation attempt resembling a rock city. The goblin-like
shape of individual rocks suggests that the forces applied are similar even
though both rock formations are located on different continents.

Figure 1.2: Left: The Bohemian Switzerland National Park (from [3]), Right:
A rock city created by spheroidal and cavernous weathering (from [2]).

It is advisable to get acquainted with the basic geological principles first.
Therefore, Chapter |2| will discuss the geological processes behind the creation
of spectacular rock formations. Majority of presented processes are associated
with sandstone rocks, since those tend to weather the most. Chapter |3|intro-
duces various existing methods and algorithms implementing the spheroidal
weathering, as well as other simulation algorithms. Following Chapter 4| de-
scribes the problem analysis, suggests solution and introduces the application
structure. Finally, the simulation results will be evaluated in Chapter 5| and
the work concluded in Chapter [6

Chapter 2

Geological principles of sandstone
landforms

In this chapter we will focus on the geological processes behind forming
sandstone landforms. Sandstone is generally known for its ability to create
large diversity of shapes. The shape of the created landform depends on
many factors, such as sandstone type, climate conditions, weathering and so
on. The most essential factors will be further reviewed in this chapter. The
weathering types are introduced in Section More complex weathering
types, such as Spheroidal weathering and Cavernous weathering, will be
discussed in Sections and An easily noticeable geological activity,
fracturing, will be discussed in Section 2.4, Finally, the gravitation force
impact on the rock will be examined in Section

Let’s consider the difference between weathering and erosion. Generally,
weathering is a process of break down of rocks, soil, and minerals. On the
other hand, erosion involves the movement of rocks by water, wind, waves
and gravity. The eroded material is then being transported and relocated,
causing the exposure of rock. Usually, weathering and erosion go hand in
hand - weathering disintegrates the rock, erosion transports the loose material.
However, one should distinguish between those phenomenons.

3

2. Geological principles of sandstone landforms

B 2.1 Basic weathering types

The weathering causes can be divided into three main categories as described
in a short article by Pamela J. W. Gore [4]. The categories are Physical
and mechanical weathering, Chemical weathering and Biological weathering.
Physical weathering disintegrates rock through mechanical processes, which
are further described in Subsection Chemical weathering decomposes
rocks using chemical reactions. Biological weathering is considered as a
weathering, where a living organism is present on the rock, affecting or
damaging the rock structure. All three types are further discussed in this
section.

B 2.1.1 Physical and mechanical weathering

Frost weathering, or frost wedging, is a type of physical weathering. Water
freezes in tiny cracks or holes, creating stress within a rock. This phenomena
occurs repeatedly and thus makes the holes larger. Frost weathering can occur
anywhere where water is present and the temperatures are below -3 Celsius
[I7]. Thermal expansion is caused by repeatedly and regularly changing
temperature. Heat causes the rock to expand, whereas cooling results into
contraction. Furthermore, different minerals expand and contract at different
rates resulting into stresses along mineral boundaries and eventually cause
the crack to create along different material layers. In Pressure release, also
known as unloading, rock breaks off along joints. Underlying rocks release
pressure by expanding, which causes the uplifting mass to fracture parallel

the surface (Figure [2.1)).

Figure 2.1: Pressure release causes the rock to break off into leaves or sheets
along joints (from [4]).

2.1. Basic weathering types

Joints

Figure 2.2: Frost wedging illustration (from [5]).

B 2.1.2 Chemical weathering

Hydrolysis is a chemical reaction, where water reacts with several minerals.
Silicate minerals weather to form clay. Variety of metals undergo Oxidation
- oxygen combined with iron-bearing minerals results into "rusting". This
gives the affected rocks a reddish-brown coloration on the surface which
crumbles easily and weakens the rock. Dissolution is a material dissolving
process, usually happening in water. The most common material afflicted
by dissolution is calcite, which is present in limestone and marble. The
weathering rate of calcite is even higher when the water is acidic, around 4
pH. The most typical dissolution outcome are stalactites and stalagmites in
caves (Figure [2.3). Spheroidal weathering and Cavernous weathering
will be discussed in depth in Sections 2.2 and 2.3|

Figure 2.3: A stalagmite was formed due to dissolution (from [4]).

Bl 2.1.3 Biological weathering

Organisms can assist in breaking down rock into sediment or soil. Tree roots
and other plants growing on rocks exert physical pressure or creates pathway
for water. Also, lichens, mosses, micro-organisms or animals may disrupt the
rock surface.

2. Geological principles of sandstone landforms

a.
e 3 W

Figure 2.4: Left: Tree roots in rock, Anna Ruby Falls, GA, USA; Right: Closeup
of lichen, Stone Mountain, GA, USA (both from [4]).

|) Spheroidal weathering

Spheroidal weathering is a chemical weathering process that results in the
formation of concentric or spherical layers of highly decayed rock within
weathered bedrock. Such formation can result into pillar-shaped rocks, called
goblins. In order to describe the process closely, it is appropriate to be
focused on more specific rock formation. In this case, the hoodoos, or goblins
located in the Goblin Valley State Park in Utah, USA, will be considered.
The process of forming goblins can be divided, according to a publication by
M. Milligan [I8], into four following phases.

The first phase consists of depositing various alternating materials, such as
shale, siltstone or sandstone. Those materials are later transformed into rock.
Material properties vary, however, the crucial property is the weathering
rate, which describes material’s resistance to weathering. Apparently, the
weathering rate differs with layer. All the layers together form the geologic
formation called Entrada sandstone.

2.3. Cavernous weathering

The second phase is called fracturing. There are multiple fractures or joints,
that can be found within the sandstone. Fractures weaken the rock and as a
result, the layers of the rock are susceptible to various weathering types.

Figure 2.5: A goblin in the Goblins National Park, Utah, USA (from [@]).

Next phase consists of spheroidal weathering. Spheroidal weathering de-
composes rock through chemical reactions. Significantly faster weathering
can be observed on non flat surfaces, for instance sharp edges and corners,
which results into smooth and rounded rock surface. Mathematically, this
can be modeled using the ratio of surface area to volume for a given portion
of rock [10]. After the rock has been weakened by the weathering, portions
of layers incline to erode.

The last phase, called transportation, is closely associated with the previous
phase. As the sandstone erodes, water and wind remove the eroded material,
exposing new parts of the rock to the spheroidal weathering. Eroded material,
called colluvium, that has eroded and fallen down, can be seen in Figure 2.5
above.

B 2.3 cavernous weathering

Cavernous weathering falls into the chemical weathering category. Cavernous
weathering, also called Honeycomb weathering, results into creation of cav-
erns or pits within a rock [19], as shown in Figure The weathering
rate is almost the same as spheroidal weathering, the difference is in the
curvature representation. The cavernous weathering rate is proportional
to negative curvature rather than positive curvature and it increases with
negative curvature, because surface points tend to be protected from exposure
by adjacent rock. The longer this region is protected from the sun, the longer

7

2. Geological principles of sandstone landforms

it holds moisture and leads to increased deposition of salt. Increased salt
concentrations accelerate the breakdown of chemical cementation between
rock particles and cause the protected rock to disintegrate more quickly.

Figure 2.6: Rock erosion caused by cavernous weathering, Altdahn Castle in
the Palatinate Forest, Germany (from [7]).

One can conclude that caverns are likely to begin on shaded areas. These
shaded areas might retain the water longer than not shaded areas, thus adding
to the amount of salt deposited. Generally, the more salt is deposited, the
more the rock weakened is, eventually enlarged into caverns.

. 2.4 Fractures within a rock

Fracturing is the underlying cause of earthquakes, and also contributes to
the evolution of regional tectonic features. According to Ben A. Van der
Pluijm and S. Marshak [20], a fracture is any surface of discontinuity within
a rock, i.e. a surface across which the material is no longer bonded. Those
fractures are usually formed by brittle deformation. Brittle deformation is
the permanent change that occurs in a solid material due to the growth of
fractures and/or due to sliding on fractures once they have formed. There
are many types of fractures: Shear fractures (or faults) are fractures across
which there has been displacement. Joints (or cracks), in contrast, are caused
by tensile load. We will provide more information about cracks origin and
development.

2.5. Gravitation impact on a rock

Tham et al [21] and Akesson et al [22] proposed that microcracks mainly
occur along the mineral grains. This observation also implies that microcracks
might be present anywhere within the rock. According to Y. Liu et al [§],
during early loading, tension cracks are the dominant mode of cracking. When
the cumulative damage increases, shear cracks become the main mode of
cracking. A shear crack might join several tension cracks and lead to final
rupture of the rock. The result of observations made by Liu et al on the crack
propagation principle is shown in Figure

Figure 2.7: Macrocrack propagation under normal stress at 3.0 MPa, from left
to right: a) first tension macrocrack I1; b) second tension macrocrack I2; c),
tension macrocracks joined by shear cracks II, leading to final rupture (from

8))-

B 25 Gravitation impact on a rock

The process of forming landforms, such as arches, pedestral rocks or pillars
has not been clearly explained for a long time. Geologists simply accepted
that the formation is performed by weathering alone. Somehow, the influence
of gravity has been overlooked and not been explored further. A few years
back, in 2015, the team of geologists led by J. Bruthans presented a study
about shaping the sandstone landforms [9].

The sandstone consists of several layers, where each layer can be formed
by different materials. One can find sandstone layer, where the sand grains
are connected by cements, which are keeping the grains together. On the
other hand, there are rock layers without the cementation, sometimes called

9

2. Geological principles of sandstone landforms

"Locked sands’ The name originates in the structure. The pressure applied
on those grains forced them to change shape and fit together well. According
to J. Bruthans and co., as we decrease the pressure applied to this layer of
the rock, the inner material tension decreases and grains are less resistant
to weathering. As a result, the layer starts to erode quickly. Bruthans and
co. also suggests that the effect of gravity loading stress plays an important
role. In his study, several experiments have been performed and the results
indicated, that the gravity effect on the sandstone rock shape was wrongly
assumed to increase the landform’s weathering rate. On the contrary, the
higher pressure is applied on the rock, the more resistant the material is.

It is advisable to mention the relationship between fractures and gravitation.
Various cracks within the sandstone cause the stress to transfer not evenly,
making the force 'go around’ the cracks. Then, the erosion will carry away all
the erodible material. When the stress reaches a critical value (critical stress)
it causes the remaining rock to stabilize. At this point, the rock is resistant
to further erosion. This phenomena can form spectacular rock formations,
such as the Delicate Arch in Utah, USA. The results of Bruthans study are
presented in Figure 2.8

Example from nature Laboratory experiments

—_—,
‘ _:-%_;—t_}‘: g
u‘/

numerical modelling

£
2
(]
o
iy
b=
c
B
7]
0
£
-
©

b Alcove

¢ Pedestal rock

Figure 2.8: Result of experiments with sandstone rock formations. Top left
picture shows the Delicate arch in Utah, USA (from [9]).

10

Chapter 3

Related work

Various approaches achieving plausible weathering simulation will be presented
in this chapter. There are algorithms for generating terrain based on height
maps, although those algorithms are not suitable for concave surfaces, because
concave surfaces require multiple elevation values for a single grid point.
Algorithms using procedural terrain generation based on voxel grid are used
to implement physically based concave terrain, yet this approach is based
on analytically differentiable equations, which are not suitable in many
terrain features. Various algorithms and data structures for concave terrain
generation were created instead, some of them are further presented in this
chapter.

B 3.1 Data representation possibilities

With the knowledge of how weathering processes and erosion affects the rock,
one can conclude that it is practically impossible to simulate the physics of all
weathering processes. Such a computation is simply not possible to perform.
Instead, we have basically two options:

Firstly, a real physical process approximation can be used. Simulation based
on approximation will be presented in sections and All of them
use uniform voxel grid (Figure . The biggest advantage of using voxel grid
is the ability to perform fairy simple computations above the grid, however,
it is memory extensive to store all the voxels, especially when creating large

11

3. Related work

landscape. Another possibility is to use a material-stack data-structure, as
proposed by A. Peytavie et al. [I1]. Here the terrain is represented as a two
dimensional grid of material stacks (see Figure 3.2), where overhangs, arches
and caves can be created by adding air sections between material layers. This
data representation is both computationally and memory efficient, but the
weathering algorithm or fractures propagation cannot be easily implemented.

Figure 3.1: Voxel data-structure (from [10]).

Secondly, as Paris et al. suggests [23], the construction trees and implicit
terrain models can be used, so the impact of physical forces can be omitted
in order to obtain plausible results. Big advantage is the possibility to create
plausible landscape up to 5xbkm in reasonable computation time. However,
this kind of implementation is not suitable for us, because we would need a
comprehensive framework.

|:| Air [
|:| Water Material Layer j
|:| Rocks —
|:| Sand _—j:

[Bedrock —

Material Types Material Stack Array of Material Stacks

Figure 3.2: Material stack based data-structure (from [IT]).

12

3.2. Spheroidal weathering simulation

B 32 Spheroidal weathering simulation

This approach was presented in the article published by M. Beardall et al.
[10]. The model is based on voxel grid, where spheroidal weathering algorithm
is applied. At the beginning of the simulation, uniform size voxels form a
uniform voxel grid. Each column in the grid is divided into regions specified by
bedding plane layers. Furthermore, each voxel belongs to a layer which defines
the voxel’s resistance to weathering. The voxel’s resistance to weathering is
based on the input parameters, such as a bubble shape and size. A bubble of
different size and shape with origin in the voxel’s center is used to compute
voxel’s durability. The durability (a decimation rate) is set to the product
of the voxel’s resistance to weathering and the air to rock ratio for each
bubble. For instance, voxels in corners have higher air to rock ratio than
voxels exposed by one face only, which results into faster weathering of more
exposed voxels. This refers to the spheroidal weathering, as described in
Section (2.2l

As soon as the voxel’s decimation reaches zero, the voxel is permanently
removed from the grid. After a voxel erodes, all voxels that contain the
destroyed voxel in their bubble are notified and their decimation rate is
recomputed. Such operation is expensive, thus the amount of voxels for each
bubble size and shape is stored in a lookup table to avoid recomputing.

The application architecture is shown in Figure [3.3l Firstly, the user
specifies properties of each layer, such as resistance, height and the bubble
parameters. A vertical joint map is specified too. Then the simulation starts,
going through several cycles. After the simulation is finished, the result can
be exported into a rendering program.

Bedding planes, joint map
and bed properties

|
‘ Voxel Grid ‘ ‘Weathering Engine|

‘ Final Surface }—

lShaders and Disptacement}J

—-{ Renderer
Final Image

Figure 3.3: The architecture of goblin simulation program presented in|3.2| (from
[10]).

13

3. Related work

N 33 Spheroidal and Cavernous weathering
simulation

Another approach to spheroidal weathering was presented by Jones et al.
[2]. Their approach is based on similar principle as described in Section 3.2,
however, efficiency gains were achieved by reducing the amount of voxels,
which are being updated during the weathering simulation. Instead of per-
forming computation above all voxels in the grid, the computation includes
only ’active’ voxels. As an active voxel can be considered a voxel that is
exposed by at least one face to air. See Figure (3.4l

e T
L /IH@H KKW

Figure 3.4: The spheroidal weathering process; Left: Before; Right: After the
simulation (from [2]).

The biggest extension compared to the first method is the cavernous
weathering implementation. Considering spheroidal weathering, voxels on
edges containing in its bubble more air undergo faster weathering, whereas in
cavernous weathering, voxels containing bigger rock portion tend to weather
faster. See Figure |3.5|for 2D voxel grid representation with negative curvature.

B4APENER /}1\ |

mil |
N

Figure 3.5: Cavernous weathering principle; Left: Before; Right: After the

T

simulation (from [2]).

Furthermore, colluvium deposition algorithm has been implemented. Col-
luvium distribution process contains 2 phases, which are repeated until the
colluvium unit reaches a stable position. The first phase simulates sliding
sleep slopes until the unit reaches the angle of repose. Second phase is ac-
tivated, when the unit stops sliding and detaches from the surface. There,
the iteration in the —y direction starts until the colluvium reaches a non-air
voxel. At this point, the process either ends - the unit reached a stable spot -
or the unit starts to slide again and enters the first phase. Another similar
approach to material deposition will be discussed in Section [3.5.

14

3.4. Spheroidal weathering on GPU

B 34 Spheroidal weathering on GPU

Spheroidal weathering simulation accelerated by GPU was presented as a
master thesis by McKay T. Farley [12].

Major improvement in efficiency has been achieved by caching mechanism
that stores the number of air voxels in the bubble around each voxel, so instead
of calculating the decimation at each simulation step, the value is available in
a lookup table. Therefore, each voxel has a index to the lookup table, which
corresponds to the number of air voxels. For example, a rock voxel containing
5 air voxels in it’s bubble has stored an index of 5, so there is no need to
visit all neighbour voxels per each simulation step. This caching technique
is similar to the caching mechanism presented in Section 3.2, Dealing with
fully decimated voxels now requires updating the cached air voxel count for
neighboring voxels within the bubble of decimated voxel. The update is
simply incrementing the air voxel count by one for each neighbouring voxel.

Another efficiency gain can be achieved by using the GPU to compute
the simulation steps. In this case, the OpenCL architecture has been used.
OpenCL is single-instruction multiple-data architecture (SIMD). Generally,
OpenCL is a framework allowing parallel computing on CPU and GPU and so
allows to utilize the tremendous parallel processing cores on today’s graphics
cards. Parallel computing on the GPU can achieve highest efficiency if all the
cores are performing the same task, but with different values. For instance,
when the instruction to be executed is the same on each core for each step, the
ideal situation for parallel computing occurred. On the other hand, if there is
any branch in the code causing two cores to process differently, the operation
will be executed on the first core and then on the second core instead of in
parallel. See figure 3.6 where Core 1 has different instruction set causing a
slowdown and cores 2,3,4 work in parallel. Simply, more branching leads to
longer computational time.

G G G G
e S o I o IR
8 2 8 3
(Jo Jy o
Q= -2 -2 -2
(;5 (;6 C;G (;6
= G G G
i 8 8 8
Core 1 Core 2 Core 3 Core 4

Figure 3.6: Code path with Core 1 executing different instructions set (from [12]).

15

3. Related work

. 3.5 Material stack based simulation with rockfall

A. Peytavie et al. [I1] proposed a material stabilization simulation. This
simulation uses material stack data-structure, which is suitable to simulate the
rockfall. Erosion simulation was implemented as well, however, this section
will focus on the rockfall simulation only.

In order to be able to simulate rockfall, we need to define the angle of
repose between two neighbouring material stacks as the angle between the
horizontal plane and the contact plane. The angle of repose characterization
has been simplified by processing each material type separately, i.e. first it is
necessary to sort the layers by merging materials of the same kind together.
Then the materials are sorted in the order: sand, rock, air. It is possible
to use a unique angle of repose for each material type. The stabilization
process is triggered when the angle of repose is higher than a predefined
threshold. Then the material is moved from the too high material stack to
the neighbouring stacks. The moved material height, which has been moved
to a neighbouring stack, is a weighted average proportional to the height
difference between the two stacks. It is essential to mention that only a small
amount of material is moved to the neighbouring stacks to avoid oscillation
in the algorithm. The stabilization process is repeated until all the material
layers are stabilized.

Sand slope Rock slope

Unstabilized layers Stabilized layers

Figure 3.7: Material layers stabilization according to the angle of repose for
different materials (from [I1]).

16

Chapter 4

Analysis and Solution

The aim of this bachelor thesis is to simulate weathering and erosion impact
on a rock. The applied simulation algorithms should be physically based as
much as possible. The user should be able to choose between different rock
types, choose the size of simulated rock or the amount of factors affecting
the simulation. There has to be the possibility to pause the simulation and
continue in the simulation if required, as well as the possibility to export
the simulation results into a third party programs, where the model can
be modified and textures applied. Furthermore, the user should be able to
run the simulation above the same grid with different parameters. For this
purpose, configuration files with the generated rock parameters should be
available. This way the user has the opportunity to use the application as
a tool that helps to create plausible and physically based rocks without the
need of tedious modelling process.

This chapter discusses the solution proposal and the chosen simulation
approach, as well as implementation details. Some application features will
be described in Sections from [4.1] through such as details of voxel grid
generations in configuration files in and finally possibility to export
currently rendered data in Simulation algorithms are introduced in
further sections. Spheroidal weathering algorithm will be described in Section
4.4] algorithm used for eroded material distribution in Section gravitation
force impact on the rock in and finally, fracture creation and propagation
is presented in Section 4.7

17

4. Analysis and Solution

B a1 Application structure

The application is written in C++ and OpenGL 3.1. Simple shaders, camera
movements and rendering were implemented. In our application we will
be rendering many voxels (cubes) with identical mesh but with different
transformations. Therefore, the most efficient way to render many similar
objects is to render them using a single call. This technique is called instanced
rendering [24]. So instead of iterating over all the voxels and drawing them
individually, we will prepare all the model matrices for all the voxels and send
them to the GPU in one call. This way the performance bottleneck caused
by sending data to the GPU for each voxel will be avoided.

User » Dimensions, rock type, Pseudoranom values
amount of detail generated by the application
| ¢ h 4
Configuration file Generated voxel grid
A
h 4 |
Voxel grid Simulation step

T

h 4

Simulation result

h

Export

Figure 4.1: The application flow visualized.

Application loop and event flow is shown in Figure 4.1. Here, each sim-
ulation step will consist of application of our simulation algorithms. Those
algorithms will be applied in this order: Fractures propagation algorithm,
spheroidal weathering algorithm, algorithm implementing the gravitation
force impact and lastly the eroded material deposition algorithm. The simu-
lation step can be executed manually or automatically using the automatic
simulation option. While running the simulation manually, the user runs
simulation one simulation step per click. On the other hand, the automatic
simulation can be run and stopped by the user at any time. There is a
possibility to customize the time passed between simulation steps. This value
can be changed while the automatic simulation is running and is particularly
useful when it comes to smaller voxel grids, where one simulation step can
take a few milliseconds.

18

4.1. Application structure

B 4.1.1 Voxel grid

Voxel data structure has been used despite the memory requirements, because
the spheroidal weathering algorithm can be implemented above the voxel
grid easily compared to other data structures. The voxel grid is created by
rendering a simple uniform cube on uniform intervals, eventually forming a
grid of dimension width x height X depth. As an area designed for the eroded
material to fall and spread, a 5 voxel wide area is added on each side of the
rock. Each voxel has assigned multiple values, where the most essential values
will be further introduced.

Voxel type: There are four voxel types when creating the voxel grid.
The Rock voxels are voxels which form the rock shape. Air voxels are not
rendered by the application, because they represent an empty cell in the voxel
grid. Ground voxels are used only for the interpretation of a firm surface
beneath the rock formation and are not changed throughout the simulation
whatsoever. The last type is an Eroded voxel, which replaces the Rock voxel
as soon as the Rock voxel erodes. Moreover, the Eroded voxel works as a
stack of eroded material (colluvium) that changes it’s height according to the
material amount stored in this voxel. The material amount stored depends
on rules introduced in Section 4.5l

Weathering rate: A rock is formed by layers of voxels, where each
layer’s weathering rate is assigned a float value based on normal (Gaussian)
distribution with mean of u = 0.7 and standard deviation ¢ = 0.1. A voxel
within the layer takes the weathering rate value from the parent layer and
then this value is changed according to a normal distribution with parameters
u = 0.0 and ¢ = 0.03 in order to achieve a non uniform weathering rate
within the layer. Visualizing the voxel’s weathering rate is achieved by sending
the weathering rate value to the vertex shader while rendering each voxel.
This value is then recomputed to a RGB color in the vertex shader, later
set as a fragment color in the fragment shader, making each layer and voxel
visually distinctive. Red color represents the most resistant material - 1.0,
whereas blue color represents the least resistant material. Colors in between
are interpolated.

1%
& Fo Lok leT f
f(x)

0.4 0.6 0.8 1.0 -0.10 -0.05 0.00 0.05 0.10
X x

a) b)

Figure 4.2: a) Gaussian distribution for layer weathering rates, b) Gaussian
distribution for voxels within the layer.

19

4. Analysis and Solution

Durability: Voxel’s durability is a float value in interval [0.0,1.0] and is
considered for Rock voxels only. Durability represents health points’ of each
voxel, so if the durability reaches zero, the voxel is changed into Eroded voxel.
The durability is lowered in each simulation step based on rules presented in
Section Additionally, the user has the option to visualize the durability
of voxels. While having this option enabled, the durability is being sent to
the vertex shader. Here the outgoing color is multiplied by the durability,
which results into darkening of the voxel’s color.

B 4.1.2 Voxel grid scale

Let’s suppose we have a uniform voxel grid with uniform voxel size. We would
like to add more detail to this uniform grid by creating a grid of the same
size, but with more voxels. One can accomplish that by decreasing the voxel’s
size and modifying the voxel positions by the same factor, making the voxel
grid more dense. However, if the spheroidal weathering is applied on both
uniform and denser grid, the resulting shape will be significantly different
after the same simulation step count. The same stands for other algorithms,
such as deposition algorithm and gravitation force impact.

There are four grid detail levels that can be chosen before the simulation
starts in our application. The detail level defines the number of voxels
generated at one length unit. To counter problems listed in the previous
paragraph, it is necessary to let the denser voxel grid weather faster by
the same factor which has been used for decreasing the voxel’s size. The
same factor is used for simulation algorithms as well. Considering fractures
propagation, a denser grid will result into more detailed fractures. The grid
detail level is visualized in Figure [4.3, where the dimensions of both voxel
grids are equal. Both grids were captured after 35 simulation steps with
gravitation force impact applied during the simulation.

Figure 4.3: Left: A voxel grid with default density, Right: A 2x denser voxel grid.

20

4.2. Configuration files

B a2 Configuration files

The ability to recreate certain shape with different parameters is an indispens-
able functionality for all simulations. Therefore, an configuration file should
contain all simulation parameters needed for an simulation reproduction.
Such a file is usually created in a human readable form with a purpose of
further modifications by the user. The user then needs to consider that
any modification within the configuration file might cause an unexpected
behaviour. To counter that, the application producer should provide a con-
figuration file specification, containing listed simulation variables and their
ranges.

Our application provides the user with configuration files in JSON format.
A configuration file can be created arbitrarily during the simulation. When
creating, the user specifies the desired target location and name of the file in
a popup dialog. A notification is displayed in the Application Log as soon as
the configuration file is saved. Configuration file specification is displayed in
Figure Any modification made to the file needs to be within specified
limits. The file can be modified using any software that supports JSON file
format. The configuration file can be loaded from the application menu.

"dimensions": limited to create max 1@ M voxels,
"layer scale": float value from {0.2, 1/3, 0.5, 1.0},
"layers":[float values in range <0.90, 1.0>],

rock city:{
"heights": [unsigned integers],
"x coords":[unsigned integers],
"x sizes": [unsigned integers],
"z coords":[unsigned integers],
"z sizes": [unsigned integers]

}s

"seed":unsigned integer,
"type":unsigned integer from {1, 2,3}

Figure 4.4: Limits of variables located in configuration file.

21

4. Analysis and Solution

B 43 Data export

A comprehensive framework supporting textures application and models
creation would be necessary when it comes to applying textures and direct
model export. One can use third party software instead. Firstly, exported
data type needs to be determined and a third party software supporting the
data type needs to be chosen. Simulations using a voxel grid might usually
produce volumetric data, so a third party software supporting volumetric
data import should be used. A suitable software meeting our requirements
is called ParaView, since it offers a VTK file format that can be used for
volumetric data import. Another requirement is the possibility to apply
textures and modify the rock shape. Unfortunately this process cannot be
performed in ParaView, however, exporting data from ParaView is possible.
A modeling program, such as Blender or Maya, can be used afterwards for
applying textures and modifying the rock shape.

Our application supports exporting the simulation result into third party
modelling programs. Currently rendered rock can be saved into a file generated
by the application and the user will specify the target location of this file. The
VTK file format is used to export the rendered data, because it is supported
by ParaView. One can easily import the generated file into ParaView and
visualize the simulation output with lightning, since our simulation program
does not support any lightning models. Examples of visualized data in

ParaView are shown in Figures [4.5/ and

Figure 4.5: A rock city exported to ParaView

22

4.4. Spheroidal weathering implementation

Figure 4.6: Left: A goblin after the simulation is finished, Right: The same
goblin exported to ParaView.

B a4 Spheroidal weathering implementation

The spheroidal weathering algorithm can be implemented intuitively and the
most easiest on the voxel grid, compared to other possible data representations.
Previously introduced methods in Chapter |3| proposed several possibilities
to make the algorithm more efficient, such as a caching mechanism storing
the number of air voxels in the surrounding of the currently processed voxel
(Section or the reduction of voxels that will not be influenced by the
spheroidal weathering in the simulation step whatsoever (Section . GPU
acceleration of the algorithms would be a valuable improvement, but unfortu-
nately it will be not further considered, because the implementation would
be demanding and it would take considerable amount of time to implement
the algorithm correctly.

A spheroidal weathering algorithm based on[3.2/and was implemented in
our application. Spheroidal weathering impact on the voxel grid is computed
every simulation step. In order to speed up the algorithm, only voxels exposed
to the surface are considered, as suggested in [I2] and explained in Section
While processing a voxel, it’s neighbours are visited in two phases. The
first phase I consists of visiting voxels neighbouring by a face (6 voxels). The
second phase II consist of visiting voxels neighbouring by an edge (12 voxels).
Each phase have different impact on the currently processed voxel - phase
I voxels have greater impact than phase II voxels, because an imaginary
circumscribed sphere of the currently processed voxel occupies a greater part
of the volume of the phase I voxels. If there is an Air voxel, the currently
processed voxel is exposed to the air and thus it should lose some durability,

23

4. Analysis and Solution

depending on the phase. As soon as the durability reaches zero, the voxel
erodes.

II1 II1

II1 II1

Figure 4.7: A 2D view in a Width x Depth plane on Phase I and II voxels,
yellow color represents the currently processed voxel.

The durability is lowered by the following formulae 4.1, where New stands
for the new voxel’s durability, Old for old voxel’s durability, Rate for voxel’s
weathering rate and AirRatio/ RockRatio is the percentage of air in the
surrounding of the currently processed voxel. Adding the weathering rate
into the durability computation ensures that voxels with higher durability
tend to weather slower than voxels with lower durability.

New = Old — (1 — Rate) * (Air Ratio/ Rock Ratio) (4.1)

B 45 Material deposition implementation

Material deposition algorithm described in Section [3.5]is implemented above
the material-stack based data-structure. A crucial property is the angle of
repose, which defines the maximum slope used for the material movement
and sedimentation. Since our implementation will be based on a voxel grid,
the deposition algorithm needs to be adjusted accordingly. We will deal with
one eroded material type only, which means that only one angle of repose
needs to be defined. Furthermore, the material stabilization process seems be
the most computational time consuming process of the simulation, because
stabilizing one layer can trigger the stabilization process on already processed
material stacks, causing the algorithm to recompute the unstable stacks until

24

4.5. Material deposition implementation

the whole grid is stabilized. In short, several algorithm passes will be required
to stabilize the eroded material.

The eroded material distribution principle was taken from Section [3.5] and
modified afterwards. The value of the angle was set to 30 degrees. Before
the deposition algorithm starts, it is crucial to merge all possible 'floating’
Eroded voxels. If a floating Eroded voxel is detected, the amount of material
it holds will be iteratively lowered to the first non-floating Eroded voxel. The
type of a floating Eroded voxel is changed to Air voxel afterwards. After the
material merging is completed, the deposition algorithm can begin.

Let h1 and h2 denote the height of two neighbouring Eroded voxels, d
denote the distance between centers of those voxels and « the angle of repose.
Let Ah = hl— h2 denote the difference between heights of those voxels. Then
we define M = 0 if Ah < d.tan(a) and M = Ah — d.tan(«) otherwise, where
M is the height of material to be moved in order to maintain the angle of
repose. Material moves to a neighboring voxel if the angle between the tops
of those two voxels is greater than the angle of repose. The height of material
moving from the central voxel to a neighboring voxel is defined as a weighted
average proportional to the height difference between the voxels. To avoid
osculations in the algorithm, the amount of material to be moved is set as a
small constant amount a. This process is repeated iteratively until all the
material layers are stabilized.

AT TS T TR F)
| IM
|
Ah
hi , —— - X
| |
| |
|
: . h2
| |
| |
| |
W _ _ . _ _w
Il \I
) d i

Figure 4.8: Deposition algorithm principle visualized.

25

4. Analysis and Solution

. 4.6 Gravitation force impact implementation

Unfortunately, the research yielded challenging simulation techniques only,
considering the stresses within the rock. Such simulation would require to
study the stresses propagation within the rock closely, which is beyond the
scope of this thesis. The results of studies by J. Bruthans et al. [9], introduced
in Chapter 2, will be examined instead. The most crucial observation from
their study is that with increased pressure applied, the rock will become more
resistant. This observation is crucial for us since we would like to eliminate
the floating parts of the rock as much as possible.

Before the gravitation force algorithm starts, all floating Rock voxels need
to be detected. A simple Breath First Search was implemented to achieve
this goal. The algorithm goes through all voxels in the lowest layer and at
each voxel it tries to expand all neighbouring Rock voxels. After the search
ends, any leftover Rock voxels which were not visited during the search will
have their durability decreased to zero.

The algorithm starts at the top of the rock formation and gradually advances
to the bottom of the rock, layer by layer. While processing a layer, all voxels
within the layer are counted and the load applied on them is summed up.
Then the algorithm proceeds to the next layer and counts the voxels within
the layer. The load from the higher layer is then evenly distributed between
voxels within the currently processed layer. As the load applied on a voxel
increases, the voxel becomes more resistant to weathering. The weathering
rate of each voxel is increased by the product of voxel’s initial weathering
rate and the load applied on the voxel. Furthermore, the value needs to be
adjusted according to the rock height. The adjustment consists of dividing
the value by the height of the rock formation. Such adjustment ensures that
the weathering rate of voxels at the bottom will not be enormously high.
The whole formulae is shown below in 4.2, where Rate denotes the voxel’s
weathering rate, Load denotes the load applied on the voxel by the gravitation
force and Height denotes the height of the rock.

Rate = Rate + Load x Height (4.2)

The user has can turn this functionality on or off in the simulation menu,
although it is recommended keeping this functionality enabled to counter
the floating voxels problem. The following Figures 4.9 and |4.10| show the
differences between keeping the gravitation force impact turned on and off.

26

4.7. Fractures propagation implementation

Figure 4.9: Generated voxel grid in initial state, Left: gravitation force applied,
Right: without gravitation force.

Figure 4.10: A goblin after 25 simulation steps, Left: simulation with gravitation
force applied, Right: simulation without gravitation force.

B 4.7 Fractures propagation implementation

Fractures propagation causing displacement of the rock is related to the
stresses within the rock. There will not be any advanced stress simulation
implemented in our application, so different approach needs to be selected.
Based on study by Liu et.al.[§], introduced in Chapter |2, shear fractures are
created in two steps. Firstly, a tension macrocracks are created and with the
cumulative damage increasing, shear cracks may occur. Our approach will be
rather based on this study. Also, our fractures implementation will be limited
by the voxel grid - one cannot simply visualize fractures precisely using an
uniform voxel grid. Therefore, fractures needs to be visualized by deforming
the voxel according to the six possible fracture positions on the voxel’s faces.

27

4. Analysis and Solution

The fractures propagation algorithm is divided into two parts as well. The
first algorithm phase consists of defining whether a tension macrocrack will
be generated based on the fracture creation probability, defined by the user.
If a voxel with a tension macrocrack should be generated, a voxel exposed to
the surface by at least one face is found and the macrocrack is generated on
one of it’s faces. The second algorithm phase immediately follows the first
phase. All voxels with a tension macrocrack are searched and their distance is
computed. If their distance is lower than given threshold, a shear macrocrack
can appear, connecting both tension macrocracks. In order to find the path
of the shear macrocrack, A* path finding algorithm was used to find the
shortest path between those voxels. Voxels euclidean distance was used as
the heuristic function for the A* algorithm instead of Manhattan distance,
because we would like to achieve more natural fracture development. After
A* finishes, the shortest path returned by the algorithm is then backtracked
and a continuous fracture along the path is formed. The user can switch
fractures propagation functionality on or off.

After a shear crack is created, the size of the fracture increases with each
simulation step. As soon as the size of the crack is bigger than the voxel on
which this crack is generated, the voxel will erode. Moreover, voxels with
cracks incline to erode faster than voxels without cracks. In the next Chapter
our application was able to re-create an arch, or a small tunnel within the
rock, which has been created thanks to a fracture leading through the rock.
This fracture later ensured that the spheroidal weathering enlarged the path
along the fracture.

Figure 4.11: Left: Generated fracture in a fracture-only rendering mode, Right:
the whole rock exported to ParaView with visible fracture.

28

Chapter 5

Results

This chapter introduces the simulation results accompanied with real world
rocks. Our simulation modes, or scenes, will be discussed and compared to
the real world rocks on photos.

Firstly, the goblin simulation will be presented in Section followed by
simulation of an overhang in Section The most unexpected result will be
introduced in Section [5.3/- an arch simulation. Our last simulation mode will
try to generate a rock city, in Section [5.4l

A laptop with the following parameters listed in Table was used for our
tests.

Model DELL G5 5587
0OS MS Windows 10 Home 64-bit
Processor Intel Core i7-8750H
GPU NVIDIA GeForce GTX 1060 6GB
RAM 16GB

Table 5.1: Computer specifications.

29

5. Results

. 5.1 Goblin

A voxel grid of dimensions 9 x 19 x 9 and a scale of 0.5 (i.e. 2x denser grid)
was used to simulate one of the most iconic goblins in Goblin Valley State
park, Utah. The gravitation force impact was enabled throughout the whole
simulation and fractures creation and propagation was disabled. Following
four Figures show our results.

An inaccuracy can be observed at the top of the goblin, because our
application uses the same weathering rate for the whole layer and the user
cannot change manually the weathering rate for specific voxels within the
layer. The voxel grid generation was introduced in Chapter [4, Section

The application used 43.2 MB RAM and approximately 20% of GPU usage
while rendering the scene with the simulation running.

Goblin Scene - Computational Time Analysis
35

32
30
27 %
25
20
15
10
I 22 11 11
l Ill ll ll ll ll l- -l ol -
50

5 10 45

Time elapsed[ms]

Simulation step

W Spheroidal weathering B Gravitation force W Material deposition

Figure 5.1: Elapsed time measured at each 5" step.

30

5.1. Goblin

Spheroidal weathering | 106 ms
Gravitation force 80 ms
Material deposition | 1058 ms

‘Whole simulation | 1499 ms

Table 5.2: Goblin - Elapsed time of each algorithm during the simulation.

Figure 5.2: Left: The generated voxel grid, Right: The rock after 50 simulation
steps.

Figure 5.3: Left: The rock visualised in Blender, Right: The reference picture
(from [I], edited).

31

5. Results

One can notice that our simulation did not re-create the rounded shape of
the goblin precisely. This imprecision is generally caused by two factors: The
first one refers to the square voxel’s shape, the ability to render a smooth
shape according to voxel’s decimation, specifically. The second reason is that
the more detailed grid causes to generate voxels with unique weathering rate
within the layer, which might eventually result into different shape. However,
a bigger scale also results into longer computational time - for comparison,
simulation of the goblin with 5x bigger scale took 47 935ms, which is almost
32x slower than simulation with 2x bigger scale. Also, achieving the same
shape took 3 extra simulation steps while using the 5x bigger scale. The
difference between two different scales applied is shown in Figure |5.4

Figure 5.4: The same goblin created in our application and visualized in Blender,
Left: 2x bigger scale, Right: 5x bigger scale.

32

5.2. Overhang

B 5.2 Overhang

Some types of cliff overhangs suggest weathering and erosion have been the
cause of the current rock shape. A cliff called Overhanging Point, Bruce
Peninsula National Park, Ontario, Canada will be our reference rock formation
for the simulation of weathering and erosion on the rock. The overhang,
photographed from below, is shown in Figure 5.5

Figure 5.5: Overhanging Point, Bruce Peninsula National Park, ON, Canada
(from [13]).

Overhang Scene - Computational Time Analysis

120

Time elapsed[ms]
3

323

20 16 17
8 g 8 g7 8 5 76 75 6 5 6 4 6 4 ° a 4 4 4 3
I 1o l 0 I . I . 0 0 0 0 0
o | | 1| [] | | | | [| [] H= Hm [1] T
1 5 10 15 20 25 30 35 40 45 50

Simulation step

mSpheroidal weathering B Gravitation force m Material deposition Fractures

5th

Figure 5.6: Overhang - elapsed time measured at each step.

A 10 x 13 x 30 voxel grid was generated. All four implemented algorithms
were applied during the simulation and their computational time is visualised

33

5. Results

Spheroidal weathering | 322 ms

Gravitation force 239 ms
Material deposition | 2708 ms
Fractures 201 ms

Whole simulation ‘ 3881 ms

Table 5.3: Overhang - Elapsed time of each algorithm during the simulation.

in Graph One can observe that the fractures creation and propagation
algorithm took the least time from the whole simulation. One of the reason
is that a fracture had a probability of creation equal to %. Moreover, a shear
fracture is not generated each simulation step, therefore A* and backtracking
are not applied each simulation step. The longest time spent on a fractures
propagation algorithm is equal to 797ms at 29" simulation step. At the
initialization, the application used 52.3MB of RAM and approximately 26%
GPU usage while the simulation was running.

Figure 5.7: Left: The generated voxel grid, Right: The rock after 50 simulation
steps.

Figure 5.8: Closeups of the simulation results, rendered in our application.

34

5.2. Overhang

Following Figures [5.9| and compare our simulation and the real world
rocks. Figure |5.9| compares the most famous overhang at Overhanging Point
cliff with our simulation result, whereas Figure|5.10|compares the Overhanging
Point cliff photographed from bottom with our interpretation. Unfortunately,
the definition of our material deposition algorithm did not produce identical
eroded material distribution, however, our deposition algorithm computes
general material distribution according to one angle of repose without any
other factors influencing the material deposition. An angle of repose adjust-
ment might improve the similarity, but on the other hand, this adjustment
would produce unrealistically big amount of material stored on relatively
small area elsewhere in the voxel grid.

YW
i

I
T It
Figure 5.9: Left: Closeup of the rock visualised in Blender, Right: The reference
picture (from [14], edited).

Figure 5.10: Left: Closeup of the rock visualised in Blender, Right: The reference
picture (from [13], edited).

35

5. Results

. 5.3 Arch

Weathering and erosion are able to produce monumental rock formations,
such as the Delicate Arch in Utah, USA. Our application did not have a mode
to simulate arches, however, a block-shaped grid can be generated in the
Goblin scene and fractures creation and propagation algorithm might create
ideal conditions for an arch-shaped rock. In our case, a crack leading through
the grid causes gradual material erosion along the fracture, resulting into
enlargement of the crack. Coincidentally, similar process of the creation of
arches was presented in the study by J. Bruthans [9]. In this case, 8 x 13 x 20
voxel grid was generated with a scale of 0.5 (i.e. 2x denser grid). Graph|5.11
shows the elapsed time of each algorithm at each 5" step from a total of 52
simulation steps. Our results are presented in Figures [5.12| and [5.13. The
application used 42MB RAM and approximately 25% of GPU usage.

Arch Scene - Computational Time Analysis

46

Time elapsed[ms]
w b wn

19

10 7
5 5 2 ¥ 5
3 , 4 3 B 3 3
.z oo i 2 I S B 2 P 2 Xl PEEE | 1., 1. 11,
5 - | B A’ Aal’ e’ e’ = m_l =_EE __N
1 5 10 15 0 5 30 35

Simulation step

mSpheroidsl westher g W Gravitionforce ® Materialdeposition w Fractures

Figure 5.11: Arch - elapsed time measured at each 5 step.

Spheroidal weathering | 149 ms

Gravitation force 99 ms
Material deposition | 1691 ms
Fractures 110 ms

Whole simulation 2383 ms

Table 5.4: Arch - Elapsed time of each algorithm during the simulation.

36

5.4. Rock City

Figure 5.12: Left: The generated voxel grid, Right: The rock after 50 simulation
steps.

Figure 5.13: Left: The rock visualised in Blender, Right: The reference picture
(from [15], edited).

B 54 Rock City

The most difficult scene to re-create is the rock city. While simulating the
rock city, the emphasis was given to the crack generation. The fractures
generation at rock city scene is increased 10 times in comparison with previous
simulation scenes. Our results are the least precise since from all previous
simulation results since the shape of individual rocks varies a lot as well as
the crack locations on the rock surface.

Spheroidal weathering | 284 ms

Gravitation force 183 ms
Material deposition | 1990 ms
Fractures 2435 ms

Whole simulation 5685 ms

Table 5.5: Rock city - Elapsed time of each algorithm during the simulation.

The generated grid had dimensions of 10 x 10 x 12, 5x bigger scale was
used for this scene. Time needed to finish the simulation is presented in
Graph and our simulation results are shown in Figures and
Our application used 103.3MB RAM and approximately 29% GPU usage
while rendering the rock city scene.

37

5. Results

Rock City Scene - Computational Time Analysis

Time elapsed[ms]

268
221

108 02

200
166 160
150
126
100 2
50 4“4 a1
0o , 18 14 17 B B 18 B ARt 7 g 7o
N - = - M= = [™= [™ - -
7 9 1 13

Simulation step

mSpheroidsl westher g W Gravitionforce ® Materialdeposition w Fractures

Figure 5.14: Rock city - elapsed time measured at each odd step.

Figure 5.15: Left: The generated voxel grid, Right: The rock after 15 simulation
steps.

Figure 5.16: Left: The rock visualised in Blender, Right: The reference picture
(from [I6], edited).

38

5.5. Memory requirements and complexity evaluation

M 55 Memory requirements and complexity
evaluation

In comparison with other spheroidal weathering simulation methods, our
method runs acceptably fast. On the other hand, previous simulation methods
were tested on less powerful machines than our machine used for testing, so the
comparison might be inaccurate. However, our simulation uses an algorithm
implementing gravitation force impact on the rock, as well as the fractures
creation and propagation algorithm, which have not been implemented in
any method introduced in Chapter [3l The drawback of our algorithms is that
they are not paralleled. The complexity of our algorithms is presented in
Table 5.6, where, for fractures, the complexity refers to A* algorithm.

Algorithm Time complexity
Spheroidal weathering O(N)
Gravitation force O(N)
Material deposition O(N)
Fractures Worst case O(b?)

Table 5.6: Time complexity of our algorithms, IV is the number of voxels, b is
the branching factor and d is the length of the path.

A comparison of our implementation of spheroidal weathering algorithm
and an implementation presented by Jones et al. [2], is shown in the following
Table 5.7, It is crucial to mention that the computational time of their
spheroidal weathering implementation uses a surrounding area with radius
from 3 to 7 to compute the durability change of each voxel, whereas our
implementation computes the durability change by visiting neighbouring
voxels.

Implementation ‘ Time per step, approximately 24000 voxels

Our method 2ms
Method from [2] Varying from 0.2s through 3s

Table 5.7: Spheroidal weathering algorithm - computational time comparison.

Considering the memory requirements, our application is more memory
extensive than other simulations. For a comparison, our application uses
1228.1MB RAM to render a scene with 10 253 250 voxels, whereas the
simulation presented by M. Beardall et al. [10] uses 793 MB to render a scene
with 10M voxels. To defend our 33% higher memory requirements, it is
necessary to mention that their simulation uses only a spheroidal weathering
algorithm. Our application uses three more algorithms requiring different
variables per voxel, which eventually results into higher memory requirements.

39

5. Results

The reader might have noticed that in Tables from [5.2| through [5.5| the
computational time of the whole simulation does not match the sum of the
computational time of each algorithm. The difference is caused by model
matrices update of visible voxels after a simulation step is finished. The
model matrices are not updated after each voxel is modified in order to save
computational time, since one voxel might change several times during one
simulation step.

40

Chapter 6

Conclusion

The goal of this thesis was to create an application that is able to simulate
spheroidal weathering impact and eroded material sedimentation using C++
and OpenGL. In order to achieve more realistic simulation results, gravitation
force impact was added to the simulation. Moreover, the problem of fractures
creation and propagation within the rock was addressed and added to the
simulation. Emphasis was placed on physical reality during the application
development. Such requirement is crucial in simulation of real-world objects
or events, however, maintaining physical reality and at the same time keeping
the simulation running in real-time proved problematic and challenging.

B 6.1 Future work and possible improvements

The spheroidal weathering algorithm works as expected and also produces
similar results as results of methods presented in Chapter 3. However,
improvements can be suggested in order to speed up the algorithm. Caching
mechanism can be used to avoid recomputing the voxel’s durability loss if
there were no changes to the neighbouring voxels. On the other hand, the
time savings thanks to such caching mechanism might be lost due to the
gravitation force propagation algorithm, because any changes in the voxel
grid are propagated throughout the whole grid.

41

6. Conclusion

The deposition algorithm behaviour is strictly defined by the angle of repose
and surrounding voxels. Increasing the amount of moved material may cause
oscillation in the algorithm and lead to even longer computational time, if
not an infinite loop. However, an improvement might be suggested. The wind
impact might be also an factor while defining where the eroded material will
be moved. Seasonal wind then may cause the eroded material to accumulate
in the lee of the rock and the wind-exposed rock will hold less material.

Gravitation force propagation throughout the grid has been implemented
and discarded several times, because the results have not been satisfying or
the behaviour of the gravitation force was unrealistic. A simpler solution to
gravitation force propagation was introduced in Section 4.6 Understanding
the stresses withing the rock seems to be the key to implementing the
gravitation force more realistically.

The fractures propagation technique has been optimized with A* search
algorithm, nonetheless the fracture creation is a slow process, where every
voxel along the path needs to be processed and investigated in order to find
possible and valid fracture direction. The voxel grid also limits the fracture
direction down to six, causing unnatural sharp edges to appear along the
fracture. The fractures realism is also limited by the stresses within the rock
- an implementation of realistic tension may create more realistic fractures.

A voxel grid with a bigger scale increases the precision of simulation in
comparison with a voxel grid with lower scale on identical rock dimensions.
Using even bigger scales in our application would require parallelism of our
algorithms.

Finally, the data export quality might be significantly improved by imple-
menting the marching cubes algorithm, which might be used in this case to
obtain relatively smooth surface in comparison with the sharp edged voxel
grid.

42

Bibliography

[1] Mark Herreid. Sandstone rock formation (hoodoo) at
goblin valley state park in utah. Photography, On-
line, https://www.shutterstock.com/cs/image-photo/

|sandstone-rock-formation-hoodoo-goblin-valley-134001290,

[2] Michael Jones, McKay Farley, Joseph Butler, and Matthew Beardall.
Directable weathering of concave rock using curvature estimation. IEEFE
transactions on visualization and computer graphics, 16:81-94, 03 2010.

[3] V. Fukal. Nérodni park Ceské Svycarsko. Photography, Online,
|/ /www.kctul.cz/destinace/img/ceske_svycarsko_1.jpg.

[4] Pamela J. W. Gore. Weathering. Georgia Perimeter Col-
lege, 1995. |https://web.archive.org/web/20130510224332/http]|
|//facstaff.gpc.edu/~pgore/geology/geo101/weather.htm

[5] Earlham College. Frost weathering visualization. Online,
[Legacy.earlham.edu/~debowke/frost%20wedging.htm.

[6] T.N. Hien. Hoodoo at goblin valley state park, 2019. Photography, Online,
https://neihtn.wordpress.com/tag/goblin-valley-state-park/|

[7] Matlok. Altdahn castle in the palatinate forest, germany, 2019.
Photography, Online, https://commons.wikimedia.org/wiki/File|
Wabenverwitterung_auf_ Burg Altdahn. jpg.

[8] Yixin Liu, Jiang Xu, and Gang Zhou. Relation between crack propagation
and internal damage in sandstone during shear failure. Journal of

Geophysics and Engineering, 15(5):2104-2109, 06 2018.

lorg/10.1088/1742-2140/aac85el

43

https://www.shutterstock.com/cs/image-photo/sandstone-rock-formation-hoodoo-goblin-valley-134001290
https://www.shutterstock.com/cs/image-photo/sandstone-rock-formation-hoodoo-goblin-valley-134001290
https://www.kctul.cz/destinace/img/ceske_svycarsko_1.jpg
https://www.kctul.cz/destinace/img/ceske_svycarsko_1.jpg
https://web.archive.org/web/20130510224332/http://facstaff.gpc.edu/~pgore/geology/geo101/weather.htm
https://web.archive.org/web/20130510224332/http://facstaff.gpc.edu/~pgore/geology/geo101/weather.htm
https://legacy.earlham.edu/~debowke/frost%20wedging.htm
https://legacy.earlham.edu/~debowke/frost%20wedging.htm
https://neihtn.wordpress.com/tag/goblin-valley-state-park/
https://commons.wikimedia.org/wiki/File:Wabenverwitterung_auf_Burg_Altdahn.jpg
https://commons.wikimedia.org/wiki/File:Wabenverwitterung_auf_Burg_Altdahn.jpg
https://doi.org/10.1088/1742-2140/aac85e
https://doi.org/10.1088/1742-2140/aac85e

6. Conclusion

[9] Jiri Bruthans, Jan Soukup, Jana Vaculikovd, Michal Filippi, Jana
Schweigstillova, Alan Mayo, David Masin, Gunther Kletetschka, and
Jaroslav Rihosek. Sandstone landforms shaped by negative feedback
between stress and erosion. Nature Geoscience, 7, 07 2014.

[10] Matthew Beardall, McKay Farley, Darius Ouderkirk, Jeremy Smith,
Michael Jones, and Parris Egbert. Goblins by spheroidalweathering.
Natural Phenomena, pages 7-14, 01 2007.

[11] Adrien Peytavie, Eric Galin, Jérome Grosjean, and Stéphane Mérillou.
Arches: a framework for modeling complex terrains. Computer Graphics
Forum, 28, 04 2009.

[12] McKay Farley. Fast spheroidal weathering with colluvium deposition.
In Master of Science Thesis, 2011.

[13] Unknown. Overhanging point along the bruce trail. Photo
taken: 30 July 2014, https://commons.wikimedia.org/wiki/File]
Overhanging_Point_along_the_Bruce_Trail.JPG,

[14] Tony Paine. Overhanging point along the bruce trail. Photo taken: 2010,
https://tonypainephoto.com/artwork/1911571_Overhanging_
Point_Bruce_Peninsula.htmll

[15] Daniel Mayer. Tunnel arch in arches national park. Taken:
June 2005, https://commons.wikimedia.org/wiki/File:Tunnel_
Arch_in_Arches_NP. jpeg.

[16] Jan Karhének. Hrubé skala, Cesky
raj. http://hany.info/cz/galerie/
cesky-raj-hruba-skala-hruboskalsko-trosky-piskovec-veze-skalni-mesto.
htmll

[17] T. C. Hales and Joshua J. Roering. Climatic controls on frost cracking
and implications for the evolution of bedrock landscapes. Journal of
Geophysical Research: Earth Surface, 112(F2), 2007.

[18] M. Milligan. The Geology of Goblin Valley State Park. Public Information
Series. Utah Geological Survey, 1999.

[19] A. V. Turkington. Cavernous weathering in sandstone: lessons to be
learned from natural exposure. Quarterly Journal of Engineering Geology
and Hydrogeology, 31(4), 11 1998.

[20] S Marshak and BA van der Pluijm. Farth Structure. W. W. Norton &
Company, 2004.

[21] L. Tham, L. Li, Y. Tsui, and P.K.K. Lee. A replica method for observing
microcracks on rock surfaces. International Journal of Rock Mechanics
and Mining Sciences, 40:785-794, 07 2003.

44

https://commons.wikimedia.org/wiki/File:Overhanging_Point_along_the_Bruce_Trail.JPG
https://commons.wikimedia.org/wiki/File:Overhanging_Point_along_the_Bruce_Trail.JPG
https://tonypainephoto.com/artwork/1911571_Overhanging_Point_Bruce_Peninsula.html
https://tonypainephoto.com/artwork/1911571_Overhanging_Point_Bruce_Peninsula.html
https://commons.wikimedia.org/wiki/File:Tunnel_Arch_in_Arches_NP.jpeg
https://commons.wikimedia.org/wiki/File:Tunnel_Arch_in_Arches_NP.jpeg
http://hany.info/cz/galerie/cesky-raj-hruba-skala-hruboskalsko-trosky-piskovec-veze-skalni-mesto.html
http://hany.info/cz/galerie/cesky-raj-hruba-skala-hruboskalsko-trosky-piskovec-veze-skalni-mesto.html
http://hany.info/cz/galerie/cesky-raj-hruba-skala-hruboskalsko-trosky-piskovec-veze-skalni-mesto.html

6.1. Future work and possible improvements

[22] Urban Akesson, Jan Hansson, and Jimmy Stigh. Characterisation of
microcracks in the bohus granite, western sweden, caused by uniaxial
cyclic loading. Engineering Geology - ENG GEOL, 72:131-142, 03 2004.

[23] Axel Paris, Eric Galin, Adrien Peytavie, Eric Guérin, and James Gain.
Terrain amplification with implicit 3d features. ACM Transactions on
Graphics, 38, 09 2019.

[24] Joey de Vries. Learn opengl tutorial. https://learnopengl.com/
lAdvanced-OpenGL/Instancing|

45

https://learnopengl.com/Advanced-OpenGL/Instancing
https://learnopengl.com/Advanced-OpenGL/Instancing

46

Appendix A

User interface

Our application uses ImGUI library to provide the user interface and ImGUI
add-ons provide the file explorer. All parts of Ul will be discussed below.
The camera movement is explained in Table |A.1.

Hotkey ‘ Description
W Move forward
S Move backwards
A Move left
D Move right

Space bar | Lock / Unlock camera view
Table A.1: Camera movement in the scene.
While the application is running, the user is provided an Activity Log

window, where all the events and messages will be logged. The application
log is shown in Figure |A.1.

Ackiviky Log

Figure A.1: The Application Log window.

47

A. User interface

The Main Menu is shown in Figure [A.2] and is divided into three parts.
The first part (1) consists of the scene selection, where the simulation type
is specified. The user can choose one from three listed options. The second
part (2) specifies the voxel grid scale and rock dimensions. There are four
supported scales, available in the combo box: Default scale, 2x, 3x and 5x
bigger scale. Rock dimension are unsigned integers in the following order:
x,y, z, or rather Width, Height, Depth. Button (3) launches the simulation
with the settings specified in (1) and (2). Button (4) opens a File explorer
window, where the user can browse configuration files in their system. Button
(5) closes the application.

Main Menu

Welcome ko weathering simulation application

8 Goblin COverhang Rock ciky

Defaulk v

Figure A.2: The Main Menu window.

A File browser window is captured in Figure [A.3l This file browser is a
part of the ImGui add-ons library. The layout of the window is similar to the
file browser in Windows OS, therefore the functionality is very similar. The
current path to the displayed folder is at the top of the window (1). Majority
of the window is an area, where all the files and folders on the current path
are listed (2). Below is a text field (3), where the opened or saved file name
needs to be typed. Button (5) opens the currently selected file. Alternatively,
double-click on a file can be used. Button (6) discards the dialog window.

Load Configurakion File
Computer B D: P weatheringExport
goblinZ

goblin
gablin

temp.]
temp, v
gobl < g

Filkter {ingc,

Show Hidden Files and Folders Open Cancel

Figure A.3: File browser window.

48

A. User interface

Simulation tools are displayed while the simulation runs (Figure |A.4).

® In the area (1), current simulation scene parameters are displayed.
® Toggle button (2) enables the rendering of voxel’s durability.

m Toggle button (3) enables the fractures creation and propagation al-
gorithm and simultaneously opens a fractures settings (10), where the
fractures-only rendering mode can be enabled and the probability of a
fracture creation can be adjusted.

® Toggle button (4) enabled the gravitation force algorithm.

® Toggle button in area (5) enables the automatically running simulation.
If this toggle button is not ticked, a button SIMULATION STEP is
displayed. This button launches one simulation loop. If the Automatic
simulation toggle button is ticked, automatic simulation menu is displayed
(11). Here the user can adjust the wait-time between the simulation
steps by browsing available values in the combo-box.

® Button (6) opens a File explorer window and the user specifies, where a
file with exported data from the simulation should be saved.

® Button (7) opens a File explorer and the user specifies, where the
configuration file with current simulation parameters should be saved.

® Button (8) discards the current scene and returns to the Main Menu.

® Finally, Button (9) closes the application.

steps: @

i ¥] A zimulation

Figure A.4: Tools window is displayed when a simulation scene is rendered.

49

50

Appendix B

Third party programs references,
application usage

B B.1 Used third party programs and libraries

JSON parser, used for configuration files. Available on github.com/nlohmann/json/.

Dear ImGUI, a graphical user interface suitable for OpenGL. Available on
lgithub.com /ocornut/imguif

ImGUI add-ons, add-on widgets for GUI library Dear ImGui. Used for File
browser dialogues. Available on Jgithub.com/gallickgunner /ImGui-Addons/

ParaView, a third party software suitable for visualisation of volumetric
data and export into modelling software. Available on [www.paraview.org

Blender, a modelling software. Available on [www.blender.org]

PGR framework, providing basic OpenGL functionality. Available on
cent.felk.cvut.cz/courses/PGR /framework.html|

Overleaf, an easy to use, online, collaborative LaTeX editor. Available on

www.overleaf.coml

o1

https://github.com/nlohmann/json
https://github.com/ocornut/imgui
https://github.com/gallickgunner/ImGui-Addons
https://www.paraview.org/download/
https://www.blender.org/
https://cent.felk.cvut.cz/courses/PGR/framework.html
https://www.overleaf.com/

B. Third party programs references, application usage

. B.2 Usage and source code

Our application was developed in Visual Studio 2017 with MS Windows 10 and
tested on several machines using Windows 10 operating system. However, a
bug was found while testing the application on Windows 7 and Windows 8/8.1
operating systems. While in the simulation scene and with the movement
Enabled (Space bar key), the camera movement does not response to any
mouse movement. The issue was tracked and it was found that the callback
for mouse movement detection glMouseFunc and glPassiveMouseFunc stalls
the rendering pipeline, causing the glTimerFunc not to redraw the frames.
This issue does not appear on any Windows 10 operating system and probably
refers to changes in the architecture. Finally, the bug does not have impact
on the simulation results whatsoever, it only disables the camera movement in
the scene. Therefore, any computer running MS Windows 10 is recommended
to use while running our application.

In order to compile our application using the provided source code, it is
necessary to download and include a PGR, framework first (link is provided
in Appendix B.1). After opening the Visual Studio project, the project
properties need to be modified in order to include all PGR-framework related
dependencies. Then the source code can be successfully compiled for a
32bit version. In case of issues while compiling a Release 32-bit version, the
PGR-framework libraries need to be re-compiled.

The doxygen-like style source code documentation can be found within
the attachments. A HTML and ¥TEXversions are provided for this purpose.
Note that majority of included classes listed in the documentation are GUI
related and are part of the ImGui library and ImGui add-ons.

52

Appendix C

List of attachments

This thesis as a PDF file

An executable application

A folder containing the source code of our application
Doxygen documentation of the source code

Screenshots of the application

53

	Introduction
	Geological principles of sandstone landforms
	Basic weathering types
	Physical and mechanical weathering
	Chemical weathering
	Biological weathering

	Spheroidal weathering
	Cavernous weathering
	Fractures within a rock
	Gravitation impact on a rock

	Related work
	Data representation possibilities
	Spheroidal weathering simulation
	Spheroidal and Cavernous weathering simulation
	Spheroidal weathering on GPU
	Material stack based simulation with rockfall

	Analysis and Solution
	Application structure
	Voxel grid
	Voxel grid scale

	Configuration files
	Data export
	Spheroidal weathering implementation
	Material deposition implementation
	Gravitation force impact implementation
	Fractures propagation implementation

	Results
	Goblin
	Overhang
	Arch
	Rock City
	Memory requirements and complexity evaluation

	Conclusion
	Future work and possible improvements

	Bibliography
	User interface
	Third party programs references, application usage
	Used third party programs and libraries
	Usage and source code

	List of attachments

