
ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

453171Osobní číslo:JaroslavJméno:KravecPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačové grafiky a interakce

Otevřená informatikaStudijní program:

Počítačová grafikaSpecializace:

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Vzdálené realistické zobrazování pro VR a mobilní zařízení

Název diplomové práce anglicky:

Realistic Remote Rendering for VR and Mobile Devices

Pokyny pro vypracování:
Prostudujte metody realistického zobrazování v reálném čase vhodné pro využití v oblasti vzdáleného zobrazování
založeného na klient server architektuře, kde realistické osvětlení scény je počítáno na výkonném serveru.
Navrhněte metodu vzdáleného zobrazovaní vhodnou pro VR aplikace, která bude dosahovat vysoké snímkové frekvence
a rychlé reakce na změnu pozice kamery.
Vytvořte testovací implementaci, která bude realizovat výpočet osvětlení na výkonném serveru a zobrazovat výsledek na
vzdáleném počítači nebo mobilním zařízení. Pro výpočet osvětlení na serveru použijte technologii OpenGL, CUDA,
případně i sledování paprsků pomocí NVIDIA OptiX. Pro rekonstrukci osvětlení na klientském zařízení využijte OpenGL
shaderů. Důkladně vyhodnoťte rychlost zobrazování, latenci, objem přenášených dat a maximální dosažitelnou kvalitu
výstupu pro nejméně dvě testovací scény.

Seznam doporučené literatury:
[1] Hladky, J. , Seidel, H. P. and Steinberger, M. (2019), Tessellated Shading Streaming. Computer Graphics Forum, 38:
171-182.
[2] Joerg H. Mueller, Philip Voglreiter, Mark Dokter, Thomas Neff, Mina Makar, Markus Steinberger, and Dieter Schmalstieg.
2018. Shading atlas streaming. ACM Trans. Graph. 37, 6.
[3] Reinert, B., Kopf, J., Ritschel, T., Cuervo, E., Chu, D., Seidel, H. P. (2016). Proxy-guided image-based rendering for
mobile devices. In Computer Graphics Forum (Vol. 35, No. 7).
[4] Ingo Wald and Steven G. Parker. 2019. RTX accelerated ray tracing with OptiX. In ACM SIGGRAPH 2019 Courses
(SIGGRAPH '19).
[6] Haines et al. Ray Tracing Gems, Apress, 2019.
[8] Lee, K., Chu, D., Cuervo, E., Kopf, J., Degtyarev, Y., Grizan, S., Flinn, J. (2015). Outatime: Using speculation to enable
low-latency continuous interaction for mobile cloud gaming. In Proceedings ACM ICMSAS (pp. 151-165).
[9] Xie, N., Wang, L., Dutré, P. (2018). Reflection reprojection using temporal coherence. The Visual Computer, 34(4),
517-529.

Jméno a pracoviště vedoucí(ho) diplomové práce:

doc. Ing. Jiří Bittner, Ph.D., Katedra počítačové grafiky a interakce

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Termín odevzdání diplomové práce: 14.08.2020Datum zadání diplomové práce: 11.02.2020

Platnost zadání diplomové práce: 30.09.2021

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedrydoc. Ing. Jiří Bittner, Ph.D.

podpis vedoucí(ho) práce

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 1 z 2CVUT-CZ-ZDP-2015.1

III. PŘEVZETÍ ZADÁNÍ
Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 2 z 2CVUT-CZ-ZDP-2015.1

Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Graphics and Interaction

Realistic remote rendering for VR and
mobile devices

Bc. Jaroslav Kravec

Supervisor: doc. Ing. Jiří Bittner, Ph.D.
Field of study: Open Informatics
Study program: Computer Graphics
August 2020

ctuthesis t1606152353 ii

Acknowledgements
Thanks to ČVUT, supervisor Jiří Bit-
tner and my family for the support
and opportunity to work on this project.
The 3D models used for the Vil-
lage scene are a copyrighted mate-
rial of DEXSOFT-Games (http://www.
dexsoft-games.com).

Declaration
I declare that this thesis represents my
work and that I have listed all the litera-
ture used. Prague, 14. August 2020

iii ctuthesis t1606152353

http://www.dexsoft-games.com
http://www.dexsoft-games.com

Abstract
Wired VR headsets provide high visual
quality, but restrain the user’s movement
by being connected to PC with cable,
and untethered headsets have only mo-
bile GPU, which has relatively low perfor-
mance. We focus on providing smooth VR
experience without restriction on move-
ment: high refresh rate and immediate
effect of head movement on the rendering
to prevent motion sickness. Video stream-
ing of rendering provides high refresh-rate
and quality but can also have high latency.
In our approach, the scene is rendered on
the server to multiple layers using depth
peeling, packed to texture, and with a po-
tentially visible set of triangles streamed
to the client. This method supports tem-
poral frame up-sampling and provides low
latency. Results show that it is a poten-
tial alternative to existing image-based
methods and atlas streaming approaches.

Keywords: virtual reality, remote
rendering, streaming, low power clients,
thin clients, ray tracing

Supervisor: doc. Ing. Jiří Bittner,
Ph.D.

Abstrakt
Klasické VR poskytujú vysokú kvalitu vi-
zualizácie, ale obmedzujú pohyb užívateľa,
keďže sú pripojené k PC káblom a mobilné
VR majú iba GPU s relatívne nízkym vý-
konom. Cieľom práce je dosiahnuť dobrý
VR zážitok bez obmedzenia na pohyb: vy-
soká obnovovacia frekvencia a okamžitá
zmena zobrazenia pri zmene polohy hlavy.
V našom riešení, scéna je vykresľovaná
na vzdialenom výkonnom serveri do viace-
rých vrstiev, zabalená do jednej textúry,
skomprimovaná a s potenciálnou viditeľ-
nou množinou trojuholníkov posielaná kli-
entovi. Klient zobrazuje scénu s vyššou
obnovovaciou frekvenciou, ako je aktuali-
zovana zo servera.

Klíčová slova: virtualna realita,
vzdálené vykreslování, tenky klient,
sledování paprsku

Překlad názvu: Vzdálené realistické
zobrazování pro VR a mobilní zařízení —

ctuthesis t1606152353 iv

Contents
Project Specification 1
1 Introduction 1
1.1 Goals . 1
1.2 Structure of the thesis 2
2 Remote rendering 3
2.1 Potentially Visible Set 3
2.2 Image-Based Rendering 4
2.3 Object-Space Shading 5
3 Global illumination 9
3.1 Rendering equation 9
3.2 Path tracing 10
3.3 Photon mapping 10
3.4 Instant radiosity 11
3.5 Denoising . 11
3.5.1 Edge-Avoiding À-Trous Wavelet
Transform . 11

3.5.2 Spatiotemporal
Variance-Guided Filtering 12

4 Remote Rendering - System
Design 15
4.1 Rendering on the server 16
4.1.1 PVS . 17
4.1.2 Layers . 17
4.1.3 Packing 18
4.1.4 Fragment relocation 19
4.1.5 Color filling 20

4.2 Compression 20
4.3 Rendering on the client 22
4.3.1 Scene Updating 23
4.3.2 Rendering 24

4.4 Path tracing 25
4.4.1 SVGF with layers 25

4.5 Optimizations 25
4.5.1 Depth peeling with triangle
subsets . 25

4.5.2 Pixel mask with ’any’ pixels . 26
5 Implementation 27
5.1 Asynchronous processing and
communication 28

5.2 Server . 29
5.3 Client . 30
5.4 Configuration 30
5.5 Compression 30
5.6 Lighthouse 2 30

6 Results 33
6.1 Server Performance 34
6.2 Client Performance 34
6.3 Visual Quality 35
7 Conclusions 37
7.1 Possible improvements 37
A Bibliography 49
B Directory structure of attachment
files 53

v ctuthesis t1606152353

Figures
2.1 Proxy-guided Image-based
Rendering for Mobile Devices:
primary and extra view (source:
[RKR+16]). 4

2.2 Proxy-guided Image-based
Rendering for Mobile Devices: (a)
Mesh simplification causes
background to be projected onto
foreground (neck of the figure) and
foreground to be cut off (missing
nose). (b) Depth testing removes the
incorrect background, but foreground
details remain lost. (c) Encaging
simplification keeps foreground
details. (d) Combining both
techniques gives the best results
(source: [RKR+16]). 5
2.3 Shading Atlas Streaming: game
scenes (top) with corresponding atlas
(bottom) (source: [MVD+18]) 6
2.4 From the current viewpoint P1,
future viewpoints, P2 and P3 are
predicted, with the corresponding
FOV shown in color. An EVS is
computed for each viewpoint, and the
PVS is determined as the union of all
objects visible in any EVS (visible
objects are marked as white circles).
In the example, object A is only
visible from P1, but not from P2 or
P3. Conversely, object D is only
visible from P3. Object C is jointly
occluded by objects A and B from P1,
but becomes visible from P2 (source:
[MVD+18]). 7

2.5 Tessellated Shading Streaming:
oversampling packing method - they
split triangles into two right-angled
triangles along the longest edge and
pack to shading atlas next to another.
(source: [HSS19a]) 7

2.6 Tessellated Shading Streaming:
tesselation pattern (top)
corresponding to L-packed triangles
(bottom). They cut triangles along
with yellow triangles and duplicate
them to allow for interpolation
(source: [HSS19a]). 8
2.7 Tessellated Shading Streaming:
They divide the scene triangles to
gather shading via Oversampling
(blue) and L-packing (green) into a
shading atlas used on the client to
render near ground-truth novel views
(source: [HSS19a]). 8

3.1 The rendering equation (source:
[RDGK12]). 9

3.2 Path tracing at a sample (orange
point) sends rays in random
directions (blue arrows) and bounces
them, before linking them with the
light (source: [RDGK12]). 10

3.3 Photon Mapping emits particles
from light (yellow arrows) that are
bounced and stored (yellow circles).
To compute the indirect lighting at a
location (orange circle), final
gathering (blue arrows) or density
estimation (blue circle) is used
(source: [RDGK12]). 10
3.4 Instant radiosity is similar to
photon mapping, but instead of
density estimation or final gathering,
every stored photon becomes a
virtual point light (yellow dot) that
sends its light (blue arrow) to all
receiver samples (orange point)
(source: [RDGK12]). 11
3.5 EAW: Positions of pixels with
non-zero coefficients of the kernel
(black dots) for three iterations of
one-dimensional À-Trous wavelet.
Arrows indicate pixels that are used
to compute the center pixel for the
next level (source: [DSHL10]). 12

ctuthesis t1606152353 vi

3.6 EAW with the increasing number
of edge weights: unfiltered ray-traced
buffer (input), no additional weights:
(“pure” À-Trous), ray-traced buffer
only (bilateral approx.), two buffers
(ray traced, normal) and all three
buffers (ray traced, normal, position)
(source: [DSHL10]). 12
3.7 SVGF: they demodulate direct and
indirect illumination from albedo to
preserve high-frequency texture detail
during reconstruction filter. After
filtering, they recombine illumination
with albedo, apply tone mapping and
temporal antialiasing (source:
[SSK+17]). 13

3.8 SVGF: An overview of the core
reconstruction filter. They
temporally filter frame buffers (left)
to get temporally integrated color
and moments. They use an estimated
luminance variance to drive an
edge-aware spatial wavelet filter
(center). The wavelet filter’s first
iteration provides a color and
moment history for future frames
(source: [SSK+17]). 13

4.1 Application architecture. The
diagram shows execution loops for
the rendering on the client and server,
scene updating on the client and the
client-server communication. 15

4.2 Server-side rendering. The server
generates PVS, renders it to the
layers, packs to one texture,
compresses data, and sends it to the
client. 16

4.3 First (left) and second (right)
rendered layer. 18

4.4 Packing of tiles from all layers (up)
to one texture using block-first order
(bottom). 19
4.5 Color filling comparison example:
before (top), after (bottom). Tiles
are upscaled (original size:
32x32px). 20

4.6 Comparison of the rendered image
on the client without (left) and with
(right) using fragment relocation.
View position on the client is slightly
different from the original position
the server used. 21

4.7 Scene packed to texture with two
full layers at the bottom and the rest
of layers divided to tiles at the top. 22

4.8 Diagram of the client-side scene
updating process. Blocks represent
data and arrows jobs. Client
decompresses received data on the
CPU, uploads to GPU, generates
layer using depth peeling and
relocates fragments on the GPU. . . 23

5.1 Illustrative timeline showing
parallelization and pipelining of the
scene updating process. Every color
represents an individual scene update.
Both server and the client can utilize
GPU and CPU simultaneously. Parts
processed on the CPU are further
parallelized to multiple threads. . . 28

7.1 Client rendering and scene
updating. CPU / GPU / Update:
accumulated CPU / GPU time of
updating (decompression, depth
peeling and fragment relocation);
GPU / Frame: rendering and GPU
tasks; Latency: elpased time between
scene request and its first rendering
on the client; Processing: elapsed
time between start of scene
processing and its first rendering on
the client; Delta: time between
updates. 40

vii ctuthesis t1606152353

7.2 Server rendering and compression
times. Vertical axis represents
timeline per scene update at given
timepoint at horizontal axis. PVS
compression starts after PVS and
runs in parallel with rest of steps.
Similarly Video and Pixel Mask
Compression runs in parallel starting
after Copy to RAM step. JPEG and
other compressions are not shown
due to its small time contribution
(<2ms). 41
7.3 Client scene updating times.
Vertical axis represents timeline per
scene update at given timepoint at
horizontal axis. Green / red areas
shows time ranges of processing CPU
/ GPU tasks. Darker areas shows real
time spent processing tasks (parallel
on CPU serial on GPU) and brighter
areas shows idle time or waiting for
dependency, e.g., data from the
server or GPU task for CPU task.
Lighter GPU area also contains time
spent on rendering of the current
scene, as GPU tasks and scene
rendering is interlaced. 42

7.4 Scene compressed size (individual
parts are in legend) with texture size
(light blue line) to show correlation. 43
7.5 Image quality (DSSIM, NRMSE)
for every frame of rendered sequence
with scene latency (gray line) to show
correlation. 44

7.6 Client rendering errors, left images
are reprojected on the client, and
rights are references. Top: fast
rotation causes missing geometry in
PVS (black area on the right) or not
having shading for geometry (gray
parts of geometry), because it is
outside of the rendered frustum .
Middle: too perpendicular or facing
away triangles doesn’t have correct
shading in the texture (left part,
especially top green drapery), also
current implementation doesn’t
support transparent geometry
(leaves). Bottom: coming from the
corner causes missing geometry as
PVS creation failed to predict it. . 45

7.7 Comparisson of reprojected images
on the client (left) and reference
images (right) for Sponza Crytek
with dynamic lights (top), Sponza
Crytek with static lights (middle)
and Village (bottom) 46

7.8 Village scene rendered on the
client. 47

7.9 Sponza Crytek scene with dynamic
lights (top and middle) and static
lights (bottom) rendered on the client.
Note: bottom has sharper shadows
than middle, because denoise filter
works better for static scenes. 48

ctuthesis t1606152353 viii

Tables
7.1 Client benchmark statistics. 38
7.2 Server benchmark statistics. 39

ix ctuthesis t1606152353

ctuthesis t1606152353

Chapter 1
Introduction

Providing high-quality visualization in real-time is still difficult nowdays.
One of the most resource-consuming task is to compute realistic lighting,
mainly indirect lighting, and global illumination. For that, many real-time
approximate techniques are used in combination with rasterization, or it is
preprocessed with simulation methods, like raytracing, but then it cannot be
used in dynamic scenes. Nowadays, with hardware support for ray tracing, it
is possible to achieve interactive global illumination.

VR has higher requirements than real-time visualization on the PC, mainly
higher framerate and low perceivable latency on the head movement. The
reason is to reduce nausea and other health-related problems. In the present,
we have two types of VR: tethered, that need to be connected to PC and
untethered, that have a mobile computer inside them. It is not a problem to
achieve high quality with tethered VR, but they limit a person to a smaller
area, and untethered VR does not have sufficient performance for computation
of realistic illumination.

We can achieve high-quality visualization and not be connected with the
cable using remote rendering on a high-performance server and streaming to a
thin client on untethered VR, but wireless transmission has lower bandwidth
compared to tethered connection and often larger latency. Therefore we study
methods that get around these limitations and use hardware of both devices
simultaneously: compute resource-demanding parts on high-performance
server and the rest on mobile VR.

1.1 Goals

The goal of this project is to provide high-quality visualization with dynamic
global illumination on mobile devices with relatively low HW performance
using the utilization of high-performance remote server for rendering with data
streaming over common wireless network (40Mbps). We focus on providing
smooth VR experience: high refresh-rate (even with low scene update rate)
and immediate effect on the rendering of head movement to prevent motion
sickness. The following technologies will be used: OptiX and CUDA on the
server for ray tracing and data processing, and OpenGL on the client for
rendering.

1 ctuthesis t1606152353

1. Introduction
1.2 Structure of the thesis

Chapter 2 contains analysis of existing methods for remote rendering and
chapter 3 of global illumination techniques. In chapter 4 we present our
remote rendering method, and in chapter 5 its implementation details. We
evaluate performance and visual quality in chapter 6, and finally summarize
the work in chapter 7.

ctuthesis t1606152353 2

Chapter 2
Remote rendering

Remote rendering represents techniques to offload rendering tasks to another
computer. We focus on real-time remote rendering methods, where rendered
data are streamed to the client instantaneously. These techniques usually
provides a frame-rate upsampling method that allows to render multiple
frames from the different viewpoints on the client for a short period of time
from the same data. This way, the scene can be updated with a lower rate
and still have a high refresh rate on the client and immediately respond to
the camera rotation or movement. The most common technique for remote
rendering is video streaming, which provides high refresh-rates and high
quality with relatively low requirements for transfer bandwidth. However,
its problem is higher latency from requesting frame to rendering it on the
client. Many solutions require to stream additional information, e.g., depth
or geometry in conjunction with the color information.

2.1 Potentially Visible Set

Potentially visible set (PVS) is a term usually referring to occlusion culling
algorithms, where candidate set of potentially visible objects or polygons
are pre-computed and used to reduce the cost of frame processing by not
rendering non-visible parts of the scene. Laakso [M.03] provided an overview
of these techniques, including the exact 3D solution.

In the remote rendering context, PVS is a set of triangles, which are visible
in the current frame and could be potentially visible in the next few frames —
to cover camera movement and rotation until the new scene data arrive. PVS
is useful for reducing rendering cost on the client and for minimizing the size
of transferred data.

PVS can be computed by rasterizing triangle IDs from multiple predicted
camera samples [MVD+18] or with a more sophisticated method that com-
putes it in the camera offset space [HSS19b].

3 ctuthesis t1606152353

2. Remote rendering...................................

Figure 2.1: Proxy-guided Image-based Rendering for Mobile Devices: primary
and extra view (source: [RKR+16]).

2.2 Image-Based Rendering

Image-based rendering (IBR) are methods that generate and render a 3D
model from sets of 2D images. It can be used to hide latency and as a frame
upsampling method. Asynchronous time warping (ATW) by Oculus is a
technique used in VR that shifts the rendered image to adjust for changes in
head movement [Ocu20]. This technique works well for rotation but does not
handle disocclusions when the view position has changed. Advanced warping
methods use additional information, e.g., depth buffer. The depth buffer is
used as a geometry proxy (grid), which is rendered with perspective texture
mapping [MMB97]. That can be costly because a large number of pixels
generates a large number of primitives. The grid can be reduced by using a
coarse regular grid [DER+10] or by adaptively grouping pixels into coherent
blocks [CW93] [DRE+10]. These methods are an approximation of the true
warp but provide higher performance.

Reinert et al. [RKR+16] proposed a method where the server renders
dual views with wide-angle non-linear projection (see Fig. 2.1), and the
client renders it using IBR with simplified preprocessed geometry. They use
hemispherical fish-eye projection modified that horizontally stretches each
row to fill the full height of the texture. With such projection, straight
lines in world-space turn into curves in screen-space, therefore they employ
tesselation shader to adaptively subdivide triangles to cover less than a pixel.
They render a primary view from the last known client location and extra
view with quarter resolution from an offset location to provide extra visibility
coverage and depth-peeling to prevent the inclusion of redundant pixels from
the primary view. They use preprocessed geometry proxy on the client, which
is faster to render, because of lower triangle count, but causes artifacts in
silhouettes, when background samples are projected on the foreground (Fig.
2.2a) or has missing parts of foreground geometry (e.g. nose in Fig. 2.2a).
To solve this, they use a strictly encaging simplification of the original model

ctuthesis t1606152353 4

.................................2.3. Object-Space Shading

Figure 2.2: Proxy-guided Image-based Rendering for Mobile Devices: (a) Mesh
simplification causes background to be projected onto foreground (neck of the
figure) and foreground to be cut off (missing nose). (b) Depth testing removes
the incorrect background, but foreground details remain lost. (c) Encaging
simplification keeps foreground details. (d) Combining both techniques gives the
best results (source: [RKR+16]).

(Fig. 2.2c) and custom depth test to discard fragments with larger error
distance compared to transmitted depth maps (Fig. 2.2c,d).

Lochmann et al. extended common diffuse and opaque image warping
technique to the reflective and refractive case. They use a ray tree of RGBZ
images, where each node contains one RGB light path, which is to be warped
differently depending on the depth Z and the type of path: diffuse, reflective,
and refractive. The warp diffuse flow using a simplified version of Image
Warping algorithm [BMS+12] and specular flow using their novel method
based on modified gradient descent procedure to find pixel with the closest
reflected/refracted direction.

2.3 Object-Space Shading

Object-space shading is an alternative to image-space shading, where shading
occurs before rasterization, independently on the screen-space, and can be
often packed in some way in textures. It exploits world-space coherency
instead of image-space coherency.

Mueller et al. [MVD+18] proposed a method that packs patches (a group

5 ctuthesis t1606152353

2. Remote rendering...................................

Figure 2.3: Shading Atlas Streaming: game scenes (top) with corresponding
atlas (bottom) (source: [MVD+18])

of two or three adjacent triangles preprocessed from triangle meshes) to a
texture atlas, which is streamed using MPEG, see Fig. 2.3 for an example.
The processing of every frame on the server consists of several steps. The
server determines the visibility of patches (PVS) by generating and merging of
multiple exact visibility sets (EVS). EVS is computed for a specified viewpoint
by rastering of patches to id buffer with depth test enabled. Viewpoints for
EVS are determined from the prediction of head motion for a short period into
the future, see Fig. 2.4. Every patch inside PVS is mapped from screen-space
to rectangles in atlas space. The method provides a parallel atlas memory
allocation system, which keeps allocated patches visible in subsequent frames
unchanged and fills gaps with newly added patches. It improves temporal
coherence for MPEG compression. Patches are shaded in object-space and
stored inside theirs allocated locations in the atlas.

Hladky et al. [HSS19a] proposed a similar method, which packs shading of
triangles to two texture atlases using two methods: oversampling for slanted
triangles and L-packing for other cases, see Fig. 2.7 . Fig. 2.6 shows the
structure of L-packed triangles. When a triangle is classified for oversampling,
they split it by the longest edge into two right-angled triangles and pack it to
separate atlas next to another, see Fig 2.5. The size of triangles is computed
from the screen-space. They exploit tesselation shader to dynamically launch
threads for effective packing triangles of different sizes. They adjust sample

ctuthesis t1606152353 6

.................................2.3. Object-Space Shading

Figure 2.4: From the current viewpoint P1, future viewpoints, P2 and P3 are
predicted, with the corresponding FOV shown in color. An EVS is computed for
each viewpoint, and the PVS is determined as the union of all objects visible in
any EVS (visible objects are marked as white circles). In the example, object
A is only visible from P1, but not from P2 or P3. Conversely, object D is only
visible from P3. Object C is jointly occluded by objects A and B from P1, but
becomes visible from P2 (source: [MVD+18]).

Figure 2.5: Tessellated Shading Streaming: oversampling packing method - they
split triangles into two right-angled triangles along the longest edge and pack to
shading atlas next to another. (source: [HSS19a])

positions to increase screen-space uniformity [MHAM08]. Shading atlases are
compressed using JPEG. They compute PVS using their method that uses
the camera offset space [HSS19b].

7 ctuthesis t1606152353

2. Remote rendering...................................

Figure 2.6: Tessellated Shading Streaming: tesselation pattern (top) corre-
sponding to L-packed triangles (bottom). They cut triangles along with yellow
triangles and duplicate them to allow for interpolation (source: [HSS19a]).

Figure 2.7: Tessellated Shading Streaming: They divide the scene triangles to
gather shading via Oversampling (blue) and L-packing (green) into a shading atlas
used on the client to render near ground-truth novel views (source: [HSS19a]).

ctuthesis t1606152353 8

Chapter 3
Global illumination

Global illumination is a term used for techniques that are used to produce
more realistic lighting in the 3D scenes by taking into account not just direct
lighting – light that comes directly from the light source, but also indirect
lighting – light often reflected multiple times from other surfaces. A good
survey of such techniques and related methods is covered in [RDGK12]. This
chapter contains an overview of the few most commonly used techniques,
including path tracing that is used in our project.

3.1 Rendering equation

),(o ωxL
),(ii ωxL

),(e ωxL

x

)(r xf

Figure 3.1: The rendering equation (source: [RDGK12]).

Light transport between surfaces are computed based on the rendering
equation [Kaj86] (Fig. 3.1):

Lo(x, ω) = Le(x, ω) + Lr(x, ω) (3.1)

which states that outgoing radiance Lo at the surface located at x in
direction ω is equal to sum of emitted radiance Le and reflected radiance Lr,
which is computed as:

Lr(x, ω) =
∫

Ω
Li(x, ωi) fr(x, ωi → ω) max(0, N(x) · ωi) dωi (3.2)

where Ω is upper hemisphere oriented around the normal N(x) at x and
fr is bi-directional reflectance function (BRDF) [Nic65], that determines the
amount of light for different incoming (ωi) and outcoming (ω) directions at
specified location (x).

9 ctuthesis t1606152353

3. Global illumination
Solving rendering equation requires visibility determination between sur-

faces and lights, for which ray tracing is most commonly used. Such com-
putation can be computational expensive and therefore uses spatial data
structures such as k-d tree or bounding volume hierarchy (BVH) to speed-up
ray intersection computation.

3.2 Path tracing

Figure 3.2: Path tracing at a sample (orange point) sends rays in random
directions (blue arrows) and bounces them, before linking them with the light
(source: [RDGK12]).

The rendering equation can be approximated using Monte Carlo techniques
[Kaj86]. A high number of directional samples (paths) are tracked using
ray tracing, and the result is an average of samples belonging to the same
pixels. Paths start from the camera origin as primary rays for every pixel
and bounces repeatedly creating other rays based on BRDF function, see Fig.
3.2. The path needs to operate some light or emissive material to have a
contribution, therefore usually from every hit point on the path is shot shadow
ray to randomly selected light source (next event estimation). Path tracing
has many variants and improvements. Importance sampling is a technique
where rays are sent more often in the directions where it is expected that
the rendering equation will have hight values. Bi-directional path tracing
shots particles from the camera and selected light source at the same time
and connect them using shadow rays [LW93].

3.3 Photon mapping

Figure 3.3: Photon Mapping emits particles from light (yellow arrows) that
are bounced and stored (yellow circles). To compute the indirect lighting at a
location (orange circle), final gathering (blue arrows) or density estimation (blue
circle) is used (source: [RDGK12]).

Photon mapping [Jen96] computes illumination in two passes: first, a large
number of photons are path traced from light sources and stores in a photon

ctuthesis t1606152353 10

................................... 3.4. Instant radiosity

map at each hit point. A Photon map is a spatial data structure, like kd-tree,
that allows for effective searching for the nearest points. The second pass
computes the final image by tracing rays from the camera and estimating
radiance from photons closest to its first hit point, see Fig. 3.3. This method
is suitable for rendering caustics and uses for its second photon maps, where
photons in the first pass are shot onto objects with refractive materials. For
specular reflection is used Monte Carlo path tracing.

3.4 Instant radiosity

Figure 3.4: Instant radiosity is similar to photon mapping, but instead of density
estimation or final gathering, every stored photon becomes a virtual point light
(yellow dot) that sends its light (blue arrow) to all receiver samples (orange
point) (source: [RDGK12]).

Instant radiosity [Kel97] is similar to photon map. In the first pass, photons
are emitted from light sources and bounced inside the scene. The second
pass is different, every stored photon is considered as virtual point light
(VPL). Indirect light is computed by gathering – shooting rays to VPLs or
rasterization with shadow maps, instead of density estimation as used in
photon mapping, see Fig. 3.4.

3.5 Denoising

Monte Carlo path tracing requires a large number of samples to converge to
a result with acceptable noise. This is not possible for real-time rendering
using current hardware, including recent GPU with support for ray tracing.
To get around this, denoising algorithms were created, that filter raytraced
output in post-process, often in screen-space. This approach adds some bias
compared to the ground-truth reference but provides visually plausible results
in a small amount of time.

3.5.1 Edge-Avoiding À-Trous Wavelet Transform

Dammertz et al. created Edge-Avoiding À-Trous Wavelet Transform for fast
Global Illumination Filtering (EAW) [DSHL10]. À-Trous wavelet transform
computes discrete wavelet transform by repeating convolution with generating
kernels. Each step number of non-zero coefficients in kernel is same, but are
filled in between with zeros as shown in Fig. 3.5. The filter radius is doubled
each step.

11 ctuthesis t1606152353

3. Global illumination

Figure 3.5: EAW: Positions of pixels with non-zero coefficients of the kernel
(black dots) for three iterations of one-dimensional À-Trous wavelet. Arrows
indicate pixels that are used to compute the center pixel for the next level (source:
[DSHL10]).

Edge-avoiding filtering is achieved using a data-depending weighting func-
tion. They extend the intensity-based edge-stopping function of the bilateral
filter to combine multiple edge-stopping functions computed from the ray-
traced image, normal buffer, and position buffer, see Fig. 3.6

Figure 3.6: EAW with the increasing number of edge weights: unfiltered ray-
traced buffer (input), no additional weights: (“pure” À-Trous), ray-traced buffer
only (bilateral approx.), two buffers (ray traced, normal) and all three buffers
(ray traced, normal, position) (source: [DSHL10]).

3.5.2 Spatiotemporal Variance-Guided Filtering

Schied et al. proposed Spatiotemporal Variance-Guided Filtering (SVGF)
[SSK+17] based on EAW. They use path-tracer that outputs direct and indi-
rect illumination separately and rasterization to generate G-buffer: depth,
object-space normals, mesh IDs. Illumination is demodulated from albedo be-
fore filtering, see Fig. 3.7. In other words, they filter untextured illumination
components and reapply texture after reconstruction.

Their reconstruction filter performs three main steps: temporally accumu-
lating one spp path-traced inputs to increase the sampling rate, using these
temporally augmented color samples to estimate local luminance variance,
and use this variance to drive a hierarchical à-trous wavelet filter, see Fig.
3.8. In the end, they apply temporal antialiasing (TAA).

For temporal accumulation, they back project samples from the current
frame to screen-space position in prior frame, similarly like TAA, and check
the depth, normal, and mesh IDs for consistency. Consistent samples are
accumulated using exponential moving average.

The key idea of using variance to drive wavelet filter is that reconstruction
should less change samples in regions with less noise (e.g., fully shadowed
regions) while altering more in sparsely sampled, noisy regions. They estimate
the per-pixel variance from the first and second accumulated raw moments.

ctuthesis t1606152353 12

...................................... 3.5. Denoising

Edge-stopping functions are, similarly as EAW, based on depth, object-
space normals, and luminance.

Figure 3.7: SVGF: they demodulate direct and indirect illumination from
albedo to preserve high-frequency texture detail during reconstruction filter.
After filtering, they recombine illumination with albedo, apply tone mapping
and temporal antialiasing (source: [SSK+17]).

Figure 3.8: SVGF: An overview of the core reconstruction filter. They temporally
filter frame buffers (left) to get temporally integrated color and moments. They
use an estimated luminance variance to drive an edge-aware spatial wavelet filter
(center). The wavelet filter’s first iteration provides a color and moment history
for future frames (source: [SSK+17]).

13 ctuthesis t1606152353

ctuthesis t1606152353 14

Chapter 4
Remote Rendering - System Design

Figure 4.1: Application architecture. The diagram shows execution loops for
the rendering on the client and server, scene updating on the client and the
client-server communication.

Our solution is based on the streaming of multiple layers rendered using
perspective camera packed to one texture skipping unused partitions. We have
been inspired by Reinert’s et al. method [RKR+16], which uses two layers
with depth peeling and by object-space methods [MVD+18] and [HSS19a]
to pack shading data effectively using blocks to one texture. Our method is
designed to use lossy image and video compression (like JPEG or H264) and
provide a way to work around some visual glitches caused by them: fragment
relocation and color filling. All processing steps behind some compression
methods are implemented using the GPU.

We use client-server architecture, designed to have a high-performance
server and a relatively low-performance client. The server evaluates game
logic and pre-renders part of the scene from the latest viewpoint provided

15 ctuthesis t1606152353

4. Remote Rendering - System Design
by the client, encodes it, and sends it to the client. The data consists of
geometry (triangles) and a compressed texture with packed shading samples.
The client receives data, decodes, updates the scene in the background and
repeatedly renders it with the latest viewpoint, until new data arrive, to
support framerate upsampling. Fig. 4.1 shows the architecture diagram.

4.1 Rendering on the server

The server first generates a potentially visible set of triangles (PVS) for the
camera view provided by the client. Then the server renders the approximate
scene (PVS) using a perspective projection. We need all parts of geometry
(fragments) to be stored, and because some parts can be “hidden” behind
others, the server generates multiple layers of fragments. Layers are not fully
covered and can contain a large number of unused areas. The server divides
layers to the fixed-size tiles (e.g., 8x8px), filters out empty tiles, and packs
others to one texture. The main purpose of packing is to reduce the transfer
size and the client’s memory usage. The client needs to receive additional data
(block counts) to be able to recover tile positions within the original layers
and optionally other data to improve visual quality or to reduce processing
time on the client. Fig. 4.2 contains a schematic overview of the method.

PVS

Vertices Color
Block
counts

Layers

Pack
Relocate fragments
Fill empty pixels

Pixel
mask

Figure 4.2: Server-side rendering. The server generates PVS, renders it to the
layers, packs to one texture, compresses data, and sends it to the client.

ctuthesis t1606152353 16

................................ 4.1. Rendering on the server

4.1.1 PVS

PVS can be created using the algorithm described in Tessellated Shading
Streaming [HSS19a] or Shading Atlas Streaming [MVD+18]. For simplicity
of implementation, we choose the second algorithm — rasterizing triangles
from multiple predicted viewpoints to cover an area where the client could
potentially go within the next few frames. The field of view (FOV) is slightly
enlarged to the FOV the client uses to cover small rotations. We predict
viewpoints the way [MVD+18] do – current viewpoint and 2x extrapolation in
time, but we use additional four viewpoints: corners on the plane perpendic-
ular to the main viewpoint. The offset of the corners to the main viewpoint
is computed based on the server frame rate. See Algorithm 1. The client
receives a PVS in the form of vertices transformed into the global space.

Data: Scene triangles, current camera view
Result: PVS
Predict camera views: current, 4x corners with adaptive offset, 2x
extrapolate in time; Mark all triangles as non-visible;

foreach view ∈ predicted views do
Render scene using wider FOV with pixel containing the triangle
ID;
Mark triangles as visible based on rendered pixels;

end
Compute new triangle indices using prefix sum;
Collect triangle vertices as a new mesh;

Algorithm 1: Algorithm for creating a PVS for a given camera view
using rasterization on the GPU.

4.1.2 Layers

The server renders the scene (PVS) using perspective projection to several
layers. We consider a layer an image where every pixel contains a fragment
closer to the camera than the next layer. We use the same enlarged FOV as
the PVS uses. The layer size is computed from the client’s resolution and an
enlarged FOV. An example of the first two layers is in Fig. 4.3.

Layers can be generated using rasterization or by ray-tracing. We imple-
mented both methods, rasterization mostly for development purposes and
ray-tracing for realistic rendering with global illumination.

We implemented the rasterization method introduced by Yang et al.
[YHGT10], we call it fragment linked lists. The method rasters all frag-
ments in one pass to per-pixel linked lists and sorts them in the second pass.
Nodes of all lists are stored in a common array inside storage buffer. The
head texture contains the index to the first node in their lists for every pixel.

An alternative rasterization method we could use is depth peeling. This
method is often used for order-independent transparency. It works by render-
ing the scene multiple times with depth test enabled. Every rendering pass

17 ctuthesis t1606152353

4. Remote Rendering - System Design
keeps the nearest fragments with a larger distance than fragments stored in
the previous pass [Cas20].

With ray tracing, we generate layers by repeatedly shooting primary rays
from the same origin and in the same direction for every pixel, but we increase
the nearest ray distance to skip already captured geometry in previous layers.
Because we need to store in layers only geometry in PVS, we add an additional
test to ignore other triangles based on their IDs. This test is used only for
primary rays, bounced, and shadow rays uses the whole scene.

Figure 4.3: First (left) and second (right) rendered layer.

4.1.3 Packing

We divide layers to grids of fixed-size tiles. We use the term block to denote
the array of tiles with the same position within a layer, i.e., tiles that are
behind each other (see Fig. 4.4). The server computes the number of non-
empty tiles for every block (block counts). Non-empty tiles are contiguously
behind each other (starting from the first layer) because empty tile cannot
exist between two non-empty tiles.

The server computes a one-dimensional index for every non-empty tile in a
deterministic way. We have two alternative orders of tile indexing: block-first
and layer-first order. In the block-first order, tiles within the same block have
indices next to each other. In the layer-first order, tiles within the same layer
have indices next to each other — every layer is fully processed before going
to the next layer. In both cases, blocks are in row-major order. The server
packs tiles to the texture also in row-major order, with position computed
from the tile index. We designed the packing method to effectively support
JPEG compression, which uses blocks of size 8x8px. The client needs to
receive block counts to be able to recover original layers or to compute indices
for indirect addressing.

The first layer is often fully covered. Therefore we choose to stream it (or
first several layers) without packing. We call them full layers. This way, they
can be compressed effectively using video compression, and the client accesses

ctuthesis t1606152353 18

................................ 4.1. Rendering on the server

them directly. We store full layers in the start of the same texture as blocks,
each under another, see Fig. 4.7 for example.

A1

A2

B1

A1

B1

A2

Figure 4.4: Packing of tiles from all layers (up) to one texture using block-first
order (bottom).

4.1.4 Fragment relocation

Continuous geometry (in the sense of distance from the camera) can be
divided between different layers. This produces edges that are smoothed
using lossy compression like JPEG, which leads to creating artifacts when
rendered on the client with different viewpoints — the outline of the front
geometry is visible on the geometry behind on reprojected view (see Fig. 4.6).
Fragments within the same block can be moved to different layers to improve
depth continuity, keeping the order of fragments the same, see Algorithm 2.
The client needs to receive a pixel mask for packed texture to be able to skip
empty pixels during rendering or to relocate pixels back during the scene
updating.

19 ctuthesis t1606152353

4. Remote Rendering - System Design
Data: Block
foreach layer ∈ block do

do
collect fragments from the current layer with:
- depth closer to at least one of 4-neighbors in next layers
compared to the depth of neighbors in current layer

- has space left - number of remaining fragments at the same
position is lower than the number of remaining layers;
move collected fragments to the next layer - this leads to
recursive moving all fragments behind them as well;
replace moved fragments in the current layer with empty
fragment with depth computed from neighbors from the next
layer

while moved at least one fragment;
end

Algorithm 2: Algorithm for fragment relocation on the GPU to improve
depth continuity for better JPEG compression and reprojection quality
on the client.

4.1.5 Color filling

After packing to tiles, some pixels remain empty. Filling them with the
averaged surrounding colors improves JPEG compression quality and reduces
the size (less sharp transitions). Every tile is processed independently. The
algorithm repeatedly fills empty pixels with averaged color from 4-neighbors
non-empty pixels until no empty pixels remain. Fig. 4.5 contains an example
of the filling.

Figure 4.5: Color filling comparison example: before (top), after (bottom). Tiles
are upscaled (original size: 32x32px).

4.2 Compression

For color texture, we use JPEG or video compression with codec H264. Video
compression does work well only for full layers, because other parts do not

ctuthesis t1606152353 20

..................................... 4.2. Compression

Figure 4.6: Comparison of the rendered image on the client without (left) and
with (right) using fragment relocation. View position on the client is slightly
different from the original position the server used.

have image-space coherence outside of tile – neighboring tiles are affected
using video compression, that causes visual artifacts after reprojection on the
client even with fragment relocation. JPEG compresses every 8x8px block
independently, therefore, it has no such problems. We hybrid approach to
give the best visual quality to compressed size ratio: one full layer compressed
with H264 and rest of blocks using JPEG. The quality of both compressed
parts is adjusted separately, which gives more flexibility.

We compress pixel mask, required for fragment relocation, using binary
quadtree method [Sam84]. We tried combination binary RLE with Huffman
coding, but it gives a smaller compression ratio (10 to 30% compared to
quadtree).

To minimize the transport size of PVS, we exploit spatial coherency of
vertices and send to the client only the difference (patch) of the current PVS
to the PVS from the previous scene update. We compute PVS difference
in linear time from triangle IDs, which are implicitly sorted due to the way
the PVS generation works. For new triangles, we first try to find the same
vertices in previous PVS and reference to it. This gives 2-4 bytes for index

21 ctuthesis t1606152353

4. Remote Rendering - System Design
instead of 12 bytes for the whole vertex. Similarly, every new vertex is sent
only once and is referenced from subsequently added triangles when need.
The patch is additionally compressed with Huffman encoding.

We compress other data (e.g., block counts) using Huffman encoding on
the top of the RLE.

Figure 4.7: Scene packed to texture with two full layers at the bottom and the
rest of layers divided to tiles at the top.

4.3 Rendering on the client

The client consists of two logical loops, one for the rendering and one for
the scene updating, see Fig. 4.1). The rendering loop repeatedly renders the
scene with the latest view (reprojection of the scene) until the new scene is

ctuthesis t1606152353 22

................................ 4.3. Rendering on the client

available. The update loop receives, decodes, and updates scene data in the
background. Communication between the client loops is asynchronous.

4.3.1 Scene Updating

Figure 4.8: Diagram of the client-side scene updating process. Blocks represent
data and arrows jobs. Client decompresses received data on the CPU, uploads
to GPU, generates layer using depth peeling and relocates fragments on the
GPU.

The client needs to preprocess new scene data received from the server
before they can be rendered. Fig. 4.8 shows the task diagram of the scene
updating process. The client first decompresses data using several methods,
based on data type: RLE for block counts and triangle masks, H264 and/or
JPEG for color, and quadtree for pixel mask. From block counts, the client
computes block indices, that are used during rendering to compute tile
positions in color texture. The client uses a pixel mask to mask out pixels
in the color image using the alpha channel: zero alpha means the pixel is
unused. The client uploads decompressed and computed data to the GPU.

Until this point, processing occurs in the background on the CPU, expect
for video decompression, if hardware decoding is available, and individual
tasks can perform in parallel, as they are often independent on each other.
The client then computes on the GPU depth layer using depth peeling from
PVS vertices and optionally indices per layer from triangle masks, if triangle
subsets optimization is enabled (see section 4.5.1 for details).

If the pixel mask is provided, the client can relocate fragments on the GPU
back to their original locations during the scene preprocessing, or unused pixels
will be skipping during the rendering. Relocating back increases preprocessing

23 ctuthesis t1606152353

4. Remote Rendering - System Design
time, but speed up rendering, as layers can be directly accessed through block
indices and not incrementally traversed.

Scene preprocessing performed on the GPU occurs in parallel with the
rendering of the previous scene. If hardware or API does not support parallel
execution, it needs to be interleaved with the rendering of frames. To prevent
framerate shuttering by having spikes created from preprocessing tasks, we
can divide them into smaller tasks and execute them within a few frames,
not just one. Depth peeling can be limited to process only a few layers at
once and fragment relocation by processing only a smaller portion of texture
at once.

4.3.2 Rendering

The client renders geometry using the latest viewpoint, applying layers as
perspective projected textures. Vertex shader transform geometry to two
screen-space coordinate systems: current space using the latest viewpoint
available on the client, and original space using the viewpoint that the server
used for rendering. The current space is for rasterization and original for
texture projection. Fragment shader iterates through depth layers, comparing
it with depth from the original space to find the correct layer number. If
pixels are not relocated back during the scene update, the shader iterates
over color layers skipping empty pixels, otherwise it accesses only one color
layer. Fragment shader computes location to color texture from original
screen coordinate, layer number, and block texture as described in algorithm
4.1.

vec4 getColor (vec2 screenCoord , l a y e r) {
i f (l a y e r < fu l lLayersCount)

// s k i p b l o c k t e x t u r e and compute p o s i t i o n d i r e c t l y
return t e x tu r e (co lorTexture , vec2 (0 , l a y e r ∗ frameHeight) + screenCoord) ;

else {
// o f f s e t l a y e r index , s k i p f u l l l a y e r s
l a y e r = l a y e r − fu l lLayer sCount ;

i f (useLayerFirs tOrder) {
// layer − f i r s t : 3D t e x t u r e has index f o r every t i l e from every l a y e r
t i l e I n d e x = t e x t ur e (blockTexture , vec3 (screenCoord / b lockS ize , l a y e r)) ;

} else {
// b lock − f i r s t : 2D t e x t u r e has index o f f i r s t t i l e f o r every b l o c k
t i l e I n d e x = t e x t ur e (blockTexture , screenCoord / b l o c k S i z e) + l a y e r ;

}

t i l e P o s i t i o n = vec2 (t i l e I n d e x % ti lesInRow , t i l e I n d e x / t i l e s InRow) ∗ b l o c k S i z e ;
p o s i t i o n O f f s e t = vec2 (0 , fu l lLayersCount ∗ frameHeight) ;
co lorCoord = p o s i t i o n O f f s e t + t i l e P o s i t i o n + screenCoord % b l o c k S i z e

return t e x tu r e (co lorTexture , co lorCoord) ;
}

}

Algorithm 4.1: Retrieval of color texel for specific screen coordinate and layer
from packed color texture using index from block texture.

ctuthesis t1606152353 24

..................................... 4.4. Path tracing

4.4 Path tracing

To create more realistic global illumination, we use real-time Monte Carlo
path tracer with SVGF [SSK+17] for denoising, extended to support multiple
layers. Layer generation using raytracing is described in section 4.1.2. The
path tracer implements Disney BRDF [MHH+12], supports punctual lights,
area lights, and environmental map illumination. Every hitpoint at the path
is connected with shadow ray to randomly selected light source (next event
estimation). It uses Russian roulette based on survival probability of path,
to determine when to end stop bouncing and multiple importance sampling
for light sources. We trace more samples per pixels to improve quality and
provide better per-pixel variance estimation for the denoiser.

4.4.1 SVGF with layers

The main problem is that SVGF works in screen-space, and we have multiple
layers – more fragments corresponding to one pixel. Wavelet decomposition
uses 5 x 5 cross-bilateral filter each step. We apply it to every fragment, but
at every sample position of filter, where originally only one pixel would be,
we iterate over all fragments looking for the fragment closest to the plane in
world-space created from the main (center) fragment and its normal. The
plane is shifted in the normal direction based on world-space distance to the
camera and screen-space distance of processing sample to the center of the
filter. The main purpose of shifting is to prevent the inclusion of rear hidden
surfaces when more surfaces are close behind each other (e.g., a picture on a
wall).

4.5 Optimizations

During implementation we found some optimization, that does noticeably
increase performance or reduce compressed size.

4.5.1 Depth peeling with triangle subsets

The client uses depth peeling to generate layers, but it can be time-consuming
on a weaker GPU. We found that not all triangles are required to be rasterized
on every layer e.g., triangles fully visible in front layers will not have an effect
on further layers, and fully obscured triangles in a given layer is pointless to
draw to it or layers before it.

We implemented an optimization, where the client uses on every layer
different subset of triangles, which is enough to generate correct depth. The
server computes subsets during layer generation and packing and sends them
as a mask of all triangles compressed using RLE and Huffman coding. For
the server computation is no very time consuming because all necessary
data (triangles IDs for every pixel in every layer) has available from layer
generation, only compression remains.

25 ctuthesis t1606152353

4. Remote Rendering - System Design
This optimization reduces the time of layer generation on our tested client

by 10 to 40%, but requires to send around 3-5kB more data per scene update.

4.5.2 Pixel mask with ’any’ pixels

Inside the same block, some location can have a lower number of layers than
the number of tiles the block has and therefore pixels behind them doesn’t
contain useful information. For the pixel mask, it means that it doesn’t
matter which value will be stored for them. Compression for these pixels
selects values that will more reduce the final compressed size.

We implemented it for both methods: quadtree and RLE. In both cases,
it lowered a compressed size to about 10 to 30%. From the implementation
perspective, the packing phase provides a ternary mask instead of binary with
values: zero, ones, and ’any’ for every pixel, and the compression method will
take care of the rest.

ctuthesis t1606152353 26

Chapter 5
Implementation

We implemented server and client in C++14 with CMake as build system.
We use cross-platform technologies, but implementation was tested only on
Linux Manjaro and Ununtu 18.04. All dependencies are open-source, behind
NVIDIA proprietary technologies, that are required only for the server.

Both (server and client) uses:.OpenGL , GLEW. Boost: Asio for TCP communication and property tree for configuration
management.GLM - linear algebra library. FFmpeg - video codecs. FiniteStateEntropy (FSE) 1 - for Huffman encoding. PpluX 2 - for task oriented multi-threaded scheduler

Client additionally uses:.GLFW 3 - window management and input. TurboJPEG - JPEG decompression. ImGui 3 - user interface

Server additionally uses:. CUDA. EGL - OpenGL context management. nvJPEG - JPEG compression supporting on NVIDIA GPU. Assimp - scene loading. Lighthouse 2 4 - real-time ray tracing framework.Optix7 (from Lighthouse 2) - ray tracing platform using CUDA
1Link: https://github.com/Cyan4973/FiniteStateEntropy
2Link: https://github.com/pplux/px
3Link: https://github.com/ocornut/imgui
4Link: https://github.com/jbikker/lighthouse2

27 ctuthesis t1606152353

https://github.com/Cyan4973/FiniteStateEntropy
https://github.com/pplux/px
https://github.com/ocornut/imgui
https://github.com/jbikker/lighthouse2

5. Implementation....................................
5.1 Asynchronous processing and communication

We implemented asynchronous communication using messages. The client
repeatedly sends to the server latest viewpoint (UPDATE_VIEWPOINT)
and estimated optimal scene update delta time (SET_UPDATE_DELTA)
determined from its the scene update throughput (network, scene decoding
and GPU updating average times from previous updates), and the server
determines for which viewpoints render scene and streams it to the client
(UPDATE_SCENE). This pattern allows for pipelining and parallel process-
ing of many steps: rendering on the server, compression, streaming, scene
decoding, and updating on the client, see Fig. 5.1. We currently support only
one client simultaneously.

We use task-based approach for parallelization of scene processing on the
server (Fig. 4.2) and updating on the client (Fig. 4.8). Scheduler supports
CPU and GPU tasks. CPU tasks run in parallel in multiple threads, and
GPU tasks are processed sequentially in one dedicated, that have OpenGL
context. On the client, GPU tasks need to be processed concurrently with the
rendering of the current scene. We dedicate the only portion of time between
the rendering of the scene on the client for GPU tasks, to prevent framerate
shuttering when many tasks are scheduled at once. The elapsed time of GPU
tasks is monitored using OpenGL time queries. We divide long-duration tasks
into smaller tasks where possible, e.g., depth peeling consists of one task for
every layer; this way, more stable framerate can be achieved.

Rendering

Streaming

Decoding

GPU updating

Rendering

Streaming

Decoding

GPU updating GPU updating

Decoding

Streaming

Rendering

Streaming

GPU updating

Server

Client

CPU

GPUCompressionCompression

Decoding

Compression Compression

CPU

GPU

Network

Figure 5.1: Illustrative timeline showing parallelization and pipelining of the
scene updating process. Every color represents an individual scene update. Both
server and the client can utilize GPU and CPU simultaneously. Parts processed
on the CPU are further parallelized to multiple threads.

List of messages (client → server):. UPDATE_VIEWPOINT - send latest camera viewpoint. SET_UPDATE_DELTA - request the scene update delta (1 / update
rate). SET_SETTINGS - send settings parameters in INFO format.GET_ALL_SETTINGS

ctuthesis t1606152353 28

....................................... 5.2. Server

.GET_SCENE_LIST. START_BENCHMARK. STOP_BENCHMARK

List of messages (server → client):. UPDATE_SCENE - send scene data. STOP_BENCHMARK - return benchmark statistics in INFO format.GET_ALL_SETTINGS - return all server settings in INFO format.GET_SCENE_LIST - return list of scenes in INFO format

5.2 Server

The server supports currently only NVIDIA GPUs, because it requires tech-
nologies CUDA and Optix7. Alternatively, we could use cross-GPU tech-
nologies like OpenCL or Vulkan, but because at the time of development,
only NVIDIA supports hardware-based ray tracing, we decided to use CUDA
for better performance, easier development and intercooperation with ray
tracer. OpenGL is used for the rasterization step of PVS generation and layer
generation for development purposes. Other parts of the packing method
are implemented using CUDA and compression methods on the CPU. We
implemented an efficient parallel version of prefix sum using CUDA, that is
used to compute tile indices and to filter triangles for PVS.

We generate layers to per-pixel linked lists of fragments (see structure 5.1)
and process all subsequent steps (see Algorithm 3) with this data structure.
In packing, color filling, and fragment relocation we map our block to CUDA
block with the same size (one thread per one pixel with all its layers) and
use shared memory to speed up processing (e.g., computing number of layers
per block using atomic maximum operation inside shared memory).

Fragment relocation (Algorithm 2) does not create new layers, but instead,
it computes for every fragment number of layers to skip during packing – the
number of empty layers between current and previous fragment (skip variable
in structure 5.1). Algorithm copies layer to shared memory, repeatedly “move”
fragments to next layer, by increasing skip variable and updates it back to
global memory before going to the next layer.
struct Fragment {

int next ; // index o f next fragment or −1 f o r the l a s t fragment
glm : : u8vec4 c o l o r ; //RGBA
f loat depth ; // d i s t a n c e from camera
int sk ip ; //number o f l a y e r s to s k i p (used f o r fragment r e l o c a t i o n)
int id ; // t r i a n g l e ID (used f o r t r i a n g l e −l a y e r o p t i m i z a t i o n)

} ;

Algorithm 5.1: Structure of fragment used in server for rendering.

29 ctuthesis t1606152353

5. Implementation....................................
compute PVS (OpenGL + CUDA);
raytrace/raster layers into per-pixel linked lists (OptiX/OpenGL);
relocate fragments (CUDA, optional);
count number of tiles for every block (CUDA);
compute tile indices using prefix sum (CUDA);
allocate and copy fragments to texture (CUDA);
fill empty pixels (CUDA, optional);

Algorithm 3: Rendering steps on the server before compression with
technologies that it uses.

5.3 Client

The client requires only OpenGL 4.2 and is designed to be relatively easy
ported to OpenGL ES, required for mobile devices. The client contains two
logical loops (see Fig. 4.1). The render loop corresponds to one thread with
OpenGL context, which also handles GPU tasks, and the update loop consists
of one thread for receiving data and other threads for handling CPU tasks.
The scene updating process is scheduled to CPU and GPU tasks, as described
in the section 5.1. We map OpenGL buffers to the client’s memory, which
allows the background threads to decode data directly to them, reducing time
on the render thread.

5.4 Configuration

Both applications load configuration from files. The client can dynamically
change the configuration of the server (without the need of restarting it) from
GUI. We use INFO format from boost property tree for storing configuration
in files and for transferring it through the network.

5.5 Compression

Behind already mentioned technologies, we implemented a few custom com-
pression techniques: binary and 8-bit RLE, binary quad-tree, PVS difference
– patches. Although for RLE and quad-tree existing methods can be found,
they do not support ’any’ pixel optimization (see section Optimizations in
chapter Solution). All custom made compressions are implemented on the
CPU.

5.6 Lighthouse 2

Lighthouse 2 5 is an open-source framework for real-time ray tracing/path
tracing experiments implemented in C++. It is highly modular and supports

5Link: https://github.com/jbikker/lighthouse2

ctuthesis t1606152353 30

https://github.com/jbikker/lighthouse2

.....................................5.6. Lighthouse 2

multiple platforms, currently: Optix 7, Optix 5 Prime and Vulkan. It supports
scenes from glTF and obj format

It consists of three layers:. The application layer - application logic and handles user input. The RenderSystem - scene I/O and host-side scene storage. The render cores - low-level rendering functionality

We use it as a framework for path tracing with denoising. Our server acts as an
application layer for the Lighthouse 2. We choose RenderCore_Optix7Filter
as base render core. It has path-tracing implemented using Optix7 and variant
of SVGF for denoising in CUDA. We modified it to add support for PVS
for primary rays, generating multiple layers and multi-layer denoising. We
also needed to expand API, therefore change RenderSystem, to be able to
provide PVS to render core and return layers to the application layer. PVS
generation, packing and compression, and streaming is implemented outside
of Lighthouse 2. Algorithm 4 shows path tracing and denoising steps after
our modification.

trace and store primary rays to generate all layers (can be replaced
with rasterization);

repeat sample count times
generate secondary rays from primary using different randomness
than previous sample;

while path length < max path length and bath is not empty do
trace rays;
shade;
generate rays for next batch;
increase path length;

end
accumulate moments and color for filter;

end
prepare filter:
- reproject fragments to the previous frame
- compute variance from moments
- gaussian blur variance
- merge variance and color with reprojected data using exponential
moving average;

repeat filter phase count times
apply a phase of À-Trous filter

end

Algorithm 4: Path tracing and denoising steps in Lighthouse 2.

31 ctuthesis t1606152353

ctuthesis t1606152353 32

Chapter 6
Results

We focus our benchmark tests on visual quality, bandwidth requirements, the
scene update latency, server’s, and client’s performance. We ran tests with
the camera automatically following the prerecorded path on three scenes:
Sponza Crytek with dynamic lights, and Sponza Crytek and Village with
static lights. All scenes use path tracing with four samples per pixel and
denoise filter with 5 À-Trous iterations. A Path duration in Sponza Crytek
is about 10s and in Village about 30s. We used resolution 1920x1080 on the
client, 8x8px block size, first layer compressed with video codec h264 with
CRF 25, and rest layers with JPEG quality 25 with subsampling 444. The
FOV was enlarged 1.1 times, which gives the layer size 2254x1214. We enabled
vertical synchronization on the client and therefore clamped framerate to
maximum 60fps. The server has 2x CPU Intel Xeon E5-2630 v3 @ 2.4GHz,
64 GB RAM, the GPU NVIDIA GeForce RTX 2080 Ti, and the client has
the CPU Intel(R) Core(TM) i5-4200M, 12 GB RAM and the integrated GPU
Intel® HD Graphics 4600. We choose the client with a relatively less powerful
GPU to partially simulate a mobile device. The client and server were in
different remote locations (distant over 500km) with network throughput
max 50Mbps and latency around 17ms. Table 7.1 contains scene and client’s
performance statistics and table 7.2 contains server’s performance, path trace
and compressed size statistics. Figures 7.1, 7.2, 7.3, 7.4, 7.5 shows graphs
with various benchmark variables on timelines of rendered sequence.

The scene update rate was about 5.4 updates per second on average,
which is about 180ms between updates (delta time), but the scene latency
per frame (time between update request and rendering it on the client)
is 380ms in average, see graphs in Fig. 7.1. The average processing time
(rendering on the server, transfer, updating on the client) is 250 ms on average.
Delta time is shorter than latency, and the processing time is between them
because of pipeline processing and asynchronous communication. The average
compressed size of the update was 300kB, maximum size 550kB, that gives
around 1.5MBps (12mbps) transferred data trough network, much bellow
maximum network throughput. Graphs in Fig. 7.4 shows compressed sizes
for scene updates including its parts. The largest part is JPEG (100kB in
average), following video and pixel mask (each 50kB in average) and PVS
(80kB in Sponza Crytek and 30kB in Village). Size of PVS and video varies

33 ctuthesis t1606152353

6. Results
more than other data types as they are not stateless – they actualize data
from the previous scene update.

6.1 Server Performance

Performance in all three tested cases was about the same. PVS computation
took 3.5ms per scene update, packing 2.8ms and path tracing without filter
around 20ms on average, see table 7.2 and graphs in Fig. 7.2 for details.
The most time consuming is the denoise filter, which took around 70ms on
average, but can get up to 120ms in Village scene and up to 200ms in Sponza
Crytek scene. Denoise filter has the largest timer variance as its performance
highly depends on layer count. PVS, video and pixel mask compression
ran on one CPU thread each and took around 26ms each, but they run in
parallel. Rest compression methods, including JPEG, took bellow 1ms each.
JPEG is faster compared to video because we currently use NVJPEG for
JPEG that runs on GPU and FFmpeg for video, that runs on CPU. For pixel
mask, we currently used single-threaded CPU quad-tree compression that
can be parallelized to multiple threads with the help of GPU in the future. In
summary, scene processing time on the server was 135ms on average, which
can give a maximum update rate 7.4 (compared to real 5.5). That partially
explains not reaching maximum network throughput.

6.2 Client Performance

Scene rendering took 4.8ms in Sponza Crytek scenes and 3.5ms in Village
scene on average per frame, that is much bellow 16ms limit for 60fps, but
GPU task took additional 4ms on average per frame with spikes up to 30ms
in all scenes, and 80ms at the beginning of Village scene, see graphs in Fig.
7.1. That occasionally created framerate shuttering. Better distribution of
GPU tasks between frames can mitigate it but can increase scene latency.

Scene decompression took 66ms of CPU time on average. Video decompres-
sion is the most time consuming with 30ms on average, and then JPEG and
pixel mask with 16ms each on average. Each other decompression tasks took
below 3ms. Note, these tasks can run in parallel, therefore mentioned CPU
time decompression elapsed time could be shorter than the sum of individual
tasks. Scene updating took 30ms of GPU time, from which the most time
consuming is depth peeling with 24ms per update on average. Note that GPU
tasks interleave with scene rendering, therefore real elapsed time is larger.

Although CPU and GPU times spent per updates are short, tasks are
not executed continually but are spread over a large time range, 160ms for
CPU tasks, and 130ms for GPU tasks on average. Graphs in Fig. 7.3 shows
pipelines of processing scene updates. Real elapsed times are larger because
of waiting for dependency, e.g., data from the server, GPU tasks for CPU
tasks, and a time spent for the rendering of the current scene between GPU
tasks.

ctuthesis t1606152353 34

.................................... 6.3. Visual Quality

6.3 Visual Quality

We tested visual quality with structural dissimilarity (DSSIM) and normalized
root-mean-square error (NRSME) for all rendered frames from the benchmarks.
During benchmarks, we collected history (timepoints with camera locations
for client’s frames and server’s updates) that we used in the second pass to
render reference images on the server, rerender images on the clients, and
compare them using mentioned metrics. Path tracer’s denoise depends on a
sequence of rendered frames and provides better quality with higher framerate.
Therefore reference images always provide better visual quality, as denoise
is used for every rendered frame (ca. 60fps), not just updates (ca 5.5 per
second).

Sponza Crytek scene has average DDSIM 0.067 for the static version and
slightly higher 0.088 for the version with dynamic lights, Village scene has
much higher average DSSIM: 0.118. Average NRMSE for static scenes: Sponza
Crytek and Village was 0.044 and higher for dynamic Sponza Crytek: 0.085.
Graphs in Fig. 7.5 shows the mentioned metrics for every frame, where we
can also see a correlation with the scene latency. Fig. 7.7 shows comparison
of images rendered on the client with reference images, and 7.8, 7.9 contains
client’s renders of all three scenes.

Visually results are acceptable if we consider that the update rate was
only about 5.5 per second and high scene latency (ca. 350ms). The main
visual problems are related to the packing method. Geometry perpendicular
or facing await from the viewpoint used on the server, have no or insufficient
shading in the texture (Fig. 7.6 top and middle). PVS construction can
fail to predict and insert needed geometry (Fig. 7.6 bottom). We can also
see reduced quality caused by lossy texture compression (video, JPEG) and
reprojection, but it is not very noticeable during motion. A low update rate
causes a negative effect in dynamic scenes (Sponza Crytek), as the change of
lighting is noticeable.

35 ctuthesis t1606152353

ctuthesis t1606152353 36

Chapter 7
Conclusions

We have proposed and implemented a novel method for remote rendering
using a thin client with low performance. The server renders the scene using
path tracer with the denoise filter to multiple layers, packs them to one
texture, and with PVS and additional data streams to the client. Both
server and client use asynchronous parallel processing and communication to
improve performance. The client can provide acceptable visual results even
for very small scene update rate (ca. 5.5 per second with bandwidth around
1.5MBps for the client with Full HD). Our contribution is also in expanding
SVGF denoise filter [SSK+17] to support multiple layers.

There are several issues — high transfer data requirements per the scene
update (ca. 300kB), and slow performance of denoise filter (ca. 70ms per
update). Our solution currently does not correctly handle perpendicular or
facing away triangles from update viewpoint, moving camera backward, and
fast camera rotation. This issue creates visual artifacts.

7.1 Possible improvements

We can render the scene on the server from multiple viewpoints to add hidden
triangles (perpendicular or facing away), or to provide larger FOV. It will
require to stream multiple packed textures. The slowest part on the server is
the denoise filter. It can be optimized by providing a better data layout. By
limiting the number of layers, we can reduce transfer size, speed-up denoise
filter, but the client needs to implement some post-processing method to
guess missing shading from surrounding fragments, possible in screen-space.

Another idea is to demodulate static texture from lighting (similarly as
denoise filter works) and stream only lighting, and textures will be applied
directly on the client. This approach requires the client to have a preloaded
scene, including textures. With this approach, the server could stream lighting
with lower resolution and still provide sufficient quality as lighting often varies
smoothly.

37 ctuthesis t1606152353

7. Conclusions

Statistics

Scene Sponza Crytek Sponza Crytek (static) Village

Frame Count 542 538 1640

Scene Update Count 52 55 155
Min Avg Max Min Avg Max Min Avg Max

FPS - 57.1 - - 56.5 - - 59.6 -
Scene Update Rate - 5.24 - - 5.52 - - 5.52 -
DSSIM 0.035 0.088 0.176 0.027 0.067 0.157 0.078 0.118 0.209

NRMSE 0.036 0.085 0.191 0.014 0.043 0.116 0.026 0.044 0.104

Scene Latency [ms] 181 383 926 153 340 763 186 343 599

Frames / Update 0.0 10.8 20.0 1.0 10.3 18.0 0.0 10.7 19.0

Vertex Count 13098 105543 204375 13098 104055 199452 9927 31221 63531

Layout Count 6.0 10.5 31.0 6.0 10.5 31.0 9927 12.2 18.0

Fragments / Pixel 1.24 1.94 2.74 1.24 1.93 2.71 1.47 1.81 2.21

Texture
Width 1920 1920 1920 1920 1920 1920 1920 1920 1920

Height 1408 2317 3248 1408 2304 3224 1848 2301 2904

Client Render Times [ms]

Scene Sponza Crytek Sponza Crytek (static) Village

Min Avg Max Min Avg Max Min Avg Max

GPU

Render 2.4 4.8 8.4 2.5 4.8 10.0 2.0 3.5 6.5

Tasks 0.0 3.7 33.1 0.0 3.9 33.3 0.0 4.3 80.2

Sum 2.7 8.7 39.0 2.8 8.8 39.0 2.3 7.9 84.2

Client Scene Update Times [ms]

Scene Sponza Crytek Sponza Crytek (static) Village

Min Avg Max Min Avg Max Min Avg Max

Delta Time 2.0 190.8 494.2 19.0 181.2 499.3 3.2 181.3 496.8

Processing Time 156.6 252.3 544.8 149.3 242.6 563.8 181.2 241.3 470.4

Latency 181.3 290.3 690.1 153.2 263.4 636.2 186.2 260.7 497.0

PVS 0.2 3.3 11.4 0.4 3.0 10.3 0.1 0.8 3.5

Video 17.0 29.5 50.6 17.3 29.1 48.6 20.3 30.9 62.4

JPEG 3.7 16.9 30.5 4.5 16.8 31.9 9.9 17.5 26.5

Pixel Mask 4.4 15.0 25.4 4.2 14.8 27.2 9.7 17.2 26.4

Blocks 0.1 0.4 1.3 0.1 0.4 0.8 0.1 0.5 1.1

Triangle - Layer Mask 0.1 1.7 5.8 0.1 1.7 6.1 0.3 1.2 3.2

CPU Time 48.5 66.1 134.3 36.3 63.9 122.9 47.1 65.7 116.4

Elapsed 86.6 156.6 318.5 89.9 147.7 254.1 116.0 177.5 262.6

GPU

Depth Peeling 12.2 23.3 62.5 12.9 23.0 62.8 18.1 26.7 42.2

Fragment Relocation 2.2 4.3 6.6 2.6 4.5 6.6 3.1 4.6 8.5

GPU Time 15.8 29.7 70.6 18.8 29.6 71.7 24.9 33.4 48.0

Elapsed 70.1 139.1 342.0 84.0 125.6 348.5 73.9 126.7 366.4

Receive 66.0 172.7 399.9 84.8 158.9 300.4 97.5 167.7 263.3

CPU
Parallel
Decode

Table 7.1: Client benchmark statistics.

ctuthesis t1606152353 38

................................ 7.1. Possible improvements

Server Times [ms]

Scene Sponza Crytek Sponza Crytek (static) Village

Min Avg Max Min Avg Max Min Avg Max

Delta Time 129.2 189.4 337.9 131.6 181.1 285.2 120.3 180.8 258.2

Processing Time 90.6 135.3 286.0 81.7 134.7 284.4 99.8 134.9 189.8

PVS

Raster + Mark 0.4 2.7 3.0 0.4 2.7 3.1 0.3 2.2 2.5

Filter + Transform 0.3 0.6 0.9 0.2 0.5 0.9 0.2 0.4 0.7

Map 0.4 0.5 0.5 0.4 0.5 0.5 0.5 0.5 0.5

Sum 1.7 3.7 4.4 1.5 3.4 4.4 1.4 3.4 3.9

Pack

Sort, Relocate, Count 0.4 1.2 2.4 0.4 1.2 2.5 1.0 1.5 2.5

Pack Tiles 0.6 1.2 1.6 0.5 1.2 1.6 0.8 1.3 1.5

Fill 0.2 0.3 0.5 0.2 0.3 0.5 0.3 0.3 0.4

Map 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3

Sum 1.3 2.6 4.1 1.2 2.5 4.2 2.1 3.0 4.1

Copy GPU -> RAM 3.8 5.0 12.2 3.8 4.8 10.7 4.3 4.9 12.3

JPEG 0.3 0.9 2.9 0.3 0.6 2.9 0.5 0.7 2.9
Trace 7.5 10.7 13.3 6.9 10.6 13.2 5.8 7.6 10.0

Shade 10.3 14.3 18.7 9.9 14.5 18.1 8.2 10.0 12.1

Filter 23.5 69.0 207.1 23.5 68.1 201.2 46.6 74.1 116.6

Sum 43.5 96.4 240.8 42.5 95.5 234.8 63.2 93.8 139.2

PVS 4.2 24.9 46.4 3.5 23.9 47.6 3.6 10.5 18.6

Video 22.9 27.4 34.3 21.9 27.7 32.0 23.4 28.4 33.7

Pixel Mask 14.2 23.1 31.0 14.8 24.7 35.1 21.7 27.6 37.8

Blocks 0.1 0.2 0.4 0.1 0.3 0.4 0.2 0.3 0.4

Triangle-Layer Mask 0.1 1.2 4.7 0.1 1.2 4.7 0.2 0.7 1.4

Scene Compressed Size [kB]

Scene Sponza Crytek Sponza Crytek (static) Village

Min Avg Max Min Avg Max Min Avg Max

Size / Second - 1549 - - 1544 - - 1719 -
Size / Scene Update 97.3 295.5 546.4 79.9 279.9 527.4 217.9 311.6 550.5

PVS 8.6 80.2 253.9 7.7 75.5 251.4 5.5 31.3 99.7

Video 23.4 57.2 239.9 2.9 51.1 215.8 29.8 63.5 218.2

JPEG 30.5 98.6 190.9 28.4 93.8 181.9 71.8 119.8 207.6

Pixel Mask 11.0 47.5 84.8 11.0 47.6 86.9 54.7 86.4 145.2

Blocks 1.9 4.6 7.0 1.9 4.7 7.0 4.1 5.4 7.3

Triangle - Layer Mask 0.4 7.0 23.1 0.4 7.0 22.5 1.4 5.0 10.3

Server Ray Counts [M]

Scene Sponza Crytek Sponza Crytek (static) Village

Min Avg Max Min Avg Max Min Avg Max

Primary 2.58 4.02 5.68 2.58 3.99 5.62 3.04 3.75 4.58

Secondary 2.11 3.27 4.36 2.11 3.26 4.47 1.79 2.11 2.56

Deep 0.58 0.90 1.39 0.57 0.90 1.44 0.15 0.22 0.31

Shadow 10.11 14.23 21.35 9.75 14.02 17.39 4.93 9.59 15.23

Sum 15.37 22.42 32.46 15.01 22.17 28.45 10.59 15.67 22.53

Path
Tracer

CPU
Parallel

Compress

Table 7.2: Server benchmark statistics.

39 ctuthesis t1606152353

7. Conclusions

Figure 7.1: Client rendering and scene updating. CPU / GPU / Update:
accumulated CPU / GPU time of updating (decompression, depth peeling and
fragment relocation); GPU / Frame: rendering and GPU tasks; Latency: elpased
time between scene request and its first rendering on the client; Processing:
elapsed time between start of scene processing and its first rendering on the
client; Delta: time between updates.

ctuthesis t1606152353 40

................................ 7.1. Possible improvements

Figure 7.2: Server rendering and compression times. Vertical axis represents
timeline per scene update at given timepoint at horizontal axis. PVS compression
starts after PVS and runs in parallel with rest of steps. Similarly Video and Pixel
Mask Compression runs in parallel starting after Copy to RAM step. JPEG and
other compressions are not shown due to its small time contribution (<2ms).

41 ctuthesis t1606152353

7. Conclusions

Figure 7.3: Client scene updating times. Vertical axis represents timeline per
scene update at given timepoint at horizontal axis. Green / red areas shows
time ranges of processing CPU / GPU tasks. Darker areas shows real time spent
processing tasks (parallel on CPU serial on GPU) and brighter areas shows idle
time or waiting for dependency, e.g., data from the server or GPU task for CPU
task. Lighter GPU area also contains time spent on rendering of the current
scene, as GPU tasks and scene rendering is interlaced.

ctuthesis t1606152353 42

................................ 7.1. Possible improvements

Figure 7.4: Scene compressed size (individual parts are in legend) with texture
size (light blue line) to show correlation.

43 ctuthesis t1606152353

7. Conclusions

Figure 7.5: Image quality (DSSIM, NRMSE) for every frame of rendered
sequence with scene latency (gray line) to show correlation.

ctuthesis t1606152353 44

................................ 7.1. Possible improvements

Figure 7.6: Client rendering errors, left images are reprojected on the client, and
rights are references. Top: fast rotation causes missing geometry in PVS (black
area on the right) or not having shading for geometry (gray parts of geometry),
because it is outside of the rendered frustum . Middle: too perpendicular or facing
away triangles doesn’t have correct shading in the texture (left part, especially
top green drapery), also current implementation doesn’t support transparent
geometry (leaves). Bottom: coming from the corner causes missing geometry as
PVS creation failed to predict it.

45 ctuthesis t1606152353

7. Conclusions

Figure 7.7: Comparisson of reprojected images on the client (left) and reference
images (right) for Sponza Crytek with dynamic lights (top), Sponza Crytek with
static lights (middle) and Village (bottom)

ctuthesis t1606152353 46

................................ 7.1. Possible improvements

Figure 7.8: Village scene rendered on the client.

47 ctuthesis t1606152353

7. Conclusions

Figure 7.9: Sponza Crytek scene with dynamic lights (top and middle) and
static lights (bottom) rendered on the client. Note: bottom has sharper shadows
than middle, because denoise filter works better for static scenes.

ctuthesis t1606152353 48

Appendix A
Bibliography

[BMS+12] Huw Bowles, Kenny Mitchell, Robert W. Sumner, Jeremy Moore,
and Markus Gross, Iterative Image Warping, Computer Graphics
Forum (2012).

[Cas20] Everitt Cass, Interactive order-independent transparency, 2020,
NVIDIA, Accessed: 2020-01-15.

[CW93] Shenchang Eric Chen and Lance Williams, View interpolation for
image synthesis, Proceedings of the 20th Annual Conference on
Computer Graphics and Interactive Techniques (New York, NY,
USA), SIGGRAPH ’93, Association for Computing Machinery,
1993, p. 279–288.

[DER+10] Piotr Didyk, Elmar Eisemann, Tobias Ritschel, Karol
Myszkowski, and Hans-Peter Seidel, Perceptually-motivated real-
time temporal upsampling of 3D content for high-refresh-rate
displays, Computer Graphics Forum (Proceedings Eurographics
2010, Norrköpping, Sweden) 29 (2010), no. 2, 713–722.

[DRE+10] Piotr Didyk, Tobias Ritschel, Elmar Eisemann, Karol
Myszkowski, and Hans-Peter Seidel, Adaptive image-space stereo
view synthesis, Vision, Modeling and Visualization Workshop
(Siegen, Germany), 2010, pp. 299–306.

[DSHL10] Holger Dammertz, Daniel Sewtz, Johannes Hanika, and Hendrik
P. A. Lensch, Edge-avoiding À-trous wavelet transform for fast
global illumination filtering, Proceedings of the Conference on
High Performance Graphics (Goslar, DEU), HPG ’10, Eurograph-
ics Association, 2010, p. 67–75.

[HSS19a] J. Hladky, H. P. Seidel, and M. Steinberger, Tessellated shading
streaming, Computer Graphics Forum 38 (2019), no. 4, 171–182.

[HSS19b] Jozef Hladky, Hans-Peter Seidel, and Markus Steinberger, The
camera offset space: Real-time potentially visible set computations
for streaming rendering, ACM Trans. Graph. 38 (2019), no. 6.

49 ctuthesis t1606152353

A. Bibliography.....................................
[Jen96] Henrik Wann Jensen, Global illumination using photon maps,

Rendering Techniques ’96 (Vienna) (Xavier Pueyo and Peter
Schröder, eds.), Springer Vienna, 1996, pp. 21–30.

[Kaj86] James T. Kajiya, The rendering equation, Proceedings of the
13th Annual Conference on Computer Graphics and Interactive
Techniques (New York, NY, USA), SIGGRAPH ’86, Association
for Computing Machinery, 1986, p. 143–150.

[Kel97] Alexander Keller, Instant radiosity, Proceedings of the 24th
Annual Conference on Computer Graphics and Interactive Tech-
niques (USA), SIGGRAPH ’97, ACM Press/Addison-Wesley
Publishing Co., 1997, p. 49–56.

[LW93] Eric P. Lafortune and Yves D. Willems, Bi-directional path trac-
ing, PROCEEDINGS OF THIRD INTERNATIONAL CON-
FERENCE ON COMPUTATIONAL GRAPHICS AND VISU-
ALIZATION TECHNIQUES (COMPUGRAPHICS ’93, 1993,
pp. 145–153.

[M.03] Laakso M., Potentially visible set (pvs), 2003, Helsinki university
of technology.

[MHAM08] Jacob Munkberg, Jon Hasselgren, and Tomas Akenine-Möller,
Non-uniform fractional tessellation, Proceedings of the 23rd
ACM SIGGRAPH/EUROGRAPHICS symposium on Graphics
hardware, 2008, pp. 41–45 (English).

[MHH+12] Stephen McAuley, Stephen Hill, Naty Hoffman, Yoshiharu
Gotanda, Brian Smits, Brent Burley, and Adam Martinez, Prac-
tical physically-based shading in film and game production, ACM
SIGGRAPH 2012 Courses (New York, NY, USA), SIGGRAPH
’12, Association for Computing Machinery, 2012.

[MMB97] William R. Mark, Leonard McMillan, and Gary Bishop, Post-
rendering 3d warping, Proceedings of the 1997 Symposium on
Interactive 3D Graphics (1997), 7–ff.

[MVD+18] Joerg H. Mueller, Philip Voglreiter, Mark Dokter, Thomas Neff,
Mina Makar, Markus Steinberger, and Dieter Schmalstieg, Shad-
ing atlas streaming, ACM Trans. Graph. 37 (2018), no. 6.

[Nic65] Fred E. Nicodemus, Directional reflectance and emissivity of an
opaque surface, Appl. Opt. 4 (1965), no. 7, 767–775.

[Ocu20] OculusVR, Rendering to the oculus rift, https:
//developer.oculus.com/documentation/pcsdk/latest/
concepts/dg-render/, 2020, Accessed: 2020-01-15.

ctuthesis t1606152353 50

https://developer.oculus.com/documentation/pcsdk/latest/concepts/dg-render/
https://developer.oculus.com/documentation/pcsdk/latest/concepts/dg-render/
https://developer.oculus.com/documentation/pcsdk/latest/concepts/dg-render/

..................................... A. Bibliography

[RDGK12] Tobias Ritschel, Carsten Dachsbacher, Thorsten Grosch, and
Jan Kautz, The state of the art in interactive global illumination,
Comput. Graph. Forum 31 (2012), no. 1, 160–188.

[RKR+16] Bernhard Reinert, Johannes Kopf, Tobias Ritschel, Eduardo
Cuervo, David Chu, and Hans-Peter Seidel, Proxy-guided Image-
based Rendering for Mobile Devices, Computer Graphics Forum
(2016).

[Sam84] Hanan Samet, The quadtree and related hierarchical data struc-
tures, ACM Computing Surveys (1984), 2.

[SSK+17] Christoph Schied, Marco Salvi, Anton Kaplanyan, Chris Wyman,
Anjul Patney, Chakravarty Chaitanya, John Burgess, Shiqiu
Liu, Carsten Dachsbacher, and Aaron Lefohn, Spatiotemporal
variance-guided filtering: real-time reconstruction for path-traced
global illumination, 07 2017, pp. 1–12.

[YHGT10] Jason C. Yang, Justin Hensley, Holger Grün, and Nicolas Thi-
bieroz, Real-time concurrent linked list construction on the gpu,
Computer Graphics Forum 29 (2010), no. 4, 1297–1304.

51 ctuthesis t1606152353

ctuthesis t1606152353 52

Appendix B
Directory structure of attachment files

src - source files and scripts
data - client’s and server’s data, scens and benchmark results
imgs - screenshots of tested scenes
video - videos of tested scenes

53 ctuthesis t1606152353

	Project Specification
	Introduction
	Goals
	Structure of the thesis

	Remote rendering
	Potentially Visible Set
	Image-Based Rendering
	Object-Space Shading

	Global illumination
	Rendering equation
	Path tracing
	Photon mapping
	Instant radiosity
	Denoising
	Edge-Avoiding À-Trous Wavelet Transform
	Spatiotemporal Variance-Guided Filtering

	Remote Rendering - System Design
	Rendering on the server
	PVS
	Layers

	Rendering on the client
	Scene Updating
	Rendering

	Path tracing
	SVGF with layers

	Optimizations
	Depth peeling with triangle subsets
	Pixel mask with 'any' pixels

	Implementation
	Asynchronous processing and communication
	Server
	Client
	Configuration
	Compression
	Lighthouse 2

	Results
	Server Performance
	Client Performance
	Visual Quality

	Conclusions
	Possible improvements

	Bibliography
	Directory structure of attachment files

