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Abstract
Vulkan is today the de-facto standard for open cross-platform real-time graphics rendering.
It allows the developers to leverage the performance of GPUs on many platforms thanks to
its uniform design and brings many improvements when compared to the older OpenGL API.
Contrary to its predecessor, however, Vulkan is much more low-level and requires more work
from the developer. This thesis presents a Rust crate (library) with core wrapper types and a
high-level API design for creating and managing Vulkan objects safely in concurrent manner,
with minimal impact on performance. Advantages of Rust for this specific task are discussed
and the performance and verbosity in comparison to the ash crate (library), which provides
raw bindings to the C Vulkan API, is evaluated.
Keywords: Vulkan, Vulkayes, graphics API, GPU, computer graphics, Vulkan API abstraction

Abstrakt
Vulkan je dnes de-facto štandardom pre otvorené mnoho-platformové vykresľovanie grafiky
v reálnom čase. Vývojári môžu vďaka Vulkanu naplno využiť silu grafických kariet na mno-
hých platformách vďaka jeho jednotnému dizajnu. Vulkan naviac prináša mnoho vylepšení v
porovnaní so starším OpenGL. Vulkan je však zameraný na omnoho nižší level ako OpenGL
a preto vyžaduje viac práce na strane vývojára. Táto práca predkladá knižnicu v jazyku Rust
so základnými typmi a vysokoúrovňovým návrhom na vytváranie a spracovávanie objektov
Vulkanu bezpečne vo viac vláknovom prostredí a s minimálnym dopadom na rýchlosť. Disku-
tované sú aj výhody jazyka Rust pre túto konkrétnu úlohu. Naviac je porovnaná rýchlosť a
veľkosť kódu voči Rustovej knižnici ash, ktorá poskytuje priame prepojenia do Vulkan API
napísaného v jazyku C.
Kľúčové slová: Vulkan, Vulkayes, grafické API, GPU, počítačová grafika, abstrakcia Vulkan
API
Preklad názvu: Implementácia zobrazovacieho systému v jazyku Rust
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1 Introduction
Since its release in 2016, Vulkan API [1] has been gaining traction as a go-to API for high-
performance realtime 3D applications across all platforms. The main reason for this, apart
from being cross-platform, is that Vulkan is designed as to be low-level, close to metal and
with minimal overhead. This, in contrast to Khornos’ older API OpenGL, leaves most of the
overhead, but also complexity, to the user of the API. The user can then make decisions on
where to sacrifice performance for added usability or vice versa.
This project, named Vulkayes, aims to design a flexible, usable and performant wrapper on
top of Vulkan API in the Rust language. It aims to provide statically upholdable invariants
that are easy to break in C language. It aims to add minimal required overhead to ensure
basic memory safety that is the core concept of the Rust language. The name is a play on the
Rust library the project is inspired by, the Vulkano [2] library.

1.1 Vulkan API overview
Vulkan API, originally released in 2016 [3], is a specification of an open API for high-efficiency,
cross-platform access to graphics and compute on modern GPUs.
It is designed to minimize the overhead between the user application and the hardware device.
Vulkan achieves this by staying low level and explicitly requiring all relevant state to be refer-
enced by the user application, minimizing required lookups and orchestration on the driver
side. This allows the user application to optimize for their specific usecase instead of relying
on the driver to guess the correct strategy. However, it requires much more complexity from
the user application and is much harder to master than OpenGL.
One of the reasons for Vulkans popularity is that it was designed in an intense collaboration
between leading hardware, game engine and platform vendors [3]. This resulted in a lot
of vendors having zero-day support for the specification in their drivers and software and it
being immediatelly adopted as a native rendering solution on many platforms.
The openness of Vulkan also goes hand-in-hand its cross-platform capabilities. Vulkan is avail-
able on all three major desktop platforms (Linux, macOS, Windows) and both major smart-
phone platforms (Android, iOS), but also on many smaller and embedded platforms. This
allows applications to easily target multiple platforms with minimal variance in the render-
ing code. It also prevents vendor locks as seen with DirectX or Metal APIs. Lastly, it allows
the community of both professionals and hobbyists to participate in the standard itself and
improve it.
One of the first mainstream games supporting Vulkan was Dota 2 [4] developed by Valve,
the founding company behind LunarG. LunarG is a company that specializes in developing
Vulkan SDK and increasing Vulkan support [5]. Support has also quickly been added to game
engines such as Unity, Unreal or Godot, allowing its power to be presented to bigger and
bigger audiences.
Khronos Group, the industry consortium responsible for Vulkan API, has been continuously im-
proving the API and releasing updates. The API is currently on version 1.2 [6], which brough
important updates that have been requested by the community. This proves that Vulkan aims
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2 CHAPTER 1. INTRODUCTION

to improve alongside the industry and provide support and improvements into the forseeable
future.

1.2 Vulkan API architecture
Vulkan is designed to be very explicit about communicating intentions and possibly expensive
operations between the implementation and application. The entry point into Vulkan is the
instance object, which is created by calling the vkCreateInstace function. This function has
to be dynamically loaded, since Vulkan may be linked dynamically instead of statically. The
instance object serves as the parent of all other Vulkan objects in given context and its lifetime
should encapsulate the whole application.

1.2.1 Execution model
Execution model of Vulkan specifies how to initialize, prepare and execute actions on Vulkan-
capable hardware. Given an instance object the application can enumerate physical devices
connected to the system. These Vulkan objects represent the hardware objects supported by
the local Vulkan implementation instance. Typically, they represent the GPUs (both integrated
and discrete) connected to the system.
The application can create a logical device object for each physical device. This is one of
the first signs on how multi-gpu paralellism works in Vulkan. Objects created from a specific
Vulkan device are device-private, but Vulkan specifies a way to export objects from one device
to another. Each logical device exposes so-called queues, which process work independently
of each other. This represents the single-gpu parallelism in Vulkan.
Queues in Vulkan are partitioned into queue families. Each family contains queues which
are compatible with each other and can seamlessly execute identical workloads. Queues not
belonging to one family may not be able to execute identical workloads, the capabilities of
queue families can be queried from the device.
Device memory is allocated using logical device as a parent. Device memory is always visible
to the device and can be either physically located in the device memory or in the host mem-
ory. The memory can also additionaly be visible and mappable to the host memory. Devices
advertise supported memory types as heaps with its types exposed as bit flags. The device
can advertise many heaps, but some devices, notably integrated ones, often advertise a single
multi-purpose heap for all device allocations.
Once the application has initialized the instance object, allocated memory and prepared work-
loads into command buffers, the work is submitted onto queues requested along with creation
of logical devices. When the work is submitted, control returns to the host application and
and work is asynchronously executed on the device until completion. There is no implicit way
to check workload completion nor are there guarantees between submission order and task
completion. Even within a specific device queue, some work may interleave and execute out
of order (within some coherency constraints).
To synchronize between the host and device, between two devices or even within the device
itself the synchronization primitives have to be used explicitly. Fences can be used to synchro-
nize between the host and the device while semaphores can be used to synchronize between
device operations. All of this is the responsibility of the application, but can result in great
performance if used correctly.
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1.2.2 Object model
Entities in Vulkan are represented as opaque objects and are handled through handles. Han-
dles are either dipatchable (e.g. pointers) or non-dispatchable (e.g. integers). Dispatchable
handles are guaranteed to be unique while non-dispatchable handles are fully opaque up to
the value of the handle. The only guarantee is the binary interface (the size) of the handle.
There are parent-child relationships between certain objects and this structure forms a partial
ordering on both their initialization and their destruction. Some objects are destroyed implic-
itly (when their parent object is destroyed) and some objects have to be destroyed explicitily.
There are exceptions where the child object does not need to be destroyed before its parent
but must not be used after its parent is destroyed. Vulkayes observes these relationship using
reference counting as described in sec. 3.2.

1.2.3 Application structure

Figure 1.1: Overwiew of Vulkan API objects and basic data flow [7].
The high level structure of Vulkan, as seen in fig. 1.1, is that the user application creates an
instance and chooses one or more physical devices. Queues on these devices can be split
into graphics, compute, transfer and sparse categories. Some queues may support multiple
properties. The application will create the queues as needed together with the device.
After device creation, the application is expected to describe asmuch state as it can beforehand.
The application needs to create the render pass and within it describe all attachments, sub-
passes and dependencies of those subpasses. This early definition allows the implementation
to transform this description into internal performance-oriented representation that is specific
to the device. Similar process happens with the descriptor set layouts and pipeline layouts,
where the application describes the requested features and settings of the descriptor/pipeline
and then can allocate these objects based on those descriptions.
Assuming that the application is going to render to the screen a surface needs to be created
along with a swapchain. Creating surface is platform-dependent process since it requires a
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specific extension for the given platform and a platform-specific window handle. After the
surface is created, the application creates a swapchain which takes care of presenting images
onto the surface. The swapchain is platform-agnostic (from the application perspective) but
is also implemented as an extension since not all platform necessairly need or support display
surfaces or swapchains.
Images and buffers are another requirement in the process. The memory for both images and
buffers is allocated and bound separately. This allows the application to use custom allocators
and/or (with specific extensions) to create sparsely-bound images. Images additionaly specify
a layout of their memory. This layout type can either be linear, and thus freely accesible
from host, or optimal, and thus its structure is unspecified. Since most of the time images
are not accessed from the host and are instead uploaded using staging buffers, most images
are recommended to use the optimal layout type for performance. Not many image formats
support the linear type.
The optimal layout type specifies multiple layouts as an enumeration. This enumeration al-
ways contains the GENERAL layout, which can be used in any context but may be least perfor-
mant, and other additional layouts that may be used in specific contexts to potentially improve
the performance. For example, there is a specific layout for transfer operations which is op-
timal for all copy and blit operations but cannot be used in attachment context. Additional
complexity is added by the fact that the image can have multiple layouts at once in form of
subranges. If an image is mipmapped or is an array image, each array layer and each mipmap
level can potentially have different layout. The application is required to keep track of the
current image layout because it is required to specify the layout, at the time of execution, in
most of the commands that work with images.
To use images and buffers as attachments, the application needs to create views. A view object
is a view into a specific subrange (mipmap levels and array layers) of an image or a specific
range (offset and size) of a buffer. Views contain additional metadata that is used within the
operation they are passed into. This metadata includes the subrange size, componentmapping
(e.g. mapping RGB to BGR) and, if an extension is enabled, different (but compatible) format
for accesing the image data.
At some point, the application also needs to create memory pools. There are two types of mem-
ory pools: the descriptor pool and the command pool. These pools both serve the same general
purpose, but they have different usage requirements. The importance of memory pools is that
some allocations, namely the allocation of descriptor sets and command buffers, happen very
frequently. System memory allocation can have considerable overhead and should be done
infrequently. Pools solve this issue by allocating system memory separately from the resource
memory. Allocating and freeing from the same pool will produce much less overhead than
allocating and freeing from the system. Descriptor pools additionaly require a list of descrip-
tor set layouts for which they can allocate, while command pools grow not only with initial
command buffer allocation but also with each recorded command.
Shader modules are developed and compiled into SPIRV independently of the Vulkan API.
The application should retrieve its shader code and pass it to Vulkan shader module creation
function to create shader module object. Shader modules can later be bound to pipelines.
The next step is actualization of previously described resources. Framebuffers represent an
actualization of the render pass description attachment list. Framebuffers are used in ren-
der pass commands to bind already prepared render passes with current attachments, since
attachment may and often do change frame-by-frame. Descriptor sets represent an actualiza-
tion of the shader interface which is “described” by the shader modules. Pipelines represent
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an actualization of pipeline layouts. Most notably, pipelines describe the connection between
shader modules and descriptor sets.
To render a singular frame not much beyond the device waitIdle method is need. However,
since most applications will want to render continuously, synchronization is needed not only
between frames but also between acquiring and using presentable images from the swapchain.
Fences and semaphores need to be created by the application.
After preparing all the necessary resources, descriptions and actualization, the work to be
done needs to be recorded into a command buffer. Command buffer is allocated from the
command pool and then a few types of commands are recorded into it. Some commands may
perform work of more than one type.
The first type is the state setting type. These commands alter the current state of the command
buffer at the time of the command execution. These commands are generally not reordered
during execution because they create an implicit happens-before relationship with commands
after it that use that same state. These commands will bind the actualizations to the current
context, such as the current framebuffers, pipeline and descriptors.
The second type is the action type. These commands peform actions on resources, perform
reads and writes and produce observable results. In general, these commands are most likely
to be reordered and executed in parallel to improve performance. These commands include
clearing, copying, blitting, drawing and computing.
The last type is the synchronization type. These commands explicitly define relationships
and constrains of the reodering of other commands. For example, to avoid race conditions
between writing to an image and subsequently reading from it a pipeline barrier must be
inserted using a synchronization command.
Finally, after a command buffer is recorded, it may be submitted for execution on a selected
device queue. This queue must support the command types used within the command buffer.
All resources used by the command buffer must be kept alive for at least as long as the ex-
ecution lasts and all images must have the correct layouts at the time of execution of the
specific command inside the command buffer that layout is defined in. All this has to be done
manually by the application.

1.2.4 Complexity
As can be seen from the previous section, complexity of Vulkan applications is much greater
than of its predecessor OpenGL. All this complexity gives an opportunity to the application
to fully express exactly when it does and doesn’t need and thus be as performant as possible.
However, adhering to the strict rules imposed by the API can be challenging for programmers
and can be improved upon by using modern programming technologies and concepts.
Most notably, keeping track of object lifetimes can become tedious and error prone, which is
why many higher-level abstractions over Vulkan tend to focus on it. Vulkayes uses reference
counting and children always link to their parent so that the parent can never be destroyed
before its children. Another common source of errors in applications is synchronization. Syn-
chronization is a very complex topic even in non-Vulkan programming and can be hard to
grasp and properly implement, much more so when the requirements are as dynamic as in
Vulkan. This is why many wrapppers tend to offer some kind of synchronization solution.
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2 Related work
There are already many libraries aiming to provide similar abstraction over Vulkan. Some of
the most prominent and closest to this work are mentioned below.

2.1 V-EZ
“V-EZ is an open source, cross-platform (Windows and Linux) wrapper intended to alleviate
the inherent complexity and application responsibility of using the Vulkan API. V-EZ attempts
to bridge the gap between traditional graphics APIs and Vulkan by providing similar semantics
to Vulkan while lowering the barrier to entry and providing an easier to use API.” [7] An
overview can be seen in in fig. 2.1.
This ease of use does come at a price, however. The design of V-EZ leaves no room for the
user to properly express their intent at critical points of execution. This leads to unnecessary
slowdows and hashmap lookups which outweight most of the benefits gained by simplified
API.
The last commit to V-EZ was on 2018-10-05 [7].

Figure 2.1: V-EZ greatly reduces the number of objects the user has to care about. Everything
else is taken care of behind the scenes [7].

2.2 gfx-hal
gfx-hal or graphics hardware abstraction layer [8] is a project aimed at abstracting graphics
computations not only from hardware, but also from low-level APIs like Vulkan or OpenGL.
It is, in a sense, lower level than Vulkayes aims to be. The abstraction over multiple APIs,
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while very useful for most common usages, can hurt usability in niche cases where a specific
extension or feature is only available in one API.
In contrast, Vulkayes aims to provide a transparent abstraction over Vulkan API. This allows
users to use any features available to them by the API even if the abstraction doesn’t implement
it directly.

Hardware Abstraction Layer (HAL)

Vulkan
DirectX 12
DirectX 11 Metal OpenGL

OpenGL ES
WebGL

Figure 2.2: gfx-hal creates an abstraction layer over all mainstream graphics APIs [8].

2.3 Vulkano
Vulkano [2] aims to provide complete validation and synchronization guarantees for the user.
This proved to be too limiting and the original developer eventually left the project. Since
then, not much work has been done.
Vulkayes originally started as a fork of Vulkano, however, over time, it grew into a rewrite
because of many questionale design choices taken in Vulkano. Vulkano makes havy use of dy-
namic dispatch, which impacts performance. Its API also promises thorough validation checks,
however at the expense of API flexibility, which makes it less likely to be widely adopted. For
example, it is still impossible to upload mipmaps to Vulkanos ImmutableImage (which is in-
tended as one-time write image abstraction, e.g. for textures in games).

Figure 2.3: Vulkano logo [2].

2.4 Tephra
Tephra [9] is a very recent work with very similar aims to Vulkayes. It can the though of as a
C++ version of Vulkayes. It takes a fresh look at the existing solutions and comes up with a
transparent and flexible API for handling Vulkan.
However, many of the design considerations taken in Tephra revolve around safety and sanity
of C++ language itself. This is of questionable importance and puts unnecessary strain on the
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library designer. Overall, most of the well designed concepts in Tephra have to be weighted
againts the complexity of the language.

Figure 2.4: Screenshot of one of the benchmarks for Tephra [9].

2.5 Summary
Table 2.1: Related work summary

Library Status Language Goals
V-EZ Abandoned C++ Usability over performance
gfx-hal Active Rust Hardware abstractions
Vulkano Abandoned Rust Safety over performance
Tephra Unknown C++ Performance and usability

Vulkayes Active Rust Performance, usability and increased safety

In summary, many projects aiming at simplifying the Vulkan API have been either abandoned
or are too broad in scope to consider them production-ready (tbl. 2.1). In the end, Tephra
comes out as the closest and most practically usable work. However, the C++ language is
itself a complex and hard to master system that places many requirements on the user of the
library.
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In contrast, Rust, and by extension Vulkayes, aims to offload as much off the user as possible
without unnecessary and performance-reducing restrictions.



3 Design
The API was designed to fullfil three goals:

1. Be transparent - The API must allow falling back to pure Vulkan if a certain feature is
not supported or implemented in the API.

2. Be fast - The API must carefully manage abstraction costs and minimize overhead.
3. Be flexible - The API must be easy to use in different contexts. It must not force the user

to unreasonably change their code to fit the API.

3.1 Rust
Where performance is critical, programmers often fall back to the “classical” languages such as
C and C++. These languages, however, are often burdened by legacy, backwards compatiblity
and outdated design concepts.
C is a very simple and fast language. However, programming industry has changed quite a lot
since its first appearance 48 years ago [10]. Concepts common at the time in programming,
such as easy low-level memory access and easy mapping to machine instruction, are hardly
transferrable to todays high-level requirements of programming.
C++ attempted to extend C with a useful standard library of data types, algorithms and other
features. This made C++ a much better candidate at creating complex performance-critical
applications. However, stemming from C, it still caries the burden of past decisions. Writing
sound code often requires the programmer to be more expressive and pay more attention
to intricacies of the language. This comes at an expense in code quality, readability and
sometimes programmer sanity. Even newer versions of the language such as C++17 and
C++20 aim to be mostly backwards compatible, so new features require new syntax, which
still leaves lot of room for error by using the older syntax constructs and types with less safety.
The Rust programming language became a natural choice for this project because goals 2. and
3. are already core concepts of the language itself. Unlike C, it has extensive standard library
and was designed for high-level programming. Unlike C++, higher code safety requires less
work from the programmer. That is, safety is enforced by the language features in form of
statical analysis.

3.1.1 Ownership
Rust implements a very simple but powerful ownership model. You cannot prevent the com-
piler frommoving your value. However, the language is smart about this. Moving a value does
not just create a bitwise copy, it also moves the ownership which has serious consequences:
the owner has to clean up. Values that have non-trivial destructors should run those destruc-
tors at some point. Indeed, the memory move semantics in Rust are simply an implementation
detail of its higher-level abstraction of movement of ownership.
In C++ the only difference between a copy and a move is that the new value has a chance
to take apart the old value. For example, for heap allocated types, this means the new value
will take the heap memory (pointer) from the old value. The destructor, however, is still run
for both the values, as it if was simply copied. Ownership in C++ is only conceptual, the

11
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language itself does not understand it nor enforce it. This moves the burden of reasoning on
the the user.
In contrast, Rust statically prevents use of moved-out variables. Once you move a value out
of a variable (moving the ownership somewhere else), that variable now acts as if it was
uninitialized, it cannot be used anymore and its destructor is not called. The destructor is
only called for the “new” value once it goes out of scope, it is the responsibility of the new
owner to clean up. Moreover, this move is often optimizable by the compiler and thus is
almost or entirely free.
Borrow checker The Rust borrow checker tracks borrowed values. A value is borrowed
when a reference to it is created. A reference can either be immutable or mutable. There can
only ever be one mutable reference and it cannot coexist with any immutable references. This
completely prevents all read-write race conditions statically.
Borrow checking also prevents problems such as use-after-free or iterator invalidation. These
problems can be considered single-thread race conditions. A reference is created, then the
original referred value is destroyed or moved and then the reference is used (to read or write).
Such a reference is called dangling. Rust statically prevents the existence of dangling refer-
ences. When a value is borrowed, it must outlive any references taken from it. That is, an
owner can lend the value to someone, but it must then keep the value in its place for as long
as the borrow is valid, it cannot be moved to a new location nor dropped. This is done using
lifetimes.
Lifetimes Lifetimes are how Rust tracks borrows. Each borrow (a reference) has a lifetime
associated with it. The borrow cannot be used for longer than that. For example, if a value is
created in a certain scope then a reference to it cannot escape that scope since it could lead to
use-after-free. Additionally, programmers can use these lifetimes too, as generic arguments,
to express concepts like borrowing subfields or narrowing array views.
There is one lifetime that is always available, the 'static lifetime. This lifetime is special
in that it expresses the concept of always valid. References with this lifetime can be used
anywhere in the program, at any time, because they are known to always outlive the program
itself. For example, taking a reference to static data (data compiled into the binary executable)
creates a static reference that can be then freely used inside the application.

3.1.2 Safety and speed
Of course, some of the lowest-level code cannot be created in this somewhat restricted en-
vironment. The abstraction has to be built somehow. This is where unsafe Rust comes in.
Instead of specifying additional safety features, Rust programmers have to explicitly ask to
disable existing features. Code blocks marked unsafe are free to work with dangling pointers,
have data races or cause other unsoundness, just like C++ normally does.
The implementation of the Rust standard library has empirically proven that the system truly
only needs unsafe blocks few and far between. Indeed, only the most basic building blocks
have to rely on unsafe operations, while all the other parts can just rely on the soundness of
these simple code snippets that can easily be checked and verified over and over by quanta of
programmers to ensure they truly are sound. This safety system reduces possible failures to
a few narrow blocks of code, instead of leaving the programmer with having to find the bug
in all of their code.
All of this is done at compile time and thus has no runtime cost. All code is as fast as the same
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C++ code would be, but safe.

3.1.3 Cargo
Cargo [11] is Rusts package manager. It takes care of indexing and retrieving dependencies,
compiling them and publishing libraries and binaries to the registry. Cargo also takes care
of project configuration. In C/C++ codebases it is common to either invoke the compiler
directly, or to use build tools such as make or CMake. Cargo is similar to those build tools, but
it is a component of Rust ecosystem and is targeted at Rust only.
Being a part of Rust itself, cargo is able to provide lots of useful abstraction over the rust
compiler. The configuration file Cargo.toml is filled with useful project information such as
the project name, author and short description. The file also contains technical information,
like the targeted language edition, compiler and optimization flags, all of the dependencies
(and how/where to look for them) and project features. Platform-specific configuration is
also possible.
Features defined in Cargo.toml are project-unique strings. These strings can then be used
from within the codebase to conditionally compile part of the code, similar to C preprocessor
#ifdef statements. Contrary to the C preprocessor, however, these strings are defined in one
central place and can even define dependency chains, so that certain features might require
other features or additional dependencies. This is often used when developing on top of
platform-dependent code to provide uniform interface to the user. It is also used in Vulkayes,
as mentioned in sec. 4.2.

3.1.4 Generics
Generics are a very powerful tool in programming. They help avoid a common problem in
libraries: “What if my object doesn’t cover all usecases”. Generics provide a way for the library
user to specify their own object with their own implementation and it only has to conform to
some predefined bounds. In Rust, this is done by specifying trait bounds:
trait BoundTrait {

fn required_method(&self) -> u32;
}

fn generic_function<P: BoundTrait>(generic_parameter: P) -> u32 {
generic_parameter.required_method()

}

In this code snippet, the P parameter of the generic_function is generic. The user can then
do this:
struct Foo;
impl BoundTrait for Foo {

fn required_method(&self) -> u32 {
0

}
}

struct Bar(u32);
impl BoundTrait for Foo {
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fn required_method(&self) -> u32 {
self.0

}
}

Now both the Foo struct and the Bar implement the trait BoundTrait and can be used to call
generic_function:
let foo = Foo;
generic_function(foo);

let bar = Bar(1);
generic_function(bar);

This usage is zero-cost because the functions are monomophised at the compile time for each
calling type.
Storing generic parameters Using generic parameters is one thing, but storing them is
harder. Generic parameters can have different sizes that are not known at the definition
time:
struct Holder<B: BoundTrait> {

item: B
}

let a = Holder { item: Foo };
let b = Holder { item: Bar(1) };

In this snippet, it is unknown at the definition time how big the Holder struct will be in
memory. Instead, it is decided at the use time. That is, the variable a possibly takes less space
on the stack than the variable b. The size of a type is a function of its fields, if the field is
generic, it can’t be known up front.
Generic parameters are a part of the type. Two Holders with different generic parameters
cannot be stored together in an uniform collection (like Vec). The only way to achieve that is
by using dynamic dispatch.
Dynamic generics Dynamically dispatched generics can be used to mix and match different
implementations of traits in the same place. It works by taking a pointer to the generic pa-
rameter and then “forgetting” the type of that parameter, only remembering the bounds. In
Rust, this is handled by trait objects in the form of dyn BoundTrait. This is an unsized (size
isn’t known at compile time) type and it cannot be stored directly on the stack or in uniform
collections either. It needs to be behind some kind of pointer, whether it be a reference, Box,
Rc/Arc or a raw pointer. This pointer will be a so-called “fat” pointer.
For example, to store any kind of BoundTrait implementor in a Vec, it can be written like
this:
let a = Foo;
let b = Bar(1);

let vec: Vec<Box<dyn BoundTrait>> = vec![
Box::new(a) as Box<dyn BoundTrait>,
Box::new(b) as Box<dyn BoundTrait>

];
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The downside of this is both the allocation of heap memory and the access speed. Accessing
methods on the object has to go through one more level of indirection than normally and
also prevents certain powerful compiler optimizations. Thus is it undesirable to use dynamic
dispatch when it is not necessary.

3.2 Object lifetime management

«Vrc»
InstanceWindow

PhysicalDeviceSurface

«Vrc»
Device

«Vrc»
Queue

«Vrc»
Swapchain

«Vrc»
SwapchainImage

DeviceMemory

«Vrc»
Image

«Vrc»
Buffer

«Vrc»
Sampler

«Vrc»
ImageView

«Vrc»
BufferView

«Vrc»
CommandPool

«Vrc»
CommandBuffer

«Vrc»
RenderPass

«Vrc»
FrameBuffer

«Vrc»
GraphicsPipeline

«Vrc»
DescriptorSetLayout

«Vrc»
PipelineLayout

«Vrc»
DescriptorPool

«Vrc»
DescriptorSet

«Vrc»
Semaphore

«Vrc»
InstanceWindow

PhysicalDeviceSurface

«Vrc»
Device

«Vrc»
Queue

«Vrc»
Swapchain

«Vrc»
SwapchainImage

DeviceMemory

«Vrc»
Image

«Vrc»
Buffer

«Vrc»
Sampler

«Vrc»
ImageView

«Vrc»
BufferView

«Vrc»
CommandPool

«Vrc»
CommandBuffer

«Vrc»
RenderPass

«Vrc»
FrameBuffer

«Vrc»
GraphicsPipeline

«Vrc»
DescriptorSetLayout

«Vrc»
PipelineLayout

«Vrc»
DescriptorPool

«Vrc»
DescriptorSet

«Vrc»
Semaphore

«Vrc»
Fence

«Vrc»

Figure 3.1: Object Dependency Graph of Vulkayes

Objects in Vulkan have certain lifetime dependencies - some objects must outlive others - dis-
played in fig. 3.1. Some dependencies are simpler and always apply, others are more complex
and conditional. Most of these dependencies in Vulkayes are handled using reference count-
ing. Reference counting is a programming concept where data is shared among multiple
actors using some kind of reference (pointer). The pointed-to memory, apart from storing the
data object itself, also stores a count of existing references to that memory. This provides an
easy way to clean up resources when they are no longer used, all automatically at runtime,
with overhead only during the creation and destruction of the resource itself, not during us-
age. The Rust safety system also prevents the pointed-to memory to be freed or otherwise
deinitialized, ensuring safety.
Rust also differentiates between normal reference counted value and atomically counted ref-
erence counted value. The former is called Rc while the latter is called Arc. This is used in
Vulkayes, as described in more detail in the sec. 4.4.2.

3.3 Memory management
There are two types of memory in Vulkan. Host memory - the memory accesible only to the
CPU, and device memory - the memory accesible to the device. Device memory might be
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host-mappable, meaning it can be accessed by the CPU if it is explicitely mapped, similar to
the C mmap function.
Host memory in Vulkan is managed by the implementation, but Vulkan exposes a way to in-
tercept this process by allowing the application to provide its own allocation callbacks. These
callbacks are called whenever the Vulkan implementation wishes to allocate, reallocate or
free memory and can be used to handle allocation in a custom manner. Vulkan specification
recommends using these callbacks only for debugging purposes or in specific cases, not in
general, as they would not impact the performance in any meaningful way.
Device memory, however, is a bigger topic in Vulkan. Applications are expected to allocate
and manage memory themselves. Vulkan only recommends that allocation should happen
in 128 to 256 MB chunks at a time to reduce the overhead. This means Vulkayes needs to
provide its own way to integrate user-defined device memory allocation, as described in more
detail in the sec. 4.3.1.

3.4 Synchronization and validations
Vulkan leaves almost all CPU synchronization to the user. Explicit synchronization require-
ments are described in the specification and Vulkan objects are not reentrant. The user ap-
plication has to take care of all the synchronization requirements as to not cause a data race.
Vulkayes solves this in two ways. When used normally, no synchronization is done and ev-
erything is as performant as it can be. Secondly, it provides a multi-thread feature (sec. 4.2)
where mutexes are used and proper synchronization is ensured.
Validations in Vulkan are generalization of synchronization requirements. Validations specify
not only how to prevent data races, but also how to prevent other undefined behaviors. Vulkan
validation requirements tend to be very long, dense and hard to parse, leading to an increased
chance of breaking them. Vulkayes aims to alleviate this somewhat by guaranteeing at least
the most common and statically solvable validations to be fulfilled.
The last topic of synchronization is GPU synchronization. This encompasses synchronization
of resource usage in command buffers executed on the GPU queues as well as the synchro-
nization between CPU and GPU. This kind of synchronization is very important, but it is a
complex topic on its own and is left to be added to Vulkayes as a separate project.



4 Implementation
4.1 Bindings
Vulkan API is an interface specified in the C programming language. C language is the de-facto
standard in cross-language APIs. This means the system of bindings is available in almost any
practical language, including Rust. Vulkayes relies on the ash [12] crate to provide these
binding and some syntactic sugar on top. This library uses the Vulkan API Registry, canonical
machine-readable definition of the API, to generate bindings from Rust to C automatically.

4.2 Cargo features
An important part of any flexible project is to give the user as much control as possible, so
the library will fit their usecase. One way to achieve this in Rust are cargo features already
mentioned in sec. 3.1.3.
The most important features defined and exposed in Vulkayes are described below.
naive_device_allocator This feature conditionally compiles a very naive device memory al-
locator into the project. Device memory allocation is a complex topic and applications are
required to provide their own allocators to fit their own needs. One popular allocator is the
Vulkan Memory Allocator [13], but it is a big dependency that might not be easily accessible
for certain usecases. Vulkayes supports integration with VMA (and other allocators) seam-
lessly, but also provides the naive allocator as a simple no-dependecy alterative for quick
prototyping and debugging.
multi_thread One of the biggest selling points of Vulkan are its multi-threading capabilities.
Since the user is in charge of synchronizing the resources, they can design their application to
fit their needs. Single-threaded applications require no synchronization, while multi-threaded
applications should allow for the full power of multi-threading to be leveraged.
Safe Rust statically prevents data races using the built-in Send and Sync traits. These traits are
automatically implemented (or not implemented) by the compiler to mark types as “capable of
being sent between threads” and “capable of being borrowed across threads” respectively. The
user is free to unsafely implement these traits back if the compiler decides to not implement
them, provided that the user takes the burden of preventing data races upon themselves.
By default, object wrappers in Vulkayes are not Send nor Sync, simply because they use the
Rc type, which is a shared pointer wrapper type that uses non-atomic loads and writes to
count. By turning this feature on, all usages of Rc across the crate are switched to Arc, which
is atomically counted and thus implementes Send and Sync safely.
Additionaly, single-threaded Vulkayes replaces the use of mutexes with simple wrapper types
that emulate the mutex API, but do not implement Send/Sync and do not do any synchroniza-
tion. This makes the API of both single-threaded and multi-threaded Vulkayes uniform. The
main reason for this feature is performance, since atomic operations and synchronization is
costly compared to non-atomic counterparts.
runtime_implicit_validations Vulkayes aims to increase safety of Vulkan calls as much as
possible without any performance impact. The idea is to always guarantee that the implicit
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validations defined in Vulkan spec are fulfilled and the explicit validations are only fulfilled
when they can be easily derived from the existing API design.
This proved to not be always possible, so a small portion of implicit validations requires some
runtime checking to ensure their fulfillment. These validation, producing runtime overhead,
are conditionaly compiled using this feature to ensure that the user can always opt-out to
achieve greater performance.

4.3 Generics
Generics are used in key places across Vulkayes. One example are device memory allocators,
another would be image views. They are described in detail below.

4.3.1 Device memory allocator generics
Device memory allocators have one of the biggest impact on performance of Vulkan. There
is no default memory allocator in Vulkan. Instead, memory has to be allocated manually
from the device. That operation, however, can be slow. That is why it is recommended by
the Vulkan specification to allocate memory in bigger chunks at once and then distribute and
reuse the memory as best as possible in the user code.
For Vulkayes, this means it is required to support user-defined allocators. This is the perfect
usecase for generics. An image, which needs some kind of memory backing to operate, has a
simplified constructor like this:
trait DeviceMemoryAllocation {

// Allocation trait methods
}

trait DeviceMemoryAllocator {
type Allocation: DeviceMemoryAllocation;

fn allocate(&self) -> Self::Allocation;
}

struct Image {
// Image fields
memory: ??

}
impl Image {

pub fn new<A: DeviceMemoryAllocator>(
// Other fields
memory_allocator: &A

) -> Self {
// Initialization code

}
}

The memory_allocator parameter can be any user-defined type that implement the
DeviceMemoryAllocator trait (and thus is capable of distributing memory given some
requirements). However, given the requirements of Vulkan specification, we need to
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ensure that the memory outlives all usages of the image. This implies we need to store
some kind of handle to the allocated memory, which can be any type implementing
DeviceMemoryAllocation (as can be seen in the DeviceMemoryAllocator traits associated
type Allocation).
Storing this memory thus has the same implications as mentioned above. We could make the
Image struct generic over the memory it stores. This would however mean that the memory
generic parameter would have to be present on anything that can possibly store the image,
including swapchain images, image views, command buffers and so on. This could prevent
us in the future from creating a command buffer and recording into it operations on images
with possibly different memory allocations (for example, because one is a sparse image and
the other is fully-backed).
Since this is very limiting, the memory inside an image can be stored using dynamic
generics. So the ?? in the above code snippet would be replaced with Box<dyn
DeviceMemoryAllocation>.
This would be ideal for images, where the memory does not need to be accessed until it is to be
deallocated (barring linearly tiled images). For buffers, however, this is a common use case.
Buffers are often used as staging or uniform. Data is uploaded into a buffer from the host
and then copied using device operations into an image backed by fast device-local memory.
The upload of data is done by mapping the memory into host memory using Vulkan provided
mechanism and then writing to it as if it was normal host memory.

4.3.2 Mappable memory generics
Some use cases for mapped memory are performance-critical. For example, vertex animating
data is done by continuously changing vertex buffer data according to the animation proper-
ties. This means the mapped memory has to be accessed every frame. This is where dynamic
dispatch cost would be substantial, it is best to avoid it.
One of the ways to avoid this cost is to simply push it back. There are only 3 places where the
generics are truly needed:

• The memory map function
• The memory unmap function
• The cleanup function

No other place of the memory handling needs custom user coding. This means it is enough to
store 3 generic user-provided functions. In Rust, this can be done using the Fn family of traits.
For example, instead of Box<dyn DeviceMemoryAllocation> for the cleanup function we will
use Box<dyn FnOnce(&Vrc<Device>, vk::DeviceMemory, vk::DeviceSize, NonZeroU64)>
inside a concrete struct DeviceMemoryAllocation. The cleanup function can be simply
FnOnce, which can only ever be called once, while the map and unmap functions might need
to be called multiple times and have to be FnMut.
The performance of this solution is measured in more detail in sec. 4.3.1.

4.3.3 Image view generics
Image views are another object in Vulkano that has to deal with generics. Image view can
wrap any type that can “act like” an image and create a view into some kind of subrange. This
can be expressed using the ImageTrait like so:
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struct ImageView {
// Image view fields
image: ??

}
impl ImageView {

pub fn new<I: ImageTrait>(
image: I

) -> Self {
// Initialization code

}
}

As mentioned above, this is very limiting because of the generic parameter. Unlike the above
case, however, the image field needs to be accessed considerably more often.
The following table shows a benchmark of so-called mixed dispatch, where an enum is used to
provide common possible values for a given generic type and the last variant, which is the only
one truly generic, is provided as a Box<dyn Trait> to allow using dynamic dispatch where
the set of provided types is not extensive enough.
Table 4.1: Benchmark of so-called mixed dispatch enums, where enum variants house com-
mon types and the last variant houses a boxed dynamically dispatched one to cover other
usecases.

benchmark avg. black box avg. no black box
Enum::Foo 499.01 ps 251.31 ps
Enum::Bar 499.47 ps 252.67 ps
Enum::Dyn 1.3018 ns 1.2512 ns
Foo 499.36 ps 260.76 ps
Bar 499.03 ps 252.18 ps
Qux 313.34 ps 250.41 ps
dyn Qux 1.5104 ns 1.5028 ns

As can be seen from the table, accessing a value through a dynamic dispatch is at least twice
as slow as accessing it through static dispatch, and this is with optimizations prevented by
using the concept of a black box from the Rust stdlib.
Non-black boxed benchmarks show that the optimizations provided by the compiler for stati-
cally dispatched values can further reduce the overhead of static dispatch, while the dynamic
dispatch stays mostly the same.
This cones as an alternative to normal generic to avoid generic parameter plague and was
chosen as an acceptable way to treat image type dispatch in Vulkayes.

4.4 Abstraction
4.4.1 Reference counting
Reference counting is used for two purposes. First, the most obvious one, is shared usage.
Most of the objects in Vulkan stem from the Device object and operations on these objects



4.5. SWAPCHAIN RECREATE 21

require access to the device and device pointers. Second is lifetime dependecy. Objects in
Vulkan have a defined partial ordering on their destruction order, that is, the device must
pretty much outlive all its children. This is achieved as a consequence of shared pointer usage,
since all children of the device keep a link to the device, the last child to be dropped drops
the device (unless the user is holding the device pointer as well, in which case it is still alive).

4.4.2 Type aliases
Vulkayes makes use of project-wide type aliases to make transitioning some of the cargo fea-
tures seamless.
Vrc One of the most important type aliases which resolves to either type Vrc<T> = Arc<T>
or type Vrc<T> = Rc<T> depending on whether the multi-threaded feature is enabled or not.
This type alias is used practically everywhere, since most types (as seen in fig. 3.1 and dis-
cussed in sec. 4.4.1) are wrapped in reference counted pointer types.

4.4.3 Deref
This trait comes from the Rust standard library and is a specially known trait to the compiler.
It is intended to be implemented for smart pointer types as a way to uniquely claim that a
type Bar is really just a wrapper around type Foo. This fits nicely with the notion of smart
wrappers in Vulkayes. For example the Image object:
pub struct Image {

image: vk::Image,
// fields omitted

}
impl Deref for Image {

type Target = vk::Image;

fn deref(&self) -> &Self::Target {
&self.image

}
}

This way, the Image object claims that under the hood it is simply the vk::Image handle but
with some added information and utility on top. The Deref trait itself defines an associated
type Target and a deref method. These two things together provide complete information
about what type the Image object derefs to and an ability to borrow it as that type.
This is used heavily across Vulkayes for all smart wrappers around Vulkan handles. Addi-
tionally, Vulkayes makes heavy use of Rust macros-by-example system to implement most
important traits (such as Eq, Hash and Ord) on each of the smart wrapper objects. The
impl_common_handle_traits macro saves over 500 lines of repetitive code across the Vulka-
yes crate.

4.5 Swapchain recreate
Swapchain is an object in Vulkan that facilitates image presentation onto surfaces. Surfaces
are an abstraction over regions of the physical display, intendedmainly for windowing systems
and compositors. A swapchain is created for a combination of a surface and a device.
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Requirement for our Swapchain object are:
1. Only one swapchain can exist for one surface.
2. Allow the user to retrieve the surface when the swapchain is no longer in use.
3. Allow the user to recreate the swapchain, transferring the ownership of the surface to

the new instance, retiring the old swapchain.
4. Keep retired swapchain alive until all its acquired images are not longer in use.

Satisfying all the conditions as they are is not trivial, mainly because the the first two condi-
tions lead to the requirement of dropping the swapchain once the surface is moved out of it,
however, the fourth condition requires us to keep it alive. This can also create problems where
for some reason the retired swapchain outlives the active one. In such cases, the surface can
happen to be dropped before the retired swapchain, which is incorrect.
To satisfy all 4 conditions, we first have to rewrite them into terms that can be expressed in
the language.

1. The creation of a swapchain requires full ownership of the surface, thus our constructor
has to take surface by value.

2. The swapchain has to have a method that consumes the swapchain and returns the
surface by value.

3. The new, recreated swapchain has to take the old swapchain by value and extract the
surface from it using method from 2.

4. The swapchain has to be reference counted to outlive all its images.
Now it is much clearer why these requirements are hard to satisfy - 4. requires that the
swapchain reference counted and its lifetime is guarded dynamically, however, 2. and 3. re-
quire for the lifetime of the swapchain to end immediatelly rather than sometime in the future.
We need to rewrite the requirements to work with reference counting.
Adapting 2. is implementationally trivial. Wemust rely on the user to first drop all outstanding
shared pointers except for one and then use that one to retrieve the swapchain back as an
owned value.
Adapting 3. however, is much harder to implement as we can’t expect the user to wait until
all outstanding operations on the current swapchain are done until creating a new one since
that would limit the functionality too much. Instead, we need to make sure that the surface
is alive for the longer of the two lifetimes. This is exactly what reference counting does.
By reference counting the surface inside a swapchain but still requiring an owned value for
swapchain creation, we can make sure that no two active swapchains are ever created for
one surface while still leaving the possibility of retrieving the surface after all but one of the
shared pointers are dropped.
The resulting API thus looks like this:
pub struct Swapchain {

surface: Vrc<Surface>,
// fields omitted

}
impl Swapchain {

pub fn new(
surface: Surface,
// parameters omitted

) -> Vrc<Self> {
Vrc::new(
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Swapchain {
surface: Vrc::new(surface),
// fields omitted

}
)

}

pub fn recreate(
self: &Vrc<Self>,
// fields omitted

) -> Vrc<Self> {
Vrc::new(

Swapchain {
surface: self.surface.clone(),
// fields omitted

}
)

}

pub fn surface(&self) -> &Vrc<Self> {
&self.surface

}
}

This satisfies all the rules:
1. We cannot retrieve the surface back from the swapchain without destroying the shared

pointer, which dynamically ensures there are no other instances.
2. The swapchain returns a reference to the reference counted surface, which can be de-

stroyed to gain the surface after dropping all swapchains and swapchain images in the
same way as above.

3. Both the new and the old swapchain contain a reference to the surface and thus will
keep it alive for as long as is needed.

4. Swapchain is reference counted and can be kept alive by the images.

4.6 Windowing
Vulkan handles windowing by providing abstraction over native windows on different plat-
forms using extensions. Each supported platform has a specific extension that can be used
to construct a Vulkan handle to a surface, which is an object abstracting over the native sur-
face. Some platforms, notably macOS and iOS, have additional requirements on the creation
process of the window.
Vulkayes provides abstraction over this in a separate crate called vulkayes-window. This crate
contains three tiers of code. The first tier is raw Vulkan creation method for each platform.
This code is platform specific and highly unsafe. The second tier are implementation spe-
cific creation methods, which abstract over platform differences using the windowing library
implementation, but still require unsafe code for the ash objects.
The third and most important tier are the implementation specific Vulkayes creation meth-
ods. These methods are safe and provide full abstraction over the platform and ash, returning
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Vulkayes wrapper types ready to be used safely. These methods are the main point of the
vulkayes-window crate, but the other tiers are provided for flexibility and transparency rea-
sons.
Currently supported implementations are:

• winit - The most popular fully-featured windowing library in Rust ecosystem. Provides
almost full abstraction over platform windows.

• minifb - One of the simplest and easiest to use windowing libraries. Provides the mini-
mal needed abstraction to quicky and easily create and draw on window surfaces.

• raw_window_handle - A library providing common types intended for all Rust windowing
libraries. Both winit and minifb use this library and vulkayes-window supports all
libraries that can be glued through this library.



5 Results and evaluation
Evaluation of Vulkayes was performed in two ways. The user code - that is, the code the user
of the library will write, and benchmarks against ash, the bindings library Vulkayes is using
transparently. Additional safety benefits are also discussed later on.

5.1 User code
One of the main concerns when designing a library is the user code. How the user code will
look like, if it will be readable and comfortable to write. Vulkayes user code was compared
with code extracted from ash usage examples [12], which serve as a baseline for Rust Vulkan
bindings, in code samples 5.1 and 5.2.

1 let (vertex_buffer, vertex_buffer_memory) = {
2 let create_info = vk::BufferCreateInfo {
3 size: std::mem::size_of_val(
4 &data::VERTICES
5 ) as vk::DeviceSize,
6 usage: vk::BufferUsageFlags::VERTEX_BUFFER,
7 sharing_mode: vk::SharingMode::EXCLUSIVE,
8 ..Default::default()
9 };

10 let buffer = unsafe {
11 device
12 .create_buffer(&create_info, None)
13 .expect("Could not create vertex buffer")
14 };
15
16 let memory_req = unsafe {
17 device.get_buffer_memory_requirements(buffer)
18 };
19 let memory_index = memory::find_memory_type_index(
20 &memory_req,
21 &device_memory_properties,
22 vk::MemoryPropertyFlags::HOST_VISIBLE
23 | vk::MemoryPropertyFlags::HOST_COHERENT
24 )
25 .expect("Unable to find suitable memory type");
26
27 let allocate_info = vk::MemoryAllocateInfo {
28 allocation_size: memory_req.size,
29 memory_type_index: memory_index,
30 ..Default::default()
31 };
32 let memory = unsafe {
33 device
34 .allocate_memory(&allocate_info, None)
35 .expect("Could not allocate memory")
36 };
37 unsafe {
38 device
39 .bind_buffer_memory(buffer, memory, 0)
40 .expect("Could not bind memory");
41 }
42
43 (buffer, memory)
44 };

let vertex_buffer = {
Buffer::new(

device.clone(),
std::num::NonZeroU64::new(

std::mem::size_of_val(&data::VERTICES) as u64
).unwrap(),
vk::BufferUsageFlags::VERTEX_BUFFER,
SharingMode::from(queue.as_ref()),
BufferAllocatorParams::Some {

allocator: &device_memory_allocator,
requirements: vk::MemoryPropertyFlags::HOST_VISIBLE

| vk::MemoryPropertyFlags::HOST_COHERENT
},
Default::default()

)
.expect("Could not create vertex buffer")

};

Code sample 5.1: An example of the code with same functionality from the original examples
in ash (left) and from the current ones (right). The code after is three times shorter than the
original code while exposing the same functionality and providing static validation guarantees.
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Overall, the code for benchmarking the spinning teapots written in pure ash has 1400 lines of
Rust code. The code with Vulkayes with same semantics and even improved static validation
guarantess has 942 lines. This is a difference of 458 lines of code. These numbers are clear
indicators of the improvement in developer experience by using correctly designed wrappers.
Another interesting code example is the uniform buffer usage:

1 unsafe {
2 *uniform_buffer_memory_ptr = frame_state;
3 }
4 let flush_ranges = [
5 vk::MappedMemoryRange::builder()
6 .memory(uniform_buffer_memory)
7 .size(
8 std::mem::size_of::<data::UniformData>()
9 as vk::DeviceSize

10 )
11 .build()
12 ];
13 unsafe {
14 device
15 .flush_mapped_memory_ranges(&flush_ranges)
16 .expect("Could not flush uniform data memory");
17 }

uniform_buffer
.memory().unwrap()
.map_memory_with(|mut mem| {

mem.write_slice(&[frame_state], 0, Default::default());
mem.flush().expect("Could not flush uniform data memory");
MappingAccessResult::Continue

})
.unwrap();

Code sample 5.2: The ash code (left) is twice as long and in some cases possibly even unsafe.
Vulkayes API guarantees proper locking and borrowing, provides simplified way to flush the mem-
ory and prevents unaligned writes which on some platforms might cause hard errors and abort
the process. The checking for correctness, however, does have some runtime cost. One of the guar-
antees of safe Rust is memory safety and Vulkayes is targeting safe Rust. That is why the write
slice method call above does more than just write to a pointer. There is logic to check the align
of the pointer and make sure all writes are either properly aligned, or an unaligned instruction
is used.

5.2 Benchmark
A benchmark of ash vs Vulkayes was designed to compare the speed of Vulkayes against a
“control sample” of ash. This benchmark measures several stages of a common rendering
loop between ash and Vulkayes. Since Vulkayes is mostly safety and usability wrapper, not
much runtime overhead is added, at least not in the critical hot-paths used in rendering loops.
Some specific areas, however, such as memory mapping and writing need special handling to
ensure safety, as mentioned in sec. 5.1.
The benchmark results have three separate columns. ash is the control sample/baseline mea-
surement. vy_ST is the single-threaded Vulkayes while vy_MT is the multi-threaded feature of
Vulkayes.

5.2.1 Stages
The rendering loop was split into 8 stages:
preinit In this stage frame specific variables are calculated, such as the data dependent on
the elapsed time. This stage represents the user logic that is not being benchmarked.
acquire In this stage the present image is acquired from Vulkan implementation. This stage
is heavily dependent on the Vulkan implementation and is not being benchmarked.
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Figure 5.1: The benchmark consists of 25 non-instanced teapots with each having 531 ver-
tices and normals and 3072 indices. Teapots at even positions are controlled by taking the
𝑠𝑖𝑛(𝑡𝑖𝑚𝑒) while odd positions are using −𝑠𝑖𝑛(𝑡𝑖𝑚𝑒). Color and spin of the teapot is com-
puted using the harmonic function. Color andworldmatrix are uploaded using push constants
while view and projection matrices are uploaded using uniform buffers. View and projection
matrices don’t change but are uploaded anyway to bench their speed. There is a very simple
lighting model with hard-coded directional light in the fragment shader.

uniform In this stage uniform data specific for the frame is written into device visiblemapped
memory and flushed. Some absolute overhead is expected because Vulkayes does checks to
ensure memory safety.
command In this stage command buffer is recorded by binding necessary state and sub-
mitting draw commands for each teapot, along with push constants. Minimal overhead is
expected as only one mutex needs to be locked.
submit In this stage the previously recorded command buffer is submitted for execution to
Vulkan. This operation is costly on its own, but only minimal overhead is expected.
present In this stage the acquired image is submitted for presentation and a happens-before
relationship is estabilished using semaphores and fences so that submitted execution is guar-
anteed to finish before presentation begins. Again, overhead of a mutex is expected.
wait In this stage the application waits on the presentation fence. This ensures that all
measurements done inside one loop are correctly assigned to that loop. In real life applica-
tions, this wait should not happen and each frame should asynchronously finish in the back-
ground while the user logic computes data for the next frame (akin to the preinit stage). This
stage represents the cost of the submitted operations on the GPU, but might also invoke some
implementation-dependent synchronization the application is not aware of. Timings of this
stage are thus not considered.
update In this stage the update function is called on the window and all outstanding win-
dowing events are handled. This stage represents the update of the windowing system events
and a window redraw request and is not being benchmarked.
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5.2.2 Results
The benchmarks were run on three hardware and software configurations, note that only the
relevant stages are present:

Figure 5.2: Average median time (n = 99000): macOS 10.15.3 (19D76), Quad-Core Intel Core
i5, Intel Iris Plus Graphics 655, Vulkan 1.2.135

Table 5.1: Average median time (n = 99000): macOS 10.15.3 (19D76), Quad-Core Intel Core
i5, Intel Iris Plus Graphics 655, Vulkan 1.2.135

Stage ash vy_ST vy_MT
uniform 1.5 us 2.37 us (157%) 2.39 us (159%)
command 23.66 us 24.43 us (103%) 26.51 us (112%)
submit 169.43 us 171.11 us (101%) 170.99 us (101%)
present 32.76 us 33.36 us (102%) 34.14 us (104%)

Table 5.2: Average median time (n = 99000): Linux 5.4.35_1, Intel i5-7300HQ, Intel HD Graph-
ics 630, Vulkan v1.2.137

Stage ash vy_ST vy_MT
uniform 717.0 ns 1.53 us (214%) 1.38 us (193%)
command 39.37 us 40.03 us (102%) 39.78 us (101%)
submit 39.57 us 37.36 us (94%) 38.64 us (98%)
present 25.34 us 26.07 us (103%) 26.45 us (104%)
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Figure 5.3: Average median time (n = 99000): Linux 5.4.35_1, Intel i5-7300HQ, Intel HD
Graphics 630, Vulkan v1.2.137

Figure 5.4: Average median time (n = 99000): Linux 5.4.35_1, Intel i5-7300HQ, NVIDIA
GeForce GTX 1050 Mobile, Vulkan v1.2.137
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Table 5.3: Averagemedian time (n= 99000): Linux 5.4.35_1, Intel i5-7300HQ, NVIDIA GeForce
GTX 1050 Mobile, Vulkan v1.2.137

Stage ash vy_ST vy_MT
uniform 1.42 us 2.15 us (152%) 2.24 us (158%)
command 28.51 us 27.99 us (98%) 28.8 us (101%)
submit 13.15 us 13.76 us (105%) 14.38 us (109%)
present 27.08 us 26.63 us (98%) 27.29 us (101%)

As can be seen, all three tested systems exhibit similar trends. The command stage is on par
with pure ash benchmark, the only possible overhead is one mutex lock, which will only have
an effect on multi-thread feature in the worst case.
The submit stage also closely follows the ash baseline. This stage potentially locks great num-
ber of mutexes, so could be a potential performance bottleneck on the multi-thread feature.
However, the intention of an explicit submit operation in Vulkan API is to reduce overhead of
submitting smaller batches of work in favor of bigger ones, where the overhead is less notice-
able. Thus, for real life applications where the command buffer size will be much bigger, it is
expected to be manageable.
The present stage, similaliry, does not exhibit any noticeable slowdown. The reasoning is the
same as for the submit stage. Additionaly, the present stage may also include the vertical syn-
chronization delay if enabled, and will thus shadow smaller overhead factors such as locking
mutexes.

Figure 5.5: Histogram of uniform stage of the benchmarks (n = 99000). It is clear that ash is
faster than both single- and multi-threaded Vulkayes. However, the overhead is constant.

Finally, the uniform stage exhibits the most interesting results. The accesses performed in
Vulkayes are 1.5 to 2 times as slow as when performed by ash. This seems like a lot, but it is
important to mention that the absolute difference between the median points is in range of 1
micro second and the overhead is of constant nature.
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Furthermore, tbl. 5.4 demonstrates doing 1000 writes into the mapped memory instead of 1
each frame. In fact, Vulkayes is even sligtly faster in this case because it decides on the most
efficient strategy for the write, which becomes efficient with larger number of writes.
Table 5.4: Average median time (n = 99000): macOS 10.15.3 (19D76), Quad-Core Intel Core
i5, Intel Iris Plus Graphics 655, Vulkan 1.2.135

Stage ash_u1000 vy_ST_u1000 vy_MT_u1000
uniform 45.16 us 40.61 us (90%) 42.14 us (93%)

Figure 5.6: Histogram of uniform stage of the benchmarks (n = 99000) with 1000 writes instead
of 1. The overhead displayed in previous bench is overshadowed by the gains of proper writing
strategy.
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5.3 Safety
One of the main goals of Vulkayes is increasing safety. This mainly includes memory safety.
Vulkayes, being a safe wrapper, provides safe abstraction in the types is wraps in both the Rust
way and the Vulkan API way.

Table 5.5: Vulkan API validations status in the project.

Category Statically solved Dynamically solved Left to user Total
Implicit 317 28 2 347
Creation 91 0 314 405
Usage 29 3 122 154
Total 437 31 438 906

In tbl. 5.5 it can be seen that the goal was achieved almost perfectly. Only two implicit vali-
dations are left to the user. This decision wasn’t made lightly, but it was chosen as the most
sensible one given the current limitations of the stable version of language. A small number
of implicit validations couldn’t be solved statically. These validations are instead checked at
runtime, but only conditionally under the runtime_implicit_validations Cargo feature. All
other implicit validations were successfully solved statically. More details about the specific
validations can be found on the included CD.
Additionally, a significant amount of explicit validations, categorized under creation and us-
age, have been solved statically as a consequence of the natural API design and/or the implicit
validations. Overall this means increased safety for the user of the API at no runtime cost.



6 Conclusion
The core Vulkayes library is successful at reducing the complexity of creating and using Vulkan
types, as well as correctly destroying them at appropriate times and checking basic safety
requirements. Benchmarks show that this added complexity is mostly compile-time and scales
well into the runtime where applicable. Additionaly, safety is guaranteed at a certain level that
should provide the user of the API with certain amount of confidence that their application will
not segfault. Overall, the Vulkayes project is a good step towards a flexible and transparent
Vulkan API in the Rust ecosystem, learning from previous mistakes and designs.
However, there still remains a lot of work to be done to create an API with a application
design advantage as well. Designing synchronization in Vulkan by hand is error prone due
to high complexity and Vulkayes should be extended with user-friendly API that is capable of
lifting the burden off the user onto the implementation, prefferably mostly at compile time.
Declarative synchronization definition API and other improvements to Vulkayes are left for
future work.
The ultimate goal for Vulkayes to become a fully-featured rendering library and for a rendering
engine to be built on top of it, eventually replacing the game engine based on Vulkano in [14].
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Contents of the included CD
The CD contains a copy of the vulkayes-thesis repository.

Table 1: Structure of the repository

Directory Description
codes Code snipptes comparing selected features of

Rust and C++ and Rust code snippet
benchmarks.

documents Documents containing topics covered in the
final thesis and the thesis itself.

assets Images, diagrams and other assets used in
documents and thesis.

scripts Scripts for building the thesis.
pdfs Generated output pdfs.

More information can be found in the README.md file inside the repository.

37

https://github.com/vulkayes/vulkayes-thesis

	Introduction
	Vulkan API overview
	Vulkan API architecture
	Execution model
	Object model
	Application structure
	Complexity


	Related work
	Summary

	Design
	Rust
	Ownership
	Safety and speed
	Cargo
	Generics

	Synchronization and validations

	Implementation
	Bindings
	Cargo features
	Generics
	Device memory allocator generics
	Mappable memory generics
	Image view generics

	Abstraction
	Reference counting
	Type aliases
	Deref

	Swapchain recreate
	Windowing

	Results and evaluation
	User code
	Benchmark
	Stages

	Safety

	Conclusion
	Bibliography
	Contents of the included CD

