

Master’s thesis

Advanced Tool for Production of Visual
Effects for Live Performances

Bc. Vadim Petrov

Department of Computer Graphics and Interaction
Supervisor: doc. Ing. Adam Sporka, Ph.D.

January 7, 2020

Acknowledgements

Thanks to Adam for having patience during the lengthy process of settling
on a topic, to Malcuth, David and Hepex for the peer reviews, to Human
Ketchup and Malcuth again for the opportunities to experiment, to Marijana
for support and to everyone who came to the shows.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive au-
thorization (license) to utilize this thesis, including any and all computer pro-
grams incorporated therein or attached thereto and all corresponding docu-
mentation (hereinafter collectively referred to as the “Work”), to any and all
persons that wish to utilize the Work. Such persons are entitled to use the
Work in any way (including for-profit purposes) that does not detract from its
value. This authorization is not limited in terms of time, location and quan-
tity. However, all persons that makes use of the above license shall be obliged
to grant a license at least in the same scope as defined above with respect to
each and every work that is created (wholly or in part) based on the Work, by
modifying the Work, by combining the Work with another work, by including
the Work in a collection of works or by adapting the Work (including trans-
lation), and at the same time make available the source code of such work at
least in a way and scope that are comparable to the way and scope in which
the source code of the Work is made available.

In Prague on January 7, 2020 .

Czech Technical University in Prague
Faculty of Electrical Engineering
© 2020 Vadim Petrov. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Electrical Engineering. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Petrov, Vadim. Advanced Tool for Production of Visual Effects for Live Per-
formances. Master’s thesis. Czech Technical University in Prague, Faculty of
Electrical Engineering, 2020.

Abstrakt

Dı́ky prob́ıhaj́ıćı proměně koncert̊u a hudebńıch vystoupeńı obecně do podoby
multimediálńıch zážitk̊u se otev́ırá nový prostor pro zkoumáńı vztahu hudby
a obrazu. Nástroj Skinny Mixer nab́ıźı mı́cháńı vidéı, použit́ı vizuálńıch efekt̊u
a synchronizaci s hudbou. Nástroj je navržen pro živá vystoupeńı a během
vývoje byl opakovaně nasazován v rámci audiovisuálńıho vystoupeńı Simu-
lacrum AV.

Kĺıčová slova audiovisuálńı, vystoupeńı, MIDI, VJ, C++, openFrameworks

Abstract

As live concerts and music performances generally transform into multimedia
experiences new space opens for the exploration of the relation between sound
and image. Skinny Mixer is a tool offering to mix multiple videos, apply
visual effects and synchronize them to music. Intended for live shows it has
been employed repeatedly during the development process as part of a live
audiovisual performance Simulacrum AV.

Keywords audiovisual, performance, MIDI, VJ, C++, openFrameworks

vii

Contents

Introduction 1
Goals . 2
Development . 2

1 State-of-the-art 3
1.1 Hardware . 3
1.2 Software . 7
1.3 Events . 8
1.4 Bachelor’s thesis . 9

2 Analysis 11
2.1 Bachelor’s thesis topics . 12
2.2 Bachelor’s thesis benefits . 13
2.3 Bachelor’s thesis drawbacks . 14

3 Design 15
3.1 Main features . 15
3.2 Use cases . 16
3.3 Functional requirements . 16
3.4 Non-functional requirements . 22
3.5 Performance requirements . 22

4 Implementation 23
4.1 Unity3D prototype . 23
4.2 Development environments . 24
4.3 Architecture . 25
4.4 Alpha releases . 31

5 Evaluation 35
5.1 Performance evaluation . 35

ix

5.2 Usability testing . 39
5.3 Peer reviews . 45

Conclusion 49
Goals completion . 49
Future plans . 50

Bibliography 51

Acronyms 55

x

List of Figures

1.1 DMX connection example . 4
1.2 Mydy Rabycad stage setup . 5
1.3 Noisia at Rampage festival 2017 6
1.4 Sinjin Hawke & Zora Jones at Sónar festival 2018 6
1.5 Diego Dorado performing with TidalCycles and Atom 8
1.6 Aid Kid & Pavel Karafiát at Lunchmeat festival 2019 9

3.1 Three blended video layers . 18
3.2 Another three blended video layers 18
3.3 Solarize effect . 19
3.4 Posterize effect . 19
3.5 Color Shift effect . 20
3.6 Overdrive effect . 20
3.7 Effect combination . 21
3.8 Overdrive effect turned up . 21

4.1 Objects responsible for main functionality and view component. . . 26
4.2 Objects of the model component. 27
4.3 Objects of the controller component. 28

5.1 Scene switch times . 36
5.2 Single video load times . 37
5.3 The current GUI . 42

xi

List of Tables

2.1 Bachelor’s thesis latency test . 13

4.1 Example mathematical definition & shader code for the Solarize
effect . 31

4.2 Command line arguments . 32

5.1 Average scene switch times . 37
5.2 Latency . 38
5.3 Average FPS measured during live performances 39

xiii

Introduction

This work is a spiritual successor to the author’s bachelor’s thesis Tool for
visualization of a MIDI data stream for live performances [1]. The central
idea connecting both works is to build a unique audiovisual live performance.
Audiovisual as in using both sound and image in unison, interconnected and
dependent. While both elements could be theoretically dependent on each
other to form a truly synesthethic experience, in reality one usually leads and
the other follows. Such is the case in both the bachelor’s thesis (which will be
extensively scrutinized in chapter 2) and this work where the image depends
on the sound. And live performance as in the developed tool is intended
for stage usage in front of live audience in a semi controlled environment.
Such environment sometimes offers plenty and usually not nearly enough time
to prepare the show and the set, other performers or even members of the
audience can mingle with the setup (check out all the online videos of someone
spilling their drink onto the DJ...) and so it needs to be robust and simple
enough do diagnose and fix problems in a hurry.

While there were some tools suitable to prepare such a performance at
the time of writing the bachelor’s thesis and there are even more now (and
the older ones are better, more developed and more expensive than they used
to be) there still remains a lot of room for experimentation and unique self
expression. The bachelor’s thesis described the Czech local scene as plagued
with basic setups without creativity. Despite some venues and promoters man-
aged to build stages with impressive amounts of light fixtures, their control
often had close to none relation to the music playing. This situation improved
with events described in chapter 1, which managed to both open new oppor-
tunities and raise the expectations of select audiences. While performing with
the system from the bachelor’s thesis the author had many opportunities to
check the crowd reaction, consider technical improvements and plan the next
iteration of a custom audiovisual performance.

1

Introduction

Goals

1. Research state-of-the-art solutions The situation has changed
since the publication of the bachelor’s thesis and a further and more
detailed investigation into what is available both from the technical and
the social aspect is required. Designing a live audiovisual performance
is a complex task with many options to consider and the solution devel-
oped as part of this work should fit reasonably well into the currently
used workflows.

2. State benefits & investigate drawbacks of the bachelor’s thesis
Why is another system required, if at all? Retrospectively evaluate
the standpoints and the results of the bachelor’s thesis, pinpoint key
elements to reuse or the discard and in a symbolic way end the run of
the system.

3. Design & implement an advanced system Take inspiration from
the conceptual, design and technical decisions made as part of the bach-
elor’s thesis and improve upon them. Specify requirements that the
system should fulfil, consider available development environments and
put them to use.

4. Evaluate the system The evaluation should consider multiple stand-
points including system performance, usability engineering values and
artistic impression.

Development

The system in question started development long before the writing of this
document. The ideas that later turned into the analysis (chapter 2) part were
already brewing while performing with the system from the bachelor’s thesis.
Having to endure its many drawbacks personally and trying to overcome them
has brought inspiration and motivation to pinpoint which parts make the
performance, which are redundant and which proved to be unimportant and
can be dropped entirely.

The new system has been put to real life usage right from the first pro-
totype which organically prioritized the most missing features. This resulted
in a somewhat chaotic development which led to the many minor and few
major issues described in chapter 5. To avoid using the rather cold phrase
“the system” all the time, this time the system got a name. At first it was
called TVAEM – Triggered Video & FX Mixer, a rather terrible name later
replaced by Skinny Mixer, the name used throuout the entire text.

2

Chapter 1
State-of-the-art

There are many options to choose from when preparing an audiovisual perfor-
mance using today’s technologies. This chapter covers some of them however
does not try to achieve total coverage for multiple reasons. Especially with
experimental arts the border between audio, visual, performance, installation
and generally art and technology becomes very blurry. The case is usually
that a single performance combines many elements described below and the
real challenge is not to acquire them, but to use them in an artistically sensible
manner.

1.1 Hardware

The hardware used for live performances is perhaps the easiest to track. Tra-
ditional parabolic light fixtures with light bulbs have been mostly replaced by
the more versatile and often robust LED fixtures. A standard protocol for
light fixtures and other stage equipment is the DMX-512. A single universe
offers 512 channels of control with the option (and often need) to link mul-
tiple universes with custom devices. A simple modern LED light fixture can
be set to an address (a number up to 512) with usually three to ten parame-
ters linearly addressable relative to the base address. Those parameters can
control the red, green and blue (or even white) color channels, total opacity
(power output), fade or strobe speed etc. More advanced light fixtures often
move in usually one or two degrees of freedom. DMX devices are usually
connected in a linear fashion (“daisy-chained”) as shown on Figure 1.1. An-
other popular DMX fixtures include a gobo which shines stencil shapes and
smoke machines – often used in combination to create 3D shapes. RGB lasers
have their own standard of communication – ILDA – which uses the common
DB-25 connector.

The wide variety of DMX devices however come with a disadvantage: they
are so advanced that they tend to turn out expensive and require know how
to operate. This in turn makes them infeasible for smaller artists and leaves

3

1. State-of-the-art

Figure 1.1: DMX connection example. On the top there is a DMX controller
with the light fixtures on the bottom. Note that unlike MIDI notes, DMX
addresses start from 1 and that each device has 14 channels available. Taken
from [2].

4

1.1. Hardware

Figure 1.2: Mydy Rabycad stage setup with neon tubes [3].

only large projects and venues with enough budget to afford them. A popular
alternative turned out to be simple neon tubes, which can be programmed to
light up in simple patterns. These can also be arranged into various shapes to
fit on both smaller and larger stages. Case in point is the current stage setup
of live electro swing band Mydy Rabycad with rather opulent shows including
many lights, fireworks, confetti and those custom tubes programmed by their
guitar player Ondřej Slánský.

The biggest recent advancements have been recently made in LED screens
and projections. While the trend of video mapping seems to be becoming less
popular in stage design, LED screens small and large have been used exten-
sively. Take for example Noisia’s live performance Outer Edges at Rampage
festival 2017: although the artists claim that the performance is more focused
on playing electronic music live unlike in a DJ set, the state of the art visual
side has been improved by the massive amount of LED screens accros the en-
tire venue which hosts an audience of thousands. See the screenshot 1.3 from
a 360 degree video for reference.

The last notable piece of hardware used in recent audiovisual performances
is the now discontinued Microsoft Kinect. A line of motion sensing devices
originally meant as a gaming accessory to the Xbox line of game consoles
quickly found its place among experimental visuals developers. A good ex-
ample of its potential was the performance of Sinjin Hawke & Zora Jones
at Sónar festival 2018 when the performers recorded themselves playing their
music and dancing to it and used various effects to obscure and deform the
shapes of their bodies.

5

1. State-of-the-art

Figure 1.3: Noisia performing the Outer Edges live show at Rampage festival
2017 in Belgium [4].

Figure 1.4: Sinjin Hawke & Zora Jones performing their AV Live at Sónar
festival 2018 [5].

6

1.2. Software

1.2 Software

Complimenting the hardware equipment there are many software options.
Some software is directly tied to hardware, most notably drivers but also
tools that change and store button mappings, presets, update firmware etc.
Those do not need to be covered here.

Probably the most common tool for a live audiovisual performance is a
DAW such as Ableton Live or Bitwig (both of which are used as part of Simu-
lacrum AV on separate machines). A DAW is not only a studio tool for music
production but often doubles as an essential part of a live electronic music
setup. It hosts VST plugins which implement a wide variety of functions.
Apart from virtual versions of standard audio studio gear (mixers, compres-
sors, sequencers etc) and even virtual modular synthesizers they can provide
access to network or provide input / output to custom hardware such as the
aforementioned Kinect or perhaps physical motors. Indeed a DAW is often
the centerpiece for an entire set.

A unique feature of Ableton Live is its very close relation with Max/MSP,
a visual coding language for music and multimedia. Ableton Live hosts custom
Max plugins similar to running a VST without the typical overhead of building
a standard C++ application. It also allows for editing said plugins on the fly
which further improves its creative potential.

Visual coding languages can of course be run standalone. A free alterna-
tive to Max/MSP is Pure Data or simply Pd. Another option is vvvv – a
multipurpose toolkit. All the visual programming environments share some
benefits and some drawbacks. The workings of the program and the GUI are a
single thing – literally what you see is what you get. Once a user is accustomed
enough those environments allow for fast prototyping, small scale experiments
and generally tend to boost creativity. Without proper “cable management”
and effective usage of screen space however, larger projects tend to get clut-
tered and confusing rather fast. These specialized environments also lack the
wide options of a general purpose programming language.

An interesting approach is the one taken by live coding enthusiasts. A
movement with love for both art and engineering coming from universities
and research institutes all over the world, it is an inclusive group balancing
between art and activism. Live coders write improvised code on stage with
the audience being able to witness both the source and the output in one
or multiple projections. Those can be sound or visuals, often both. One or
many persons can form a single performance, sometimes with coders joining or
leaving as if on a music jam. Many languages and environments exist, such as
TidalCycles (based on the Haskell programming language) [6], Gibber (based
on JavaScript and running in a web browser) [7] or LiveCodeLab (heavily
using WebGL) [8].

Some of the live coding environments even tend to get into the last area to
be described here and that is VJ and mapping tools. A projection mapping

7

1. State-of-the-art

Figure 1.5: Diego Dorado performing with TidalCycles and the Atom text
editor [9].

tool’s defining features is the ability to warp videos in order to project them
onto complex real life surfaces and blending the images of multiple projectors
to gain larger resolution. The purpose of a VJ tool is to mix and combine
videos, not unlike Skinny Mixer. While many such tools exist (Resolume
Arena / Avenue, ArKaos GrandVJ or VDMX to name the biggest players),
offering plethora of features, an out-of-the box solution to start and stop video
layers is missing. Some have analytical sound engines capable of syncing video
effects to music, however the options are limited. The most versatile solution
would be to combine Skinny Mixer and an established VJ tool and it is indeed
a part of the plans for Simulacrum AV.

This list of hardware and software solutions to deploy an audiovisual show
is by no means complete, rather a selection of some of the options the author
has encountered and experimented over the recent years.

1.3 Events

Many events have recently been paying more attention to or have been specifi-
cally designed to present modern audiovisual performances. Take for example
Lunchmeat Festival which has been running in Prague since 2010. The team
presents it as an event for “Live AV Experiences. Distinctive dramaturgy and
curating. Sound and visual art in symbiosis. Experimental digital media art
works from all over the world” [10]. Similar are Unsound Krakow, a member
of Shape Platform which “consists of 16 festivals and art centres and aims to
support, promote and exchange innovative and aspiring musicians and inter-

8

1.4. Bachelor’s thesis

Figure 1.6: Aid Kid & Pavel Karafiát performing at Lunchmeat festival 2019
[12].

disciplinary artists with an interest in sound” [11], and Sónar, Barcelona with
its own educational platform happening side by side with the main event.

Whereas the former events still focus mostly on (albeit often very progres-
sive) music, events such as Life Performers Meeting [13] or Generate! [14] are
designed to offer a save space for artists to meet, learn, perform and generally
share and develop ideas on the edge of art and technology.

The last event that requires mentioning is Signal Festival Prague. While
its focus is more on static installations than live performances, due to it being
in the streets of Prague and available mostly for free it had a major impact on
demonstrating the possibilities of current technologies to the general public.
As the website proudly says, “From videomapping show and light design, it
has grown to become a well-respected digital art festival and art/tech event
which currently belongs to the most significant ones in the Czech Republic”
[15].

1.4 Bachelor’s thesis

A piece of software requiring special attention is the author’s bachelor’s thesis.
This work draws a lot of inspiration from it and is in fact a spiritual successor
to the “system” as it was plainly called in the bachelor’s thesis. The entire
project was much more primitive and independent. It was based less on proper

9

1. State-of-the-art

research but on creativity and the desire to create something new, something
unique.

The basic idea was to use realtime 3D graphics (OpenGL specifically) and
make use of the creative freedom this area offers. Synchronized with live music
using MIDI just as in this work (see below) the goal was to develop a custom
audiovisual performance offering a synesthetical experience to the audience.
A custom two man music group was founded to demonstrate this system on
stage, drawing inspiration a wide array of music genres such as techno, drum &
bass or black metal. Three songs were originally written with custom visuals
for each and performed live at Klubovna in Prague on 9. 5. 2016 [16].

While the initial goal was mostly achieved the system proved to have
many design and even concept flaws and a decision was made to drop it
entirely. That is not to say that the performances were not worth developing
further – in fact the system and the performance continued to run for more
than a year after the initial release with new music, new visuals and new
additions and improvements to the already developed material. An EP was
even recorded (albeit not in a professional music studio) and was not far from
release. Eventually however the development costs exceeded the artistic gain
and need for a new approach arose.

Further information on the system from the bachelor’s thesis offers in much
more detail chapter 2.

10

Chapter 2
Analysis

Since this work is spiritually a continuation of the project developed for the
bachelor’s thesis this section will focus on the previous tool. The goals of
the bachelor’s thesis were successfully met however some unexpected prob-
lems arose and were not properly described in the previous text. Those were
mostly discovered after the first public performance using the tool which served
primarily as a proof of concept and did not cover all use cases.

As a reminder the bachelor’s thesis specified the following technical re-
quirements [1]:

Performance The system will use appropriate algorithms, workflows and recent ver-
sions of libraries to reliably run on the testing device.

Resources management The system will properly manage acquired resources and minimize mem-
ory requirements.

Communication The system will display its state and notify about events and errors. This
communication will be bidirectional if required and will not disturb the
visuals.

Configurability The system will have an option to be manually configured based on the
conditions it’s being run in. The system will support both traditional
and widescreen displays.

Stability The system will be stable enough to be reliably used during live perfor-
mances.

Platform The system will be developed for Microsoft Windows family of operating
systems to ensure the possibility to be run without hardware equipment
using common DAWs.

Structure The source code will be extendable and logically structured.

11

2. Analysis

Testing The system will be tested with specified songs. The system will appro-
priately react to performer mistakes, irregularities or improvisation.

Workflow The system will fit the described creative workflow.

The bachelor’s thesis then describes a workflow for the development of
music and visuals in one process. The workflow itself is rather complicated
and will be discussed below.

2.1 Bachelor’s thesis topics

In the analysis section the bachelor’s thesis covered various topics relevant to
the subject of live music visualizations. Since the situation has not changed
all that much we can just briefly skim over those.

The first covered topic was the definition of traditional versus electronic
music. The idea was that traditional music relied on what most people under-
stand under a music instrument i.e. percussion, brass or string instruments
and such whereas electronic music comes from synthesized or sampled sounds.
The point of this distinction was that musicians of the respective kinds rely on
different visual forms to accompany their performance. Traditional musicians
would use stage props and costumes, electronic music artists would prefer pro-
jections and both groups would often use lights and seldomly dancers. In the
end the text arrived at performers who connect both worlds such as Pendulum
or The Glitch Mob.

While this distinction can still be applied it is not as relevant as the work
suggested. Both the original text and Skinny Mixer rely on MIDI input and
while that is most easily acquired from electronic or virtual instruments, it is
also possible to use sensors to analyze traditional instruments (such as drum
kit triggers or custom guitar pickups) or signal processing algorithms to obtain
MIDI messages as well. In the end the visualization system does not know or
care about the source of the information.

The bachelor’s thesis also commented on various approaches on how to
synchronize image to sound. The most common one remains control by a one
or more technician, usually provided by the venue. This brings a problem,
actually one of the major motivating factors for both this and the previous
work: the technician often does not know what the musician is about to do
and any bold or radical changes in visuals, which should accompany dynamic
changes in music, are based on guessing. More experienced light technicians
and VJs do tend to take better guesses but they still miss. This can be
improved if the visual crew prepares a custom visual show in cooperation with
the musicians, but the most common tools still limit what they can achieve.
More on this in chapter 1.

Another option for synchronization is signal analysis. This was dismissed
in the bachelor’s thesis as too messy and often simplistic, however was part

12

2.2. Bachelor’s thesis benefits

of the original proposal for Skinny Mixer. It was dropped from the original
prototype for two reasons. The first was time constraints, the priority was
just not high enough. The other one was the fact that many other (and
better) tools for this task exist, often present in DAWs as a factory default.
That means the job can be delegated and the tool itself can focus on its core
functionality.

The last mentioned synchronization option was using CV/gate known from
the world of modular synthesizers. This kind of signal is however convertible
to MIDI.

2.2 Bachelor’s thesis benefits

A major benefit of the work was its artistic success. The duo Rejfpank as-
sembled specifically to write music and perform with the developed system
performed at multiple occasions for various kinds of audiences. To point out a
few of those: the initial test performance at Klubovna supported by a jungle
music two piece band Human Ketchup who later also accompanied the first
public performance with Skinny Mixer, the Mecca of Prague underground
electronic music Cross Club during Žižkovská noc festival or Nod Café as part
of support program during Signal festival, the annual event for light shows
and video mapping.

What really made the system stand out were unique visuals for each song.
Every sound was mapped to a custom visual element, be it transformations in
3D space, color changes, post processing effects, 2D overlays etc. This level of
detail is rather uncommon even today for a good reason: it comes at a steep
price as discussed of the drawbacks section.

Another benefit of the system was its fast response time. As table 2.1
shows the latency averaged 3.3 and 5.2 frames at 60 frames per second which
translates to around 0.1 s or better. Given the low light conditions such
performance is designed for, this result is more then enough, especially on the
mid to low tier hardware the tests were performed on.

Table 2.1: Bachelor’s thesis latency test [1]. The number of frames (at 60 fps)
gives the latency between pressing a physical button and the visual on-screen
response.

MIDI device Frames Avg
Alesis SR-16 7 6 7 4 5 4 3 5 6 5 5,2

Akai Professional MPX16 4 3 4 3 3 4 2 3 3 4 3,3

13

2. Analysis

2.3 Bachelor’s thesis drawbacks

The biggest issue and a major reason for a clean start with Skinny Mixer
was the cumbersome development process of new visuals. At the time of
publication three songs were finished with fourth on its way. The fourth,
titled Hrdinové modulárńı scény, was not developed during the somewhat
stressful period of thesis finalization and had much more time and energy at
its disposal, which resulted in the musically and visually most complex piece
of work of all the songs produced. However the amount of resources spend
at this production meant that no further songs were later developed and the
project was eventually dropped.

The problem lies in the core architecture of the system. Developing a new
C++ class for each song with a number of custom features is unreasonably
cumbersome. Even an early prototype takes long to create and most changes,
even minor ones, require a rebuild. The potential of having to do a full re-
build, including the proper development tools and libraries is an unreasonable
requirement for such a system and seriously limits its possible application.
About the only change one could make without a rebuild was swapping tex-
ture files while keeping the original file name. Everything else, including file
names, MIDI mappings, even the st list (order of the songs) was hard coded.

This also meant that each show had its specific build and using the latest
build (with new features, bug fixes etc) was not an option for replaying a past
show.

Another obstacle is the challenging nature of 3D graphics development.
Creating the models themselves takes time and considerable skill so even the
very basic shapes used in the system required external help. Using OpenGL
and having control over everything – the render pipeline, lightning, textur-
ing, draw calls etc. presents an option for a lot of creative freedom however
the responsibility is immense and makes the development process exhausting.
Giving up some of this freedom in exchange for a quicker process seemed like
a necessary step to make as described in chapter 3.

14

Chapter 3
Design

The basic concept follows from the bachelor’s thesis: Skinny Mixer receives
MIDI messages as its input and outputs a stream of visual data fit for pro-
jection. Instead of producing all the visuals as a combination of 3D and 2D
objects in 3D space, the system will use standard videos and mix those together
based on the MIDI input, hence the word “mixer” in the name. This major
limitation was well thought through and comes as a solution to the problems
described in chapter 2. This design is significantly more generic: it allows
for configuration completely independent of the source code of Skinny Mixer,
solving the one class – one song problem. It also delegates the responsibility
of content creation – the visuals no longer need to be produced completely
by this system. The videos can be reused shots from already published works
or custom ones. Skinny Mixer then loads the required videos, interprets the
input MIDI stream and plays or manipulates the videos accordingly.

This general overview is further described in more detail according to
various methods of system design.

3.1 Main features

• Skinny Mixer triggers videos on or off based on MIDI note on and note
off messages. Each video is assigned a single MIDI note.

• The videos are presented in layers fully overlapping one another. Each
layer also has additional properties (see section 3.3)

• Skinny Mixer also offers graphics effects applied over the blended video
layers. Those effects are also triggered using MIDI note on and note off
messages and parametrized using MIDI CC messages.

• A collection of layers and effects is called a scene. A sequence of scenes
is called a show. A show can be saved, loaded and manipulated.

15

3. Design

• Skinny Mixer offers two windows: A control window with the GUI and
an output window with only the visuals. If no videos are playing, this
window is fully black.

3.2 Use cases

On-line slave A performer is producing music live on stage and sending MIDI data to
another machine running only Skinny Mixer. This machine is operated
by another performer, whose task is to monitor the visual quality and
make minor adjustments in the GUI or major ones using another MIDI
device. This can be triggering of additional layers (such as masks) or
effects, forcing or disabling layers, or choosing video files on the go. This
is the way Skinny Mixer has been used as part of Simulacrum AV.

On-line master A single performer operates a single or multiple machines running a
DAW and Skinny Mixer. The DAW can have audio inputs to analyze or
produce MIDI messages on its own. This is the way Skinny Mixer was
used during the Human Ketchup release show.

3.3 Functional requirements

Status indication Current FPS, video load success / failure and loading information are
present in the GUI. Additional information is sent to the console.

Layers The final image is comprised of two kinds of layers, video layers and
visual effect layers, which can be triggered on or off by MIDI note on
and note of messages.

Video layer properties Each layer can be assigned a single video and has the following addi-
tional properties available: alpha opacity, blending mode, re-trigger tog-
gle (whether further triggers continue playback or re-trigger the video
from start), force play toggle, mute (disable) toggle.

Blending modes Each video layer can be assigned one of a subset of blending modes de-
scribed in [17]. Such a blending mode is defined by a separable blending
function cr = B(cb, cs) where cb is the backdrop color, cs is the source
color and cr is the result. This function is separable because it is ap-
plied independently for each color component. The subset consists of
the following:

Normal B(cb, cs) = cs

Multiply B(cb, cs) = cb × cs

Screen B(cb, cs) = 1− [(1− cb)× (1− cs)]
Darken B(cb, cs) = min(cb, cs)

16

3.3. Functional requirements

Lighten B(cb, cs) = max(cb, cs)

Linear Dodge B(cb, cs) = cb + cs

Difference B(cb, cs) = |cb − cs|

Exclusion B(cb, cs) = cb + cs − 2× cb × cs

Effect layer properties Each effect layer can be assigned one of the available effects and has
these additional properties: Custom effect parameter, force play toggle
and mute toggle.

Custom effects Each effect layer can be assigned a single effect from the following list.
Those effects work in a similar manner to the blending modes specified
earlier. They are defined by an effect function F (c, p) with color c and
a custom parameter p to dynamically alter their behaviour with cmax

being maximum color value and pmax maximum value of the parameter.
To fit the 7bit / 8bit MIDI paradigm, 127 has been chosen for pmax.

Solarize F (c, p) =
{

cmax − c for c
cmax

≤ p
pmax

c otherwise

Posterize F (c, p) = bc×pc
p−1

Color Shift This effect is not separable – it does not operate on independent

color channels. F (crgb, p) =
{

cbrg for p ≡ 1 mod 2,

cgbr otherwise

Overdrive F (c, p) = (c×max(1, p)) mod cmax

Mappability The following is mappable to MIDI messages: Video and effect triggers,
video opacity, custom effect parameters, scene change, master alpha
opacity.

Scene definition A scene can be assigned a name. A scene contains setup information for
all the video layers.

Show definition A show contains information regarding the effect layers (they are shared
for all the scenes). A master MIDI channel can be set and is applied to
every layer in every scene of a show. A scene switch MIDI note can also
be set to move the show one scene forward.

Show manipulation A show can be saved, loaded and can have a scene appended to and
deleted from. A performer can move through the sequence of layers
either sequentially or randomly.

17

3. Design

Figure 3.1: Three video layers blended using the Difference and Exclusion
blending modes. The blending mode of the first active layer is always disposed
of.

Figure 3.2: Three video layers blended using the Darken and Multiply blending
modes.

18

3.3. Functional requirements

Figure 3.3: The Solarize effect applied to a still shot from the official video to
Britney Spears – Toxic.

Figure 3.4: The Posterize effect applied to the same shot.

19

3. Design

Figure 3.5: The second version of Color Shift effect – rgb to gbr.

Figure 3.6: The Overdrive effect applied to the same shot. The number of
artifacts rises quickly with the parameter, here p = 2 (see Figure 3.8 for
comparism). The effect works well on upscaled videos with many compression
artifacts such as this one.

20

3.3. Functional requirements

Figure 3.7: All of the previous effects combined. Switching effects on and off,
combining them and dynamically changing p helps achieve rich visuals even
with minimal video input.

Figure 3.8: The Overdrive effect again with p = 20.

21

3. Design

3.4 Non-functional requirements

Input Multiple common video formats are supported. Videos of different lengths
and display resolutions can be seamlessly mixed.

Platform Skinny mixer is primarily designed to run on the MS Windows family
of operating systems, however should contain as little platform specific
code as possible to prepare for a macOS (and possibly Linux) ports.

Interface The operation interface enables users to quickly develop a show without
any knowledge of the system internals or any programming skills.

Serialization The entire show can be saved and loaded to / from a file.

3.5 Performance requirements

The following performance requirements consider a standard output resolution
of 1920 x 1080 pixels (Full HD).

Load times Loading a show is fast enough so a switch from one show to another
does not hinder the workflow.

Switch times Switching to another scene is fast enough so the audience does not notice.

Latency The latency between pressing a button on a hardware device and a visual
on screen response is under 1/30 s.

Fluidity The target FPS is 30. To ensure fluidity, average FPS should stay over
25, worst case peaks over 20.

22

Chapter 4
Implementation

This section provides particular information about the implementation of
Skinny Mixer. First a Unity3D prototype was quickly developed and shown
to potential partners, however later it was required to decide on a more fitting
technological development environment. The current architecture is described
in detail and then the major iterations Skinny Mixer went through during the
development process until it arrived at this current version – albeit still con-
sidered an unreleased alpha.

The source code is available publicly in a GitHub repository [18].

4.1 Unity3D prototype

As a proof of concept the first prototype of Skinny Mixer was created using
Unity3D, a common multi purpose game engine. This engine allows for fast
prototyping of 3D or 2D applications, skipping a lot of basic boiler code, how-
ever it is not as well suited for the specific behaviour Skinny Mixer requires.
The engine offers a number of features with no benefit for Skinny Mixer (al-
gorithms and tools for 3D graphics, physics simulation, artificial intelligence
etc...) while at the same time some processes can be tedious or requiring too
much overhang, such as fast configuration change or GUI creation.

This prototype offered some basic features: Mapping one or more MIDI
messages to a video layer, 5 layers in total and the Linear Dodge blending
mode (a simple sum of color components). Even with such limited features,
the prototype proved the strength of the basic idea while presented to some
potential partners. Those included a live jungle music band Human Ketchup
and neurofunk DJ/producer Malcuth.

23

4. Implementation

4.2 Development environments

The C++ programming language was chosen as a basic technology. Similarly
to the system in the bachelor’s thesis the plan was to use the graphics API
OpenGL for all graphics computations, however ideally not in a such bare
bones manner. A third major component required, is a tool to manage loading
and most importantly decoding videos. The following toolsets and libraries
were all considered.

FFmpeg is foremost a command line utility for video recording, conversion and
streaming on multiple platforms. A set of development libraries is also
available for the C++ language. Those low level libraries offer all the
functionality of the utility, but their usage is poorly documented. [19]

OpenShot is a simple multi-platform graphic tool for video editing. Just as FFm-
peg it is also available as a C++ library, however more high level and
with a richer documentation. The declared multi-platform availability is
however misleading since the MS Windows manual literally offers good
luck [20] and list some more dependencies.

GStreamer is an open source multimedia interface. It allows for building multime-
dia applications using modules which it combines and groups together
to achieve many different configurations. It comes from the Linux envi-
ronment and shares design principles of the Gnome project. Although
a number of the offered modules fit Skinny Mixer requirements rather
well, the MS Windows manual is 8 years old and does not reflect today’s
standards. [21]

JUCE is a platform for multimedia application development in the C++ lan-
guage. It offers modules to work with sound and MIDI, window creation
and management, hardware communication and others. A noteworthy
feature is the so called Projucer, a tool to generate build projects for
multiple platforms. This was successfully tested by the author during
the development of Patterns, a probability based MIDI sequencer in the
form of a VST plugin, to deploy the plugin both on MS Windows and
macOS. [22]. However the options JUCE offers in regards to video are
very limited – it only loads videos in the .avi format, which is com-
pletely unsuitable for a larger amount of video files due to high memory
requirements. There exists a module to connect JUCE and FFmpeg
[23] but it is not very well implemented and also not sure to be still
supported in future versions of JUCE. Also while the documentation of
JUCE is mostly top quality, it s far from complete. [24]

openFrameworks is a set of C++ multimedia development tools conceptually very sim-
ilar to JUCE. A main difference is its decentralisation – independent

24

4.3. Architecture

developers offer hundreds of modules (albeit of sometimes questionable
quality). The official modules offer video decoding and playing in many
formats using the K-Lite codec pack, OpenGL abstraction simplifying
common use cases or window management and creation of simple GUIs.
Some of the non official ones offer MIDI in/out software interface, DMX
hardware interface, more complex GUIs and much more. Similarly to
JUCE the documentation is often missing parts, due to a simple class ar-
chitecture, much can be read from the class providing module interface.
[25]

After a number of experiments with the listed environments, some of which
more frustrating and time consuming than the others, openFrameworks were
chosen as the best suitable option. The main benefits over competitors include
ease of prototyping, previous experience of the author, wide array of tools
fitting requirements and reasonably current and complete documentation.

As previously mentioned openFrameworks consist of addons. Some come
bundled with the basic package – those are core addons and are prefixed with
“of” such as ofApp, of3d or ofVideo. Many additional addons are available at
http://ofxaddons.com and come prefixed with “ofx”. Skinny Mixer uses three
of those – ofxMidi [26] to provide platform independent MIDI software inter-
face, ofxArgs [27] to provide convenient access to command line arguments
and ofxDatGui [28], which is an extended alternative to the core addon ofGui.

4.3 Architecture

An openFrameworks application typically uses a monolithic architecture within
an ofApp class. This approach soon proved to be too simple and had to be
extended. The latest version of Skinny Mixer uses a Model View Controller
approach, albeit still contained in the main ofApp class. Figures 4.1, 4.2 and
4.3 show all the objects that form the application.

Figure 4.1 shows objects responsible for main functionality and the view
component. The class ofApp, as with all openFrameworks applications, con-
stitutes the entry point and the main loop with methods such assetup, update
and exit. It also offers callbacks that are delegated to the control component
such as keyReleased or newMidiMessage. Furthermore, it contains pointers
to the respective components: gui 1 – view component, show – controller
component and showDescription – model component. Lastly, it defines
some private implementation specific objects and provides the MIDI interface
in the midiInputs object. There is also a simple Status object implemented
following the singleton design pattern to keep track of global information.

The view component consists of a single class only, the Gui, which runs
in a separate window to the main rendering one. It basically wraps the func-

1To indicate private members of an object, the “ ” suffix convention has been chosen.

25

http://ofxaddons.com

4. Implementation

Figure 4.1: Objects responsible for main functionality and view component.
Note: Some members of the Gui class members have been left out to fit on page,
specifically all button callbacks and panel setup methods.

26

4.3. Architecture

Figure 4.2: Objects of the model component.

27

4. Implementation

Figure 4.3: Objects of the controller component.

28

4.3. Architecture

tionality of the ofxDatGui addon – it contains vertical panels with buttons,
toggles, text inputs and other standard GUI components and provides call-
backs for those, it defines themes with fonts and colors for the addon to use
and also displays status messages directly in the GUI window. The Gui class
also defines some helper objects to take responsibility for specific smaller tasks.

The model component shown on Figure 4.2 consists of a cascade of objects
serializable to a XML file. There is always one ShowDescription object that
holds a list of SceneDescription objects and the index of the current one.
Apart from that it holds information shared among all scenes – global effects,
global MIDI channel, global alpha and scene switch MIDI note. The ++ and
-- operators have been implemented to advance or decrease the current scene
index.

A SceneDescription object only holds its name and a list of layers. The
LayerDescription and EffectDescription structures inherit from a single
interface MappableDescription (in fact all the model classes inherit from the
Serializable interface) as they share some common members, namely the
MIDI note, the MIDI CC note and the information whether the description
is valid (after a fromXml call). The respective objects then hold further data
members required for the specific layer type. An example of the serialized
data can be seen in Listing 4.1.

Listing 4.1: Example data from the config XML file
<head >

<version >0.6.2 - alpha </ version >
<switchNote >36</ switchNote >
<channel >15</ channel >
<masterAlphaControl >16</ masterAlphaControl >

</head >
<show >

<effects >
<effect >

<id>0</id>
<type >0</type >
<midi >8</midi >
<cc>8</cc>
<param >63</param >

</ effect >
<effect >

<id>1</id>
<type >1</type >
<midi >9</midi >
<cc>9</cc>
<param >17</param >

</ effect >
...

</ effects >
<scene >

<name >Demo </name >
<layer >

29

4. Implementation

<id>0</id>
<path >White Broken Shards .mp4 </path >
<blendMode >0</ blendMode >
<alphaControl >0</ alphaControl >
<midi >0</midi >
<retrigger >0</ retrigger >

</layer >
<layer >

<id>1</id>
<path >simpleRGB .mp4 </path >
<blendMode >5</ blendMode >
<alphaControl >1</ alphaControl >
<midi >1</midi >
<retrigger >0</ retrigger >

</layer >
...

</scene >
</show >

Figure 4.3 shows the remaining objects present in the system which are
responsible for the controller component. Those basically mirror all the objects
from model, but implement their actual behaviour. Again there is Show which
unlike ShowDescription does not hold all the scenes but only the current
one, but it does hold all the global effect layers. It also holds the shader
program (consisting of the traditional vertex & fragment shaders) and defines a
structure to hold global uniform variables. The Show transmits MIDI messages
it receives through the newMidiMessage method to scenes and effect layers. A
Scene object contains video layers, transmits MIDI messages to them, checks
for new frames and sends all layer related uniform variables to the GPU. To
communicate with the view component it defines a FoundMappables object
which holds all currently active layers. Similarly to the model component, the
classes representing video and effect layers inherit from a common predecessor.
They contain all the previously described properties while the Layer class
(representing a video layer) also holds an ofVideoPlayer object available
from openFrameworks. This video player plays, pauses and stops based on
interpreted MIDI messages and renders potential new frames to a texture.
This texture is then accessed in the fragment shader and blended with all the
other layers.

To blend all the layers and apply per-pixel effects Skinny Mixer uses tra-
ditional GLSL vertex and fragment shaders. The vertex shader is simple:
it only transmits the position and computes texturing coordinates based on
screen size and video layer dimensions. This effectively means that all layers
are transformed to fill the entire screen independently on the actual video
dimensions. However it does not provide any solution for letterboxing already
present in the videos. The fragment shader is a little more complex: first it
accesses all the texturing units related to the video layers and blends them
one by one using their respective blending modes. Then, if any video layers

30

4.4. Alpha releases

F (c, p) =
{

cmax − c for c
cmax

≤ p
pmax

c otherwise

float solarize (float c, float p)
{

return c <= p ? 1 - c : c;
}

vec3 solarize (vec3 c, float p)
{

return vec3(
solarize (c.r, p),
solarize (c.g, p),
solarize (c.b, p));

}

Table 4.1: Example mathematical definition & shader code for the Solarize
effect. Note that the floating point variables in the shader are already nor-
malized to values contained in [0, 1].

are active at all, it applies all the active effects, one by one. All the layer
properties are given using uniform variable arrays.

4.4 Alpha releases

Skinny Mixer has been developed iteratively over almost two years prior to
writing this text and while the motivation, core values and design ideas remain
the same, the implementation and variety of features have changed signifi-
cantly over this time period. The version number uses the semantic versioning
concept, [29] however all the versions developed so far are considered alpha
releases or pre-releases.

4.4.1 Version 0.1.0: First performance with Human Ketchup

After the Unity3D prototype, two more prototypes with lower importance
were created. One used the JUCE platform, which is great for building audio
applications such as the Patterns VST [22], but its video options are very
limited. The other one was based on FFmpeg and seemed to work rather well
before problems with video looping and frame skipping were encountered.
Even though it was not yet explicitly mentioned, when a video on a layer
reaches its end, it should play right away from the start, and this exactly was
for some reason problem to achieve seamlessly with FFmpeg.

After the switch to openFrameworks the work could finally properly begin.
The first public performance marked the deadline and was held on 8th June
2018 at the release party of a jungle live music band Human Ketchup. A video
recording is available at [30].

The first release included the basic version of most features: seven video
layers, 4 simple effects (Inverse, Color Shift as two separate effects and Color

31

4. Implementation

Rounding), all the currently available blending modes, MIDI mapping n:1
(a single layer could have multiple assigned MIDI notes), and other minor
features.

This release used the rather uncommon compute shader (unlike the more
usual combination of vertex & fragment shaders). It allowed to skip the entire
3D paradigm and work in 2D right away, but had to use one of the textures
available on the GPU as a target. It also complicated things a little on the
CPU side of the code so this was later reversed. The shader is run every time
an active layer has a new frame.

At this point in time Skinny Mixer did not yet offer a GUI and was a
completely console based application. Instead the interface describe din sub-
section 4.4.1 was used. With the development of the GUI, those features have
been slowly deprecated and those marked in gray are already removed in re-
cent versions. Currently, the option --midiports-all is always used with
plans to move the entire MIDI ports configuration to the GUI.

-h, --help, --usage available commands
--list-midiports list available MIDI ports
--midiport <number> open MIDI port <number>
--midiports-all open all available MIDI ports
--config <file> load config from <file>
--console log to console instead of a file
-v, --verbose activate verbose communication

Table 4.2: Command line arguments

4.4.2 Version 0.2.0: Simulacrum AV at #1113

Simulacrum AV is a joint audiovisual project by DJ/producer Malcuth and
Vooku (artistic alias of the author). It combines raw and loud electronic music
that focuses on bass sounds and rapid drum beats (more specifically, combines
genres the likes of drum & bass, dubstep, IDM, synthwave and others) with sci-
fi and abstract themed visuals inspired by the Blade Runner movie or Ghost
in the Shell anime. Both the music and visuals are performed live. Malcuth
controls music using Ableton Live with Max MSP while Vooku oversees Skinny
Mixer with input from Malcuth’s Ableton and sometimes a local instance of
Bitwig with additional VSTs. The performance became a platform on which to
develop and test Skinny Mixer and has been slowly gaining attention. There
has been a performance about two weeks after the performance with Human
Ketchup using the same release – no further features were developed until
later that summer due to time constraints. #1113 is a code name for a secret
festival where Simulacrum AV performed later that summer and served as an
opportunity to prepare the next release.

32

4.4. Alpha releases

After the first performances it was clear that at least some GUI was nec-
essary to create the entire show – writing XML by hand is hardly a good idea.
Therefore, it became the top priority. Apart from the GUI which remained un-
til now, albeit with some improvements, came automatic layer IDs (that also
double as a texture unit ID), keyboard controls for the GUI window (which
was later removed to allow for writing full scene names), reloading scenes both
forward and back and default values for scenes so creating a new one comes
faster. Since this release bug fixes became an unavoidable requirement.

4.4.3 Version 0.3.0: Simulacrum AV autumn 2018

All the most important features are now included and the time comes to
develop new ideas and improve the present ones. The autumn / winter per-
formance of Simulacrum AV at Klubovna, Prague (the same place where the
system from the bachelor’s thesis was first presented) brought the first exper-
iments with MIDI CC messages. Those messages include not only a note, but
also a value in the 0-127 range and on hardware devices are usually sent by
rotating knobs. In Skinny Mixer, the first MIDI CCs controlled alpha opacity
on video layers and later on custom effect parameters – when parametrized
effects finally came. MIDI mapping 1:n was removed for multiple reasons –
its use cases were questionable and there were no real plans to include it as
part of the GUI and without proper setup it remained a rather unusable fea-
ture anyway. The GUI was overall improved and additional layer properties
such as mute or re-trigger (as described in section 3.3) were added as well as
periodic FPS logging to get some basic idea about the real performance.

4.4.4 Version 0.6.1: Simulacrum AV at #1114

Multiple performances happened with new versions between the autumn edi-
tion and the performance at the secret festival renamed to #1114 for the next
occurrence. Due to time constraints those were never released online however
the development continued. The largest change was brought to the GPU side
of code: the compute shader was exchanged with a combination of vertex and
fragment shaders. This allowed for one more video layer since no texture unit
was required for the output texture – the output is rendered straight to the
back buffer. With the change of shaders the effect layers were also revised.
Originally custom for each scene they were made “global” – the effect lay-
ers are now shared among the entire show. All the effects were parametrized
except for Inversion (which was later changed to parametrized Solarization).
This allowed Color Shifts to be joined into one effect and Color Rounding to
be turned into Posterization. The Overdrive effect was also added. Finally,
the effect layers were made independent and configurable unlike before when
they were in set, unchangeable order. This means that now it is possible to
have two layers with the same effect, but a different parameter.

33

4. Implementation

This release also brought saving to the original configuration file (with
“save” & “save as” options) and MIDI channel choice to filter unwanted mes-
sages.

During this longer period a stale branch was developed and eventually
abandoned. The goal was to create a list with random access to all the scenes
in a show both to provide an overview and more control. It turned out that
the ofxDatGui addon has problems with multiple window setup – it requires a
mouse click to gain focus and another click to activate the button. However,
if the panel is already in focus, only one click is required. This is not a major
issue when selecting a video, but since reloading a scene takes considerable
amount of time, mis-clicking proved surprisingly costly. Therefore the entire
feature was abandoned with two possible future outcomes: either this issue is
resolved in ofxDatGui (with a pull request from the author possibly) or the
entire addon is exchanged to something else.

4.4.5 Version 0.7.0: Rebranding to Skinny Mixer

The current release brought mostly bug fixes and improvements to the code
architecture and code structure, which became somewhat cluttered with the
dynamic changes. The oldest original effect – Inverse – was finally removed
and replaced by the parametric Solarize. Long video layer names are now
shortened to fit the button width and a mistake in the Exclusion blending
mode was fixed.

The biggest change was the rebranding to Skinny Mixer. The original
name was TVAEM – Triggered Video and Effects Mixer which is hard to both
pronounce and remember whereas Skinny Mixer is much sleeker. The name
is inspired by a cocktail popular in Prague techno clubs of the late 2010s.

34

Chapter 5
Evaluation

5.1 Performance evaluation

As specified in chapter 3, the following performance requirements consider a
standard output resolution of 1920 x 1080 pixels (Full HD).

5.1.1 Load times

Loading a show can be split into two parts. Loading the show description
is fast – only a deserialization of an XML file, which happens in a couple of
milliseconds (see Table 5.1) – an insignificant amount of time from a human
perspective. After loading the show however, the first scene is loaded and that
actually proved to be an issue.

5.1.2 Switch times

Switching to another scene requires decoding all the videos it contains which
proved to take considerable amount of time as shown on Figure 5.1 and Ta-
ble 5.1. Four measurements were taken: the first three are based on shows
from real performances with significant differences. The one at #1114 used
the latest version of Skinny Mixer which allowed for 8 video layers instead of
the previous 7 in the other two shows. This resulted in overall longer switch
times as seen both on the chart and in the table. Each show also consisted
of a different number of scenes due to different set times and dramaturgies,
this resulted in different amount of data points. There is a major drop in all
three shows at scene 5 – this is because some assets from the performances
are sometimes reused and all three include the song Poison by The Prodigy
with matching visuals at this point. The #1114 show included one more video
layer and a long one on top of that which increased the load time of the scene
compared to the other two which only differed in about 400 ms.

35

5. Evaluation

Figure 5.1: Scene switch times. Blue, red and yellow are shows from actual
performances whereas green is a custom show designed to test the dependency
between switch times and the number of assigned video layers.

Scene Index

Ti
m

e
[m

s]

0

1000

2000

3000

4000

5 10 15 20 25

Žižkovská Noc 2019 #1114 Klubovna 2019 Incremental

The last show, called “Incremental”, was created artificially to test the
hypothesis that switch time depends on the number of videos. The show
contained 8 scenes with increasing number of assigned video layers. The videos
were chosen randomly from the video library assembled for Simulacrum AV.
The show was reloaded three times in total. The results seem to confirm
this hypothesis with the amount of time needed to switch increasing almost
linearly with the number of assigned video layers. Furthermore, it shows slight
deviations in the pattern, hinting at other variables having effect on the final
switch time.

Figure 5.2 shows loading times of single videos while the Incremental show
was assembled video by video. Multiplying the average loading time of 375
ms by 8 – the number of layers – gives 3000 ms, which corresponds to the
average scene switch time of the #1114 show.

All in all this is too long. The switch is by no means instant and 2 to 3
seconds is a long time in the fast paced world of today’s electronic music – 3
seconds mean almost 2 bars at 140 BPM. A workaround used in the past per-
formances was to switch scenes using a total fadeout during the quieter atmo-
spheric parts between songs, which even makes sense from the dramaturgical
point of view.

36

5.1. Performance evaluation

Figure 5.2: The loading times of videos while building the Incremental show.
Average loading time of a single video is 375 ms.

Video Index

Ti
m

e
[m

s]

0

250

500

750

1000

10 20 30 40

Single video loading time

Table 5.1: Average scene switch times

Show Initial load time [ms] Average switch time [ms]
Žǐzkovská Noc 2019 5 2344

#1114 5 2999
Klubovna 2019 7 2394

Incremental 5 1676

5.1.3 Latency

The latency was measured the same way as in the bachelor’s thesis. A high
frame rate camera was aimed at an area including both the screen and a
hardware MIDI device. The camera was set to 120 FPS Full HD recording,
the screen was using 60 Hz refresh rate and the device was the same one as
used during the later live performances – Arturia Beatstep, which replaced
the previously used Akai LPD8 Wireless. Both of those MIDI devices include
light up pads which helps identify the exact time of impact. The camera runs
at double the frequency of the screen so according to the Nyquist-Shannon
sampling theorem it should be fast enough to reliably measure its response.
The base system runs on an Intel Core i7-7500U CPU at 2.70 GHz with 32
GB RAM, nVidia GeForce 940MX GPU with 2 GB VRAM and a 256 GB
SSD, which is currently medium to low spec laptop, however it is the one used
for the actual performances.

37

5. Evaluation

Table 5.2: Hardware MIDI device to screen latency measured at 120 FPS

Test Frames Avg [frames] Avg [ms]
1. 10 9 9 10 10 11 8 9 9 8 9.3 77.5
2. 7 11 7 8 9 10 11 9 8 7 8.7 72.5
3. 10 16 13 14 14 15 16 17 13 14 14.2 118.3
4. 14 13 12 11 12 10 14 13 9 11 11.9 99.2

Using the recorded video the latency between pressing a button and the
respective response on screen was measured in frames as shown in Table 5.2.
As specified in chapter 3, the target was 1/30 s, or in the units used during
evaluation, about 33.3 ms or 4 frames at 120 FPS. Under these conditions the
following four tests were performed.

1. Activating and deactivating a single video layer

2. Activating and deactivating a single effect layer over a single active video
layer

3. Activating and deactivating a single video layer over 7 active video layers

4. Activating and deactivating a single effect layer over 8 active video layers

While the latency is comparable to that of the bachelor’s thesis, the target
here was set higher. Even in the best scenarios the latency was at least double
the target. Combined with the potential additional latency of a projector with
a possible HDMI splitter along the way for better monitoring, the latency
definitely requires further improvement. As indicated by the lower response
time when activating an effect, the problem lies with the video layers and
probably with the continual sequential loading of textures to the GPU.

5.1.4 Fluidity

FPS was measured during four live performances with the results in Table 5.3.
The lowest result of 24.52 FPS came after the eight video layer was included at
a show which utilised this new feature more than the other performances. Due
to the nature of the event, the entire performance was less rhythmic and fo-
cused on more atmospheric sounds which inspired the visuals to include fewer
dramatic cuts and effect switching and more video blending. The reasoning
behind the lower FPS is therefore the cost of multiple texture offload to the
GPU.

Note: The sampling rate here is somewhat questionable. To reliably mea-
sure if the target FPS of 30 is actually achieved, we should sample at double
the frequency. At that rate however logging constantly to a file or just to the
console might slow down the application on its own and not only influence

38

5.2. Usability testing

Table 5.3: Average FPS measured during live performances using a sampling
rate of 1 s.

Performance Average FPS
Klubovna autumn 2018 27.34

Žǐzkovská Noc 2019 26.77
#1114 24.52

Klubovna 2019 26.13

the measuring process, but the performance itself. Also the amount of data
grows considerably for a performance that takes an hour to two hours. This
could be improved by measuring not during a public performance but while
testing in private where the quality of the visuals does not matter. Neverthe-
less the possible impact on the measuring process itself led to the conclusion
that measuring live data is better.

5.2 Usability testing

The graphical user interface was evaluated using two methods from the area
of usability engineering: Nielsen’s heuristics and users completing scenarios
prepared in advance. The command line interface was not evaluated during
this phase as it is considered obsolete and is going to be removed completely
once all the remaining functionalities have their respective counterparts in the
GUI.

5.2.1 Heuristics

1. Visibility of system status The currently active or muted layers are
indicated using toggles to the left of the layer name. If a layer is not
loaded or failed to load, it is indicated on the layer button. The FPS,
the MIDI mappings and layer properties are showing at all times. When
a show is saved or loaded, a short message displays briefly on the bottom
left. A similar message shows when a scene is being switched but not
every time. If the MIDI ports setup fails, there is no information in the
GUI. Generally, many error messages are sent to the console, but not
displayed in the GUI. A better error reporting system is required.

2. Match between system and the real world The system uses partly
custom language and partly general terms. The custom language used
includes the terms show, scene and to some extent layer. The MIDI ter-
minology should be familiar to users attempting to create an audiovisual
show, just as the basic blending modes which are identical to the ones in
common graphics software (Adobe Photoshop and the likes). The effect
names try to be as descriptive as possible and their workings should be

39

5. Evaluation

clear enough when the user tries them out. The layer order is inverted
and therefore confusing – what ends up on top shows on the bottom and
vice versa. The ranges of numerical properties selected, i.e. 0–127 are
debatable, maybe 0–1 or 0–100 would feel more familiar to the users.

3. User control and freedom There is no undo or redo. There is also
no way to remove a scene from a show or to add a new scene anywhere
but at the end of the show. There are buttons next to each layer to stop
playback or straight up mute it if it was triggered by mistake. There is
no way to change alpha or custom effect parameter without a connected
and mapped MIDI device.

4. Consistency and standards The video and show loading dialogues
are provided by the operating system and are therefore familiar to the
user. The FPS displays in a non-editable text box which looks just as
all the editable ones. The labels on the bottom of the control panel on
the left are not clickable yet they look just like the buttons just above
them. The same applies to the headers of the layers table.

5. Error prevention Assignable text fields expecting MIDI notes do
not allow alphabetical characters, however they do allow some special
characters and out-of-range values. The MIDI channel text field is the
only one which at least corrects out-of-range values to the limits. Show
loading and saving and video loading provide no limits on file types.

6. Recognition rather than recall The GUI shows all its elements
clearly and all are present at all times, therefore easily recognizable. The
elements still missing in the GUI are a different story. While the console
interface offers the standard help switches -h, --help and --usage, the
console interface itself is barely used and therefore rather obscure. Yet
there is no other way to setup logging options or MIDI ports.

7. Flexibility and efficiency of use There are no keyboard shortcuts.
The save button automatically saves to the most recently open file and
if there is none, it prompts the user to choose one. The user is free to
tailor their own MIDI mappings and it is even possible to assign a single
MIDI message to multiple layers.

8. Aesthetic and minimalist design The GUI is purely functional with
close to none decorative elements. The colors are dark with contrasting
typesetting, suitable for stage use. There is no light theme. The font
selection is mostly functional with a hint of attempted styling with the
italics.

9. Help users recognize, diagnose, and recover from errors If a
video layer fails to load it is clear enough but the cause remains unknown.

40

5.2. Usability testing

Most errors are only shown in the console but especially with the verbose
mode the information content is rich.

10. Help and documentation There is basic help in the console interface.
There is no help button, there is no documentation.

Overall the GUI fails in most of the heuristical requirements. It is missing
major features and some others are incomplete. The overall design is poor
and leaves place for many improvements. However, as this is still considered
a pre-release, alpha version, such a state of things is forgivable given that it
will hopefully improve or be entirely replaced.

5.2.2 User scenarios

All of the scenarios start with the app running and connected to a hardware
MIDI device. The users were explained the basic usage of MIDI devices and
have a sheet available showing the mappings of the device. The users were
also explained the show – scene – layer paradigm. The windows of the app
are on separate screens to show all the information available at once. An
assistant qualified to answer all questions is also present during the testing.
After completing all the scenarios, a user should be familiar with all of the
elements of the GUI. Following are the scenarios and users’ comments on
them.

1. Basic setup Start with a an empty show with only the default empty
scene. Load some videos. Play them. Change their MIDI mapping and
play them again.

2. Layer properties Experiment with the other properties of a video
layer. Change blending modes, change the alpha during playback, change
alpha MIDI mapping. Mute a video, make it play without input. Setup
a video to play from the start every time it’s triggered.

3. Effects Apply an effect to a playing video. Apply multiple effects on
a playing video. Change the MIDI trigger of an effect.

4. Advanced effects Change a parameter of an effect. Change the pa-
rameter’s MIDI mapping. Have the same effect twice with different
parameters.

5. Control Add another scene to the show and set up its layers. Change
the scene’s name. Go back to the previous scene and change its name.
Save the show. Close the app.

6. Advanced control Load your show. Change the master alpha. Change
the master alpha mapping. Change the MIDI channel. Add two more
scenes. Go to scene number 2. Go to the last scene. Save the show.

41

5. Evaluation

Figure 5.3: The current GUI with the control panel on the left and the layers
on the right. Note the unassigned video layer and the redundant Color Shift
effect layers with a different parameter.

5.2.3 User scenarios results

The scenarios were run on multiple occasions with 13 participants in total,
each participant individually. When a participant got stuck the assistant
showed them how to complete the next step and continue with the scenario.
Each run took about 20 to 30 minutes. Below are the most common problems
the participants encountered. Successful steps are not mentioned.

1. Basic setup A common confusion was with the Load button in the
control panel – what does it load? What kind of file should I select?
This could easily be helped by renaming the button to Load Show and
adding some limits into the load dialogue.

Most participants tried to work around a specific issue of the ofxDatGui
addon responsible for the GUI by double clicking buttons. The issue
is that the GUI consists of vertical panels that have trouble with the
multiple window setup and the first click into a panel puts it into focus
and only the second click activates a button. When you click into the
same panel again however the focus stays and the button activates right
away. This is very confusing and especially on the Next scene button a
little dangerous since switching to the next scene takes 2 to 3 seconds
as shown earlier.

When setting up the basic layer properties some users missed right click-
ing or a drag-and-drop feature.

42

5.2. Usability testing

2. Layer properties Blending modes proved to be a major source of
confusion to more than half of the participants – all those unfamiliar
with graphical software. The blending mode on the first layer does
nothing – why is it even there? The Multiply blending mod makes
the layer seemingly disappear as it only works over another layer. The
Normal blending mode makes all the layers below disappear – a better
name would be Override or perhaps Overwrite.
Another issue of ofxDatGui is the basic implementation of drop down
lists. They do not auto close after losing focus and they offer no scroll
wheel functionality. The drop downs on the bottom of the interface do
not even fit into the window! Only one user successfully attempted to
resize the window using the common Windows way.
All users tried to edit alpha and effect parameter values directly which
the GUI does not offer.
Only three users managed to correctly use the re-trigger toggle and
all confessed it was only because it was the last video layer property
they have not used yet. The Re shortcut lacks any meaning and is
misaligned to the toggle making it look strangely disconnected from the
entire column.
There were also some suggestions: The play toggle is too small, the re-
trigger toggle should join the other toggles on the left and double tapping
a hardware pad should make a video player keep playing. While the
last suggestion is incompatible with the basic note on / note off idea,
mapping the play and other toggles to hardware buttons is a certain
future feature.

3. Effects After learning the basic workings of video layers no participants
had any trouble with the basic effects.

4. Advanced effects During setup of effect properties and especially
the double effect step the problems with drop down lists showed in full
swing. Setting the bottom effect to anything but Solarize or Posterize
is impossible without resizing the window.
Most users took a while to understand the Posterize effect as it does
not really show any major changes until it is set to very low values.
Remapping the range should be considered.
A single user managed to edit both the MIDI and CC mapping of a layer
at the same time. This probably has something to do with the library
focus issue. Interestingly after a brief confusion the user started liking
it and suggested it as a feature.

5. Control Right at the top of the control panel there is a text box for
the scene name, which defaultly reads “New scene”. Few rows below

43

5. Evaluation

that is a Append scene button which actually adds a new scene to the
end of the show but provides no indication of the fact. Those factors
combined resulted in ten participants having major trouble adding a new
scene, clicking desperately on the text box and ignoring the unusual
word “Append”. Luckily, some improvements to this problem are at
hand: change “New scene” to “Enter name” and add indication that a
scene was added to the end of the show. The Append scene button itself
is a tougher problem. Simply renaming it might help as well as jumping
to the new scene right away.
While changing the scene name four users kept clicking the Next scene
button to confirm the name change. Apparently, the interface is too
minimal, users do require a submit button and submitting data into a
text box by pressing the Enter key does not come naturally.
Since the app does not automatically append a “.xml” ending to the show
configuration file while saving, all of the users saved the file without it.
While it is not a factual problem as the file is still valid XML, it is not
automatically assigned an icon by the operating system and looks out
of place.

6. Advanced control Apart from the three users that commonly use
MIDI and MIDI devices, everyone had trouble with the master alpha
and MIDI channel setting. The interface groups those values (and the
FPS display as well) into a confusing array of text boxes and labels with
inconsistent behaviour and no status indication. With only surface level
understanding of MIDI the participants were rightfully misguided.
Eight participants made use of the Save & Save as distinction or maybe
rather just preferred the Save button which is placed higher and appears
more simple. When no show configuration file is loaded, both buttons
work as Save as, prompting a user to select a file or make a new one.
After that (or after successfully loading a show configuration file) the
Save button saves to the file without opening a dialogue while Save as
prompts the user as before.
One of the participants suggested a global mute toggle based off the
feeling that rotating the master alpha knob is too unwieldy.

Overall running the scenarios with actual users proved to bring a lot of
valuable information, even more than the heuristics. Some problems were
identified using both methods which hints to their seriousness. All in all the
interface needs a lot of improvement. Some problems were known prior to
the testing such as the missing features contained only in the obsolete console
interface, some discovered ones can be fixed easily and some call for a major
redesign, maybe even switching to a different library or at least working on
the issues of the current one.

44

5.3. Peer reviews

While the control panel was a total failure, the basic layout of the layers
and their relation to the hardware mapping proved to be easily understand-
able, with only minor tweaks required. Since the layers are used much more
often, this turned out better than it could.

5.3 Peer reviews

Three experts were asked to write a short review after witnessing the per-
formance to evaluate the system from artistic perspective. These are David
Čajč́ık, music journalist, juror in Vinyla awards and music programmer in
Roxy Prague, Bc. Josef Hanzĺıček a.k.a Hepex, DJ & music producer, and
MgA. Jǐŕı Nižńık a.k.a. Malcuth, DJ, music producer, performer and the
person responsible for the musical side of Simulacrum AV.

5.3.1 David Čajč́ık

Simulacrum AV presents a fresh, technologically advanced, sophisticated and,
essential to mention, fun approach to presenting electronic music while im-
mersing the audience into an audiovisual world. Whereas the traditional meth-
ods of visualising music in live setting operate mainly within traditional VJing
programs utilising ad-hoc and “live” controlling of visual schemes in direct re-
sponse to presented music heard by the VJ, Vooku (the author) utilizes much
more sophisticated pre-programmed settings. In that matter Simulacrum AV
presents a rather unique approach to music performance, where the relation-
ship between the audio and the visual is united to a much greater extent with
longer-term preparations taking place in advance of the performance impos-
ing numerous requirements essentially leading to a more high-quality artistic
output.

There is a distinct variety of visual atmospheres presented and modeled
by Vooku ranging from video-games cuts, abstract graphics and even science
fiction shots combined with promo videos for today’s security systems showing
an uncanny similarity. Musically Malcuth successfully merges drum & bass,
IDM, bass music and other electronic music forms into a coherent flow of both
break beats and straight beats. This easily allows the visuals and Skinny
Mixer to expose multiple feelings and vibes. The relevancy of this musical
approach is well documented by the recent success of Floating Points, British
producer composing his live sets with the same feeling by combining several
influences and other prolific DJs such as JASSS, Mall Grab or many others.
The recent advances in the entertainment industry more or less dictate that the
concert experience is complex and absorbing. In that matter Simulacrum AV
is ambitiously setting a path in the Czech music scene which is not commonly
used and maybe even setting a trend for the future.

45

5. Evaluation

5.3.2 Josef Hanzĺıček

The entire Simulacrum AV performance was controlled by two people, one
performing as a DJ while the other one as a VJ. On first glance they seemed
to work independently, however after a while clear rhythmic synchronization
between the sound and the playing music can be perceived. Just as the music
the visual consists of several layers. The music consisted of pieces mostly from
the genres of the bass music region with the main focus on break beat and
neurofunk (a drum & bass subgenre), switching at times to more experimental
sounds such as ambient or hardly characterisable at all. Two elements distin-
guish the music from a standard DJ set. Repeatedly two and more tracks were
combined together in one moment and thanks to the richness of the selected
genres in the set the tempo changed unusually often as well.

This musical variation was accompanied by a graphical variation just as
rich – or even richer. The most characteristic element of the performance
was the visual base for the musical part, projected behind the performers. I
am unsure to what extent were the rhythmical sequences preprogrammed or
improvised, but the impact of this synchronization was much larger than the
common visuals which can be seen for example during DJ sets at large festivals.
The sonic atmosphere also reflected the mood of the visuals. During darker
passages with “liquid” bass sounds the projection was dominated by a mix of
post-apocalyptic imagery mixed with brief flashes of a logo or shots clearly
from the horror, thriller or sci-fi genres from the 80s. I vividly remember a live
visual remix of original material with the introduction scene of the 1982 movie
Blade Runner, the chimneys of dystopian Los Angeles hurling fire and smoke
in sync with the beats, so unlike the original soundtrack produced by Vangelis.
During the faster sections the visual took on a straight up abstract character
rather than the previous atmospheric one, but the rhythmical patterns kept
in sync with the music. The single exception to this was the introduction
filled with oscillating bass drones which was accompanied by a slow shot of an
island surrounded by calm sea, a strong contrast unlike all the other moments
full of dark imagery.

The entire audiovisual work constituted an artistically compact continuum
with “audiovisual” being the key term to use to describe this two hour long
performance. I am convinced that one of the elements without the other
would hardly pass for a convincing work of art. The synchronization was
rather impressive from the technical standpoint. Even with multiple connected
devices the rhythmical synchronization stands across multiple tempo changes.
To borrow some vocabulary from the world of literature – the performance
was much more lyrical than epical. In the end it seems that the goal was not
to offer the audience a particular cohesive story rather than an emotionally
strong message and a clear demonstration of original technical solutions to
combine audiovisual elements.

46

5.3. Peer reviews

5.3.3 Jǐŕı Nižńık

As a composer, DJ, producer and performing artist I’ve been searching for
a tool that would allow my visually evocative musical material to come to
life. This software has the means to work with rhythm and image in a very
precise and creative way. The best feature is of course it’s realtime capability
and ability to adapt and even improvise on the go. This tool has been at
the core of the “Simulacrum AV” audiovisual live performance where together
with the code’s author, we strive to create an engaging and thought-provoking
visualisation to the underlying sonic barrage.

An interesting aspect of this cooperation is how I as a musician am now
able to visualise certain musical elements, instruments, rhythmical patterns,
interpunction and more in relation to the software’s possibilities. During the
creative process of preparing for a performance I’m faced with many aesthetic
and dramaturgical choices I can make. After the musical performance and
all it’s cues are locked I begin to literally “temp” score the visuals2 using
different MIDI notes, triggering lanes of visual information (usually a short
loop). These lanes I see as a possibility to represent and accentuate different
musical elements. A kick, a snare, vocal phrase, high hat rhythm, bass stab,
guitar riff, etc. on one side and chosen visual clip (a colourful animation, black
and white dance scene, a sci-fi spaceship, explosion, text etc.) on the other,
each in its respectful MIDI lane. A great asset is working within “scenes” with
potentially unlimited possibilities for visual dramaturgy and even storytelling.
This is but just one way of utilization – a system used for a particular project.

It is not just a versatile tool, but a real instrument which can be learned
and improved depending on the user. A modular instrument which can be
modified if needed. If we also include the possibility of working with built
in effects, lights and procedural animation, the creativity expands even more.
The live MIDI controller and parameter mapping allow for a proper live control
of incoming and outgoing data with an artist’s feel. With all this in mind I
can approach my performances either with meticulous preparation or just
with a basic concept while the visual artist operating the software organically
reacts.

2Temp score or temporary score is an expression from film music meaning a rough
musical dramaturgy which can (but doesn’t necessarily have to) be replaced by composed
music from a hired composer.

47

Conclusion

Goals completion

1. Research state-of-the-art solutions Some of the many options to
create an audiovisual performance were explored in chapter 1. Especially
in the area of software the focus was on the more experimental and inno-
vative solutions. The changing cultural environment was briefly hinted
at when mentioning some of today’s international events focusing on
modern electronic music, multimedia and the relation of art technology.

2. State benefits & investigate drawbacks of the bachelor’s the-
sis To the analysis of the bachelor’s thesis was dedicated the entire
chapter 2. Among the benefits was the artistic success with the Zmu-
tovaná Veverka song being a fan favourite, the unique visuals and the
fast response time averaging at 83 to 33 ms. The drawbacks included
the cumbersome development requiring a new C++ class for each song
and the development of brand new visual elements.

3. Design & implement an advanced system The specification and
requirements for Skinny Mixer were described in chapter 3 and chap-
ter 4 continued on the implementation itself. The development process
consisted of iterations, each corresponding to a new live performance to
test the new features.

4. Evaluate the system Four approaches to evaluation were described
in chapter 5. The performance was measured in terms of load times,
scene switch times, latency and fluidity. The GUI was examined using
Nielsen’s usability heuristics and with 13 users completing the 6 prede-
fined user scenarios. Lastly the artistic value was considered by three
experts. The performance barely met the specified requirements and
the GUI is in need of major improvements, however the peer reviews

49

Conclusion

agreed that despite the technical issues the audiovisual performance is
ambitious, emotionally strong and versatile.

Future plans

Skinny Mixer is very much a project in development. Just a week after finish-
ing this text the next Simulacrum AV is planned on the main stage of Cross
Club Prague as part of Future Gate science fiction film festival, with further
yet unannounced performances in planning. This means that the motivation
to improve and develop the tool remains high.

The performance issues were somewhat known before writing this text and
proper measurement helped to confirm them. A big improvement could be
obtained by switching to multi threaded approach in two areas. To begin with,
some of the messages the GUI is not showing often (but not always) remain
hidden because of race conditions as the main app is busy decoding videos.
Secondly, OpenGL allows for asynchronous texture loading to the GPU using
the ARB pixel buffer object extension as shown in [31]. This might not be
fully supported by openFrameworks and therefore could require a considerable
amount of work – or maybe there is an addon for that.

While some GUI issues were also known beforehand, using proper methods
to evaluate it proved invaluable. The simple fixes are expected to be done soon
with the more complex ones when they eventually become top priority.

Discussions with the supervisor also brought some inspiration for future
modifications. For a while now there has been and idea to create a VST
version of the entire app. That would allow not just for using JUCE, which is
a brilliant library for VSTs and user interfaces, but also being able to map all
parameters to MIDI as that is a common and important feature in DAWs. A
problem remained however – what about running an OpenGL context heavy
on data transfer out of a DAW? Even without further investigation this seemed
like a bad idea. A solution would be to create just a VST interface and based
on a client-server architecture utilize a local network to run the video playback
independently. This could even be done on separate machines to maximize
resources – one machine for control, one for output.

All in all Skinny Mixer and Simulacrum AV have just began to gain trac-
tion and will hopefully continue to be a source of challenges to the authors –
Malcuth & Vooku – and inspiration to the audiences.

50

Bibliography

[1] Petrov, V. Nástroj pro vizualizaci datového toku formátu MIDI pro živá
vystoupeńı. Bachelor’s thesis, Czech Technical University in Prague, Fac-
ulty of Information Technology, 2016.

[2] Elation Professional, Los Angeles. DMX 101: a DMX 512
Handbook. 2008. Available from: https://cdb.s3.amazonaws.com/
ItemRelatedFiles/10191/dmx-101-handbook.pdf

[3] Mydy Rabycad – Where’s the fokin’ backstage? (Live at Colours of
Ostrava). YouTube, 2018. Available from: https://www.youtube.com/
watch?v=3Ka6OBZ0qKs

[4] Noisia – “Outer Edges” in 360°– Rampage 2017. YouTube, 2019. Available
from: https://www.youtube.com/watch?v=P6rb7Hq_Q0Q

[5] Sinjin Hawke & Zora Jones – AV Live at Sonár Barcelona 2018. YouTube,
2018. Available from: https://www.youtube.com/watch?v=Ul5rTdYo628

[6] McLean, A. TidalCycles. Website, 2020. Available from: https://
tidalcycles.org

[7] Roberts, C. Gibber. Website, 2020. Available from: https://gibber.cc

[8] Casa, D. D.; John, G. LiveCodeLab. Website, 2020. Available from:
https://livecodelab.net

[9] Dorado, D. Livecoding ∼Ar en Atom 4/8/18. YouTube, 2018. Available
from: https://www.youtube.com/watch?v=1OkqxPfKsh8

[10] Lunchmeat Festival. Website, 2019. Available from: http://
www.lunchmeat.cz

[11] Shape Platform. Website, 2020. Available from: https:
//www.shapeplatform.eu

51

https://cdb.s3.amazonaws.com/ItemRelatedFiles/10191/dmx-101-handbook.pdf
https://cdb.s3.amazonaws.com/ItemRelatedFiles/10191/dmx-101-handbook.pdf
https://www.youtube.com/watch?v=3Ka6OBZ0qKs
https://www.youtube.com/watch?v=3Ka6OBZ0qKs
https://www.youtube.com/watch?v=P6rb7Hq_Q0Q
https://www.youtube.com/watch?v=Ul5rTdYo628
https://tidalcycles.org
https://tidalcycles.org
https://gibber.cc
https://livecodelab.net
https://www.youtube.com/watch?v=1OkqxPfKsh8
http://www.lunchmeat.cz
http://www.lunchmeat.cz
https://www.shapeplatform.eu
https://www.shapeplatform.eu

Bibliography

[12] Bandura, L. Aid Kid & Pavel Karafiát performing at Lunchmeat Festival
2019. 2019. Available from: https://www.fullmoonzine.cz/lunchmeat-
festival-5-10-2019-narodni-galerie-praha

[13] Live Performers Meeting. Website, 2020. Available from: https://
liveperformersmeeting.net

[14] Generate! Festival für elektronische Künste. Website, 2020. Available
from: https://generatefestival.de

[15] Signal Festival. Website, 2020. Available from: https://
www.signalfestival.com

[16] Petrov, V. Rejfpank Live @ Klubovna 9. 5. 2016. YouTube, 2016. Avail-
able from: https://www.youtube.com/watch?v=HzFjP2zBFHc

[17] Adobe Systems Inc. PDF Reference: PDF Blend Modes: Addendum.
Fifth edition, 2006. Available from: https://www.adobe.com/content/
dam/acom/en/devnet/pdf/pdfs/pdf_reference_archives/blend_
modes.pdf

[18] Petrov, V. Skinny Mixer. GitHub, 2020. Available from: https://
github.com/vooku/skinny

[19] FFmpeg. FFmpeg Documentation. 2018. Available from: https://
ffmpeg.org/doxygen/trunk/index.html

[20] OpenShot Studios, LLC. Openshot Installation Guide. 2016.
Available from: https://openshot.org/files/libopenshot/
InstallationGuide.pdf

[21] Freedesktop. GStreamer Documentation. 2018. Available from: https:
//gstreamer.freedesktop.org/documentation

[22] Petrov, V. Patterns: a Probability-based Drum Sequencer. Ljubljana: Fac-
ulty of Computer and Information Science, University of Ljubljana, 2018.

[23] Duracz, J. JUCE-FFmpeg. GitHub, 2017. Available from: https://
github.com/c41x/JUCE-FFmpeg

[24] JUCE. Juce Class Index. 2019. Available from: https://docs.juce.com/
master/index.html

[25] openFrameworks. openFrameworks Reference. 2019. Available from:
https://openframeworks.cc/documentation

[26] Wilcox, D. ofxMidi. GitHub, 2019. Available from: https://github.com/
danomatika/ofxMidi

52

https://www.fullmoonzine.cz/lunchmeat-festival-5-10-2019-narodni-galerie-praha
https://www.fullmoonzine.cz/lunchmeat-festival-5-10-2019-narodni-galerie-praha
https://liveperformersmeeting.net
https://liveperformersmeeting.net
https://generatefestival.de
https://www.signalfestival.com
https://www.signalfestival.com
https://www.youtube.com/watch?v=HzFjP2zBFHc
https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/pdf_reference_archives/blend_modes.pdf
https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/pdf_reference_archives/blend_modes.pdf
https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/pdf_reference_archives/blend_modes.pdf
https://github.com/vooku/skinny
https://github.com/vooku/skinny
https://ffmpeg.org/doxygen/trunk/index.html
https://ffmpeg.org/doxygen/trunk/index.html
https://openshot.org/files/libopenshot/InstallationGuide.pdf
https://openshot.org/files/libopenshot/InstallationGuide.pdf
https://gstreamer.freedesktop.org/documentation
https://gstreamer.freedesktop.org/documentation
https://github.com/c41x/JUCE-FFmpeg
https://github.com/c41x/JUCE-FFmpeg
https://docs.juce.com/master/index.html
https://docs.juce.com/master/index.html
https://openframeworks.cc/documentation
https://github.com/danomatika/ofxMidi
https://github.com/danomatika/ofxMidi

Bibliography

[27] Mullany, C. ofxArgs. GitHub, 2017. Available from: https://
github.com/outsidecontext/ofxArgs

[28] Braitsch, S. ofxDatGui. GitHub, 2018. Available from: https://
github.com/braitsch/ofxDatGui

[29] Preston-Werner, T. Semantic Versioning 2.0.0. 2019. Available from:
https://semver.org

[30] Cross Club – Human Ketchup, Anniversary & Album Release Party.
YouTube, 2018. Available from: https://www.youtube.com/watch?v=
1jqAS0Mvip8

[31] Ahn, S. H. OpenGL Pixel Buffer Object (PBO). Website, 2018. Available
from: https://www.songho.ca/opengl/gl_pbo.html

[32] Snoman, R. Dance Music Manual. UK: Focal Press, second edition, 2008,
ISBN 0240521072.

[33] Nielsen, J. Enhancing the explanatory power of usability heuristics. Proc.
ACM CHI’94 Conf, 1994: pp. 152–158.

[34] MIDI Manufacturers Association. The MIDI 1.0 Specification. Third
edition, 1996. Available from: https://www.midi.org/specifications/
item/general-midi

[35] Unity Technologies. Unity User Manual. 2019. Available from: https:
//docs.unity3d.com/Manual/index.html

[36] International Laser Display Association. The ILDA Standard Pro-
jector. 1999. Available from: https://www.ilda.com/resources/
StandardsDocs/ILDA_ISP99_rev002.pdf

53

https://github.com/outsidecontext/ofxArgs
https://github.com/outsidecontext/ofxArgs
https://github.com/braitsch/ofxDatGui
https://github.com/braitsch/ofxDatGui
https://semver.org
https://www.youtube.com/watch?v=1jqAS0Mvip8
https://www.youtube.com/watch?v=1jqAS0Mvip8
https://www.songho.ca/opengl/gl_pbo.html
https://www.midi.org/specifications/item/general-midi
https://www.midi.org/specifications/item/general-midi
https://docs.unity3d.com/Manual/index.html
https://docs.unity3d.com/Manual/index.html
https://www.ilda.com/resources/StandardsDocs/ILDA_ISP99_rev002.pdf
https://www.ilda.com/resources/StandardsDocs/ILDA_ISP99_rev002.pdf

Acronyms

BPM Beats per Minute

CPU Central Processing Unit

DAW Digital Audio Workstation

DB-25 D-subminiature connector with 25 pins

DJ Disc Jockey, a performer who mixes records live

DMX-512 Digital Multiplex with 512 channels

EP Extended Play record with more tracks than a single and fewer tracks
than an LP (long playing record)

Full HD Full High Definition resolution of 1920 x 1080 pixels

GLSL Graphics Library Shader Language

GPU Graphics Processing Unit

GUI Graphical User Interface

HDMI High Definition Multimedia Interface

ILDA International Laser Display Association

MIDI CC MIDI Control Change, a type of MIDI message

MIDI Musical Instrument Digital Interface

OpenGL Open Graphics Library

Pd Pure Data, a visual coding language

VJ Video Jockey, a performer who mixes videos live

55

Acronyms

VST Virtual Studio Technology

WebGL Web Graphics Library

XML Extensible Markup Language

56

	Introduction
	Goals
	Development

	State-of-the-art
	Hardware
	Software
	Events
	Bachelor's thesis

	Analysis
	Bachelor's thesis topics
	Bachelor's thesis benefits
	Bachelor's thesis drawbacks

	Design
	Main features
	Use cases
	Functional requirements
	Non-functional requirements
	Performance requirements

	Implementation
	Unity3D prototype
	Development environments
	Architecture
	Alpha releases

	Evaluation
	Performance evaluation
	Usability testing
	Peer reviews

	Conclusion
	Goals completion
	Future plans

	Bibliography
	Acronyms

