
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering

Department of Computer Graphics and Interaction

Direct rendering of procedural models

Alexander Temnyakov

Supervisor(s): Jiri Bittner, Ph.D.; Bedrich Benes, Ph.D

May 2021

ii

Acknowledgements
I am deeply grateful to Jiri Bittner,

Ph.D. and Bedrich Benes, Ph.D. for their
guidance, valuable advice, and feedback
throughout this project. At the beginning,
it seemed to be impossible to develop. But
thanks to them, I did it.

Declaration
I declare that this work is all my own

work and I have cited in the bibliography
all sources I have used.

Prague, May 21, 2021

Prohlašuji, že jsem předloženou práci
vypracoval samostatně, a že jsem uvedl
veškerou použitou literaturu a zdroje. V

Praze, 21. května 2021

v

Abstract
Projects in the field of 3D graphics may

be focused on rendering large scenes with
a big number of objects. A human is not
able to create all objects manually in a
reasonable amount of time. To avoid such
a problem, the objects may be created by
a program instead of the human.

In 3D applications, the polygons of 3D
models usually are stored in the memory.
This approach consumes it much. To re-
duce memory consumption, the polygons
may be created procedurally at run time
on demand instead of storing them in the
memory.

When using the path tracing algorithm,
light sources may be a problem. They
can be small, so the rays almost never hit
them. They can be big, so they have a
redundant influence on the environment.

The target of this work is to develop
an algorithm of rendering with a nontra-
ditional geometry representation in which
the polygons are not stored in the mem-
ory; to develop an algorithm of procedural
object creation, to implement a render-
ing application that uses this geometry
representation and also focuses on light
sources and to evaluate the algorithm and
the implementation by comparison with
the traditional geometry representation.

Keywords: computer graphics, ray
tracing, path tracing, OptiX, procedural
model generation, procedural cities,
OpenStreetMap, light sources, lighting

Supervisor(s): Jiri Bittner, Ph.D.;
Bedrich Benes, Ph.D

Abstrakt
Projekty ve oboru 3D grafiky mohou

být zaměřeny na renderování obrovských
scén s velkým počtem objektů. Člověk
není schopen je vytvořit manuálně za krát-
kou dobu. Pro řešení tohoto problému ob-
jekty mohou být vytvořeny programem
místo člověka.

V 3D aplikacích polygony 3D modelů
obvykle jsou uloženy v paměti. Takový
přístup ji spotřebuje ve velkém množství.
Pro zmenšení spotřeby paměti polygony
mohou být vytvořeny programem za běhu
na požádání místo jejich uložení do pa-
měti.

Při použití metody sledování cest svě-
telné zdroje mohou být problémem. Mo-
hou být malé, proto je paprsky skoro ni-
kdy nezasahují. Mohou být velké, proto
mají zbytečný vliv na okolí.

Cílem této práce je vymyslet algoritmus
renderování s netradiční reprezentací geo-
metrie, při které se polygony neukládají
do paměti; vymyslet algoritmus procedu-
rálního vytvoření 3D modelů, naimple-
mentovat aplikaci, která používá takovou
reprezentaci geometrie a také klade důraz
na světelné zdroje; a vyhodnotit algorit-
mus a implementaci porovnáním s tradič-
ním způsobem reprezentace geometrie.

Klíčová slova: počítačová grafika,
metoda sledování paprsků, metoda
sledování cest, OptiX, procedurální
generování modelů, procedurální města,
OpenStreetMaps, světelné zdroje,
osvětlení

Překlad názvu: Přímé zobrazování
procedurálních modelů

vi

Contents
1 Introduction 1

2 Rendering 3
2.1 Ray Tracing 3
2.2 Path Tracing 5
2.3 Nvidia OptiX Ray Tracing Engine 6
2.4 Developed Rendering Algorithm . 7

2.4.1 Skydome 8
2.4.2 Ray Reflection 10
2.4.3 Materials 11
2.4.4 Ray Termination 13
2.4.5 Denoising 14

3 Scene 17
3.1 Primitives 17

3.1.1 Clockwise Vector Sorting 18
3.1.2 Relative Position Of Cuboid

And Point . 19
3.1.3 Ray-Plane Intersection 19
3.1.4 Line-Point Distance 20
3.1.5 Line-Line Distance 21
3.1.6 Ray-Triangle Intersection . . . 22
3.1.7 Ray-Quadrangle Intersection 22
3.1.8 Ray-Arbitrary Horizontal

Polygon Intersection 22
3.1.9 Ray-Disk Intersection 22
3.1.10 Ray-Sphere Intersection 23
3.1.11 Ray-Vertically Aligned

Cylinder Intersection 24
3.2 Scene Data Preparation 25

3.2.1 OpenStreetMap 25
3.2.2 OpenStreetMap Data

Representation 25
3.2.3 OpenStreetMap Data

Processing . 26
3.3 Objects . 31

3.3.1 Buildings 31
3.3.2 Street Lamps 37
3.3.3 Roads . 38
3.3.4 Sidewalks 39
3.3.5 Terrain 39

3.4 Tile Textures And UV Mapping 39
3.4.1 UV Mapping And Procedural

Geometry . 41
3.4.2 UV Mapping And Geometry

Stored In The Memory 41
3.5 Skydome . 42

3.5.1 Textures 42

3.5.2 UV Mapping 43
3.6 Special Techniques For Lighting At

Night . 43
3.6.1 Increase Of Street Lamp

Influence . 43
3.6.2 Emissive Color Of Windows . 46

4 Results 49
4.1 Memory Consumption 50
4.2 Rendering Time Dependence On

Geometry Representation 53
4.3 Rendering Time Dependence On

Perlin Noise Texture Generation . . 55
4.4 Rendering Time Dependence On

Road Texturing 59
4.5 Influence Of Street Lamp Colliders

On Rendering Time 61
4.6 Rendering Time Dependence On

Path Tracing Parameters 63
4.6.1 Number Of Samples Per Pixel 63
4.6.2 Russian Roulette Depth 63
4.6.3 Russian Roulette Probability 64

4.7 Image Dependence On Path
Tracing Parameters 64
4.7.1 Number Of Samples Per Pixel 64
4.7.2 Russian Roulette Depth 65
4.7.3 Russian Roulette Probability 65

4.8 Comparison With Photos 67

5 Conclusion 71

Bibliography 73

A Renders 77

B Rendering Application Manual 93
B.1 Visual Studio Project 93
B.2 Executable File 93

C OSM Parser Manual 99
C.1 Visual Studio Project 99
C.2 Unity Project 99

D Facade Geometry Creation 101

vii

Figures
2.1 Figure showing a visual comparison

of ray tracing and rasterization. . . . 4
2.2 Primary and shadow rays. 5
2.3 Figure visualizing an object with a

different emissive color. 8
2.4 Figure demonstrating the use of

the skydome color when the ray has
a direct influence. 9

2.5 Figure demonstrating the
algorithm of the skydome color use. 10

2.6 Figure showing a noisy image and
two denoised by different methods. 15

3.1 Figure showing vectors in 2D. . . 18
3.2 A cuboid and a point which is

outside of it. 19
3.3 Visualization of ray-plane

intersection. 20
3.4 Visualization of line-point

distance. 21
3.5 Figure visualizing markings used to

calculate the distance between two
lines. 21

3.6 Visualization of ray-disk
intersection. 23

3.7 Visualization of ray-sphere
intersection. 24

3.8 Visualization of ray-cylinder
intersection. 25

3.9 Visualization of building contours. 26
3.10 Visualization of road edges. . . . 26
3.11 Steps of road and sidewalk

creation. 28
3.12 Figure explaining some steps of

road and sidewalk creation. 28
3.13 Process of road and sidewalk

creation. 29
3.14 Figures showing graph

simplification. The nodes are
designated by spheres. 30

3.15 Figure showing a building
polygon, the polygon after extrusion
and the extruded polygon with a
highlighted wall. 32

3.16 Figure demonstrating initial
rectangles for windows and
balconies. 32

3.17 Figure showing the facades used
in the project. 33

3.18 Steps explaining how a building
wall is split and how are prepared
initial rectangles for windows and
balconies. 33

3.19 Steps explaining how a window is
created from an initial rectangle. . . 34

3.20 Steps explaining how a balcony is
created from an initial rectangle. . . 34

3.21 Figure showing how to create the
facade with windows and balconies. 35

3.22 Steps to detect an intersection
between a ray and a building. 36

3.23 Steps to detect an intersection
between a ray and a street lamp. . 38

3.24 Figure visualizing the
designations for the road texturing. 39

3.25 Figure showing a tile texture and
a screenshot from the rendering
application with it. 40

3.26 Figure showing a cube, an
intersection point on it (the white
point) and ph and pv values for UV
mapping. 41

3.27 Figure showing a texture of a
night sky. 42

3.28 Visualization of the function
atan2. 43

3.29 Figure showing rendered street
lamp colliders 44

3.30 Figure demonstrating the
methods to increase the influence of
street lamp lighting. 46

3.31 Perlin noise texture. 46
3.32 Steps value from the Perlin noise

texture values modification. 47
3.33 Figure showing a window with a

Perlin noise texture. 47
3.34 Figure showing renders with

different settings for the windows. . 48

4.1 The number of triangles in each
scene for the average building height
40 m and 80 m. 50

viii

4.2 Approximation of the required
amount of memory in Belgrade for
each geometry representation with
various average building heights. . . 51

4.3 Dependence of the number of
triangles on the average building
height in Belgrade. 51

4.4 Approximation of the amount of
memory required to store the scene
objects in New York when the
geometry is created procedurally. . 52

4.5 Approximation of the required
amount of memory in Prague Zličín
for each geometry representation with
various average building heights. . . 52

4.6 Used memory in several scenes
with the average building height 40
m for each geometry representation. 52

4.7 Dependence of memory
consumption on the number of
buildings for each geometry
representation. 53

4.8 Comparison of the rendering time
for two geometry representations in
Belgrade with views from different
positions. 54

4.9 Dependence of the rendering time
on the average building height for
each geometry representation in
Belgrade. 54

4.10 Views in Belgrade. 55
4.11 Dependence of the rendering time

on the number of windows with lights
on in Belgrade. 56

4.12 Visual comparison of two variants
of Belgrade used for the test. 56

4.13 Visual comparison of a different
number of windows with lights on in
Belgrade with the average building
height 30 m. 57

4.14 Dependence of the rendering time
on the number of windows with lights
on in New York. 58

4.15 Dependence of the rendering time
on the number of windows with lights
on in Berlin for each geometry
representation. 58

4.16 Rendering time difference between
the procedural road texturing and
the use of textures stored in the
memory in Berlin. 59

4.17 View used in the test with the
road texturing in Berlin. 59

4.18 Rendering time difference between
the procedural road texturing and
the use of textures stored in the
memory in Belgrade. 60

4.19 Views used in the tests of road
texturing in Belgrade. 60

4.20 Rendering time difference between
the procedural road texturing and
the use of textures stored in the
memory in Prague Zličín. 61

4.21 View used in the test of road
texturing in Prague Zličín. 61

4.22 Rendering time difference with
the street lamp colliders and without
them in Berlin. 62

4.23 View for the test of the street
lamp colliders in Berlin. 62

4.24 Rendering time difference with
the street lamp colliders and without
them in Krasnoyarsk. 62

4.25 View for the test with the street
lamp colliders in Krasnoyarsk. 62

4.26 Dependence of the rendering time
on the number of samples in
Belgrade. 63

4.27 View in Belgrade. 63
4.28 Dependence of the rendering time

on the Russian Roulette depth in
Belgrade. 64

4.29 Dependence of the rendering time
on the Russian Roulette probability
in Belgrade. 64

4.30 Visual comparison of a different
number of samples. 65

4.31 Visual comparison of a different
Russian Roulette depth. 66

ix

4.32 Visual comparison of a different
Russian Roulette probability. 66

4.33 Render. 67
4.34 Real photo. 67
4.35 Render. 68
4.36 Real photo. 68
4.37 Render. 69
4.38 Real photo. 69

A.1 Picture with a night view taken in
Berlin. 77

A.2 Picture with a night view taken in
Berlin. 77

A.3 Picture with a night view taken in
Belgrade. 78

A.4 Picture with a night view taken in
Berlin. 78

A.5 Picture with a view during sunrise
taken in Berlin. 79

A.6 Picture with a view during sunrise
taken in Berlin. 79

A.7 Picture with a daytime view taken
in Berlin. 80

A.8 Picture with a daytime view taken
in Berlin. 80

A.9 Picture with a view during sunset
taken in Berlin. 81

A.10 Picture with a view during sunset
taken in Berlin. 81

A.11 Picture with a view during sunset
taken in Krasnoyarsk. 82

A.12 Picture with a night view taken
in Berlin. 82

A.13 Picture with an evening view
taken in Berlin. 83

A.14 Picture with a night view taken
in Berlin. 83

A.15 Picture with an evening view
taken in Belgrade. 84

A.16 Picture demonstrating reflections
in windows. 84

A.17 Picture demonstrating reflections
in windows. 85

A.18 Picture demonstrating reflections
in windows. 85

A.19 Picture demonstrating windows
with lights on. 86

A.20 Picture demonstrating windows
with lights on. 86

A.21 Picture demonstrating windows
with lights on. 87

A.22 Render from Belgrade. 87
A.23 Render from Belgrade. 88
A.24 Render from Belgrade. 88
A.25 Picture with a night view taken

in Krasnoyarsk. 89
A.26 Picture with a night view taken

in Krasnoyarsk. 89
A.27 Picture with a night view taken

in Krasnoyarsk. 90
A.28 Picture with a night view taken

in Krasnoyarsk. 90
A.29 Render from Krasnoyarsk. 91
A.30 Render from Krasnoyarsk. 91

B.1 GUI of the rendering application. 95
B.2 Steps to render an image. 98
B.3 Picture demonstrating the

rendering application window. 98

C.1 Picture demonstrating the GUI of
OSM Parser. 100

C.2 Panel with the parameters of OSM
Parser. 100

D.1 Figure showing how to create the
facade with windows and balconies. 104

x

Tables
4.1 Scenes used for tests. 49

B.1 Input arguments for the rendering
application. 94

B.2 Control elements of the rendering
application. 97

xi

Chapter 1

Introduction

Sometimes scenes in graphics applications consist of a very large number
of objects. That means it is very difficult to create them manually. This
problem may be solved by procedural object generation. That is, the program
creates the objects instead of a human. It may create any number of objects
fast in comparison to the human. This approach may save much time of
work, even years. If a scene has many objects, they require much memory
and a big number of data movements to the graphics card. With such an
approach to object creation, the generated geometry does not have to be
stored in the memory. It may be created on demand1 for each frame2. It is a
very efficient way to reduce the amount of used memory. There is a question:
how to determine if an object’s geometry has to be created. The ray tracing
algorithm may answer this. However, it is likely that the process of geometry
creation on demand for each frame requires much time. Thus, it significantly
increases the rendering time of the frame. One of the most important targets
of this project is to measure the difference in memory consumption and the
rendering time between procedural object creation on demand and storing
objects, which were created procedurally, in the memory.

For such an approach to object representation, I developed a rendering
algorithm and a rendering application for it. The rendering algorithm is a
variant of path tracing3. It is able to simulate various types of materials and
it uses special techniques for light sources in the scene to make the image
more realistic and attractive. The primary functionality - rendering using ray
tracing - is implemented by using OptiX Ray Tracing Engine by Nvidia4. The
rest is written in C++ using various libraries. Also, it uses some utilization
functions and things provided with that API.

Because the geometry can not be created out of thin air, the objects
require some data which is used as the cornerstone for their geometry. For
this purpose, I developed a program. It was chosen that the scene would be

1If an object influences what the user sees on the screen, its geometry is created.
Otherwise, the geometry is not created.

2When the program calls the function which renders a frame, the program creates the
geometry for the objects and it is not stored in the memory.

3Path tracing is a type of ray tracing.
4See [27].

1

1. Introduction
a city. For this reason, the program uses OpenStreetMaps5 to prepare the
required data. The program is written in C#, it uses OsmSharp library6 to
process the OpenStreetMap data and some other libraries for other purposes,
such as mathematical operations. Also, it uses Unity7 as a graphical user
interface (GUI).

This report describes how the developed rendering algorithm works, how
the OpenStreetMap data looks like, how to use it to create a model of a city,
how to use the rendering algorithm with the created objects to get beautiful
and realistic pictures. It provides measurements of the procedural geometry
representation, compares it with the traditional one, and shows visuals of the
project. As a conclusion, it discusses if object creation on demand for each
frame is useful, if it actually solves the problems, and what own problems it
has.

5See [4].
6See [5].
7See [7].

2

Chapter 2

Rendering

This chapter provides an introduction to ray tracing and path tracing
and describes how the developed rendering algorithm works, what materials
it has, and how these materials are simulated.

2.1 Ray Tracing

Ray tracing is an algorithm of rendering which produces realistic effects:
reflections, refractions, and shadows. Rendered images using ray tracing are
more natural than images rendered using rasterization.1 A visual comparison
is shown in figure 2.1. The essence of it is rays that are cast from the camera
into the scene. This technique is called ray casting. They find the closest
object in the scene to the point from which they are cast. In the beginning, a
ray, which is called the primary ray, is cast from the camera into the scene.
The algorithm finds the closest object on the way of this ray. Therefore, the
camera sees the hit point on the object. The pixel should be influenced by
the color of this point. To check if the hit point on the object is occluded2 by
another object in the scene, another ray, which is called the shadow ray, is
cast from this point towards a light source. If it hits an object on its way,
this point is occluded. If it does not, this point is not occluded. As you can
see, the algorithm is simple for such things. The primary and the shadow
rays are visualized in figure 2.2. The article Ray Tracing3 by Nvidia provides
a brief introduction to ray tracing and its basics.

Ray tracing may be combined with a shading model used for rasteriza-
tion. For example, with the Phong shading model. In this case, the same
calculations are made for each intersection point of a ray and an object as for
each vertex or fragment when using OpenGL shaders. However, ray tracing
allows an easier way to render shadows: the use of the shadow ray is simpler
and more precise than the creation of the shadow map.4

1See [29].
2That is, it is in a shadow.
3See [28].
4See [13, Shadow Mapping].

3

2. Rendering
Modern personal computers are enough powerful to make all calculations

for this algorithm in a short time and ensure the use of such programs in real
time.

There is a great online book named Scratchapixel - Learn Computer
Graphics From Scratch!5 that explains the ray tracing algorithm. Also, there
is a bachelor project related to this topic Real-Time Ray Tracing in Unreal
Engine6 by Vojtěch Vavera which discusses the implementation of the ray
tracing algorithm.

(a) : Screenshot 1.

(b) : Screenshot 2.

Figure 2.1: Figure showing a visual comparison of ray tracing and rasterization.
In both the screenshots, the left part demonstrates an image with ray tracing,
the right part shows an image with raterization.7

5See [6].
6See [46].
7Taken from [40].

4

.....................................2.2. Path Tracing

Figure 2.2: Radiance and shadow rays.8

2.2 Path Tracing

Path tracing is a type of ray tracing. It simulates more effects than
simple ray tracing and produces a more realistic image. In this algorithm, a
ray is reflected from object surfaces and flies in the scene until some conditions
are met. The algorithm is based on the determination of how much of the
illuminance will go towards the camera. In simple words, the ray flies and
takes the colors of hit objects, adds and multiplies them. If it hits the skydome
in the scene, it also takes its color.

There is an equation called the rendering equation which is the essence
of path tracing. James Kajiya describes it in the article The Rendering
Equation.9 Also, Victor Li briefly and understandably explains it in the
article Raytracing - Rendering Equation Insight.10

Lo (ωo) = Le (ωo) +
∫

Ω
f (ωi, ωo) Li (ωi) (ωi · n) dωi.

Lo is the outgoing light. It is the sum of the emitted light Le and the reflected
light Lr. The reflected light Lr is the sum of the incoming light Li multiplied
by a function that describes the physical properties of the material at the
current point.

There are many conditions for how to decide if the ray has to be
terminated. It may be terminated if the depth - the number of how many
times a ray was reflected - equals to a selected value, it may be terminated
with some probability or if it flies out of the scene.

8Taken from [28].
9See [16].

10See [23].

5

2. Rendering
The direction of ray reflection from the object surfaces may be random.11

As a consequence, the algorithm produces noisy images. There are two easy
ways to prevent that. First, an implementation may cast a big number of
rays from each pixel and take the average result of them. The bigger this
number is, the more likely that the average values converge to the same one.
This solution requires powerful hardware. Second, the implementation may
save each frame in a buffer and when it renders a new frame, it interpolates
the color of each pixel between the color from the previous frame stored in
the buffer and the color of the current frame.12 This solution works if nothing
in the scene changes, but it is fast and it doesn’t increase the rendering time.

A simple implementation of path tracing does not require many lines
of code. It can fit in 99 lines13. The book Scratchapixel - Learn Computer
Graphics From Scratch! describes path tracing14. Also, the book Physically
Based Rendering: From Theory to Implementation15 is a great resource to
study the path tracing algorithm.

2.3 Nvidia OptiX Ray Tracing Engine

Nvidia OptiX Ray Tracing Engine16 is a modern high-level ray tracing
API. It allows the programmer to implement a small part of ray tracing
instead of the implementation of the whole algorithm and structures for it.
By the small part, it is meant the programmer has to store the primitives of
objects in the scene or to store data required to procedurally create them, to
store material data for the objects, to implement a function named raygen
program which casts rays from the camera, a function named closest program
which is called when a ray hits an object, a function miss program which
is called when the ray hits the skydome. They do not have to implement
acceleration structures and to detect ray-primitive intersections if the polygons
are stored in the memory. They have to detect intersections if the objects are
created procedurally. In this case, each of them is bounded by an axis-aligned
bounding box. If the ray hits a bounding box, the API calls a function named
intersection program which creates the geometry of the object and detects
an intersection. Nvidia provides an article named OptiX: A General Purpose
Ray Tracing Engine on this API, which helps to understand it better.

The API has been still being developed. The version used in this project
is 7.2.0. The previous versions 6.x.x and less completely differ from 7.2.0.
If a project is written in one of the previous versions, it can not be easily
upgraded to use version 7.x.x or greater. It is required to fully rewrite the

11For example, it is random for a diffuse material such as rubber, but it is not random
for mirror.

12It is explained in section 2.4.5.
13See [9].
14See [6, Global Illumination and Path Tracing].
15See [35, ch. 14, p. 5].
16See [27].
16See [32].

6

............................ 2.4. Developed Rendering Algorithm

project. For this reason, there is a lack of open-source projects which may
be used to study the API. Besides the sample projects by Nvidia, Ingo Wald
provides a great tutorial on this API.17

Nvidia provides a denoiser18. It is AI-accelerated. So, it is an efficient
and fast way to eliminate noise in comparison with other ways of denoising19.

There is various software using the API. The most popular of them are
Blender20, Adobe After Effects CC21 and OctaneRender.22

2.4 Developed Rendering Algorithm

The rendering algorithm in this project is a variant of path tracing. Rays
are cast from the camera and they reflect from the object surfaces in the scene
until some conditions, which will be described later, are met. The objects
have their diffuse and emissive colors. The pseudocode shown in algorithm 1
describes how the calculation of the color for a pixel works. In this project,
the color of the pixel is normalized. That is, it is in form [x, y, z], where
x, y, z ∈ [0, 1].

Algorithm 1 The function to compute the radiance along a ray.
Input: the ray’s origin O and its direction D.

1: function RADIANCE(O, D)
2: if CLOSEST_HIT(O, D) then
3: P = GET_INTERSECTION_POINT()
4: terminate, c = RUSSIAN_ROULETTE()
5: if terminate then
6: return emissive_color ∗ c

7: new_D = CALCULATE_DIRECTION()
8: D = new_D
9: return emissive_color + diffuse_color * RADIANCE(P , D)

10: else
11: return DETERMINE_SKYDOME_COLOR()

The parts of this pseudocode will be explained later. Because OptiX is
not friendly with recursive functions and to use such functions is undesirable,
the program mainly uses a non-recursive variant of this algorithm. However,
in some situations, recursion is used.23

Let us explain what is the emissive color and the diffuse color. The
emissive color is responsible for the light properties of the material. Light

17See [47].
18See [26].
19Further, subsection 2.4.5 discusses some ways of denoising.
20See [2].
21https://www.adobe.com/products/aftereffects.html
22See [30].
23Recursion is used to reflect two rays from the glass material. It is more convenient

than the non-recursive method.

7

https://www.adobe.com/products/aftereffects.html

2. Rendering
sources have this color greater than zero, other objects have this color equal
to zero. Figure 2.3 shows what is the emissive color. To explain what is
the diffuse color of an object, let us look at an example. When you are
talking about the color of something, often you are talking about the diffuse
color. For example, if an apple is green, its diffuse color is green. However,
we cannot determine what diffuse color metals have, because they reflect
everything around.

(a) : The emissive color is equal to 0. (b) : The emissive color is greater
than 0.

Figure 2.3: Figure visualizing an object with a different emissive color.

It is necessary to introduce 2 terms. The ray has a direct influence
on a pixel

• if it was cast from the camera;

• if it was reflected from glass or mirror24 and the previous ray was cast
from the camera or it was also reflected from glass or mirror.

In the other case, that is, the ray has an indirect influence on a pixel

• if it was reflected from an object which has a material other than glass
or mirror.

2.4.1 Skydome

Path tracing uses the skydome to light the scene. The skydome is
considered a light source and there is no directional light. The skydome has
its emissive and diffuse colors like the other scene objects. As you learned
above, the emissive color of a light source is a nonzero vector.

24The materials are discussed further in subsection 2.4.3

8

............................ 2.4. Developed Rendering Algorithm

However, in this implementation, the emissive color of the skydome is
not used in a situation. If the ray has a direct influence on a pixel, only the
skydome’s diffuse color is used. If the emissive color of the skydome was also
used, we would see an incorrect color on the screen, because according to the
rendering algorithm, the diffuse color has to be added to the emissive color.
If the emissive color is [1, 1, 1] and it is summed with any diffuse color, it
results in the situation when the skydome has a uniform white color.25 26 If
the ray has an indirect influence on a pixel, both the diffuse color and the
emissive are used.

Algorithm 2 The function to determine the color of the skydome.

1: function DETERMINE_SKYDOME_COLOR
2: if ray_has_direct_influence_on_pixel_color then
3: return diffuse_color
4: else
5: return emissive_color + diffuse_color

Figure 2.4 shows how the sydome would look if its emissive color was used
always and there was not the if-else statement. According to algorithm 2, if
it always returned emissive_color + diffuse_color, the returned value would
be close to [1, 1, 1] or even it would exceed this value.

(a) : Emissive color [0, 0, 0]. (b) : Emissive color [0.5, 0.5, 0.5].

(c) : Emissive color [0.7, 0.7, 0.7]. (d) : Emissive color [1, 1, 1].

Figure 2.4: Figure demonstrating the use of the skydome color when the ray
has a direct influence.

25[1, 1, 1] is white. Each value is clamped between [0, 0, 0] and [1, 1, 1].
26[1, 1, 1] + [x, y, z] ≥ [1, 1, 1]. The result is always white.

9

2. Rendering
Figure 2.5 shows visuals of algorithm 2. The skydome has the same color.
However, the scene is more or less bright, because the used emissive colors
are different.

(a) : Emissive color [0, 0, 0]. (b) : Emissive color [0.5, 0.5, 0.5].

(c) : Emissive color [0.7, 0.7, 0.7]. (d) : Emissive color [1.0, 1.0, 1.0].

Figure 2.5: Figure demonstrating the algorithm of the skydome color use.

2.4.2 Ray Reflection

If the ray hits an object, it is reflected in some direction. This direction
is calculated by one of the following methods.

Specular Sampling

The ray is reflected by the rule of specular reflection27.

Diffuse Sampling

It is also called cosine weighted hemisphere sampling. The main idea of
this sampling is that the calculated direction is close to the normal vector of
a point. Calculation of this vector d is the following28:

27See [45] or https://en.wikipedia.org/wiki/Specular_reflection.
28In this work, [1, 0, 0] is the left direction, [0, 1, 0] is the up and [0, 0, 1] the forward.

10

https://en.wikipedia.org/wiki/Specular_reflection

............................ 2.4. Developed Rendering Algorithm

θ = arccos(
√

u1), (2.1)

φ = 2 · π · u2, (2.2)

d = [cos(φ) · sin(θ), cos(θ), sin(φ) · cos(θ)], (2.3)

u1 ∈ [0, 1], u2 ∈ [0, 1]. (2.4)

u1 and u2 are random numbers from the specified interval. The line 2.3is the
transformation from the spherical coordinate system.

Glossy Sampling

The idea is taken from the article Importance Sampling of the Phong
Reflectance Model29. Calculation of the direction is the following:

θ = arccos(u1

1

1+n), (2.5)

φ = 2 · π · u2, (2.6)

d = [cos(φ) · sin(θ), cos(θ), sin(φ) · cos(θ)], (2.7)

u1 ∈ [0, 1], u2 ∈ [0, 1]. (2.8)

Again, u1 and u2 are random numbers from the specified interval. Line 2.7 is
the transformation from the spherical coordinate system. n is the specular
exponent. The higher the specular exponent is, the sharper the reflection is.

2.4.3 Materials

The material type determines what sampling is used for ray reflection.
There are 4 types of materials in this project: diffuse, glossy, specular, and
glass.

Diffuse Material

Diffuse sampling is used to determine the direction of the reflection.

Glossy Material

This type of material is similar to the diffuse material, but it is slightly
specular. That is, it reflects the silhouettes and colors of objects around.
The principle of ray reflection for this material is taken from the article
Importance Sampling of the Phong Reflectance Model30. Shortly, there are
two parameters: kd and ks. They meet the condition kd + kd ≤ 1. A random
number r ∈ [0, 1] is generated. If r is less than kd, the direction is calculated
by using diffuse sampling. If r is less than kd + ks, the direction is calculated
by using glossy sampling. Otherwise, the ray is not reflected, it is terminated.

29See [21].
30See [21].

11

2. Rendering
The diffuse material may be treated as a variant of this material with

ks = 0 and kd = 1.

Algorithm 3 Pseudocode for the glossy material.

1: r = RANDOM_FLOAT.RANGE(0, 1)
2: new_direction
3: if kd < r then
4: new_direction = DIFFUSE_SAMPLING()
5: else if r < kd + ks then
6: new_direction = GLOSSY_SAMPLING()
7: else
8: TERMINATE_RAY()

Specular Material

In other words, it is mirror. Specular sampling is used to determine the
direction of the reflection.

Glass Material

When we look at glass, we see in it objects which are behind and in
front. Glass reflects and refracts all incoming rays. Therefore, if a ray hits
glass, two rays are cast from the hit point: a ray in the direction defined by
refraction and a ray in the direction defined by ideal reflection. Then, the
colors from these two rays31 have to be summed with some weights:

color = r · refraction_ray_color + (1 − r) · reflection_ray_color.

Parameter r is defined by Schlick’s approximation. The articles An Inexpensive
BRDF Model for Physically-based Rendering32 and Background: Physics and
Math of Shading33 explain this formula.

In terms of efficiency, it is not good to cast these two rays always. It
is more efficient to cast either the refraction ray or the reflection ray in a
situation. The rendering application randomly chooses which of the two rays
to cast. The probability is calculated as34

probability_of_reflection = 0.25 + 0.5 · r.

If a ray that hits glass has a direct influence on a pixel’s color35, both the
rays have to be cast to get a more precise and realistic result and to reduce
error. Then, the two rays which are cast from the hit point on glass also
have a direct influence on the pixel’s color. If the ray does not have a direct
influence or the recursion depth is too big, the error is negligible. Therefore,
in these cases, it is enough to cast a single ray from the hit point.

31That is, the results of the path tracing algorithm started at this point with these
directions.

32See [37].
33See [15].
34Taken from [9].
35Look at 2.4 to remember what it means.

12

............................ 2.4. Developed Rendering Algorithm

Algorithm 4 Pseudocode for the glass material.

1: r = 1
2: P = intersection_point
3: reflection_dir = REFLECT()
4: refracted = false
5: if refracted then
6: r = FRESNEL_SCHLINK()
7: refraction_dir = REFRACT()

8: if ray_has_dir_influence and recursion_depth < g_depth then
9: refraction_color = glass_diffuse_color

10: reflection_color = glass_diffuse_color
11: if refracted then
12: D = refraction_dir
13: refraction_color = 1 − r * RADIANCE(P , D)

14: D = reflection_dir
15: reflection_color = r * RADIANCE(P , D)
16: color = refraction_color + reflection_color
17: else
18: reflection_proba = 0.25 + 0.5 ∗ r
19: refraction_proba = 1 − reflection_proba
20: rnd = RANDOM_FLOAT.RANGE(0, 1)
21: if refracted AND rnd < refraction_proba then
22: D = refraction_dir
23: color = 1 − r * RADIANCE(P , D)
24: else
25: D = reflection_dir
26: reflection_color = r * RADIANCE(P , D)

2.4.4 Ray Termination

Rays can not fly eternally. Therefore, each of them must be terminated
at some time. The project uses a method called Russian Roulette, which
is described in the book Physically Based Rendering: From Theory to Im-
plementation36, to terminate rays. There is a selected depth d, from which
Russian Roulette is carried out, a value c37 and a termination probability
p. If the depth of a ray is greater or equal to d, a random number r ∈ [0, 1]
is generated. If r is less or equal to p, the ray is terminated, it returns the
emissive color of the hit object and color [c, c, c] instead of the diffuse color of
the object. Otherwise, it modifies the diffuse color by some rule. These steps
are shown in algorithm 5.

36See [35, ch. 13, p. 7].
37In this project, it is equal to 0.

13

2. Rendering
Algorithm 5 The function for Russian Roulette.

Output: whether the ray was terminated or not.

1: function RUSSIAN_ROULETTE()
2: if depth < d then
3: return false
4: else
5: c = 0
6: r = RANDOM_FLOAT.RANGE(0, 1)
7: if r < p then
8: diffuse_color = (c c c)
9: return true

10: else
11: diffuse_color = (diffuse_color − p ∗ c) / (1 − p)
12: return false

2.4.5 Denoising

Ray tracing algorithms cause noise in the image. There is a number of
ways to eliminate it. It may be eliminated by a higher number of samples
per pixel. However, it significantly increases the rendering time. It may be
eliminated by a deep Russian Roulette depth. But it has little influence on
noise and also, increases the rendering time.

The fastest solution is to use the average of all rendered images from the
last change in the scene38. The program has a buffer in which the last frame
is stored. When the image for the current frame is rendered, the program
interpolates between it and the image for the last frame. When something
in the scene changes, the buffer is erased. If not to do it, the final image
will be influenced by images that do not match the current view. This way
of denoising has the same effect as the higher number of samples per pixel,
but may be used for static scenes only. The way of denoising is featured in
algorithm 6.

Figure 2.6 shows a noisy image, a denoised image using the higher
number of samples per pixel, and another denoised image which is the average
of 100 frames.

Algorithm 6 The part of the code providing denoising.

1: if frame_from_last_scene_change > 0 then
2: alpha = 1 / (frame_from_last_scene_change + 1)
3: previous_color = buffer[pixel_id]
4: new_color = lerp(previous_color, calculated_color, alpha)
5: buffer[pixel_id] = new_color

38It is meant that there happened something that changed what the user sees. That is,
the camera changed its position or rotation, an object moved, etc.

14

............................ 2.4. Developed Rendering Algorithm

In addition, as it was mentioned in subsection 2.3, noise may be elimi-
nated by AI-accelerated algorithms. With OptiX API, Nvidia provides such
an algorithm.

(a) : The noisy image. 1 sample per pixel. (b) : The first of the denoised images.
1 sample per pixel, but it is the result
of the average of 100 frames.

(c) : The second of the denoised images.
100 samples per pixel.

Figure 2.6: Figure showing a noisy image and two denoised by different methods.

15

16

Chapter 3

Scene

This chapter describes parts of the work related to the scene. That
is, what primitives1 the program has, how it detects intersections between
them and rays. It introduces the scene objects, describes how they are
created, textured, and painted; what is required to do that and how to detect
intersections between them and rays using the primitives. Special techniques
for lighting at night used in this project are also described here.

To compare the procedural object representation with the traditional
one, that is, polygons stored in the memory, the program is able to create
polygons for all object types except one2 and store them.

The scene in this project is a city consisting of buildings, roads, sidewalks,
street lamps, a terrain, and a skydome.

3.1 Primitives

Since this project is about procedural geometry generation at run time,
it is required to implement intersection programs and define primitives3. Each
object in the scene has an axis-aligned bounding box (AABB). If a ray hits an
AABB, Nvidia OptiX API calls the intersection program. In this intersection
program, the programmer has to create the geometry and check if there is
an intersection with it. This answers the question of how to decide when
to create the geometry. For example, a sphere has a bounding box, the
API calls the intersection program, and based on some data for the sphere
(its center point and its radius), it checks if there is an intersection. Like
this, a building has a bounding box. Based on some stored data for the
building, the intersection program checks if there is an intersection. If so,
it also determines with what building part the intersection is. The project
supports the following primitives: a triangle, a quadrangle, a sphere, a disk,

1Primitives are elementary objects which are used to compose more complex objects.
For example, a triangle and a sphere may be primitives in the path tracing algorithm.

2Except the street lamps. Further, in section 3.3.2, it will be explained why that is so.
3As was explained in section 2.3, OptiX API requires to implement the function which

generates an object’s geometry when a ray hits its bounding box.

17

3. Scene ..
a cylinder aligned with the vertical axis, and an arbitrary horizontal polygon.
Each quadrangle may be divided into two triangles. However, the use of
quadrangles is more convenient. That is why it is considered a primitive.

Let us look at how to detect an intersection between a ray and the
mentioned primitives. But first, let us explain how to detect an intersection
between a ray and a plane, how to find the distance between a point and a
line, how to find the distance between two lines, how to sort vectors clockwise,
and how to check if a point is inside a cuboid, because this knowledge is
required further4.

3.1.1 Clockwise Vector Sorting

This knowledge is used in road creation.
There are vectors vx = [1, 0] and vy = [0, 1] which are used to help

with sorting. For example, we want to sort 5 vectors: v1 = [1, 2], v2 = [2, 2],
v3 = [1, −2], v4 = [−1, −1] and v5 = [−1, 1] in 2D. It is possible to imagine
that all of them start at the same point. This situation is visualized in figure
3.1. The dot products of the given vectors5 and vectors vx and vy are used as
criteria in sorting. First, the given vectors have to be sorted by the quadrants
of the coordinate plane. The dot products of vectors in the 1st quadrant are
nonnegative with vx and vy. In the 4th, they are nonnegative with vx and
negative with vy. In the 3rd, they are negative with vx and vy. In the 2nd,
they are negative with vx and nonnegative with vy. When the vectors are
sorted by the quadrants, they have to be sorted in each of them. In the 1st
and in the 4th quadrants, the greater the dot product with vy is, the less
the position in the sorted array is. That is, the dot product of v1 and vy

is greater than of v2 and vy, so, v1 precedes v2. In the 2nd and in the 3rd
quadrants, the less the dot product with vy is, the less the position in the
sorted array is.

1st

4th3rd

2nd

vy

vx

v1 v2

v3

v4

v5

Figure 3.1: Figure showing vectors in 2D6.

4As a matter of interest, I created the pictures with 3D models below with
Blender [2].

5I assume that these vectors are normalized before the dot products are calculated.

18

...................................... 3.1. Primitives

3.1.2 Relative Position Of Cuboid And Point

This knowledge is used to optimize the building geometry creation.
There is cuboid ABCDA′B′C ′D′, point M which is the center of

ABCDA′B′C ′D′ and another point P . We want to check if P is inside
ABCDA′B′C ′D′ or outside. If P is inside, the projections7 of PM onto each
edge of the cuboid are less than or equal to these edges’ half-lengths. That is,
projAB(PM) ≤ 0.5 · ‖AB‖, projBC(PM) ≤ 0.5 · ‖BC‖ and projAA′(PM) ≤
0.5 · ‖AA′‖.8 9

A B

C
D

A'

D' C'

B'

P

M

Figure 3.2: A cuboid and a point which is outside of it.

3.1.3 Ray-Plane Intersection

Each plane can be written as (P − P0) · N = 0, where P and P0 are
two different points on the plane and N is its normal vector. The vector
between two arbitrary nonidentical points on the plane are perpendicular to
the normal vector. Thus, the dot product of this vector and the normal is
equal to 0. Each line may be written as O + t · D, where O is a point on a
line, t is an arbitrary real number and D is the direction. A ray is also a line,
but it has a start point. So, t in the ray equation may be only nonnegative.
Let P represents the intersection point between the ray and the plane, O
represents the ray’s origin and D represents the ray’s direction. So,

6Made with https://academo.org/demos/3d-vector-plotter/.
7The projection is a simple mathematical operation with the cosine function. See

https://en.wikipedia.org/wiki/Vector_projection.
8M is in the center. So, the projection of MP onto each edge is less then or equal to

half of the edge length if P is inside.
9When the projection onto AB is checked, it is redundant to check the projection onto

DC, A′B′ and D′C′. The same for the other edges.

19

https://academo.org/demos/3d-vector-plotter/
https://en.wikipedia.org/wiki/Vector_projection

3. Scene ..

P = O + tp · D,

(O + tp · D − P0) · N = 0,

tp · D · N + (O − P0) · N = 0,

tp =
−(O − P0) · N

D · N
.

As it was explained, tp must be nonnegative. If it is negative, the plane is
behind the ray’s origin. Figure 3.3 shows these designations.

Figure 3.3: Visualization of ray-plane intersection.

3.1.4 Line-Point Distance

Let O represents a line’s arbitrary point, D represents the line’s direction,
P represents the point to which we want to find the distance from the line
and Pc represents the closest point to P on the line10. O, P and Pc define a
triangle. From this triangle, we can obtain the rectangle OPcPPc

′. OP × D
is equal to the area SOPcP Pc

′ of OPcPPc
′. Another way to find the area

SOPcP Pc
′ is ‖PPc‖ · ‖OPc‖. Thus, the distance between the given line and

P , that is, ‖PPc‖, can be calculated as
SOPcP Pc′

‖OPc‖ . Figure 3.4 illustrates these
designations and helps to understand the steps.

10The vector between a point and the closest point on a line to it is perpendicular to
the line.

20

...................................... 3.1. Primitives

Figure 3.4: Visualization of line-point distance.

3.1.5 Line-Line Distance

Consider a line with direction L1 and a point P1 on it and another line
with direction L2 and a point P2 on it. These two lines define a plane. Its
normal vector N can be found as L1 × L2. The distance d between the lines
is the projection of P1P2 onto N . Thus, d = P1P2·(L1×L2)

‖L1×L2‖ . Figure 3.5 helps
to understand these steps.

Figure 3.5: Figure visualizing markings used to calculate the distance between
two lines.

21

3. Scene ..
3.1.6 Ray-Triangle Intersection

The most efficient way is to use the Möller–Trumbore ray-triangle inter-
section algorithm11. It is robust and perfectly suitable for ray tracing.

However, another algorithm was used previously. The first step was to
find intersection P with the plane in which a given triangle with points A, B, C
lies. Then, three triangles were created: PAB, PBC, and PCA. After it, the
algorithm calculated area SABC of triangle ABC and areas SP AB, SP BC , and
SP CA of triangles PAB, PBC, and PCA. If sum SP AB + SP BC + SP CA was
equal to SABC , this meant there was an intersection between the ray and the
triangle. Unfortunately, due to floating-point arithmetic, this algorithm is not
precise, it produces many holes. So, it can not be used. The Möller–Trumbore
ray-triangle intersection algorithm is much more accurate and does not cause
such errors.

3.1.7 Ray-Quadrangle Intersection

Each quadrangle is divided into two triangles and the ray-triangle inter-
section detection algorithm is used.

3.1.8 Ray-Arbitrary Horizontal Polygon Intersection

To detect an intersection between a ray and an arbitrary horizontal
polygon is not trivial. Normally, such polygons are cut into triangles. However,
it requires more memory. For this project, it is much better to have a single
polygon instead of triangles.

Two algorithms to detect such an intersection were found. They are
called the Crossing Number method and the Winding Number method12.

Of course, these algorithms may be used for nonhorizontal polygons,
that is, arbitrarily rotated in 3D space. The points of a polygon may be
transformed into a space in which the polygon is horizontal. Since the scene
has only horizontal polygons13, this transformation is not implemented.

3.1.9 Ray-Disk Intersection

To detect an intersection between a ray and a disk, it is required to
check if the ray intersects the plane in which the disk lies and to check if the
distance between the disk’s center and the intersection point of the ray and
the plane is less than the disk’s radius. Let C represents the disk’s center,
P represents the intersection point between the disk’s plane and the ray, r
represents the disk’s radius, D represents the ray’s direction and O represents
the ray’s origin. Then, the ray intersects the disk if and only if ‖P − C‖ < r
Figure 3.6 shows these designations.

11See [24].
12See [42].
13Arbitrary horizontal polygons are the bottom and upper parts of the buildings.

22

...................................... 3.1. Primitives

Figure 3.6: Visualization of ray-disk intersection.

3.1.10 Ray-Sphere Intersection

Intersections between rays and spheres are detected by using analytical
geometry. The algorithm using it turned out to be very precise.

Let O represents a ray’s origin, D represents the ray’s direction, C
represents a sphere’s center, r represents the sphere’s radius, P = O + tp · D
represents the intersection point between the ray and the sphere and Pc

represents the closest point to the sphere’s center on the ray. First, find the
distance between the ray and the sphere center which is equal to ‖PcC‖. If
it is greater than the radius, the ray does not intersect the sphere. Then,
find the distance between the ray’s origin and the sphere’s center which
is equal to ‖OC‖. The length of ‖PC‖ is equal to the radius. PcC is
perpendicular to the ray’s direction D14. Thus, ‖PPc‖ = r2 − ‖PcC‖2 and
‖OPc‖ = ‖OC‖2 − ‖PcC‖2. Now, we can obtain tp which is equal to ‖OP‖
as ‖OPc‖ − ‖PPc‖15. Figure 3.7 illustrates these designations.

But there is a simpler algorithm to do the same job. It is to use the
parametric equations of a line and a sphere. This method is very inaccurate
in terms of floating-point arithmetic and does not work with spheres with a
small radius.

14Because the vector between a point and the closest point on a line to it is perpendicular
to this line.

15Also, we can find the intersection point P ′ between the ray’s line and the sphere on
its other side as ‖OPc‖ + ‖P Pc‖, but we’re interested only in the closest intersection point.

23

3. Scene ..

Figure 3.7: Visualization of ray-sphere intersection.

3.1.11 Ray-Vertically Aligned Cylinder Intersection

To detect an intersection with such a primitive, it is required to check
an intersection with the covers of the cylinder (that is, disks) and its body.
As with the sphere, there is an algorithm using analytical geometry to check
an intersection with the cylinder’s body.

Let R represents a ray, O represents its origin, D represents the direction
of R, C represents the closest point between the cylinder’s center line, which
is marked with L, and R, r represents the cylinder’s radius, P = O + tp · D
represents the intersection point between R and the cylinder, Pc represents
the closest point to L on R. Then, assume the projection of R onto the plane
perpendicular to L. The new ray will be marked with R′. D′ = [Dx,0,Dz]

‖[Dx,0,Dz]‖

represents the direction of R′, C ′ represents a the closest point between L
and R′, P ′ = O + tp′ · D′ represents the intersection point between R′ and
the cylinder, P ′

c represents the closest point to L on R′. ‖P ′
cC

′‖ is the
distance between R′ and L. If it is greater than r, R does not intersect
the cylinder. ‖C ′P ′‖ is equal to r. Thus, ‖P ′

cP
′‖ = ‖P ′C ′‖2 − ‖P ′

cC
′‖.

P ′
cC

′ is perpendicular to D′. Hence, ‖P ′P ′
c‖ = r2 − ‖P ′

cC
′‖2 and ‖OP ′

c‖ =
‖OC ′‖2 − ‖P ′

cC
′‖2. Now, ‖OPc‖ = ‖OP ′

c‖
cos∠P ′OP

.16 Since this algorithm is used
to detect an intersection with a vertically aligned cylinder, it is required to
check y value of any possible intersection. It must be in some range which is
used for the current cylinder. Figure 3.8 helps to understand these steps.

16Again, we can find the intersection point P ′′ between the ray’s line and the cylinder

on its other side as ‖OP ′

c‖+‖P ′P ′

c‖
cos ∠P ′OP

, but we are interested only in the closest intersection
point.

24

................................ 3.2. Scene Data Preparation

Figure 3.8: Visualization of ray-cylinder intersection.

3.2 Scene Data Preparation

This section describes how the data which the rendering application uses
to create 3D objects is prepared. The project uses OpenStreetMap (OSM)17.
To process the OpenStreetMap data, I developed a program. It reads a file
with data exported from the OSM website and saves the required data in an
own simple format.

3.2.1 OpenStreetMap

OpenStreetMap is a free map that can be edited by any person. This
way of map maintaining allows people to obtain actual information about
the city infrastructure in our world. On the other hand, it may result in
inaccurate data. OSM allows exporting its map data in the XML format.

3.2.2 OpenStreetMap Data Representation

This project uses data about roads and buildings only. Other data is
not used.

In OSM, each building is represented by an ordered list of points that
define the building’s contour (polygon), a tag that defines what type of
building it is, and other information. Often, the buildings do not have
information about their height. Figure 3.9 visualizes building polygons in
Unity. Each color represents a single building.

Almost like the buildings, the roads are represented by two nodes, a tag
that defines the type of the road, and other information. The edge between

17See [4].

25

3. Scene ..
these two nodes defines the centerline of the road. Unfortunately, there is no
data defining the shape of the road. Figure 3.10 gives a visual example of
road edges. Each color represents a single road edge.

Figure 3.9: Visualization of building contours which can be retrieved from OSM.

Figure 3.10: Visualization of road edges which can be retrieved from OSM.

3.2.3 OpenStreetMap Data Processing

The rendering application requires some data which is used to create the
3D models. That is why there is an application to process OSM data. It uses

26

................................ 3.2. Scene Data Preparation

the OsmSharp library18. It allows to easily obtain data about building and
road nodes and other information and to store it for the required purposes.
Since rendering application is not able to generate the geometry of complex
objects, such as a church or buildings with nontrivial architecture; and OSM
has some data which are not required, such as data about crossings; it
is reasonable to ignore buildings and roads of some selected types19 when
processing a file.

There are many other works that solve the same or a similar problem -
the use of OSM to create a model of a city. For example, Xingjiang Yu solves
the problem of road network creation using the OSM data20. The article
Generating web-based 3D City Models from OpenStreetMap: The current
situation in Germany21 discusses the generation of city models based on
OSM.

Processing Data For Roads And Sidewalks

Because there is no information about the road shapes, this application
has to prepare it. For this purpose, it uses the nodes of roads that are
not crossings and the nodes of buildings. For each road edge, the program
produces either a convex quadrangle or no geometry if it is not possible to
create it22. Each road edge is assigned an initial width. The program makes
a rectangle from each road edge with this width and the edge’s length. Then,
it checks if any point of the rectangle lies inside any building’s polygon or
if any building’s node lies inside the rectangle. If so, the assigned width
is decreased and these steps are repeated until this width is less than the
selected threshold. If not, there is an edge road defined by this rectangle.
Then, the application creates the geometry for the crossings and adjusts
the roads’ rectangles so they are properly connected. Thus, the rectangles
become quadrangles23. If two road edges start at the same node, it only
adjusts the quadrangles so they are connected. If three or more edges start
at the same node, a joint road is created at this node. The program sorts all
edges of the node clockwise. Then, it calculates the intersection points of the
corresponding edges of these quadrangles. Using these intersection points,
the program adjusts the road quadrangles so they are connected properly.
The intersection points define a polygon. This polygon is used for the joint
road.

To prepare data for sidewalks, an additional simple thing is required.
This thing is to add a narrower rectangle inside the rectangle mentioned

18See [5].
19To remember, the buildings and the roads has tags. Entities with selected tags may

be ignored while reading a file.
20See [49].
21See [31].
22Often because the edge overlaps a building.
23Further, I use the word rectangle to describe figure which is assigned to a road edge at

the beginning. After, I use the word quadrangle to describe the assigned figure, because it
is not correct to use the word rectangle again since it is not actually a rectangle after the
adjustment.

27

3. Scene ..
above. When adjusting the shape of the bigger quadrangle, the program also
adjusts the shape of the narrower quadrangle. The described actions are
applied to both quadrangles. The space between the quadrangles is used for
sidewalks.

Figure 3.11 summarizes these steps. Figure 3.13 shows edges obtained
from OSM, rectangles created from the edges, and these rectangles trans-
formed into quadrangles which are connected to each other. Figure 3.12
shows a node at which three edges start, how the edges’ rectangles become
connected quadrangles, and what space is used for sidewalks...1. From each edge, create an inner and an outer rectangle using the forward and left

vector and the current width...2. If these rectangles overlap any building, decrease the current width and return to
the 1st step. Otherwise, proceed to the next step...3. For each node,

(a) If two edges start here, adjust the inner and the outer quadrangles of them
using the intersection points of the corresponding edges.

(b) If three or more edges start here,

(1) Sort the edges clockwise.

(2) Find the intersection points for the corresponding edges of each rectangle.

(3) Using these intersection points, adjust the points of the quadrangles.

(4) From these intersection points, create a polygon and use it for a joint road.

Figure 3.11: Steps of road and sidewalk creation.

(a) : The direction of road edge sorting
and the intersection points of the road
edges’ quadrangles.

(b) : The quadrangles are adjusted.
The place for the sidewalks is shaded in
white.

Figure 3.12: Figure explaining some steps of road and sidewalk creation.

28

................................ 3.2. Scene Data Preparation

(a) : There are edges only. (b) : There is an outer and an inner
rectangle for each edge created.

(c) : The shapes of the quadrangles
are adjusted. The space between the
quadrangle is used for sidewalks.

Figure 3.13: Process of road and sidewalk creation.

Simplification And Manual Editing

It is worth simplifying the obtained data, because it may reduce the
rendering time without unacceptable losses. If the angle between two road
edges is less than the selected threshold, these edges are merged into one.
Similarly, if the angle between two edges of a building’s polygon is less than
the selected threshold, they are merged into one. An example of simplification
is shown in figure 3.14. The first screenshot of the figure contains more nodes
than the second.

Sometimes, the described algorithm for road creation does not work,
because OSM data may be misleading or inaccurate. It may be difficult
to choose the types of roads and buildings which have to be ignored when
processing the file, because there is a large number of them. If the user sees
everything, they can understand what should be deleted or slightly edited.

29

3. Scene ..
For this purpose, there is a graphical user interface based on Unity which
allows to set the parameters for OSM data parsing and to manually edit the
parsed data.

(a) : No simplification.

(b) : The graph was simplified. Some nodes disappeared.

Figure 3.14: Figures showing graph simplification. The nodes are designated by
spheres.

30

....................................... 3.3. Objects

3.3 Objects

3.3.1 Buildings

There is a number of works that solve the problem of building geometry
creation. The main source of inspiration for me was a programming language
called CGA shape grammar24. Other works related to this topic are Wall
Grammar for Building Generation25, Advanced Procedural Modeling of Ar-
chitecture26 Instant Architecture27, Interactive sketching of urban procedural
models28.

In this project, a building is created from a polygon that defines its
contour. This polygon is extruded in the vertical direction. Hence, it is
easy to obtain the walls from the extruded polygon. The walls are used as
a basis for facades. The program tries to fit the facade parts into the walls.
A building polygon, the polygon after extrusion, and the extruded polygon
with a highlighted wall are shown in figure 3.15.

Facades

In real life, the ground floor may be used as a shop. Often, such shops
have big windows, because they need to have showcases. Based on the selected
probability, the program decides if the ground floor of a building will be a
floor with shops. If so, it takes initial shop window parameters: the size and
the distance between windows and adjusts them so the windows fit into the
wall.

There are two variants for the other floors of the building: they may
have windows only or windows with balconies. Like the shop windows, the
program takes initial parameters. However, in this case, it does not change
the size of the windows and the balconies29.

So, in this project, the ground floor of the building may have shop
windows or may not have. The other floors of the buildings and the ground
floor if it has no shop windows may have either windows only or windows and
balconies. Look at figure 3.17 to get an idea of what the facades look like.

Let us explain how the facades are created. The program has initial data
for a building: an extruded polygon. The walls of it are split into floors, the
floors are split into slots. To start the creation of a window or a balcony in a
slot, it is required to determine an initial rectangle within the slot which is
used as a basis for the window or balcony geometry. The initial rectangles are

24See [14, CGA].
25See [20].
26See [38].
27See [48].
28See [25].
29In the case of the shop windows, they are big and they look realistic with whatever

size. So, a shop window may have its size either 2 m × 4 m or 2.5 m × 5 m and it looks good.
But in the case of the windows on the other floors, that is, the windows for apartments,
they should have a determined size.

31

3. Scene ..
featured in figure 3.16. Based on the predetermined values, the program uses
this rectangle and its normal vector to create the 3D geometry. Figure 3.18
explains how the walls are split and how the initial rectangles are prepared
for windows and balconies, figures 3.19 and 3.20 show steps of window and
balcony creation from the initial rectangles. Figure 3.21 visualizes the steps
of how the facade with windows and balconies is created from a wall30.

The algorithm of facade creation is used for both geometry representa-
tions. The difference is that for the traditional geometry representation, the
geometry is created once and it is stored in the memory.

(a) : The building
polygon.

(b) : The polygon after
extrusion..

(c) : The extruded
polygon with a high-
lighted wall.

Figure 3.15: Figure showing a building polygon, the polygon after extrusion
and the extruded polygon with a highlighted wall.

Figure 3.16: Figure demonstrating initial rectangles for windows and balconies.

30See appendix D for the images in a larger resolution.

32

....................................... 3.3. Objects

(a) : Windows only.

(b) : Windows and balconies.

(c) : Windows, balconies, and shop windows.

Figure 3.17: Figure showing the facades used in the project.

Having a polygon of a building,..1. For each wall, split it into floors and cut some space at the wall’s top and the bottom
edges if needed...2. For each floor, split it into slots and cut some space at the wall’s edges if needed...3. For each slot,

(a) Determine an initial rectangle for a window and create the window geometry.

(b) Determine initial rectangles for 2 windows and 2 balconies. Create the geometry
for the windows and the balconies.

Figure 3.18: Steps explaining how a building wall is split and how are prepared initial
rectangles for windows and balconies.

33

3. Scene ..

From a determined initial rectangle Rinitial, to create a window,..1. Intrude a copy of Rinitial inside of the polygon by a given distance using its normal
vector and remove Rinitial...2. Use the intruded rectangle Rglass for the glass.

• Rinitial (imagine it was not removed) and Rglass define a cuboid. Its walls
except the wall corresponding to Rinitial (because it was actually removed)
should have the same material as the building’s wall...3. Intrude a copy of Rglass inside by a given distance.

• Rglass and the new rectangle Rroombg
define a cuboid. Its walls except the walls

corresponding to Rglass should have a room material.

Figure 3.19: Steps explaining how a window is created from an initial rectangle.

From a determined initial rectangle Rinitial, to create a balcony,..1. Determine a rectangle Rinitial within a building’s wall...2. Cut horizontally a copy of Rinitial into two rectangles Rglass (upper) and Rfencefg

(lower)...3. Use Rglass for the glass...4. Use Rfencefg
to create the fence...5. Intrude a copy of Rfencefg

inside by a given distance which is equal to the thickness
of the fence.

• Rfencefg
and the new rectangle Rfencebg

define a cuboid. Its walls should have
a fence material...6. Intrude Rinitial inside by a given distance and remove it.

• Rinitial (imagine it was not removed) and the new rectangle Rbalconybg
define

a cuboid. Its walls except the wall corresponding to Rinitial should have a
balcony material.

Figure 3.20: Steps explaining how a balcony is created from an initial rectangle.

34

....................................... 3.3. Objects

(a) : An initial wall which is used
to create the geometry of the fa-
cade.

(b) : The wall is split into floors.

(c) : Some space at the wall’s edges
is cut. A floor is split into slots.

(d) : Initial rectangles for windows
and balconies.

(e) : The rectangles were intruded. (f) : The geometry for the win-
dows and the balconies is cre-
ated.

(g) : The geometry near from the
front side.

(h) : The geometry near from the
back side.

Figure 3.21: Figure showing how to create the facade with windows and bal-
conies.

35

3. Scene ..
In the implementation, the walls of the buildings have tile textures. UV

mapping is explained further in section 3.4. The other facade parts have a
uniform color.

Building Intersection Program

This part of the text explains how the intersection program for the
building works31. First, the program checks if there is an intersection with
the covers of the building’s initial polygon. Then, it checks if there is an
intersection with the building’s facade. That is, the geometry has to be
created. The geometry created on wall Wi may be bounded by a box. The
program checks if the ray intersects the bounding box of the wall’s geometry
or its origin lies inside of it32. If not, the ray can not intersect the geometry
of Wi. In this case, it is irrational to create the geometry, because it is a
waste of time. If the ray intersects the bounding box or it lies inside of it,
the geometry on this wall has to be created. The program splits the wall and
creates windows or/and balconies. Then, the program checks an intersection
with primitives belonging to the windows and balconies only. If there is no
intersection with any window and balcony, there may be an intersection with
the parts of Wi which do not belong to the windows and balconies. If there is
an intersection with such a part, it must lie within Wi. Thus, it is enough to
check if the ray intersects Wi, there is no need to check an intersection with
these parts separately33. Figure 3.22 summarizes the steps of the ray-building
intersection detection and algorithm 7 shows pseudocode for these steps.

Having the polygon of a building,..1. Check if there is an intersection with the covers of the polygon.

• If so, report the intersection, stop and ignore the next steps...2. Iterate through the walls of the polygon.

(1) Create a bounding box for the geometry on Wi and check if there is an intersection or if
the ray’s origin is inside of it.

• If not so, proceed to the next wall.

(2) Create the geometry for the windows and balconies on each wall Wi of the polygon and
check if there is an intersection.

• If so, report the intersection, stop for Wi, ignore the next step, and proceed to the
next wall.

(3) Check if there is an intersection with Wi.

• If so, report the intersection and proceed to the next wall.

Figure 3.22: Steps to detect an intersection between a ray and a building.

31Remember that OptiX API requires implementing the function which detects intersec-
tions.

32This is an optimization to reduce the rendering time.
33It is another optimization.

36

....................................... 3.3. Objects

Algorithm 7 The function to detect an intersection between a ray and a building.

1: function RAY_BUILDING_INTERSECTION(ray, ext_pgn)
2: P = (0, 0, 0) ⊲ A variable for the possible intersection point.
3: if INTERSECTION(P, ray, ext_pgn.upper_cover) then
4: REPORT_INTERSECTION(P)
5: return
6: if INTERSECTION(P, ray, ext_pgn.lower_cover) then
7: REPORT_INTERSECTION(P)
8: return
9: for each wall Wi in ext_pgn.walls do

10: box = CREATE_BBOX_FOR_GEOMETRY(Wi)
11: if not (INTERSECTION(P, ray, box) or INSIDE(ray, box)) then
12: continue
13: G = CREATE_GEOMETRY(Wi)
14: if INTERSECTION(P, ray, G) then
15: REPORT_INTERSECTION(P)
16: continue
17: if INTERSECTION(P, ray, Wi) then
18: REPORT_INTERSECTION(P)

3.3.2 Street Lamps

A street lamp consists of three parts: a bulb, a stand, and a glass. The
stand is represented by a cylinder. The bulb and the glass are represented by
spheres slightly cut off at the bottom (truncated spheres).

The program does not support the street lamps stored in the memory
as triangles. The main reason why not to store is that all parts of the street
lamp are rounded. Triangulation would produce a less realistic and beautiful
object.

All parts of the street lamp have a uniform color.

Street Lamp Intersection Program

The detection of a ray-street lamp intersection requires checking if there
is an intersection with the cylinder and with the truncated spheres. To detect
an intersection with a truncated sphere, the program checks if there is an
intersection with the whole sphere. If so, it checks y value. y value of the
whole sphere is in range [ymin, ymax]. But the truncated sphere’s y value is in
range [ycut, ymax], because it is cut off at the bottom. Figure 3.23 summarizes
these steps.

37

3. Scene ..

Having the data for a street lamp,..1. Create a sphere and check if there is an intersection. y value for all
points of the sphere is in the range [ymin, ymax].

• If so, check if y value of the intersection point is in the range
[ycut, ymax]. In this case, report the intersection...2. Create a cylinder and check if there is an intersection.

• If so, report the intersection.

Figure 3.23: Steps to detect an intersection between a ray and a street lamp.

3.3.3 Roads

As it was mentioned above, there are edge roads and joint roads. The
edge roads are extruded quadrangles. The joint roads are extruded arbitrary
polygons. Hence, the detection of a road-ray intersection is trivial. Each edge
road may have a texture, but it does not have if it is too narrow. The joint
roads and narrow edge roads have a uniform color.

Edge Road Texturing

Textures for the edge roads are created procedurally at run time. Ac-
tually, the program does not use UV mapping in this case. It uses a special
algorithm which is explained here.

The program starts with quadrangle ABCD of an edge road and cre-
ates rectangle A′B′C ′D′ which is the biggest rectangle that may fit into
ABCD. The edges of ABCD may be divided into the left - DC -, right -
AB -, start - AD -, and end - BC. The same for A′B′C ′D′: D′C ′, A′B′,
A′D′ and B′C ′. The program finds middle points Ms and Me on the start
and end edges. From these points, it creates the forward vector vf as
normalize(Me − Ms). In 2D space, it is possible to find the left vector vl

from vf as normalize([−vfx
, 0, vfz

]). The left and right edges of A′B′C ′D′

are equal to the corresponding edges of ABCD. The start and end edges
have the same orientation as vl. From the points A, B, C and D of ABCD.
The program determines which points of A′B′C ′D′ lie inside of ABCD34 35.
Then, the program takes the initial parameters for road marking lines: the
widths and the distances between them. Then, rectangle A′B′C ′D′ is used
for texturing. It is trivial to split the rectangle into stripes36. Based on

34Two points of A′B′C′D′ are the same as two points of ABCD, but the other two
points lie inside ABCD.

35The points are determined by the dot products of vectors MsA, MsB] and vf . That is,
dot(MsA, vf) and dot(MsB, vf). The signs of the dot products say which points are inside.

36Points A′ and B′ are moved in the direction of vl.

38

............................ 3.4. Tile Textures And UV Mapping

it, the program determines how many lanes fit into it and how many road
marking lines may be there and adjusts the distances between them. Each
road marking line has the form of a rectangle. The program starts at a point
of ABCD and in a for-loop, checks if the intersection point lies inside any
road marking line. If not, it uses the asphalt color. Figure 3.24 visualizes the
designations for the road texturing.

C'

B'

Me
Ms

B

C
D

AA'

D'

vf

vl

Figure 3.24: Figure visualizing the designations for the road texturing.

3.3.4 Sidewalks

Sidewalks are similar to the edge roads: they are extruded quadrangles.
They have no texture, just a uniform color.

3.3.5 Terrain

The terrain in the project is a cuboid with a tile texture.

3.4 Tile Textures And UV Mapping

In this project, tile textures are used for the buildings and terrain. A
tile texture is a type of texture that is repeated within a surface. Hence, such
a texture has to be seamless. An example of such a texture and a screenshot
from the rendering application is shown in figure 3.25. Each tile texture in

39

3. Scene ..
this project has parameters th and tv which define how frequently it should
be repeated within a face. For example, if th is 1, a texture would repeat
every meter in the horizontal direction.

There are two ways how to map an intersection point into a tile texture.
One is used for the procedural geometry representation, the other is used for
the traditional one.

(a) : The screenshot of the tile texture.

(b) : The tile texture37.

Figure 3.25: Figure showing a tile texture and a screenshot from the rendering
application with it.

37Taken from [3].

40

............................ 3.4. Tile Textures And UV Mapping

3.4.1 UV Mapping And Procedural Geometry

An intersection point has coordinates ph and pv in a plane defined by
the face. These coordinates are the distances from the plane edges. They are
visualized in figure 3.26. Algorithm 8 is used to get a color from the texture.

(a) : The cube and the intersection point.

p
h

p
v

(b) : ph and pv values of the intersection point.

Figure 3.26: Figure showing a cube, an intersection point on it (the white point)
and ph and pv values for UV mapping.

Algorithm 8 The function for UV mapping for tile textures.
This function maps each coordinate of an intersection point into a tile texture.
value is ph or pv, that is, the distance from a plane edge.
t is th or tv.
It returns a value in the range [0, 1].

1: function UV_MAP(value, t)
2: value = value mod t
3: value = value/t ⊲ convert from [0, t] to [0, 1]
4: return value

3.4.2 UV Mapping And Geometry Stored In The Memory

If the geometry is not created at run time, the UV coordinates for each
vertex are stored in the memory. They do not have to be in range [0, 1],
because the texture has to be repeated. If a ray intersects a triangle ABC,
the intersection point P may be written as P = A + bx · AB + by · AC.
The coordinates [bx, by] are called barycentric coordinates38. The points
A, B and C have UV coordinates Auv = [Auvx , Auvy], Buv = [Buvx , Buvy]
and Cuv = [Cuvx , Cuvy]. So, the UV coordinates for P may be found as
Puv = Auv + bx · AuvBuv + by · AuvCuv. Then, algorithm 8 is used to get a

38See [6, Volume 1: Foundations of 3D Rendering, Ray Tracing: Rendering a Triangle].

41

3. Scene ..
color from the texture. In the case when it is required to texture a building’s
wall or the terrain, ph and pv values, which are shown in figure 3.26, are used
as the UV coordinates. The building’s wall is cut into triangles. For each
vertex of each triangle, ph and pv values are calculated and stored in memory.

3.5 Skydome

3.5.1 Textures

The skydome uses textures to make the environment more realistic. The
program loads them from files and procedurally generates one: a texture of a
night sky. Such a texture is a black texture with white points - stars. An
example of it is shown in figure 3.27 and the algorithm 9 explains how the
texture is created.

Figure 3.27: Figure showing a texture of a night sky.

Algorithm 9 The function to create a texture of a night sky.

1: function CREATE_NIGHT_SKY(width, height, star_density)
2: texture = new Texture(width, height)
3: for y in range(0, height) do
4: for x in range(0, width) do
5: r = RANDOM_FLOAT.RANGE(0, 1)
6: if r < star_density then
7: texture[x, y] = black_color
8: else
9: texture[x, y] = white_color

10: return texture

42

........................ 3.6. Special Techniques For Lighting At Night

3.5.2 UV Mapping

If a ray hits the skydome, its direction is used to calculate the UV
coordinates for the hit point. To calculate v value, y coordinate of the
direction is normalized39. To calculate u value, it is necessary to use x and
the z coordinates. The most suitable way for this purpose is to use the
atan240 function. Figure 3.28 shows what it exactly does. When we have
this angle, we have to normalize it. Then, we have u and v coordinates for
the texture.

Figure 3.28: Visualization of the function atan2.

Algorithm 10 The function for UV mapping for the skydome.

1: function UV_MAP_FOR_SKYDOME(ray_dir)
2: v = ray_dir.y ∗ 0.5 + 0.5 ⊲ The direction is normalized, y ∈ [−1, 1]
3: u = 0.5 + (atan2(ray_dir.x, ray_dir.z)/(2 ∗ PI))
4: return u, v

3.6 Special Techniques For Lighting At Night

3.6.1 Increase Of Street Lamp Influence

Street lamps are small objects. Therefore, it is hardly possible to hit
one and they have almost no influence.

To increase the influence of the street lamps, each of them has an auxiliary
object: a collider. Each collider stores information about to which street lamp
it belongs. If a ray hits a collider, the algorithm casts the ray again, but in

39Transformed so it is in range [0, 1].
40See https://en.wikipedia.org/wiki/Atan2.

43

https://en.wikipedia.org/wiki/Atan2

3. Scene ..
the direction towards the street lamp and ignoring the other colliders41. The
colliders are placed slightly above the street lamps. Experiments showed that
this position produces the best result. Figure 3.29 shows how the colliders
would look if they were rendered: the black cubes. In the implementation,
the size of the colliders is variable and the user can change it.

This method has two significant disadvantages. First, if an object has a
mirror-like material, the direction of reflection is not random. As a result,
the collider is reflected in this object. To prevent this artifact, the rays
ignore the colliders if they are reflected from a mirror-like material. However,
the street lamps don’t have any influence again. The second, if a collider
overlaps another object in the scene. In this case, all rays from the points
on the overlapped part will be redirected to the street lamp. It results in
a situation when there is a visible border between the overlapped part and
the nonoverlapped part. They will be lit differently. The easiest way how to
prevent this is to place all colliders properly so they overlap nothing.

Another way is to add some emissive energy to the glass sphere if the
ray does not have a direct influence on a pixel42. Let us call it the street lamp
secondary emissive energy factor. Thanks to it, the surrounding area of each
street lamp is lit more. In the implementation, this parameter is variable and
the user can adjust it.

Figure 3.30 shows all these methods in different variants: with the
colliders, without them, with the secondary emissive energy factor, and
without it.

Figure 3.29: Figure showing rendered street lamp colliders.

41If the rays did not ignore the colliders after recasting, it would result in an infinite
loop.

42Look at 2.4 to remember what it means.

44

........................ 3.6. Special Techniques For Lighting At Night

(a) : No colliders, the street lamp emis-
sive color is [1.0, 1.0, 1.0], and the sec-
ondary emissive energy factor 0.0.

(b) : No colliders, the street lamp emis-
sive color is [2.0, 2.0, 2.0], and the sec-
ondary emissive energy factor 1.0.

(c) : Colliders, the street lamp emissive
color is [1.0, 1.0, 1.0], and the secondary
emissive energy factor 0.0.

(d) : Colliders, the street lamp emissive
color is [1.5, 1.5, 1.5], and the secondary
emissive energy factor 0.0.

(e) : Colliders, the street lamp emissive
color is [1.5, 1.5, 1.5], and the secondary
emissive energy factor 0.2.

(f) : Colliders, the street lamp emissive
color is [1.5, 1.5, 1.5], and the secondary
emissive energy factor 0.5.

45

3. Scene ..

(g) : Colliders, the street lamp emissive
color is [2.0, 2.0, 2.0], and the secondary
emissive energy factor 2.0.

(h) : Colliders, the street lamp emissive
color is [3.0, 3.0, 3.0], and the secondary
emissive energy factor 3.0.

Figure 3.30: Figure demonstrating the methods to increase the influence of
street lamp lighting.

3.6.2 Emissive Color Of Windows

A window is a light source43, but light intensity within its surface is not
uniform. In some places it is brighter, in other places, it is darker. There
is a great way how to simulate such a property - to use a texture of Perlin
noise44. Article Understanding Perlin Noise45 explains what Perlin noise is
in a simple way. An example of such a texture is shown in figure 3.31. Figure
3.33 shows a render of a window.

Figure 3.31: A Perlin noise texture.46

43In this project, room walls are light sources. Look at figure 3.19 to remember how the
window geometry is created.

44See [34], [33].
45See [11].
46Created by https://cpetry.github.io/TextureGenerator-Online/.

46

https://cpetry.github.io/TextureGenerator-Online/

........................ 3.6. Special Techniques For Lighting At Night

Perlin noise functions give values in interval [−1, 1]. However, in this applica-
tion, negative values are not possible for colors. Also, the user may want to
have the right border of the interval greater than 1. Therefore, the Perlin
noise values must be remapped to another interval [pmin, pmax]. The borders
are variable in the implementation. However, if pmax is small, the windows
are dim. If it is big, the scene is overlit, that is, there is too much light and
the image does not look like a night. To avoid this problem, the Perlin noise
value should be multiplied by value f , which is also a variable parameter in
the implementation, if the ray does not have a direct influence on a pixel.47 48

Let us call it the window emissive energy factor. To make the described steps
more understandable, they are summarized in figure 3.32. Figure 3.34 shows
examples with different settings.

Because of the target of this project, Perlin noise textures are not stored
in the memory and created in run time. Thanks to it, each window in the
scene has a unique Perlin noise texture. The rendering program uses an
open-source library cudaNoise49 to generate these textures...1. Call the Perlin noise function to get a value at the required position in

the texture. This value is in interval [−1, 1]...2. Remap the value to interval [pmin, pmax]...3. If the ray does not have a direct influence on the pixel, multiply the
value by window emissive energy factor f .

Figure 3.32: Steps value from the Perlin noise texture values modification.

Figure 3.33: Figure showing a window with a Perlin noise texture.

47Look at 2.4 to remember what it means.
48This multiplication may seem like a bug of the rendering algorithm, but actually, it is

not so. In real life, a small bulb in the room makes the whole space lit. In the window, we
see it. But in this project, the whole room is considered as a light source. It is much bigger
than the bulb. So, it is necessary to somehow adjust the influence of the window lighting.

49See [22].

47

3. Scene ..

(a) : The Perlin noise values are in
range [0.0, 1.0] and the window emissive
energy factor is 0.0.

(b) : The Perlin noise values are in
range [0.0, 1.0] and the window emissive
energy factor is 1.0.

(c) : The Perlin noise values are in
range [0.0, 2.0] and the window emissive
energy factor is 0.5.

(d) : The Perlin noise values are in
range [0.25, 2.5] and the window emis-
sive energy factor is 0.1.

Figure 3.34: Figure showing renders with different settings for the windows.

48

Chapter 4

Results

This chapter provides measurements of memory consumption and the
rendering time for each geometry representation, measurements of how the
Perlin noise texture generation and the road texturing influence the rendering
time, how the path tracing parameters influence it and the image. The project
was developed and tested with the graphics card Nvidia GTX 10701, which
has 8GB of memory. The rendering application was tested on the scenes
listed in table 4.1.

№ Name Size Buildings Road pieces Street lamps

1. Prague Zličín 958 m x 672 m 49 117 227

2. Belgrade 1736 m x 2313 m 570 373 420

3. New York 2230 m x 1497 m 778 316 514

4. Berlin 2123 m x 1507 m 672 457 1406

5. Krasnoyarsk 4922 m x 3668 m 1384 1981 4869

Table 4.1: Scenes used for tests.

These scenes have a fixed number of objects, but it is possible to use various
ranges of building heights in them. That allows making more different
comparisons. Figure 4.1 shows the number of triangles in each scene for the
average building height 40 m and 80 m to help to understand how complex
the scenes are.

The sections below provide information about the used scenes and
parameters. Unless otherwise stated, there was used 1 ray per pixel, the
depth of Russian Roulette was 3 and its probability was 0.5.

1https://www.nvidia.com/en-gb/geforce/graphics-cards/geforce-gtx-

1070/specifications/

49

https://www.nvidia.com/en-gb/geforce/graphics-cards/geforce-gtx-1070/specifications/
https://www.nvidia.com/en-gb/geforce/graphics-cards/geforce-gtx-1070/specifications/

4. Results

Figure 4.1: The number of triangles in each scene for the average building height
40 m and 80 m.

4.1 Memory Consumption

This section compares how memory consumption differs when using the
traditional geometry representation or the procedural one.

The more the average building height is, the more vertices the buildings
have. Hence, they require more memory. The amount of memory required
for procedural geometry generation does not depend on the average building
height. Thanks to it, it is constant for whatever value. The differences in the
approximated amounts of memory required for each geometry representation
are significant: the procedural geometry representation may require slightly
more than 1 MB, but the traditional one may require thousands of MB. In
some tests, it was impossible to store the geometry in the memory. If the
geometry was created procedurally, there was not such a problem.

Belgrade

Figure 4.3 shows how the number of triangles depends on the average
building height in Belgrade, and figure 4.2 shows an approximation of the
required amount of memory for this scene.

50

.................................4.1. Memory Consumption

Figure 4.2: Approximation of the required
amount of memory in Belgrade for each geom-
etry representation with various average build-
ing heights.

Figure 4.3: Dependence of the number of tri-
angles on the average building height in Bel-
grade.

New York

In this test in New York, the average height was 180 m. The scene
contains a big number of large buildings. Due to these reasons, the geometry
required a greater amount of memory than the graphics card had. So, it
was impossible to perform tests with the traditional geometry representation
and the tests were with the procedural one. Since the amount of required
memory for procedural geometry representation does not depend on the
average building height, it does not make sense to perform measurements for
various values. Figure 4.4 shows an approximation of the amount of memory
required to store the scene objects.

Prague Zličín

Figure 4.5 shows an approximation of the required amount of memory
for the scene Prague Zličín. The results are similar to Belgrade. However,
the amount of memory required to store the geometry is less, because the
number of buildings is less.

51

4. Results

Figure 4.4: Approximation of the amount of
memory required to store the scene objects
in New York when the geometry is created
procedurally.

Figure 4.5: Approximation of the required
amount of memory in Prague Zličín for each
geometry representation with various average
building heights.

Memory Consumption In Several Scenes

This paragraph provides charts of used memory in several scenes for
each geometry representation. The left part of figure 4.6 shows data for
the traditional geometry representation and the right part shows data for
procedural. With the procedural geometry representation, used memory in
Berlin is more than in New York. However, with the traditional geometry
representation, the difference was the opposite. It was caused by a higher
number of street lamps.

(a) : Traditional geometry representation. (b) : Procedural geometry representation.

Figure 4.6: Used memory in several scenes with the average building height 40
m for each geometry representation.

52

.................4.2. Rendering Time Dependence On Geometry Representation

Dependence Of Memory Consumption On The Number Of
Buildings

The more the number of buildings is, the more they require regardless
of the geometry representation. The dependencies of the amount of used
memory on the number of buildings for each geometry representation with
the average building height 40 m are demonstrated in figure 4.72.

(a) : Traditional geometry representation. (b) : Procedural geometry representation.

Figure 4.7: Dependence of memory consumption on the number of buildings for
each geometry representation.

4.2 Rendering Time Dependence On Geometry

Representation

This section provides comparisons of how the rendering time depends on
the geometry representation. In contrast to memory consumption, procedural
generation requires significantly much more time to render a frame. Again,
there is a dependence on the average building height, because it influences
how many vertices are stored in the memory and how many primitives have
to be created at run time.

Belgrade

In the first test Belgrade, the average building height was 27 m. The ge-
ometry was stored in the memory, not created procedurally. It was performed
from 3 views from different positions which are shown in figure 4.10. Figure
4.8 shows how the rendering time differs for both the geometry representations
from the mentioned views.

2The amounts of used memory for a different number of buildings were measured. Then,
the lines to show the dependencies were found by the method of least squares.

53

4. Results
In the second test, there was measured how the rendering time depends

on the average building height for each geometry representation. For both of
them, the dependence looks sublinear. Figure 4.9 shows graphs for this test.

Figure 4.8: Comparison of the rendering time for two geometry representations
in Belgrade with views from different positions.

(a) : Traditional geometry representation. (b) : Procedural geometry representation.

Figure 4.9: Dependence of the rendering time on the average building height
for each geometry representation in Belgrade.

54

..............4.3. Rendering Time Dependence On Perlin Noise Texture Generation

(a) : View 1. (b) : View 2.

(c) : View 3.

Figure 4.10: Views in Belgrade.

4.3 Rendering Time Dependence On Perlin Noise

Texture Generation

Since Perlin noise textures are created at run time for each window, it
is obvious that it influences the rendering time. When a window has lights
off, no texture is created. Hence, the more windows have lights on, the
longer the rendering time. The more the average building height is, the more
windows the scene has. The tests below show that the generation of a Perlin
noise texture has a small influence on the rendering time. In cases with the
procedural geometry representation, it has no noticeable influence, because
the generation of the geometry requires much time.

Belgrade

The test was performed on two variants of the scene Belgrade: with the
average building height 30 m and 61 m. The first variant had 92716 windows,

55

4. Results
the second had 195431 windows. The geometry was stored in the memory.
The camera was in the same position and had the same direction. Since
the second variant had more vertices, the rendering time there was greater
than in the first case. The dependencies in the tests are shown in figure 4.11.
They look similar. However, in the first variant, the increase was 27% of the
rendering time, but in the second variant, it was 22%. Figure 4.12 compares
how these variants differ visually. Figure 4.13 shows how the first variant
looks like with a different number of windows with lights on.

Figure 4.11: Dependence of the rendering time on the number of windows with
lights on in Belgrade.

(a) : Average building height 30 m. (b) : Average building height 61 m

Figure 4.12: Visual comparison of two variants of Belgrade used for the test.

56

..............4.3. Rendering Time Dependence On Perlin Noise Texture Generation

(a) : 25% of windows has lights on. (b) : 50% of windows has lights on.

(c) : 75% of windows has lights on. (d) : 100% of windows has lights on.

Figure 4.13: Visual comparison of a different number of windows with lights on
in Belgrade with the average building height 30 m.

New York

In this test in New York, the average building height was 180 m. The
test was performed with the procedural geometry representation. Since the
scene contains a big number of buildings and they are large and tall, there is
much geometry to create and the creation takes a lot of time. Figure 4.14
shows how the rendering time depends on the number of windows with lights
on. The rendering time in the case with no window with lights on is greater
than in the case with all windows with lights on. That means the creation of
a Perlin noise texture has an imperceptible influence on the rendering time.
The generation of the geometry takes more time. Thus, the generation of the
Perlin noise texture is not visible in the graph.

57

4. Results

Figure 4.14: Dependence of the rendering time on the number of windows with
lights on in New York.

Berlin

In the scene Berlin, there were performed tests for each geometry repre-
sentation. In both, the average building height was 27 m. The dependence
for each geometry representation is shown in figure 4.15. In the first case,
the graph is similar to the graph in the test in New York, in which the
procedural geometry representation was used. In the second case, the graph is
similar to the graph in the test in Belgrade, in which the traditional geometry
representation was used.

(a) : Procedural geometry representation. (b) : Traditional geometry representation.

Figure 4.15: Dependence of the rendering time on the number of windows with
lights on in Berlin for each geometry representation.

58

..................... 4.4. Rendering Time Dependence On Road Texturing

4.4 Rendering Time Dependence On Road
Texturing

Since the textures for the roads are created at run time, it is likely that
it influences the rendering time. This section provides measurements of how
the rendering time differs. They shows that it is not increased too much. The
road texturing has a small influence on it3.

Berlin

This test was performed in Berlin. The difference in the rendering time is
shown in figure 4.16. The test was done from the view which is demonstrated
in figure 4.17.

Figure 4.16: Rendering time difference between the procedural road texturing
and the use of textures stored in the memory in Berlin.

Figure 4.17: View used in the test with the road texturing in Berlin.

3In this section, I mention textures stored in the memory. Actually, the program does
not support it. I suppose that the use of the textures stored in the memory has constant
complexity and it is approximately equal to the use of a uniform color.

59

4. Results
Belgrade

In the scene Belgrade, two tests were performed. The results of them
are shown in figure 4.18. Figure 4.19 shows the used views.

(a) : View 1. (b) : View 2.

Figure 4.18: Rendering time difference between the procedural road texturing
and the use of textures stored in the memory in Belgrade.

(a) : View 1. (b) : View 2.

Figure 4.19: Views used in the tests of road texturing in Belgrade.

60

.................. 4.5. Influence Of Street Lamp Colliders On Rendering Time

Prague Zličín

This test was performed in the scene Prague Zličín. The difference in the
rendering time is shown in figure 4.20. The test was done from the view which
is demonstrated in figure 4.21. In this case, the procedural road texturing
took less time. However, the difference is insignificant.

Figure 4.20: Rendering time difference be-
tween the procedural road texturing and the
use of textures stored in the memory in Prague
Zličín.

Figure 4.21: View used in the test of road
texturing in Prague Zličín.

4.5 Influence Of Street Lamp Colliders On

Rendering Time

This section provides measurements of how the use of the street lamp
colliders influences the rendering time. The performed tests showed that it is
increased slightly.

Berlin

In the test in Berlin, the average building height was 27 m. The test
was performed from the view shown in figure 4.23. The results are featured
in figure 4.22.

61

4. Results

Figure 4.22: Rendering time difference with
the street lamp colliders and without them in
Berlin.

Figure 4.23: View for the test of the street
lamp colliders in Berlin.

Krasnoyarsk

In the test in Krasnoyarsk, the average building height was 35 m. The
view for this test is shown in figure 4.25. The results are featured in figure
4.24.

Figure 4.24: Rendering time difference with
the street lamp colliders and without them in
Krasnoyarsk.

Figure 4.25: View for the test with the street
lamp colliders in Krasnoyarsk.

62

.................4.6. Rendering Time Dependence On Path Tracing Parameters

4.6 Rendering Time Dependence On Path
Tracing Parameters

Such path tracing parameters as the number of samples per pixel, the
Russian Roulette depth, and the Russian Roulette probability influence the
image and the rendering time. This section provides measurements and tests
with them.

4.6.1 Number Of Samples Per Pixel

This section shows how the rendering time depends on the number of
samples per pixel. As expected, the greater the number is, the greater the
rendering time is.

Belgrade

In the scene Belgrade, the average building height was 27 m, the geometry
was stored in the memory. Figure 4.26 shows the dependence in this scene
variant. Figure 4.27 shows the view from which the test was performed.

Figure 4.26: Dependence of the rendering time
on the number of samples in Belgrade.

Figure 4.27: View in Belgrade.

4.6.2 Russian Roulette Depth

This section shows how the rendering time depends on the Russian
Roulette depth. As with the number of samples per pixel, the greater the
depth is, the greater the rendering time is.

63

4. Results
Belgrade

In this test in Belgrade, there was used the same scene variant and the
same view as in 4.6.1. The results are shown in figure 4.28.

4.6.3 Russian Roulette Probability

This section shows how the rendering time depends on the Russian
Roulette probability. The lower the probability is, the greater the rendering
time is.

Belgrade

Again, in this text in Belgrade, there was used the same scene variant
and the same view as in 4.6.1. The results are shown in figure 4.29.

Figure 4.28: Dependence of the rendering time
on the Russian Roulette depth in Belgrade.

Figure 4.29: Dependence of the rendering time
on the Russian Roulette probability in Bel-
grade.

4.7 Image Dependence On Path Tracing

Parameters

This section provides tests of the image dependence on the number of
samples per pixel, the Russian Roulette depth, and the Russian Roulette
probability.

4.7.1 Number Of Samples Per Pixel

The number of samples per pixel influences how noisy the picture is.
Figure 4.30 compares images with 1 sample, 5 samples, 10 samples, and 100
samples.

64

..................... 4.7. Image Dependence On Path Tracing Parameters

(a) : 1 sample per pixel. (b) : 5 samples per pixel.

(c) : 10 samples per pixel. (d) : 100 samples per pixel.

Figure 4.30: Visual comparison of a different number of samples.

4.7.2 Russian Roulette Depth

The Russian Roulette depth has a big influence on the amount of noise.
Especially, it is more visible on the glass material. Figure 4.31 compares
images with a different Russian Roulette depth. In the first image, the depth
was 3. In the second, it was 30. Also, the number of samples per pixel was 5
and the images were not denoised in any other way.

4.7.3 Russian Roulette Probability

The Russian Roulette probability also has an influence on the amount
of noise, which is better visible on the glass material. Figure 4.32 shows how
the images differ with a different Russian Roulette probability.

65

4. Results

(a) : The Russian Roulette depth
is 3.

(b) : The Russian Roulette depth
is 30.

Figure 4.31: Visual comparison of a different Russian Roulette depth.

(a) : The Russian Roulette prob-
ability 0.01.

(b) : The Russian Roulette prob-
ability 0.5.

(c) : The Russian Roulette prob-
ability 0.99.

Figure 4.32: Visual comparison of a different Russian Roulette probability.

66

............................... 4.8. Comparison With Photos

4.8 Comparison With Photos

This section compares renders from the application with real photos. It
shows that the rendering application is able to create pretty realistic models
of cities and simulate lighting effects well.

Figure 4.33: Render.

Figure 4.34: Real photo4.

4Taken from https://mapio.net/pic/p-44578244/.

67

https://mapio.net/pic/p-44578244/

4. Results

Figure 4.35: Render.

Figure 4.36: Real photo5.

5Taken from https://wallpaperscraft.ru/download/nochnoj_gorod_ogni_goroda_

vid_sverhu_137646/8256x5504.

68

https://wallpaperscraft.ru/download/nochnoj_gorod_ogni_goroda_vid_sverhu_137646/8256x5504
https://wallpaperscraft.ru/download/nochnoj_gorod_ogni_goroda_vid_sverhu_137646/8256x5504

............................... 4.8. Comparison With Photos

Figure 4.37: Render.

Figure 4.38: Real photo6.

6Taken from https://club.foto.ru/gallery/photos/photo.php?photo_id=1670749.

69

https://club.foto.ru/gallery/photos/photo.php?photo_id=1670749

70

Chapter 5

Conclusion

I developed an algorithm of procedural city generation on demand
and a rendering algorithm with a focus on lighting at night. For them, I
implemented a rendering application. In addition to this, I described a way
of OpenStreetMap data processing and created a program for this purpose.

The rendering application is able to render beautiful and pretty realistic
images. In terms of memory, the procedural geometry representation wins
the traditional one with a huge advantage. When the traditional geometry
representation may use all graphics card memory, the procedural one requires
units of MB. However, in terms of the rendering time, it completely loses. The
rendering time may be more than a minute, but for the traditional geometry
representation, it is mostly less than one second.1 This project is little
optimized. Much redundant geometry is created. It increases the rendering
time. It is likely that the rendering time might be significantly reduced if the
program was better optimized. In contrast to the geometry representation,
procedural texturing turned out to be a very useful and efficient technique. It
does not consume memory and it does not significantly increase the rendering
time. Also, the used techniques for lighting turned out to be very efficient.

For the mentioned reasons, procedural geometry generation at run time
on demand seems to be not the best approach. Much better could be an
approach in which the geometry of the buildings close to the camera was
cached and in which the program could intelligently determine the building
part for which the geometry has to be created. However, as the performance
of computers rapidly increases, it may turn out that this program will be
able to be used in real time.

If it was possible to use such a project in real time, it may perfectly
fit into game development, because procedural generation may save years
of work. Such a project may be well suitable for flight simulators. There is
a number of flight simulators that offer the users to fly around the whole
planet. The most popular of them are X-Plane, Prepar3D, and Microsoft
Flight Simulator. It is not possible to manually create all cities that exist
in the world. Therefore, they are created procedurally2. The more detailed

1If there is 1 sample per pixel, the Russian Roulette depth is 3, and its probability is
0.5.

2See [19], [1], [43], [44]

71

5. Conclusion......................................
a prepared object is and the more objects the game has, the more memory
and the more data movements it requires. These simulators are famous for
their large size on the disk. Moreover, Microsoft Flight Simulator downloads
some data at run time to reduce memory consumption. It would be a perfect
solution to use the technique from this project. In addition, the users of flight
simulators fancy flying at night. Good-looking night cities, which are a result
of this work, would be a perfect feature. On the other hand, it does not have
to be used in real time only and it may be used to render some animations.

The knowledge received during the development may be useful in various
cases. It may be used as an idea of how to make lighting in the scene better,
as a study material for OptiX API, because there is a lack of open-source
projects, and for how to create cities using OpenStreetMap.

72

Bibliography

[1] Blackshark.ai. https://blackshark.ai. Accessed: 2021-05-18.

[2] Blender. https://www.blender.org. Accessed: 2021-05-18.

[3] Digital pictures of all sorts of materials. https://www.textures.com.
Accessed: 2021-05-18.

[4] OpenStreetMap. https://www.openstreetmap.org. Accessed: 2021-
05-18.

[5] OsmSharp. http://www.osmsharp.com. Accessed: 2021-05-18.

[6] Scratchapixel - Learn Computer Graphics From Scratch! https://www.

scratchapixel.com. Accessed: 2021-05-18.

[7] Unity. https://unity.com. Accessed: 2021-05-18.

[8] Avionx. Skybox Series Free. https : / / assetstore . unity .

com/packages/2d/textures-materials/sky/skybox-series-free-

103633. Accessed: 2021-05-20.

[9] Beason, K. smallpt: Global Illumination in 99 lines of C++. https:

//www.kevinbeason.com/smallpt/.

[10] Beneš, B., Št'ava, O., Měch, R., and Miller, G. Guided procedural
modeling. Computer Graphics Forum 30, 2 (Apr. 2011), 325–334.

[11] Biagioli, A. Understanding Perlin Noise. https://adrianb.io/2014/

08/09/perlinnoise.html. Accessed: 2021-05-18.

[12] Boechat, P. Procedural City. https://github.com/pboechat/

ProceduralCity. Accessed: 2021-05-20.

[13] de Vries, J. LearnOpenGL. https://learnopengl.com.

[14] Esri. ArcGIS CityEngine. https://www.esri.com/en-us/arcgis/

products/arcgis-cityengine/overview. Accessed: 2021-05-18.

[15] Hoffman, N. Background: Physics and Math of Shading.

73

https://blackshark.ai
https://www.blender.org
https://www.textures.com
https://www.openstreetmap.org
http://www.osmsharp.com
https://www.scratchapixel.com
https://www.scratchapixel.com
https://unity.com
https://assetstore.unity.com/packages/2d/textures-materials/sky/skybox-series-free-103633
https://assetstore.unity.com/packages/2d/textures-materials/sky/skybox-series-free-103633
https://assetstore.unity.com/packages/2d/textures-materials/sky/skybox-series-free-103633
https://www.kevinbeason.com/smallpt/
https://www.kevinbeason.com/smallpt/
https://adrianb.io/2014/08/09/perlinnoise.html
https://adrianb.io/2014/08/09/perlinnoise.html
https://github.com/pboechat/ProceduralCity
https://github.com/pboechat/ProceduralCity
https://learnopengl.com
https://www.esri.com/en-us/arcgis/products/arcgis-cityengine/overview
https://www.esri.com/en-us/arcgis/products/arcgis-cityengine/overview

5. Conclusion......................................
[16] Kajiya, J. T. The Rendering Equation. SIGGRAPH Comput. Graph.

20, 4 (Aug. 1986), 143–150.

[17] Khan Academy. Perlin noise. https : / / www . khanacademy .

org / computing / computer - programming / programming - natural -

simulations/programming-noise/a/perlin-noise. Accessed: 2021-
05-20.

[18] Kravtchenko, I. HDR Image Reader. https://www.flipcode.com/

archives/HDR_Image_Reader.shtml. Accessed: 2021-05-20.

[19] Lardinois, F. Meet the startup that helped Microsoft build the world of
Flight Simulator. https://techcrunch.com/2020/08/17/meet-the-

startup-that-helped-microsoft-build-the-world-of-flight-

simulator/, 2020. Accessed: 2021-05-18.

[20] Larive, M., and Gaildrat, V. Wall Grammar for Building Generation.
In Proceedings of the 4th International Conference on Computer Graphics
and Interactive Techniques in Australasia and Southeast Asia (New York,
NY, USA, 2006), GRAPHITE ’06, Association for Computing Machinery,
p. 429–437.

[21] Lawrence, J. Importance Sampling of the Phong Reflectance Model.
https://www.cs.princeton.edu/courses/archive/fall16/cos526/

papers/importance.pdf.

[22] Lehtinen, H. cudaNoise. https://github.com/covexp/cuda-noise.
Accessed: 2021-05-18.

[23] Li, V. Raytracing - Rendering Equation Insight. http://viclw17.

github.io/2018/06/30/raytracing-rendering-equation/, 2018.
Accessed: 2021-05-18.

[24] Möller, T., and Trumbore, B. Fast, Minimum Storage Ray-Triangle
Intersection. Journal of Graphics Tools 2, 1 (1997), 21–28.

[25] Nishida, G., Garcia-Dorado, I., Aliaga, D. G., Benes, B., and
Bousseau, A. Interactive sketching of urban procedural models. ACM
Transactions on Graphics (TOG) 35, 4 (2016), 1–11.

[26] Nvidia. OptiX AI-Accelerated Denoiser. https://developer.nvidia.

com/optix-denoiser.

[27] Nvidia. OptiX Ray Tracing Engine. https://developer.nvidia.com/

optix.

[28] Nvidia. Ray Tracing. https://developer.nvidia.com/discover/

ray-tracing.

[29] Nvidia. What’s the Difference Between Ray Tracing and Rasterization?
https://developer.nvidia.com/optix.

74

https://www.khanacademy.org/computing/computer-programming/programming-natural-simulations/programming-noise/a/perlin-noise
https://www.khanacademy.org/computing/computer-programming/programming-natural-simulations/programming-noise/a/perlin-noise
https://www.khanacademy.org/computing/computer-programming/programming-natural-simulations/programming-noise/a/perlin-noise
https://www.flipcode.com/archives/HDR_Image_Reader.shtml
https://www.flipcode.com/archives/HDR_Image_Reader.shtml
https://techcrunch.com/2020/08/17/meet-the-startup-that-helped-microsoft-build-the-world-of-flight-simulator/
https://techcrunch.com/2020/08/17/meet-the-startup-that-helped-microsoft-build-the-world-of-flight-simulator/
https://techcrunch.com/2020/08/17/meet-the-startup-that-helped-microsoft-build-the-world-of-flight-simulator/
https://www.cs.princeton.edu/courses/archive/fall16/cos526/papers/importance.pdf
https://www.cs.princeton.edu/courses/archive/fall16/cos526/papers/importance.pdf
https://github.com/covexp/cuda-noise
http://viclw17.github.io/2018/06/30/raytracing-rendering-equation/
http://viclw17.github.io/2018/06/30/raytracing-rendering-equation/
https://developer.nvidia.com/optix-denoiser
https://developer.nvidia.com/optix-denoiser
https://developer.nvidia.com/optix
https://developer.nvidia.com/optix
https://developer.nvidia.com/discover/ray-tracing
https://developer.nvidia.com/discover/ray-tracing
https://developer.nvidia.com/optix

...................................... 5. Conclusion

[30] OTOY. OctaneRender. https://home.otoy.com/render/octane-

render/.

[31] Over, M., Schilling, A., Neubauer, S., and Zipf, A. Generating
web-based 3d city models from openstreetmap: The current situation
in germany. Computers, Environment and Urban Systems 34, 6 (2010),
496–507. GeoVisualization and the Digital City.

[32] Parker, S. G., Bigler, J., Dietrich, A., Friedrich, H., Hobe-
rock, J., Luebke, D., McAllister, D., McGuire, M., Morley,
K., Robison, A., and Stich, M. Optix: A general purpose ray tracing
engine. ACM Transactions on Graphics (August 2010).

[33] Perlin, K. Improved Noise reference implementation. https://mrl.

cs.nyu.edu/~perlin/noise/. Accessed: 2021-05-18.

[34] Perlin, K. Improving noise. In Proceedings of the 29th Annual Confer-
ence on Computer Graphics and Interactive Techniques (New York, NY,
USA, 2002), SIGGRAPH ’02, Association for Computing Machinery,
p. 681–682.

[35] Pharr, M., Jakob, W., and Humphreys, G. Physically Based
Rendering: From Theory to Implementation, 3rd ed. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2016.

[36] ProAssets. Free HDR Sky. https://assetstore.unity.com/

packages/2d/textures-materials/sky/free-hdr-sky-61217. Ac-
cessed: 2021-05-20.

[37] Schlick, C. An Inexpensive BRDF Model for Physically-based Ren-
dering. Computer Graphics Forum (1994).

[38] Schwarz, M., and Müller, P. Advanced Procedural Modeling of
Architecture. ACM Trans. Graph. 34, 4 (July 2015).

[39] Smelik, R. M., Tutenel, T., Bidarra, R., and Benes, B. A survey
on procedural modelling for virtual worlds. Computer Graphics Forum
33, 6 (Jan. 2014), 31–50.

[40] Steiger, A. How Realtime Ray Tracing (RTX) Will Revolutionise
Video Game Graphics. https://unitydevelopers.co.uk/how-ray-

tracing-rtx-will-revolutionise-video-game-graphics/.

[41] Steinberger, M., Kenzel, M., Kainz, B., Wonka, P., and
Schmalstieg, D. On-the-fly generation and rendering of infinite cities
on the GPU. Computer Graphics Forum 33, 2 (May 2014), 105–114.

[42] Sunday, D. Practical Geometry Algorithms: with C++ Code. 2021.
http://geomalgorithms.com.

[43] Supnik, B. OpenStreetMap and X-Plane 10. https://developer.x-

plane.com/2011/04/openstreetmap-and-x-plane-10/, 2011.

75

https://home.otoy.com/render/octane-render/
https://home.otoy.com/render/octane-render/
https://mrl.cs.nyu.edu/~perlin/noise/
https://mrl.cs.nyu.edu/~perlin/noise/
https://assetstore.unity.com/packages/2d/textures-materials/sky/free-hdr-sky-61217
https://assetstore.unity.com/packages/2d/textures-materials/sky/free-hdr-sky-61217
https://unitydevelopers.co.uk/how-ray-tracing-rtx-will-revolutionise-video-game-graphics/
https://unitydevelopers.co.uk/how-ray-tracing-rtx-will-revolutionise-video-game-graphics/
http://geomalgorithms.com
https://developer.x-plane.com/2011/04/openstreetmap-and-x-plane-10/
https://developer.x-plane.com/2011/04/openstreetmap-and-x-plane-10/

5. Conclusion......................................
[44] Supnik, B. OSM: What Data Will the Global Scenery Use. https:

//developer.x- plane.com/2011/04/osm- what- data- will- the-

global-scenery-use/, 2011.

[45] Tan, R. T. Specularity, Specular Reflectance. Springer US, Boston, MA,
2014, pp. 750–752.

[46] Vavera, V. Real-time ray tracing in unreal engine. Master’s thesis,
Czech Technical University in Prague, 2020. Accessed: 2021-05-19.

[47] Wald, I. Siggraph 2019/2020 OptiX 7/7.3 Course Tutorial Code.
https://github.com/ingowald/optix7course.

[48] Wonka, P., Wimmer, M., Sillion, F., and Ribarsky, W. Instant
architecture. ACM Trans. Graph. 22, 3 (July 2003), 669–677.

[49] Yu, X. OSM-Based Automatic Road Network Geometries Generation
on Unity. PhD thesis, 2019.

76

https://developer.x-plane.com/2011/04/osm-what-data-will-the-global-scenery-use/
https://developer.x-plane.com/2011/04/osm-what-data-will-the-global-scenery-use/
https://developer.x-plane.com/2011/04/osm-what-data-will-the-global-scenery-use/
https://github.com/ingowald/optix7course

Appendix A

Renders

This chapter provides renders from the developed rendering application.
It contains images from different views taken during different parts of the
day.

Figure A.1: Picture with a night view taken in Berlin.

Figure A.2: Picture with a night view taken in Berlin.

77

A. Renders.......................................

Figure A.3: Picture with a night view taken in Belgrade.

Figure A.4: Picture with a night view taken in Berlin.

78

....................................... A. Renders

Figure A.5: Picture with a view during sunrise taken in Berlin.

Figure A.6: Picture with a view during sunrise taken in Berlin.

79

A. Renders.......................................

Figure A.7: Picture with a daytime view taken in Berlin.

Figure A.8: Picture with a daytime view taken in Berlin.

80

....................................... A. Renders

Figure A.9: Picture with a view during sunset taken in Berlin.

Figure A.10: Picture with a view during sunset taken in Berlin.

81

A. Renders.......................................

Figure A.11: Picture with a view during sunset taken in Krasnoyarsk.

Figure A.12: Picture with a night view taken in Berlin.

82

....................................... A. Renders

Figure A.13: Picture with an evening view taken in Berlin.

Figure A.14: Picture with a night view taken in Berlin.

83

A. Renders.......................................

Figure A.15: Picture with an evening view taken in Belgrade.

Figure A.16: Picture demonstrating reflections in windows.

84

....................................... A. Renders

Figure A.17: Picture demonstrating reflections in windows.

Figure A.18: Picture demonstrating reflections in windows.

85

A. Renders.......................................

Figure A.19: Picture demonstrating windows with lights on.

Figure A.20: Picture demonstrating windows with lights on.

86

....................................... A. Renders

Figure A.21: Picture demonstrating windows with lights on.

Figure A.22: Render from Belgrade.

87

A. Renders.......................................

Figure A.23: Render from Belgrade.

Figure A.24: Render from Belgrade.

88

....................................... A. Renders

Figure A.25: Picture with a night view taken in Krasnoyarsk.

Figure A.26: Picture with a night view taken in Krasnoyarsk.

89

A. Renders.......................................

Figure A.27: Picture with a night view taken in Krasnoyarsk.

Figure A.28: Picture with a night view taken in Krasnoyarsk.

90

....................................... A. Renders

Figure A.29: Render from Krasnoyarsk.

Figure A.30: Render from Krasnoyarsk.

91

92

Appendix B

Rendering Application Manual

This chapter provides instructions for installing the rendering application
and the project for Visual Studio. The project is available on GitLab1. First,
you have to download and install CUDA 10.02 and Nvidia Optix 7.2.0.3

B.1 Visual Studio Project

To install the project, you must copy with replacement file CMakeLists.txt

and folders data, cuda, direct_rendering_of_procedural_models, and
sutil to ..\OptiX SDK 7.2.0\SDK\. Build the rendering application and
the sample projects provided with the API using CMake.

B.2 Executable File

The executable file accepts input arguments. They are listed in table
B.1. All of them are optional, because the application has default values.

Argument Value Default

value

Note

--seed= Example:

1234

0 The value to initialize the random

number generator.

--dim= Example:

1024x768

1920x1080 The size of the application window.

--building-min-h= Example: 25 20 The minimum building height.

--building-max-h= Example: 80 100 The maximum building height.

--city= Example:

"Belgrade_1"

"Berlin_1" The name of the city for the scene.

--heightmap= Example:

heightmap_1

The name of the heightmap for the

scene. If you do not want to use any

heightmap, do not use this argument.

1https://gitlab.fel.cvut.cz/temnyale/model_rendering_with_ray_tracing
2https://developer.nvidia.com/cuda-10.0-download-archive
3https://developer.nvidia.com/designworks/optix/downloads/legacy

93

https://gitlab.fel.cvut.cz/temnyale/model_rendering_with_ray_tracing
https://developer.nvidia.com/cuda-10.0-download-archive
https://developer.nvidia.com/designworks/optix/downloads/legacy

B. Rendering Application Manual

--lamp-collider-size= Example: 0.5 0.9 The size of the street lamp colliders.

--geometry-terrain= 0 or 1 0 0 for the traditional geometry

representation, 1 for the procedural

one.

--geometry-buildings= 0 or 1 0 0 for the traditional geometry

representation, 1 for the procedural

one.

--geometry-edge-roads= 0 or 1 0 0 for the traditional geometry

representation, 1 for the procedural

one.

--geometry-joint-roads= 0 or 1 0 0 for the traditional geometry

representation, 1 for the procedural

one.

--geometry-sidewalks= 0 or 1 0 0 for the traditional geometry

representation, 1 for the procedural

one.

--print-memory-info If passed, the program prints the

amount of the total, used and free

memory.

--print-scene-info If passed, the program prints the

number of the buildings, roads,

sidewalks and lamps.

--print-scene-geometry-info If passed, the program prints an

approximation of required memory

for the scene.

--cu-out-buf= CUDA_DEVICE,

GL_INTEROP,

ZERO_COPY or

CUDA_P2P

GL_INTEROP The CUDA output buffer type. The

choice depends on the graphics card.

Table B.1: Input arguments for the rendering application.

So, it may be started from the command prompt with

direct_rendering_of_procedural_models.exe

--seed=1155 --city="Berlin_1" --building-min-h=22

--building-max-h=44 --geometry-buildings=1 --print-scene-info .

In this case, the seed will be 1155, the scene will be Berlin_1, the height
of the buildings will be in range [22m, 44m], the buildings’ geometry will be
procedural, the other objects’ geometry will be traditional, the CUDA output
buffer will be GL_INTEROP, and the program will print the information about
the scene.

94

................................... B.2. Executable File

The GUI of the rendering application is shown in figure B.1. It shows
the update, rendering, and display time. It has control elements to adjust
the scene parameters. They are listed in table B.2.

(a) : Upper part. (b) : Middle part. (c) : Lower part.

Figure B.1: GUI of the rendering application.

95

B. Rendering Application Manual

Name of control Description

Path tracing parameters/Real time/

Number of samples
The number of samples per pixel which is

used in real time.

Path tracing parameters/Real time/

Russian Roulette depth
The Russian Roulette depth which is used

in real time.

Path tracing parameters/Real time/

Ray termination probability
The ray termination probability in

Russian Roulette which is used in real

time.

Path tracing parameters/

Image rendering/

Number of samples

The number of samples per pixel which is

used for image rendering.

Path tracing parameters/

Image rendering/

Russian Roulette depth

The Russian Roulette depth which is used

for image rendering.

Path tracing parameters/

Image rendering/

Ray termination probability

The ray termination probability in

Russian Roulette which is used for image

rendering.

Scene parameters/

Skydome
The current skydome texture.

Scene parameters/

Skydome texture color factor
The factor by which the skydome texture

color is multiplied.

Scene parameters/

Skydome diffuse color factor
The factor by which the skydome diffuse

color is multiplied when the ray has an

indirect influence on a pixel.

Scene parameters/

Skydome emissive color
The skydome emissive color.

Scene parameters/

Perlin noise parameters/

Scale

The scale parameter of the Perlin noise

function.

Scene parameters/

Perlin noise parameters/

N

The N parameter of the Perlin noise

function.

Scene parameters/

Perlin noise parameters/

Lacunarity

The lacunarity parameter of the Perlin

noise function.

Scene parameters/

Perlin noise parameters/

Decay

The decay parameter of the Perlin noise

function.

Scene parameters/

Windows with lights on
The percentage of the windows with lights

on.

96

................................... B.2. Executable File

Scene parameters/

Windows emissive energy factor
The emissive energy factor for the

windows.

Scene parameters/

Shop windows with lights on
The percentage of the shop windows with

lights on.

Scene parameters/

Shop windows emissive energy factor
The emissive energy factor for the shop

windows.

Scene parameters/

Lamps on/off
Whether the street lamps are switched on

or off.

Scene parameters/

Don’t use the

street lamp collider

Whether to use the street lamp colliders

or not.

Scene parameters/

Street lamp emissive color
The street lamp emissive color.

Scene parameters/

Street lamp

emissive energy factor

The emissive energy factor for the street

lamp by which the emissive color is

multiplied.

Scene parameters/

Street lamp secondary

emissive energy factor

The secondary emissive energy factor for

the street lamp.

Scene parameters/

Render building AABBs
Render the AABBs of the buildings

instead of their actual shape.

Scene parameters/

Generate building geometry
Whether to generate the building

geometry or not.

Scene parameters/

Render road and sidewalk AABBs
Render the AABBs of the roads and

sidewalks instead of their actual shape.

Image rendering/

Number of frames
The number of frames to render before

saving of their average.

Image rendering/

Render image
Render the selected number of frames and

save their average.

Save current image Save the current image.

Table B.2: Control elements of the rendering application.

To move in the scene, the user has to use the left and right mouse
button and the mouse wheel.

If the user’s computer is not powerful enough to use this rendering
application with high settings, it allows them to set the desired parameters

97

B. Rendering Application Manual
and start rendering. When the image is rendered, the rendering application
saves it and returns to its previous state. The required steps for it are listed
in figure B.2...1. Set the path tracing parameters in section Path tracing

parameters/Image rendering...2. Set the number of frames above button Render image. The final image
will be the average of the rendered frames...3. Click Render image.

Figure B.2: Steps to render an image.

Figure B.3: Picture demonstrating the rendering application window.

98

Appendix C

OSM Parser Manual

The OSM processing application consists of a project for Visual Studio,
which is available on GitLab1, and a project for Unity that is used as the
GUI, which is also available on GitLab2. It receives various arguments which
are used to configure the process of data processing. It should receive the
arguments through the GUI project in Unity.

C.1 Visual Studio Project

The application was developed in Visual Studio 2019.3 All dependencies
are included in the archive. You only have to open the solution in folder
OSM Parser\.

C.2 Unity Project

The application was developed in Unity 2019.3.5f14. You only have to
open folder OSM Parser GUI\ in Unity Hub. The built version of the OSM
processing application should be placed in folder OSM Parser GUI\Assets\

Plugins\OSM Parser\. Then, you may interact with OSM Parser through
the GUI. The right panel allows adjusting and setting various parameters.
Figure C.1 shows a screenshot of the project. The panel with the parameters
is shown in figure C.2.

1https://gitlab.fel.cvut.cz/temnyale/osm-parser
2https://gitlab.fel.cvut.cz/temnyale/visualiser-for-osm-parser
3https://visualstudio.microsoft.com/downloads/
4https://unity3d.com/get-unity/download/archive

99

https://gitlab.fel.cvut.cz/temnyale/osm-parser
https://gitlab.fel.cvut.cz/temnyale/visualiser-for-osm-parser
https://visualstudio.microsoft.com/downloads/
https://unity3d.com/get-unity/download/archive

C. OSM Parser Manual

Figure C.1: Picture demonstrating the GUI of OSM Parser.

Figure C.2: Panel with the parameters of OSM Parser.

100

Appendix D

Facade Geometry Creation

This chapter contains the images of the steps for the facade geometry
creation in a larger resolution.

(a) : An initial wall which is used to create the geometry of the facade.

(b) : The wall is split into floors.

101

D. Facade Geometry Creation...............................

(c) : Some space at the wall’s edges is cut. A floor is split into slots.

(d) : Initial rectangles for windows and balconies.

102

............................... D. Facade Geometry Creation

(e) : The rectangles were intruded.

(f) : The geometry for the windows and the balconies is created.

103

D. Facade Geometry Creation...............................

(g) : The geometry near from the front side.

(h) : The geometry near from the back side.

Figure D.1: Figure showing how to create the facade with windows and balconies.

104

	Introduction
	Rendering
	Ray Tracing
	Path Tracing
	Nvidia OptiX Ray Tracing Engine
	Developed Rendering Algorithm
	Skydome
	Ray Reflection
	Materials
	Ray Termination
	Denoising

	Scene
	Primitives
	Clockwise Vector Sorting
	Relative Position Of Cuboid And Point
	Ray-Plane Intersection
	Line-Point Distance
	Line-Line Distance
	Ray-Triangle Intersection
	Ray-Quadrangle Intersection
	Ray-Arbitrary Horizontal Polygon Intersection
	Ray-Disk Intersection
	Ray-Sphere Intersection
	Ray-Vertically Aligned Cylinder Intersection

	Scene Data Preparation
	OpenStreetMap
	OpenStreetMap Data Representation
	OpenStreetMap Data Processing

	Objects
	Buildings
	Street Lamps
	Roads
	Sidewalks
	Terrain

	Tile Textures And UV Mapping
	UV Mapping And Procedural Geometry
	UV Mapping And Geometry Stored In The Memory

	Skydome
	Textures
	UV Mapping

	Special Techniques For Lighting At Night
	Increase Of Street Lamp Influence
	Emissive Color Of Windows

	Results
	Memory Consumption
	Rendering Time Dependence On Geometry Representation
	Rendering Time Dependence On Perlin Noise Texture Generation
	Rendering Time Dependence On Road Texturing
	Influence Of Street Lamp Colliders On Rendering Time
	Rendering Time Dependence On Path Tracing Parameters
	Number Of Samples Per Pixel
	Russian Roulette Depth
	Russian Roulette Probability

	Image Dependence On Path Tracing Parameters
	Number Of Samples Per Pixel
	Russian Roulette Depth
	Russian Roulette Probability

	Comparison With Photos

	Conclusion
	Bibliography
	Renders
	Rendering Application Manual
	Visual Studio Project
	Executable File

	OSM Parser Manual
	Visual Studio Project
	Unity Project

	Facade Geometry Creation

