
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering

Department of Computer Graphics and Interaction

Logic 3D game

Petr Varga

Supervisor: Ing. Ladislav Čmolík, Ph.D.
May 2021

ii

© VUT v Pr aze, Design: VUT v Pr aze, VICCVUT-CZ-ZBP-2015.1

iv

Acknowledgements

I would like to thank Ing. Ladislavu
Čmolíkovi, Ph.D., for his guidance, will-
ingness to help, and for giving me the op-
portunity to work on the game. Further-
more, I would like to thank my mother,
who provided emotional support. Lastly,
I would like to thank all the people who
helped me test the game, provided new
points of view, and discovered many bugs.

Declaration

I declare that I made this work indepen-
dently and that I cited all sources I have
used.

In Čelákovice, 21. May 2021

v

Abstract

This work analyses the process of design-
ing games, mechanics of logic games, and
creating of modular components. I use
the analysis to design a game of my own
and develop it in the Unity game engine.
Afterward, I test the game.

Keywords: Unity, logic game, 3D game,
modular components

Supervisor: Ing. Ladislav Čmolík,
Ph.D.
Praha 2, Karlovo náměstí 13, E-418

Abstrakt

Tato práce analyzuje proces navrhování
her, mechaniky logických her a vytváření
modulárních komponent. Tuto analýzu
následně použiji k navržení své vlastní
hry a vytvoření této hry v Unity. Následně
tuto hru otestuji.

Klíčová slova: Unity, logická hra, 3D
hra, modulární komponenty

Překlad názvu: Logická 3D Hra

vi

Contents

1 Introduction 1

1.1 Goals of Thesis 1

1.2 Motivation . 1

2 Analysis 3

2.1 Game Design 3

2.2 Similar Games 5

2.2.1 Aargon . 5

2.2.2 Portal . 6

2.2.3 The Talos Principle 7

2.2.4 Archaica: The Path of Light . . 8

2.2.5 Summary 9

2.3 Modular Components 9

2.4 Physically Based Rendering 10

2.5 UV mapping 12

2.6 Universal Render Pipeline 13

3 Design 15

3.1 Game Idea 15

3.2 Game Elements 15

3.3 Game Controls 16

3.4 Game Story 16

3.5 Model Design 17

3.6 Level Design 18

3.6.1 Level One 18

3.6.2 Level Two 19

3.6.3 Level Three 21

3.7 User Interface 23

4 Creation of the game 25

4.1 Models . 25

4.2 Level Creation 29

4.3 Scripts . 30

4.3.1 Movement and player
interactions 30

4.3.2 Beam of light and its
interactions 31

vii

4.3.3 Game functionalities 33

4.4 User interface 34

4.5 Sounds and Music 35

5 Testing 37

5.1 First Test . 37

5.2 Second Test 38

5.3 Third Test 38

5.4 Fourth Test 39

5.5 Final Test 41

6 Conclusions 43

A Bibliography 45

viii

Figures

2.1 Aargon . 6

2.2 Portal . 7

2.3 The Talos Principle 8

2.4 Archaica: The Path of Light 8

2.5 Modular dwarven kit from Skyrim 10

2.6 The effect of smoothness 11

2.7 Example of different materials . . 12

3.1 Sketches of masks 17

3.2 Level one, room nine 19

3.3 Second room in second level 20

3.4 Fifth room in second level 21

3.5 The maze . 22

4.1 High-poly and low-poly model of
wall . 26

4.2 Baked maps of the wall 27

4.3 New texture for the wall 27

4.4 Low poly model with applied
texture . 28

4.5 Models . 28

4.6 Images of levels one and two . . . 29

4.7 Level three 30

4.8 Interaction of a beam with the
color changers 32

4.9 Beams with different altitudes . . 33

4.10 Main menu 34

4.11 Pause menu 35

5.1 The look of the game during the
first test . 38

5.2 Beam particles 39

5.3 New mask 40

ix

Chapter 1

Introduction

Nowadays, computers are everywhere. People are using them for work,
communication, or spending their free time. There are many things a person
can do on a computer to get rid of boredom, from watching videos on the
internet to playing some computer games. Computer games are played across
the population, no matter the gender or age. For many, games are a massive
part of their lives, and for some, playing games is their work.

1.1 Goals of Thesis

The main purpose of this work is to create a 3D logic game. The first step
is to analyze how to design and create a game and the necessary means to
do so. The second step is to design the game and create a design document.
After that, the creation of models and implementation follows. And during
the process of implementing the game, test it so that the test results can lead
to an improvement of the game during the development stage.

1.2 Motivation

The main reason for this thesis is my obsession with games and my dream to
create one. The reason for developing a logic game is that there are many

1

1. Introduction
3D games full of action that might contain a few puzzles, but there are not
that many 3D games whose primary purpose is to solve puzzles with a bit of
action on the side. Another reason is the opportunity to improve my abilities
of game creation by creating a game alone and trying almost every step of
the game development process.

2

Chapter 2

Analysis

There are many steps that a person has to make to create a game. The first
step is to design the game. Then it is necessary to decide how the game will
be implemented. I decided to use the Unity game engine[Unic]. The main
reason for that was my previous experience with it. Another important step
is the creation of models and textures for the game. In this chapter, I analyze
the process of designing a game, what the modular components are, and
rendering in Unity.

2.1 Game Design

People might feel that it is an easy task to create a game when they have a
good idea. It can be an idea of an environment that no one had ever thought
of before or a fantastic main character. These things are essential for a game,
but they are not the most important.
The most important things for a game are its rules, objectives and a story
if the game has it[Mit12]. Rules are defining how the game will be played.
They tell how the player can achieve his goal. Objectives are the goals of
the game, things that have to be done to win the game if it is possible. It
might not be possible as there are some games that do not have any end.
For example, Tetris, a game where the player is trying to build rows from
falling blocks. When a row is complete, it disappears. A player can lose by
not having any space left to place the blocks, but he cannot win. In such a
game, the player is usually trying to beat some score.
The last thing is the story. Certain designers say that it is an essential part

3

2. Analysis
of the game as it increases the player’s engagement. Others do not think
so[Rog14]. Some games have practically no story at all; again, Tetris is a
good example. However, there are games with whole new worlds, such as
World of Warcraft, where the story is significant, and as the player progresses,
the story evolves. Some players enjoy the lore of the game, and they will
spend a lot of time just trying to uncover everything there is, whereas others
will skip every cut scene or dialog possible because they do not care about it.
If the story of the game is important, it is necessary to include the essential
parts in the gameplay, so those who skip everything will still be able to follow.
And this is why there are game designers.
The game designer’s job is to decide what the game will be like[Sch08]. There
are many decisions that the designer has to make. Deciding on all of the things
mentioned before and many more. Some others are: how will the environment
look, what will the main character be like, what kind of background music
will be used. . . Usually, all of these decisions are written down in a game
design document.
The process of designing does not stop until the game is finished. Many
decisions are not even possible to make at the very beginning until the
designer sees the game in action. Therefore, the design document evolves as
the decisions are made[Sch08].
The goal of a game is to entertain a player in some way. There are many
ways the player could get bored or frustrated and leave the game even though
he did not finish it. One of the reasons for a person to drop the game is that
its difficulty is not appropriate. A game cannot be too easy, neither can it
be too hard. If a player can do everything without any difficulties, he will
get bored, and if he cannot do anything because it is too hard, he will get
frustrated.
A game usually starts with some tutorial where the player is presented with
the basic game mechanics, and he has time to learn them. After that, the
game should get gradually more complex. The player should still be able to
solve everything by using the things he learned. However, at some stage of
the game the gameplay might become too repetitive. There are ways to avoid
repetitiveness, one of which is the addition of something new. It could be
either some new type of enemy, a new obstacle, a new player’s ability, or a
new way of interaction.
Before committing to creating the game design, a designer should check if
there are any similar games. If there are, the designer should decide how will
his game be different from those already out there, what will be unique, as
there is no reason to create something that is already on the market.

4

.................................... 2.2. Similar Games

2.2 Similar Games

There are many logic games, but most of them are 2D. Some games focus solely
on the puzzles, and there is no story at all. Those would be predominantly
mobile games, but there are some computer games as well. There are many
forms of puzzles. Some of them are based solely on the player’s abilities.
Every level in these games is always possible to complete on the first try a
good example would be a game like Cut the Rope[Zep], where the player
needs to get a candy into a creature’s mouth by cutting ropes. Other form
of puzzles include the necessity of luck. The player cannot always complete
the stage, for example, games like Candy Crush Saga[Kin] or Bejeweled[Stu],
both represent the match-three genre, where a player has to match three or
more identical symbols to clear them out. For 2D games, the closest match
to my idea is Aargon, which I describe more later.
There are two big titles for the 3D logic games: Portal and The Talos Principle,
both of them are using a first-person camera view and have some similarities
to my idea. In addition, I have found Archaica: The Path of Light, which is
not using a first-person camera view but has some mechanics similar to those
I would like to use. I describe these three games later.
There are many games that use puzzles and traps, like Tomb Raider, The
Elder Scrolls V: Skyrim[Bet] or even World of Warcraft[Bli]. These games
use the mechanics to make the gameplay more various, but they are not the
core features. For example, in Skyrim, there are many types of puzzles and
traps inside the dungeons similar to those I would like to use. There are
masks that spit fire, corridors with swinging blades, or simple pressure plates
that can activate an arrow trap. However the core mechanics of Skyrim are
fighting with dragons and other monsters.

2.2.1 Aargon

Aargon[Gam], published in 1999, is a 2D logic game, where the goal is to
pass colored laser beams through coins of the same color[Mobb]. To do so,
there are many objects which the player can drag into the grid. These objects
interact with the lasers, each in a unique way, from changing the color to
bending it in a specific direction.
Later in 2002, Aargon Delux was published. It included levels from the
original game and added new features like toxic barrels or slimes.

5

2. Analysis

Figure 2.1: Aargon[Moba]

2.2.2 Portal

Portal[Val], released in 2007 by Valve, is a 3D puzzle game where the player
uses a portal gun to solve puzzles. The portal gun can create two portal
ends. One is orange, and the other one is blue. The portal connects the
two locations visually and physically. Both portal ends are an exit and an
entrance at the same time. The important thing is that when a moving object
enters the portal, it comes from the other side of the portal with the same
speed and direction. This allows the player to cross gaps by jumping down
and coming from a wall(Figure 2.2). It is also possible to launch objects over
long distances. When leaving a portal, the player is always reoriented based
on gravity. Whenever a new portal end is created, the old one of the same
color shuts down. Some obstacles pose a danger to the player and can kill
him, for example, crushers or turrets. The player takes the role of Chell,
who is subjected to tests by GLaDOS, an artificial intelligence. After Chell
completes the final test chamber, GLaDOS attempts to kill her. Chell escapes
and tries to destroy the artificial intelligence. The game was well-received,
and the subsequent Portal 2, released in 2011, was even more successful.

6

.................................... 2.2. Similar Games

Figure 2.2: The mechanics of a Portal[Wik]

2.2.3 The Talos Principle

The Talos Principle[Cro], released in 2014 by Croteam, is another first-
person puzzle game. The player takes the role of a robot with a human-like
consciousness. The robot awakes and is instructed to explore the world and
solve puzzles to collect sigils but is warned not to climb a tower in the center.
As the player progresses through the game, he learns that the space he is in is
a testing ground for new artificial intelligence entities. The robot should show
intelligence by completing the puzzles and free will by disobeying the order
to climb the tower. There are multiple endings to the game based on the
decisions of the player. There are many puzzles accessible, so the player can
choose the order in which he will complete them. There are puzzles where
the player needs to activate light-based switches by using portable refractors,
and there are also puzzles that pose a danger to the player. If the player dies,
he is respawned at the beginning of the puzzle. The game was praised for
the elements of philosophy in its story and the challenging puzzles.

7

2. Analysis

Figure 2.3: The Talos Principle[Steb]

2.2.4 Archaica: The Path of Light

Archaica: The Path of Light[Two] is a puzzler with lasers and mirrors released
in 2017 by TwoMammoths. The goal of each level is to illuminate the crystals.
This can be done by placing objects on a grid and rotating them around.
There are multiple objects that interact with the lasers in different manners.
On each level, there are hidden objects that reveal more of the game’s lore.
It is an indie game created by two brothers. Although it is not a well-known
game, those who played it left mostly positive reviews.

Figure 2.4: Archaica: The Path of Light[Stea]

8

.................................2.3. Modular Components

2.2.5 Summary

Generally, all puzzle games have one thing in common. They start with
simple levels, where the player learns how to use or interact with a particular
object. Later, this interaction is tested in more complicated tasks. After a
while, a new feature appears, and the players again learn how to use it. Then
the tasks are composed of the new features combined with the old one. This
process happens many times. It is easier for the player to grasp how to use
and combine the mechanics when introduced this way. If the mechanics were
introduced all at once, the player would be confused and not comprehend how
to utilize them together. For most of the games, the story is a substantial
part of the game experience.
All of the described games(Portal just if I count Portal 2 as well) work with
the idea of light beams and the goal of navigating them to specific places.
The games that uses the idea of changing colors of the beam is Aargon and
Archaica. In my game, there are objects that can either add or remove a
colour from a beam, where as in Aargon the colors are usually made by
mixing or splitting the beams and in Archaica there are objects that just
change the color. Aargon uses red, green, and blue as the basic colors, where
as, I use red, blue, and yellow. I decided to use these colors, because I think
it is easier to comprehend that yellow and blue gives green, instead of that
green and red gives yellow. It should be easier, because as children people are
thought, how to mix colors together. All the games but Archaica have the
possibility for the player to die and when it happens the player is respawned
at the start of the current puzzle.

2.3 Modular Components

Every 3D game is made out of models which together create the world of the
game. One of the approaches for constructing game worlds is the usage of
modular components. To describe what modular components are, we can look
up the word "modular" in a dictionary. It means "consisting of separate parts
or units that can be joined together"[Oxf10]. This description fits the concept
of modular components well, as the idea behind these components is that
separate objects are being used to form more complex scenes and environments.
A complex scene can be compared to creations from the well-known toy Lego,
where a person can use small plastic parts to construct a building, vehicle, or
some other thing. The advantage of using modular components is that it is
less demanding to create small pieces and then use them to build the scene
rather than to make every single object separately. Additionally, it requires
less memory to store them. There are some disadvantages as well. When

9

2. Analysis

Figure 2.5: Modular dwarven kit from Skyrim[Burb]

the pieces are being used frequently, the scene might start to look repetitive
and boring. To avoid repetitiveness, some decorative elements can be used.
Moreover, there is the possibility to use a hero element. That is a component
that is not modular and is specific for the place.
Using modular components in big projects can mean that instead of tens
of artists, only a few are needed. These artists create modular kits, and
then level designers use them to put the level together. For example, in the
development of Skyrim, only two artists were required to create the modular
kits[Bura]. The kit for dwarven dungeons can be seen in figure 2.5.

2.4 Physically Based Rendering

When creating components, it is necessary to create materials for them.
Materials define how to draw the surface of the component. Unity uses
Physically Based Rendering (PBR), a concept of trying to simulate lightning
as close to the real-world lighting as possible. It is possible to simulate
realistic lighting as the algorithms use the knowledge of how light behaves and
how it interacts with materials in the real world. When talking about light
behavior, we know that a light ray can be either reflected, refracted, absorbed,
diffracted, or scattered[ASA]. When a ray hits the interface between two
environments, it is reflected or refracted. The reflected ray bounces off at the
same angle as it hits the surface. Refracted rays change direction based on the
index of refraction. Absorption usually affects just part of the color spectrum,
the energy of the ray is converted to some other kind of energy, usually heat.
As a result of absorption, the color of the ray changes. Diffraction occurs
when a ray hits an obstacle, and it bends around its corners. When a light
ray changes direction inside the same environment, it is called scattering.
When we want to distinguish the light reflecting from a surface, we talk
about specular and diffuse reflections. Specular reflection is the light that
is reflected. Diffuse reflection is the scattered light that makes its way out

10

.............................. 2.4. Physically Based Rendering

Figure 2.6: The effect of smoothness[Unib]

of the surface. The scattering is so chaotic that it can be said that the light
comes out in all directions[Rus].
One of the most important concepts is the energy conservation concept. This
ensures that an object can not reflect and refract more light than it receives
unless it is an object which emits light on its own. It means that the more
specular reflection a surface has, the less diffuse reflection occur.
Unity uses materials to set what color an object should have and how it
should reflect the light. When creating materials, there are many parameters
that can be set. These parameters can be set as one value for the whole
material, or it is possible to use a map. A map is a texture, where for each
texel, we can set a color. A color can be represented in four channels: red,
green, blue, and alpha. The alpha channel is used for transparency. The
texture is a function that can be used to represent a certain property of the
surface of an object. The most used are 2D textures, which are raster images.
Here are the parameters that Unity uses:

Albedo Represents the color of diffusely reflected light. In short, what
color the object has. An example can be seen in the figure 2.7 on the left.

Metallic Shows if the material is a conductor and reflects the environment
or an insulant that almost does not reflect the environment at all.

Smoothness Most surfaces are not completely smooth. There are very
small imperfections, called microsurfaces, which are not visible by the eye.
Even though they are so small, they have a notable effect on reflection. It
is not possible to evaluate each microsurface as it would require a lot of
computation and memory usage, so instead of describing each microsurface
on its own, there is smoothness, a measure that represents how smooth the
material is. With lower smoothness, the light will be scattered more evenly.
If a map is used for the metallic trait, the smoothness is taken from the alpha
channel. The effect of smoothness can be seen in figure 2.6.

Normal Map A much more detailed surface can be represented without

11

2. Analysis

Figure 2.7: From left to right: object with just albedo, object with albedo and
normal map, object with albedo, normal map and height map[Unia]

the need of adding extra geometry. It changes how the light is reflected from
the surface, and by doing so, it can simulate bumps or crevices. A normal
map is a texture, which stores normal vectors for each surface, where the
RGB values of each texel represent the X, Y, and Z values of a direction
vector. An example can be seen with the combination of an albedo in the
middle of figure 2.7.

Height Map A way to simulate depth and height information based on
the position of a camera. It uses shades of grey to represent data. It is easier
to paint on in comparison to the normal map. A heightmap is usually used
together with a normal map to make larger changes on the surface[Doc]. An
example can be seen with the combination of a normal map and albedo on
the right of figure 2.7.

Occlusion A black and white texture that represents places that would
be shadowed by the rest of the surface. It is also known as the Ambient
Occlusion map[Rom15].

Emission A way to make a surface emit light. A map can be used if only
some parts of the surface should produce light.

These are the most important parameters of a material. There is some
more option such as adding secondary maps or changing the tiling and offset.

2.5 UV mapping

To make it possible to apply the material to an object, the object has to have
a UV map. UV mapping is a process that determines how a 2D texture can

12

............................... 2.6. Universal Render Pipeline

be projected on a 3D object. The process consists of taking the 3D object
and unwrapping it into the 2D space. The unwrapping could be described
through an example of a box. If I would like to unwrap a box, I could take
scissors, cut the folds, and lay it flat on the ground. Now, If I would look
from the top, I would be able to see the box in just two dimensions[Bleb].
The letters "U" and "V" represent the axis in a 2D space as "X" and "Y" are
already used for the axis in the 3D space. After the UV mapping is done, we
can use any texture and project it to the 3D object based on the result of
unwrapping, where each texel represents a point on the surface of the object
in the 3D space.

2.6 Universal Render Pipeline

When playing a game, everything the player can see has to be rendered.
Rendering is the process of drawing anything from the scene on the screen
of a computer. A rendering pipeline is a sequence of steps that makes this
possible.
Unity offers the possibility of choosing between three different pipelines.
Built-in Render Pipeline, Universal Render Pipeline, and High Definition
Render Pipeline. Unlike the Built-in renderer, the other two have more
possibilities for customization. Universal Render Pipeline, shorter URP, offers
an option to create custom shaders using the shader graph, which allows
creating shaders by connecting nodes in a framework rather than writing a
code. A shader is a script that contains algorithms for calculating the color
of a rendered pixel based on the material and lightning input. The advantage
of the shader graph is that a person can instantly see the changes, and it is
easier to understand for users with low or no experience with shaders. URP
is optimal for games that do not require the best possible graphics. For those
who want better graphics, the High Definition Render Pipeline would be the
choice, but it is more performance-heavy. It includes many features that URP
currently does not have. URP is getting regular updates and should replace
the Built-in Renderer Pipeline in the future.

13

14

Chapter 3

Design

In this chapter, I show parts of the game design document, mainly the idea
of the game, the game elements, controls, story, and a detailed description of
the levels.

3.1 Game Idea

The game is a puzzle game with some action features, but there is no combat.
The main focus is the puzzles which involve changing the color of light beams
and getting them to a certain location. This game should include a story
where the player discovers the secrets of the temple and what happened to
the old civilization.

3.2 Game Elements

The main feature of this game is the light beams, which have to be changed,
blocked, or navigated to certain places. There are three basic colors of a
beam: red, blue, and yellow. There are also combinations of these colors:
orange(red and yellow), green (blue and yellow), purple(red and blue), and
white(red, blue, and yellow). There are structures that can add or remove
a color from the beam. For example, if a purple beam goes through a field

15

3. Design..
that adds yellow, it will become white. If it goes through a field with a color
that it already has, nothing will happen. There are masks on the walls that
have different eye colors corresponding to all possible colors. These masks
are like triggers. They react if the right colored beam enters its mouth. One
mask can open a door, and another mask can move a part of a wall. There
are pillars with masks on them that will turn the light to the right, left, or
change the height at which the beam currently is. The structures and pillars
can usually be moved, but there are also some that cannot be moved at all.
To avoid having all rooms filled by light beams, there are also rooms that
pose a danger to the player. A room where parts of the ceiling drop and
the player has to walk through it by finding safe spots and figuring out the
ceiling’s timers, or a corridor filled with lasers that disintegrates the player
on touch.

3.3 Game Controls

To play this game, the player needs to use both a mouse and a keyboard.
Navigation in menus is by a mouse. The player starts in walking mode. The
direction the player is facing can be changed by the mouse and to move player
uses the W, A, S, D controls. Pressing E while being near an object, which can
be interacted with, causes different interactions. When the player interacts
with a structure that changes colors or a pillar with masks, it changes the
walk mode to pushing mode. The change will snap the current direction
to one of the four global directions (right(1,0,0), left(-1,0,0), forward(0,0,1),
backward(0,0,-1)) based on the position of the player according to the object.
In the pushing mode, the player can move only forward or backward, and
the movement speed is much lower. By pressing E again, the mode changes
back to walking. By pressing ESC, the player can pause the game or stop
the pause and return to the game.

3.4 Game Story

My parents were archeologists. They were the ones that discovered the temple
devoted to the goddess Azshi. When they entered the temple, it rose from its
slumber, and all the mystical things inside rose to life. Beams of light started
to shine from masks on the walls, and strange structures with unknown energy
fields appeared. They found that this place was a testing ground, where the
goddess chose her avatar. Anyone could try to pass the tests, and only those
worthy would succeed.

16

.................................... 3.5. Model Design

For many years, the temple was under lockdown, and only a few people chosen
by the government could enter. Whenever a person returned from the testing
ground, they would know that they failed, but they did not remember what
happened inside. People tried to take records, but there was nothing on the
recordings when they came back. Recently, the lockdown was lifted, and
anyone could try the test. People from all over the world came, but everyone
failed.
Today is the day. I am going inside to try my luck. Will I succeed where
everyone failed?

3.5 Model Design

As the whole game is in an old temple, the player will be mostly inside. As
there are unknown powers inside the testing grounds, there is a possibility
to create levels in practically any environment. However, to make it easier
to make, I will keep it in corridors beneath the ground. The source of light
in these corridors will predominantly be the torches. There will be multiple
different masks, which will interact with the light beams in different ways.
One will be the place where the beams are coming from, and the other will
be the one that unlocks a door. Another two masks will be on the turners.
Each of these masks has to be unique so that the player can distinguish
them(Figure 3.1). Furthermore, there will be two color changers, one of which
will add aspects of light and the other one will remove them. These again
have to be distinguishable.

Figure 3.1: Sketches of masks

17

3. Design..
3.6 Level Design

Based on the analysis of other games, the goal was to make the game
progressively more complex. That is why the first level is mainly just an
introduction to the game mechanics, and it is trying to test if the player
understands them well. Other levels are using and evolving all previously
used mechanics.

3.6.1 Level One

In the first room, there are two beams, one is green, the other one is orange,
two masks with yellow eyes, and two objects that have the same shape, but
the color of the field is different. I will call these objects color changers. One
of the fields is red, and the other one is blue. These color changers can be
moved by the player in four directions. The goal of this room is to introduce
the player to the color changer that removes aspects of the light.
It is easier to recognize these changes if the player focuses on the particles
flying around the beams. By intersecting the lights, the red changer can
change the orange beam to yellow, and the blue changer can change the green
beam to yellow. If the red changer interacts with the green beam, nothing
happens because there are no red particles in a green beam. The same applies
to the blue changer and the orange beam. The second room introduces the
second type of color changers. It has a different shape, but the color field
looks the same. This time there are red and yellow beams, and the player
needs purple and orange beams to pass. One of the changers is blue, the
other one is red. Blue changer interacting with the red beam creates a purple
beam, the red changer interacting with the yellow beam leads to an orange
beam. The third room puts the player’s knowledge to the test. There are
several changers of many colors and two beams going straight to masks. On
the right side, the beam is blue, but the mask requires a yellow color. The
left beam is orange, and the eyes of the left mask are blue. To successfully
pass, the player needs to remove orange and yellow from the left beam and
add blue. However, it is important to add blue before removing the other
colors, as if a beam loses every color, it does not go through the object. On
the right side, it is necessary to add yellow and remove blue.
The game could become repetitive if everything were just about the light
beams. That is why the next room is filled with falling ceilings, which can
crush the player if he gets hit. Every ceiling has a different timer, so by
watching them fall, the player can figure out when it is safe to pass.
The fourth room is there to introduce a new mechanic, an object that can
turn the beams in a certain direction. I will refer to it as a turner. To make

18

.....................................3.6. Level Design

it easier to interact with it, there is a crystal, which begins to glow when
the light is going through. In this room, only two turners have to be put in
the right places to get the beam to the mask. After the introduction is done,
there is a room full of the turners. The task is to get two beams from one
side of the room to the masks on the other side to unlock the door. In this
room, the player should learn that the beams will not go through each other
when they collide. Later this knowledge is necessary to solve another room.
The second corridor, full of falling ceilings, awaits the player. This time there
are no gaps between the crushers. The way to go through it is to move one
crusher forward each time they go up. There is one more room with beams.
It is more complicated as there are color changers as well as the turners. In
addition, it is necessary to block one beam with another one to get a third
beam through. The solution for this room can be seen on figure3.2.
Another danger is introduced. There are lasers that can disintegrate the
player. When the laser is off, the mask’s eyes, from which the laser is coming,
are flashing, so it is possible to count how many flashes there are before
the laser turns on again. The first set requires finding the moment to enter
between the beams and continue through them unharmed. It is possible to
pass this set by walking just in one direction. The second set requires the
player to walk through a corridor and, meanwhile, to go from side to side
to avoid being hit. After passing the lasers, there is one final room with a
button that, after pressing, activates an elevator which takes the player to
the next level.

Figure 3.2: Level one, room nine

3.6.2 Level Two

This level starts by introducing a new mechanic, where the beams can now
be in different heights. The turner that was previously used just to turn the
beam can now also change its altitude. The first room shows that there are
three main heights, and the player has to lower the beam two times to get it

19

3. Design..
under other beams. There are four different beams in the second room, and
the player has to navigate them to the masks on the other side of the room.
The solution for this room can be seen in figure 3.3. The squares with arrows
represent turners, and the numbers represent at which height the beam is.
To solve the next room, the player needs to get a beam through a small gap
in the wall. However, the beam will be blocked by a second beam. It is
necessary to use a third beam to block the second one, to let the first one
pass. Furthermore, the player needs to remove yellow and add blue aspects
to the beam on the way.
The next corridor is filled with crushers with different sequences from the
first level. This time, there are some more challenging places where the player
needs to choose the timing accurately.
After the crushers, there is a room on the same base as the second one. One
difference is that there are unmovable pillars that can also bend and change
a beam’s altitude. The player has to solve how to make the light beams pass
through. A good strategy here is to pick a color, get it to the mask, and
repeat this process until the room is solved. The solution for this room can
be seen in figure 3.4. The squares with arrows represent turners, those with
circles represent unmovable turners. The numbers represent at which height
the beam is. The last room of the level is once again filled with lasers. This
time it is a bit harder to pass as there are places where lasers are coming
from more than one side.

Figure 3.3: Second room in second level

20

.....................................3.6. Level Design

Figure 3.4: Fifth room in second level

3.6.3 Level Three

The player starts at one side of a giant maze(Figure 3.5). There are two
possible ways to get out of the maze. The better one is finding out that there
are barely visible arrows on crossings. By following the arrows, the player
can get out quite easily. However, if the player does not find out that there
are these arrows, it might take a while as it is a really big maze. When the
player gets out of the maze, he finds himself in a room with three doors. One
of the doors is blocked by two differently colored fields. The other two doors
are accessible. The player needs to complete the puzzles in each of these
doors to get rid of the fields and be able to open the last door. On one side,
there are beams, and on the other side there are lasers. In the first room with
lasers, the player learns that he can turn them on and off by using a lever. In
addition, he finds out that a laser can collide with another laser. The second
room with lasers is a bit harder. The player needs to figure out the order
of switching the levers on and off to access a button. When he presses the
button, a cut scene appears where he can see that one of the fields disappears.
In the rooms with the beams, the player guides the beam to a new mask.
When this mask is receiving a light beam of the correct color, a part of the
wall opens and shows a hidden part of the room. There is a turner inside,
thanks to which the player can open the next door. The next room is a little
more complicated. The wall is blocking a blue and an orange beam. There
are two masks near the door that require green and red colors. Furthermore,
there is a green beam, three turners, and a yellow light remover. There is
the new mask in the corner that requires a blue beam. The idea is to first

21

3. Design..
make the green beam blue and turn the blue beam into the new mask. This
will move the wall that was previously blocking the two beams. After that,
it is necessary to quickly remove the turner and let the blue beam hit the
blue mask before the wall moves back again. Finally, the player has to get
the green beam to the green mask and use the yellow remover to make a red
beam from the orange one.
The last room might be hard for someone. In this room, there is no color
changing, and all masks cause parts of the wall to move. Everything requires
red beams. First, there are two turners by which the player can open the
first hidden alcove. There is another beam and another mask, and a new
turner. Now the player needs to use the new beam to hold the first mask
activated and the first beam to activate the new mask. Another alcove opens
with again one beam, one mask, and a turner. This time the player needs to
use the third beam to activate the first mask and use the second beam to
activate the third mask. When the third mask is activated, it opens the last
alcove, where the button is hidden. When the player presses it, another cut
scene is played, and the second force field disappears. Now the player can
return to the main room and enter the previously barricaded door. In there
is the exit of the third level.

Figure 3.5: The maze

22

.................................... 3.7. User Interface

3.7 User Interface

When the game starts, there are three buttons: Start, which lets the player
choose a level and then starts the game. Options, which brings the player to
an options menu where he can set the volume and mouse sensibility. And
Quit, which closes the application.
There is another menu that can be accessed during the game by pressing
ESC. The player can resume the game, go back to the main menu, access the
options menu, access a simple help, where is the basic information about the
light beams, restart the room he is in. This can be useful when the player
gets stuck or wants to start the puzzle from the beginning. There is also an
exit button to close the application.

23

24

Chapter 4

Creation of the game

There are many things that have to be done to turn the game design doc-
ument into a playable game. I needed models, textures, sounds, and, most
importantly, scripts for the game’s logic.

4.1 Models

I used Blender[Blea] for the creation of the game objects. The reasons for
choosing it were previous experience, availability of many tutorials, and that
it is a free software. I started by creating a wall, a simple plain with some
added edge loops to create rows for stones. A cube scaled to fit between the
two edges was an easy start to make the stones, but the bricks could not
be just simple cubes. After multiple subdivisions and the application of a
subdivision surface, the cube looked much better. However, it still missed
details, and creating a wall by using only one same rock would not look nice.
By using multiple different brushes in the Sculpt mode, I made eight various
stones.
The process of making the entire wall consisted of duplicating the stones,
rotating them, and moving them to fill the rows. Every other row has the
stones offset, so there are no visible vertical lines. This resulted in having
some bricks that were overreaching the edges of the plane. On the rows where
the stones were overreaching, it was necessary to use the same rock as the
first and last one, so later, when using the same wall, it would tile seamlessly.
When the wall was constructed, I created a single object by joining all the

25

4. Creation of the game
bricks together, a high-poly wall(Figure 4.1).

Figure 4.1: High-poly and low-poly model of wall

High-poly means that a model consists of a massive number of polygons.
It would not be a problem to use high-poly objects to create some animated
videos or photorealistic images. However, computer games should use models
with a lower number of polygons, as it requires less performance to render
them. It is possible to get the details of the high-poly model to the low-poly
one by a normal map.
Before the creation of a normal map, the object must have a UV map. By
using the smart UV project function, I created the UV map for the wall.
With the UV map ready, I could start the process of creating a normal map.
A normal map can be baked. Baking is a process of calculating specific data
and saving them into a texture. Usage of a cage can help with the baking,
where instead of using the mesh normals, it uses the normals of the cage.
It can prevent glitches that would appear on the edges of the object. It is
possible to make more maps than just a normal map. To create the albedo
texture, I also generated an Ambient Occlusion map(Figure 4.2).
In Gimp (free software for editing images)[Gim], I used the texture from the
Ambient Occlusion bake and multiplied it with a rock texture that I acquired
from a portal with free images[Texb] To create some differences between each
brick, I added a new layer of soft light and painted most of the brick in
some color. The bricks that were just partially on the texture (those that
were overlapping the edges) were not painted. So when I would create other
objects with the same pattern, there would be no seams when they snap
together(Figure 4.3).
The first wall I created was eight units long(Figure 4.4), and I needed smaller
walls to be able to make corridors of any size. It was possible to repeat the
same process for each wall, but as the textures were quite big (4098x4098), I
decided to reuse the same texture. A new edge loop had to be created to be
able to reuse the texture, as it was necessary that the left side of the wall
had the left side of the texture and the right side of the wall the right side of
the texture, but it was not possible to fit the whole texture on the smaller
wall as it would not look good. Therefore, instead of using the whole texture,
I just used some parts of it.
The corner piece and door frame have their own textures. The process of
creating them was pretty much the same. It is important to have the row’s

26

....................................... 4.1. Models

height coordinates exactly the same as the coordinates of the walls and that
the height coordinates on both UV maps match because if these coordinates
are not the same, there will be seams when these two objects snap together.
When the walls were done, I created a plane that would represent the floor
and the ceiling. Additionally, I created the model for a torch and all the
objects I needed for my puzzles.

(a) Ambient map (b) Normal map

Figure 4.2: Baked maps of the wall

Figure 4.3: New texture for the wall

27

4. Creation of the game

Figure 4.4: Low poly model with applied texture

(a) Walls

(b) Masks

(c) From left to right: color remover, color adder, turner, torch, lever,
button, end of level button, and at the bottom light beam

Figure 4.5: Models

28

.................................... 4.2. Level Creation

4.2 Level Creation

When all the components were created, I imported them into Unity as assets.
In there, I created prefabs. Prefab is a reusable asset that stores all the
components of a GameObject, its values, and even its children. This is
essential for modular components, as when there is a need for a change,
changing the prefab will change all the objects created from this prefab. I
added colliders to the walls, floors, and others assets that would be moved.
Colliders are bounds that can be used to detect collisions between objects.
Additionally, I created materials using the maps I created or downloaded[Texa]
and applied them to the prefabs. After that, I started creating rooms based
on my design by simply dragging the prefabs into the scene view. I used
grid snapping to move the objects in the scene. This allowed to precisely
place the walls next to each other. When the walls were done, I placed the
floor, duplicated it, rotated it around the x-axis by 180 degrees, and moved
it up on the y-axis. Then I placed torches so that the room would be well
lit. After that, I created puzzles from the rest of the objects based on my
design. There is a maze on the third level, and for that, I could not use
torches because there would be too many point lights, and the performance
would drop drastically. Thus, instead, I created a light that floats above the
player when he is inside the maze. When this was done, I started working on
the scripts.

(a) Level one (b) Level two

Figure 4.6: Images of levels one and two

29

4. Creation of the game

Figure 4.7: Level three

4.3 Scripts

Everything in the game, from moving to defining how objects interact with
each other, is done through scripts. Scripts are text documents that contain
a code that represents the logic of the game. Unity uses C# as the program-
ming language. Here I will describe the more complicated logic and how I
implemented it.

4.3.1 Movement and player interactions

The first thing I implemented was player movement. Because I decided that
the game will be from a first-person view, I had created two classes, one for
the camera, which took care of rotation. Rotating up and down rotates just
the camera, but rotating left and right also rotates the body unless the player
is pushing something. When the player is pushing, the rotation left and right
affects only the camera, but it is limited. This allows the player to look to
the side while pushing. The other class is called Movement, and it processes
the keyboard input and uses it to make the player move, check for triggers,
and initiate actions with other objects. The player can move to the left, right,
forward, or backward based on the direction of the forward vector. When the
player is pushing an object, the movement speed is lower, and he can move
only forward and backward. To make the game easily expandable, the logic

30

....................................... 4.3. Scripts

of the interaction is not in the player script but in the script of the object
instead. I used a raycast to detect which object is in front of the player and
check if it has a script derived from an abstract class Interactive. If it does, it
will call the Interact method. Each object can have it implemented differently,
so if a new interactive object is added to the game, it just needs to derive
from the Interactive class.
Currently, there are several objects the player can interact with. There are
passive interactions and active interactions. Passive interactions are those
that happen even without the consent of the player and do not use the
Interactive class. The laser and crusher(falling ceiling) are able to kill the
player whenever he touches the deadly parts. The walls could be counted in
passive interactions, as they prohibit the player from passing through them.
On the other hand, active interactions happen when the player chooses to
do so, those are the objects he can interact with and are using the scripts
derived from the Interactive abstract class. Currently, those are the object
he can move, a lever, and a button. For the moveable objects, the Interact
method snaps the player to a specific location based on the player’s angle
when he starts the interaction with the object. Then the object saves its
formal parent and sets the player as its parent. In addition, it activates the
pushing mode. For the lever, The Interact method plays the animation to
make it go up or down and calls the Switch method of the controlled object.
The first time the player interacts with a button, an animation is played.

4.3.2 Beam of light and its interactions

The other important thing is the light beam. To make the beam length
precise, I used a raycast and used the distance as a scale in the direction of
the beam. Instead of using collision to make the interactions of the beam
with other objects, I used the raycast to implement the same thing I did with
the player. This again should allow easy expansion. There is an abstract
class, BeamInteractive, and it is working on the same principles as the In-
teractive class. When the ray hits an object for the first time, it calls the
BeamEnter method, every time it hits the same object again, it calls the
BeamStay method. When it hits another object or when it becomes disabled,
or when it is destroyed, it calls the BeamExit method. Each beam has three
particle systems, one for each of the three basic colors(red, blue, and yellow).
Whenever a beam’s color is set, the particle systems are disabled or enabled
based on the color.
Throughout all the scripts, the color is set by a string. To convert the string
to a color, a dictionary from a static class, where all the information is, is
used. The class also includes methods that decide what will happen when a
color is added or removed from the beam.
There are many objects that are interacting with the light beam, and even

31

4. Creation of the game

Figure 4.8: Interaction of a beam with the color changers

the light beam can interact with another light beam. When two light beams
collide, a small sphere appears to represent a collision. There are two ob-
jects that can add or remove colors from the light(Figure 4.8). They both
use the same script. To determine which is which there is a boolean. The
appropriate method is called based on the boolean, and a new color for a
beam is determined. It is not possible to change the color of the beam and
let it pass through with the new color, so instead, a new beam is created,
and it starts where the incoming beam ended. The position is counted based
on the forward vector of the incoming beam. If the forward vector has its
z value one or minus one, the new beam uses the x and y incoming beam
position values and the z value from the changer’s position. If the forward
vector has its x value one or minus one, the new beam uses z and y values
from the incoming beam and the x value from the changer’s position instead.
The changers hold a list of all the incoming beams so more than one beam
can go through. Every time the BeamStay method is called, the position of
the new beam is recalculated. When the BeamExit is called, the new beam
is destroyed.
Turner is working on a similar concept, but it only takes one beam at a time,

so there is no need for a list, nor is there a need for instantiating new beams.
There is a prepared beam in the mouth of the exit mask, and it is turned
active when the BeamEnter method is called. Furthermore, the color changes
to the same as the incoming one. There is no need for the BeamStay function
as the local position of the turned beam is set, and it is not changing. The
BeamExit method just deactivates the new beam. The turner is also used for
changing the altitude of beams. This is done by changing position of the exit
mask(Figure 4.9)

32

....................................... 4.3. Scripts

Figure 4.9: Beams with different altitudes

There are masks that check if a certain color is entering their mouth. When
the BeamEnter method is called, it checks if the color of the incoming beam
is the same one as the color it requires. If it matches, the emissive index of
the eye changes, so the player can see that it is hit. When the beam leaves,
it changes the index back.
I had some problems with the interaction of two beams. When they were
facing each other, the raycast would hit a different place every update call as
the scale would change every update call. To resolve this, I added a small
delay, where whenever a raycast is made, there is a short pause of a random
length before another raycast is cast. This resolved in the desynchronization
of the raycasts, so now the collision position stays in one place.

4.3.3 Game functionalities

To achieve better performance, I implemented a script called Game, which
deactivates everything except the room where the player is or two rooms
when the door is open. I am using point lights that cast shadows, so if I would
not do this, the performance would drop heavily, as counting the lighting is
performance heavy. When an object is deactivated, it is still contained in
the memory, but all the scripts and components are deactivated as well, so
Unity is neither calling Update methods for deactivated objects nor are they
rendered. All the objects, but the player and doors, are sorted into rooms,
and when the game starts, the game scripts find all the rooms and doors and
add them to two lists, one for each, respectively. It also sets the first room
as the active one. Whenever a door closes, a method is called that disables
all rooms and doors which the player can not see. The script for the door
is closely tied to the Game class. Each door holds a reference to the rooms

33

4. Creation of the game
that it connects, and when a player is at a certain distance from it, it will
first check if all the masks are receiving the right color. If they do, it will
set these rooms to active and call the method to activate the doors in the
next room. While the door is open, every update, the game also calls a script
from the Movement class, where it checks in which room the player currently
is. The Game script is also taking care of resetting the game when the player
dies. It finds a checkpoint in the current room and gets the new position
and rotation for the player. While testing, the FPS(frames per second) never
dropped under 60.

4.4 User interface

The game starts with a simple menu(Figure 4.10). There are three buttons.
A Play button, which lets the player choose a level. An options button that
leads to an options menu where the player can change the mouse’s sensitivity
and the volume of sounds and a quit button that exits the application. A
mouse is used to navigate the menu.
When the player is playing some level, he can pause the game and access
the pause menu(Figure 4.11) by pressing ESC. Here the player can resume
the game by the button or by using ESC again, go to the menu, go to the
options, access help, reset the current room, or quit the game.

Figure 4.10: Main menu

34

.................................. 4.5. Sounds and Music

Figure 4.11: Pause menu

4.5 Sounds and Music

Every game needs background music and some sound effects. I created the
background music with Waveform 11(a free digital audio workstation)[Tra].
I used the sforzando plugin[Plo] to be able to use the Virtual playing
orchestra[Orc] .sfz files, which can be used for free. I created a minute-
long track that will be looped in the background.
I made the sound effects in Audacity(free audio software)[Aud]. I recorded
the sounds with my microphone and then applied some effects that are in
Audacity to create suitable sounds for my game. The quality of my micro-
phone is not as good as I would like it to be, so the sounds are not perfect.
To create the door opening and closing sounds, I rubbed two stones with
a rough surface. For the sound of pulling or pushing an object, I used one
stone with smooth and one with a rough surface. To create fire crackling, I
used a small plastic bag, and for the sound of the crushers, I used a drum.
First, I had to get rid of the noise from all of these recordings, I sampled the
part where only the noise could be heard and applied noise reduction to the
whole clip. After that, I changed the pitch and speed of the recordings until
I was happy with the sound. For the torch and pulling sound, I had to make
the sound seamless, so the player cannot hear when the sound begins to play
again from the start. I cut the beginning of the recording and put it at the
end of the clip. Then I applied the crossfade effect.
When the sounds were ready, I imported them and the background music to
Unity. As the background music is playing all the time, I keep it on an object
that is not destroyed when a scene changes. I created Audio Sources for the
objects that are making the sounds and set when should they be played in
the scripts.

35

36

Chapter 5

Testing

Testing is a crucial part of the process of developing a game. It gives the
developer important information on how to progress. When another person
tries the game for the first time, he does not know anything about it. That is
perfect as the developer can see if the implemented system is working, if the
tester understands everything, and if the game is intuitive. The developer
can think that everything is easy, makes sense, and people will not have any
problems while playing, but sometimes the opposite is the reality. The first
few tests were conducted to try out if the idea of the game is interesting
enough to make the players enjoy the game. One or two testers would try
the game, and I would watch them play it. Then they would tell me their
opinion.

5.1 First Test

The first time I asked someone to try out my game, it was filled just with
cubes and planes(Figure 5.1). There were no textures, no animations, no
sounds; just the basic idea of the game was implemented. Furthermore, the
game was quite different from its current state. There were no light beams,
and the idea was just to pass through obstacles, move pillars to buttons, or
block lasers with them. I wanted to determine if the direction I was taking
was the right one. To my surprise, nobody really liked it. Everyone said that
there was nothing interesting about it. The whole gameplay was walking
through the same kind of traps the entire time. And furthermore, none of
them thought that it is a logic game.

37

5. Testing
This test resulted in me redesigning the whole game. I still stuck with my
idea of exploring a temple full of puzzles and traps, but I took a different
approach. I needed something that would catch the eye of potential players.
And that is when I first came to the idea of the light beams. I deleted almost
everything in my design document and started anew. I salvaged some of the
code and reused it in the new version, but most of it was not very useful for
my next try.

Figure 5.1: The look of the game during the first test

5.2 Second Test

The second round of testing came after a few weeks. I wanted to test if the
light beams would have any success. This time, the testers liked the idea, but
the logic of changing the colors was strange, and they did not understand
it. At that time, I had just one structure that would change the color based
on a table that I created and thought was logical. The tests showed that no
one could tell which color will emerge unless they tried all the combinations
before.

5.3 Third Test

I concluded the third test when I reworked the mechanic of changing the
light. At this time, there were two color changers as in the current version,

38

..................................... 5.4. Fourth Test

where one would add, and one would remove colors from the beam. There
were people who did not have any problems, but some people did not know
the combinations of colors. For example, they did not know that orange color
can be created by mixing red and yellow.
While the light beams were interesting, the testers did not like that there
were only beams. "I would expect some danger when going into an old temple,
not just walking around and solving puzzles," one of them said. However,
overall, this test was a success. The reviews were better, and I had the main
feature of my game. I did not want people to struggle with learning what
the colors are made of, so I came up with particles that are flying around
the beams(Figure 5.2) to help those who would have problems with color
mixing. In addition, after hearing that the traps would be appreciated, I
started working on them as well.

Figure 5.2: Beam particles

5.4 Fourth Test

This time I had an entire level done. I had most of my textures done, the
models were ready, and I did not know about any bugs. I had seven testers
this time, and I watched each of them play through it and asked them to
speak their thoughts out while playing. Some of the testers were people who
play computer games often. Some of them do rarely or not at all. Also, two
of them already had some experience from previous tests.
During the test, it was really easy to see the differences between players and
no-players. Even though there was a tutorial, some of them needed a little
help to understand the concept of the beams as the introduction was too brief.
After the little help, all of them were able to understand the mechanics and
enjoyed it. All but one of them were able to pass the traps. I had to create
a new version of the game where the traps were not working so the rest of
the rooms could be tested by this individual. However, the tester did know
how to pass the obstacles. He just was not capable of moving the character
precisely. This tester was one of those who do not play computer games that
often. In this version, some of the rooms on the first level were quite hard.
And some of the testers struggled, so I expected bad reviews. The expected
time to finish the first level was about 30 minutes. The faster players finished
in around 40 minutes, where the slower ones played it for over an hour.

39

5. Testing
Unexpectedly, everyone said they had enjoyed the experience and did not
find anything they would not like. Some of them preferred the light beams,
others the traps, and all agreed that they were combined well throughout the
level. The two testers from previous tests did like the new particles around
the beams and agreed that they make it easier to understand.
However, I did not like that they struggled in the first level, so I decided to
lower the difficulty. I wanted to make the beginning better, so people would
grasp the idea faster and without problems. In addition, I saw that there
were some things that I could improve. For example, people could not say if
the beam was going through, while pushing the turner from some sides. That
led to the addition of a small crystal on the top that begins to shine when a
beam is going through.
During the playtesting, a few bugs were discovered. Sometimes when pushing
an object, it would get stuck between two colliders on the floor, or when
pushing near a wall, it would get stuck between two walls. I found out that
the colliders of different floor game objects were not at the same height, and
for the walls, they did not have the same width and length. I remade the
colliders, but still sometimes it would get stuck. After some research, I found
out that it were a ghost collision. A rigid body that uses continuous collision
detection can cause this. By lowering the default contact offset in the project
setting, I was able to get rid of it.
Another bug that was discovered during the test was that the sphere that
appears when beams collide would not be destroyed. The implementation
was not good, as it would instantiate and destroy the object on every new
collision when it was not possible to have more spheres at the same time. Now
there is just one sphere that just deactivates when it should not be visible.
One of the testers argued that in one of the rooms, a mask that moves a wall
when hit by a beam of the right color looks the same as the masks which open
the door. It was a valid complaint, and I created a new type of mask(Figure
5.3).

Figure 5.3: New mask

40

...................................... 5.5. Final Test

5.5 Final Test

In the final test, all levels were ready. I asked the testers to play all of them,
as I made a lot of changes to the first one. This time I had only one tester who
did not test the game previously. He did not have any trouble comprehending
how the beams are working. All testers agreed that the difficulty of the first
level is adequate.
The second level brings the possibility of having beams with different altitudes
and the testers liked it. Few of them did not like that in the second room
there is not that much space to push the turners around. None of them had
any problems solving the puzzles. One of the testers had problems with the
crushers as in previous tests, so I created a version without them for him.
The last level starts with a maze. None of the testers found the arrows on the
walls which could lead them through. Almost everyone used the rule of the
left or right hand. After showing them the barely visible arrows, everyone
said that they would not find them, if they would not know about them. I
created a new script for the arrows and now, after being in the maze for one
minute, every twenty seconds the arrows become more visible. For the rest of
the rooms there were no bigger problems, although the last one in the beam
section was a bit too hard for someone. However, because it is the last level,
I decided to keep it there. None of the testers had a problem to comprehend
what the new mask that moves the walls does, neither how the lever that can
turn the laser on or off works. Two testers even said that from the whole
level they enjoyed the levers the most.
Overall the game was received positively. All of them found the game
enjoyable, although sometimes a bit frustrating(when the last set of crushers
would kill them for the third time).
There were two big bugs that the testers found. One of them was that every
time the player died in a room with laser masks in levels one and two. The
set of invokes that are turning lasers on and off would be initialized again,
but the previous invokes would not stop, so for each time the player died
a new set of invokes started. This bug was easily fixed by turning the old
invokes off. The second bug they found was that a cut scene would not play
in the third level after pressing the button. Unexpectedly, the cut scene did
not work just for one of the two buttons. This took me quite a while to fix.
The reason for it happening was that getComponentInParent does not search
in disabled objects. However, getComponentsInParent can search in disabled
objects, so I used it instead.

41

42

Chapter 6

Conclusions

The goal of this work was to design a 3D logic game based on the analysis
of logic game principles, create modular components, create three playable
levels, and test it on at least six players.
I started with the design document. Then I created modular components for
some of which I also created textures. I then used the components to construct
levels based on the design and implemented all the game’s mechanics. I tried
to implement them in a way that would allow easy expansion. I concluded
several tests and based on the results changed the game appropriately. I also
created some sounds and background music for my game.
For the future, I plan to add a third dimension to the movement of the player
by introducing stairs or platforms. I would also like to model the character
and animate it so the hands can be seen all the time and the interactions
with objects are more visible. Also, I would like to add some voice lines for
the main character and maybe for the goddess. Unfortunately, the game lacks
a story at the moment, which I think is an important part of the game, so I
will have to work on it and fit it into the game.
The work on this game improved my skills a lot. I have tried many things
that I have not done before, from creating textures to composing background
music. I will definitely continue my work on this game, and hopefully, one
day, I will publish it.

43

44

Appendix A

Bibliography

[ASA] National Aeronautics and Science Mission Directorate Space Ad-
ministration, Wave behaviors, http://science.nasa.gov/ems/03_

behaviors, ([Online] Accessed 30/04/2021).

[Aud] Audacity, Audacity, https://www.audacityteam.org/, ([Online]
Accessed 17/05/2021).

[Bet] Bethesda, The elder scrolls v: Skyrim, https://elderscrolls.

bethesda.net/en/skyrim, ([Online] Accessed 13/05/2021).

[Blea] Blender, Blender, https://www.blender.org/, ([Online] Accessed
17/05/2021).

[Bleb] , Uv editor introduction, https://docs.blender.org/

manual/en/latest/editors/uv/introduction.html, ([Online]
Accessed 30/04/2021).

[Bli] Blizzard, World of warcraft, https://worldofwarcraft.com/

en-us/, ([Online] Accessed 13/05/2021).

[Bura] Joel Burgess, Skyrim’s modular approach to level
design, http://blog.joelburgess.com/2013/04/

skyrims-modular-level-design-gdc-2013.html, ([Online]
Accessed 14/05/2021).

[Burb] Joel Burgress, Image of the dwarven modular kit,
http://2.bp.blogspot.com/-q7M9ZyKUWpI/UXAcJT3pSUI/

AAAAAAAAAak/FvXRSHtOsik/s640/DwarvenKitShot.png, ([Online]
Accessed 17/05/2021).

45

A. Bibliography.....................................
[Cro] Croteam, The talos principle, https://store.steampowered.

com/app/257510/The_Talos_Principle/, ([Online] Accessed
14/05/2021).

[Doc] Unity Documentation, Heightmap, https://docs.unity3d.com/

Manual/StandardShaderMaterialParameterHeightMap.html,
([Online] Accessed 14/05/2021).

[Gam] Twilight Games, Aargon, http://www.twilightgames.com/, ([On-
line] Accessed 13/05/2021).

[Gim] Gimp, Gimp, https://www.gimp.org/, ([Online] Accessed
17/05/2021).

[Kin] King.com, Candy crush saga online, https://www.king.com/game/

candycrush, ([Online] Accessed 13/05/2021).

[Mit12] B. L. Mitchell, Game design essentials, John Wiley & Sons, 2012.

[Moba] Mobygames, Aargon, image from the game,
https://www.mobygames.com/images/shots/l/

14887-aargon-windows-screenshot-shot-of-a-basic-level-deliberately.

jpg, ([Online] Accessed 17/05/2021).

[Mobb] MobyGames, Aargon(windows), https://www.mobygames.com/

game/aargon, ([Online] Accessed 12/05/2021).

[Orc] Virtual Playing Orchestra, Virtual playing orchestra, http://

virtualplaying.com/virtual-playing-orchestra/, ([Online]
Accessed 17/05/2021).

[Oxf10] Oxford, Oxford studijní slovník, Oxford University press, 2010.

[Plo] Plogue, Sforzando, https://www.plogue.com/products/

sforzando.html, ([Online] Accessed 17/05/2021).

[Rog14] S. Rogers, Level up! the guide to great video game design, John
Wiley & Sons, 2014.

[Rom15] Pierre-Armand Nicq Romain, Caudron, Blender 3d by example,
Packt Publishing, 2015.

[Rus] Jeff Russell, Basic theory of physically-
based rendering, https://marmoset.co/posts/

basic-theory-of-physically-based-rendering/, ([Online]
Accessed 30/04/2021).

[Sch08] J. Schell, The art of game design: A book of lenses, CRC Press,
2008.

46

..................................... A. Bibliography

[Stea] Steam, Archaica: The path of light, image from the game,
https://cdn.cloudflare.steamstatic.com/steam/apps/

550590/ss_d08bbefba9e1e95974cbe174f5869871f5d9a942.

600x338.jpg?t=1510283845, ([Online] Accessed 17/05/2021).

[Steb] , Talos principle, image from the game, https:

//cdn.cloudflare.steamstatic.com/steam/apps/257510/

ss_b42acabe63d45a11580a2949e34f305e1bd10fc7.600x338.

jpg?t=1601561095, ([Online] Accessed 17/05/2021).

[Stu] PopCap Studios, Bejeweled, https://www.ea.com/cs-cz/games/

bejeweled, ([Online] Accessed 13/05/2021).

[Texa] TextureHeaven, Source of free textures, https://texturehaven.

com/textures/?c=floor, ([Online] Accessed 17/05/2021).

[Texb] Textures.com, Rocksmooth0045, https://www.textures.

com/download/RockSmooth0045/13130, ([Online] Accessed
12/04/2021).

[Tra] Tracktion, Waveform free, https://www.tracktion.com/

products/waveform-free, ([Online] Accessed 17/05/2021).

[Two] TwoMammoths, Archaica: The path of light, https:

//store.steampowered.com/app/550590/Archaica_The_Path_

of_Light/, ([Online] Accessed 14/05/2021).

[Unia] Unity, Image of the effect of normal and height map, https://docs.

unity3d.com/uploads/Main/StandardShaderParallaxMap.jpg,
([Online] Accessed 17/05/2021).

[Unib] , Image of the effect of smoothness, https:

//unity3d.com/sites/default/files/learn/updated-7.

3-copy-of-staying-on-track-25.jpg, ([Online] Accessed
17/05/2021).

[Unic] , Unity game engine, https://unity.com/, ([Online] Ac-
cessed 17/05/2021).

[Val] Valve, Portal, https://store.steampowered.com/app/400/

Portal/, ([Online] Accessed 13/05/2021).

[Wik] Wikipedie, Portal, image of the mechanic, https://upload.

wikimedia.org/wikipedia/commons/thumb/4/41/Portal_

physics.svg/220px-Portal_physics.svg.png, ([Online] Ac-
cessed 17/05/2021).

[Zep] ZeptoLab, Cut the rope game, https://www.cuttherope.net/,
([Online] Accessed 13/05/2021).

47

