CzecH TecuNicaL UNIVERSITY IN PRAGUE
Facurry oF ELEcTRICAL ENGINEERING
DePARTMENT OF COMPUTER GRAPHICS AND INTERACTION

MASTER’S THESIS

Wide Bounding Volume Hierarchies for Ray
Tracing

Bce. Lukas Cezner

Supervisor: doc. Ing. Jifi Bittner Ph.D.

Study Program: Open Informatics
Specialization: Computer Graphics
May 2025

CcTU MASTER'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

l. Personal and study details

Student's name: Cezner Lukas Personal ID number: 498875
Faculty / Institute: Faculty of Electrical Engineering
Department / Institute: Department of Computer Graphics and Interaction

Study program: Open Informatics

Specialisation: Computer Graphics

Master’s thesis details

Master’s thesis title in English:

Wide Bounding Volume Hierarchies for Ray Tracing

Master’s thesis title in Czech:

Siroké hierarchie obalovych téles pro metody sledovani paprsku

Name and workplace of master’s thesis supervisor:
doc. Ing. Jifi Bittner, Ph.D. Department of Computer Graphics and Interaction

Name and workplace of second master’s thesis supervisor or consultant:

Date of master’s thesis assignment: 07.02.2025 Deadline for master's thesis submission:

Assignment valid until: 20.09.2026

Head of department’s signature prof. Mgr. Petr Pata, Ph.D.
Vice-dean’s signature on behalf of the Dean

\.

lll. Assignment receipt
e A
The student acknowledges that the master’s thesis is an individual work.

The student must produce his thesis without the assistance of others, with the exception of provided consultations.
Within the master’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZDP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

CcTU MASTER'S THESIS ASSIGNMENT

CZECH TECHNICAL

UNIVERSITY
IN PRAGUE

l. Personal and study details

(™

Student's name: Cezner Lukas Personal ID number: 498875

Faculty / Institute: Faculty of Electrical Engineering
Department / Institute: Department of Computer Graphics and Interaction

Study program: Open Informatics

Specialisation: Computer Graphics

\. J

Il. Master’s thesis details

4 3\

Master’s thesis title in English:

Wide Bounding Volume Hierarchies for Ray Tracing

Master’s thesis title in Czech:

Siroké hierarchie obalovych téles pro metody sledovani paprsku

Guidelines:

Review methods using the bounding volume hierarchy (BVH) to accelerate ray tracing. Focus on techniques
for building and traversing so-called wide BVHs, i.e., hierarchies with higher branching factors.

Implement a suitable method for constructing such a BVH and the associated traversal algorithm. Implement
also a selected compression scheme for BVH nodes. Optionally exploit view dependency, i.e., optimize the
wide BVH for a particular camera position in the scene.

Integrate the implementation into an existing project that uses the Vulkan API. Based on detailed profiling,
propose optimizations for the implementation that will maximize the rendering speed for recent GPU architectures.
Perform thorough testing of the BVH construction and rendering speeds using path tracing in at least five test
scenes.

Bibliography / sources:

[11Gu, Y., He, Y., Blelloch, G. E. (2015). Ray specialized contraction on bounding volume hierarchies. Computer
Graphics Forum, 34(7), 309-318.

[2] Ylitie, H., Karras, T., Laine, S. (2017). Efficient incoherent ray traversal on GPUs through compressed wide
BVHs. Proceedings of High Performance Graphics, 1-13.

[3] Ogaki, Shinji, Derouet-Jourdan, A. (2016). An N-ary BVH child node sorting technique for occlusion tests.
Journal of Computer Graphics Techniques, 5(2).

[4] Benthin, C., Meister, D., Barczak, J., Mehalwal, R., Tsakok, J., Kensler, A. (2024). H-PLOC: Hierarchical
Parallel Locally-Ordered Clustering for Bounding Volume Hierarchy Construction. Proceedings of the ACM on
Computer Graphics and Interactive Techniques, 7(3), 1-14.

[5] Meister, D., Ogaki, S., Benthin, C., Doyle, M. J., Guthe, M., Bittner, J. (2021). A survey on bounding volume
hierarchies for ray tracing. In Computer Graphics Forum, 40(2), 683-712.

CVUT-CZ-ZDP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

FAKULTA ELEKTROTECHNICKA CTU
FACULTY OF ELECTRICAL ENGINEERING
Technicka 2

CZECH TECHNICAL

166 27 Praha 6 :JNNL\;EAI:;SJ:Y

DECLARATION

I, the undersigned

Student's surname, given name(s): Cezner Lukas
Personal number: 498875
Programme name: Open Informatics

declare that | have elaborated the master’s thesis entitled

Wide Bounding Volume Hierarchies for Ray Tracing

independently, and have cited all information sources used in accordance with the Methodological Instruction
on the Observance of Ethical Principles in the Preparation of University Theses and with the Framework Rules
for the Use of Artificial Intelligence at CTU for Academic and Pedagogical Purposes in Bachelor's and Continuing
Master's Programmes.

| declare that | used artificial intelligence tools during the preparation and writing of this thesis. | verified the
generated content. | hereby confirm that | am aware of the fact that | am fully responsible for the contents of
the thesis.

In Prague on 23.05.2025 Bc. Lukas Cezner

student's signature

Acknowledgements

I would like to thank my thesis supervisor doc. Ing. Jifi Bittner Ph.D. for his guidance and
valuable advice. I would also like to thank my family and friends for their support during my
studies.

VI

Abstract

Path tracing, a technique for generating photorealistic images, is widely used in offline
rendering and is increasingly adopted in real-time applications. Modern ray tracing frameworks
typically utilize wide bounding volume hierarchies (BVH), i.e., hierarchies with a branching
factor greater than two. This thesis investigates methods for constructing and traversing such
acceleration structures. We implemented wide BVH construction using two heuristics (SAH and
view-dependent), two memory layouts (uncompressed and quantized bounding volumes), and
evaluated their traversal using two shading languages (GLSL and Slang).

Across five different scenes, the evaluation showed an average speedup in secondary rays of
20% for 4-ary uncompressed BVHs and 78% for quantized 6-ary BVHs compared to binary BVHs.
View-dependent BVHs demonstrated an approximate performance gain of +9% for primary
rays and +4% for secondary rays in 4-ary BVH. In uncompressed BVHs, Slang shaders achieved
a modest speedup of 1% to 2% for secondary rays compared to GLSL, whereas in quantized
BVHs, they exhibited reduced performance in range from -9% to -14%.

Keywords: path tracing, wide BVH, view-dependent, compressed BVH, Slang

Abstrakt

Sledovéni paprskd, jako technika pro generovani fotorealistickych obrazi, se Siroce pouziva
pii offline vykreslovani a stale vice se prosazuje v aplikacich pracujicich v redlném ¢ase. Moderni
ndstroje pro sledovani paprski obvykle vyuzivaji $iroké hierarchie obalovych téles (BVH), j. hi-
erarchie s faktorem vétveni vétSim neZ dva. Tato prace zkouma metody konstrukce a prochazeni
takovych akcelera¢nich struktur. Implementovali jsme konstrukci Sirokych BVH pomoci dvou
heuristik (SAH a zavislé na pohledu), dvou pamétovych rozlozeni (nekomprimované a s kvanti-
zovanymi obalovymi télesy) a vyhodnotili jsme jejich traverzaci pomoci dvou programovacich
jazykt pro shadery (GLSL a Slang).

V péti rliznych scénach bylo zméfeno primérné zrychleni sekundédrnich paprskt o 20 %
u 4-arnich nekomprimovanych BVH a o 78 % u kvantizovanych 6-arnich BVH ve srovnani
s bindrnimi BVH. BVH zavislé na pohledu vykazovaly pfiblizny nértst vykonu o +9 % pro
primérni paprsky a +4 % pro sekundarni paprsky u 4-arnich BVH. U nekomprimovanych BVH
doséhly Slang shadery mirného zrychleni o 1 % aZ 2 % pro sekundarni paprsky oproti GLSL,
zatimco u kvantizovanych BVH vykazovaly sniZeni vykonu v rozsahu -9 % az -14 %.

Klicova slova: sledovani paprsk, siroké BVH, pohledova zavislost, komprimované BVH, Slang

VI

VIII

Contents

Contents

1 Introduction

1.1 Whitted Ray Tracing and Path Tracing
1.2 Bounding Volume Hierarchy (BVH)
121 Bounding Volumes L o
1.2.2 Surface Area Heuristic (SAH)
1.3 GPU Architecture e
2 Related Work
2.1 Construction Methods
211 Binary BVH Construction
2.1.2 Contraction Based on Reducing Pass Tests
2.1.3 Contraction Based on Dynamic Programming
2.1.4 HPLOC . . .
2.2 Tree COmMPression it
2.3 Traversal Methods
23.1 Thread Divergence
232 Persistent Threads
233 Speculative Traversal
234 Traversal Order of Children
3 Shading Languages
3.1 GLSL . . .
32 Slang
4 Implementation
41 Orchard.
4.2 Wide BVH Construction
421 Surface Area Contraction,
422 View-dependent Contraction
43 Wide BVH Memory Layout
43.1 Uncompressed Wide BVH Layout
43.2 Quantized WideBVH Layout
44 WideBVH Traversal
45 SupportTools
451 nvidia-stabilize
452 compare-benchmark 0 0 0oL
453 slang-depbuild oo

5 Difficulties During Implementation

IX

IX

10
11
11
11
11

15
15
15

17
17
18
18
18
18
19
20
21
22
22
23
23

25

51

52

Shader Resource Allocation
51.1 InSingleKernel Traversal
5.1.2 In Quantized Wide BVH Traversal

Instruction HoistinginSlang

5.3 Subgroup CoherencyinSlang
Results

6.1 Dataset e
6.2 Testing Environment

6.3
6.4
6.5
6.6
6.7

6.21 WorkgroupSize
SAH Traversal Cost
CBTC Heuristic Threshold
Depth Limit for Ray Statistics
Number of SampleRays
OverallResults. e

7 Conclusion and Future Work
References

List of Figures

List of Tables

List of Listings

Appendices
A MRps Performance for Various Workgroup Configuration

B Per-Scene Results

33
33
34
34
35
36
36
37
38

41

43

47

48

48

49

49

52

1 Introduction

Commonly used methods for producing realistic computer-generated images include ray
tracing and path tracing. The illumination in the scene is simulated by casting numerous light
rays that bounce off objects according to probabilities determined by the material properties of
those objects!). A huge number of rays must be cast to produce a high-quality image, which is
highly computationally demanding. To speed up this process, a frequently utilized acceleration
structure is the bounding volume hierarchy (BVH; see Section 1.2).

Rendering a scene consists of two steps: constructing a BVH for the scene and traversing this
BVH to find ray—primitive intersections. There are many types of BVHs and diverse methods for
building them. Notably, BVHs can be categorized into two classes: simple binary trees and those
with a higher branching factor (node arity), commonly referred to as wide BVHs. The advantage
of wide BVHs is a lower tree depth and fewer nodes, resulting in reduced memory consumption
and potentially increased performancel?].

This thesis examines wide BVHs, explores methods for their construction, and compares their
traversal to that of binary BVHs. We outline our implementation of wide BVH construction using
two distinct heuristics (SAH and view-dependent) and two memory layouts (uncompressed and
quantized), and our traversal shader implemented in two shading languages (GLSL and Slang).
The challenges faced during the development process are reviewed in Section 5. We evaluated
the implemented wide BVHs against a binary BVH across five scenes and analyzed various
parameter configurations (shader workgroup size, traversal cost, view-dependent heuristic
threshold, and parameters of sample rays) to achieve optimal performance.

1.1 Whitted Ray Tracing and Path Tracing

There are two methods that are often mistaken for each other: Whitted Ray Tracing[®! and
Path Tracing!!]. Both techniques employ primary rays (originating from the camera), secondary
rays (reflected from materials), and shadow rays (which determine whether a light source is
occluded).

Shadow Shadow
rays

Secondary Q

(a) Whitted Ray Tracing (b) Path Tracing

Primary

rays Primary
rays

Secondary
rays

r
.

Figure 1: Schematic visualization of Whitted Ray Tracing and Path Tracing.

Whitted Ray Tracingm simulates illumination through perfect reflections, refractions, and
diffusion. Each ray that hits an object is split into more rays: a reflection ray that bounces
according to the law of reflection (reflection angle equals incidence angle), a refraction ray
that obeys Snell’s law (if the material has refractive properties), and a shadow ray for each
light source. These rays are recursively cast until terminated (by a depth limit or if they do

not intersect) (3], Therefore, Whitted Ray Tracing has several shortcomings: it cannot simulate
complex light properties and generates rays that rapidly increase with increased depth.

Path tracing was designed as a method for numerical Monte Carlo integration of the rendering
equation!!]. Instead of branching the ray into more rays after each bounce, only a single ray
is cast in a direction determined by random probability, usually using importance sampling
(prioritizing directions with high contribution). Shadow rays can be cast from each ray bounce to
calculate direct illumination. This technique produces high-frequency noise, requiring multiple
rays (samples) per pixel to mitigate the noisel].

1.2 Bounding Volume Hierarchy (BVH)

The bounding volume hierarchy (BVH) is a rooted tree built upon scene primitives (usually
triangles). Each leaf node contains one or more primitives, and each internal node consists
of a bounding volume: a closed region that completely contains all primitives from the entire
subtreel*]. BVH is an object hierarchy. Each internal node splits a set of primitives into disjoint
subsets, one per child. Although children’s bounding volumes may overlap, unlike spatial subdi-
visions, which divide a node’s space into disjoint subspaces, this method provides a predictable
memory footprint, since each primitive is stored only once in the treel?]. Figure 2 shows an
example of a simple BVH tree.

Q
O @
Q AAQ
AA AA

(a) A BVH tree. (b) Bounding volumes of each
BVH node.

Figure 2: An example of a BVH tree. The color of internal nodes indicates tree depth: the root is
green, depth 1 nodes are blue, and depth 2 nodes are purple. Leaf nodes are marked in red.

Detection of the nearest intersection between an input ray and primitives in the BVH is
achieved through depth-first search (DFS) traversal using a traversal stack. Starting from
the root node, an intersection between the node’s bounding volume and the ray is computed.
If one is found, the child nodes are pushed onto the stack. When the traversal reaches a leaf,
the intersection between the leaf primitives and the ray is calculated, and the closest intersected
primitive encountered so far is saved. The distance to the nearest primitive can be used for tree
pruning, allowing nodes beyond this distance to be skipped(?.

1.2.1 Bounding Volumes

BVH can utilize a variety of bounding volume types. Effective bounding volumes should
primarily possess properties such as inexpensive ray-intersection tests, tight fitting, and small
memory requirements, but these properties are always subject to trade-offs among each other.
When considering memory requirements and the cost of ray-intersection tests, the bounding
sphere is the most cost-effective option, though it does not offer a particularly precise boundary.
On the opposite end of the spectrum are convex hulls, which are used exclusively for collision
detection!®]. Typically, for path tracing, an axis-aligned bounding box (AABB) is used, though

other bounding volumes are also a subject of research. Figure 3 illustrates some of the variants
of bounding volumes.

(4

L--

CONVEX

SPHERE AABB oBB 8-DOP HULL

Figure 3: Usual types of bounding volumes: bounding sphere, axis-aligned bounding box (AABB),

oriented bounding box (OBB), eight-direction discrete orientation polytope (8-DOP), and convex

hull. Adapted from an image by Ericson!®].

1.2.2 Surface Area Heuristic (SAH)

The way in which primitives in a BVH are divided is essential for the quality of the resulting
BVH. To evaluate BVH quality, a heuristic to estimate traversal cost is widely used. The most
commonly used one is the Surface Area Heuristic (SAH), which approximates the conditional
probability of traversing a node, given that its parent was hit, by the ratio between the surface
areas of the child and the parent(®). Subsequently, the cost of subtree of a node N can be
formulated as:

SA(Ninternal) SA(Nleaf)
C(N)=c¢; - T\ wnternat) . 2L\ Yeaf)
Ny=c- SA(N) ¢ SAN)
internal Nleaf
where SA(N) is the surface area of a node N, Nipternai and Njeq ¢ are the internal and leaf nodes
of a subtree, and ¢; and c¢; are the costs of traversing a node and computing a ray-primitive
intersection.

The SAH does not accurately capture every aspect of ray tracing behavior, as it is based on
several assumptions that may not hold true, specifically that rays are uniformly distributed over
the scene and that they are not occluded by primitives(®!.

1.3 GPU Architecture

In order to achieve high parallelization of shader execution, a GPU is organized into a hierar-
chy. At the bottom, a warp (in NVIDIA terminology) is composed of 32 (NVIDIA and AMD)
or 64 (AMD) "] parallel threads, which are scheduled together and execute only one common
instruction at a time. When threads within a warp diverge due to a conditional branch, the warp
processes only one branch at a time, deactivating threads that are not on the current branch
path!8l.

Warps are bundled into a compute unit (called a streaming multiprocessor in NVIDIA
terminology). Each compute unit contains an L1 cache, which is partially used as shared memory,
a low-latency memory with a limited access scope. A compute unit maintains execution contexts
for more warps than are physically present in hardware, facilitating thread-level parallelism to
hide latencies. These warps are called active warps. The warp scheduler selects an instruction
ready for execution, either from the same warp as before if there are no unresolved dependencies,
or from a different active warp!®8].

Vulkan defines an abstract execution model based on the GPU hierarchical architecture.
The compute shader is divided into a 3D grid of workgroups, which are consecutively assigned

to individual compute units. Within a workgroup, shared memory can be allocated, which
is visible only to that workgroup. Each workgroup is composed of a 3D array of invocations,
with each invocation representing a single thread in execution. Dividing computation into
a 3D grid simplifies the mapping of multidimensional data computations!®]. Figure 4 illustrates
the hierarchical structure of the execution model.

L4
L4
] 11 11 ‘ ; ; ;
4 I Inv Inve
4 [e, 8, 6] [1, 9, 0] [2, 8, 0]
L4
Workgroup Workgroup Workgroup 4
e, 6, 8] I1, 8, 6] [2, 8, 6] o ©
¢
1 7] Invocati Invocati Invocati
8, 1, O 1,1, 0] [2, 1, 0]
Workgroup Workgroup Workgroup 1
[, 1, 8] 1,1, 0] [2,1, 8] —
- Inv i Inv i Inv i
1 o [9, 2, . I, 2, 6] [2, 2, 0]
3
.
Workgroup Workgroup Workgroup + group 2
[®, 2, 0] [1, 2, 0] [2, 2, 0] N
B B - A
A 3 Inv i Inv i Inv i
. [8, 3, 0 1, 3, 0] [2, 3, 0]
A
.
A

Figure 4: Example of the Vulkan execution model. The relationship between workgroups, subgroups
(4 invocations in this case), and shader invocations.

Shader invocations within one workgroup are also partitioned into subgroups, defined as
a group in which invocations can synchronize and share data with each other['%). As the Vulkan
execution model is a logical abstraction over the hardware, it is not explicitly stated that a sub-
group usually corresponds to a warp, and data sharing between invocations inside a subgroup is
done using warp communication intrinsics. Therefore, in this thesis, we configure the workgroup
sizes as multiples of subgroups (warps) to avoid the creation of unused threads within warps.

2 Related Work

This section provides an overview of current techniques for BVH construction, compression,
and methods for efficient BVH traversal on the GPU, with particular focus on wide BVHs.

2.1 Construction Methods

The vast majority of algorithms for constructing a wide BVH are based on an existing
source binary BVH and its transformation. These algorithms typically perform a sequence of
contractions, in which an internal node is selected for removal from the tree and replaced by its
child nodes. Each contraction increases the arity of the parent node, leading to the creation of
a wide BVH node, as shown in Figure 5.

ooo eo%)o

©0O0O0

Figure 5: Example of the contraction of an internal BVH node. Initially, the green node is contracted,
resulting in its children being moved to the root, which consequently increases the arity of the root.

2.1.1 Binary BVH Construction

Before discussing wide BVH contraction techniques, it is useful to briefly summarize binary
BVH contraction methods. As stated in the Introduction, the methods for building them are
very diverse. They can be classified into three categories: top-down construction, which starts
from the root containing all primitives and iteratively splits them; bottom-up construction,
which begins with individual primitives as leaves and progressively merges them; and topology
optimization, which modifies an existing BVH to enhance its quality. For each category, we
discuss an existing method suitable for GPUs.

Linear BVH (LBVH)

LBVHI!"] utilizes the Morton code, a space-filling curve that divides space into a uniform
grid with distinct cell indices, to index each primitive and build a radix tree on these indexed
primitives. Subsequently, a BVH tree is derived from the radix tree by calculating bounding
volumes for each node. Lauterbach et al.l'!] formulated this approach as a top-down construction,
with a kernel launch for each tree level, but Apetrei[u] demonstrated that the entire construction
can be performed in linear time with a single kernel launch.

Parallel Locally-Ordered Clustering (PLOC)

PLOC3] s a bottom-up construction method that also uses the Morton code, but in a different
way. Clusters, consisting of primitives or internal BVH nodes, are sorted along the Morton curve.
Each cluster then searches for its nearest neighbor within a limited index range from its position
in the sorted array. If the nearest neighbor relation is mutual, the pair of clusters is merged,
creating a new BVH parent node. This process is performed iteratively until the entire BVH tree
is constructed.

Recently, this approach was simplified by Benthin et al., reducing the number of kernel
launches required per iteration, initially from five to three[!4], and later to a single kernel execution
for the entire BVH construction!?].

Treelet Restructuring (TRBVH)

TRBVH!! is one of the topology optimization techniques. Treelets, which are small fixed-
size subtrees of an existing BVH, are restructured using dynamic programming. Starting from

the bottom, treelets are formed from a node and a fixed number of its descendants (not necessarily
leaf nodes), and a new optimal BVH subtree is constructed from the treelet leaves to minimize
the total SAH cost. As the method progresses toward the root, it produces a high-quality BVH.

2.1.2 Contraction Based on Reducing Pass Tests

For the purpose of wide BVH construction, Gu et al.l'”] classified bounding volume tests

in tree traversal into two categories: the Pass test and the Prune test. The Pass test indicates that
there is an intersection with at least one child’s bounding volume, requiring traversal of part of
the internal BVH node’s subtree, since a primitive intersection may exist. In contrast, the Prune
test indicates that none of the children’s bounding volumes are intersected, and the entire BVH
node’s subtree can be skipped.

They observed that reducing the number of pass tests leads to faster BVH traversal and
formulated a cost function §(V) as the difference between the cost Ceopniracted When node N is
contracted and the cost Cy,ginq; in the uncontracted casel7]

5(N) = Ceontracted — Com'gz'nal
= (nchildren : Cb) - ((aN ’ (1 + nchildren) + (1 - O‘N)) ’ Cb)

= ((1 - O5N) * Nchildren — 1) * Co,

where oy represents the probability of the Pass test, c; is the cost of a bounding volume intersec-
tion test, and n.pi1dren, denotes the number of children for node N.

If this cost is negative, the contraction of the BVH node NN decreases the traversal cost and it
is beneficial to perform the contraction. The condition §(N) < 0 can be rewritten as!!”]

1
ay >1-—
Nechildren

The series of contractions is performed in a top-down manner. The contraction process
begins at the root node and proceeds by contracting a node’s child that satisfies the condition,
continuing this process until no child satisfies it. After that, the algorithm recursively descends
to each child node down until it reaches the leaves. During the processing of a node, the number
of children n¢p;dren is not known in advance. Therefore, the authors empirically set the condition
to ay > 0.6117).

It should be noted that this approach does not aim to generate BVH nodes with complete
child occupancy (i.e., nodes with n children in an n-ary BVH tree). Instead, the number of
children in a node may vary, even at the top level of the tree, depending on a .

The estimation of o depends on the chosen heuristic. Two variants have been proposed:
Surface-Area Guided Tree Contraction (SATC) and Ray-Distribution Guided Tree Contraction
(RDTC).

Surface-Area Guided Tree Contraction (SATC)

The SATC utilizes information on structural imbalances of the scene, analogously to the com-

monly used SAH!®l (and exhibits identical conditions that must be satisfied to yield valid

results), using the ratio between the surface area of the child’s bounding volume and the parent’s
bounding volume:

SA(N)

aN = SA(Nparent)

Ray-Distribution Guided Tree Contraction (RDTC)

The RDTC, in contrast to the SATC, aims to also reflect ray-distribution imbalances from
a specific view of the scene. To accomplish this, it is necessary to measure statistical data by
casting a set of sample rays and tracking the number of visits for each BVH node. According to
their research, approximately 0.1% to 0.5% of the rays are sufficient to achieve a high-quality
contraction. With the sampled data, the probability of a Pass test can be represented by the ratio
of visits to a node N compared to its parent node Npmemm]:

visitCount(N)
visitCount(Npgrent)

Furthermore, using statistical data, contraction can be restricted only to the important part
of the tree (i.e., the BVH nodes that are often visited) by stopping the recursion when the visit
count of a BVH node N falls below the specified threshold ¢ (i.e., visitCount(N) < t). Thus,
the time required to construct the BVH can be reduced!'”].

Constant Branches Tree Contraction (CBTC)

For use in a wide k-ary BVH, they proposed a very similar method. However, instead of
deciding whether the cost is negative and a node should be contracted, the child with the highest
probability for a Pass test (and therefore the highest ay) is always contracted, until the number
of children of a parent node reaches k.

Across most of the tree, the RDTC formula is used to calculate the probability a;, whereas
at the lower levels of the BVH tree, where the ray sample count is less than the threshold ¢,
the SATC formula is applied['7]:

visitCount(Nparent)
SA(N)

SA(NpaT'ent)

visitCount(N) if visitCount(N) > t,
an
otherwise.

2.1.3 Contraction Based on Dynamic Programming

Ylitie et al.l'8! described the construction of a wide BVH in an effort to achieve the highest
possible quality without compromising time. They started with a high-quality binary BVH
containing a single primitive per leaf. This binary BVH is generated by an offline CPU algorithm.
The wide BVH transformation simultaneously optimizes both the internal and leaf nodes with
respect to the total SAH cost!'8],

During the first pass, the optimal SAH cost C'(V, i) is computed for each binary BVH node.
This cost reflects the total SAH cost for the entire subtree of node N, represented as a forest with
at most i BVHs, where ¢ € [1; k — 1] for a k-ary BVH tree. In the second pass, a wide BVH tree is

constructed by backtracking the decisions from the cost computation['8].

The cost C(N, i) is computed using dynamic programming, starting from the leaves in
a bottom-up manner. Each leaf is initialized as!'®]

. . SA Nlea
Vi : C(Nleafal) = ,SM < Cj.
paren

The cost of an internal node is determined once the costs for all its child nodes have already
been calculated, as described below. C(N,i) for i = 1 characterizes the scenario in which
the binary node NV is converted into a new wide BVH node, either as a leaf node or an internal

node, whichever has a lower cost. Creating a leaf node is restricted by the maximum count of
primitives P, and is computed as the cost of intersecting Py primitives[!8]:

SA(N)

%) otherwise.

PN ¢ ifPNSPmaﬂm

Calculating the cost C'(V,1) of an internal BVH node is more complicated. It requires
selecting up to k children from the subtree that lead to the minimal cost, and this is where
dynamic programming is used. The children of a wide BVH node are determined by combining
the forests of the left child N;. ¢, and the right child IV, ;4 of the binary BVH node V. All possible
combinations of forest sizes are taken into account, but only those combinations for which
the sum of the sizes of the left and right forests equals & need to be tested. This is because C'(IV, 1)
represents the cost of a forest with up to i trees, rather than with exactly i trees. Therefore, it can
be described as!!8l:

SA(N)
CinernaN:Cism‘UeN,k —_— - ¢y,
ternat (V) distribute()+SA(Nparent) ct
Cdistribute(N, k) = min C(Nleft; ’L) + C(Nright7 k — Z))

ie[l,k—1]

The cost function with ¢ # 1 is computed in a similar manner. It represents a situation
where the binary BVH node may or may not be contracted. In such cases, this binary node is
not transformed into a wide BVH node; instead, it represents a list, essentially a forest of BVH
subtrees, that may become potential children of a parent node. Depending on the resulting cost,
a forest with i trees or fewer (possibly due to the recursive structure expressed as C(N,i — 1)) is
selected. Therefore, the computation of the cost C(N,) can be defined as follows!®]

min Cleaf(N)a Cmternal(N)] ifi = 17

C(N,1) =
(:9) min | Cgistrivute(N, 1), C(N, i — 1)} otherwise.

2.1.4 HPLOC

Benthin et al. present the HPLOC algorithm[15] with the primary objective of optimizing
the PLOC++[14] algorithm for constructing binary BVH on the GPU, while also describing
the conversion to wide BVH. The conversion is performed in a top-down manner and computed
in a single launch of the kernel. The proposed heuristic for selecting nodes to be contracted is to
choose the internal node with the largest surface area, though any other heuristic can be easily
applied[15] .

This method maintains a pair of indices for each shader invocation, stored in global memory:
the first index refers to the binary BVH node to be processed by the invocation, and the second
index indicates the memory location where the resulting wide BVH node will be stored. Initially,
every pair of indices is set to an invalid state (representing an invalid index of a binary BVH
node). Only the first shader invocation has a pair set to the root node of the binary BVH and
the start of the output wide BVH node array[15 1.

Each shader invocation atomically polls the pair of indices from global memory until it
contains valid indices. Once valid, it retrieves the binary BVH node using the provided index
and identifies n suitable children for the wide BVH node within the subtree, according to
the selected heuristic. These n BVH nodes are allocated from the output array using an atomically
incremented counter and assigned as children of the currently processed wide BVH node.
The children are then scheduled for processing: the first child is assigned to the same shader

©
\
©
©
©

(6 02@@13
@)

0 1 2l 8l g s 7, 18 |9 O Ll2ald bl Lhaal b [haa Lhsuld bloa] iZald bl

(a) Original binary BVH tree, red highlighting (b) Content of pairs array, specifically indices

represents children of wide BVH nodes. of binary BVH nodes that is scheduled to be
processed.

Figure 6: Example of conversion from a binary BVH tree to a 4-ary wide BVH tree using the HPLOC

algorithm('®]. Starting from the binary BVH root, the first shader invocation determines the children

of the wide BVH root. It schedules itself to process the first child (internal node 0), while the remain-

ing children (internal nodes 1, 5, and 4) are assigned to different shader invocations. In the next

iteration, the first shader invocation queues a leaf, and upon processing it, the invocation terminates.
Image taken from Benthin et al.['%].

invocation, while the remaining n — 1 children are assigned to other invocations. This assighment
is done by atomically writing each binary+wide BVH index pair (for example, using an int64
atomic operation) into an element of the pairs array that currently holds an invalid state, which
can be managed using another atomically incremented counter, since a pair with valid indices
is never overwritten back to an invalid state. Finally, the created wide BVH node is written to
the output array!'%].

When the processed binary BVH node is a leaf, it has no children to explore. In this case,
the primitives from the binary BVH node are copied into the wide BVH node. The shader
invocation then terminates, as it will not receive any more nodes to process. This means that
the number of shader invocations needed to process the entire BVH is equal to the number of
leaf nodes in the binary BVHI'].

A prerequisite for this algorithm is that workgroups must be launched in increasing order.
If not, forward progress cannot be guaranteed, as all active workgroups may enter a busy-wait
state, waiting on a workgroup that has not been (and will not be) launched!'%].

2.2 Tree Compression

As the arity of BVH nodes increases, the node size grows proportionally. This results
in increased memory traffic per node, which especially affects incoherent rays. Therefore,
reducing memory traffic by compressing BVH nodes is desirable. A particularly promising
method is described by Ylitie et al.['®], who introduced a compressed 8-ary BVH. Combined with
additional optimizations, such as a compressed traversal stack and an octant-based traversal
order (see Section 2.3.4), this approach yields approximately a 2x performance compared to

other techniques!'8].

Compression is achieved by storing quantized AABBs and using bitfields efficiently. The quan-
tization grid is shared among all child AABBs and is defined by an origin point p, stored as 32-bit
floating-point values. The grid step is expressed as exponent of powers of two (2%) for each axis

(ex, €y, €2). Each exponent is stored as an 8-bit value extracted from a 32-bit float. The origin p'is
the minimum corner b;, of the common AABB, and the grid step e; is the smallest value such
that the maximum corner by,; of the common AABB can be encoded using) bits!18];

- gma:v - ﬁ
e = 10g2 2627_ .

The quantization of child AABBs must be done conservatively, ensuring that the resulting
quantized AABB is not smaller than the original. This process involves rounding down the quan-
tized result g, of the minimum corner of the child AABB, and rounding up the maximum corner

7, .[18].
b7 Lo bni — 7
qlo = 25 y qhi = 25 .

hi

In addition to the quantization grid (p, €) and the AABB of the children (gj,, ¢»i), a wide
BVH node must include certain metadata: indices to the node array for internal nodes, indices
to the primitive array along with the number of primitives for leaf nodes, and information

distinguishing which children are internal nodes and which are leaves!'8].

The internal nodes and primitives of the children are stored in contiguous memory next
to each other. Therefore, a common index for all children (one for internal nodes and one for
primitives) can be stored, and each child only requires an offset from this index. This offset can
be stored in an 8-bit variable, along with the primitive count in the leaf node variant. The type
of children is represented by an 8-bit bitfield, with each bit corresponding to a specific child!'8].
The layout of the entire BVH node is shown in Figure 7.

Px Py
Pz €x I ey I €z Iimask
child node base index triangle base index

meta
A
wyllg|&a8|la|la|l&a|&|a]|&
qlo,z o = N w EN ul fo)) N
qhi,x
qhi,y
hiz |

Figure 7: Compressed 8-ary BVH nodel'®]. The entire node is stored in 80 bytes and contains
the quantization grid (blue), quantized bounding boxes (yellow), and metadata and indexing
information (green). Image taken from Ylitie et al.['®]

During traversal, instead of decompressing bounding volumes, intersections are performed
in quantization grid space by transforming the ray origin and direction from world space to this
space.

2.3 Traversal Methods

The primary challenges in BVH traversal on GPUs include thread divergence, as well as
the latency and bandwidth overhead associated with memory accesses. Potential solutions to
these issues are described in the following sections.

10

NOUNWNR

2.3.1 Thread Divergence

Thread divergence can be reduced by separating the traversal of internal BVH nodes and
the intersection with primitives into two distinct loops. These loops can be implemented using
if conditions (known as if-if traversal) or while loops (while-while traversal)!'%]. Alternatively,
a hybrid approach may be used, combining if and while constructs (i.e., if-while and while-if
traversal)[?].

ray < fetch ray()
node « root
while ray is not terminated:
if/while node does not contain primitives:
traverse to the~next node
if/while node contains untested primitives:
perform a~ray-primitive intersection

Listing 1: Pseudocode of the BVH traversal algorithm with two separate loops: one for traversing
(19]

internal BVH nodes and another for primitive intersection! .

This method converges threads responsible for each segment of ray traversal; however, it may
struggle with a low number of active threads, particularly in the case of non-coherent rays. Two
factors contribute to this behavior: long-running threads must complete their traversal of internal
nodes in a while loop, causing delays for other threads waiting for a ray-primitive test; and
the scenario where nearly all threads have terminated, leaving only a few still active in the outer
loop. The first issue can be addressed by introducing an extra loop exit when the number of
active threads drops below a specified threshold. The second problem can be solved using
persistent threads, where threads can obtain a new ray from the work queue if their original ray
has terminated!(!].

2.3.2 Persistent Threads

Persistent threads are used to bypass the hardware scheduler by implementing a software
scheduler instead. A kernel is executed with a maximal launch, utilizing the maximum number of
workgroups that the hardware scheduler can run concurrently. This ensures that no workgroup
is waiting to be executed and that each remains active for the entire lifetime of the kernel. This
approach enables cross-workgroup and device-wide synchronization on the GPU without input
from the CPU. Synchronization is achieved through atomic operations in global memory, as well
as mechanisms for intra-workgroup and intra-subgroup communication. As a result, it is possible
to implement a software scheduler based on work queues, whether predefined at compile time
or dynamically created at runtime, to allow for more fine-grained task scheduling[?%].

2.3.3 Speculative Traversal

The concept of speculative traversal proposes that rather than having inactive threads idle
during the traversal of internal BVH nodes, these threads continue traversing the tree, potentially
discovering (or at least approaching) a subsequent leaf to evaluate in the ray-primitive loop.
The disadvantage of this approach is the additional memory bandwidth generated by these
speculative threads!!].

2.3.4 Traversal Order of Children

While determining the traversal order of intersected child nodes in a binary BVH is straight-
forward, the complexity increases significantly as the arity of BVH nodes increases. Some
methods for solving the traversal order in wide BVHs are described in the following sections.

11

CONOUNWNR

ray « fetch_ray()
node + root
leaf + null
while ray is not null:
while node does not contain primitives:
traverse to the~next node
if node contains primitives and leaf is null:
leaf + node
traverse to the~next node
if number of leafs that is not null in the~subgroup > threshold:
break
while leaf or node contains untested primitives:
perform a~ray-primitive intersection
if ray terminated:
ray « fetch ray()
node + root

Listing 2: Pseudocode of BVH traversal while-while algorithm using persistent threads and specu-

lative traversal with one postponed leafl?l. Lines 7 to 9 represent speculative traversal, lines 10 to

11 manage an early exit from the internal node traversal loop when there are enough threads for

ray-primitive intersection, and lines 14 to 16 implement the persistent threads paradigm to acquire
a new ray for traversal.

Sorting networks

For the first-hit traversal, the optimal order is determined by the distance of each child from
the ray origin, with the closest child traversed first. Therefore, it is necessary to sort the array of
intersecting children. A sorting network can be used for this purpose because it has a statically
defined order of comparisons. However, in very wide BVH trees, the computational complexity
of sorting the children can become significant!?]. The optimal sorting networks for various
numbers of elements are shown in Figure 8.

o—l—o

1

-
Iri

(a) (b)

Figure 8: Optimal sorting networks for various numbers of elements: (a) 4 elements with 5 compar-

isons, (b) 6 elements with 12 comparisons, (c) 8 elements with 19 comparisons!?!.

R
I
ots

K
4

-

Octant Based Order

Due to the computational complexity of sorting children, especially for an 8-ary BVH, YI-
itie et al.l!8] generalized the traversal order originally developed by Garanzha and Loop!??].
The children are sorted during the build stage, and the traversal order is then determined by
the exclusive OR between the index ¢ of a child and the octant r of a ray (i &). The octant is
encoded as a binary number r, where each bit represents the sign of the ray direction vector axis.
0 means a positive sign and 1 means a negative sign[ls].

Garanzha and Loop[22] store children in a BVH node in Morton order, based on the centroids
of their bounding volumes. This approach works well only if a node has exactly 8 children

12

and the bounding volumes of these children are located roughly at the corners of the parent
bounding volume. Therefore, Ylitie et al.l!8] optimize the order of children stored in a BVH node
using the auction algorithm[?®]. They formulated cost(N;, s) as the cost of storing a child N;
at position s within the child array of a BVH node. This cost is represented by the distance of
the child’s bounding volume centroid ¢; from the parent’s bounding volume centroid p, projected
onto the diagonal ray d, = (+1,=+1, +1) defined by an octant s8]

cost(Ni, s) = (& — p) - ds.

A table of size 8 x 8 is constructed for every pair of children /V; and position s, and the minimal
total cost is determined using this table['8].

Order for Occlusion Tests

Occlusion tests are typically used for computing shadows and resolving multi-light problems.
These tests do not require determining the nearest intersection with a ray, but rather to check
if any primitive exists along the ray’s path (hence they are called any-hit tests). Therefore,
traversing children based on their distance is not optimal. Instead, it is better to prioritize
exploring the BVH subtree that has the highest probability of a ray-primitive intersection.

Ogaki and Derouet-Jourdan[?* proposed a method for traversal order based on statistics
collected from a sample of rays. They defined the cost of any-hit traversal of a BVH subtree as

follows!?4];
k i—1
¢+ Z I; - Cany(N;) - H(l — Hj) if N is an internal node,
Cany(N) = i=1 j=1
¢ - Py if N is a leaf,

where I; represents the probability of an intersection of the child V;, and H; indicates the proba-
bility of a ray-primitive intersection within the subtree of the child IV;. From this equation, it can
be deduced that arranging the children according to H; - (I; - C’any(Ni))_1 results in minimal cost.
The reordering of children is done in a bottom-up approach as part of rebuilding a BVH based
on the collected ray samples. During traversal, intersected children are traversed in the same
order as they are stored in a BVH nodel?*],

The probabilities H; and I; are determined from the collected statistics by calculating the ratio
of primitive hits within a child subtree (respectively, hits of the child bounding volume) to
the total number of hits at the parent node. Alternatively, I; can be approximated as I; = 1,
which represents the worst case where all child nodes were intersected. This approximation
decreases memory consumption for storing hit statistics for each internal node but may result in
suboptimal results!?4].

13

14

3 Shading Languages

As part of this thesis, we analyze the differences between two shading languages: GLSL
and Slang. For use with the Vulkan API, these high-level shading languages are compiled to
SPIR-V!%], an intermediate binary language. This approach offers more flexibility in choosing

a language and provides the opportunity for some offline optimization[?*].

The primary criterion for choosing a language is the performance of the resulting shaders.
Specifically, there should be no overhead introduced by any language features, and the compiled
output (in terms of resource usage and instructions) should be as predictable as possible. This
predictability is essential for identifying optimizations in existing code. The secondary criterion,
but still very important, is the possibility of minimizing redundant code caused by the presence of
numerous shader variants. For different arities of a BVH tree, for various construction methods,
and for each memory layout of a BVH node, there must be specific specializations of a particular
shader, yet the majority of the code remains unchanged.

3.1 GLSL

The OpenGL shading language (GLSL) is the primary shading language for OpenGL and is
frequently utilized for writing shaders for Vulkan as well. It is a procedural language with syntax
similar to the C language. It provides fundamental programming constructs such as control
statements, loops, functions, and structures, but does not provide any advanced features[?®]. Due
to this, similarly to C, the limited level of abstraction offers predictable mapping to the hardware.

However, the number of ways to construct modular code is limited as well. The first option
is the usage of Vulkan specialization constants. They are appropriate for determining the size of
the shader workgroup and managing constant conditions in control flow, such as enabling an
optional feature. However, they are not applicable for configuring the arity of a BVH tree because
a specialization cannot be used as the size argument of an array in the BVH node structure.
Specifically, as the GLSL specification!?®] states in Section 4.11: "Types containing arrays sized with
a specialization constant cannot be compared, assigned as aggregates, declared with an initializer, or used
as an initializer."1?%) and "Arrays inside a block may be sized with a specialization constant, but the block
will have a static layout. Changing the specialized size will not re-layout the block. In the absence of
explicit offsets, the layout will be based on the default size of the array."[?®] For instance, if the default
arity of a BVH node is set to 4, resulting in a node size of 120 bytes, and we choose to specialize
for an 8-ary BVH, the compiler will continue to anticipate nodes sized at 120 bytes rather than
232 bytes, which will cause data misinterpretation.

The second approach to shader modularity is the use of preprocessor macros, which can be
used for configurable arity of a BVH node, specialized control flow, and even interchangeable
data types. However, with an increasing number of code specializations, the readability of
the code decreases.

3.2 Slang

Slang shading language is a modern shading language designed to support compatibility
with multiple back-ends while simultaneously providing functionalities to target a specific
back-end. It provides capabilities for developing object-oriented code and utilizes a modular
compilation approach to improve maintainability. Originally presented in the dissertation by
Yong Hel?”], it is currently hosted by the Khronos Group!?8].

Slang builds upon HLSL, a shading language commonly used in development with the Di-
rectX API, and extends it by incorporating several modern programming features, including
member functions and properties, operator overloads, interfaces, and generics!?]. While GLSL
shares similarities with C, Slang can be likened to C++; however, it differs in some aspects. Using

15

an object-oriented approach, the shader can be decomposed into shader modules, which encap-
sulate data and code specific to a particular feature and enable elegant shader specialization!?’].

The high level of modularity is also achieved by module precompilation and link-time special-
ization. Module precompilation works similarly to object file compilation. A set of source codes
constitutes a module that provides access control and is processed separately. These modules can
provide or use link-time constants and types: one module declares a constant or an interface of
link-time type (optionally setting the default value), while another module defines and exports
a constant value or a data type that implements the interface. During the linking process of
a shader program, these specializations are resolved, resulting in appropriate optimization.
The benefits of this approach include reduced compilation time and high readability of code

because the entire code is type-checked using the interfaces!?].

Although Slang supports many modern features, most of these features do not introduce
any overhead. This is achieved through inlining and other optimizations performed at link time,
when all specializations are already known. Unfortunately, resource allocation and performance
are not as predictable as needed (see Section 5).

In general, Slang is a rapidly evolving shading language that offers many promising features.
However, some of these features have not yet reached a high level of maturity, as indicated by
the number of reported issues!®’! encountered while developing the traversal shader.

16

4 Implementation

In this section, the development aspects of the thesis are discussed. The implementation is
done within the Orchard framework, which is detailed in the upcoming section. We implemented
a wide BVH contraction shader with two heuristics, BVH traversal shaders in two languages
(GLSL and Slang), and utilized two memory layouts.

41 Orchard

Orchard is a path-tracing framework designed primarily for research purposes, created by
Martin Kécerik[3!l. The software is developed in C++ and uses the Vulkan API for communica-
tion with the GPU. All manipulation of BVH trees, from construction to traversal, is performed
on the GPU using compute shaders.

In Orchard, BVH construction involves several phases: First, the initial BVH is built using
the PLOC++ algorithm!'#], with one primitive per leaf. The following Collapsing step, using
the method from the original PLOC paper!'®], merges some leaves to increase the number of
triangles per leaf while decreasing the cost of the SAH. The subsequent Transformation phase,
which is not used in wide BVH construction, changes the bounding volumes in the tree to
different types. The last phase, Rearrangement, stores the BVH tree in a different memory layout
used for traversal and possibly converts a binary BVH to a wide BVH.

In this memory layout for traversal, the bounding volume of a node is relocated to its
parent. This allows the calculation of the ray-box intersection before the child node is added to
the traversal stack, thus avoiding the need to load the child node if the ray does not intersect
its bounding volume. Therefore, a binary BVH node contains two bounding volumes and two
indices to child nodes, taking a total of 56 bytes, as shown in Figure 9.

bvl[0] I

children[®] children[1]

Figure 9: Memory layout of a binary BVH node, 56 bytes in total.

Path tracing utilizes the Wavefront approach [32) and consists of three stages, as shown in
Figure 10: the generation of primary rays, the BVH traversal that finds the nearest hit for all rays,
and the shade + cast stage, where intersections are resolved and secondary rays are created based
on the surface reflectance of a hit. Between each of these stages, GPU device synchronization is
inserted. Currently, the framework supports only first-hit traversal using a diffuse (Lambertian)
reflectance model, without any support for texture mapping.

BVH traversal shader is implemented via speculative while-while traversal with persistent
threads (see Section 2.3). The traversal stack, consisting of 64 entries of 4 bytes each, is stored in

| Generate
| | secondary rays
D Yes

Not
Generate
primary rays H BVH traversal H

No
9 Write pixel
color to image

max depth +
is hit?

Figure 10: Diagram of wavefront shaders and their order. Each shader is represented by a different
color. GPU barriers are shown as perpendicular lines at the start of each arrow.

17

local memory, whereas the stack top element and the leaf node awaiting ray-triangle intersection
are stored in registers. The switch from BVH traversal to the ray-triangle intersection loop occurs
only when every shader invocation in a subgroup has triangles to intersect. Additionally, new
rays are fetched only if the number of active invocations is less than 20 (for clarification, one
subgroup contains 32 invocations). This thesis did not delve deeply into configuring these
parameters, as they appear to be well optimized and any tested alterations resulted in decreased
MRps performance.

4.2 Wide BVH Construction

We implemented two variants of wide BVH construction, both based on the HPLOC contrac-
tion algorithm (see Section 2.1.4). They differ in the contraction heuristic used: one employs
surface area, while the other uses view-dependent ray statistics.

4.2.1 Surface Area Contraction

For view-independent BVH contraction, a simplified greedy surface area heuristic is used
(see Section 1.2.2). Given that the wide BVH construction proceeds from the top of the tree and
all nodes considered for contraction share the same parent (or grandparent), we decided to
simplify the formula by disregarding the division by the parent surface area:

C(N) = SA(N) - Py,

where Py is the number of primitives in the node subtree. Due to the greedy nature of this
heuristic, the upper tree structure is completely filled, whereas nodes closer to the leaves typically
have fewer children, usually just two, because there are no nodes left for contraction.

4.2.2 View-dependent Contraction

For view-dependent contraction, the CBTC method of Gu et al.l'”] is employed (see Section
2.1.2). For the purpose of collecting ray traversal statistics, we enhanced the existing Orchard
construction and tracing framework to support multiple Rearrangement and Trace passes, which
can have different configurations. In this view-dependent contraction, the first pass is performed
for the first sample of a view to gather ray-node statistics, while the second pass constructs

the final BVH and traverses it for all the following samples.

The first pass constructs a basic binary BVH and allocates a buffer to store the visit count for
each node, which is populated atomically by the binary tracer. Atomic variables are necessary
because multiple shader invocations may access the same node concurrently. However, collecting
these node statistics is significantly slower than standard BVH traversal. Gu et al.['”] suggested
that analyzing only a few thousand pixels is sufficient to achieve high-quality BVH contraction.
To validate this, we implemented image subsampling (casting rays for every s-th pixel) and
a depth limit on path tracing recursion in the ray statistics shader. As detailed in Section 6, our
results confirm this claim.

After the first sample is traced, it switches to the second pass, and a final wide BVH is
constructed via the CBTC method using the visit count buffer from the first pass. If the camera
view is changed, the visit count buffer is reset and new view statistics are gathered. The BVH
from the first pass is cached in memory and does not need reconstruction. However, since
the final wide BVH depends on the view, it must be rebuilt.

4.3 Wide BVH Memory Layout

We implemented two wide BVH memory layouts: one utilizing uncompressed BVH nodes
and another employing compression through quantization of bounding volumes.

18

NOUNWNR

The wide k-ary BVH nodes, in addition to storing child indices and bounding volumes
analogous to those in binary BVH nodes, also contains a count of children, as their number can
range from 2 to k. Initially, the binary BVH nodes included the primitive count of the entire
subtree. Although this information was later removed from the binary BVH nodes, it remains
present in the uncompressed wide BVH nodes.

4.3.1 Uncompressed Wide BVH Layout

The uncompressed wide BVH node includes all the variables previously described in
the scalar layout, with variables aligned to the size of their scalar elements.

childCount

bvl[®]

bvl[1]

bvl[3]

children[0] children[1]

children[2 children[3]

Figure 11: Memory layout of an uncompressed 4-ary BVH node, 120 bytes in total.

The AABB bounding volume is stored simply as two 3D vectors representing the corners.
Child indices are 4-byte bit-field integers, as illustrated in Figure 12. The most significant bit
(MSB) indicates whether the index represents an internal BVH node (MSB = 0) or a primitive
range (MSB = 1). In the case of a primitive range, the lower 27 bits encode the index of the first
primitive, while the subsequent 4 bits denote the number of triangles minus one. This encoding
allows for up to 16 triangles within a single entity, under the assumption that a leaf node will
never contain zero triangles.

31 30 27 26 o
If I silze I T ilndelx T

1 I élt I - 27I -

0 0 internal node index

1 leaf size - 1 first triangle index

Figure 12: Encoding of a child index, representing either an internal node or a leaf which containing
triangles.

A 4-ary BVH node requires 120 bytes, a 6-ary BVH node requires 176 bytes, and an 8-ary
BVH node requires 232 bytes. The source code for this memory layout is shown in Listing 3, and
Figure 11 provides a visual representation of this layout of a 4-ary BVH node.

struct NodeBvhWideTrace {
int32_t size;
int32_t childCount;
AABB bv[BVH ARITY];
int32_t children[BVH ARITY];
+;

Listing 3: Definition of an uncompressed wide BVH node. BVH_ARITY represents the node’s arity
and is defined by a macro in GLSL or specialized via generics in Slang.

19

4.3.2 Quantized Wide BVH Layout

The quantized BVH node employs the same technique for computing the quantization grid
and quantized bounding volumes as proposed by Ylitie et al.[18] (see Section 2.2). The quantiza-
tion grid, child internal node indices, and triangle indices are stored similarly, however, other
variables are stored differently.

T T T T T T T T T T T T r .
bvOrigin packedBvExponent

AndCount
! ! ! ! ! ! ! ! ! ! 1 !
T T T T T T T T T T T T

internalNodeIndex triangleIndex packedLeafSize packedBvXY[8]

packedBvXY[1] packedBvXY[2] packedBvXY[3] packedBvZ[0]

packedBvZ[1]

Figure 13: Memory layout of a quantized 4-ary BVH node, 52 bytes in total.

The children of a node are arranged so that all leaves precede the internal nodes. Conse-
quently, it is unnecessary to store explicit information indicating whether a child is an internal
node or a leaf. Instead, only the number of leaves [and the total number of children n are stored,
each packed into one nibble (4 bits) within a single byte. This byte, together with the quantization
grid exponents, is packed into a 4-byte integer, as shown in Figure 14. During traversal, it is
known that the first [children are leaves, while all remaining children are internal nodes.

31]

T T T
childCount
4

28 27 24 23 16 15 8 7

exponentZ exponentY exponentX
8 8 8

leafCoun

4

Figure 14: Encoding of quantization step exponents together with the counts of children and leaves
into a 4-byte integer.

All internal child nodes and all triangles of the leaves are stored in own contiguous memory.
The indices of the first internal child node and the first triangle are stored as 4-byte integers,
while subsequent indices are computed by incrementing these initial indices as each child is
processed. The count of triangles for all leaves is compressed into a 4-byte integer, with each leaf
size stored as a nibble, starting from the least significant bit. The leaf size is encoded similarly to
the uncompressed version (reduced by one).

Each quantized bounding volume requires 6 bytes. These are divided into a 4-byte integer
representing the minimum and maximum values of the X and Y axes, and a 2-byte integer for
the Z axis. Together with the Z axis from the second bounding volume, this forms a 4-byte
integer that is stored in a separate array. Figure 15 illustrates this bounding volume packing.
This approach differs significantly from the method of Ylitie et al.l'8], where each value of
the bounding volumes for all children is packed inside an 8-byte variable, restricting it to 8-ary
BVHs. In contrast, our method supports scaling the BVH arity (up to 8-ary) without altering
the layout.

31 24 23 16 15 8 7]
[31] [2] (1] [0]
8 8 8 8
max.y max.x min.y min.x
[1].max.z [1]l.min.z [O].max.z [®].min.z

Figure 15: Encoding of a quantized bounding volume into one and a half 4-byte integers.

During traversal, each bounding volume is decompressed and the ray-box intersection is

computed in world space, as opposed to the approach by Ylitie et al.

20

(18]

. This decision was

ONOOUANWNR

primarily due to limited time, as transforming the ray into quantization space would have
required additional code debugging.

A 4-ary BVH node requires 52 bytes (compression ratio 2.3x), a 6-ary BVH node requires 64
bytes (compression ratio 2.75x), and an 8-ary BVH node requires 76 bytes (compression ratio
3.05x). The source code defining this BVH node layout is shown in Listing 4, and Figure 13
displays the layout of a quantized 4-ary BVH node. This layout is 4 bytes smaller than the method
of Ylitie et al.['®], but our method does not support octant-based traversal order because we
enforce the order of the children.

struct BvExponentAndCountPacked {
uint exponentX : 8;
uint exponentY : 8
uint exponentZ : 8;
uint leafCount : 4;
uint childCount : 4;

};

struct NodeBvhWideTraceQuantized {
vec3 bvOrigin;
BvExponentAndCountPacked packedBvExponentAndCount;

uint32_t internalNodeIndex;
uint32_t trianglelndex;
uint32_t packedlLeafSize;

uint32_t packedBvXY[BVH ARITY];
uint32_t packedBvZ[BVH ARITY / 2];

+;

Listing 4: The definition of a quantized wide BVH node. BVH_ARITY represents the arity of a node
and is defined by a macro in GLSL or specialized via generics in Slang. The BvExponentAndCount-
Packed structure is written using C bit-field syntax, which is supported in Slang.

44 Wide BVH Traversal

We developed an identical traversal shader using two shading languages, GLSL and Slang,
in order to compare them. The traversal shader for wide BVHs follows the same principles as its
binary BVH counterpart. The main differences lie in how a wide BVH node is processed and
how the found intersections are stored within the traversal stack.

Children bounding volumes are intersected by the ray in a loop. Instead of loading an entire
wide BVH node at once, variables are gradually loaded as required, since loading the entire
wide BVH node would demand too many registers in the shader. To reduce latency associated
with loading bounding volumes for intersection, the bounding volume is preloaded during
the previous loop iteration. The distances from the ray origin to each intersection, together
with the child indices, are stored in a temporary array and then sorted via a sorting network
(see Section 2.3.4). The sorted intersected child indices are pushed to the traversal stack via
a fall-through switch. To prevent a push-and-instant-pop sequence, the nearest intersected child
is kept in registers.

With the BV-ray intersection loop fully unrolled (substituting the loop with its repeated body
so that any control flow depending on the loop iteration variable is resolved statically), and with
the sorting network and stack push switch accessing the temporary array solely through constant
indices, the array can be fully stored in registers. Otherwise, storing this array in shared or local
memory would be necessary, causing unnecessary memory traffic and resulting in significant
performance penalties.

21

The GLSL and Slang versions of the traversal shader were written to be as similar as possible,
without compromising readability or the use of Slang-specific features. The Slang codebase
employs link-time specialization to enable a single traversal code that uses specialized functions
for each wide BVH variant. All of these functions are inlined, and based on testing, these
specializations do not introduce any performance slowdown.

However, GLSL and Slang exhibit notable behavioral differences, including variations in
registers and shared memory allocations, instruction hoisting (moving part of the code to the top
of a scope) performed by the Slang compiler, and a significant difference in MRps performance
likely due to varying degrees of subgroup divergence. Based on these observed differences,
a few patches for the Slang shader variant were proposed to maximize performance: introduc-
ing a workgroup control barrier between traversal and ray-triangle intersection while loops to
enhance subgroup coherence (see Section 5.3), and modifying the ray-triangle intersection algo-
rithm to precompute portions of the barycentric coordinates prior to evaluating any conditions
(see Section 5.2).

Originally, the entire path tracing process (both binary and wide BVH) was implemented as
a single kernel execution. All wavefront stages were executed within a single shader without
employing a hardware scheduler. Instead, a software scheduler managed the stages by utilizing
persistent threads and their ability to achieve device synchronization through atomic variables.
After encountering difficulties described in detail in Section 5.1.1, we decided to switch to
a separated kernel variant, where each wavefront stage is a standalone shader scheduled by
hardware.

4.5 Support Tools

In addition to the wide BVH implementation, we developed several support tools to stream-
line the process: nvidia-stabilize, compare-benchmark, and slang-depbuild.

4.5.1 nvidia-stabilize

GPUs typically adjust core and memory frequencies dynamically to reduce power consump-
tion during idle periods, which can cause inconsistencies in the measurement process. Manually
setting fixed GPU clocks for every measurement session is tedious. Therefore, we developed
the nvidia-stabilize tool to automatically stabilize GPU clocks during benchmark execution.

This tool serves as a wrapper for executing programs provided via command-line arguments:
it configures the GPU, runs the specified program, and then restores the GPU to its initial state
once the program completes. For GPU configuration, it uses the Nvidia Management Library
(NVML)3], Although this API is primarily designed for Nvidia Tesla GPUs, it also provides
limited, but sufficient, support for consumer-grade graphics cards. Specifically, it sets persistence
mode, locks the frequencies for the GPU’s graphics and memory components, and checks
whether the GPU was throttled during benchmark execution. Moreover, by leveraging D-Bus!34],
it can deactivate the screen saver to mitigate any interruptions caused by the screen-saving
procedure.

Determining the appropriate lock frequency is not as straightforward as it may seem. The base
(non-boosted) frequency cannot be retrieved from the API, and the maximum graphics frequency
reported for the tested GPU does not correspond to the highest achievable frequency in practice.
After some experimentation, the following procedure was established: The program first attempts
to set the maximum frequency reported by the API. It then waits a few seconds to ensure the GPU
reflects the clock modification. Subsequently, it queries the current frequency f.; and adjusts
the final frequency slightly lower than this value, specifically to 0.98 x f.;.

To ensure that CPU clocks remain constant throughout the benchmark, potential underclock-
ing is detected by monitoring the violation status. The NVML API reports the total duration

22

during which the GPU was throttled. If this duration differs between the start and end of
benchmark execution, the program reports that the measured results as potentially invalid.

4.5.2 compare-benchmark

We enhanced Orchard benchmarking capability to produce a comprehensive JSON file
containing information about the GPU, all pipeline parameters, and measured build and trace
times for each view and scene. This allows us to preserve the benchmark results for subsequent
processing. Since this JSON contains a large amount of information, it is not feasible to read it
manually, so we required a tool to process these JSON files.

compare-benchmark was originally designed to compare two benchmark files and output
the differences in a human-readable format, specifically to produce commit messages, as shown
in Figure 16, allowing us to track individual changes during development. It has since evolved
beyond a comparison tool and can now convert a single benchmark JSON into multiple output
formats: CSV tables with absolute or relative values for efficient chart creation, and summary
LaTeX tables such as those in Section B.

stats: optimize basic traversal statistics collection

Performance changes from the last benchmark:
Wided:
Pass normal:
pMRps: avg +2.29%, the best +2.65% 1n scene bistro_int, the worst +1.94% in scene lynxsdesign
sMRps: avg +1.63%, the best +2.37% in scene san_miguel, the worst +1.12% in scene bistro_ext
Wided RDTC:
Pass normal:
PMRps: avg +2.23%, the best +2.43% in scene bistro_int, the worst +2.008% in scene lynxsdesign
sMRps: avg +1.42%, the best +1.52% in scene red_autumn_forest, the worst +1.31% in scene bistro_int
Pass node_stats:
PMRps: avg +8.71%, the best +8.47% in scene bistro_int, the worst -5.78% in scene san_miguel
sMRps: avg -@.57%, the best +3.58% in scene red_autumn_forest, the worst -5.72% in scene san_miguel
Wided4 Slang:
Pass normal:
pMRps: avg +2.85%, the best +4.07% in scene red_autumn_forest, the worst +2.63% in scene san_miguel
sMRps: avg +7.47%, the best +12.49% in scene red_autumn_forest, the worst +1.67% in scene bistro_int
Wide6:
Pass normal:
pMRps: avg +2.12%, the best +2.75% in scene lynxsdesign, the worst +1.78% in scene bistro_int
sMRps: avg +1.81%, the best +2.62% in scene bistro_int, the worst +1.00% in scene red_autumn_forest
Binary:
Pass normal:
PMRps: avg -8.52%, the best -0.28% in scene bistro_ext, the worst -1.88% in scene lynxsdesign
Wided:
Pass normal:
pMRps: avg +8.72%, the best +1.17% in scene bistro_int, the worst +0.32% in scene red_autumn_forest

Figure 16: Example of a Git commit showing a shader comparison generated by the compare-
benchmark tool.

This tool also enabled us to efficiently iterate on shader modifications and accurately quan-
tify performance differences without creating new shader for each modification or manually
comparing the values.

4.5.3 slang-depbuild

When we began developing Slang variants for wide BVH shaders, slangc, the official Slang
compiler executable, did not support dependency file generation when using link-time special-
ization and module compilation. Dependency files indicate which source files are included,
allowing the build system to trigger recompilation when any of these files change, thereby
ensuring up-to-date compilation with minimal build actions.

Consequently, we developed an alternative compiler front-end, slang-depbuild, based on
the Slang Compiler API, which produces a dependency file from the list of source files loaded
by the compiler. It does not support all configuration options available in slangc, but only
the subset we use. This enables Slang shaders to be compiled alongside other components via
CMake.

23

24

5 Difficulties During Implementation

During the implementation of wide BVH shaders, we encountered several challenges. The fol-
lowing sections outline the most significant ones. Since some challenges are related to the GPU
driver, it is important to note that all tests were conducted using the nvidia-open 570.124.04
driver.

5.1 Shader Resource Allocation

One of the main challenges we faced in implementing traversal shaders was the allocation of
registers, shared memory, and local memory for each shader. GPUs impose several resource
limits on the number of active threads, workgroups, and subgroups per compute unit, as well as
on the number of registers and the size of shared memory. If any of these limits are exceeded,
the total number of shader invocations that can run concurrently decreases. The ratio between
the maximum possible and the actual number of active threads is called occupancy. Determining
occupancy is a complex task due to the granularity at which resources are allocated and their

partial interdependency [3°],

These constraints may be simplified into more direct limits for the shader developer: the upper
limits on registers (l,.,) and shared memory (lsp4rcq) per shader invocation when occupancy is
not yet constrained (in cases where the workgroup size is an integer fraction of the maximum
number of active threads per compute unit). Table 1 presents these constraints for the evaluated
GPU, the NVIDIA GeForce RTX 4070 Ti.

Registers per compute unit 65536
Shared memory per compute unit 49152 B
Subgroup size 32
Max workgroups per compute unit 24
Max workgroup size 1024
Max active invocations per compute unit 1536
Register allocation granularity 8
Subgroup allocation granularity 4
Shared memory allocation granularity 128 B
Max registers before occupancy decrease (I,¢4) 40
Max shared memory per invocation

before occupancy decrease (Ishared) 328

Table 1: Shader constraints and parameters of the evaluated GPU, NVIDIA GeForce RTX 4070 Ti.

These data were obtained from the NVIDIA Nsight Compute Occupancy Calculator (NCOC) [3¢]

and the Vulkan Physical Device Limit query [37). While NCOC indicates that the GPU contains 102

kB of shared memory per compute unit, the shared memory limit in Vulkan is closer to 50 kB, as
reported by the maxComputeSharedMemorySize value.

When the shader requires more than /,., registers, the register allocator inside the GPU
driver often decides to spill registers (temporarily storing them into memory), either to shared or
local memory. This behavior may preserve the occupancy ratio, although it can increase memory
traffic [38]. In certain instances, register spilling can enhance shader performance, while in other
scenarios, such as some of ours, it may result in significant slowdowns. Although CUDA allows
configuration of the register allocator [38], such options are absent in the Vulkan API.

Before detailing our issues, it is essential to highlight two separate expectations we had for
the register allocator. The first is reasonable spilling of temporary registers (results of mathe-

25

matical calculations, loaded BVH node variables, etc.), and the second is allocating the traversal
stack within local memory, because it is too large for registers and shared memory. As will be
demonstrated in the following sections, we faced challenges with both expectations.

- - |t

58 |Eo

S B8 g8
Binary (single) 48 | 256 | 3344
Binary 40 256 20
Binary (32 x 32) 48 | 256 | 140
Binary Slang 48 | 384 12
Wide4 (single) 48 256 | 3344
Wide4 48 | 256 12
Wide4 Slang (single) 156 0 4
Wide4 Slang 53 | 384 12
Wide6 (single) 64 | 256 4
Wideb6 48 | 256 12
Wide6 (32 x 32) 53| 256 | 12
Wide6 Slang 56 384 12
Wide8 (single) 64 | 256 4
Wide8 54 256 12
Wide8 Slang 62 384 12
Wide4/6/8 Quantized 48 256 | 1808
Wide4/6/8 Quantized (32 x 12) | 56 256 12
Wide4 Slang Quantized 63 | 384 12
Wide6 Slang Quantized 68 | 384 12
Wide8 Slang Quantized 72 512 12

Table 2: Comparison of shader resource allocation. Shaders use the separated kernel version with
a 32 x 2 workgroup size, unless otherwise specified. Expected memory usage in local memory
(traversal stack) is 256 bytes (384 bytes for Slang), with 4 bytes in shared memory for the single
(software scheduler) variant or 12 bytes in the separated kernel version (traversal statistics variables).
Selected benchmark shaders are in bold, and resource allocation issues are highlighted in red.

5.1.1 In Single Kernel Traversal

The traversal shader was initially implemented as a single kernel variant, integrating all
Wavefront phases (see Section 4.1) within one persistent thread shader controlled by the software
scheduler. This approach revealed problems with the register allocator, which can be categorized
into two types based on the shading language: excessive register spilling in GLSL and excessive
register allocation in Slang.

The path tracing task is highly demanding on memory traffic, mainly in uncompressed
BVHs, generating many incoherent memory accesses. In such cases, a small drop in occupancy
is not significantly problematic, as the primary bottleneck lies in memory speed. Consequently,
unnecessary accesses caused by register spills negatively impact shader performance. Within

26

Primary rays | Secondary rays

Binary 1.04 1.36
Wide4 1.16 1.67
Wide4 Slang 1.97 2.48
Wide6 1.00 1.00
Wide8 0.94 0.94

Table 3: The relative MRps (averaged across scenes) when comparing the separated kernel to
the single kernel traversal shader with the same BVH arity (values greater than 1 indicate that
the separated kernel is faster, each row is independent of the others).

the GLSL single kernel variant for binary and 4-ary BVHs, the register allocator performed
extensive spilling, resulting in significant shader memory usage and limiting occupancy by
shared memory size rather than register count (allocating 48 registers per 32 x 2 workgroup
achieves 83% occupancy, however, using 3344 bytes of shared memory reduces occupancy to
58%).

In contrast, the single kernel variant implemented in Slang exhibits the opposite issue.
The register allocator did not spill any registers, even the traversal stack was kept inside registers,
leading to an extreme allocation of 156 registers and a very low occupancy of 25%. Table 2
presents the usage of registers, global, and shared memory for these and several other shaders.

During the analysis of these issues, we observed strange behavior in the binary GLSL single
kernel traversal. Within the same program execution, the MRps performance of the binary traver-
sal fluctuated every few seconds, varying by up to 100%. Our attempts to use the NVIDIA Nsight
Graphics[®! profiler to gain further insight into shader execution were largely unsuccessful.
The first profile captured during path tracing produced different results compared to subsequent
profiles. Figure 17 presents a screenshot comparing these two captured frame profiles. The exact
cause of this behavior remains unclear. However, we hypothesize that the executed shader
binary was somehow changed. Since both profiles originate from the same compiled Vulkan
pipeline instance, it is likely that this modification occurs outside the application, possibly within
the driver.

path tracing compute (115.43ms)

path tracing compute (68.58ms)

Figure 17: Comparison of two profile captures of the identical binary single kernel traversal shader

during the same session using the NVIDIA Nsight Graphics [*} profiler. The first profile indicates

full occupancy, while the second shows occupancy limited to half, implying that the executed kernel
was somehow altered, likely by the driver.

27

As a result of these problems, we decided to switch to a separate kernel architecture for
the traversal shader, where each Wavefront phase is an independent shader. This change effec-
tively resolved the issues of register spilling and performance fluctuations in the GLSL variant.
The issue of excessive register allocation in the Slang variant was addressed by increasing
the traversal stack size from 64 to 96 entries. Although this modification did not affect the single
kernel variant, it ensured proper allocation of the traversal stack in local memory for the separated
kernel variant. The Slang variant still requires slightly more registers than GLSL, but as demon-
strated by the benchmark results in Section 6.7, this does not impact the MRps performance of
secondary rays.

Table 3 presents the relative MRps performance of the single kernel versus the separated
kernel variant. The problematic single kernel variants (Binary, Wide4, and Wide4 Slang) show
significant performance improvement. In contrast, other variants without resource allocation
problems (Wide6, Wide8) exhibit unchanged or slightly reduced performance, indicating re-
source allocation as the primary factor differentiating these shader variants.

5.1.2 In Quantized Wide BVH Traversal

Resource allocation problems also affected quantized BVH shaders. The GLSL variant with
a 32 x 2 workgroup configuration results in 1808 bytes of shared memory spilling. Although
this does not constrain occupancy, it does not yield optimal performance (up to a 10% average
decrease, as illustrated in Appendix Tables 7 and 8). Consequently, a 32 x 12 workgroup size
was selected since it slightly increases register usage (from 48 to 56) but avoids register spilling
into shared memory.

Live
Registers

DebugValue
Debugline

Figure 18: Analysis of active registers in the quantized 8-ary BVH Slang traversal shader using

NVIDIA Nsight Graphics®!. The illustrated section of SPIR-V code is responsible for loading

variables from a BVH node. While a consistent rise in the live registers value due to the number of

loaded and unpacked variables was anticipated, the profiler indicates an unforeseen fluctuation in
the live registers value.

28

The Slang implementation, similar to the uncompressed wide BVH, demands a large number
of registers. Due to the reduced memory demands of the quantized wide BVH, shader occupancy
becomes increasingly significant. The difference in the number of registers required between
GLSL and Slang for the quantized 4-ary BVH (56 in GLSL versus 63 in Slang) is notable and
reflected in the results (see Section 6.7).

This difference becomes even more significant in 6-ary and 8-ary BVHs, as the GLSL version
demands a consistent number of registers regardless of BVH arity, whereas the Slang version
requires up to 72 registers in the 8-ary BVH. This means 16 more registers, causing occupancy to
decrease from 75% to 58%. The exact cause of this behavior remains unidentified, as NVIDIA
Nsight Graphics!*] shows atypical values of live registers, as depicted in Figure 18.

5.2 Instruction Hoisting in Slang

The original implementation of the Slang traversal shader exhibits contradictory results. In
certain scenes (see Section 6.1 for a scene overview), the Slang variant showed a notable increase
in MRps for secondary rays compared to the GLSL variant (+24% in san_miguel, +19% in
bistro_ext, and +17% in red_autumn_forest), whereas in other scenes it was considerably slower
(-19% in lynxsdesign and -30% in bistro_int). While investigating this problem, our analysis

revealed an issuel*] with instruction hoisting (moving part of the code to the top of a scope).
Primary rays Secondary rays

—~ 1.1 T T 1.1 T T
i
5 s | s |
-.Q-_; - - - 4
2 i ,\\/‘\ i | |
82| L i I 1
21 1]
20
Z s | s |
— s | s |
MD_‘ |- . |- -

0.9 1 091]
= I] I]
)
2 i 1 i 1
E - - - 4
é) 0 8 | | | | | 08 | | | | |

S &S s S8 SE
07 .0/ & o 0/ o/ s o D
RN NN
§ @ & & @ &
>0 >0

—»— Wide4 Slang —«— Wide4 Slang Quantized
—»— Wide6 Slang —«— Wide6 Slang Quantized
—»— Wide8 Slang —«— Wide8 Slang Quantized
—— Binary Slang

Figure 19: The relative MRps performance of Slang shaders compiled with version 2025.8 (including
the instruction hoisting fix) compared to the same shaders compiled with version 2025.6.3 (before
the fix).

In the ray-triangle intersection code, most of the barycentric coordinate calculations were
moved prior to the condition checking the distance from the ray origin. We initially estimated
that this mechanism decreases the duration between loading a variable from memory and its
usage, and that addressing this issue would improve performance. However, fixing this issue
(released in Slang 2023.6.4) surprisingly decreased the MRps performance of secondary rays by

29

WoONOOULAN WNR

AADNDNDNWWLWWLWWLWWWWWWWNNNNNNNNNNRRRRENRNRRRRR
ANUWNRKROODOVWWONIITULANANUWNRKROOVWWONOUNUWNRKODOVWOLONOTUANWNRD

approximately 5% on average (across all scenes and BVH variants), mainly in uncompressed
8-ary and 4-ary BVHs (-11.3% and -9.5%), as illustrated in Figure 19. Listing 5 shows the SPIR-V
ray-triangle intersection code before and after this fix.

Insufficient time prevented us from comprehensively examine which other parts of the SPIR-V
output were altered by this fix. However, we updated the ray-triangle intersection code to
generate the same SPIR-V instructions as the Slang compiler produced prior to this fix, resulting
in approximately a 3.8% MRps speedup of secondary rays on average, as illustrated in Figure
20. In contrast, implementing the identical ray-triangle intersection modification in the GLSL

variant had a negligible effect.

%46 = OpCompositeExtract %float %37 3
%47 = OpVectorShuffle %v3float %37 %37 0 1 2
%48 = OpDot %float %43 %47
%49 = OpFSub %float %46 %48 1|%48 = OpCompositeExtract %float %37 3
%50 = OpDot %float %45 %47 2 |%49 = OpVectorShuffle %v3float %37 %37 0 1 2
%51 = OpCompositeExtract %float %39 3 3|%50 = OpDot %float %43 %49
%52 = OpVectorShuffle %v3float %39 %39 0 1 2 4 (%51 = OpFSub %float %48 %50
%53 = OpDot %float %43 %52 5|%52 = OpDot %float %45 %49
%54 = OpFAdd %float %51 %53 6| %t = OpFDiv %float %51 %52
%55 = OpDot %float %45 %52 7 | %53 = OpFOrdLessThan %bool %t %float 0
%56 = OpCompositeExtract %float %41 3 8 OpSelectionMerge %54 None
%57 = OpVectorShuffle %v3float %41 %41 0 1 2 9 OpBranchConditional %53 %55 %54
%58 = OpDot %float %43 %57 10 | %54 = OpLabel
%59 = OpFAdd %float %56 %58 11 |%56 = OpCompositeExtract %float %39 3
%60 = OpDot %float %45 %57 12 | %57 = OpVectorShuffle %v3float %39 %39 0 1 2
OpSelectionMerge %61 None 13 | %58 = OpDot %float %43 %57
OpSwitch %int 0 %62 14 | %59 = OpFAdd %float %56 %58
%62 = OpLabel 15 | %60 = OpDot %float %45 %57
%t = OpFDiv %float %49 %50 16 %61 = OpFMul %float %t %60
%63 = OpFOrdLessThan %bool %t %float 0O 17 | %u = OpFAdd %float %59 %61
OpSelectionMerge %64 None 18 | %62 = OpFOrdLessThan %bool %u %float 0O
OpBranchConditional %63 %65 %64 19 OpSelectionMerge %63 None
564 = OpLabel 20 OpBranchConditional %62 %64 %63
%66 = OpFMul %float %t %55 21 (%63 = OpLabel
%u = OpFAdd %float %54 %66 22 | %65 = OpCompositeExtract %float %41 3
%67 = OpFOrdLessThan %bool %u %float 0 23 | %66 = OpVectorShuffle %v3float %41 %41 0 1 2
OpSelectionMerge %68 None 24 |%67 = OpDot %float %43 %66
OpBranchConditional %67 %69 %68 25 | %68 = OpFAdd %float %65 %67
568 = OpLabel 26 | %69 = OpDot %float %45 %66
%70 = OpFMul S%float %t %60 27 |%70 = OpFMul %float %t %69
%v = OpFAdd %float %59 %70 28 | %v = OpFAdd %float %68 %70
%71 = OpFOrdLessThan %bool %v %float 0 29 | %71 = OpFOrdLessThan %bool %v S%float 0
OpSelectionMerge %72 None 30 OpSelectionMerge %72 None
OpBranchConditional %71 %73 %74 31 OpBranchConditional %71 %73 %74
74 = OpLabel 32 (%74 = OpLabel
%75 = OpFAdd %float %u %v 33 | %75 = OpFAdd %float %u %v
%76 = OpFOrdGreaterThan %bool %75 %float 1 34 |%76 = OpFOrdGreaterThan %bool %75 %float 1
OpBranch %72 35 OpBranch %72
%73 = OpLabel 36 | %73 = OpLabel
OpBranch %72 37 OpBranch %72
5/2 = OpLabel 38 [%72 = OpLabel
%77 = OpPhi %bool %76 %74 %true %73 39 | %77 = OpPhi %bool %76 %74 %true %73
OpSelectionMerge %78 None 40 OpSelectionMerge %78 None
OpBranchConditional %77 %79 %78 41 OpBranchConditional %77 %79 %78

(a) SPIR-V assembly before the fix

(b) SPIR-V assembly after the fix

Listing 5: Comparison of SPIR-V assembly for the ray-triangle intersection code before and after
applying the instruction hoisting fix. Conditional branch instructions are highlighted in red. As
shown, the variables U and Vv are no longer partially precomputed (lines 6 to 15 in 5a) before
the condition (line 22 in 5a).

30

Primary rays Secondary rays

—~ 1.15 T T 1.15 T T
— - - [a
L | | | |
£ i | i |
et | | | |
L 11r 5 1.1 .
- | | | |
Q [i [a
< | i | |
el | i | ,
< 1.05} 1 1.05| 1
- | | | |
Q_' | - | -
% | | | |
) 1+ 5 1+ .
2 i : i i
&) 095 L | | | | | | 095 L | | | | | |

> >

& E P @”} & P @%\
07 L0/ »&) O 07 L0/ A& o O
0 0 0 0
\,%'Q (ofbv &0 \,%'Q 032} &0&
53 o3

—»— Wide4 Slang —«— Wide4 Slang Quantized
—»— Wide6 Slang —— Wide6 Slang Quantized
—»— Wide8 Slang —«— Wide8 Slang Quantized
—— Binary Slang

Figure 20: The relative MRps performance of Slang shaders with the ray-triangle intersection
modification compared to the same shaders without this modification.

5.3 Subgroup Coherency in Slang

Another difference we identified between the GLSL and Slang variants was the differing
average number of active threads per subgroup throughout shader execution. In the Lynxdesign
interior scene, where the Slang variant exhibited the lowest relative performance against GLSL,
the average Slang coherence in the 4-ary BVH was 10.3 (out of 32 threads per subgroup), while
GLSL achieved 12.9. This smaller subgroup coherence resulted in more memory access stalls for
the Slang variant, thus reducing its performance.

Because both variants use the same while-while traversal loop with identical parameters
for exiting these loops, we hypothesize that this difference arises from invocations that do
not properly reconverge. Initially, we tried enabling the SPV_KHR_maximal_reconvergence
extension!#!], but it had no effect on MRps performance. Therefore, we decided to use explicit
synchronization between the BVH traversal and ray-triangle intersection loops. The most granu-
lar synchronization available is the control and memory barrier of a workgroup, implemented by
GroupMemoryBarrierWithGroupSync, as our attempts to synchronize only a subgroup using
the inlined OpControlBarrier SPIR-V instruction caused a crash in the Slang compiler.

This barrier caused a rise in subgroup coherence, for example, in the Lynxdesign interior
scene, reaching an average of 13.8 in the 4-ary BVH. Performance comparison was performed
with fine-tuned workgroup sizes for each shader variant of both (with and without barrier)
versions, as presented in the tables in Section A. For secondary rays, it caused an increase of
approximately 9-11% on average for uncompressed BVHs and 24-27% for quantized BVHs.
However, it did not improve performance in all cases, especially in scenes where the Slang variant
showed higher secondary ray performance than GLSL (specifically bistro_ext, san_miguel, and
red_autumn_forest), with a worst case of -15% in a binary BVH in the Lumberyard Bistro exterior
scene. For primary rays, changes were more stable, ranging from -0.6% (8-ary uncompressed)

31

to +10% (binary uncompressed). Figure 21 illustrates the changes in MRps performance for
quantized and uncompressed BVH variants across each test scene.

Primary rays Secondary rays
o [T T T] i]
8 L B L i
T 1.6 B B 1.6 B a
- i | i |
A R : - |
g 14] 1 14f |
&, |] i]
SN] I]
o 1.2} y 1.2} i
o, | b | i
a4 5 N . 5 .
T =—— " ?
=R] L]
k= i] i]
2 oogb— 1 sl]
6’\& Q:‘:& o Oé Q/%& \5{&
Q7 O o o9 ©7
& @%6 & s &7 & &
S &)
>
(L
&Q’

—»— Wide4 Slang —«— Wide4 Slang Quantized
—»— Wide6 Slang —«— Wide6 Slang Quantized
—»— Wide8 Slang —«— Wide8 Slang Quantized
—=— Binary Slang

Figure 21: The relative MRps performance of Slang shaders with a workgroup barrier between BVH
traversal and triangle intersection loops, compared to the same shaders without this barrier.

32

6 Results

This section presents a detailed evaluation of the combinations of implemented BVH con-
struction methods (SAH and CBTC; see Section 4.2), memory layouts (uncompressed and
quantized; see Section 4.3), traversal shaders (GLSL and Slang; see Section 4.4), and arity (4-ary,
6-ary, 8-ary). Together with the reference binary GLSL shader and the newly developed Slang
variant of binary BVH traversal, there are 26 combinations in total. Given this large number of
combinations, we perform comparisons in segments rather than all at once. Furthermore, due to
the extensive number of values for each measurement, this section mostly presents aggregate
values or optimal parameter configurations, with more detailed tables and charts available in
the appendix.

The names of the shader variants follow this pattern: <Arity> [Slang] [Quantized]

[CBTC]. Therefore, unless specifically referred to as Slang/Quantized/CBTC, it refers to

the GLSL/Uncompressed/SAH variant. A binary BVH variant is termed Binary, while 4-ary,
6-ary, and 8-ary wide BVHs are labeled Wide4, Wide6, and Wide8, respectively.

The performance of path tracing, measured in mega rays per second (MRps), is influenced by
the configuration of various parameters. Specifically, we focus on the configuration of the work-
group size (separately for primary and secondary rays), the SAH traversal cost ¢; for the leaf
compaction step and depth limit, the number of rays, and the RDTC/SATC threshold for view-
dependent BVH construction.

6.1 Dataset

Our benchmarking dataset consists of five scenes. Three of these are well-known example
scenes: the interior and exterior of the Lumberyard Bistrol#?], and San Miguel 2.0143], Morgan
McGuire’s modification of the original version by Guillermo M. Leal Llaguno. The other two
scenes are Blender splash screens: Red Autumn Forest[**] by Robin Tran, and an interior room
by Lynxsdesign!#’]. For each scene, we selected eight different camera views. Figure 22 presents
the selected rendered view for each of these scenes.

Figure 22: Example view for each testing scene: (a) San Miguel 2.01*3], (b) Lumberyard Bistro

interior(*?], (c) Lumberyard Bistro exterior!*?], (d) Lynxsdesign’s interior room[*’], and (e) Red

Autumn Forest**]. Images were rendered using 128 samples per pixel, except for (c), which uses
512 samples per pixel, and edited with Adaptive Histogram Equalization.

33

6.2 Testing Environment

The benchmark was performed on a Linux desktop system with the following specifications
and software installed:

1. CPU: Intel Core i5-9600K @ 4.5 GHz

GPU: Nvidia GeForce RTX 4070 Ti @ locked 2835 MHz GPU / 10501 MHz MEM
Linux kernel: 6.13.6

Nvidia driver: nvidia-open 570.124.0

Slang version: 2025.8

AN

glslang version: 15.1.0

To ensure stable GPU performance, we fixed the GPU core clock at 2835 MHz and the GPU
memory clock at 10501 MHz using the nvidia-stabilize utility (see Section 4.5.1). Each
scene was rendered from 8 different views, with 15 path samples collected per pixel per view.
The resulting values are the average taken over all path samples and views within the scene.

6.2.1 Workgroup Size

The workgroup size is one of the most important parameters for GPU BVH traversal. Since
shader invocations in the GLSL variant do not communicate with other threads, the impact of
workgroup configuration should be minor when the GPU is adequately saturated. However, in
practice, the difference in performance for the same shader executed with various workgroup
sizes can be as high as 35%. Tables 7 and 8 show the relative MRps performance of GLSL shaders
for primary and secondary rays. Due to significant scene variations under certain conditions,
the optimal workgroup size was determined by the largest minimum value across all scenes,
considering primary and secondary rays independently. Table 4 presents the workgroup sizes
chosen for each traversal shader variant (GLSL and Slang).

Uncompressed Quantized

GLSL | Slang | GLSL ‘ Slang
Primary 32x20 | 32x2
Secondary | 32 x 32 | 32 x 2
Primary 32x20|32x2 |32x12|32x2
Secondary | 32 x2 |32x2 |32x12 | 32x2
Primary 32x2 |32x2 |32x20|32x2
Secondary | 32x32 | 32x2 | 32x12 | 32 x2
Primary 32x2 [32x2 |32x20|32x2
Secondary | 32 x2 | 32x2 |32x12 | 32x2

Binary

Wide4

Wide6b

Wide8

Table 4: Overview of the selected workgroup sizes across all shader variants.

The primary reason why the workgroup size leads to significant variations is mainly due to
the different allocation of resources (registers, shared and local memory), as described in Section
5.1. It cannot be said that lower register and shared memory usage always leads to the best
possible performance. For example, the binary GLSL variant requires 40 registers and 20 bytes
of shared memory in the configuration with the 32 x 2 workgroup, but exhibits approximately
10% lower MRps performance for secondary rays compared to the 32 x 32 workgroup, which
requires 48 registers and 140 bytes of shared memory. We hypothesize that this can probably
be caused by multiple reasons. The varying sizes of workgroups may result in different GPU
occupancy because certain workgroup sizes do not align with an integer fraction of the maximal

34

number of active subgroups. Because of this, the register allocator in the driver can distribute
more registers before reaching the threshold, which reduces the number of workgroups that can
fit into a compute unit. The second reason is that reduced GPU occupancy can help the memory
subsystem.

In Slang shaders, we use workgroup synchronization, as described in Section 5.3. Conse-
quently, the best workgroup size differs significantly from the GLSL version. With an increase
in workgroup size, the number of subgroups needing synchronization also rises, leading to
increased idle time as some subgroups wait for others to complete the BVH traversal loop.
Therefore, for all Slang variants, the best workgroup size is 32 x 2, as illustrated in Tables 9 and
10. To compare the advantages of the workgroup barrier in Slang, the optimal workgroup size
was also identified for the version without the barrier. Tables 11 and 12 demonstrate that for
all shader variants, except primary rays of uncompressed 4-ary (32 x 20) and 6-ary (32 x 12)
BVH, the optimal workgroup size is 32 x 32. It is worth mentioning that the values in each of
the tables are relative to the optimal workgroup size of a particular shader variant and do not
present any relation between multiple shader variants.

6.3 SAH Traversal Cost

The SAH cost is used to merge leaf nodes in Collapsing step (see Section 4.1), resulting in
leaves containing a maximum of 16 triangles each. To find the best SAH cost parameters for each
BVH variant, we fixed the intersection cost ¢; = 2 and varied only the traversal cost ¢; to reduce
the size of the explored state space.

Uncompressed Quantized

ci=2 | GLSL | Slang | GLSL | Slang
Binary | ¢ =2 ct =2
Wided | ¢; =2 | ¢t =2 | ¢t =2 | ¢t =2
Wide6 | ¢, =3 | =3 | ¢=3 | ¢ =4
Wide8 | ¢;=4 | ¢;=4 | =3 | ¢t =4

Table 5: Overview of the selected SAH traversal cost ¢; across all shader variants.

With increasing arity of the BVH, the optimal ¢; increases accordingly. For uncompressed
binary and 4-ary BVHs, the optimal value for ¢; is 2, while for 6-ary it is 3, and for 8-ary it is 4.
The quantized BVHs behave slightly differently. The GLSL quantized variant inclines toward
a smaller ¢; value, specifically in the 8-ary BVH, where the optimal ¢; = 3. This is probably due

GLSL Slang
g=2,ca=1| 1 2 3 4 5 6 1 2 3 4 5 6
Binary 0.99 | 1.00 | 1.00 | 1.00 | 0.99 | 0.98 || 0.99 | 1.00 | 0.99 | 0.99 | 0.97 | 0.96
Wide4 0.99 | 1.00 | 1.00 | 0.99 | 0.98 | 0.96 || 0.99 | 1.00 | 0.99 | 0.99 | 0.97 | 0.95
Wide4 Quantized | 0.99 | 1.00 | 0.99 | 0.97 | 0.95 | 0.92 || 0.98 | 1.00 | 1.00 | 0.99 | 0.97 | 0.95
Wide6 0.98 | 1.00 | 1.00 | 1.00 | 0.99 | 0.98 || 0.99 | 1.01 | 1.00 | 0.99 | 0.98 | 0.97
Wide6 Quantized | 0.99 | 1.00 | 1.00 | 0.99 | 0.97 | 0.95 || 0.96 | 0.99 | 1.00 | 1.00 | 1.00 | 0.99
Wide8 0.97 | 1.00 | 1.00 | 1.00 | 0.99 | 0.98 || 0.96 | 0.99 | 0.99 | 1.00 | 1.00 | 0.99
Wide8 Quantized | 0.97 | 1.00 | 1.00 | 0.99 | 0.98 | 0.97 || 0.95 | 0.98 | 0.99 | 1.00 | 1.00 | 1.00

Table 6: Average relative MRps of the scenes using varying ¢, parameters for leaf node compaction.
The best MRps for each shader variant is highlighted in bold.

35

to the smaller memory footprint of the BVH nodes, which makes it faster to process more BVH
nodes than larger leaves. In contrast, the Slang variant of quantized BVH requires larger leaves
(¢t = 4 for 6-ary BVH), likely due to increased register demands. Table 5 presents the optimal ¢;
for each shader variant, while Table 6 shows the relative average MRps performance across all
tested ¢; values.

6.4 CBTC Heuristic Threshold

The first parameter examined in the construction of view-dependent BVH is the node visit
count threshold ¢, beyond which the CBTC heuristic is replaced by the SATC heuristic. We
decided to represent this value as an absolute number rather than a ratio of sample rays, since we
want to set a lower bound for statistical precision (because the visit count is an integer, the ratio
of visit counts can only take on a limited set of values when the count is low).

Primary rays Secondary rays
: T T : : T T I T T T :
Lp] 1p 8
o = r] - i
9] [i L B
22 098] : 0.98»_\
S8 s |
v 2 | i N A S ISV DU SR R i
-_% 5 0.96 n n 0.96 n n
05 U A - |
Y Lo i] " i
P E 094] 1 094f |
i | | | | | | | i | | | | | | |
0.92 21 24 28 212 216 220 0.92 21 24 28 212 216 220
CBTC threshold ¢ CBTC threshold ¢

Figure 23: Relation between the CBTC heuristic ¢ threshold and the relative MRps performance

of the resulting BVH. The solid line illustrates the average across all scenes and shader variants,

while the colored surface represents the range from the minimum to maximum values of the shader

variants’ scene averages. The dashed line represents the average MRps of shader variants for non-
view-dependent BVHs.

For this test, we collected samples from a single fully rendered frame (1920 x 1080 primary
rays and their bounced secondary rays up to depth 8). As shown in Figure 23, MRps performance
remains nearly constant for small threshold values ¢ (up to around 16). However, when ¢ exceeds
this range, MRps performance begins to decrease. This is due to a reduction in the number of
nodes contracted through the CBTC heuristic, causing a fallback to the SATC method. Con-
sequently, we selected the threshold value of ¢t = 8 to avoid an unnecessarily low value while
ensuring optimal MRps performance.

6.5 Depth Limit for Ray Statistics

Since all meshes exhibit solely diffuse reflection and secondary rays tend to be distributed
rather randomly, we aimed to evaluate whether limiting the maximum depth of secondary rays d
influences the quality of the constructed view-dependent BVH. d = 0 indicates only primary rays
without secondary rays, while d = 7 implies unrestricted conditions equivalent to our standard
path tracing. Similarly to the CBTC heuristic threshold analysis, sample rays were obtained from
a 1920 x 1080 frame, and contraction was performed using the CBTC threshold ¢ = 8.

Figure 24 presents the relative MRps for both primary and secondary rays, along with
the relative duration of the ray sampling process. For primary rays, constraining the depth d does
not degrade MRps performance. In fact, depth limits of 2 and 1 yield a marginal improvement

36

Primary rays Secondary rays

F T [B - I I .

1.02 | 1 1.02| .

05 | [f

o 8 i i B]

&9 B | - |

2 Fg 1 ; ./¥-\.—4——~/'—-\‘] 1 i]
n

3 I] I]

= g 0.98 - - 0.98 |- .

T &0 i . - i

~ = i i N Y A U s . |

~ 0.96 41 0.96 |- .

’_________________________T_i L | | | | | | | |]

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
Sample rays depth limit Sample rays depth limit

Sample rays trace time

1p .
Q F]
Eg s |
Ly r .
g8 06 .
B I i
5 04p =
TE | |

0l]

| | | | | | | |

7T 6 5 4 3 2 1 0
Sample rays depth limit

Figure 24: Relation between the depth limit d of sample rays and relative MRps performance on

the resulting BVH. The solid line illustrates the average across all scenes and shader variants, while

the colored surface represents the range from the minimum to maximum values of the shader

variants’ scene averages. The dashed line represents the average MRps of shader variants for non-
view-dependent BVHs.

of around 0.5%. However, omitting secondary rays entirely (d = 0) leads to an approximate
1% decrease. For secondary rays, limiting the ray depth gradually decreases performance, up
to -3% at d = 0. The trace time of the sample rays decrease roughly linearly with the depth
limit. Therefore, we chose the depth limit for the final benchmark as d = 4, since the MRps
of secondary rays is only marginally smaller (by 0.25%), but the time to collect sample rays
decreases to 66%.

6.6 Number of Sample Rays

Gu et al.['7] stated that for a high-quality contracted BVH, it is sufficient to sample only
around 0.1%-0.5%. We aim to confirm this statement. For the sample rays frame, we employ
subsampling: rather than casting rays for every pixel, we cast rays for only every s-th pixel
(therefore, the number of cast rays is reduced by a factor of 1). This test was performed at
a resolution of 1920 x 1080, witht =8and d = 7.

As shown in Figure 25, the MRps performance decreases only marginally (about -0.5% for
s = 10 x 10, and -0.6% for s = 256), while the time required to trace sample rays decreases
rapidly (to only 2.5% of the original time for s = 10 x 10). For very small numbers of cast rays
(particularly when s > 64), the trace time slowly stops decreasing because the GPU is no longer

37

fully saturated. Consequently, we chose s = 64 (about 1.6% of rays cast), although the range of
0.1%—-0.5% proposed by Gu et al. is also applicable.

Primary rays Secondary rays
1,01 :\\H[T T T I IR RRARI L \\\% 1,01 :\\H[T T 11T T T T TTITT T 1 \\\%
) Ej = b r W b
gE 099 41 0.99 g
= 2 g 8 8 |
v 2 0.98 | 4 0.98 .
2o F . F .
.2 097| 1097} s
Q 0 I . s S L ety I e g
ME 096 1096 |
0'95ET_HT_______H_\J________H_H________\; 0'95%M Lol Lol \\\H;
10° 10! 10° 10° 10! 102
Subsampling ratio (log scale) Subsampling ratio (log scale)

Sample rays trace time

1,*‘ .
) I]
Eg s
v B I]
28 06 |
B9 I y
Ly 04 g
§E |]

OTH\\ Ll Ll \\\\\T

10° 10! 10
Subsampling ratio (log scale)

Figure 25: Relation between subsampling ratio s (casting ! times fewer rays) and relative MRps

performance on the resulting BVH. The solid line illustrates the average across all scenes and shader

variants, while the colored surface represents the range from the minimum to maximum values of

the shader variants’ scene averages. The dashed line represents the average MRps of shader variants
for non-view-dependent BVHs.

6.7 Overall Results

Figure 26 presents the average results across all shader variants and scenes, grouped by
BVH arity. Detailed tables for each scene are provided in Section B, and Figures 27-30 show
the relationships between uncompressed, quantized, and view-dependent variants on a per-scene
basis. For the majority of shader variants, the 4-ary BVH consistently achieves the best average
scene performance, with the only exception being the 6-ary quantized BVH. For 4-ary BVHs,
the number of visited nodes decreases to approximately 50%, along with bounding volumes
tested (up to -6%) and triangles tested (up to -3%).

For BVHs with higher branching factors, the number of visited nodes decreases more slowly
because nodes near the leaves are often not fully occupied, containing only 2 or 3 children.
Consequently for 6-ary and 8-ary BVH, the number of bounding volumes (up to +23%) and
triangles (up to +22%) tested increases, as BVH contraction removes some nodes that previously
pruned the traversal tree.

38

Uncompressed view-independent BVHs exhibit a +20% speedup for secondary rays in 4-ary
BVH, +15% in 6-ary BVH, but only +2% in 8-ary BVH. For primary rays, only the 4-ary BVH is
faster (+7%) than the binary BVH, while the 6-ary and 8-ary variants are equal or slower (-11%).
The overhead of BVH contraction is nearly negligible: 4+2% for 4-ary BVH and even -1% for 8-ary.
The Slang variant provides slightly better MRps performance for 4-ary and 6-ary BVHs (+1%
and +2.5%, respectively), but shows -7% lower MRps for the 8-ary BVH. For primary rays, Slang
shaders perform much worse (-17% to -20%).

One testing scene deviates notably from the others: Lynxsdesign’s interior. It contains highly
subdivided meshes (e.g., sofas), while the rest of the room consists of flat surfaces with very few
triangles. This is reflected in the counts of triangles and bounding volumes tested. Many shader
variants indicate only a minor performance increase or even a decrease relative to the binary
BVH, particularly for Slang shaders (up to -39% in Wide8 Slang Quantized). This behavior is
not viewed as a poor choice of scene, but rather as an example where the proposed method does
not perform optimally in every situation.

Quantization of wide BVHs appears highly beneficial. Secondary rays are traced approxi-
mately 48% faster for 4-ary, 55% faster for 6-ary, and 58% faster for 8-ary BVHs compared to their
uncompressed counterparts (+74%, +78% and +61% compared to binary BVH). This speedup
varies by scene: for lynxsdesign it averages only 5%, and for bistro_int it reaches only 20%.
However, for primary rays, which are more coherent and less sensitive to memory latency, MRps
performance decreases by about 16-18%. Due to BVH compression, construction time increases
approximately 8-12%. Quantization can also slightly enlarge bounding volumes, resulting in
2.5-4% more volumes tested.

The Slang variant of quantized BVHs is significantly slower, as discussed in Section 5.1.2:
approximately -9% for 4-ary, -14% for 6-ary, -12% for 8-ary BVH in secondary rays, and -18% to
-28% for primary rays. The difference in the number of tested triangles and bounding volumes
between the 6-ary and 8-ary Slang versus GLSL variants is due to the different optimal traversal
cost parameter ¢;, as shown in Table 5.

Performance improvement in view-dependent BVHs was less than expected. The difference
between view-dependent and independent BVHs is quite similar for both uncompressed and
quantized variants. For the 4-ary BVH, the improvement is approximately 4% for secondary rays
and 9% for primary rays, mainly due to an outlier in the form of the san_miguel scene, where
primary rays show a 30% increase in MRps.

As the branching factor increases, the improvement decreases. For the 6-ary BVH, the im-
provement is only 5% and 1% for primary and secondary rays, respectively. For the 8-ary BVH,
secondary rays are even 2% slower than in the view-independent BVH. In terms of bounding
volumes tested, the 4-ary BVH tests around 5% fewer volumes, and the 6-ary around 4% fewer.
The 8-ary BVH tests roughly the same number of bounding volumes, corresponding to the lack
of performance increase. The construction overhead from tracing sample rays and rearranging
two BVHs (a binary BVH for sample rays and the final wide BVH) instead of just one is about
19-21%.

39

Primary rays (rel.) Secondary rays (rel.) Build time (rel.)
(higher is better) (higher is better) (lower is better)

T T I T T T I T T T T

1.5F | 1.5 \ . t ¥ |
|- - |- - 7*’%7

| | | | | | | | | | | |
0-5 2 4 6 8 0-5 2 4 6 8 0 2 4 6 8
BVH arity BVH arity BVH arity
—— GLSL —— Slang

—— GLSL CBTC —x— Slang CBTC
—»— GLSL Quantized —«— Slang Quantized
—»— GLSL Quantized CBTC —+— Slang Quantized CBTC

Visited nodes/ray (rel.) Tested BVs/ray (rel.) Tested triangles/ray

(lower is better) (lower is better) (rel., lower is better)
T T T] § T T]
1h 8 i N B i
i | L3 i 1 1.2p .
0.8 1 12f | 1151 g
i 1 - 1 11 .
0.6 | 4 Lip i g 1
I] I 1 105 .
- : 10 . i]
041 B i 1 1r .
] | \] L | \ L] L | \ \]

2 4 6 8 09 2 4 6 8 2 4 6 8

BVH arity BVH arity BVH arity

Figure 26: Benchmark results for all scenes. All values are relative to the Binary variant and averaged

across the testing scenes. Build time includes the total time taken to construct all BVHs and the time

spent casting sample rays. In certain charts, the Slang shader variants are not included because their
values are very similar to those of the GLSL variant.

40

7 Conclusion and Future Work

We implemented wide BVH construction using two heuristics (SAH and view-dependent),
two memory layouts (uncompressed and quantized bounding volumes), and evaluated their
traversal using two shading languages (GLSL and Slang). Across five different testing scenes,
the best results in each category were shown by: 4-ary uncompressed BVH (+20%), 4-ary
view-dependent uncompressed BVH (424%), 6-ary quantized BVH (478%), and 4-ary view-
dependent quantized BVH (+81%).

The view-dependent BVH construction shows less performance increase than anticipated
(only +9% for primary and +4% for secondary rays in 4-ary BVH), and it is not suitable for 8-ary
BVH (-2% in secondary rays). This modest improvement may be due to the perfectly diffuse
(Lambertian) reflection used in all scenes.

In contrast, the quantization of wide BVHs leads to a very significant performance increase,
up to 58% compared to the uncompressed counterpart. Potentially, this could be improved further
by employing stack compression, other methods to optimize traversal order and computing
quantized ray-box intersections more efficiently.

The main difficulty during implementation was the unpredictable register allocator: spilling
to shared memory and allocating an excessive number of registers significantly reduced BVH
traversal performance. From our point of view, it would be highly beneficial to introduce a Vulkan
extension that provides more control over the register allocator.

The evaluated Slang shading language shows performance of secondary rays nearly compa-
rable to binary BVH (+1-2.5%), but suffers from the register allocator limitations (and therefore
up to -14% for secondary rays and -28% for primary rays). However, the implemented shaders
are more readable and maintainable due to several practical language features. Unfortunately,
Slang is still a rapidly evolving project and lacks maturity in some areas.

As a possible future improvement, it would be worthwhile to implement a wide BVH
contraction method that processes internal nodes and leaves simultaneously, test view-dependent
BVHs in scenes with more specular reflectance (which would require adding configurable
materials to Orchard), and, most importantly, find a solution for shader resource allocation,
which remains an issue for some shaders.

41

42

References

1.

10.

11.

12.

13.

14.

KAJIYA, James T. The rendering equation. SIGGRAPH Comput. Graph.
1986, vol. 20, no. 4, pp. 143-150. 1ssn 0097-8930. Available from por: 10.1145/15886.15902.

MEISTER, Daniel; OGAKI, Shinji; BENTHIN, Carsten; DOYLE, Michael J.;

GUTHE, Michael; BITTNER, Jifi.

A Survey on Bounding Volume Hierarchies for Ray Tracing. Computer Graphics Forum.
2021, vol. 40, no. 2, pp. 683-712. Available from por: 10.1111/cgf.142662.

WHITTED, Turner. An improved illumination model for shaded display. Commun. ACM.
1980, vol. 23, no. 6, pp. 343-349. 1ssnx 0001-0782.
Available from por: 10.1145/358876.358882.

CLARK, James H. Hierarchical geometric models for visible surface algorithms.
Commun. ACM. 1976, vol. 19, no. 10, pp. 547-554. 1ssn 0001-0782.
Available from por: 10.1145/360349.360354.

ERICSON, Christer. Real-Time Collision Detection. CRC Press, 2004.
Available from por: 10.1201/b14581.

MACDONALD, David J.; BOOTH, Kellogg S.
Heuristics for ray tracing using space subdivision. Vis. Comput.
1990, vol. 6, no. 3, pp. 153-166. 1ssnx 0178-2789. Available from por: 160.1007/BF01911006.

ADVANCED MICRO DEVICES, INC.

Hardware implementation [HIP Documentation] [online]. [N.d.]. [visited on 2025-05-16].
Available from: https://rocm.docs.amd.com/projects/HIP/en/latest/understand/
hardware_implementation.html.

NVIDIA CORPORATION. CUDA C++ Programming Guide [online].
[N.d.]. [visited on 2025-05-16].
Available from: https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html.

OVERVOORDE, Alexander. Compute Shader [Khronos Vulkan Tutorial | [online].
[N.d.]. [visited on 2025-05-16].

Available from: https://docs.vulkan.org/tutorial/latest/11 Compute Shader.html.
KHRONOS VULKAN WORKING GROUP. Vulkan® 1.4.315 - A Specification |[online].

2025. [visited on 2025-05-16].
Available from: https://registry.khronos.org/vulkan/specs/latest/html/vkspec.html.

LAUTERBACH, C.; GARLAND, M.; SENGUPTA, S.; LUEBKE, D.; MANOCHA, D.
Fast BVH Construction on GPUs. Computer Graphics Forum. 2009, vol. 28, no. 2, pp. 375-384.
Available from por: 10.1111/j.1467-8659.2009.01377.x.

APETRE]I, Ciprian. Fast and Simple Agglomerative LBVH Construction. In:
Computer Graphics and Visual Computing (CGVC). The Eurographics Association, 2014.
1SBN 978-3-905674-70-5. Available from por: 10.2312/cgvc.20141206.

MEISTER, Daniel; BITTNER, Jif1.
Parallel Locally-Ordered Clustering for Bounding Volume Hierarchy Construction.
IEEE Transactions on Visualization and Computer Graphics. 2018, vol. 24, no. 3, pp. 1345-1353.

BENTHIN, Carsten; DRABINSKI, Radoslaw; TESSARI, Lorenzo; DITTEBRANDT, Addis.
PLOC++: Parallel Locally-Ordered Clustering for Bounding Volume Hierarchy
Construction Revisited. Proc. ACM Comput. Graph. Interact. Tech. 2022, vol. 5, no. 3.
Available from por: 10.1145/3543867.

43

https://doi.org/10.1145/15886.15902
https://doi.org/10.1111/cgf.142662
https://doi.org/10.1145/358876.358882
https://doi.org/10.1145/360349.360354
https://doi.org/10.1201/b14581
https://doi.org/10.1007/BF01911006
https://rocm.docs.amd.com/projects/HIP/en/latest/understand/hardware_implementation.html
https://rocm.docs.amd.com/projects/HIP/en/latest/understand/hardware_implementation.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.vulkan.org/tutorial/latest/11_Compute_Shader.html
https://registry.khronos.org/vulkan/specs/latest/html/vkspec.html
https://doi.org/10.1111/j.1467-8659.2009.01377.x
https://doi.org/10.2312/cgvc.20141206
https://doi.org/10.1145/3543867

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

BENTHIN, Carsten; MEISTER, Daniel; BARCZAK, Joshua; MEHALWAL, Rohan;
TSAKOK, John; KENSLER, Andrew. H-PLOC: Hierarchical Parallel Locally-Ordered
Clustering for Bounding Volume Hierarchy construction.

Proceedings of the ACM on Computer Graphics and Interactive Techniques.

2024, vol. 7, no. 3, pp. 1-14. Available from por: 160.1145/3675377.

KARRAS, Tero; AILA, Timo.

Fast parallel construction of high-quality bounding volume hierarchies. In:

Proceedings of the 5th High-Performance Graphics Conference.

Anaheim, California: Association for Computing Machinery, 2013, pp. 89-99. HPG "13.
15BN 9781450321358. Available from por: 10.1145/2492045.2492055.

GU, Yan; HE, Yong; BLELLOCH, Guy E.
Ray Specialized Contraction on Bounding Volume Hierarchies. Computer Graphics Forum.
2015, vol. 34, no. 7, pp. 309-318. Available from por: 10.1111/cgf.12769.

YLITIE, Henri; KARRAS, Tero; LAINE, Samuli.

Efficient incoherent ray traversal on GPUs through compressed wide BVHs. In:
Proceedings of High Performance Graphics.

Los Angeles, California: Association for Computing Machinery, 2017. HPG "17.
1sBN 9781450351010. Available from por: 10.1145/3105762.3105773.

AILA, Timo; LAINE, Samuli. Understanding the efficiency of ray traversal on GPUs. ACM, 2009.
Available from por: 10.1145/1572769.1572792.

GUPTA, Kshitij; STUART, Jeff A.; OWENS, John D.

A study of Persistent Threads style GPU programming for GPGPU workloads. In:
2012 Innovative Parallel Computing (InPar). 2012, pp. 1-14.

Available from por: 10.1109/InPar.2012.6339596.

KNUTH, Donald E. The art of computer programming, volume 3: (2nd ed.) sorting and searching.
USA: Addison Wesley Longman Publishing Co., Inc., 1998. 1senx 0201896850.

GARANZHA, Kirill; LOOP, Charles.

Fast Ray Sorting and Breadth-First Packet Traversal for GPU Ray Tracing.
Computer Graphics Forum. 2010, vol. 29, no. 2, pp. 289-298.

Available from por: 10.1111/j.1467-8659.2009.01598. x.

BERTSEKAS, Dimitri P.

Auction algorithms for network flow problems: A tutorial introduction.
Computational Optimization and Applications. 1992, vol. 1, no. 1, pp. 7-66.
Available from por: 10.1007/bf00247653.

OGAKI, Shinji; DEROUET-JOURDAN, Alexandre.

An N-ary BVH Child Node Sorting Technique for Occlusion Tests.

Journal of Computer Graphics Techniques (JCGT). 2016, vol. 5, no. 2, pp. 22-37. 1ssN 2331-7418.
Available also from: http://jcgt.org/published/0005/02/02/.

KESSENICH, John. An Introduction to SPIR-V: A Khronos-Defined Intermediate Language for
Native Representation of Graphical Shaders and Compute Kernels. 2015. White Paper. LunarG.
Available also from: https://registry.khronos.org/SPIR-V/papers/WhitePaper.pdf.

LEESE, Graeme; KESSENICH, John; BALDWIN, Dave; ROST, Randi.
The OpenGL® Shading Language, Version 4.60.8. The Khronos Group Inc., 2023. Available
also from: https://registry.khronos.org/0OpenGL/specs/gl/GLSLangSpec.4.60.pdf.

44

https://doi.org/10.1145/3675377
https://doi.org/10.1145/2492045.2492055
https://doi.org/10.1111/cgf.12769
https://doi.org/10.1145/3105762.3105773
https://doi.org/10.1145/1572769.1572792
https://doi.org/10.1109/InPar.2012.6339596
https://doi.org/10.1111/j.1467-8659.2009.01598.x
https://doi.org/10.1007/bf00247653
http://jcgt.org/published/0005/02/02/
https://registry.khronos.org/SPIR-V/papers/WhitePaper.pdf
https://registry.khronos.org/OpenGL/specs/gl/GLSLangSpec.4.60.pdf

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

HE, Yong. Slang — A Shader Compilation System for Extensible, Real-Time Shading. 2018.
Available also from:
http://graphics.cs.cmu.edu/projects/renderergenerator/yong he thesis.pdf.
PhD thesis. Carnegie Mellon University.

THE KHRONOS GROUP INC. Khronos Group Launches Slang Initiative, Hosting Open Soutrce
Compiler Contributed by NVIDIA [online]. 2024-11-21. [visited on 2025-01-19].
Available from: https://khr.io/17f.

SLANG CONTRIBUTORS. Slang User’s Guide [online]. [visited on 2025-01-19].
Available from: https://shader-slang.org/slang/user-guide/.

Issues by user ‘cezneluk’ in shader-slang/slang [online]. 2024. [visited on 2025-01-19].
Available from:

https://github.com/shader-slang/slang/issues?q=1s%3Aissue%20author%s3Acezneluk.

KACETIK, Martin; BITTNER, Jifi. SAH-Optimized k-DOP Hierarchies for Ray Tracing.
Proc. ACM Comput. Graph. Interact. Tech. 2024, vol. 7, no. 3.
Available from por: 10.1145/3675391.

LAINE, Samuli; KARRAS, Tero; AILA, Timo.

Megakernels considered harmful: wavefront path tracing on GPUs. In:

Proceedings of the 5th High-Performance Graphics Conference.

Anaheim, California: Association for Computing Machinery, 2013, pp. 137-143. HPG "13.
15BN 9781450321358. Available from por: 10.1145/2492045.2492060.

NVIDIA CORPORATION. NVIDIA Management Library.
Available also from: https://developer.nvidia.com/management-library-nvml.

D-BUS CONTRIBUTORS. D-Bus [online]. [visited on 2025-05-23].
Available from: https://www. freedesktop.org/wiki/Software/dbus/.

NVIDIA CORPORATION. CUDA GPU Occupancy Calculator spreadsheet [online].
2011. [visited on 2025-05-16]. Available from: https://developer.download.nvidia.com/
compute/cuda/4 0/sdk/docs/CUDA Occupancy Calculator.xls.

NVIDIA CORPORATION. NVIDIA Nsight Compute. 2018-2024.
Available also from: https://developer.nvidia.com/nsight-compute.

THE KHRONOS GROUP INC. VkPhysical DeviceLimits(3) Manual Page [online].
2014-2025. [visited on 2025-05-14]. Available from: https:
//registry.khronos.org/vulkan/specs/latest/man/html/VkPhysicalDevicelLimits.html.

MICIKEVICIUS, Paulius. Local Memory and Register Spilling [online].
2011. [visited on 2025-05-11]. Available from:
https://developer.download.nvidia.com/CUDA/training/register spilling.pdf.

NVIDIA CORPORATION. NVIDIA Nsight Graphics. 2018-2025.
Available also from: https://developer.nvidia.com/nsight-graphics.

Forcelnline moves instructions before a condition - Issue #6654 - shader-slang/slang [online].
2025. [visited on 2025-05-14].
Available from: https://github.com/shader-slang/slang/issues/6654.

BAKER, Alan. VK_KHR_shader_maximal_reconvergence(3) Manual Page [online].
2021. [visited on 2025-05-14]. Available from: https://registry.khronos.org/vulkan/
specs/latest/man/html/VK KHR shader maximal reconvergence.html.

AMAZON LUMBERYARD.
Amazon Lumberyard Bistro, Open Research Content Archive (ORCA). 2017.
Available also from: http://developer.nvidia.com/orca/amazon- lumberyard-bistro.

45

http://graphics.cs.cmu.edu/projects/renderergenerator/yong_he_thesis.pdf
https://khr.io/17f
https://shader-slang.org/slang/user-guide/
https://github.com/shader-slang/slang/issues?q=is%3Aissue%20author%3Acezneluk
https://doi.org/10.1145/3675391
https://doi.org/10.1145/2492045.2492060
https://developer.nvidia.com/management-library-nvml
https://www.freedesktop.org/wiki/Software/dbus/
https://developer.download.nvidia.com/compute/cuda/4_0/sdk/docs/CUDA_Occupancy_Calculator.xls
https://developer.download.nvidia.com/compute/cuda/4_0/sdk/docs/CUDA_Occupancy_Calculator.xls
https://developer.nvidia.com/nsight-compute
https://registry.khronos.org/vulkan/specs/latest/man/html/VkPhysicalDeviceLimits.html
https://registry.khronos.org/vulkan/specs/latest/man/html/VkPhysicalDeviceLimits.html
https://developer.download.nvidia.com/CUDA/training/register_spilling.pdf
https://developer.nvidia.com/nsight-graphics
https://github.com/shader-slang/slang/issues/6654
https://registry.khronos.org/vulkan/specs/latest/man/html/VK_KHR_shader_maximal_reconvergence.html
https://registry.khronos.org/vulkan/specs/latest/man/html/VK_KHR_shader_maximal_reconvergence.html
http://developer.nvidia.com/orca/amazon-lumberyard-bistro

43.

44.

45.

MCGUIRE, Morgan. Computer Graphics Archive. 2017.
Available also from: https://casual-effects.com/data.

TRAN, Robin. Blender 2.91 splash screen — Red Autumn Forest [online].
2020. [visited on 2025-01-15].
Available from: https://cloud.blender.org/p/gallery/5fbd186ec57d586577c57417.

LYNXSDESIGN. Blender 4.1 splash screen — Lynxsdesign [online].
2024. [visited on 2025-01-15]. Available from:
https://www.blender.org/download/demo/splash/blender-4.1-splash.blend.

46

https://casual-effects.com/data
https://cloud.blender.org/p/gallery/5fbd186ec57d586577c57417
https://www.blender.org/download/demo/splash/blender-4.1-splash.blend

List of Figures

1

N G &~ W N

10
11
12

13
14

15
16
17

18
19

20

21

22
23

24

25

26
27
28

29

Schematic visualization of Whitted Ray Tracing and Path Tracing.
AnexampleofaBVHtree. L oL oo
Usual types of bounding volumes.
Example of the Vulkan executionmodel.
Example of the contraction of an internal BVHnode.

Example of conversion from a binary BVH tree to a 4-ary wide BVH tree using

the HPLOC algorithm.,
Compressed 8-ary BVH node by Ylitieetal.™.
Optimal sorting networks for various numbers of elements.
Memory layout of a binary BVH node, 56 bytesintotal.
Diagram of wavefront shaders and theirorder.
Memory layout of an uncompressed 4-ary BVH node, 120 bytes in total.

Encoding of a child index, representing either an internal node or a leaf which
containing triangles.

Memory layout of a quantized 4-ary BVH node, 52 bytesin total.

Encoding of quantization step exponents together with the counts of children and
leaves into a 4-byteinteger. L Lo L Lo

Encoding of a quantized bounding volume into one and a half 4-byte integers. . .
Example of a Git commit showing a shader comparisontext.

Comparison of two profile captures of the identical binary single kernel traversal
shader.

Analysis of active registers in the quantized 8-ary BVH Slang traversal shader. . .

Relative MRps performance of Slang shaders before and after the instruction
hoisting fix..

Relative MRps performance of Slang shaders with and without the ray-triangle
intersection modification. o L o L Lo

The relative MRps performance of Slang shaders with and without workgroup
barrier.

Example view for each testingscene.

Relation between the CBTC heuristic threshold ¢ and the relative MRps perfor-
mance of theresulting BVH.

Relation between the depth limit d of sample rays and relative MRps performance
ontheresulting BVH. L L L

Relation between subsampling ratio s and relative MRps performance on the re-
sulting BVH. oL

Benchmark results for all scenes.
Results of uncompressed BVH variants for each scene.

Relative MRps performance of quantized BVHs compared to their uncompressed
variant. L e

Relative MRps performance of uncompressed view-dependent BVHs compared
to their uncompressed view-independent variant.

47

9

17
17

23

30 Relative MRps performance of quantized view-dependent BVHs compared to

their quantized view-independent variant. 53
List of Tables
1 Shader constraints and parameters of the evaluated GPU. 25
2 Comparison of shader resource allocation. 26
3 Relative MRps comparison between the separated and single kernel traversal
shaders. 27
Overview of the selected workgroup sizes across all shader variants. 34
Overview of the selected SAH traversal cost ¢; across all shader variants. 35

Average relative MRps of the scenes using varying c¢; parameters for leaf node

compaction. 35
7 The relative primary rays MRps performance of GLSL shaders with different
workgroup sizes. 49
8 The relative secondary rays MRps performance of GLSL shaders with different
workgroup sizes. 49
9 The relative primary rays MRps performance of GLSL shaders with workgroup
barrier at different workgroup sizes. L o L oL 50
10 The relative secondary rays MRps performance of Slang shaders with workgroup
barrier with different workgroup sizes.. L Lo L L L. 50
11 The relative primary rays MRps performance of Slang shaders without workgroup
barrier with different workgroup sizes..o L 51
12 The relative secondary rays MRps performance of Slang shaders without work-
group barrier with different workgroup sizes. o0 51
13 Results of all shader variants for the bistro_intscene. 54
14 Results of all shader variants for the bistro_extscene. 55
15 Results of all shader variants for the lynxsdesignscene. 56
16 Results of all shader variants for the san_miguel scene. 57
17 Results of all shader variants for the red_autumn_forestscene. 58
List of Listings
1 Pseudocode of the BVH traversal algorithm with two separate loops. 11
2 Pseudocode of BVH traversal while-while algorithm with persistent threads and
speculative traversal. L L 12
The definition of a uncompressed wide BVHnode. 19
The definition of a quantized wide BVHnode. 21

Comparison of the SPIR-V assembly of the ray-triangle intersection code before
and after applying the instruction hoisting fix. 30

48

Appendices

A MRps Performance for Various Workgroup Configuration

Primary rays

32x2[32x4|32x8|32x12|32x16|32x20|32x24|32x28|32x32
GLSL

Binary min | 0.87 | 0.88| 0.88 0.88 0.88 1.00 0.88 0.93 0.96
avg 095| 095| 0.95 0.95 0.96 1.00 0.96 0.97 0.98
Wided min | 099 | 098| 0.99 0.82 0.81 1.00 0.81 0.91 0.96
avg 099 | 099 | 0.99 0.93 0.93 1.00 0.93 0.92 0.98
Wide4 min | 096 | 095| 096 1.00 0.98 0.97 0.80 0.95 0.97
Quantized | avg 096 | 096 | 096 1.00 1.00 0.97 0.83 0.98 0.99
Wides min | 1.00 | 1.00 | 1.00 0.97 0.88 1.00 0.79 0.91 0.95
avg 1.00 | 1.00| 1.00 0.98 0.91 1.00 0.82 0.94 0.98
Wide6 min | 097 | 096 | 0.97 0.99 0.97 1.00 0.90 0.97 0.99
Quantized | avg 098 | 098 | 0.99 1.00 0.99 1.00 0.93 1.00 1.01
Wides min | 1.00 | 1.00| 097 1.00 0.97 0.98 0.89 0.94 0.98
avg 1.00 [1.00 | 097 1.00 0.98 1.00 0.90 0.95 0.98
Wide8 min| 096| 096| 098 0.98 0.98 1.00 0.83 0.97 0.98
Quantized | avg 097 | 097 | 099 0.99 1.00 1.00 0.87 0.99 0.99

Table 7: The relative primary rays MRps performance of GLSL shaders with different workgroup
sizes. Values are averaged across testing scenes. The best workgroup size for each variant (selected
primarily based on the minimum value) is chosen as the reference and highlighted in bold black

text. Sizes where the relative MRps falls below 0.9 are shown in bold red text.

Secondary rays

32x2(32x4[32x8|32x12[32x16|32x20|32x24 | 32x28 | 32x 32
GLSL
. min | 0.89 | 089| 0.89 0.89 0.89 0.95 0.89 0.97 1.00
Binary

avg 091 | 091 091 0.91 0.91 0.97 0.91 1.04 1.00
Wided min | 1.00 | 1.00 | 1.00 0.77 0.76 0.98 0.73 0.90 0.96
avg 1.00 | 1.00| 1.00 0.84 0.84 0.99 0.82 1.02 1.02
Wide4 min | 087 | 0.87 | 087 1.00 0.95 0.86 0.68 0.88 0.94
Quantized | avg 093 | 093 093 1.00 0.99 0.93 0.79 0.96 0.98
Wides min | 092 | 092| 092 0.93 0.80 0.92 0.78 0.96 1.00
avg 094 | 094| 094 0.95 0.87 0.94 0.87 1.01 1.00
Wide6 min | 092 | 092 | 094 1.00 0.96 0.94 0.80 0.90 0.96
Quantized | avg 097 | 097 | 098 1.00 0.97 0.98 0.87 0.95 0.98
Wides min | 1.00 | 1.00 | 097 1.00 0.97 0.93 0.87 0.94 0.97
avg 1.00 | 1.00| 1.00 1.00 1.00 0.96 0.98 1.01 1.00
Wide8 min | 080 | 080| 085 1.00 0.97 0.85 0.64 0.92 0.98
Quantized | avg 090 | 0.90| 0.94 1.00 1.00 0.94 0.71 0.97 1.00

Table 8: The relative secondary rays MRps performance of GLSL shaders with different workgroup
sizes. Values are averaged across testing scenes. The best workgroup size for each variant (selected
primarily based on the minimum value) is chosen as the reference and highlighted in bold black

text. Sizes where the relative MRps falls below 0.9 are shown in bold red text.

49

Primary rays

32x2[132x4|32x8|32x12|32x16 | 32x20 | 32x24 | 32x28 | 32 x 32

Slang with barrier
. min 1.00 0.93 0.88 0.81 0.75 0.81 0.61 0.66 0.70

Binary Slang

avg 1.00 0.95 0.90 0.83 0.78 0.83 0.64 0.68 0.72
i 1.00 0.93 0.84 0.84 0.78 0.83 0.64 0.69 0.72

Wide4 Slang i
avg 1.00 0.94 0.86 0.86 0.81 0.85 0.67 0.72 0.75
Wide4 Slang | min 1.00 0.94 0.89 0.75 0.84 0.59 0.70 0.75 0.79
Quantized avg 1.00 0.95 0.90 0.78 0.86 0.62 0.73 0.77 0.80
i 1.00 0.94 0.85 0.88 0.80 0.61 0.68 0.73 0.75

Wide6 Slang n
avg 1.00 0.95 0.88 0.90 0.83 0.64 0.70 0.74 0.77
Wide6 Slang | min 1.00 0.93 0.83 0.81 0.89 0.64 0.76 0.79 0.82
Quantized avg 1.00 0.94 0.85 0.82 0.90 0.66 0.77 0.80 0.83
i 1.00 0.93 0.89 0.73 0.83 0.62 0.68 0.73 0.78

Wide8 Slang i
avg 1.00 0.94 0.91 0.76 0.86 0.65 0.70 0.74 0.79
Wide8 Slang | min 1.00 0.94 0.91 0.80 0.87 0.71 0.76 0.79 0.81
Quantized |avg | 1.00 | 095| 0.92 0.82 0.88 0.73 0.77 0.80 0.83

Table 9: The relative primary rays MRps performance of GLSL shaders with workgroup barrier at

different workgroup sizes. Values are averaged across testing scenes. The best workgroup size for

each variant (selected primarily based on the minimum value) is chosen as the reference and shown
in bold black text. Sizes where the relative MRps falls below 0.9 are shown in bold red text.

Secondary rays

32x2[32x4|32x832x12|32x16 | 32x20 | 32x24 | 32 x 28 | 32 x 32

Slang with barrier
, min | 1.00 | 095 | 0.90 0.83 0.76 0.82 0.60 0.65 0.69

Binary Slang

avg | 1.00 | 1.02| 102 1.01 0.99 0.99 0.90 0.93 0.94
i 1.00 | 094 | 084 0.85 0.78 0.83 0.61 0.66 0.70

Wide4 Slang min
avg | 1.00 | 1.00| 098 0.98 0.95 0.94 0.85 0.88 0.90
Wide4 Slang | min | 1.00 | 095 | 0.90 0.75 0.86 0.58 0.71 0.76 0.81
Quantized |avg | 1.00 | 096 | 092 0.78 0.88 0.61 0.74 0.80 0.84
i 1.00 | 095 | 086 0.87 0.80 0.58 0.65 0.69 0.73

Wide6 Slang | "
avg | 1.00 | 1.00| 0.99 0.98 0.96 0.79 0.86 0.89 0.90
Wide6 Slang | min | 1.00 | 094 | 0.83 0.80 0.91 0.63 0.75 0.80 0.84
Quantized |avg | 1.00 | 095| 0.84 0.82 0.92 0.65 0.78 0.82 0.86
i 1.00 | 093 | 088 0.69 0.81 0.56 0.63 0.67 0.72

Wide8 Slang min
avg | 1.00 | 099 | 098 0.90 0.96 0.80 0.87 0.90 0.92
Wide8 Slang | min | 1.00 | 095 | 0.94 0.80 0.89 0.70 0.77 0.81 0.83
Quantized |avg | 1.00 | 096 | 0.94 0.82 0.90 0.72 0.78 0.82 0.85

Table 10: The relative secondary rays MRps performance of Slang shaders with workgroup barrier
with different workgroup sizes. Values are averaged across testing scenes. The best workgroup size
for each variant (selected primarily based on the minimum value) is chosen as the reference and
shown in bold black text. Sizes where the relative MRps falls below 0.9 are shown in bold red text.

50

Primary rays
32x2132x4|32x8|32x12|32x16 | 32x20 | 32x24 | 32x28 | 32 x 32
Slang w\o barrier

min 0.97 0.97 0.97 0.98 0.99 0.98 0.90 0.96 1.00

Binary Slang
avg 0.98 0.99 0.99 0.99 0.99 0.99 091 0.97 1.00

min 0.96 0.96 0.96 0.97 0.96 1.00 0.88 0.94 0.97

Wide4 Slan
8 avg 0.97 0.97 0.97 0.98 0.98 1.00 0.91 0.97 0.98

Wide4 Slang | min | 094 | 094 | 095 0.91 0.96 0.78 0.92 0.97 1.00
Quantized | avg 097 | 097 | 097 0.94 0.98 0.82 0.95 0.98 1.00

min 0.96 0.96 0.96 1.00 0.96 0.80 0.89 0.94 0.97

Wide6 Slang
avg 0.97 0.97 0.96 1.00 0.97 0.86 0.93 0.97 0.99

Wide6 Slang | min 0.94 0.94 0.92 0.92 0.97 0.80 0.94 0.96 1.00
Quantized | avg 0.95 0.95 0.94 0.94 0.98 0.83 0.96 0.97 1.00

min 0.94 0.94 0.96 0.89 0.97 0.70 0.90 0.95 1.00

Wide8 Slan
8 avg 0.95 0.95 0.98 0.91 0.99 0.73 0.92 0.95 1.00

Wide8 Slang | min | 0.96 0.95 0.94 0.92 0.96 0.88 0.94 0.97 1.00
Quantized | avg 0.97 0.97 0.96 0.94 0.97 0.91 0.95 0.98 1.00

Table 11: The relative primary rays MRps performance of Slang shaders without workgroup barrier
with different workgroup sizes. Values are averaged across testing scenes. The best workgroup size
for each variant (selected primarily based on the minimum value) is chosen as the reference and
shown in bold black text. Sizes where the relative MRps falls below 0.9 are shown in bold red text.

Secondary rays
32x2[132x4|32x8|32x12|32x16 | 32x20 | 32x24 | 32 x28 | 32 x 32

Slang w\o barrier

min 0.95 0.95 0.95 0.98 1.00 0.93 0.85 0.94 1.00

Binary Slang
avg 1.00 1.00 1.00 1.00 1.00 0.99 0.92 0.97 1.00

min 0.98 0.98 1.00 0.98 1.00 0.92 0.87 0.95 1.00

Wide4 Slan
8 avg 1.01 1.01 1.00 1.01 1.00 1.00 0.92 0.98 1.00

Wide4 Slang | min 0.98 0.98 0.98 0.87 0.99 0.73 0.88 0.96 1.00
Quantized avg 0.98 0.98 0.99 0.89 0.99 0.75 0.89 0.97 1.00

min 0.98 0.98 0.99 0.98 0.99 0.77 0.89 0.96 1.00

Wide6 Slang
avg 1.01 1.01 1.00 1.01 1.00 0.83 0.93 0.99 1.00

Wide6 Slang | min | 0.94 | 094 | 0.88 0.88 1.00 0.73 0.89 0.95 1.00
Quantized |avg | 095| 095| 0.89 0.90 1.00 0.76 0.91 0.97 1.00

min 0.94 0.94 0.96 0.89 0.97 0.70 0.90 0.95 1.00

Wide8 Slan
8 avg 0.95 0.95 0.98 0.91 0.99 0.73 0.92 0.95 1.00

Wide8 Slang | min | 095 | 095 | 0.98 0.87 0.98 0.79 0.89 0.95 1.00
Quantized |avg | 096 | 096| 0.98 0.89 0.99 0.82 0.90 0.96 1.00

Table 12: The relative secondary rays MRps performance of Slang shaders without workgroup barrier
with different workgroup sizes. Values are averaged across testing scenes. The best workgroup size
for each variant (selected primarily based on the minimum value) is chosen as the reference and
shown in bold black text. Sizes where the relative MRps falls below 0.9 are shown in bold red text.

51

B Per-Scene Results

Primary rays Secondary rays
—~ 1 . 4 T T 1 . 4 T T
— [| [i
QL
& i | i |
& i | i |
e L i L i
e 12 2 1.2 | .
i i | i |
Q) - - - -
< i | i |
E 1/ S L b]
2 - | - |
§ - | - |
o 081 8 0.8 1
2 - . . .
B
= | | - |
&) 06 - [[[- 06 I— [[[-
X X > X X X > X
$ F B L $ oF & &
,go 7 Q7 6‘259 .‘\/QO O ,QO 7 Q7 b@?‘) "\QO Q
&Y @\'5 £ < / \@\ %’6 49 < /
RSSO RSSO
NV & S
> ®
> (4
¥ | —— Wide4 —— Wide4 Slang <©
—— Wide6 —— Wide6 Slang
—— Wide8 —— Wide8 Slang
—+— Binary —«— Binary Slang

Figure 27: Results of uncompressed BVH variants for each scene. All values are relative to the Binary

variant.
Primary rays Secondary rays
/;'_‘\ F I I] [I T]
12 - . -]
£ 18} - 1.8 7
< L] L]
[75) [i [i
’(c:o "] "]
-é 1.4 B] 1.4 -]
@ - . -]
aQ, 1.2 . 1.2 .
= | z |
g e E 1 :
= B] B]
< 0.8 W . 0.8 .
é) L | | | | | § L i
>y
o/ 0o/ t*f“% SIS %
F&E T T
0 0
§ F &
S
>
<@

—— Wide4 Quantized —— Wide4 Slang Quantized
—— Wide6 Quantized —«— Wide6 Slang Quantized
—x— Wide8 Quantized —«— Wide8 Slang Quantized

Figure 28: Relative MRps performance of quantized BVHs compared to their uncompressed variant.

52

Primary rays Secondary rays

/\ T T T T
g 13} 3 1.3} .
z i 1 i 1
Qo | i | i
2 X 1 X 1
oo1.2f . 121 y
= i 1 i 1
‘_G | N | N
0 i i i i
S 11} y 11}]
2 i 1 i |
= i 1 i 1
= 1f . = .
2 i 1 i 1
ks i | i |
< 09| . 0.9 |
\Y
& & K
@é‘ @% @‘5“ @é‘

—»— Wide4 CBTC —— Wide4 Slang CBTC
—— Wide6 CBTC —+— Wide6 Slang CBTC
—x— Wide8 CBTC —— Wide8 Slang CBTC

Figure 29: Relative MRps performance of uncompressed view-dependent BVHs compared to their
uncompressed view-independent variant.

Primary rays Secondary rays
[T T T T
g 131 : 1.3 | 1
= i 1 i 1
el | i | i
o L2 3 1.2 .
g I] I]
2P i 1 i 1
SREE 11 |
2] i]
& i | i]
% 1h | 1} |
R] i]
s i] i]
& 09 ‘ { ‘] 09 :
S FeSHE S
07 o7 »F Fo & o/
AY) 0 Y 0
S
%
>
&

—»— Wide4 Quantized CBTC —«— Wide4 Slang Quantized CBTC
—»— Wide6 Quantized CBTC —«— Wide6 Slang Quantized CBTC
—»— Wide8 Quantized CBTC —«— Wide8 Slang Quantized CBTC

Figure 30: Relative MRps performance of quantized view-dependent BVHs compared to their
quantized view-independent variant.

53

B z 4

bistro_int 2 | = 0 é‘ > H

. g | 5 ¥ g 5

(1.04 Mtris o g, o~ \E/ = 2 g,

: ; 6 Slg 2 2 g 5 g

& g = n % 0 g, b

~ = 5 = =] =

g 3 | g g 2 2 = &

£ = | € > < £ i E

st o | & 5 2) - e

. . Q [} [

I R R T -

@A < | < & & = = =
Binary 11.6 (1.00) | 2.0 1772 (1.00) | 226 (1.00) | 59.9 (1.00) | 119.8 (1.00) | 66.4 (1.00)
Binary Slang 11.6 (1.00) | 2.0 1314 (0.74) | 231 (1.02) | 59.8 (1.00) | 119.6 (1.00) | 66.2 (1.00)
Wide4 11.9 (1.02) | 3.1 1794 (1.01) | 253 (1.12) | 29.7 (0.50) | 114.6 (0.96) | 63.6 (0.96)
Wide4 CBTC 22+126(127) | 32 1850 (1.04) | 255 (1.13) | 28.7 (0.48) | 111.3 (0.93) | 64.5 (0.97)
Wide4 Quantized 124 (1.06) | 31 |, | 1420 (0.80) | 311 (1.37) | 302 (0.50) | 1167 (0.97) | 641 (0.97)
Wide4 Quantized CBTC 22+132(1.32) | 32| 7 | 1468 (0.83) | 308 (1.36) | 29.2 (0.49) | 11355 (0.95) | 65.0 (0.98)
Wide4 Slang 11.9 (1.02) | 3.1 1381 (0.78) | 258 (1.14) | 29.6 (0.49) | 114.5 (0.96) | 63.5 (0.96)
Wide4 Slang CBTC 23 +12.6 (1.28) | 32 1417 (0.80) | 258 (1.14) | 28.6 (0.48) | 111.2 (0.93) | 64.3 (0.97)
Wide4 Slang Quantized 12.4 (1.06) | 3.1 1107 (0.62) | 256 (1.13) | 30.2 (0.50) | 116.6 (0.97) | 64.0 (0.96)
Wide4 Slang Quantized CBTC | 2.3 + 132 (1.33) | 3.2 1145 (0.65) | 253 (1.12) | 29.2 (0.49) | 113.3 (0.95) | 64.9 (0.98)
Wide6 11.9 (1.02) | 3.7 1603 (0.90) | 245 (1.08) | 23.0 (0.38) | 129.4 (1.08) | 65.3 (0.98)
Wide6 CBTC 22 +12.5 (1.26) | 4.0 1741 (0.98) | 240 (1.06) | 22.2 (0.37) | 126.5 (1.06) | 66.2 (1.00)
Wide6 Quantized 128 (110) | 37 |, | 1259 (0.71) | 283 (125) | 235 (0.39) | 1322 (1.10) | 66.2 (1.00)
Wideb Quantized CBTC 22+13.1(1.32) | 40 | 77 | 1375 (0.78) | 280 (1.24) | 22.7 (0.38) | 129.7 (1.08) | 67.0 (1.01)
Wide6 Slang 11.9 (1.02) | 3.7 1234 (0.70) | 247 (1.09) | 23.0 (0.38) | 129.3 (1.08) | 65.2 (0.98)
Wide6 Slang CBTC 22+ 125 (1.26) | 40 1337 (0.75) | 243 (1.07) | 22.1 (0.37) | 126.4 (1.06) | 66.1 (1.00)
Wide6 Slang Quantized 12.3 (1.05) | 3.8 980 (0.55) | 231 (1.02) | 23.3 (0.39) | 130.8 (1.09) | 67.4 (1.02)
Wide6 Slang Quantized CBTC | 2.2 + 13.1 (1.31) | 4.0 33 1068 (0.60) | 227 (1.00) | 22.5 (0.37) | 128.2 (1.07) | 68.2 (1.03)
Wide8 11.8 (1.01) | 43 |~ [1425 (0.80) | 217 (0.96) | 19.5 (0.33) | 143.9 (1.20) | 67.5 (1.02)
Wide8 CBTC 23+124(127) | 47 1474 (0.83) | 214 (0.95) | 19.3 (0.32) | 144.3 (1.20) | 67.9 (1.02)
Wide8 Quantized 129 (1.11) | 42 25 1105 (0.62) | 261 (1.16) | 20.2 (0.34) | 149.3 (1.25) | 67.1 (1.01)
Wide8 Quantized CBTC 22+134 (1.34) | 47 | 77 [1159 (0.65) | 254 (1.12) | 20.1 (0.33) | 149.9 (1.25) | 67.6 (1.02)
Wide8 Slang 11.8 (1.01) | 4.3 1116 (0.63) | 211 (0.93) | 19.5 (0.32) | 143.7 (1.20) | 67.4 (1.02)
Wide8 Slang CBTC 24 +124(127) |47 | | 1154 (0.65) | 205 (0.90) | 19.3 (0.32) | 1442 (1.20) | 67.8 (1.02)
Wide8 Slang Quantized 123 (1.06) | 43 |~ [905 (0.51) | 222 (0.98) | 20.0 (0.33) | 147.6 (1.23) | 68.3 (1.03)
Wide8 Slang Quantized CBTC | 2.3 + 13.1 (1.33) | 47 946 (0.53) | 215 (0.95) | 19.8 (0.33) | 148.0 (1.24) | 68.8 (1.04)

Table 13: Results of all shader variants for the bistro_int scene. Values in parentheses are relative to
the Binary variant. The optimal value within each category is highlighted in bold. For the build time
of view-dependent BVHs, the first value represents the elapsed time for tracing sample rays, and

the second value is the total build time for both BVHs.

54

B z 4

bistro_ext 2 | = 0 é‘ > H

) g | 5 <% © =

(2.83 Mtris) o g, o~ \E/ = 2 g,

0 £l g 2 0 g e 3

g § | 2 2 & g 2)

P s | & g % 3 2 g

£ E | g > g 2 g B

st o | & 5 2) - e

= P ; g 19) A7) £ £

'5 g‘o gb .E Q w0 N w0

@A < | < & & = = =
Binary 19.8 (1.00) | 2.0 1013 (1.00) | 122 (1.00) | 79.8 (1.00) | 159.6 (1.00) | 38.5 (1.00)
Binary Slang 19.8 (1.00) | 2.0 779 (0.77) | 120 (0.99) | 79.7 (1.00) | 159.3 (1.00) | 38.3 (1.00)
Wide4 207 (1.05) | 3.1 1067 (1.05) | 147 (1.20) | 40.1 (0.50) | 155.6 (0.97) | 40.2 (1.05)
Wide4 CBTC 27 +222(1.26) | 32 1104 (1.09) | 155 (1.27) | 38.7 (0.49) | 150.9 (0.95) | 39.6 (1.03)
Wide4 Quantized 216 (1.09) [3.1 |, | 851 (0.84) | 226 (1.85) | 409 (0.51) | 158.6 (0.9) | 40.8 (1.06)
Wide4 Quantized CBTC 27 +241(136) | 32| 7 | 882(0.87) | 244 (2.00) | 39.5 (0.50) | 154.0 (0.96) | 402 (1.05)
Wide4 Slang 204 (1.03) | 3.1 830 (0.82) | 150 (1.23) | 40.0 (0.50) | 155.3 (0.97) | 40.1 (1.04)
Wide4 Slang CBTC 2.8 +223 (1.27) | 32 856 (0.85) | 161 (1.32) | 38.7 (0.48) | 150.7 (0.94) | 39.5 (1.03)
Wide4 Slang Quantized 219 (1.11) | 3.1 664 (0.66) | 226 (1.86) | 40.8 (0.51) | 158.4 (0.99) | 40.7 (1.06)
Wide4 Slang Quantized CBTC | 2.7 + 24.2 (1.36) | 3.2 683 (0.67) | 236 (1.93) | 39.5 (0.49) | 153.8 (0.96) | 40.1 (1.04)
Wide6 20.0 (1.01) | 3.8 967 (0.95) | 149 (1.23) | 30.8 (0.39) | 175.6 (1.10) | 41.7 (1.08)
Wide6 CBTC 2.6 +22.1 (1.25) | 4.0 1014 (1.00) | 154 (1.26) | 29.6 (0.37) | 170.3 (1.07) | 42.6 (1.11)
Wide6 Quantized 221(112) |38 |, | 772(0.76) | 247 (2.0) | 315 (040) | 1796 (1.13) | 42.6 (1.11)
Wide6 Quantized CBTC 2.6+238(134) | 40 | 7 | 811 (0.80) | 255 (2.09) | 30.4 (0.38) | 174.6 (1.09) | 43.5 (1.13)
Wide6 Slang 200 (1.01) | 3.8 758 (0.75) | 152 (1.25) | 30.8 (0.39) | 175.3 (1.10) | 41.6 (1.08)
Wide6 Slang CBTC 2.7 +22.1 (1.25) | 4.0 791 (0.78) | 157 (1.29) | 29.6 (0.37) | 170.0 (1.07) | 425 (1.11)
Wideb Slang Quantized 21.1(1.07) | 3.9 596 (0.59) | 222 (1.82) | 31.0 (0.39) | 176.8 (1.11) | 45.1 (1.17)
Wide6 Slang Quantized CBTC | 2.6 +23.0 (1.30) | 4.1 33 626 (0.62) | 221 (1.81) | 29.9 (0.37) | 171.7 (1.08) | 46.1 (1.20)
Wide8 19.7 (1.00) | 44 | 77 | 847 (0.84) | 130 (1.07) | 26,5 (0.33) | 197.6 (1.24) | 44.9 (1.17)
Wide8 CBTC 26+215(122) | 48 881 (0.87) | 134 (1.10) | 25.7 (0.32) | 1942 (1.22) | 45.7 (1.19)
Wide8 Quantized 218 (111) |43 |, | 671(0.66) | 230 (1.89) | 277 (0.35) | 206.0 (1.29) | 43.3 (1.13)
Wide8 Quantized CBTC 26+241(135) | 47 | 77 | 691 (0.68) | 235 (1.93) | 27.0 (0.34) | 203.4 (1.27) | 44.3 (1.15)
Wide8 Slang 20.1 (1.01) | 4.4 664 (0.66) | 124 (1.02) | 26.5 (0.33) | 197.4 (1.24) | 44.8 (1.17)
Wide8 Slang CBTC 27+215(122) |48 | ., | 688 (0.68) | 127 (1.04) | 25,6 (0.32) | 1940 (122) | 456 (1.19)
Wide8 Slang Quantized 221(1.12) | 44 | 77 | 542/ (054) | 210 (1.72) | 27.2 (0.34) | 202.8 (1.27) | 45.8 (1.19)
Wide8 Slang Quantized CBTC | 2.6 + 232 (1.31) | 4.8 562 (0.55) | 208 (1.70) | 26.5 (0.33) | 200.1 (1.25) | 46.9 (1.22)

Table 14: Results of all shader variants for the bistro_ext scene. Values in parentheses are relative to
the Binary variant. The optimal value within each category is highlighted in bold. For the build time
of view-dependent BVHs, the first value represents the elapsed time for tracing sample rays, and

the second value is the total build time for both BVHs.

55

v | § " >

lynxsdesign R m & o g

(8.20 Mitris) g & = £ > g

n & g 2 2 g o)

g § | 2 2 & 2 2. oS

=5 | 5 = = 9 g

2 2| 0§ | 5 % | & | &

=) <= by 5 < -

e o= g £ s ks 3

A < | < ~ 5 = = =
Binary 38.0 (1.00) | 2.0 2461 (1.00) | 960 (1.00) | 29.9 (1.00) | 59.8 (1.00) | 5.4 (1.00)
Binary Slang 38.0 (1.00) | 2.0 2153 (0.87) | 902 (0.94) | 29.9 (1.00) | 59.7 (1.00) | 5.4 (0.99)
Wided 39.0 (1.03) | 3.0 2513 (1.02) | 1068 (1.11) | 15.4 (0.51) | 60.7 (1.01) | 5.3 (0.98)
Wide4 CBTC 1.6 + 455 (1.24) | 3.1 2612 (1.06) | 1113 (1.16) | 142 (0.48) | 56.3 (0.94) | 5.3 (0.98)
Wide4 Quantized 431 (1.13) [30 | | 2198 (0.89) | 1131 (1.18) | 158 (0.53) | 622 (1.04) | 55 (1.02)
Wide4 Quantized CBTC 1.6 +51.0 (1.39) | 3.1 2370 (0.96) | 1172 (1.22) | 14.6 (0.49) | 57.7 (0.96) | 5.5 (1.01)
Wide4 Slang 38.0 (1.00) | 3.0 2173 (0.88) | 963 (1.00) | 15.4 (0.51) | 60.6 (L.01) | 5.2 (0.97)
Wide4 Slang CBTC 17+ 458 (1.25) | 3.1 2289 (0.93) | 994 (1.04) | 14.2 (0.48) | 56.2 (0.94) | 5.2 (0.97)
Wide4 Slang Quantized 433 (1.14) | 3.0 1827 (0.74) | 919 (0.96) | 15.8 (0.53) | 62.1 (1.04) | 5.5 (1.01)
Wide4 Slang Quantized CBTC | 1.7 + 51.4 (1.40) | 3.1 1971 (0.80) | 949 (0.99) | 14.6 (0.49) | 57.6 (0.96) | 5.4 (1.01)
Wide6 37.7 (0.99) | 3.6 2146 (0.87) | 898 (0.93) | 12.4 (0.41) | 723 (1.21) | 5.5 (1.03)
Wide6 CBIC 17 + 454 (1.24) | 39 2300 (0.93) | 935 (0.97) | 11.1 (0.37) | 65.6 (1.10) | 5.5 (1.02)
Wide6 Quantized 42.6 (1.12) [36 | . | 1942 (0.79) | 961 (1.00) | 127 (043) | 744 (1.24) | 5.9 (1.09)
Wide6 Quantized CBTC 1.6 + 51.4 (1.40) | 3.9 2162 (0.88) | 991 (1.03) | 11.5 (0.39) | 67.8 (1.13) | 5.8 (1.07)
Wide6 Slang 38.1(1.00) | 3.6 1952 (0.79) | 879 (0.91) | 12.4 (0.41) | 72.2 (1.21) | 5.5 (1.02)
Wide6 Slang CBTC 1.7 +45.0 (1.23) | 39 2128 (0.86) | 900 (0.94) | 11.1 (0.37) | 655 (1.09) | 5.5 (1.01)
Wide6 Slang Quantized 413 (1.09) | 3.6 1574 (0.64) | 781 (0.81) | 12.6 (0.42) | 739 (1.24) | 6.5 (1.20)
Wide6 Slang Quantized CBTC | 17 +48.0 (131) |39 |) o | 1752 (071) | 795 (0.83) | 114 (0.38) | 675 (1.13) | 6.3 (117)
Wide8 36.9 (0.97) | 4.1 2019 (0.82) | 840 (0.87) | 10.2 (0.34) | 78.8 (1.32) | 6.1 (1.13)
Wide8 CBTC 17+ 424 (1.16) | 46 2072 (0.84) | 845 (0.88) | 9.8 (0.33) | 76.8 (1.28) | 6.1 (1.13)
Wide8 Quantized 43.1(113) |40 | | 1754 (0.71) | 866 (0.90) | 106 (0.35) | 816 (1.36) | 6.0 (1.12)
Wide8 Quantized CBTC 1.6 + 527 (1.43) | 4.6 1839 (0.75) | 855 (0.89) | 10.3 (0.34) | 80.0 (1.34) | 6.0 (1.11)
Wide8 Slang 37.0 (0.98) | 4.1 1688 (0.69) | 747 (0.78) | 10.1 (0.34) | 78.8 (1.32) | 6.1 (1.13)
Wide8 Slang CBTC 17 +430 (1.18) [46 | , | 1744 (0.71) | 721 (075) | 98 (0.33) | 768(128) | 61 (1.13)
Wide8 Slang Quantized 417 (1.10) | 41 1491 (0.61) | 756 (0.79) | 10.5 (0.35) | 81.1 (1.36) | 6.7 (1.24)
Wide8 Slang Quantized CBTC | 1.7 + 49.8 (1.36) | 4.6 1550 (0.63) | 728 (0.76) | 102 (0.34) | 79.6 (1.33) | 6.6 (1.22)

Table 15: Results of all shader variants for the lynxsdesign scene. Values in parentheses are relative
to the Binary variant. The optimal value within each category is highlighted in bold. For the build
time of view-dependent BVHs, the first value represents the elapsed time for tracing sample rays,

and the second value is the total build time for both BVHs.

56

v | § n =

san_miguel R " é‘ > =

i g | = g, s 5

(9.96 Mtris) | & & > = 2 g,

o] 2 &g =3 - g o g

& g = n % 0 g, b

~ = = = = = g

g S E g oy ? = g

g 2| g > < = B E

st o | & 5 2) - e

= P ; g 19) A7) £ £

‘5 g‘o gb ~z o N 0 N

& << oy B = & =
Binary 53.4 (1.00) | 2.0 880 (1.00) | 168 (1.00) | 79.3 (1.00) | 158.6 (1.00) | 13.6 (1.00)
Binary Slang 53.4 (1.00) | 2.0 689 (0.78) | 181 (1.08) | 79.2 (1.00) | 158.4 (1.00) | 13.6 (1.00)
Wide4 533 (1.00) | 3.1 936 (1.06) | 204 (1.22) | 39.3 (0.50) | 1535 (0.97) | 12.9 (0.95)
Wide4 CBTC 26+61.8(121) | 3.1 1218 (1.38) | 221 (1.32) | 36.5 (0.46) | 142.8 (0.90) | 12.2 (0.90)
Wide4 Quantized 59.4 (1.11) | 31|, | 736(084) | 362 (216) | 403 (051) | 1571 (0.99) | 13.2 (0.97)
Wide4 Quantized CBTC 26+683(1.33) | 31| | 948 (1.08) | 389 (2.32) | 37.4 (0.47) | 1462 (0.92) | 12.6 (0.92)
Wide4 Slang 532 (1.00) | 3.1 746 (0.85) | 217 (1.30) | 39.3 (0.50) | 153.3 (0.97) | 12.9 (0.95)
Wide4 Slang CBTC 3.0+ 618 (1.21) | 3.1 963 (1.09) | 233 (1.39) | 36.4 (0.46) | 142.6 (0.90) | 12.2 (0.90)
Wide4 Slang Quantized 59.2 (1.11) | 3.1 582 (0.66) | 321 (1.91) | 40.2 (0.51) | 157.0 (0.99) | 132 (0.97)
Wide4 Slang Quantized CBTC | 3.0 + 68.7 (1.34) | 3.1 750 (0.85) | 338 (2.01) | 37.3 (0.47) | 146.1 (0.92) | 12,5 (0.92)
Wide6 52.8 (0.99) | 3.7 1049 (1.19) | 207 (1.23) | 28.7 (0.36) | 164.8 (1.04) | 13.4 (0.99)
Wide6 CBTC 2.6 +583 (1.14) | 4.0 1094 (1.24) | 203 (1.21) | 28.3 (0.36) | 163.3 (1.03) | 13.8 (1.01)
Wide6 Quantized 59.0 (1.11) | 37 | | 806(092) | 380 (226) | 29.6 (0.37) | 1695 (1.07) | 13.8 (1.01)
Wide6 Quantized CBTC 26+663(129) | 40 | 7 | 845 (0.96) | 373 (2.22) | 29.1 (0.37) | 168.2 (1.06) | 14.4 (1.05)
Wide6 Slang 52.0 (0.97) | 3.7 835 (0.95) | 219 (1.31) | 28.7 (0.36) | 164.6 (1.04) | 13.4 (0.98)
Wide6 Slang CBTC 29 +593 (1.17) | 40 870 (0.99) | 217 (1.29) | 282 (0.36) | 163.1 (1.03) | 13.8 (1.01)
Wide6 Slang Quantized 56.7 (1.06) | 3.8 639 (0.73) | 306 (1.82) | 29.1 (0.37) | 166.7 (1.05) | 16.1 (1.18)
Wide6 Slang Quantized CBTC | 2.8 +63.6 (1.24) | 40 | ., | 669 (0.76) | 300 (1.79) | 28.6 (0.36) | 1652 (1.04) | 167 (1.23)
Wide8 52.0 (0.97) | 43 | 7 | 907 (1.03) | 182 (1.08) | 24.6 (0.31) | 184.8 (1.17) | 15.8 (1.16)
Wide8 CBTC 2.6 +562 (1.10) | 47 935 (1.06) | 168 (1.00) | 252 (0.32) | 1915 (1.21) | 169 (1.24)
Wide8 Quantized 58.5 (1.10) | 42 | | 697 (079) | 337 (201) | 258 (032) | 1935 (1.22) | 14.0 (1.03)
Wide8 Quantized CBTC 26 +669 (1.30) | 47 | 77 | 717 (0.81) | 315 (1.87) | 26,5 (0.33) | 2014 (1.27) | 15.1 (1.11)
Wide8 Slang 51.9 (0.97) | 4.3 721 (0.82) | 168 (1.00) | 24.6 (0.31) | 184.6 (1.16) | 15.8 (1.16)
Wide8 Slang CBTC 28+559 (110) |47 | . | 739 (0.84) | 154 (092) | 252 (0.32) | 1912 (1.21) | 169 (1.24)
Wide8 Slang Quantized 56.7 (1.06) | 43 |~ | 578 (0.66) | 288 (1.72) | 25.4 (0.32) | 190.2 (1.20) | 16.3 (1.20)
Wide8 Slang Quantized CBTC | 2.8 + 64.2 (1.25) | 4.7 594 (0.68) | 267 (1.59) | 26.1 (0.33) | 197.7 (1.25) | 17.6 (1.29)

Table 16: Results of all shader variants for the san_miguel scene. Values in parentheses are relative
to the Binary variant. The optimal value within each category is highlighted in bold. For the build
time of view-dependent BVHs, the first value represents the elapsed time for tracing sample rays,

and the second value is the total build time for both BVHs.

57

215 2 g

red_autumn_forest S | — @ ~ > =

(14.44 Mtris) g & = £ o g

= & gz 2 P g = 3

£ S| = g g . E:

e |Z|E| E E E g g

8 g | & 2 < = o =

o <& g £ b T T

g o) 2| E : g ;

3] < | < ~ 55! = = =
Binary 68.5 (1.00) | 2.0 706 (1.00) | 153 (1.00) | 71.1 (1.00) | 142.2 (1.00) | 13.2 (1.00)
Binary Slang 68.5 (1.00) | 2.0 685 (0.97) | 159 (1.04) | 70.9 (1.00) | 141.8 (1.00) | 13.1 (1.00)
Wide4 69.3 (1.01) | 3.1 857 (1.21) | 199 (1.30) | 36.5 (0.51) | 142.0 (1.00) | 12.9 (0.98)
Wide4 CBTC 2.0 + 80.4 (1.20) | 3.2 854 (1.21) | 199 (1.30) | 35.5 (0.50) | 138.2 (0.97) | 13.2 (1.01)
Wide4 Quantized 780 (114) [3.1 | | 804 (1.14) | 327 (2.14) | 37.3 (0.52) | 1451 (1.02) | 132 (1.00)
Wide4 Quantized CBTC 2.1+ 90.3 (1.35) | 32 814 (1.15) | 329 (2.16) | 36.2 (0.51) | 141.1 (0.99) | 13.5 (1.02)
Wide4 Slang 70.8 (1.03) | 3.1 742 (1.05) | 205 (1.34) | 36.4 (0.51) | 141.7 (1.00) | 12.8 (0.98)
Wide4 Slang CBTC 23 +809(1.22) | 32 745 (1.05) | 205 (1.35) | 35.4 (0.50) | 137.9 (0.97) | 13.2 (1.00)
Wide4 Slang Quantized 782 (1.14) | 3.1 635 (0.90) | 317 (2.08) | 37.2 (0.52) | 144.8 (1.02) | 13.1 (1.00)
Wide4 Slang Quantized CBTC | 2.3 + 91.4 (1.37) | 3.2 642 (0.91) | 320 (2.10) | 36.1 (0.51) | 140.8 (0.99) | 13.4 (1.02)
Wide6 69.6 (1.02) | 3.9 762 (1.08) | 196 (1.28) | 28.1 (0.39) | 159.8 (1.12) | 14.4 (1.10)
Wide6 CBTC 204792 (1.19) | 40 709 (1.00) | 202 (1.33) | 27.1 (0.38) | 155.1 (1.09) | 14.6 (1.11)
Wide6 Quantized 771 (113) [39 |, o | 730 (1.03) | 362 (2.37) | 28.7 (040) | 1637 (1.15) | 147 (1.12)
Wide6 Quantized CBTC 2.0 + 89.7 (1.34) | 4.0 706 (1.00) | 368 (2.41) | 27.9 (0.39) | 159.5 (1.12) | 15.0 (1.14)
Wide6 Slang 69.5 (1.02) | 3.9 689 (0.98) | 204 (1.34) | 28.0 (0.39) | 159.4 (1.12) | 14.4 (1.09)
Wide6 Slang CBTC 23+ 787 (1.18) | 40 661 (0.94) | 211 (1.38) | 27.0 (0.38) | 154.8 (1.09) | 14.5 (1.11)
Wide6 Slang Quantized 76.4 (1.12) | 3.8 564 (0.80) | 307 (2.01) | 28.3 (0.40) | 161.0 (1.13) | 16.7 (1.27)
Wide6 Slang Quantized CBTC | 2.2 +862 (129) | 40 | .| 545 (077) | 311 (2.03) | 27.4 (0.38) | 1566 (1.10) | 17.0 (1.29)
Wide8 68.4 (1.00) | 4.4 673 (0.95) | 173 (1.13) | 24.5 (0.34) | 181.8 (1.28) | 16.6 (1.27)
Wide8 CBTC 2.0 +75.7 (1.13) | 4.6 678 (0.96) | 172 (1.13) | 24.0 (0.34) | 180.0 (1.27) | 17.1 (1.30)
Wide8 Quantized 77.1(1.13) | 4.4 238 606 (0.86) | 323 (2.12) | 25.5(0.36) | 189.4 (1.33) | 14.9 (1.13)
Wide8 Quantized CBTC 2.0 +90.0 (1.34) | 4.6 606 (0.86) | 316 (2.07) | 25.2 (0.35) | 189.2 (1.33) | 15.4 (1.17)
Wide8 Slang 68.7 (1.00) | 4.4 548 (0.78) | 156 (1.02) | 24.4 (0.34) | 181.4 (1.28) | 16.6 (1.26)
Wide8 Slang CBTC 224757 (1.14) [46 | 5 | 552 (0.78) | 156 (1.02) | 23.9 (0.34) | 179.6 (1.26) | 17.0 (129)
Wide8 Slang Quantized 76.8 (1.12) | 4.4 495 (0.70) | 287 (1.88) | 25.1 (0.35) | 186.1 (1.31) | 17.0 (1.29)
Wide8 Slang Quantized CBTC | 2.2 + 86.9 (1.30) | 4.6 494 (0.70) | 280 (1.83) | 24.7 (0.35) | 185.7 (1.31) | 17.5 (1.33)

Table 17: Results of all shader variants for the red_autumn_forest scene. Values in parentheses
are relative to the Binary variant. The optimal value within each category is highlighted in bold.
For the build time of view-dependent BVHs, the first value represents the elapsed time for tracing

sample rays, and the second value is the total build time for both BVHs.

58

	Contents
	Introduction
	Whitted Ray Tracing and Path Tracing
	Bounding Volume Hierarchy (BVH)
	Bounding Volumes
	Surface Area Heuristic (SAH)

	GPU Architecture

	Related Work
	Construction Methods
	Binary BVH Construction
	Contraction Based on Reducing Pass Tests
	Contraction Based on Dynamic Programming
	HPLOC

	Tree Compression
	Traversal Methods
	Thread Divergence
	Persistent Threads
	Speculative Traversal
	Traversal Order of Children

	Shading Languages
	GLSL
	Slang

	Implementation
	Orchard
	Wide BVH Construction
	Surface Area Contraction
	View-dependent Contraction

	Wide BVH Memory Layout
	Uncompressed Wide BVH Layout
	Quantized Wide BVH Layout

	Wide BVH Traversal
	Support Tools
	nvidia-stabilize
	compare-benchmark
	slang-depbuild

	Difficulties During Implementation
	Shader Resource Allocation
	In Single Kernel Traversal
	In Quantized Wide BVH Traversal

	Instruction Hoisting in Slang
	Subgroup Coherency in Slang

	Results
	Dataset
	Testing Environment
	Workgroup Size

	SAH Traversal Cost
	CBTC Heuristic Threshold
	Depth Limit for Ray Statistics
	Number of Sample Rays
	Overall Results

	Conclusion and Future Work
	References
	List of Figures
	List of Tables
	List of Listings
	Appendices
	MRps Performance for Various Workgroup Configuration
	Per-Scene Results

