
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Graphics and Interaction

Ray Tracing 3D Gaussians

Matěj Gargula

Supervisor: doc. Ing. Jiří Bittner, Ph.D.
February 2025

ii

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

492145 Personal ID number:​Gargula Matěj Student's name:​

Faculty of Electrical Engineering Faculty / Institute:​

Department / Institute: Department of Computer Graphics and Interaction

Open Informatics Study program:​

Computer Graphics Specialisation:​

II. Master’s thesis details

Master’s thesis title in English:​

Ray Tracing 3D Gaussians

Master’s thesis title in Czech:​

Zobrazování 3D Gaussiánů pomocí sledování paprsku

Name and workplace of master’s thesis supervisor:​

doc. Ing. Jiří Bittner, Ph.D. Department of Computer Graphics and Interaction

Name and workplace of second master’s thesis supervisor or consultant:​

Deadline for master's thesis submission: ___________​Date of master’s thesis assignment: 07.02.2025

Assignment valid until: 20.09.2026

___________________________​___________________________​
prof. Mgr. Petr Páta, Ph.D.​

Vice-dean´s signature on behalf of the Dean​
Head of department’s signature​

III. Assignment receipt

The student acknowledges that the master’s thesis is an individual work.​
The student must produce his thesis without the assistance of others, with the exception of provided consultations.​
Within the master’s thesis, the author must state the names of consultants and include a list of references.​

Student’s signature​Date of assignment receipt​

© ČVUT v Praze, Design: ČVUT v Praze, VIC Page 1 from 2 CVUT-CZ-ZDP-2015.1

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

492145 Personal ID number:​Gargula Matěj Student's name:​

Faculty of Electrical Engineering Faculty / Institute:​

Department / Institute: Department of Computer Graphics and Interaction

Open Informatics Study program:​

Computer Graphics Specialisation:​

II. Master’s thesis details

Master’s thesis title in English:​

Ray Tracing 3D Gaussians

Master’s thesis title in Czech:​

Zobrazování 3D Gaussiánů pomocí sledování paprsku

Guidelines:​

Review methods for scene reconstruction from photographs suitable for subsequent photorealistic synthesis​
of new views. Focus on the 3D Gaussian splatting [1] and evaluate its available implementation.​
Implement a ray tracing-based rendering of 3D Gaussians using a selected framework such as NVIDIA OptiX.​
Perform a thorough evaluation of the implementation and identify its bottlenecks. Propose optimizations that​
will allow efficient ray tracing of very large models with 3D Gaussians. Consider using a hierarchical​
representation of 3D Gaussians as intersection primitives.​
Explore the possibility of incorporating the ray tracing-based rendering into the process of optimizing the​
parameters of 3D Gaussians using the existing framework [1].​
Evaluate the results on at least three different datasets. Compare the results with the splatting-based​
implementation. Discuss the quality of the rendered images as well as the rendering speed.​

Bibliography / sources:​

[1] Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G. (2023). 3D Gaussian splatting for real-time radiance​
field rendering. ACM Transactions on Graphics (TOG), 42(4), 1-14.​
[2] Kerbl, B., Meuleman, A., Kopanas, G., Wimmer, M., Lanvin, A., Drettakis, G. (2024). A hierarchical 3D​
Gaussian representation for real-time rendering of very large datasets. ACM Transactions on Graphics (TOG),​
43(4), 1-15.​
[3] Müller, T., Evans, A., Schied, C. and Keller, A. (2022). Instant neural graphics primitives with a multiresolution​
hash encoding. ACM Transactions on Graphics (TOG), 41(4), 1-15.​
[4] Barron, J. T., Mildenhall, B., Verbin, D., Srinivasan, P. P., Hedman, P. (2022). MIP-NERF 360: Unbounded​
anti-aliased neural radiance fields. In Proceedings of the IEEE/CVF conference on computer vision and pattern​
recognition, 5470-5479.​
[5] Moenne-Loccoz, N., Mirzaei, A., Perel, O., de Lutio, R., Martinez Esturo, J., State, G., Fidler, S., Sharp, N.,​
Gojcic, Z. (2024). 3D Gaussian Ray Tracing: Fast Tracing of Particle Scenes. ACM Transactions on Graphics​
(TOG), 43(6), 1-19.​
[6] Gao, J., Gu, C., Lin, Y., Li, Z., Zhu, H., Cao, X., Zhang, L., Yao, Y. (2024). Relightable 3D Gaussians:​
Realistic point cloud relighting with BRDF decomposition and ray tracing. In Proceedings of European Conference​
on Computer Vision, 73-89.​

© ČVUT v Praze, Design: ČVUT v Praze, VIC Page 2 from 2 CVUT-CZ-ZDP-2015.1

Acknowledgements Declaration
All of the declarations are mentioned on
the following page titled Declaration.

Prague, February 7, 2025

v

Abstract
Rendering techniques have made signif-
icant advances in recent decades, tran-
sitioning from traditional rasterization
to sophisticated volumetric representa-
tions. Among these, 3D Gaussian Splat-
ting (3DGS) has emerged as a promising
method, enabling real-time rendering of
high-fidelity radiance fields by represent-
ing scenes as collections of anisotropic
Gaussian primitives or particles. This
technique could also be expanded upon
with the use of modern Raytracing ap-
proaches for even greater results.

Keywords: Point-based rendering, 3D
Gaussian, Volumetric rendering,
Real-time rendering, Scene
reconstruction, Rasterization, Raytracing,
Spherical harmonical functions,
Parameter optimization, Novel View
Synthesis

Supervisor: doc. Ing. Jiří Bittner,
Ph.D.
Praha 2,
Karlovo náměstí,
E-421

Abstrakt
Techniky vykreslování zaznamenaly v po-
sledních desetiletích významný pokrok,
přechází od tradiční rastrizace k sofistiko-
vaným objemovým reprezentacím. Mezi
nimi se vynořila slibná metoda 3D Gaus-
sian Splatting (3DGS), která umožňuje
vykreslování vysoce kvalitních radiančních
polí reprezentací scén jako kolekcí anizot-
ropních Gaussiánských primitiv nebo čás-
tic a to v reálném čase. Tuto techniku je
možné i rozšířit pomocí moderních technik
sledování paprsků pro ještě lepši výsledky.

Klíčová slova: vykreslování založené na
bodech, 3D Gauss, Volumetrické
vykreslování, vykreslování v reálném čase,
rekonstrukce scény, Rasterizace,
Sledování paprsků, Sférické harmonické
funkce, Optimalizace parametrů, Novel
View Synthesis

Překlad názvu: Zobrazování 3D
Gaussiánů pomocí sledování paprsku

vi

Contents
1 Introduction 3
1.1 Differentiable Point-Based

Rendering . 4
1.2 Novel View Synthesis 5
2 Gaussian Scene Training 7
2.1 Spherical Harmonics and Spherical

Gaussian . 7
2.2 Gaussian particle 8
2.3 Training Overview 11

2.3.1 Initialization phase 12
2.3.2 Rendering 13
2.3.3 Optimization 14
2.3.4 Adaptive Density Control . . . 16

3 Rendering 3D Gaussians 19
3.1 Radiance Color Evaluation 20
3.2 Differential Rasterization 22

3.2.1 GPU Differential Rasterization 24
3.3 Differential Ray Tracing 25

3.3.1 Initialization of the Scene . . . 28
3.3.2 GPU Raytracing 30
3.3.3 Uniform Slab Size Volume

Raytracing . 30
3.3.4 Naive Closest Hit Raytracing 34
3.3.5 Adaptive k-Closest Hit

Raytracing . 38
4 Custom Differential Gaussian
Tracer 41
4.1 Anaconda . 41
4.2 NVidia OptiX Framework 42

4.2.1 Pipeline 42
4.2.2 Usage and Integration 42

4.3 Implementation 44
4.3.1 Data Loading 44
4.3.2 Gaussian Viewer 45
4.3.3 Gaussian Tracer 48
4.3.4 Scene Training 51

5 Results 55
5.1 Image Quality Metrics 55

5.1.1 Peak Signal-to-Noise Ratio
(PSNR) . 55

5.1.2 Structural Similarity Index
(SSIM) . 56

5.1.3 Learned Perceptual Image
Patch Similarity (LPIPS) 56

5.2 Created scenes 57

5.3 Training Performace 58
5.4 Importance of tracer parameters 60
6 Conclusion 67
6.1 What was Achieved 67
6.2 Advantages and Disadvantages of

Raytracing . 67
6.3 Possible improvements 67
Bibliography 69

vii

Figures
1.1 Example of a rendered 3D

Gaussian scene. [1]. 4

2.1 Gaussian Splatting method
schematic. 11

2.2 This figure shows how the
Adaptive Density Control functions.
If we detect a under-reconstruction,
we clone particles to cover more area
and continue to optimize the scene.
If over-reconstruction is detected we
split particles to cover less area and
again continue with the optimization.
[1] . 17

3.1 This figure shows a more detailed
scheme of the training pipeline. The
yellow boxes symbolize the phases of
the pipeline where rendering takes
place. The orange boxes then show
the what is the output of the given
rendering pass(For forward it is a
color image and Bacwards pass
calculates a list of particle
gradients). 19

3.2 Example of Bounding Primitives. 28
3.3 This is a scheme of how the

particles are gathered with the
Uniform Slab Size method. 32

3.4 This is a scheme of how the sample
points are gathered with the Naive
closest hit method. 36

3.5 This is a scheme of how the sample
points are gathered with the adaptive
k-closest hit method. 38

4.1 An example of a header in PLY file
containing a Gaussian scene [16]. . 44

4.2 The window of the custom
Gaussian Viewer. 48

4.3 This figure shows how the 3D
Gaussian particles can be visualized
in a way that’s visible to the human
eye. The bottom image is the
standard rendered image. The top
left image has particles shrunk with a
scale coefficient. The top right image
shows the boundaries of the visible
Gaussians. 53

5.1 This figure shows the rendered
images from the trained datasets.
The first row shows the scenes from
the MIP Nerf dataset (left to right):
Garden and Bicycle. The second and
third row shows the images of scenes
from the Nerf Synthetic dataset (left
to right downwards): Chair, Lego,
Ship. 63

5.2 Reconstructed scenes are
realistically reconstructed only from
views which are close to the input
ground-truth images. This figure
shows parts of the Garden scene from
a view which is away from any of the
input images. 64

5.3 This figure shows the progress of
the Garden scene training process.
From left to right downwards, the
images show the garden scene in
iterations: 0 (Initial point cloud),
150, 300, 750, 1200, and 2000. 64

5.4 This graph shows the growth of the
PSNR score during the training
process of the outdoor scenes bicycle
and Garden. 65

5.5 This graph shows the growth of the
PSNR score during the training
process of the synthetic scene Lego,
Chair and Ship. 65

viii

Tables
5.1 PSNR, SSIM, LPIPS, point count,

and training time for five selected
scenes. Garden and Bicycle are
outdoor scenes that are typically
harder to synthesize, while Chair,
Lego, and Ship are single objects that
often achieve better scores. 58

5.2 Run-time performance of the five
trained scenes. The statistic
MRays/s has been calculated as the
number of scene traversals (number
of processed slabs) per second. 59

5.3 Per-scene PSNR (dB) score
comparison of the custom
implementation with some of the
other projects which focus on Novel
View Synthesis. 60

5.4 Per-scene SSIM score comparison
of the custom implementation with
some of the other projects which
focus on Novel View Synthesis. . . . 60

5.5 Per-scene LPIPS score comparison
of the custom implementation with
some of the other projects which
focus on Novel View Synthesis. . . . 61

5.6 Particle counts for 3DGS versus
this project for the outdoor scenes.
This table serves as a comparison of
output between the methods based
on rasterization vs raytracing. 61

5.7 Average PSNR and training time
as a function of the integration step
∆t. 62

5.8 Average PSNR and training time
as a function of the maximum
particles per slice Np 62

ix

FAKULTA ELEKTROTECHNICKÁ
FACULTY OF ELECTRICAL ENGINEERING
Technická 2
166 27 Praha 6

DECLARATION

I, the undersigned

Gargula Matěj Student's surname, given name(s):
492145 Personal number:
Open Informatics Programme name:

declare that I have elaborated the master’s thesis entitled

Ray Tracing 3D Gaussians

independently, and have cited all information sources used in accordance with the Methodological Instruction
on the Observance of Ethical Principles in the Preparation of University Theses and with the Framework Rules
for the Use of Artificial Intelligence at CTU for Academic and Pedagogical Purposes in Bachelor’s and Continuing
Master’s Programmes.

I declare that I did not use any artificial intelligence tools during the preparation and writing of my thesis. I am
aware of the consequences if manifestly undeclared use of such tools is determined in the elaboration of any
part of my thesis.

Bc. Matěj Gargula In Prague on 20.05.2025
..

student's signature

2

Chapter 1
Introduction

Over the years, many different rendering techniques have been discovered,
each best suited for a different task. In scene reconstruction, we have many
options to achieve the most realistic scene possible.

To reconstruct a scene, we first need an appropriate representation. The
most common representation is the polygonal mesh, which can effectively
represent individual objects within the scene and is also easy to render via
rasterization or raytracing. Point-based approaches have also been used in the
past, but have often suffered a lot of problems. The biggest problem is that,
in a point-based representation, we are often missing a lot of information,
which creates holes in the reconstructed scenes. Later, these approaches
were expanded with splatting methods that were able to remove the hole
problems[7].

Rendering techniques have made significant advances in recent decades,
transitioning from traditional rasterization to sophisticated volumetric rep-
resentations. Among these, 3D Gaussian Splatting (3DGS) has emerged as
a promising method, enabling real-time rendering of high-fidelity radiance
fields by representing scenes as collections of anisotropic Gaussian primitives
or particles. This approach offers substantial benefits, including its ability to
optimize computational efficiency while maintaining high visual quality, even
for complex, unstructured 3D scenes [7].

One of the key innovations of Gaussian Splatting is its adaptability to
diverse rendering scenarios, from real-time applications to photorealistic vi-
sualizations, as shown in the example rendered scene in figure 1.1. Unlike
traditional methods that rely on grid-based voxel structures, Gaussian splat-
ting employs a differentiable representation optimized for scene accuracy and
efficiency. Recent advances, such as the integration of ray tracing with the
use of acceleration structures (mainly the bounding volume hierarchies or
BVH), have further improved its effectivity, enabling advanced visual effects
such as reflections, shadows, and depth of field [7] [2] [5].

The aim of this project is to explore the methodology of the Gaussian
Splatting methods and their combination with the raytracing algorithm, with
the main focus on the real-time rendering aspect.

3

1. Introduction

Figure 1.1: Example of a rendered 3D Gaussian scene. [1].

1.1 Differentiable Point-Based Rendering

Differentiable point-based rendering is a framework in which scenes are
represented as collections of discrete points or particles, enabling image
generation that supports gradient propagation for parameter optimization.
This method integrates the principles of point-based rendering with the ability
to compute and backpropagate gradients, making it particularly useful for
tasks such as Gaussian Splatting [1] [8].

The process begins with representing the scene as a point cloud, where
each point is parameterized by attributes like position, color, opacity, and
potentially view-dependent properties like spherical harmonic coefficients or
different parameters that simulate properties of certain materials. Points are
traditionally rendered by projecting them onto the image plane (rasterization)
or tracing rays through the scene (ray tracing). The key to differentiable
rendering is to ensure that all pipeline stages are smooth and continuous,
allowing the computation of gradients with respect to point parameters [1]
[5].

To ensure differentiability, functions such as Gaussian kernels or radial
basis functions are used to model how each point contributes to the rendered
image. These kernels ensure that small changes in parameters lead to smooth
variations in the output image, which is essential for gradient-based opti-
mization. Loss functions measuring the discrepancies between rendered and
ground-truth images guide the optimization process, enabling the refinement
of scene parameters [8] [5].

4

................................. 1.2. Novel View Synthesis

1.2 Novel View Synthesis

Novel View Synthesis (NVS) is a transformative field within computer vision
and graphics, aimed at generating new views of a scene from a set of existing
images or 3D data. It has become a crucial tool in various applications,
including virtual reality, augmented reality, and 3D content creation. At its
core, NVS involves creating realistic renderings of a scene from viewpoints
that were not part of the original data, leveraging advances in deep learning
and 3D reconstruction.

A prominent approach within NVS is Neural Radiance Fields (NeRF) [9],
which represents a scene as a continuous volumetric scene representation.
NeRF employs a neural network to predict the color and density at any point
in 3D space, allowing for photorealistic novel views with high levels of detail
and realism. However, traditional NeRF methods can be computationally
expensive and time-consuming, limiting their real-time application [9].

To address this challenge, newer algorithms like MIP-NeRF 360 [10] and
Instant Neural Graphics Primitives (Instant NGP) [11] have emerged. MIP-
NeRF 360 improves upon NeRF by enabling more efficient rendering of
360-degree scenes, optimizing both the quality and speed of view synthesis.
Instant NGP, on the other hand, accelerates NeRF-based methods through
novel techniques such as neural networks optimized for graphics primitives,
dramatically improving performance without compromising visual quality.
These advances have pushed the boundaries of high-fidelity real-time scene
rendering, making them key technologies in the future of immersive media
and computer graphics [10] [11].

In addition to these approaches, experiments with 3D Gaussians emerged
and showed great results in the field of NVS. These experiments introduced
rasterization-based projects like 3DGS or the open-source Gsplat library [4],
but also other projects that are leveraging the use of raytracing algorithms
to generate even better visual results (but at a cost of performance). These
methods include projects like Raygauss [6], 3DGRT [5] or Relightable 3D
Gaussian [3].

The uses of the 3D Gaussian representation are still being explored in great
detail, and we can expect that they can be set as a standard for future NVS
methods.

5

6

Chapter 2
Gaussian Scene Training

This chapter will focus on discussing the process of training a Gaussian scene.
The following sections are mainly focused on discussing important techniques
and methods that are used to train and generate a Gaussian scene from the
input image dataset.

2.1 Spherical Harmonics and Spherical Gaussian

Spherical harmonics are mathematical functions that provide a basis for
representing angular variations on a sphere. These functions are defined
on the unit sphere in three-dimensional space and are extensively used in
physics, computer graphics, and signal processing due to their efficiency in
encoding directional data. Each spherical harmonic Y ℓ

m is defined by two
parameters: degree ℓ and order m. The degree ℓ determines the level of
detail captured by the function, while the order m specifies its symmetry on
the azimuthal axis. Together, these parameters allow spherical harmonics to
represent angular variations ranging from low-frequency, broad features to
high-frequency, intricate details [12].

The mathematical form of a spherical harmonic function is described in
equation 2.1 [12].

Y ℓ
m(θ, ϕ) = N ℓ

mP
ℓ
m(cos θ)eimϕ (2.1)

where θ is the polar angle, ϕ is the azimuthal angle, and N ℓ
m is a normal-

ization factor that ensures orthonormality. The term P ℓ
m(cos θ) represents

the associated Legendre polynomial, which encodes the angular dependence
in the polar direction. The exponential term eimϕ introduces variation along
the azimuthal angle.

A key property of spherical harmonics is their ability to represent functions
on a sphere with a finite number of coefficients. By increasing the degree ℓ,
spherical harmonics can capture progressively finer details of angular variation.
For example, lower degrees represent smooth, diffuse variations, while higher
degrees capture sharper, more detailed features. This hierarchical structure
makes spherical harmonics particularly efficient for applications requiring
compact and accurate representations of directional data [12] [8].

7

2. Gaussian Scene Training................................
Spherical harmonics are also orthonormal, meaning that they form a

complete basis for square-integrable functions defined on a sphere. Any such
function can be expressed as a weighted sum of spherical harmonics, where
the weights correspond to the projection of the function onto the harmonic
basis. This property underpins their utility in a wide range of applications,
including global illumination, wave modeling, and signal decomposition.

Spherical harmonics are commonly used in rendering to model directional
quantities such as radiance or reflectance. Their compactness and efficiency
enable for the accurate representation of angular information while minimizing
storage and computational overhead. The smoothness of the spherical har-
monics further facilitates interpolation, making them robust in applications
involving sparse or noisy data [8] [5] [1].

In practice, spherical harmonics are very good for modeling low frequencies,
but they can struggle to represent higher frequencies. Because of that, they
are sometimes used in combination with spherical Gaussians.

Spherical Gaussians are an alternative, analytic basis for representing
directional variation on the unit sphere, particularly well suited to capturing
sharp, view-dependent effects (for example, specular highlights) with very few
parameters. Because of that, they are perfect for modeling higher frequencies
of an image. Each spherical Gaussian lobe is defined by:.mean direction plj (a unit vector on the sphere). sharpness λlj (a scalar controlling how tightly the lobe is peaked around

plj). an amplitude klj (a color vector giving its strength)

For any viewing direction d (also a unit vector), the contribution of one
lobe is calculated as shown in equation 2.2.

elj(d) = klje
λlj(d·plj)−1) (2.2)

By adding several such lobes (indexed by j), you obtain the high-frequency
component of the radiance for a surface or volume primitive, as shown in the
equation 2.3.

Lhigh =
∑

j

elj(d) (2.3)

Because increasing λ makes the lobe narrower, spherical Gaussians can
represent arbitrarily sharp features, but remain analytic and inexpensive to
evaluate and integrate.

2.2 Gaussian particle

A Gaussian particle is a mathematical primitive used to represent the spatial
and visual properties of a 3D scene. It is an anisotropic volumetric object

8

................................... 2.2. Gaussian particle

defined by a set of parameters that describe its position, scale, orientation,
transparency, and color. Gaussian particles are the foundation of the 3D
Gaussian splatting method.

Each Gaussian particle is mainly defined by its kernel function. The kernel
function of a particle describes its contribution to any point x ∈ R3 as
described in equation 2.4, where ρ(x) is the kernel function of a particle,
µ ∈ R3 describes the center (or mean) of the Gaussian in 3D space, and
Σ ∈ R3×3 is a covariance matrix that defines the shape, scale and orientation
of the particle [1] [5].

ρ(x) = e−(x−µ)⊤Σ−1(x−µ) (2.4)

The covariance matrix Σ is represented as described in equation 2.5 [1] [5],
where R is a rotation matrix that defines the orientation of particles in the
3D space and S is a scaling matrix that describes the size of the Gaussian
along its principal axes. This representation ensures that the matrix Σ is
semidefinite, which is an important property during the scene optimization
described in the following sections.

Σ = RSS⊤R⊤ (2.5)

To use the Gaussian particle in rendering, we require additional properties.
Most commonly, this includes opacity and radiance function [5].

The opacity σ is a parameter that defines the transparency of the Gaussian
particle and determines how much light is transmitted by the particle. High
values (close to 1) of opacity σ make the particle behave in an opaque way,
meaning that it absorbs or scatters more light. Lower values (closer to 0)
indicate that the particle is nearly transparent, allowing most of the light to
pass through. The opacity parameter σ also directly affects the transmittance
function used in volume rendering, which will be discussed in more detail in
the following sections.

The radiance function ϕβ(d) models the view-dependent color of the Gaus-
sian particle, accounting for directional lighting effects. The radiance function
is defined in equation 2.6 [8], where:. ℓ is the degree of the spherical harmonic function.m is the order of the spherical harmonic function. Y ℓ

m(d) are the spherical harmonic functions of degree ℓ and order m. βℓ
m are the spherical harmonic coefficients of degree ℓ and order m. f is a sigmoid function applied to normalize the radiance, ensuring it

remains within a valid range
With these additional parameters, we are able to represent the view-
dependent color of the Gaussian particle. Using spherical harmonics, we
are able to simulate a range of different lighting effects, such as shadows,
highlights, and reflections.

9

2. Gaussian Scene Training................................

ϕβ(d) = f

ℓmax∑
ℓ=0

ℓ∑
m=−ℓ

βℓ
mY

ℓ
m(d)

 (2.6)

To effectively store the parameters of the Gaussian particle (namely: po-
sition(mean), covariance matrix, opacity, and radiance parameters), we can
use the following parameters [1] [5] [16].. Position µ as a 3D vector. Scale s as a 3D vector. This will be used to create the scale matrix S.. Rotation q stored as a unit quaternion (4D vector). With the rotation

and scale information, we can reconstruct the covariance matrix Σ. opacity σ as a float. Spherical harmonic coefficients βℓ
m as an array of real numbers. The size

of the array depends mainly on how many degrees of spherical harmonics
we wish to represent. The most common is to store coefficients up to
degree ℓ = 3, which totals 49 individual numbers..(Optionally) p lobe axis of the spherical gaussians.(Optionally) λ sharpness of the spherical gaussians.(Optionally) k color vector of the spherical gaussian.(Optionally) normal vector N

The parameters p, λ and k are only required if we want to use the spherical
Gaussians for better modeling of the higher frequencies, and the normal
vector N can be stored if we plan to calculate real-time lighting effects during
the rendering process [3] [16].

10

.................................. 2.3. Training Overview

2.3 Training Overview

The main training approaches have been introduced in the original Gaussian
Splatting project (3DGS) and the methods used are also used with the
raytracing approaches.

Gaussian Splatting is a form of differentiable point-based rendering. Before
we have a nice representation of the scene with our Gaussian particles, we
must initialize the scene formed by the particles and perform training. The
training method can be split into several phases: Initialization, Adaptive
Density Control, Rendering, and Optimization. Excluding the initialization
phase, each phase is repeated as shown in figure 2.1 to iteratively refine the
representation of the scene given by the set of 3D Gaussians [1], where the
optimization phase is executed during the backward flow of the gradients.
The high-level overview of when and how each individual phase is executed is
also shown in the algorithm 1.

The following subsections discuss each of the important phases in more
detail.

Figure 2.1: Gaussian Splatting method schematic.

How this pipeline functions is also described by the algorithm (1)

11

2. Gaussian Scene Training................................
Algorithm 1 High-level overview of the Gaussian Splatting training pipeline

1: function TrainGaussianSplatting
2: Points = GetSfMPointCloud()
3: Gaussians = InitializeGaussians(Points)
4: iter = 0
5:
6: while notconverged do
7: Camera, Image = SelectRandomTrainingV iew()
8: TrainingImage = Render(Gaussians, Camera)
9: L = Loss(TrainingImage, Image)

10: Gaussians = OptimizeWithSGD(∆L)
11:
12: if DoAdaptiveDensityControl(iter) then
13: for all Gaussian(µ,Σ, c, σ) ∈ Gaussians do
14: if σ < ϵ or IsTooLarge(µ,Σ) then
15: RemoveGaussian(Gaussian)
16: end if
17: if CheckOverReconstruction() then
18: SplitGaussian(Gaussian)
19: end if
20: if CheckUnderReconstruction() then
21: CloneGaussian(Gaussian)
22: end if
23: end for
24: end if
25:
26: iter+ = 1
27:
28: Perform some operation
29: end while
30: end function

2.3.1 Initialization phase

In this phase, we mainly process the input images and create an initial set
of 3D Gaussians. Here, the Gaussians serve as the primitives for the scene
representation. This initial set will optimized in the following phases to ensure
it represents the given scene well.

The input images are first processed with Structure-from-Motion (SfM) [1].
The SfM is used here to generate the initial sparse point cloud and a set of
camera configurations for each given image. This initial set of points provides
a course representation of the given scene. Each point within the point cloud
represents the positions (mean) of individual 3D Gaussians. This ensures
that the Gaussians are roughly aligned with the visible geometry detected in
the scene.

Next, each point in the generated sparse cloud is transformed into a

12

.................................. 2.3. Training Overview

Gaussian particle with parameters that were discussed in the previous section
on Gaussian Particles. To transform a point from the SfM set, we must first
know how to choose the parameters. Excluding the position of the particle,
we can generate each of the parameters randomly and still get a good result
[1]. We can take a different approach if we do not want to start with only
random values. Now, each parameter can initialized in a number of ways, but
a popular way sets individual parameters as follows [8] [1] [5]..The position (mean) µ is directly mapped from the positions of the SfM

points. During mapping, we can also filter out outlier points from the
point set to improve the initial set of Gaussian particles. Scale s can be initialized with the information about neighboring points
in the point cloud. For each particle, we compute the distances to the 3
closest neighbors in the point cloud for each point. We then use these
three distance values to set the scales of the Gaussian particle. rotation q is initialized to identity, assuming no orientation preference
at the start.. opacity σ can be initialized with a simple default value, which is often
in the range of 0.5 to 1. Since the opacity is restricted by the sigmoid
function, the opacity is constrained to values between 0 and 1..The spherical harmonic coefficients βℓ

m can still utilize data from the
point cloud. For the zero-order coefficients, we can use the color of the
points (if they are included) as a starting point. We can either initialize
the higher-order coefficients with zero values or generate random numbers
drawn from the standard normal distribution.

2.3.2 Rendering

The rendering phase is responsible for transforming the 3D Gaussian-based
representation of a scene into a 2D image, accurately capturing the spatial
and visual properties of the input data. This phase evaluates the contribution
of each point in the scene to the pixels of the final image, using methods that
ensure an accurate representation of the scene’s geometry, appearance, and
visibility. The rendering process is the most important phase in the pipeline
since its output is used to generate the gradients that are used to improve
the scene iteratively [1] [5].

Rendering involves computing how each point influences the image based
on its spatial attributes (position, scale, and rotation) and appearance at-
tributes (radiance, opacity). Two primary rendering techniques are commonly
employed:. Rasterization: Points are projected onto the 2D image plane, where

their contributions to pixel values are determined through compositing
techniques such as alpha blending.

13

2. Gaussian Scene Training................................
. Ray tracing: Rays are cast through the 3D scene from the camera’s

perspective, and each ray interacts with the points to compute their
contributions by treating each particle as a volume that must be sampled.
Because of that, we need each individual sample to be sorted by depth.

The rendering phase also requires a camera configuration as a parameter.
This is because we must align the output image with the ground-truth image
to calculate the loss function, and we also require the correct projection
matrix to perform the 2D projection.

Also, a very important step during the rendering of the scene is to identify
which Gaussian particles have influenced each pixel in the final rendered
output. Because of that, we need to maintain a list that will represent which
pixels are influenced by which Gaussians. A different approach is to perform
a second simpler backward pass, identifying which Gaussians are associated
with each pixel. These lists are important during the optimization step when
we optimize the parameters of the individual Gaussians.

The following chapter expands on the rendering techniques that can be
used with the Gaussian splatting method.

2.3.3 Optimization

The optimization phase refines the Gaussian representation by iteratively
comparing the rendering output to the ground truth. Errors caused by
ambiguities in projecting 3D geometry to 2D can result in misaligned or
redundant Gaussians, requiring particle addition, removal, or repositioning.
The addition and removal of the particles is processed during the Adaptive
Density Control phase. Covariance parameters are essential for achieving
a compact representation, as large homogeneous regions can be efficiently
represented using fewer anisotropic Gaussians [1].

Stochastic Gradient Descent (SGD) is used to adjust the parameters of the
3D Gaussians. Gradients of a loss function, which measures the difference
between the rendered and target images, are computed for parameters such as
position, covariance, opacity, and spherical harmonic coefficients for radiance.
SGD processes mini-batches of rays or pixels, making it computationally
efficient for large datasets. GPU-accelerated frameworks can be utilized to
calculate gradients in parallel, speeding up the process. An exponential
learning rate decay is applied to make large updates early in the optimization
and smaller and more precise updates as it progresses [1].

The opacity parameter σ is limited to the range [0,1) using a sigmoid
activation function, which ensures smooth gradient calculations. Covariance
scales are constrained with an exponential activation function to keep them
positive. The initial covariance matrices are set as isotropic Gaussians, with
axes equal to the mean distance to the three closest points [1] [5].

The loss function, defined in equation 2.7, combines the loss of L1 for the
differences at the pixel level and LD−SSIM for the structural similarity. The
weight between these terms is controlled by the parameter λ , typically set to
λ = 0.2 [1] [4].

14

.................................. 2.3. Training Overview

L = (1 − λ)L1 + λLD-SSIM, (2.7)

After we evaluate the loss function by comparing the rendered image with
the ground-truth image, we can calculate the loss gradients for each pixel.
We then use this gradient and perform backward pass, propagating the loss
gradients and calculating the color and parameter gradients for each particle
used in the point cloud. The backward pass can be processed only on depth-
sorted particles that have been stored during the forward rendering phase.
Another way is to render the scene again, but during the rendering process
we can calculate (or incrementally accumulate) gradients for each particle
that participates in the final image. This approach seems to be more common
and is mainly used in raytracing approaches [5] [6].

When we have the gradients calculated, we can optimize the parameters of
the particles that have participated in the rendering process with the SGD
[1].

15

2. Gaussian Scene Training................................
2.3.4 Adaptive Density Control

Adaptive Density Control is a process used in Gaussian Splatting to dynami-
cally adjust the number and distribution of Gaussians during optimization.
Starting with the initial set of Gaussian Particles from the Initialization phase,
the method applies several techniques to control the density of the particles:
Densification, Splitting, and Pruning [1].

Densification is applied to regions with insufficient Gaussian representation,
often due to under-reconstruction, shown in Figure 2.2. Gaussians in these
areas are cloned by duplicating their parameters and moving the clones in
the direction of the positional gradient. This process improves the coverage
of fine details and missing geometry. Cloned Gaussians retain the size and
other attributes of the original particle.

The splitting is performed in overreconstructed regions shown in Figure
2.2, where large Gaussians cover significant portions of the scene. Each large
Gaussian particle is replaced by two smaller particles, and the scale of the
original Gaussian is divided by a factor of 1.6, determined experimentally [1].
The positions of the new Gaussians are sampled using the original Gaussian
as a probability density function. This process maintains the total density of
the representation while improving its granularity [1].

To remove redundant particles, pruning is performed on Gaussian particles
with negligible opacity (meaning the σ is under a specific threshold). Addi-
tionally, large Gaussians that overlap excessively with others are removed to
maintain an optimal density in both world and view space. This step ensures
computational efficiency and prevents excessive memory usage during the
rendering phase [1].

This phase does not have to be executed in every iteration of the training,
but rather every i-th iteration is preferable, where, for example, i = 100 [1].

16

.................................. 2.3. Training Overview

Figure 2.2: This figure shows how the Adaptive Density Control functions. If we
detect a under-reconstruction, we clone particles to cover more area and continue
to optimize the scene. If over-reconstruction is detected we split particles to
cover less area and again continue with the optimization. [1]

17

18

Chapter 3
Rendering 3D Gaussians

Figure 3.1 shows a more detailed view of the training pipeline. In it we can
see in what sections we perform the rendering passes and what are their
respective outputs.

Figure 3.1: This figure shows a more detailed scheme of the training pipeline.
The yellow boxes symbolize the phases of the pipeline where rendering takes
place. The orange boxes then show the what is the output of the given rendering
pass(For forward it is a color image and Bacwards pass calculates a list of particle
gradients).

This chapter will mainly focus on the differential rendering techniques used
to visualize the scene represented by a set of 3D Gaussian particles in real
time. This will expand the topic of rendering discussed briefly in the previous
chapter. The following sections will explore Rasterization, Raytracing, and
acceleration of the rendering computation. Note that this will focus mainly

19

3. Rendering 3D Gaussians
on the forward pass of the rendering algorithms as the backward pass should
always render the scene in the same way, with the difference of calculating
the gradients for the individual particle parameters.

3.1 Radiance Color Evaluation

Calculating radiance from spherical harmonics can be a very expensive oper-
ation. Because of that, we want to be able to calculate the radiance color
in an efficient way by pre-computing some of the values that are required
by the computation as shown in equation 2.6 [8] [12]. An efficient way to
evaluate the radiance function is shown in the algorithm 2. The constant
variables Ci are precomputed explicit spherical harmonic polynomial basis
functions. These can be either precomputed or, to save time, even set as
constants in implementations [1] [5] [8]. The input of the GetRadianceColor
function is the degree of spherical harmonics that we want to compute, the
coefficients of the spherical harmonics βm

l , here called shc, and the direction
from which we want to evaluate the radiance function. The coefficients shs
are represented as a set of sixteen 3D vectors, where each element of the
vector is the coefficient for a single color channel in the RGB representation.
The algorithm shown is capable of evaluating spherical harmonics up to a
degree of 3, commonly the maximum degree that is used during rendering [1]
[5].

Additionally, we can also use the spherical Gaussians to model higher
frequencies (such as specular reflections). This can be achieved very easily
by computing the radiance for the lower frequencies Llow with spherical har-
monics and then combining them with the calculated radiance for the higher
frequencies with a spherical Gaussian Lhigh. To obtain the final radiance
value, we can simply combine the lower and higher radiance calculations Llow

and Lhigh as shown in equation 3.1 ([17] [6]).

L = Llow + Lhigh (3.1)

Note that if we choose to use this approach of combining lower and higher
frequency calculations we will have store more data for each particle to
represent the spherical gaussian lobe-axis, sharpness and color amplitude.

20

...............................3.1. Radiance Color Evaluation

Algorithm 2 Evaluation of the SH Radiance Function
1: function GetRadianceColor(degree, shc, dir)
2: (x, y, z) = dir
3: Y 0

0 = C0[0]
4: RadianceColor = Y 0

0 ∗ shc[0]
5:
6: if degree > 0 then
7: Y −1

1 = C1[0] ∗ y
8: Y 0

1 = C1[0] ∗ z
9: Y 1

1 = C1[0] ∗ x
10: RadianceColor+ = Y −1

1 ∗ shc[1]
11: RadianceColor+ = Y 0

1 ∗ shc[2]
12: RadianceColor+ = Y 1

1 ∗ shc[3]
13: if degree > 1 then
14: xx, yy, zz = x ∗ x, y ∗ y, z ∗ z
15: xy, yz, xz = x ∗ y, y ∗ z, x ∗ z
16: Y −2

2 = C2[0] ∗ xy
17: Y −1

2 = C2[1] ∗ yz
18: Y 0

2 = C2[2] ∗ (2zz − xx− yy)
19: Y 1

2 = C2[3] ∗ xz
20: Y 2

2 = C2[4] ∗ (xx− yy)
21: RadianceColor+ = Y −2

2 ∗ shc[4]
22: RadianceColor+ = Y −1

2 ∗ shc[5]
23: RadianceColor+ = Y 0

2 ∗ shc[6]
24: RadianceColor+ = Y 1

2 ∗ shc[7]
25: RadianceColor+ = Y 2

2 ∗ shc[8]
26: if degree > 2 then
27: Y −3

3 = C3[0] ∗ y ∗ (3xx− yy)
28: Y −2

3 = C3[1] ∗ z ∗ xy
29: Y −1

3 = C3[2] ∗ y ∗ (4zz − xx− yy)
30: Y 0

3 = C3[3] ∗ z ∗ (2zz − 3xx− 3yy)
31: Y 1

3 = C3[4] ∗ x ∗ (4zz − xx− yy)
32: Y 2

3 = C3[5] ∗ z ∗ (xx− yy)
33: Y 3

3 = C3[6] ∗ x ∗ (xx− 3yy)
34: RadianceColor+ = Y −3

3 ∗ shc[9]
35: RadianceColor+ = Y −2

3 ∗ shc[10]
36: RadianceColor+ = Y −1

3 ∗ shc[11]
37: RadianceColor+ = Y 0

3 ∗ shc[12]
38: RadianceColor+ = Y 1

3 ∗ shc[13]
39: RadianceColor+ = Y 2

3 ∗ shc[14]
40: RadianceColor+ = Y 3

3 ∗ shc[15]
41: end if
42: end if
43: end if
44:
45: return max(RadianceColor, 0)
46: end function

21

3. Rendering 3D Gaussians
3.2 Differential Rasterization

Rasterization in Gaussian Splatting is the process of projecting 3D Gaussian
primitives onto a 2D image plane and blending their contributions to generate
a rendered image. As discussed in the previous chapter, each Gaussian particle
is represented by its position, scale, rotation, opacity, and radiance, which
are transformed into screen space during rasterization. Unlike traditional
rendering techniques that rely on discrete geometry, Gaussian Splatting
uses continuous volumetric primitives, enabling smooth and differentiable
rendering. This process is important in creating visually accurate images
and supporting optimization tasks in 3D scene reconstruction. By handling
anisotropic shapes and overlapping contributions, the rasterization method
ensures that the spatial and visual properties of the scene are preserved in
the final output.

The first step in the rasterization of Gaussian particles is the projection
from 3D representation to 2D. Thankfully, the particles can be easily projected
into the 2D screen space. We start by projecting the particle’s 3D position
(mean) and obtaining 2D screen coordinates using the camera projection
matrix. This projection is shown in equation 3.2, where µ ∈ R3 is the position
of the particles, µ′ ∈ R3 is the transformed position on the screen space (in
homogeneous coordinates) and W ∈ R4×4 is the projection matrix of the
camera created with the combination of the projection perspective and the
viewing matrix [1] [4] [8].

µ′ = Wµ (3.2)

Next, we are also required to transform the covariance matrix, which
defines the particle’s anisotropic shape by retaining information about the
particle’s size and orientation. The transformation of the covariance matrix is
shown in equation 3.3, where W ′ ∈ R3×3 is the submatrix without translation
of the camera projection matrix, J ∈ R2×3 is the Jacobian of the Affine
projection, Σ ∈ R3×3 is the original covariance matrix, and Σ′ ∈ R2×2 is the
newly transformed covariance matrix that defines the elliptical spread of the
Gaussian in the 2D screen space. [1]

Σ′ = JW ′ΣW ′⊤J⊤ (3.3)

Once we have the position, along with the covariance matrix, transformed
into the 2D screen space, we can calculate the influence of a particle for any
given point x with the Gaussian kernel. The kernel use is similar to the one
shown in equation 2.4, but uses the transformed parameters of the Gaussian
particle. The modified kernel function ρ′ is shown in equation 3.4 with the
transformed parameters µ′ and Σ′ [1].

ρ′(x) = e− 1
2 (x−µ′)⊤Σ′−1(x−µ′) (3.4)

To test whether a pixel can be influenced by the Gaussian particle, we can
employ different tactics.

22

............................... 3.2. Differential Rasterization

Firstly, we want to perform frustum culling to remove any unnecessary
particles that have an insignificant influence on the screen’s pixels.

To filter out pixels that the particle cannot influence in a significant way,
we can utilize a bounding volume, such as a simple AABB, and project it to
the screen space. Now, only pixels within the bounding volume’s boundaries
are processed further.

Next, the covariance matrix defines the elliptical spread of the particle.
With that, we can check to see if a pixel lies in the spread of the particle.
If the pixel is outside the particle’s spread, we can disregard it because its
impact on the image would be insignificant. We can also specify a confidence
interval (for example, 99%) to define an effective range of Gaussian [1], again
disregarding any pixels that would be outside this interval.

The next step in the rasterization is the evaluation of the color of a pixel.
Since the average scene contains a lot of different Gaussian particles, we
need an efficient way to calculate the pixel output color with the influence of
multiple particles. This is done using the alpha blending technique shown
in equation 3.5, where N is the number of Gaussian particles that influence
the pixel, αi is the blending value of the i-th Gaussian and ci is the Gaussian
radiance color. The blending opacity value of the i-th Gaussian is calculated
using the particle’s kernel function and the set opacity parameter σ. This
calculation is shown in equation 3.6.

C(x) =
N∑

i=1
αici

i−1∏
j=1

(1 − αj) (3.5)

αi = ρ(x)′ ∗ σ (3.6)

During alpha-blending, we accumulate the opacity α of the pixel. If the
accumulated opacity exceeds one, we can terminate the calculation since it is
the largest possible value.

We must process the individual Gaussians that affect a pixel in the correct
depth order to use the alpha blending technique. Because of that, we have to
presort the Gaussians by depth before performing the alpha-blending step.
Also, as mentioned in the previous chapter, we need to record each pixel that
this Gaussian influences for the optimization pass. However, we can skip this
step if we only want to render an image from a certain view that will not
participate in the training pipeline. The final output of the alpha-blending
step is the resulting color of the image [1] [2].

23

3. Rendering 3D Gaussians
3.2.1 GPU Differential Rasterization

To achieve real-time rendering results, an optimized GPU implementation is
required. So far, the most common way to optimize the Gaussian Splatting
rasterization process is to implement a tile-based rasterizer [1], [4].

Firstly, the screen is separated into small tiles (typically 16x16 [1] [4]), and
a thread block is executed for each tile on the screen. Then, the culling of
particles is performed against the frustum and individual tiles. For culling,
the Gaussians are represented by a simple box that is stretched to cover the
extent of the Gaussian. We also often reject particles that are too close to the
near plane or to the far plane of the camera (By checking the position/mean of
a Gaussian). Then, we instantiate each Gaussian according to the number of
tiles they overlap and assign each instance a key that contains their distance
to the camera and the ID of a tile. Then, for each tile, we want to sort the
individual Gaussians by depth [4]. This can be done by any fast GPU sorting
algorithm, such as a GPU version of a radix sort [1]. This approximation
provides a much faster version of sorting than sorting Gaussians per screen
pixel and does not generate significant errors or artifacts during the training
process [1]. Then, each tile loads its packet of Gaussians into the shared
memory for faster memory access and starts processing the Gaussians for
each pixel front-to-back. During processing, the alpha blending process (as
shown in equation 3.5) is executed. This process can be stopped early if
the saturation (opacity) α of a pixel reaches α = 1. After this process, the
rasterization is complete, and the final color is stored in the frame buffer [1]
[4]. A high-level overview of this method is shown in algorithm 3.

Algorithm 3 High-level overview of the Tile-based rasterization pipeline [1]
1: function Rasterize(Gaussians, View, Width, Height)
2: Image = InitializeBlankImage(Width,Height)
3: Tiles = Create16x16Tiles(Width,Height)
4:
5: Gaussians = CullGaussians(Gaussians, V iew)
6: ProjectedGaussians = ProjectTo2D(Gaussians, V iew)
7:
8: TileGaussians,Keys = InstantiateT ileGaussians(ProjectedGaussians)
9:

10: SortByDepthGlobally(Keys)
11:
12: for all Tile ∈ Tiles do
13: for all Pixel ∈ Tile do
14: I[Pixel] = BlendInOrder(Pixel, T ileGaussians,Keys)
15: end for
16: end for
17: return Image
18: end function

24

................................ 3.3. Differential Ray Tracing

3.3 Differential Ray Tracing

A raytracing approach requires a different set of techniques than rasterization,
but can simplify some of the rasterization issues. It is also important to note
that raytracing is generally slower than rasterization [5], but it is able to
produce better results with sometimes smaller scene size.

With a raytracing approach, we calculate the radiance for a given pixel by
solving the radiative transfer equation 3.7 [6], which models the variation in
radiance as it travels through an infinitely small volume at a given position
and direction. L(x, ω) is the radiance at point x traveling in direction ω,
σ(x) is the density (or absorption) at position x and c(x, ω) is the radiance
emitted at x in direction ω. The first term of equation 3.7 models the loss
of radiance by absorption, and the second term models the emission at the
given point and direction.

(ω · ∆)L(x, ω) = −σ(x)L(x, ω) + σ(x)c(x, ω) (3.7)

By solving the differential equation 3.7 we get equation 3.8. Here we
calculate the resulting radiance by integrating the path to x which is defined
by separate points y defined in the equation 3.9. The variable T (x, y) is
defined in the equation 3.10 and represents the transmittance between the
points x and y that is widely used in volumetric rendering [6].

L(x, ω) =
∫ ∞

0
c(y, ω)σ(y)T (x, y)dy (3.8)

y = x+ tω (3.9)

T (x, y) = e−
∫ t

0 σ(x−sω)ds (3.10)

Since we want to utilize ray tracing to integrate this radiance, we can
parameterize the equation 3.8 with the ray parameter r(t) = o+ tω as shown
in equation 3.11 and 3.12 [6].

L(r) =
∫ ∞

0
c(r(t), ω)σ(r(t))T (t)dt (3.11)

T (t) = e−
∫ t

0 σ(r(s))ds (3.12)

This approach is used as the basis for radiance calculations in modern
novel view synthesis algorithms. Different approaches can instead calculate
this radiance via a more classical volume rendering approach, which is shown
in equations 3.13 and 3.14

L(r(t)) =
∫ tn

tf

T (r(t))
(∑

i

(1 − e−σi(r(t)))ci(d)
)
dt (3.13)

T (r(t)) = e−
∫ tn

t

∑
i

σi(r(t)) dt (3.14)

25

3. Rendering 3D Gaussians
In practice, when we wish to evaluate the radiance of a ray r we use a

discretized version shown in equations 3.15. This version of the equation
allows us to combine individual samples to evaluate the radiance at a given
point in a given direction. Note that with this approach, the individual
samples must be sorted by depth in a front-to-back order (closest to furthest)
[5].

L(r) =
N∑

i=0
(ci(r)σi(r)

i−1∏
j=1

(1 − σj(r)) (3.15)

In some cases, we might want to utilize an approach similar to ray marching
and sample the scene with a uniform step size ∆t. This approach has been
used in similar algorithms such as NeRF(Neural Radiance Field). In these
cases, we can combine the samples differently as shown in the equations 3.16
and 3.17, where σi is the density of the i-th particle, ∆t is the fixed step size
of the sampling process.

L(r) =
N∑

i=1
(1 − e−σi∆t)ciTi (3.16)

Ti = e
−
∑i−1

j=0 σj∆t (3.17)
The overview of the raytracing approach in practice is as follows. We first

want to shoot rays from our camera. Next, we have to perform a test to see
which particles have been intersected by the ray and store their references in a
list. To be able to use these stored particles, we have to determine where the
sample point will be located. Then, similarly to the rasterization, we want to
sort each individual sample point along the ray by its depth. After that, we
evaluate the radiance and density of each Gaussian and blend them in the
sorted order (unless they are already sorted). There are multiple different
approaches to evaluating the final radiance, as shown in the equations above.
One of the main things that also differs is the way to sample the 3D Gaussian
particles along the ray, how many times, and at which locations [5] [6].

But to be able to perform any kind of sampling, we need a way to accurately
determine when a ray has intersected the 3D Gaussian particle. 3D Gaussians
are elliptically shaped. Because of this, we can calculate the intersection of a
particle as a ray-ellipsoid intersection. A standard 3D ellipsoid can be defined
by its position P , scale matrix S, and a rotation matrix R. Then we can use
the world-space ray representation r(t) = ow + t∗ωw with a defined minimum
and maximum possible length of the ray, so t ∈ [tmin, tmax]. To calculate the
exact intersection we must first map the ray into the "unit-sphere" frame of
the ellipsoid. To perform this mapping we first construct the matrix M shown
in equation 3.18. We can then use this matrix to transform the ray into the
local frame, where the ellipsoid becomes a unit sphere ||x|| ≤ 1 and the ray
becomes r(t)l = ol + tωl. This is achieved by calculating the ol and ωl, which
are shown in equations 3.19 and 3.20 respectively [6].

M = RTS−1 (3.18)

26

................................ 3.3. Differential Ray Tracing

ol = M(ow − µw) (3.19)

ωl = Mωw

||Mωw||
(3.20)

With this, we can calculate and evaluate the intersection. There are two
common approaches. The easiest and most straightforward way to calculate
the intersection distance t is to solve equation 3.21, which can be rearranged to
equation 3.22, which is a simple quadratic equation. If we solve the equation
for t we can get two, one, or no intersection points.

||ol + tωl||2 = 1 (3.21)

t2 + 2(olωl)t+ (||ol||2 − 1) = 0 (3.22)

The second common approach is more numerically stable. Here we can
project the unit sphere center (transformed ellipsoid) onto the ray to get
the scalar b as shown in equation 3.23, where b is the signed distance from
the ellipsoid-space ray origin to the point of closest approach on the infinite
line defined by our ray. Then we calculate the scalar c (shown in equation
3.24), which shows how far outside (c > 0) or inside (c < 0) the ray origin
lies relative to the sphere. Then we calculate the actual projection point p,
shown in equation 3.25 that minimizes the distance to the center of the sphere.
Then we calculate the discriminant D (shown in equation 3.26). With the
discriminant calculated, we can determine if the ray has hit the unit sphere
or not. If ||p||2 > 1, the ray missed, and if ||p||2 ≤ 1, then the ray has hit the
sphere, and we can calculate the distances t1 and t2 to the intersection points.
The calculation for t1 and t2 is shown in equations 3.27 and 3.28. Note that
the distances t1 and t2 are multiplied by 1

||ωl|| to transform them back from
the local frame.

b = −olωl (3.23)

c = ||o||2 − 1 (3.24)

p = ol + bωl (3.25)

D = 1 − ||p||2 (3.26)

t1 = (c

b+ sign(b)
√
D

) 1
||ωl||

(3.27)

t2 = (b+ sign(b)
√
D) 1

||ωl||
(3.28)

27

3. Rendering 3D Gaussians
With the t1 and t2 calculated, we can check if t1,2 ∈ [tmin, tmax] and report

if an intersection has occurred along with the t1,2 values or if the ray missed
the ellipsoid [6].

The following sections discuss three different approaches and how a scene
should be initialized to be able to collect samples efficiently.

3.3.1 Initialization of the Scene

Just like in the rasterization step, we start by taking the camera configuration
of one of the training views as input for the rendering. With this input, we
can set up our camera to determine the origin and direction of our rays. If we
would like to simply view the trained scene, we can use any custom camera
configuration to view the scene from any angle [1] [5] [4] [6].

Then, an initialization of our scene has to take place. We already have 3D
Gaussians represented as volumetric particles, which have been discussed in
the previous chapter, but we require a simple way to represent the bound-
aries of the particles. This is done by encapsulating each particle with a
Bounding Primitive. There is a wide range of primitive types that can be
used. Some examples of common primitives are shown in figure 3.2 [5] [3].
Each of the bounding primitives comes with a trade-off between the speed of
intersection computation and the tightness of the boundaries, where spheres
and axis-aligned bounding boxes (AABB) offer very fast intersection test
but do not offer good tightness around the particle, causing it to take into
account unnecessary intersection which not have a significant impact on the
rendered image. On the other hand, custom triangle meshes such as the
icosahedron or the stretched icosahedron, offer much better tightness and
particle representation but require more costly intersection tests [5].

Figure 3.2: Example of Bounding Primitives.

With the boundary representation of the particle, we can build an acceler-
ation structure on our scene. The acceleration structure is a key component
in the raytracing approach if we wish to achieve a real-time rendering with a

28

................................ 3.3. Differential Ray Tracing

large number of particles. The most commonly used acceleration structure is
the bounding-volume hierarchy (BVH), which builds a hierarchy of bounding
volumes over the particles. This enables us to quickly find particles that can
intersect a ray and filter out particles that will never be intersected. After
this test we can use the exact intersection calculation.

29

3. Rendering 3D Gaussians
3.3.2 GPU Raytracing

To produce real-time rendering results, we want to utilize GPU hardware
acceleration. Modern GPUs already offer hardware acceleration options,
which are designed to be used with the raytracing method. This hardware
acceleration can be used more easily with frameworks such as NVIDIA OptiX
or Vulkan. These frameworks enable us to create rendering pipelines, which
often contain several programmable entry points. We can create our own
custom shader program, which will often be executed at these or similar entry
points: [5]. ray-gen program: At this entry point, we initialize our scene and

camera configurations, create the initial rays, and start their traversal of
the scene. intersection program: This program is called during the traversal of
the scene to precisely compute the intersections with the scene objects. any-hit program: This program is called every time a scene object
hit is recorded, and we may choose to stop the traversal of the scene or
ignore the intersection to continue traversing.. closest-hit program: Unlike Any-hit, this program is called only at
the end of the traversal to process the closest hit recorded..miss program: Here, we can decide what should be done at the end of
a traversal when no hit has been recorded.

This type of pipeline provides a very powerful set of tools for the raytracing
method and is highly optimized for use in rendering opaque objects. But this
also means that the pipeline performs the best when there is a low number
of recorded hits in the scene during the traversal. Sadly, this is not the case
when we want to render a large set of transparent volumetric particles [5] [3]
[6].

To fully utilize the GPU acceleration support, we will mainly focus on the
ray-gen and any-hit programs (optionally, closest-hit programs), as they are
the most important parts of rendering transparent objects. In the ray-gen
program, we want to start traversing the scene and gather all intersections
along the ray in the any-hit program to compute their color and contributions
to the final output [5] [6].

3.3.3 Uniform Slab Size Volume Raytracing

The method of using raytracing on a scene composed of 3D Gaussian particles
has multiple different approaches. In this approach, we can see the Gaussian
particles as emissive and absorbing entities. A Gaussian scene is then simply
a collection of these entities. These entities can then be defined by their
density (absorption) σ and their emission c. The density σ shown in equation
3.29 is defined as a product of the maximum possible density σmax and a

30

................................ 3.3. Differential Ray Tracing

basis function ψ(x), where 0 < ψ(x) < 1. The basis function ψ in this context
is a weighting function that defines how each primitive contributes to its
density. For this reason, we can use the Gaussian particle kernel function ρ
(shown in equation 2.4) as the basis function in the density calculation.

σ(x) = σmaxψ(x) (3.29)

The emission c of the entity depends only on the direction of emission d and
not on the position x as shown in equation 3.30. With this representation, we
have a defined collection of entities whose appearance changes depending on
the viewing direction. This allows us to use the Gaussian particle’s radiance
function ϕ(d) (equation 2.6) as a way to compute the radiance emitted by
the entity since the radiance function

c(x, d) = c(d) (3.30)

To utilize this aspect of the entity representation, we can use a modified
version of the radiative transfer equation (shown in equation 3.7) for volumes
consisting of N independent entities with absorption and emission properties.
This differential equation is shown in equation 3.31, where (d · ∆)L(x, d) is
the rate of change of radiance, σi is the density, and ci is the emission of the
i-th entity [6].

(d · ∆)L(x, d) = −(
N∑

i=1
σi(x))L(x, d) +

N∑
i=1

σi(x)ci (3.31)

If we compare equation 3.31 to the original equation 3.7, we can define a
volume with a global density function σg(x) (equation 3.32) and the global
emission function C(x, d). This formulation gives us a way to calculate
the radiance at a certain position as the weighted sum of the densities and
emissions of the entities [6].

σg(x) =
N∑

i=1
σi(x) =

N∑
i=1

σmax
i ψi(x) (3.32)

C(x, d) =
∑N

i=1 ci(d)σmax
i ψi(x)∑N

i=1 σ
max
i ψi(x)

(3.33)

In practice, we have a set of our Gaussian particles that can be used with the
representation used in equations 3.32 and 3.33. But to be able to evaluate
these equations we first need to decide where are we going to sample them.
The most straightforward way is to utilize the volumetric ray marching
approach and set a fixed step size to sample the intersected particles along the
ray in uniform intervals which is shown in Figure 3.3 with the slabs containing
six sample points each [6].

Individual Gaussian scenes can be very large, and it would not be very
efficient to evaluate the particle density for each particle intersected by the
ray because more distant particles would have minimal impact on the final

31

3. Rendering 3D Gaussians

Figure 3.3: This is a scheme of how the particles are gathered with the Uniform
Slab Size method.

ray radiance contribution. Because of that, another approach is suggested,
which is called slab-tracing [13].

In this approach, we trace the ray in smaller intervals called slabs. Each slab
has the same number of sample points, and we evaluated only the particles
that intersect the slab. If the slab does not contain any particles, it is skipped,
and the calculation moves to the next slab. In this way, we calculate the
particle response only for the Gaussian, which will have a significant impact
on the final radiance of the ray [6].

The uniform slab method is as follows. We start by shooting rays from the
camera position outward. Before we start tracing the rays, we can calculate
the bounding box of the whole scene. If a ray does not intersect the boundaries
of the scene, we can terminate it early. We trace these rays in small segments
that are the slab intervals. The size of the slab ∆S is shown in equation 3.34,
where ∆t is the step size (or the distance between the individual samples)
and Nsamples is the number of samples per slab. This gives us two parameters
to control the sampling process [6].

∆S = ∆tNsamples) (3.34)

In each slab, we trace a segment of the original ray with the size of our
slab. During the tracing of the segment, we store all unsorted references of
the intersected particles into a hit buffer. After we acquired the refrences to
all particles within the slab we accumulate the radiance Cs and density σs

for each of the sample points si(i ∈ [1, Ns]) as shown in equations 3.32 and
3.33. The position of the calculation to the position of the sample point si is
shown in equations 3.35 and 3.36, where oray is the origin of the ray, dray is
the direction of the ray, and tmin is the distance to the closest boundary of

32

................................ 3.3. Differential Ray Tracing

the scene.

si = si−1 + dray∆t (3.35)

s0 = oray + draytmin (3.36)

After processing all of the sample points within the slab, the accumulated
radiance and density are then stored in an individual buffer. With these
buffers calculated, we can start combining their accumulated values into a
final ray radiance, as shown in the equations 3.16. Along with the radiance,
the transmittance value also has to be updated. We can set a parameter
for controlling the minimum transmittance threshold. If our transmittance
falls below this threshold, we can perform an early exit. With this, we have
calculated the final radiance of the ray which can be outputted on the screen
[6].

This process can be easily implemented with GPU support in mind. The
only thing that is required for this algorithm is to implement a ray-gen and
an any-hit program. This ray-gen program will focus on the main calculations
for the radiance and density accumulation, along with the composition of
the samples. An example of this implementation of this algorithm can be
seen in algorithm 5. The any-hit program in this algorithm is very simple.
The only thing that is required is a large hit buffer for storing references to
the intersected particles, which has to be allocated on the GPU and keep
track of the number of intersected particles. This hit buffer can only store
the ID of an intersected particle. In this way, the hit buffer does not need
to be unnecessarily larger than it has to be. Since we have pre-allocated the
buffer before we start the allocation, we also have to set a limit on how many
particles we can process in a single slab. After that, the any-hit program only
has to store the reference/ID of an intersected particle and increment the
number of intersected particles. An example of this simple any-hit program
is shown in algorithm 4 [6].

This approach leads to higher quality images, but requires a lot of sampling
which impacts the time required to render an image. But even with a large
number of samples, this approach still produces real-time rendering results.

33

3. Rendering 3D Gaussians
Algorithm 4 Algorithm for the Uniform Slab tracing Any-Hit program [6]

1: function Any-Hit
2: //The number of Intersected particles can be stored as a ray payload
3: Nintersected = GetNumberOfParticles()
4: IDparticle = GetIntersectedParticleIndex()
5:
6: //Stop the traversal if we reached max number of particles
7: if Nintersected + 1 ≥ Nmax then
8: StopTraversal()
9: return

10: end if
11:
12: Hitbuffer[Nintersected] = IDparticle

13:
14: UpdateNumberOfParticles(Nintersected + 1)
15: end function

3.3.4 Naive Closest Hit Raytracing

This subsection will focus on a different approach compared to the uniform
slab tracing method. Instead of accumulating the radiance and density for
a single sample point from multiple different particles, we can sample each
intersected particle only once. The sampled position should be the position
along the ray with the highest possible response (density) of the particle.
For this, we need to find the distance tmax, which is the distance along the
ray to the point with the highest particle density. If we define our ray as
r(t) = o+ tω, where o is the origin of the ray and ω is the direction of the
ray, we can calculate the maximum response as shown in equation ??. In the
exact terms of our Gaussian particle, this can also be expressed as shown in
equations 3.38 and 3.37. Equation 3.38 also shows a simplified calculation
without the need to calculate the covariance matrix and its inverse matrix
using the transformed origin og and direction ωg which are calculated with
the inverse scaling matrix S, which is easy to compute, and the transposed
(inversed) rotation matrix R, which is also easy to calculate. The calculation
of og and dg is shown in equations 3.39 and 3.40 respectively [5].

tmax = argmaxt(o+ tω) (3.37)

tmax = (µ− o)T Σ−1ω

dT Σ−1ω
=

−oT
g ωg

ωT
g ωg

(3.38)

og = S−1RT (o− µ) (3.39)

dg = S−1RTω (3.40)

34

................................ 3.3. Differential Ray Tracing

Algorithm 5 Algorithm for the Uniform Slab tracing Ray-Gen program [6]
1: function Ray-gen()
2: o = GetStartingRayOrigin()
3: d = GetStartingRayDirection()
4: L = (0.0, 0.0, 0.0)
5: T = 1.0
6: ∆S = ∆t ∗Ns

7: tcurrent = tSceneMin

8:
9: //Traverse the whole scene or trasmittance reached a threashold

10: while tcurrent < tSceneMax and T > Tmin do
11: Slabmin = tcurrent

12: Slabmax = tcurrent + ∆S
13:
14: //Traverse the scene all particles from the slab
15: HitBuffer = TraceRay(o, d, Slabmin, Slabmax)
16:
17: //Accumulate radiance and density for Ns samples
18: RadianceBuffer,DensityBuffer = ProcessSlab(HitBuffer)
19:
20: for all s ∈ 1 . . . Ns do
21: Cs = RadianceBuffer[i]
22: σs = DensityBuffer[i]
23: α = 1.0 − exp(−σs ∗ ∆t)
24: L+ = Cs ∗ α ∗ T
25: T∗ = 1.0 − alpha
26: end for
27:
28: tcurrent+ = ∆S
29: end while
30: return L
31: end function

Now, we are able to evaluate the kernel function of the Gaussian particle.
We can focus on compositing the individual contributions of the intersected
particles. Since we have parameterized each particle, we calculate the output
color of a pixel for each ray using the standard volume rendering approach,
shown in equations 3.13 and 3.14 [5] [6].

This volumetric rendering calculation can then be easily approximated
using numerical integration to a discretized version shown in equation 3.15
where we assume that σi is calculated as shown in equation 3.41 (σ̃i is the
i-th particle density coefficient and ρ is the particle’s kernel function).

σi(r(t)) = σ̃iρi(r(t)) (3.41)

Unlike the uniform slab raytracing method, the individual sample points

35

3. Rendering 3D Gaussians
have to be sorted by their depth (front-to-back). As the name of this approach
suggests, we can go with the most straightforward way and always evaluate
only the closest sample. After processing the closest single sample, we can
find another closest sample point and repeat the process as shown in Figure
3.4, where we can see the order of the samples S1 − S5, where each sample S
counts as one traversal of the scene. By applying these techniques, we are
able to render our scene represented by the volumetric Gaussian particles
even with a single sample per particle [5].

Figure 3.4: This is a scheme of how the sample points are gathered with the
Naive closest hit method.

To implement this approach with GPU acceleration support, we can do
the following. Since we always want to process only a single sample point
that is closest, we can implement this method with only a ray-gen program
and a closest-hit program. In this case, the ray-gen program will handle only
the scene traversal, as shown in the algorithm 6. Note that since we are
not sampling in uniform given intervals we have to keep track of the last hit
distance so we are not evaluating a single sample point multiple times. The
rest of the calculations can be done in the closest-hit program. We can avoid
this issue by setting the starting distance of the ray (or shifting the origin
of the ray) by the last hit distance thit + ϵ, where ϵ is a very small constant.
Optionally, we can keep a reference to the closest particle and skip it during
the traversal if we do not want to use the constant ϵ. The current ray radiance
and transmittance can be stored as a ray payload, which is then accessible in
the closest-hit program. We can sometimes find particles whose calculated
density is very small, and because of it, will not have a significant impact
on the final ray radiance. To avoid unnecessary calculations, we can set a
minimum threshold σmin. In this way, we are able to combine the sample
points right in the closest-hit program, as shown in the algorithm 7.

36

................................ 3.3. Differential Ray Tracing

The main issue with this approach is that, in order to acquire the closest
sample, we have to perform a full scene traversal. This operation is very
expensive, and for this purpose the next subsection will explore a different
approach which is built on the same ideas which is trying to minimize this
issue.

Algorithm 6 Algorithm for the Naive Closest hit Ray-Gen program [5]
1: function Ray-gen
2: o = GetStartingRayOrigin()
3: d = GetStartingRayDirection()
4: L = (0.0, 0.0, 0.0)
5: T = 1.0
6: tcurrent = tSceneMin

7: //Traverse the whole scene or trasmittance reached a threashold
8: while tcurrent < tSceneMax and T > Tmin do
9: Payload = [T, L]

10: T, L, thit = TraceRay(o, d, tcurrent, tSceneMax, Payload)
11: tcurrent = thit + ϵ
12: end while
13: return L, T
14: end function

Algorithm 7 Algorithm for the Closest-Hit program [5]
1: function Closest-Hit
2: o, d = GetRay()
3: thit, particle = GetHit()
4: T, L = GetPayload()
5:
6: σhit = CalculateParticleDensity(o, d, particle)
7: if σhit > σmin then
8: Lhit = EvaluateRadianceColor(d, particle)
9: L = L+ T ∗ σhit ∗ Lhit

10: T = T ∗ (1 − σhit)
11: end if
12: UpdatePayload(L, T)
13: end function

37

3. Rendering 3D Gaussians
3.3.5 Adaptive k-Closest Hit Raytracing

This approach can be seen as an improved version of the previous closed-hit
naive raytracing approach, as they both share the main ideas.

Here, just like in the previous approach, we want to sample each particle
only once at the position with the highest density (which also lies on the
ray). The calculations for the distance to the point of the highest density
tmax are the same as shown in equation 3.38. We also use the same method
for combining the samples as the naive approach (equation 3.15). The main
difference in this approach is the way of gathering hits. At the end of the
previous subsection, we have established that scene traversal is an expensive
operation, and its use should be minimized. Just like in the naive approach,
we are required to gather samples in a sorted order of front-to-back. To
minimize the traversal of the scene, we would like to gather multiple samples
[5].

To do this, we can use an any-hit program instead of the closest-hit program
and simply sort our samples during the sample-gathering process. We can
define a hit buffer where we will store the first closest k hits in a sorted
way, where k is the size of the hit buffer. Figure 3.5 shows how the samples
are collected for k = 3. We can see that the samples are being collected in
dynamically sized slabs (we see that the size of Slab 1 is not the same as the
size of Slab 2). We can use the insertion sort algorithm to sort the individual
hits as they are gathered. Note that our hit buffer can be set to be very large,
but in that case we are required to pre-allocate this memory somewhere on
the GPU and accessing this memory can be costly or we have a very small
buffer which can be stored as the ray payload, in which case it does not have
to be pre-allocated and can be accessed more efficiently [5]. Also, note that if
we choose the smaller buffer version, we will have to traverse the scene more
times.

Figure 3.5: This is a scheme of how the sample points are gathered with the
adaptive k-closest hit method.

38

................................ 3.3. Differential Ray Tracing

The following text will consider the use of a smaller buffer with the option
to store the buffer as a ray payload.

After we have gathered the individual hits, we can process each hit in
the ray-gen program to calculate the contribution to the output radiance
(same as in the naive method) and continue traversing from the last stored
hit. Similarly to the naive method, we can use the ϵ constant trick to avoid
sampling particles multiple times.

The algorithms 8 and 9 show how the ray generation and any-hit programs
can be implemented, respectively.

Algorithm 8 Algorithm for the Ray-Gen program [5]
1: function Ray-gen
2: o = GetStartingRayOrigin()
3: d = GetStartingRayDirection()
4: L = (0.0, 0.0, 0.0)
5: T = 1.0
6: tcurrent = tSceneMin

7: Hitbuffer[k]
8:
9: //Traverse the whole scene or trasmittance reached a threashold

10: while tcurrent < tSceneMax and T > Tmin do
11: Payload = Hitbuffer
12: HitBuffer = TraceRay(o, d, tcurrent, tSceneMax, Payload)
13:
14: for all Hit(thit, Particle) ∈ HitBuffer do
15: σhit = CalculateParticleDensity(o, d, particle)
16: if σhit > σmin then
17: Lhit = EvaluateRadianceColor(d, particle)
18: L = L+ T ∗ σhit ∗ Lhit

19: T = T ∗ (1 − σhit)
20: end if
21:
22: tcurrent = thit

23: end for
24: tcurrent+ = ϵ
25: end while
26: return L
27: end function

39

3. Rendering 3D Gaussians

Algorithm 9 Algorithm for the Any-Hit program [5]
1: function Any-Hit(SortedHitBuffer, thit, particle, k)
2: HitBuffer = GetPayload()
3: hit = (thit, particle)
4:
5: //Add the hit into the HitBuffer with insertion sort
6: for all i ∈ 0 . . . k − 1 do
7: if hit.thit < HitBuffer[i].thit then
8: swap(HitBuffer[i], hit)
9: end if

10: end for
11:
12: //Prevent traversal from stopping for the first k closest hits
13: if thit < HitBuffer[k − 1].thit then
14: IgnoreHit()
15: end if
16: //Otherwise stop the traversal
17: if thit > HitBuffer[k − 1].thit then
18: StopTraversal()
19: end if
20: UpdatePayload(HitBuffer)
21: end function

40

Chapter 4
Custom Differential Gaussian Tracer

This chapter is dedicated to the implementation of a custom Gaussian renderer.
This Renderer is planned to be able to render a scene represented by Gaussian
particles. The renderer will be implemented in CUDA C/C++ with the
NVIDIA OptiX framework (explained in the following sections) for the main
rendering logic and Python for the higher-level logic. To simplify the package
management the Anaconda 3 distribution will be used in this project as well
(also explained in the following section).

4.1 Anaconda

Anaconda is an open source, comprehensive distribution of Python and R
programming languages specifically engineered to meet the demands of data-
intensive disciplines such as data science, machine learning, and scientific
computing. The distribution unifies a curated selection of more than 1,500
precompiled packages, including very popular libraries such as NumPy, pandas,
SciPy, and Matplotlib, with a robust environment and package manager
named Conda (Anaconda, Inc., 2024). By bundling these components into
a single installer, Anaconda eliminates the need for end users to compile
libraries from source or resolve intricate dependency trees manually, thereby
accelerating project setup and reducing configuration errors across Windows,
macOS, and Linux platforms.

At the heart of the Anaconda ecosystem lies Conda, a cross-platform tool
that performs dual roles as both a package manager and an environment
manager. The Conda binary distribution model ensures that scientific and
numerical libraries are executed with consistent performance and compatibility,
regardless of the user’s operating system. Through Conda environments,
researchers and engineers can encapsulate specific versions of the interpreter
and its associated libraries, thus isolating the dependencies of one project
from those of another. This isolation is instrumental in reproducibility: An
environment specification can be exported to a YAML file and shared with
collaborators, who can then reconstruct an identical computational context
with a single command (Anaconda Documentation, 2024).

Beyond command line operations, Anaconda includes Navigator, which is
a graphical user interface that abstracts the environment and package ad-

41

4. Custom Differential Gaussian Tracer...........................
ministration into a point-and-click experience. Navigator provides immediate
access to development tools such as JupyterLab, Jupyter Notebook, Spyder,
Visual Studio Code, and RStudio, all of which are staples in academic and
industrial research settings.

4.2 NVidia OptiX Framework

NVIDIA OptiX is a general-purpose ray-tracing engine developed by NVIDIA
that enables the efficient deployment of complex ray-based algorithms on
modern Graphics Processing Units (GPUs) 11. It provides a flexible applica-
tion programming interface (API) designed to handle key tasks such as ray
traversal, primitive intersection, and material shading. By capitalizing on
the inherent parallelism of GPUs - and, starting from Turing architecture,
specialized RT cores - OptiX significantly reduces the complexity associated
with implementing high-performance ray tracing [18].

4.2.1 Pipeline

In contrast to fixed-function pipelines with a few programmable stages com-
monly utilized in rasterization hardware, OptiX adopts a more programmable
and customizable pipeline model. As discussed in the previous chapters, users
can define a number of specific programs to customize the pipeline to suit
their needs. These programs include:. ray-generation: defines how and where rays are emitted. closest-hit: dictates how the closest geometry intersections are processed

after a traversal. any-hit: dictates how any geometry intersections are processed during a
traversal.miss: defines a behavior when no geometry is intersected. intersection: dictates how to calculate the intersection for custom primi-
tives

Starting with OptiX version 7, developers can also enjoy low-level control
over GPU memory, thread scheduling, and data flow, allowing integration
with custom rendering pipelines and data structures [18]. However, these
features will not be discussed here.

4.2.2 Usage and Integration

Beyond classical photorealistic rendering, OptiX proves valuable in a range
of applications, including scientific visualization, real-time simulations, and
advanced geometric or volumetric computations. Thanks to its programmable
stages, it can accommodate custom intersection routines for procedurally

42

............................... 4.2. NVidia OptiX Framework

defined surfaces (e.g., fractals, implicit surfaces) and volumetric shapes (e.g.,
Gaussian fields or smoke volumes). It also supports multihit ray queries,
thanks to the any-hit program, which is frequently required in volume render-
ing, order-independent transparency, or global illumination methods. Each
ray can also store and carry a payload of data, which can be modified during
the traversal of the scene. Each ray can store up to 32 unsigned integer
values that represent the payload [19]. Because of that, some values (for
example, float) have to be converted into an unsigned integer to store them
as a payload.

In this work, OptiX is used for:

.Accelerated Ray Traversal: By constructing a BVH for scene objects,
OptiX handles the traversal of the scene and identifies intersection
candidates between rays and volumetric or geometric primitives.. Custom Intersection Programs: Optix offers the option of implementing
a custom intersection logic. This logic is implemented specifically for
3D Gaussians, treating each Gaussian as either a bounded volume or
an implicit shape. This allows us to compute intersections on the GPU
without manually coding the BVH traversal.. Custom Shading and Composition: Through programmable shading
stages, the contributions of each Gaussian to color and opacity can be
accumulated, enabling layered or alpha-blended visualization of over-
lapping Gaussian fields. This can be handled in any-hit or closest-hit
programs or even in the main ray-generation program.

Because OptiX abstractly manages the complexities of BVH construction
and traversal, we can concentrate on the domain-specific tasks (e.g., computing
Gaussian contributions and combining them via alpha blending) rather than
low-level performance optimizations.

Sadly, the Optix framework is not very publicly popular, and it is difficult
to find many public study materials on how to operate with the OptiX
framework. The only exception is the programming guide document [18],
API reference document [19] created by NVIDIA, and a handful of sample
projects which are accessible to anyone who downloaded and installed Optix.

OptiX’s core API is exposed as a traditional C interface with C++ compat-
ible headers, and the SDK itself is written in C and C++. As a result, any
host application that drives OptiX must be written in C or C++ and compiled
with NVIDIA’s NVCC driver (or a system compiler invoked through NVCC),
linking to the OptiX and CUDA runtime libraries. On the device side, every
programmable stage of the ray-tracing pipeline is written as standard CUDA
C/C++ code. This code is then compiled into a PTX (Parallel Thread
Execution) intermediate representation of the implemented CUDA kernels,
which are then used by the Optix API during the launch of the ray-tracing
pipeline.

43

4. Custom Differential Gaussian Tracer...........................
4.3 Implementation

4.3.1 Data Loading

Before we can render a pre-trained scene, we have to figure out how to load
it and save it. The most common way to store a Gaussian scene is in PLY
format. This format is most commonly used to store polygonal or point-cloud
data. Since the individual Gaussian particles do not share any relation with
each other, we work with the Gaussian scene as a point cloud. Every PLY file
has two main parts: a header and a binary body. The header of the PLY file
is stored in ASCII format and is readable by humans. It contains information
on the data layout of the binary body and the binary format in which the
body data is stored. This means that the header defines what properties
are stored for a single entry/point and also other information, such as the
number of points stored in the file (this is important for the loading process)
or how many types of entry are present (for Gaussian scene, only one type of
entry is present). The way a header for a Gaussian scene can look is shown
in Figure 4.1. The body is where the actual data are stored in binary format
as a list of entries/points.

Figure 4.1: An example of a header in PLY file containing a Gaussian scene [16].

So, in order to read and load data from a PLY file, we need to define a

44

................................... 4.3. Implementation

structure that matches the structure of the data stored in the header. Then,
initialize a list with the same number of entries and load the binary data into
this list of structures. With the defined structure, saving the scene is very
simple. We simply write the header so it matches the same structure used
for loading, and then save the whole scene in a binary format.

Sometimes, there could be issues with the saving or loading process of the
scene. It is good to check that some parameters are loaded correctly. Because
of this, it is a good practice to check that the quaternions are normalized
(so they represent only rotation) and that other parameters like the density
parameter are within reasonable bounds.

4.3.2 Gaussian Viewer

To show how the 3D Gaussian raytracing can be implemented, I first created
a custom raytracing viewer for pre-trained Gaussian scenes. The raytracer
was built with the Nvidia Optix framework for GPU acceleration. Because of
this, the main core of the application is written in CUDA C/C++ code. This
means that the main functions are written as OptiX kernel functions (these
define the ray-gen, any-hit programs, etc.). The rest of the application, which
means the higher-level logic, is handled by a collection of Python scripts.
This is a common practice as it is often seen in other projects which focus
on the same topic of raytracing 3D Gaussian particles [5] [6] [1]. However,
this approach poses a smaller issue. The Optix framework does not support
the Python language. Luckily, there are Python packages that serve as a
wrapper for the Optix framework. The one used in my project is called simply
Python-optix. With this, I was able to call Optix’s specific functionalities
from a Python script. One small disadvantage of this approach is the fact
that the Python scripts are using JIT (Just In Time) compilation. Because
of this the python-optix package also compiles the Optix kernels when they
should be used, often even if the code did not change. Note that this issue
does not have to be present if a different Optix wrapper package is used.

To implement the viewer for the 3D Gaussian scene, we only require the
forward pass to gather the radiance for each individual ray (pixel). I have
chosen to base my implementation on the uniform slab tracing method,
which has been discussed in the previous chapter. I have spotted a large
disadvantage of the approach, which is the large hit buffer required for the hit
gathering. My implementation does not use a hit buffer for the forward pass.
Instead of gathering each individual particle ID in any-hit program and then
processing all of the calculations in the ray-gen program, as shown in the
previous chapter, I moved the process of radiance and density accumulation
to the any-hit shader. Firstly, I set the accumulation buffers as a ray payload.
This payload is easily accessible in the any-hit program and enables us to
accumulate the radiance and density right in the any-hit program. This
approach has several advantages. Data stored in the ray payload is optimized
for quick memory access compared to normally allocated data on the GPU.
Since the hit buffer is no longer required for the forward pass, there is no
limit to the number of particles that can be sampled during the radiance and

45

4. Custom Differential Gaussian Tracer...........................
Algorithm 10 Algorithm for the Forward pass Ray-Gen program [6]

1: function Ray-gen()
2: o = GetStartingRayOrigin()
3: d = GetStartingRayDirection()
4: L = (0.0, 0.0, 0.0)
5: T = 1.0
6: ∆S = ∆t ∗Ns

7: tcurrent = tSceneMin

8:
9: //Traverse the whole scene or trasmittance reached a threashold

10: while tcurrent < tSceneMax and T > Tmin do
11: Slabmin = tcurrent

12: Slabmax = tcurrent + ∆S
13:
14: Payload = [RadianceBuffer,DensityBuffer]
15: //Traverse the scene all particles from the slab
16: Payload = TraceRay(o, d, Slabmin, Slabmax, Payload)
17:
18: [RadianceBuffer,DensityBuffer] = Payload
19:
20: for all s ∈ 1 . . . Ns do
21: Cs = RadianceBuffer[i]
22: σs = DensityBuffer[i]
23: α = 1.0 − exp(−σs ∗ ∆t)
24: L+ = Cs ∗ α ∗ T
25: T∗ = 1.0 − alpha
26: end for
27:
28: tcurrent+ = ∆S
29: end while
30: return L
31: end function

density accumulation process. However, this also introduces a disadvantage.
We are limited by the small memory of the ray payload. In the case of Optix,
the payload can store only up to 32 unsigned integers (we are also able to
easily store and retrieve floating point data, as mentioned before). For a
single sample, we need four values: three for color (one for each color channel)
and one for density. This means that we are only able to store up to eight
samples per slab. My implementation uses seven samples per slab and reserves
the remaining four values for other data, such as the number of particles
intersected. This modified any-hit program is shown in the algorithm 11.

With some of the calculations moved to the any-hit program, the ray-gen
program is then much simpler. The ray-gen program can now handle only
the scene traversal logic and the composition of the accumulated samples to

46

................................... 4.3. Implementation

Algorithm 11 Algorithm for the Forward pass tracing Any-Hit program [6]
1: function Any-Hit
2: //The number of Intersected particles can be stored as a ray payload
3: Nintersected = GetNumberOfParticles()
4: IDparticle = GetIntersectedParticleIndex()
5:
6: //Stop the traversal if we reached max number of particles
7: if Nintersected + 1 ≥ Nmax then
8: StopTraversal()
9: return

10: end if
11:
12: Hitbuffer[Nintersected] = IDparticle

13:
14: UpdateNumberOfParticles(Nintersected + 1)
15: end function

the final ray radiance and transmittance. The simplified ray-gen program is
shown in the algorithm 10.

To show some of the statistics of the rendering process, I added a simple
GUI created with the IMGUI library [21]. This library is very commonly
used for rendering demos and viewers, since it is simple to set up, can be
used with almost any framework, and provides a simple way of displaying
text and taking input from the user.

With the simple GUI setup, I added a simple text box that shows the
time required for rendering, displays the rendered image, and displays the
number of frames per second (FPS). Along with it, I am also calculating the
number of mega-rays per second (MRay/s) and the number of mega-samples
per second(MSample/s).

The GUI also provides the option to tweak some of the parameters required
in the rendering process, such as the step size and the maximum number of
particles per ray. An example of how the Gaussian Viewer window looks is
shown in Figure 4.2

To be able to visualize the individual, I added the option to show the
elliptical boundary of the particles and added a scale coefficient so that the
individual particles are better visible. An example of how this visualization
can look is shown in Figure 4.3. In this way, the viewer can visualize how the
Gaussian scene is represented.

47

4. Custom Differential Gaussian Tracer...........................

Figure 4.2: The window of the custom Gaussian Viewer.

4.3.3 Gaussian Tracer

To be able to use the custom tracer in the scene training process, I required
a rendering pipeline that can perform the forward pass, which produces
the rendered image, and the backward pass, which is used for the gradient
backpropagation in the training process. The forward pass was already imple-
mented for the Gaussian viewer. I duplicated the forward pass implemented
and removed the unnecessary code that was used in the visualization process.
In this way, I could have used separate logic for the training pipeline and the
visualization pipeline.

Next, we had to implement the backward pass. The backward pass is
always at its core similar to the forward pass, but instead of producing an
image, we want to calculate the gradients for every intersected particle in
the scene from the gradient color calculated from the image generated by the
forward pass and the ground truth image. We still have to trace the scene in
the same way as in the forward pass, but the tracer now requires a reference
to the particles to calculate the gradients of their individual parameters:

48

................................... 4.3. Implementation

position, density, scale, rotation, and color parameters(coefficients of the
spherical harmonic functions).

Firstly, we perform the same operation as in the forward pass. This includes
sampling multiple particles and then accumulating their radiance and density
in the radiance and density buffers, but we also have to store the references
to the intersected particles. This means that we require a hit buffer that
will store these references (the buffer can store the particle references in any
order). We process these particles in the ray-gen program, where we calculate
the gradients for each sample the particle has participated in and accumulate
them in a gradient buffer, which has the same number of entries as there are
particles. Since this code is used on the GPU, we have to use an atomicAdd()
function to prevent race conditions. The pseudocode for the backward pass
can be seen in algorithm 12.

When the backward pass is finished it outputs the gradient buffer which is
then used by the optimizer to improve the scene visual quality.

49

4. Custom Differential Gaussian Tracer...........................
Algorithm 12 Algorithm for the Backward pass Ray-Gen program [6]

1: function Ray-gen()
2: P = GetPointCloud()
3: ∆P = InitPointCloudGradients()
4: o = GetStartingRayOrigin()
5: d = GetStartingRayDirection()
6: L = GetFwdRadiance()
7: ∆L = GetLossColor()
8: T = 1.0
9: ∆S = ∆t ∗Ns

10: tcurrent = tSceneMin

11:
12: //Traverse the whole scene or trasmittance reached a threashold
13: while tcurrent < tSceneMax and T > Tmin do
14: Slabmin = tcurrent

15: Slabmax = tcurrent + ∆S
16:
17: //Traverse the scene all particles from the slab
18: HitBuffer, Payload = TraceRay(o, d, Slabmin, Slabmax, Payload)
19:
20: RadianceBuffer,DensityBuffer = Payload
21:
22: for all i ∈ 1 . . . NHitBuffer do
23: floatTaux = T
24: Laux = L
25: ∆phit = InitializeGradientAccum
26: for all j ∈ 1 . . . Ns do
27: Cs = RadianceBuffer[i]
28: σs = DensityBuffer[i]
29:
30: ∆Phit+ = AccumColorAndParameterGradients(L,∆L,Cs, σs)
31:
32: α = 1.0 − exp(−σs ∗ ∆t)
33: Laux+ = Cs ∗ α ∗ T
34: Taux∗ = 1.0 − alpha
35: end for
36:
37: AtomicAdd(∆P,∆Phit)
38:
39: if i == ilast then
40: T = Taux

41: L = Laux

42: end if
43: end for
44:
45: tcurrent+ = ∆S
46: end while
47: return ∆P
48: end function 50

................................... 4.3. Implementation

4.3.4 Scene Training

To be able to use the custom tracer with the forward and backward pass
implemented, I would need a training framework that would handle the
process of optimization and overall the process of generating (or training) a
scene.

For this project, I have used the Raygauss project training framework [6].
The project was also written mainly in Python and CUDA C/C++ and uses
the same packages for managing CUDA and Optix functions from a Python
script.

I have forked the Raygauss project and replaced their raytracer with my
implementation of the forward and backward passes. Then I had to integrate
my raytracer to the existing scripts used during the training process and
removed scripts which were not useful for my raytracer implementation.

To be able to use the forward and backward passes in quick succession, two
different Optix pipelines are needed: one for the forward pass and one for the
backward pass. In this way, we can separate the calculations for each pass.
When the forward pass is finished, a gradient image is calculated from the
forward output and the ground truth image, which is then passed straight to
the backward pipeline. The trainer then checks if it should perform Adaptive
Density Control. Lastly the BVH is updated with the new parameters of the
particle point cloud. A high level overview of this training process can be
seen in algorithm 13.

51

4. Custom Differential Gaussian Tracer...........................

Algorithm 13 A high-level overview of the training process used in the
raygauss framework [6]

1: function Train()
2: P = GetSFMPointCloud(GTImages)
3: BVH = InitBV H(P)
4: PipelineFwd, P ipelineBwd = InitP ipelines(PointCloud,BV H)
5:
6: i = 0
7: imax = MaxIterations
8:
9: while i < imax do

10: V iew,GTImage = SampleTrainV iew()
11: Image = PipelineFwd.Launch(V iew, P,BV H)
12: LossImage = Loss(Image,GTImage)
13: ∆L = PipelineBwd.Launch(V iew, P,BV H,LossImage)
14: P = AdamOptimizer(∆L)
15:
16: if DoAdaptiveDensityControl(i) then
17: P = AdaptiveDensityControl(P)
18: end if
19:
20: BVH = UpdateBV H(P)
21: end while
22:
23: return P
24: end function

52

................................... 4.3. Implementation

Figure 4.3: This figure shows how the 3D Gaussian particles can be visualized
in a way that’s visible to the human eye. The bottom image is the standard
rendered image. The top left image has particles shrunk with a scale coefficient.
The top right image shows the boundaries of the visible Gaussians.

53

54

Chapter 5
Results

This section showcases some of the custom-trained scenes that have been
produced using the Gaussian Tracer shown in the previous chapter. The
section also discusses the performance of the rendering pipeline and the visual
quality that can be achieved with the methods used in the chapter discussing
the implementation.

The results have been calculated and measured on a computer with:.GPU: NVIDIA GeForce RTX 3070 Laptop GPU with 16 GB. CPU: AMD Ryzen 9 5900HS with 3.30 GHz and 8 cores. RAM: 16 GB.OS: Windows 10

5.1 Image Quality Metrics

The fidelity of synthesized novel views is most commonly measured with three
complementary image-quality metrics: Peak signal-to-noise ratio (PSNR),
structural similarity index (SSIM), and learned perceptual image patch simi-
larity (LPIPS) [1] [5] [6].

The trio of PSNR, SSIM, and LPIPS offers complementary insights to
the measured data: PSNR is sensitive to absolute pixel deviations, SSIM
captures structural distortions, and LPIPS aligns with subjective appearance.
Reporting all three of these metrics provides a balanced view of both numerical
fidelity and perceptual quality.

This section introduces the formal definition of each score and summarizes
the ranges typically reported in Novel View Synthesis projects.

5.1.1 Peak Signal-to-Noise Ratio (PSNR)

PSNR measures the pixel agreement between a reconstructed image K and a
reference image I by first computing their mean squared error (MSE). The
mathematical definition of MSE is shown in equation 5.1, where m and n are
the width and height of the image, respectively.

55

5. Results

MSE = 1
mn

m−1∑
i=0

n−1∑
j=0

[
I(i, j) −K(i, j)

]2 (5.1)

The PSNR calculation is shown in equation 5.2 .The score is then expressed
in decibels (dB).

PSNR = 10 log10

(MAX2
I

MSE

)
= 20 log 10

(MAXI√
MSE

)
, (5.2)

with MAXI = 255 for 8-bit RGB data. Higher PSNR indicates lower
signal-dependent noise. Scores above ∼32 dB are perceived as sharp and
largely artifact-free in full HD resolution [14]. In the context of Novel View
Synthesis approaches, the most successful methods can report 30–40 dB on
real scenes.

5.1.2 Structural Similarity Index (SSIM)

SSIM was introduced to model perceived changes in luminance, contrast, and
local structure. For two image patches x and y, the SSIM is defined as shown
in 5.3 , where µ, σ2, and σxy denote local means, variances, and covariance,
and C1,2 are constants that are used to stabilize the calculation of SSIM and
prevent division by zero [14].

SSIM(x, y) = (2µxµy + C1)(2σxy + C2)
(µ2

x + µ2
y + C1)(σ2

x + σ2
y + C2) , (5.3)

This calculation can then be used to get a global SSIM score in [0, 1], where
the higher score indicates a better (more similar) result, and lower scores
indicate visible structural artifacts. Values exceeding 0.95 are considered
visually indistinguishable from the reference, whereas scores below 0.75 can
reveal obvious structural distortions. Because SSIM incorporates local pattern
information, it can correlate better with human vision than purely pixel-based
errors such as PSNR.

5.1.3 Learned Perceptual Image Patch Similarity (LPIPS)

LPIPS is a learned perceptual metric that measures the distance between two
images in the feature space of a deep convolutional neural network. Given
images I and K, activations ϕl(·) are extracted in multiple layers l and
L2-normalised. The final score can then be calculated as shown in equation
5.4.

LPIPS(I,K) =
∑

lwl, ∥ϕ̂l(I) − ϕ̂l(K)∥2
2 (5.4)

where the weights wl are calibrated on large-scale human judgement exper-
iments. LPIPS ranges from 0 (identical) to 1; Lower values indicate greater
perceptual similarity. In recent NeRF benchmarks, scores below 0.02 are
regarded as essentially indistinguishable from the ground truth, while values
above 0.05 denote visible color or texture mismatches [15].

56

....................................5.2. Created scenes

5.2 Created scenes

To be able to train a Gaussian scene, an image dataset is required. I have
selected five different image sets. Two of the image sets come from the
Mip-NeRF 360 dataset. The remaining three scenes are from the synthetic
Blender dataset. These data sets are most commonly used to test algorithms
for novel view synthesis. [1] [6] [5].

The scenes Garden and Bicycle are based on realistic images of outdoor
areas, which can be difficult to reconstruct. The Scenes Chair, Lego, and
Ship each contain single, synthetic, detailed 3D models.

Other Novel View Synthesis algorithms normally showcase their resulting
scenes with images after 30,000 iterations of the training process. The
resulting scene images after 30,000 iterations from this project are shown in
Figure 5.1. As we can see, the resulting images are very realistic, and it can
be difficult to distinguish them from realistic photo images.

These scenes can then be viewed using the Gaussian Viewer. During
viewing, the user can view the training scene from any angle. It is important to
remember that the method used in this project can only accurately reconstruct
the scene. In areas that are visible from the input ground-truth images. Figure
5.2 shows the parts of the reconstructed Garden scene that are not documented
in the ground-truth images. In these areas, the resulting particle point cloud
is very sparse, and we are able to see what the 3D Gaussian particles look
like.

To show the training progress of the scene, I generated several images
during the training process. These images are shown in Figure 5.3. These
images were generated from a training that ran for 2000 iterations. In this
collection of images, we can see that the scenes are converging quickly to
a photorealistic result. This also shows us that this raytracing approach
does not necessarily require 30,000 iterations to get a good enough result,
especially for smaller scenes.

57

5. Results
5.3 Training Performace

This section discusses the performance and metrics of the training pipeline.
To evaluate the visual quality of the trained scenes, I have used the PSNR,
SSIM and LPIPS scores which have been explained in the previous sections.

I have evaluated all the trained scenes at the end of their training process.
The resulting statistics for each of the trained scenes are shown in Table
5.1. The training was. As we can see, the trained scene and all the trained
scenes achieved high visual scores, indicating that they would be difficult to
distinguish from the original ground-truth images. The main issue with the
trained scenes is the time required to generate them. Training times are very
long. But this is an expected result as the raytracing method is much more
expensive than, for example, the rasterization approach, which is capable of
processing 30,000 iterations in about one hour.

Scene PSNR ↑ SSIM ↑ LPIPS ↓ # Points Train Time
Garden 29.78 dB 0.926 0.056 1 636 432 5h 27m
Bicycle 26.10 dB 0.834 0.124 1 615 752 5h 35m
Chair 38.50 dB 0.991 0.008 420 992 3h 15m
Lego 36.90 dB 0.984 0.011 367 179 2h 55m
Ship 31.81 dB 0.913 0.093 467 892 3h 27m

Table 5.1: PSNR, SSIM, LPIPS, point count, and training time for five selected
scenes. Garden and Bicycle are outdoor scenes that are typically harder to
synthesize, while Chair, Lego, and Ship are single objects that often achieve
better scores.

The long training times are then mainly caused by the expensive raytracing
rendering. This can also be seen during the visualization of the scenes. Table
5.2 shows the performance scores for each individual scene. For each of the
scenes, I have measured the average frames per second (FPS), mega rays
per second (MRay/s), and mega samples per second (MSample/s). The
Mray/s have been measured as the number of scene traversals and not the
number of "Primary rays" (often equal to the window resolution), which is
a more common approach. I have chosen this approach to show how many
times the scene has to be traversed. The scenes have been measured on
800x800 resolution. We can see that the viewer still achieves real-time results,
but can struggle with the larger outdoor scenes (Garden and Bicycle).

To show the progress of the scene training and how fast the training
converges to a realistic result, I have measured the PSNR score during the
training process for each of the scenes.

Figure 5.4 shows the outdoor scene training process (Garden and Bicycle).
We can see that the PSNR value rises quickly at the start of the training
process and then continues to refine the scene more slowly. We can also notice
some PSNR dips (Bicycle at iteration 1000). These dips are caused by the
adaptive density control process of the point cloud of the particles. During

58

................................. 5.3. Training Performace

Scene FPS MRays/s MSamples/s # Particles
Garden 5.8 145.8 470.5 1 636 432
Bike 4.5 98.1 290.3 1 615 752
Chair 12.1 110.6 187.2 485 210
Lego 13.4 108.5 207.3 367 179
Ship 10.8 133.2 271.6 467 892

Table 5.2: Run-time performance of the five trained scenes. The statistic
MRays/s has been calculated as the number of scene traversals (number of
processed slabs) per second.

this process, a larger number of new particles can be introduced or removed
from the scene, which then has an impact on the visual quality of the scene.
Figure 5.5 shows the training progress of the synthetic scenes (Chair, Lego,
Ship). We can see that these scenes already start with a reasonably good
PSNR score after the initialization. Just like in outdoor scenes, we see the
largest improvement right at the beginning of the training process, and it
continues to refine the scene more slowly. We can also notice that these scenes
converge to a slightly better result than the outdoor scenes. Even with the
synthetic scenes, we can still see the dips in the PSNR score at several places.
These dips are again caused by the adaptive density control that is taking
place.

Next, I compared my measurements of the visual performance of the chosen
method with existing projects that also focus on view synthesis and 3D scene
reconstruction. I have chosen to compare the results of this project with
"older" projects such as NeRF, Mip-NeRF, and Instant-NGP, which do not
use 3D Gaussian particles in any way, but share some approaches. Next,
I also included the original Gaussian Splatting project (3DGS), which can
give us a comparison between the quality of rasterization and raytracing.
And finally, I chose two projects that also utilize the raytracing approach:
Raygauss and the 3DGRT project. The 3DGRT project implements the
approach of the Adaptive k-Closest Hit raytracing method explored in the
previous chapter and uses only a single sample per single Gaussian. Tables 5.3,
5.4, and 5.5 show the comparison between individual projects in the PSNR,
SSIM, and LPIPS scores, respectively. In these tables, we can see that the
3D Gaussian-based methods perform better than the other methods(NeRF,
Mip-NeRF, and Instant-NGP). We can also see that this project has scored
similarly to the Raygauss project and is outperforming the other methods,
like 3DGS and 3DGRT, with some exceptions (Bicycle).

The raytracing method also has one more improvement compared to the
rasterization approach of 3DGS, that is, the scene size. Table 5.6 shows the
comparison of the scene sizes between this project and the original Gaussian
splatting project. We can see that the chosen raytracing approach is able
to generate much smaller scenes (≈ 3 − 4x smaller). This means that the
raytracing method can require much less memory than the rasterization
approach in practice and still achieve better visual results.

59

5. Results
Method Garden Bicycle Chair Lego Ship
NeRF [9] 22.70 19.35 34.17 33.31 29.30
Mip-NeRF [10] – – 35.65 36.10 31.26
Instant-NGP [11] 25.64 23.69 35.00 36.39 31.10
3DGS [1] 29.58 27.33 35.85 35.87 30.95
RayGauss [6] 29.91 27.21 37.20 37.10 31.95
3DGRT [5] – – 35.90 36.20 30.71
This project 29.78 26.10 38.50 36.90 31.81

Table 5.3: Per-scene PSNR (dB) score comparison of the custom implementation
with some of the other projects which focus on Novel View Synthesis.

Method Garden Bicycle Chair Lego Ship
NeRF [9] 0.653 0.371 0.975 0.968 0.869
Mip-NeRF [10] – – 0.983 0.980 0.893
Instant-NGP [11] – – – – –
3DGS [1] 0.931 0.871 0.988 0.983 0.893
RayGauss [6] 0.929 0.859 0.990 0.986 0.914
3DGRT [5] – – – – –
This project 0.926 0.834 0.991 0.984 0.913

Table 5.4: Per-scene SSIM score comparison of the custom implementation with
some of the other projects which focus on Novel View Synthesis.

5.4 Importance of tracer parameters

The training of the scene has several different parameters that have a signifi-
cant impact on the resulting reconstructed scene.

This section explores the impact of some of the tracer parameters. These
parameters include the maximum number of particles per slab Np and the
step size ∆t, which defines the distance between individual sample points.

Firstly, I have focused on the impact of the step size parameter ∆t on the
resulting visual quality of the scene. For this test, I have chosen to work
with the PSNR score of the rendered scenes to show the difference in visual
quality. I have trained all of the selected scenes: Garden, Bicycle, Chair, Lego
and Ship. The scenes have been trained for 2000 iterations and have used
the maximum number of particles per slab Np as Np = 1024. The results
of this test can be seen in Table 5.7. The table shows the average PSNR
score and the average training times for all scenes. We can see that smaller
step sizes ∆t can produce visually better scenes. At the same time, we can
see that the smaller step sizes also have a large impact on the training time.
Because of that, it could be practical to choose a larger step size for better
performance at the cost of visual quality. This result of the test has been
expected, because smaller step-sizes allow us to sample the Gaussian scene
more and because of that we are able to capture more details.

60

............................ 5.4. Importance of tracer parameters

Method Garden Bicycle Chair Lego Ship
NeRF [9] 0.360 0.161 0.026 0.031 0.150
Mip-NeRF [10] – – 0.018 0.018 0.119
Instant-NGP [11] – – – – –
3DGS [1] 0.056 0.121 0.011 0.015 0.118
RayGauss [6] 0.051 0.110 0.009 0.012 0.088
3DGRT [5] – – – – –
This project 0.056 0.124 0.008 0.011 0.093

Table 5.5: Per-scene LPIPS score comparison of the custom implementation
with some of the other projects which focus on Novel View Synthesis.

Particles Garden Bicycle
3DGS 5 834 784 6 131 954
This project 1 636 432 1 615 752
Absolute difference 4 198 352 4 516 202
3DGS bigger (%) 356,56% 379,51%

Table 5.6: Particle counts for 3DGS versus this project for the outdoor scenes.
This table serves as a comparison of output between the methods based on
rasterization vs raytracing.

Next, I wanted to test the impact of the number of particles per slab
Np. This parameter allows us to control the amount of particles that can
participate in the sampling process for a single slab. Just like in the previous
test I have retrained all five scenes with varying Np parameter on 2000
iterations. I have used ∆t = 0.0075 as the step size during training. Table 5.8
shows the results of this test with the average PSNR scores and the average
training times for all scenes. We can see that the parameter Np appears to
have a smaller impact on the visual quality of the trained scenes than the
parameter ∆t. We see that the visual quality decreases with smaller Np but
only in small amounts. As expected, training time also decreases with smaller
Np. Because of this, it can be good to limit Np to reasonable values such as
512 or even 256 to increase the rendering performance.

61

5. Results

∆t PSNR Train time
0.03 20.91 dB 4 m 52 s
0.015 24.62 dB 6 m 02 s
0.0075 26.61 dB 8 m 13 s
0.003 75 26.88 dB 9 m 23 s
0.001 875 26.91 dB 11 m 56 s

Table 5.7: Average PSNR and training time as a function of the integration
step ∆t.

Np PSNR Train time
1024 26.61 dB 8 m 13 s
512 26.52 dB 8 m 06 s
256 26.41 dB 7 m 30 s
128 26.24 dB 7 m 10 s
64 25.47 dB 6 m 55 s

Table 5.8: Average PSNR and training time as a function of the maximum
particles per slice Np

62

............................ 5.4. Importance of tracer parameters

Figure 5.1: This figure shows the rendered images from the trained datasets.
The first row shows the scenes from the MIP Nerf dataset (left to right): Garden
and Bicycle. The second and third row shows the images of scenes from the Nerf
Synthetic dataset (left to right downwards): Chair, Lego, Ship.

63

5. Results

Figure 5.2: Reconstructed scenes are realistically reconstructed only from views
which are close to the input ground-truth images. This figure shows parts of the
Garden scene from a view which is away from any of the input images.

Figure 5.3: This figure shows the progress of the Garden scene training process.
From left to right downwards, the images show the garden scene in iterations: 0
(Initial point cloud), 150, 300, 750, 1200, and 2000.

64

............................ 5.4. Importance of tracer parameters

Figure 5.4: This graph shows the growth of the PSNR score during the training
process of the outdoor scenes bicycle and Garden.

Figure 5.5: This graph shows the growth of the PSNR score during the training
process of the synthetic scene Lego, Chair and Ship.

65

66

Chapter 6
Conclusion

6.1 What was Achieved

This thesis has been focused on the modern rendering methods used in Novel
View Synthesis algorithms, which utilize 3D Gaussian volumetric particles
for the scene representation. I have defined commonly used methods for
representing the said 3D particles and explained their role in image synthesis.
I have also explored the common training pipeline, which is used in many
different projects in the same field, and explain each component of the pipeline.
I have mainly focused on the rendering component of the training pipeline,
where I explored three different approaches which can be used to render a
scene compromised of Gaussian particles.

6.2 Advantages and Disadvantages of Raytracing

As was shown in the previous chapter, the raytracing approach for rendering
3D Gaussian has the advantage in quality. Scene trained with a raytracing
pipeline (opposed to the rasterizing pipeline, for example) result in better
visual scores with often more compact scene sizes. Because of this, the scenes
can be stored more easily.

Another advantage of raytracing is the easier ability to combine different
representations of visuals. This means that the raytracing pipeline can be
expanded to also show 3D models with standard mesh representation inside
of the trained Gaussian scenes.

The main disadvantage of the raytracing approach is the performance of
the rendering. Raytracing approaches for Novel View synthesis can be 10x or
more slower than rasterization.

6.3 Possible improvements

There are many different interesting topics exploring different uses of the
3D Gaussian scene or building on top of the topics explored in this thesis,
which would be interesting to explore and document in more detail, such as
relightable scenes.

67

6. Conclusion......................................
The custom implementation of the rendering pipeline could also be improved.

There are many optimizations that can be used during the rendering process
that could improve the rendering time, which are not used in this project
due to a lack of time. There can also be better ways to utilize the NVIDIA
OptiX framework, which would allow even better GPU performance, which
I do not know about as an amateur in OptiX because of the lack of study
materials on the topic.

The custom implementation could also show some of the advantages of
raytracing, such as the ability to easily add custom models to the trained
scenes or the ability to simulate different camera effects.

The resulting pipeline could also have been tested in a larger number
of scenes, which could show more weaknesses or strengths of the chosen
approach.

68

Bibliography

[1] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkuhler, George Drettakis
3D Gaussian Splatting for Real-Time Radiance Field Rendering, ACM
Trans. Graph., 2023.

[2] Jiang, Yingwenqi and Tu, Jiadong and Liu, Yuan and Gao, Xifeng and
Long, Xiaoxiao and Wang, Wenping and Ma, Yuexin GaussianShader:
3D Gaussian Splatting with Shading Functions for Reflective Surfaces,
ArXiv preprint, 2023.

[3] Gao, Jian and Gu, Chun and Lin, Youtian and Zhu, Hao and Cao, Xun
and Zhang, Li and Yao, Yao Relightable 3D Gaussians: Realistic Point
Cloud Relighting with BRDF Decomposition and Ray Tracing, ArXiv,
2023.

[4] Vickie Ye, Ruilong Li, Justin Kerr, Matias Turkulainen, Brent Yi,
Zhuoyang Pan, Otto Seiskari, Jianbo Ye, Jeffrey Hu, Matthew Tan-
cik, Angjoo Kanazawa. Gsplat: An Open-Source Library for Gaussian
Splatting, ArXiv, 2024.

[5] Nicolas Moenne-Loccoz and Ashkan Mirzaei and Or Perel and Riccardo de
Lutio and Janick Martinez Esturo and Gavriel State and Sanja Fidler and
Nicholas Sharp and Zan Gojcic 3D Gaussian Ray Tracing: Fast Tracing
of Particle Scenes, ACM Transactions on Graphics and SIGGRAPH Asia,
2024.

[6] Hugo Blanc and Jean-Emmanuel Deschaud and Alexis Paljic. Volumetric
Gaussian-Based Ray Casting for Photorealistic Novel View Synthesis,
ArXiv, 2024.

[7] Guikun Chen, and Wenguan Wang A Survey on 3D Gaussian Splatting,
arXiv, 2024.

[8] Zhang, Qiang and Baek, Seung-Hwan and Rusinkiewicz, Szymon and
Heide, Felix. Differentiable Point-Based Radiance Fields for Efficient View
Synthesis, Association for Computing Machinery, 2022.

69

6. Conclusion......................................
[9] Mildenhall, Ben and Srinivasan, Pratul P. and Tancik, Matthew and

Barron, Jonathan T. and Ramamoorthi, Ravi and Ng, Ren. NeRF: repre-
senting scenes as neural radiance fields for view synthesis, ACM pages
99-106. 2021

[10] Barron, Jonathan T. and Mildenhall, Ben and Verbin, Dor and Srinivasan,
Pratul P. and Hedman, Peter. Mip-NeRF 360: Unbounded Anti-Aliased
Neural Radiance Fields. CVPR. 2022.

[11] Müller, Thomas and Evans, Alex and Schied, Christoph and Keller,
Alexander. Instant neural graphics primitives with a multiresolution hash
encoding. ACM pages 1-15. 2022

[12] Schönefeld, Volker Spherical harmonics, Computer Graphics and Mul-
timedia Group, Technical Note. RWTH Aachen University, Germany,
2005.

[13] Aaron Knoll, R Keith Morley, Ingo Wald, Nick Leaf, and Peter Messmer.
Efficient particle volume splatting in a ray tracer. Ray Tracing Gems:
High-Quality and Real-Time Rendering with DXR and Other APIs. 2019

[14] Alain Horé, Djemel Ziou. Image quality metrics: PSNR vs. SSIM. Inter-
national Conference on Pattern Recognition. 2010

[15] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, Oliver
Wang. The Unreasonable Effectiveness of Deep Features as a Perceptual
Metric. CVPR open access. 2018

[16] Alessio Regalbuto How We Wrote A GPU-based Gaussian Splats Viewer
In Unreal With Niagara, Medium, 2024. medium.com

[17] Puye. Introduction to Spherical Gaussians. Puye’s Blog. 2023. puye.blog

[18] NVIDIA OptiX 8.1 Programming Guide, NVIDIA, 2024.

[19] NVIDIA OptiX 8.1 API Reference Manua NVIDIA, 2024.

[20] Anaconda distribution. anaconda.com

[21] ImGui. github.com/imgui. 2014

70

https://medium.com/xrlo-extended-reality-lowdown/how-we-wrote-a-gpu-based-gaussian-splats-viewer-in-unreal-with-niagara-7457f6f0f640
https://puye.blog/posts/SG-Intro-EN/
https://www.anaconda.com/
https://github.com/ocornut/imgui

	Introduction
	Differentiable Point-Based Rendering
	Novel View Synthesis

	Gaussian Scene Training
	Spherical Harmonics and Spherical Gaussian
	Gaussian particle
	Training Overview
	Initialization phase
	Rendering
	Optimization
	Adaptive Density Control

	Rendering 3D Gaussians
	Radiance Color Evaluation
	Differential Rasterization
	GPU Differential Rasterization

	Differential Ray Tracing
	Initialization of the Scene
	GPU Raytracing
	Uniform Slab Size Volume Raytracing
	Naive Closest Hit Raytracing
	Adaptive k-Closest Hit Raytracing

	Custom Differential Gaussian Tracer
	Anaconda
	NVidia OptiX Framework
	Pipeline
	Usage and Integration

	Implementation
	Data Loading
	Gaussian Viewer
	Gaussian Tracer
	Scene Training

	Results
	Image Quality Metrics
	Peak Signal-to-Noise Ratio (PSNR)
	Structural Similarity Index (SSIM)
	Learned Perceptual Image Patch Similarity (LPIPS)

	Created scenes
	Training Performace
	Importance of tracer parameters

	Conclusion
	What was Achieved
	Advantages and Disadvantages of Raytracing
	Possible improvements

	Bibliography

