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Abstract

In recent years, the possibility of virtu-
ally browsing real-world locations has in-
creased due to the progress of and wider
usage of 3D reconstruction methods. Mod-
els of whole cities are even freely avail-
able in some cases. For the purposes of
a simple visualization of city sceneries at
nighttime to a simulation of light pollu-
tion, rendering would require to work with
many light sources, all at realtime.

This work focuses mapping out the
methods to render direct illumination of
night scenes with many light sources ef-
ficiently, implements suitable one using
Vulkan API with hardware raytracing sup-
port and showcases results on test scenes
built from open data of city models.

Keywords: 3D scene, citygml,
raytracing, Vulkan, ReSTIR, Light BVH

Supervisor: doc. Ing. Jifi Bittner,

Ph.D.

viii

Abstrakt

V posledni dobé je mozné castéji virtu-
alné zkoumat realné lokace kvuli pokroku
a Sirsimu vyuziti metod 3D rekonstrukce.
Dokonce v nékterych pripadech jsou k dis-
pozici modely celych mést. Pro ucely at
uz prosté vizualizace méstskych scenérii v
noc¢nich hodindch nebo az simulace svétel-
ného znecisténi, vykreslovani by vyzado-
valo brat v potaz hodné svételnych zdroju,
a to v redlném case.

Tato prace se zaméruje na zmapovani
metod pro vykreslovani primého osvétleni
nocnich scén s mnoha svételnymi zdroji,
vhodnou metodu implementuje pomoci
Vulkan API s podporou hardwarového
vrhani paprski, a prezentuje vysledky
na testovacich scénach vyrobenych na za-
kladé otevienych dat modeli mést.

Klicova slova: 3D scéna, citygml,
vrhani paprskt, Vulkan, ReSTIR, Light
BVH

Preklad nazvu: Vykreslovani no¢nich

meést
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Chapter 1

Introduction

In recent years, the possibility of virtually browsing real-world locations
has increased due to the progress of and wider usage of 3D reconstruction
methods. Models of whole cities are even freely available in some cases.
Inspiration for this work came from an online application rendering the city
of Prague [26]. It implements setting the day and time and positions the sun
accordingly to present an immersive image. But at night-time, the area is left
in ambient lighting only, as the application does not take real factors, like
many street lamps, into account. For the purposes of a simple visualization
of city sceneries at nighttime to a simulation of light pollution, rendering
would require working with many light sources, preferably real-time. Using
many light sources in the scene requires a lot of computation and it is time-
consuming. To reduce the computation time for every frame without using
complex acceleration structures, a state-of-art method called ReSTIR [3] is
used. An implementation of a city renderer utilizing hardware-accelerated
ray-tracing together with ReSTIR method is demonstrated on open geometric
and geographic data.




1. Introduction

This work is divided into 5 chapters. Chapter [2|introduces the problems of
night city rendering, mainly the existing methods of rendering with many light
sources. Used method for this work is overviewed in Chapter 3. Chapter |4
goes over the basics of Vulkan API and its hardware-accelerated ray-tracing
features. Chapter 5/goes over the implementation of a night city renderer built
for this work. Results are summarized in Chapter 6l And finally, Chapter [7
summarizes all work done.

In-process version of this work was presented and published at Central
European Seminar Computer Graphics (CESCG) 2025 [14].



Chapter 2
Related Work

The main focus of this work will be the so-called many-lights problem intro-
duced below. However, rendering at nighttime can be explored from multiple
points of view, which are also quickly overviewed in the end of this chapter.

B 21 Introducing the problem

Rendering, both real-time and offline, has to deal with the problem of solving
the rendering equation. Introduced by James Kajiya in 1986 [15], the rendering
equation describes how light is reflected at surfaces by accounting for all
possible incoming light directions and their contributions to the outgoing
radiance.

Local light reflection at a point x gives outgoing radiance L, in direction
Wo'

Lo(x,w5) = Le(x,wp) +/ L;i(x,w;) f(wi, X, w,) cos b;dw;, (2.1)
Q

where L. is light emission illuminating point x from direction w;, integral is
over the whole sphere €2, describing both reflection and refraction of light,
f is the bidirectional scattering distribution function (BSDF), and cos6; is
the dot product of normal vector n of the surface area around point x and
direction of w;, with negative values clamped to zero.

Let us define a TRACE function, which returns the point of the closest
intersection with scene geometry along a ray of given direction and origin.
If participating media is omitted, causing the radiance to be constant along
traced ray, the incoming radiance can be rewritten using outcoming radiance
and the TRACE function as:

L(x,w,) = Le(x,w,) + /Q L(r(x,w;), —w;) fr(wi, X, w,) cos Oidw;,  (2.2)

where, compared to the previous formulation, bidirection reflection distri-
bution function (BRDF) f, is used, TRACE function was substituted into the
formula as:

Li(x,w,) = Lo(r(x,w;), —w;), (2.3)

and indexes of incoming/outcoming indication are omitted.

3



2. Related Work

This form models the steady-state distribution of radiance in a scene. It is
integral, the unknown variable is both on the left side and right side, thus
analytical solution is in most cases not possible. The equation is recursive in
nature, because the computation of illumination at point = requires illumina-
tion computed at all visible points on the hemisphere, and again at visible
points for them, as illustrated in Figure [2.2. Algorithms solving the global
illumination in the scene look for such distribution of radiance, that fits the
equation.

r(x, ®)

Figure 2.1: The recursive nature of lighting equation, it is the main feature that
is used by path tracing [6].

This work focuses mainly on the direct illumination, so the recursive nature
can be cut off. Because L; includes only light coming directly from the light
sources in the scene, let us introduce the rendering equation light surface area
formulation for direct illumination as opposed to the previous ray direction
formulation. Using the substitution

cos 0

dw = dA - , (2.4)

r2
where A is surface area of the light source and r is the distance between point
x and the light source, as visualized in Figure 77, the formula becomes:

L(x,w,) = Le(x,w,) + /SL(r(y,y = X)fr(y = X,%,w,)G(x,y), V(x,y)dA,

(2.5)
where
X—Yy
y o Xx=—"7, (2.6)
Ix = Il
is a normalized vector in direction from point y to point x,
cos B, - cosf

G(x,y) = CO8 Ty CO8 Ty (2.7)

[Ix —ylI?

is a geometric term, and V' (x,y) is a visibility term between points x and y,
with value equal to 1 if no intersection can be found by tracing a ray from
point X to point y (or vice versa), and equal to 0 otherwise. The visibility
term V(x,y) is also the place in the computation where the TRACE function
is usually used again to confirm no intersection between the two points has
been found. This is considered a costly operation, its complexity rises with
the scene’s geometrical complexity.



2.1. Introducing the problem

Figure 2.2: Solid angle illustration [6].

For brevity onwards, let us simplify the integral part of the equation [2.5
by dropping the viewing direction 6, and visible point x as:

L= /S f(x)de, (2.8)

where

f(z) = L(x) fr(2)G(x), V (2). (2.9)

B 2.1.1 Importance Sampling (IS)

As analytical solution is usually not possible to obtain, the integral can be
approximated using Monte Carlo Importance Sampling (IS). The traditionally
used estimator has a form of

N Lo Sl
(L)is = % ; ol L (2.10)

by sampling N independent samples (points across light sources) from the
source probability density function p(z). The result remains unbiased as long
as p(x) returns positive results whenever f(z) is not zero. To reduce noise
and converge to the result quicker, either the number of samples N has to be
increased, which would noticeably add to the computational cost, or sample
proportionally to f(x), because the closer the p(z) is to the integrand, the
lower is the estimator error. However, that is usually infeasible in practice,
because f(x) is unknown until the time of computation and tracing, mainly
because of the visibility term V(x), but also due to the geometry term G(x)
and BRDF f,..

While sampling directly from f(x) is not practically done, drawing samples
proportionally to the individual terms in the integrand can be feasible. A
basic sampling strategy is cosine hemisphere sampling, where directions for
tracing are drawn according to the term n - w;, without using other knowledge

5



2. Related Work

of the material or light sources. Material sampling strategy chooses directions
with a probability proportional to f,(w;, X, w,)-(n-w;), the material’s reflective
properties. For glossy materials, this approach stands as highly effective, as
most light sources that contribute to the shading of the visible point of that
material are in directions close to the reflection direction, as illustrated in
Figure 2.3. However, for fully diffuse materials, material sampling strategy
is the cosine hemisphere sampling. In cases of small area/small spherical
light sources in the scene, for diffuse surfaces, the material sampling strategy
is inefficient, because the cone, in which the light source is visible from the
surface point is thin, thus with a small probability of a direction to be selected
in it.

Diffuse Lobe

i, Reflecting Ray

s

rrr I rrrry

Figure 2.3: Importance sampling is effective for specular materials, as it samples
mostly in the specular lobe’s direction [23].

In these cases, light sampling strategy is more appropriate. Light sampling
selects points on light sources in the scene directly instead of directions to
trace for closest intersection.

B 2.1.2 Multiple Importance Sampling

With a technique called Multiple Importance Sampling (MIS), sampling with
more strategies can be combined in a weighted estimator. For M strategies
and Ny samples for individual strategy, the estimator has a form of:

(LYMN %i%wmm (2.11)
"oaANsI T pl)

The formula adds use of a weighting function w™* for every strategy. The
MIS estimator remains unbiased as long as the sum of the weights wg of
a sample equals to one: M w™(z) = 1 whenever f(x) is non-zero, and
w™s(x) = 0 whenever p(z) = 0. While there can be other weighting functions
used, a balance heuristic for non-negative weights is proven to not be much

worse than any other possible heuristic.

mis _ NS 'ps(m)
W () = SN, (@) (2.12)

6



2.2. Many-lights Rendering

A widely used combination of strategies in MIS is light sampling and material
sampling.

B 2.1.3 Resampled Importance Sampling

When dealing with light sampling of many light sources in the scene or
complex BRDFs, especially useful is Resampled Importance Sampling (RIS).
RIS is a method that draws samples from a different source distribution
p, one that is easy to sample from and is sub-optimal to the complex one,
for example p « L.. It generates M candidate samples from a proposal
distribution p, x =x1,..., xps. Then, importance weight is computed for each
candidate sample x: @
T8 _ b
w"™*(x) (@)’ (2.13)
where p(z;) is the target complex PDF, that is hard to sample from. One
index z of a sample from these candidates is then selected according to the
discrete probabilities:
T8
plz | x) = @) (2.14)
> W (@)
Drawing samples y = z, multiple times and using it in a N-sample RIS
estimator that corrects the approximation and averages the N samples:

N . Mo
(LNM = ;V;(]";E;’;) = > ) (2.15)

estimates the integral in the equation 2.8. If M and N are both greater than
zero, and both the proposal distribution p and target p are greater than zero
if f is non-zero. Assuming N=1 for simplicity, the pseudocode for RIS is
shown in Algorithm [1l

RIS in this form requires computing cumulative distribution function
(CDF) and storing all the candidates and their weights until the final sample
is selected in the end. However, storing all past data would be inefficient if
multiple sample candidates are to be evaluated per pixel.

B 22 Many-lights Rendering

While the MIS estimator can already produce promising results for certain
scenes, scaling up the number of light sources in the scene either brings more
noise and/or computational cost. Even if the scene consists only of point
light sources and the ground truth image using direct illumination could be
computed without noise, the visibility term in the integrand is still a costly
computation.

Thus, the many-lights problem has posed an issue in the rendering scene
for decades now. Naive methods would just limit the number of light sources
for a given scene or scene part and manually pick the most desirable ones.

7



2. Related Work

Algorithm 1 Resampled Importance Sampling Pseudocode

Input: M number of candidates, ¢ pixel
Output: y sample, Y"M, 0" (z;) sum of RIS weights
X<— 9
Wm's — g
Wi 0
for i <1 to M do
generate sample x; ~ p
X —xUx;
wi*® <= p(xi)/p(@i)
w?”ZS — wT’LS + w;’ZS

sum sum -
.WTlS <_ .WT'IS U w;’ls
end for

compute CDF C from w"**
draw random index z € [0, M) using C' to sample oc w*
YTz

return y, w3

sum

For offline rendering nowadays, given GPU rendering acceleration, we could
theoretically use all of the light sources, at the cost of much more time
spent evaluating light sources that contribute almost nothing to the result.
With real-time rendering, however, this would not be acceptable at all. For
the given reasons, methods trying to solve the many-lights problem were
developed.

B 2.2.1 LightCuts

For offline rendering, a notable ray tracing method used to solve the many-
lights problem was introduced under the name LightCuts [22] in 2005. The
method simplifies the light sampling by using clusters of light sources. The
so-called cluster representatives, together with precomputed sums of light
source intensities, approximate all the light sources the clusters contain.

However, different parts of the image usually require different partitioning
of the light sources into the clusters. For this, the method uses a binary tree,
a global light tree, to form clusters of light sources by placing light sources
into leaves and then performing cuts of the same tree for different views and
positions in the scene. Every such cut is a set of nodes that every path in
the tree down from root to leaf node must contain exactly one node from the
cut set, resulting in a valid partitioning of the light tree into clusters of light
sources.

Choosing correct cuts and light tree build is essential to minimize the error
in the approximation of the light source cluster by its representative, to keep
the error under a noticeable threshold. Selection is visualized in Figure 2.4]
At each shading point, choosing the correct cut starts with a rough estimate
and goes deeper towards more partitioning until the threshold is met. Because
cluster’s representative is also one of its children nodes, lighting computation

8



2.2. Many-lights Rendering

has to be done only one more time during the traversal down the tree, because
the representative’s computation can be directly reused for one of the children

nodes.
} Clusters

Individual
Lights

Light Tree

Three Lightcuts
| |

Kie FHAR.

Figure 2.4: Different cuts visualization on the binary light tree. Colored
areas corresponding to the cuts below highlight surfaces, where the error is
indistiguishible[22].

Clusters, as nodes of the light tree, aim to group together similar light
sources in geometric, material, and visibility terms - this can be approximated
with spatial proximity and orientation similarity. Furthermore, in the case of
more than one light source type, one light tree is built per type. The tree is
built bottom-up, choosing to combine two clusters (or individual light sources)
that would result in the smallest possible new cluster in terms of a metric
computed as I¢ - (a2 + ¢ - (1 — cos Bc)?), where I¢ is a total intensity of the
cluster representative, ac is the length of cluster’s bounding box diagonal, 5S¢
is the half-angle of the cluster’s bounding cone, which is chosen for directional
type of light sources. The constant ¢ controls proportional influence of spatial
or orientation properties of the light sources. Each light source is its own
representative and cluster representative is always one of its two children
nodes. It is chosen randomly with a probability proportional to their total
intensities.

For offline rendering, LightCuts method offers a sublinear performance and
a possibility of global illumination approximation with virtual point light
sources (VP). However, because the same tree is used for the entire image and
the cut is chosen going from the root down, this repeated traversal results
in a sampling correlation, because the nodes on top of the tree have higher
probability of being chosen, which can lead to temporal instability.



2. Related Work

B Online Rasterized LightCuts

From real-time techniques, a rasterization method specialized for rendering
cities at night, proposed by Conte [I] in 2018, integrates of LightCuts onto
GPU for real-time use with rasterization. Due to the expected nature of
cities, this method proposes using varying number of lights for nodes in light
tree instead of two in the original binary tree. It is argued that this proposal
was made to not only reduce the depth of the tree but also to better adapt
to the city’s layout - having building windows at the same depth, clustered
into floors in a tree level above and floors into facades. The traversal is then
executed on GPU in a fragment shader, solving visibility of light sources
for close-by pixel groups using the light tree. This method is limited by its
rasterization nature, so expanding the method for global illumination or area
light sources would be complex.

B Stochastic LightCuts

Modified variant of LightCuts, called Stochastic LightCuts [20], was first
published in 2019. Apart from needing significantly fewer light source samples
to achieve similar results as the original variant, it also successfully creates
an unbiased lighting method.

To battle the sampling correlation, after the cut is found, the lighting esti-
mation is not computed from the representatives, but by randomly selecting a
light source in every cluster’s subtree (of the cut) with a hierarchical sampling
technique. Every light source is assigned a probability of being chosen in a
given subtree. The light source in the subtree is not chosen directly, but by a
traversal from root node of the subtree down to the leaf node, which is the
selected light source in the end. Nodes are picked during the traversal with
importance sampling.

B Real-time Stochastic LightCuts

In 2020, a method to accommodate Stochastic LightCuts to the GPU was
proposed [21]. It uses perfectly balanced binary trees, filling the structure
with so-called bogus lights with zero intensities up to the power of two size.
Furthermore, the light tree structure is changed into two-level structure,
roots of bottom-level perfectly balanced binary trees are used as leaves in the
top-level perfectly balanced binary tree. This allows for instancing and also
faster rebuilds, as a partial rebuild is sufficient.

Cut selection is not performed for each individual pixel but rather for
group of nearby pixels through Cut Sharing. This does not cause correla-
tion, as individual pixels then execute the hierarchical sampling technique
independently for the chosen shared cut.

10



2.2. Many-lights Rendering
B 2.2.2 Matrix Row-Column Sampling

A different prominent offline rendering technique is Matrix Row-Column
Sampling [19], first published in 2007. It uses a transfer matrix, using
light sources as rows and shaded visible points as columns, modelling their
interactions. Instead of computing every shaded point interaction with every
light source, it fully computes only a subset of rows and columns and then
reuses these calculations for the rest of the matrix by approximation. This
method can handle indirect light and area light sources, however, it is an
offline method.

B 223 Light BVH

A dynamic many-light sampling real-time ray tracing method was proposed
by Moreau et al. [2] in 2019. It works with a two-level bounding volume
hierarchy (BVH). BVH stores the light sources, which it uses to estimate
where the most important light sources for a given point on the to-be-shaded
surface are and sample mostly those, thus limiting the number of shadow
rays spatially.

The BVH is built on similarities in location and direction of the light sources
in the scene. In offline rendering, a single BVH for all light sources suffices,
but with dynamic scenes, the whole BVH would have to be rebuilt, causing
a bottleneck for real-time rendering. The method groups light sources into
separate bottom-level acceleration structures (BLAS), as shown in Figure [2.5.
For emissive meshes, it is advised to use one BLAS per one emissive mesh and
to split dynamic and static scene parts from one another. The BLLASes are
then grouped in a top-level acceleration structure (TLAS). With this division,
a moving light source causes its BLAS and TLAS to be rebuilt, while other
BLASes can stay untouched. This division also matches hardware ray-tracing
API, making it suitable for use with the GPU-accelerated ray-tracing.
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Figure 2.5: Light BVH build based on spatial similarity, light sources are stored
in the leaves and tree is traversed stochastically from top to bottom [18].

BVH traversal is performed stochastically, first down the TLAS, evaluating
an importance function. BLAS are traversed similarly.
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B 23 Rendering the Night Sky

Rendering at nighttime can be explored from multiple points of view with
different problems as the focus. An interesting problem to solve could be an
efficient computation of natural illumination of objects by the moon, stars,
as a full physically-based night sky model [8] delves into. Another interesting
factor is the inclusion of participating media in the atmosphere.

Bl 2.3.1 Theory behind participating media

Rendering realistic imagery of the outside world often has to deal with
participating media for effects such as smoke, rain, fog, or clouds. The
problem at hand, however, becomes significantly more complex, as the physical
simulation of light interaction is not only with the surface’s material, but
also with the volume the ray of light, or to be more precise - radiation, goes
through.

In the absence of the participating media, the radiance L along the ray
is presumed to be constant. From the point the ray enters the media till it
exits, three kinds of interactions are usually modeled: scattering, absorption,
and emission, as illustrated in Figure 2.6

N\
NN\

emission absorption

out-scattering in-scattering

Figure 2.6: Ray interactions with participating media [7].

In point in space z along the ray in the direction w, the participating
medium is typically described with an absorption coefficient k,(x), scattering
coefficient r4(x), extinction coefficient x¢(x), phase function p(x,w,,w;), and
scattering albedo Q(z). This is a simplified model, as the factors mentioned
above also vary for different wavelengths.
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2.3. Rendering the Night Sky

B Reduction of radiance

The absorption phenomenon causes the loss of radiance transported by the
ray as parts get transformed into different forms of energy, usually heat.
The relative reduction of radiance is modeled with the previously mentioned
absorption coefficient r,(z)[m 1] as:

dL(z,w) = —kKq(z)L(z,w)dx, (2.16)

for the differential distance dx along the ray.

The coefficient of scattering k4 (z)[m 1] is used for the model of the so-called
out-scattering. Out-scattering is a phenomenon during which the radiance
gets also reduced because the radiant propagation changed direction. It is
expressed similarly to the absorption phenomenon:

dL(z,w) = —ks(z)L(z,w)dx. (2.17)
Together, the reduction of radiance is modeled as their sum:

dL(z,w) = —ke(z)L(z,w)dx — ks(x)L(z,w)dz

= —k(x)L(z,w)dz, (2.18)

where ki (x) = Kq(x) + ks(x) is the extinction coefficient.

B Increase of radiance

Emission within media causes the increase of the radiance by self-luminous
properties, for example, black-body radiation. That is a thermal electromag-
netic radiation, emitted by an idealized object called a black body — an
object that absorbs all incident light and re-emits energy solely based on its
temperature, not its material properties or color. The radiance increase due
to emission is modeled fairly simply as:

dL(z,w) = Ke(z)Le(x,w)dx. (2.19)

Scattering can also lead to the increase of radiance in the direction w of the
ray, in which case it is named in-scattering, caused by radiance incoming from
all directions (on a sphere Sph) in the media to the point = that is scattered
to the direction w. The increase due to in-scattering is modeled as:

Ks () )

dL(z,w) = p -
P

L(z,w;) - p(z,w,w;)dw;, (2.20)

where the phase function p(z,w, w;) defines the probabilities of light scattering
from an incoming direction w; into an outgoing direction w. It can be modeled
with many variants, however, all must obey | Sph p(z,w,w;)dw; = 1. The phase
function is mostly modeled as fully rotationally symmetrical in regards to
the w; direction, thus the used parameter is simpler than two directions w
and w;, but only cosine of an angle between them cosf = w - w;. They also
can vary a lot for different wavelengths.
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The simplest phase function is equivalent to the diffuse BRDF material but
with participating media, as it is a constant, isotropic function p;s,(z, w, w;) =
ﬁ. The Rayleigh phase functions model how light is scattered by small
particles (their radii about 10 times smaller than the wavelength of the light),
such as smoke or gas molecules in the atmosphere. They are used for effects
like the blue sky and reddish sunsets. They are also sometimes combined with
Mie phase functions, which are used for scattering modeling for larger particles
in atmospheric models, like aerosols, water droplets, dust, smoke, and cloud
particles. The Mie functions are rather complex and can be approximated by
the Henyey-Greenstein (HG) phase functions.

B Light transport equation

Putting the differential equations for the increase and reduction of radiance
along the ray together results in the following:

dL(z,w)

i kt(z)J (x,w) — Ke(x) L(z,w). (2.21)

where J(z,w) represents so-called source radiance which models the increase
of radiance previously described. This equation is vastly complex, espe-
cially when multiple in-scattering in the atmosphere is considered (modelling
multiple bounces of light rays which then contribute to the increase of radi-
ance). Methods usually iterate over the traced ray and compute increases
and decreases of radiance in intervals, either fixed or adaptive.
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Chapter 3
ReSTIR

Bitterli et al. [3] introduced a different approach that attempts to solve
the many-lights problem. It is a reservoir-based spatiotemporal importance
resampling method for direct illumination, ReSTIR. It does not rely on
complex data structures that would require time-consuming rebuilding as
with lights BVH in the previous method. It instead reuses once-computed
sampling probabilities, both temporally and spatially between pixels. This
method proved to be more efficient in terms of visual quality and speed of
convergence, while also being scalable.

B 31 Weighted Reservoirs

ReSTIR can limit its use of shadow rays to only two for each pixel if perfor-
mance is limited. It uses structures, so-called weighted reservoirs, to hold
chosen light source candidates to sample in the current frame.

B 3.1.1 Weighted reservoir sampling

Reservoir sampling is a group of algorithms for randomly selecting N items
from a stream of unknown or very large size M. It does so in a single pass
and can be used for a dataset too large to fit into memory.

This form, which selects a random subset from the stream uniformly,
is extended by weighted reservoir sampling (WRS). WRS is a technique
used to sample a N-subset of elements from a stream of M elements with
unequal probabilities, based on some weights assigned to each element as
pi = w(z:)/ 5L wizy).

In a simple variant (N=1), a weighted reservoir structure carries one element
candidate y, total number of seen elements M, sum of their weights wg,;, and
a control weight W. The reservoir structure has a defined update function,
which is used to evaluate a new element x; with its weight w(x;) in the stream.
The reservoir element selection either discards the new element or accepts it,
discarding the previously saved one. After the stream is gone through, the
structure carries the selected element. Weighted reservoir structure’s contents
and update function pseudocode is shown in Algorithm 2l
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3. ReSTIR

Algorithm 2 Weighted Reservoir

struct RESERVOIR
y <+ 0
Wsum < 0
M+ 0
W<+ 0
function UPDATE(ELEMENT z;, WEIGHT w(z;), COUNT m;)
Weym < Wsuym + w(xz)
if rand() < (w(x;)/wsum) then
Y x
end if
end
end

B 3.1.2 Streaming resampled importance sampling

While RIS in Section 2.1.3 needed to store all M elements for final element
selection, applying WRS to RIS transforms it into a streaming algorithm,
streaming resampled importance sampling (SRIS), that can produce the result
saving only one element at a time (in the case of N=1). Pseudocode is shown
in Algoritm 3l Weights are computed according to Equation 2.13 as RIS

weights w(z) = p(z)/p(z).

Algorithm 3 Streaming RIS using WRS

function SRIS(PIXEL q)
Reservoir r
for i < 1 to M do
generate sample x; ~ p
r.update(x;, w(x;))

end for
_ 1 | rwsum
r.W <+ by M
return r
end

Control weight W in the reservoir during SRIS is derived from Equation|2.15
under the assumption that N=1. It is used during the final pixel shading
as shown in Algorithm 4. Weighted reservoir structure is used per image
pixel and spatial complexity of this array of reservoirs is dependent on image
resolution (and N, but we assume it is equal to 1), not on number of candidate
elements M. However, time complexity is still linear in regards to M.

This process can be referred to as initial candidate selection. Elements to
update into reservoirs are light sources in the scene.
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Algorithm 4 Shading an image with SRIS

function SHADEPIXEL(RESERVOIR r, PIXEL q)
return fo(r.y) - r.W

end

for all Pixel ¢ € Image I do
Image I[g] < shadePixel(SRIS(q),q)

end for

B 32 Temporal and Spatial Reuse

While the use of candidate selection through weighted reservoirs already
decreases the variance enormously, ReSTIR makes use of the already com-
puted information to further polish the result with non-complex computing
operations, instead of increasing the number of candidates M, to which the
time complexity is linear. After the initial candidate selection is executed on
the image pixels, a function is used to combine reservoirs into one without
the need to store or access all of their individual candidate elements. Each
reservoir can be treated as a sample by itself and can thus be updated into
another reservoir, as shown in Algorithm [5|

Algorithm 5 Combining Reservoirs

function COMBINERESERVOIRS(PIXEL ¢, RESERVOIR s,t)
Reservoir r
r.update(s.y, pgs.y - s.W - s.M, s.M)
r.update(t.y, pgt.y - t.W -t.M, t.M)
r.W m - Dsum
return r
end

B 3.2.1 Visibility reuse

Before the reuse of any pre-computed values takes place, it is advised to
first perform visibility reuse. Because the initial candidate selection usually
does not consider the visibility term for the PDF evaluation (for performance
reasons as ray tracing for every candidate would be expensive in computation),
larger scenes will have a problem with visibility noise as candidates might be
selected with the path obstructed and thus the visible point effectively not
illuminated with a possibility of propagating this candidate through reuses in
the next steps.

To reduce this noise, a shadow ray should be traced right after the initial
candidate selection. If the view of the selected candidate light source to
the visible point is obstructed, the control weight W should be set to zero,
eliminating its chance to be propagated further. Furthermore, zeroing out
the control weight W gives the visible point in the pixel a higher chance of
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Figure 3.1: Choosing initial light source candidate with SRIS and weighted
reservoirs, performing a subsequent visibility test.

selecting a different important light source propagated from reuses in the
next steps instead. The run of the algorithm up until this moment, with
SRIS and visibility reuse steps is shown in Figure |3.1.

B 3.2.2 Temporal reuse

Bitterli et al. [3] argue that computations executed in frames rendered prior to
the current one can be reused because pixels are expected to have correlating
shading properties and important light sources for illumination. While that
holds true for a completely static scene, with an animated camera, motion
vectors are to be utilized in a lookup for the position of a given pixel in the
previous frame.

On a second rendered frame, combining the previous reservoir and the
current reservoir (from the SRIS initial candidate selection) with Algorithm 5
results in a reservoir that examined double the amount of candidate elements
(assuming the number of candidates in initial candidate selection per pixel
per frame stays constant), while the time complexity did not double.

B 3.2.3 Spatial reuse

Just as visible points in the image are expected to somewhat share material
and geometric properties, and important light sources, similar idea can
be applied to neighboring pixels around the currently examined one with
some limited radius. Algorithm [5| can be easily expanded for k& number of
reservoirs to combine, not just 2 as its traditionally used for temporal reuse.
Furthermore, Bitterli et al. [3] showcase that combining k neighboring pixel’s
reservoirs can be done repeatedly to further polish the resulting image.

B 3.2.4 Considering bias

Spatiotemporal reuse as presented above brings in bias, because each pixel
different integration domain and target distribution PDF, which breaks the
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assumptions of RIS. Without compensating for this mismatch, the estimator
becomes biased.

B Origin of the bias

Biggest contributors are differences in normal orientation of visible points,
their visibility of selected important light sources and also their material
properties. For example, while two visible points might have similar material
properties and might share normals, one point might be shadowed from a very
close and powerful light source, which is almost guaranteed to be sampled
by the other point. Combining these two reservoirs can propagate this light
source to the shadowed point, which is shaded as not illuminated in return.
For these reasons, bias typically results in an image that is darker than the
ground truth even if computation and time resources are scaled up.

Bitterli et al. [3] demonstrate that bias stems from a RIS control weight
W(x, z). Assuming N=1 in the RIS estimator [2.15, we can define function
W(x,z) for y =z, as:

W= 1) o LS ) = ) Wi
ris Y ﬁ(y) Mi:1 v)) — Yy y <)
. o (3.1)
W(x,z)= R Zzzlw(a;,)

The expected value of W (x, z) is reciprocal of the sample PDF for the result
to be unbiased. However, with varying PDF’s it is equal to the following

instead:
112y |

ply) M
where |Z(y)| is the number of non-zero candidate PDFs whenever target PDF
is non-zero. If | Z(y)| = M, the equation is reduced to E,_—,[W(x, z)] = 1/p(y)
and thus unbiased. But ff |Z(y)| < M, the 1/p(y) is further decreased by a
multiplication with a number between 0 and 1. This is the cause of darker
resulting images.

Eﬂﬂz:y[W(X7 Z)] =

(3.2)

Il Unbiased RIS

According to Bitterli et al. [3], the bias can be eliminated by adjusting the
control RIS weight W(x, z). The estimation:

Eron W2 = o5 17 3 e (33)

for some function m(z;) while 3=,c 5,y m(z;) = 1 fulfills the requirements to
be unbiased. The RIS weight W (x, z) is then modified to:

1 M
W(x,z) = 7@ -m(z,) - Zw(ml) (3.4)
Z i=1
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The easiest valid m(z,) is proposed to be simply 1/|Z(x,)|, the number of
so-far non-zero PDF light source candidates. Use of this unbiased reservoir
combining can be seen in pseudocode in Algorithm |6

Algorithm 6 Combining Reservoirs Unbiased with Uniform m(x)

function COMBINERESRVUNBIASED(PIXELS ¢1,¢2,...,qx, RESERVOIRS
T1y T2y ey T'k)
Reservoir s
for all Reservoir r € Reservoirs r1, 73, ...,7; do
s.update(r.y, pgr.y - r.W -r.M, r.M)
end for
Z +0
for i + 1 to M do
if py,(s.y) > 0 then
Z<+— Z+r.M
end if
end for
m<« 1/7
s.W « ]3(1(713'?4) © S Weym, * M
return s
end

However, it is argued that this approach, while valid, brings in a lot of
noise. Combination with MIS balance weights is advised as:

pz(xz)

S pr(an)” (35)

m(x,) =

which requires evaluation of all PDFs for a given sample during the control
weight W computation once. Unfortunately, this might involve shadow
ray-tracing, as the visibility term might be crucial for PDF evaluation.

B 33 Algorithm overview

Thus the full algorithm, composing the previously gone through parts together,
for a single frame does the following for all pixels with visible surface is shown
in pseudocode, in Algorithm [7. For every pixel where a visible point in the
scene is traced, initial candidate selection is executed through SRIS. After
that, visibility reuse, one shadow ray cast towards the selected light source, is
done. This ensures favoring different light source samples and no propagation
of this light samples if obstructed. After temporal reuse and spatial reuse,
a ray towards the final selected light source in the pixel’s reservoir and the
pixel is shaded.
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Algorithm 7 ReSTIR

function RESTIR(RESERVOIRS prev[ImageSize], IMAGE I)
Reservoirs reserv < newArray[ImageSize]
// Initial candidate selection
for all Pixel ¢ € Image I do

reserv(q] <— SRIS(q)
end for
// Visibility reuse
for all Pixel q € Image I do
if shadowed(reserv[g|.y) then
reserv(q].W < 0
end if
end for
// Temporal reuse
for all Pixel ¢ € Image I do
q + getPrevPixel(q)
reserv[q] < combineReservoirs(q, reserv|ql, prev(q'])
end for
// Spatial reuse
for all Iteration ¢ <— 1 to iters do
for all Pixel ¢ € Image I do
Q@ + getNeighbors(q)
R+ {reserv(d]|¢’ € Q}
reserv(q] <— combineReservoirs(q, reserviq|, R)
end for
end for
// Shade
for all Pixel ¢ € Image I do
I[q] < shadePixel(reserv(q], q)
end for
return reserv
end

. 3.4 ReSTIR Variants and Extensions

The ReSTIR algorithm comes in variants as it gives a lot of implementation
freedom in terms of how probabilities and weights are computed, how light
source candidates are selected, and how lights are sampled. The original
ReSTIR for direct illumination by Bitterli et al. [3] has since been adapted
also for global illumination as ReSTIR GI[4], improved as a generalized path
tracer, ReSTIR PT[5] and expanded to interact with participating media as
ReGIR.
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B 3.41 ReSTIR GI

To apply ReSTIR’s principles to the indirect illumination computation, in-
direct lighting paths (one-bounce, two-bounce) need to be represented and
sampled. Reservoirs do need to sample directions, and need to be able to
reuse them both temporarily and spatially to fully utilize the advantages
of ReSTIR, as shown in Figure [3.2. Spatial reuse on different frame pixels,
different visible points x, in the scene, Ouyang et al. [4] represent the paths
through visible points themselves.

%
Initial 2-Bounce Reused
Samples Sample samples
X % x X
Discard

invalid
X samples *®

Fail to r
o 6 0 0 0 CYRPSrSr— § Fail to reuse

Initial Sampling Reuse Samples

Figure 3.2: Sampling and reuse in ReSTIR GI, samples are generated by
sampling random directions to find intersections and computing radiance at
them by using path-tracing [4].

While initial candidates in original ReSTIR for direct illumination were
produced by light sampling, ReSTIR GI’s initial samples, named sample
points x, are produced as the closest intersection of the traced ray of a
randomly sampled direction from a visible point in the scene. Source PDF
for the direction sampling can be uniform, a cosine-weight distribution, or
based on BRDF/BSDF of the visible point’s material. Outgoing radiance Lo
at the sample point is then estimated.

This estimation at the sample point can either use emission and direct
lighting only, making the algorithm compute a one-bounce global illumination,
or path tracing can be leveraged, where n path-traced bounces result in n
+ 1 bounce global illumination computation. The sample is then saved in a
struct representation, adding 7, as the normal of the surface at the visible
point z, and s as the normal of the surface at the sample point:

struct SAMPLEGI
float3 x,, ﬁ)v
float3 x4, s
float3 Iio

end

The algorithm uses three buffers with per-pixel stored info. Samples
produced by the initial sample generation described above are stored in an
initial sample buffer to be reused later. Same as with ReSTIR DI, temporal
reservoir buffer contains a reservoir for every pixel from the previous frame
and also a spatial reservoir buffer for spatial reuse.
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B Spatiotemporal reuse

Temporal reuse uses the initial sample buffer to update the temporal reservoir,
similarly to ReSTIR DI. However, with spatial reuse, the differences between
visible points’ positions and surface normals need to be compensated for as
the source PDFs are going to differ. The sample can be reused if the PDF
is transformed to the different pixel’s solid angle space. This is done as a
division by the Jacobian determinant of this transformation [?]:

P I
T cos(df) I — o P

(3.6)

where z,, are visible points (vertices) for pixels p and ¢, and ¢ are angles
formed by the normal vector at the sample point x5 and vectors x, — 5.

B 3.42 ReSTIRPT

ReSTIR path tracing variant further extends ReSTIR GI, and compared
to the former handles glossy surfaces, reflections, refractions, and overall
convergence better. Because traditional RIS assumes independent, identically
distributed samples, which is violated in ReSTIR due to sample reuse, spatial
and temporal, Lin et al. [5] introduced generalized resampled importance
sampling (GRIS) to allow reuse of paths with unknown or intractable PDFs
while maintaining convergence and unbiasedness.

GRIS extends RIS to support correlated samples from multiple domains
using so-called shift mappings. Given a function to integrate f with its
domain €2, and samples x; drawn form domains €2;, those samples are then
mapped with the shift mapping y; = T;(z;) to samples y; in the domain (.
Resampling weights w; and control weights W; under these new conditions
are derived with a new technique, MIS resampling.

B 3.43 ReGIR

ReGIR variant uses a world-space grid of voxels. Each cell contains multiple
reservoirs, so-called light slots, where one light sample is stored per light slot.
The grid can be built in multiple ways, as a uniform grid that spans the
entire scene (suitable for small scenes only), a grid in clipped range around
the camera, a sparse hash-grid, or even an adaptive hash-grid with smaller
cells near the camera. Original ReGIR proposal [12] used 163 cells and 512
light slots per cell, but both parameters depend on the scene’s complexity.
Light selection is done in two steps - first, for every light slot in every
grid cell, SRIS is executed to select initial light source candidates, sampled
uniformly from all the light sources in the scene. It is advised to choose a
very simple target PDF p(x) for this initial selection, like only light source
intensity attenuated with the distance squared at the center of the grid cell.
Temporal reuse can also be used for grid-based approach for more stable
results. It is to be used right after the first step of light selection. Every light
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slot is merged with corresponding light slots from the previous frames (more
than one can be used, default history of 8 frames back).

In the second step, a grid cell, where the visible point is located, is found.
All the light slots in this grid cell are merged together to prepare for shading.
However, a classic reservoir merge would be high for so many reservoirs (512),
so SRIS is used again instead. This time samples are not drawn uniformly
from the light slots, but it uses the target PDF p(x) from the previous step
divided by an average reservoir weight of this grid cell as source PDF for this
second step. Target PDF for current resampling is based on the visible point
material’s BRDF.

Finally, the visible point is shaded using BRDF, light intensity and corre-
sponding RIS weight.
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Chapter 4
Vulkan API

In September 2018, Nvidia introduced their GeForce RTX and Quadro RTX
GPUs, bringing support for hardware ray-tracing. This opened the possibility
for wide usage of real-time ray-tracing rendering. This feature can be used
through Vulkan’s ray-tracing extensions.

Vulkan is an open standard for 3D graphics and computing as of today
developed by the Khronos Group. It is a low-level cross-platform API. It
grants developers more control over the code’s functionality on the GPU, thus

making way for more efficient usage of GPU resources than the previously
widely used OpenGL.

. 4.1 Resources

Similar to OpenGL, in the Vulkan API, buffers are essential GPU resources
used to store arbitrary data such as vertex positions, indices, uniform data,
or compute data. But unlike OpenGL, Vulkan provides and requires explicit
control over buffer creation, memory allocation, and data transfer. While
it enables high-performance graphics and compute workloads, it also places
more responsibility on the developer.

Buffer up close, as a VkBuffer object, represents a region of memory that
can store a sequence of bytes. The buffer does not include memory by default
— memory must be allocated and bound manually. Buffers are usually used
as: vertex buffers for vertices of chosen format, index buffers for vertex
information reuse, uniform buffers for common data of all rendered vertices,
storage buffers for larger data - mostly in compute shaders, and staging
buffers for CPU — GPU data transfer. Their usage needs to be indicated
during creation, together with memory type.

Upload of any buffer data from CPU to GPU is typically done through
the use of a host-visible staging buffer. Data is first uploaded there and then
copied to a device-local buffer through a command.

A different type of resource are the so-called push constants. They provide
a highly efficient mechanism for passing small amounts of dynamic data
from the CPU to any shader stage. Unlike uniform or storage buffers, push
constants do not require separate buffer resources or memory allocations.
They are a part of a command buffer, they are performant and are typically
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used to update parameters of rendering.

B a2 Rendering Pipeline

The rendering pipeline in Vulkan is a configurable series of programmable and
fixed-function stages. The pipeline is explicit and immutable, which means it
must be created in advance with all configurations defined.

The rasterization process is done typically with the graphics pipeline type.
It is run by a "draw" call and follows standard rasterization pipeline stages
(input assembly, vertex shader, optional tesselation shaders, optional geometry
shader, rasterization, fragment shader and blending). Resources for rendering
need to be bound to the pipeline for access on the device. This is done
through descriptor set objects.

B 43 Command buffer and synchronization

Unlike traditional graphics APIs where commands are executed directly,
Vulkan requires that all rendering and compute commands be recorded into
command buffers before execution. These command buffers, represented by a
VkCommandBuffer handle, are submitted to a Vulkan queue for processing
by the GPU.

Command buffers are allocated from so-called command pools. Once
allocated, a command buffer enters the initial state. To record commands,
vkBeginCommandBuffer() must first be used on the buffer, transitioning it
into the recording state. During this phase, all desired rendering, compute, or
transfer commands (starting with "VkCmd") are recorded. After recording is
complete, the command buffer is ended with vkEndCommandBuffer(), making
it executable. It can then be submitted to a queue via vkQueueSubmit()
for execution by the GPU. After execution, the buffer may be reset using
vkResetCommandBuffer() (or the entire pool can be reset), returning it to
the initial state for reuse. This is illustrated in Figure 4.1
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Reset -~ ‘. Reset Begin
e \\\
’ \\\ So
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\ ~~a
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K Invalidate Tesl . \
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| Pending Q{ Executable |
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Figure 4.1: Vulkan command buffer lifecycle [18].
However, commands and resources must be manually managed to prevent
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synchronization issues. Vulkan provides synchronization primitives: fences,
semaphores, and events. "VkFence" is used for GPU-to-CPU synchronization,
allowing the CPU to know when GPU operations have completed. "Vk-
Semaphore" synchronizes operations between command operations on the
GPU. "VkEvent" is used to signal and wait for specific points in the pipeline
on the GPU without needing a full CPU-GPU synchronization.

For correct execution and memory access order across GPU operations,
pipeline barriers and memory barriers are usually used. A pipeline barrier
acts as a synchronization point that controls the execution order between
commands and ensures that memory writes are visible to subsequent reads.
Using vkCmdPipelineBarrier(), it is inserted into a command buffer, with
specified source and destination pipeline stages, memory access types, and
affected resources. Within a pipeline barrier, memory barriers are used to de-
scribe how memory dependencies should be handled between different pipeline
stages. They ensure that operations like writing to an image or buffer in one
stage are completed and made visible before reading from that same resource
in a later stage. Three types of barriers are provided: "VkMemoryBarrier"
for global memory dependencies, "VkBufferMemoryBarrier" for buffer-specific
access, and "VkImageMemoryBarrier" for image layout transitions and access
control.

B 4.4 Hardware accelerated raytracing

Vulkan currently offers acceleration structure and ray tracing pipeline ex-
tensions. They enable hardware-accelerated ray tracing on NVIDIA RTX
graphics cards by supporting the use of a recursive ray tracing pipeline, accel-
eration structures, and ray tracing special shaders. Instead of a VkCmdDraw()
calls, ray tracing pipeline uses vkCmdTraceRaysKHR () command.

Top Level

(lnstancew (lnstancew Instancew (lnstancew

DI

)
—

Bottom-Level AS ‘ Bottom-Level AS ] Bottom-Level AS

] NV Il

Figure 4.2: Acceleration structure schema [9].
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4. Vulkan API

B 4.4.1 Acceleration structures

Vulkan API provides two-level acceleration structures for efficient ray traversal
and ray-scene intersection computations, which are managed hardware-wise.
Bottom-level acceleration structures (BLAS) are for holding the actual geom-
etry of models, and each one can encapsulate one or more buffers, as shown
in Figure 4.2. Instances of the models and their transformation matrices are
then provided to the top-level acceleration structure (TLAS). Dynamic scenes
require TLAS to be rebuilt with rigid animations, both BLAS and TLAS
require rebuild and update if the geometry itself is transformed.

B 4.4.2 Ray shaders

With raytracing extension, new types of shaders are available. This application
uses ray generation shader, ray miss shader, and ray closest hit shader. Rest
provided by Vulkan API are any hit shader and intersection shader.

Ray generation shader is run for every pixel and based on the camera
setting casts a ray into the scene using traceRayEXT() function provided by
Vulkan API and the extensions. This shader must always be implemented
for the ray tracing pipeline to work.

Ray tracing through acceleration structure traversal is carried out and
depending on traversal results, miss or hit shaders are run. Hit shader is then
allowed to use the traceRayEXT() function once more for shadow rays. The
progression of ray shaders is showcased in Figure 4.3

Ray generation
shader

TraceRayEXT()

h 4

Acceleration
structure traversal

. Geometry
Mo hit, hit
. Ray closest
Ray miss shader hit shader

Figure 4.3: Ray shader execution in Raytrace.

Closest hit shader acquires hit object, hit primitive and hit point infor-
mation, ray direction, pixel coordinates and transformation matrices for the
instance both to world and to local coordinates. It returns computed color
values back to ray generation shader.
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4.4. Hardware accelerated raytracing

Miss shader used directly from ray generation shader can return environ-
ment map texture values if turned on in the application, otherwise it returns
clear color back to ray generation shader. The application then uses a second
miss shader that confirms no hit for shadow rays.

B Shader binding table

Shader binding table (SBT) is a structure that connects ray tracing pipeline
to the appropriate acceleration structures. It is passed to the vkCmdTraceR-
aysKHR() command to determine which shader to invoke for each ray event.
The SBT is divided into regions of a "ray generation table", which indicates an
entry point ray generation shader for ray tracing pipeline, then a "miss table"
for ray miss shaders, "hit group table" for closest hit, any hit, and intersection
shaders and also optional "callable table", which is for general-purpose shader
functions that can be invoked from other ray tracing shaders.
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Chapter 5

Implementation

This section will describe important points for the implementation of this
work. It is done with Vulkan API in C++ using NVIDIA nvpro-samples
framework [9].

To enable hardware ray tracing support, extensions:

VK_KHR_ACCELERATION STRUCTURE_EXTENSION NAME,
VK_KHR_RAY TRACING PIPELINE_EXTENSION NAME,
VK_KHR_DEFERRED HOST OPERATIONS EXTENSION NAME

are needed. With them, use of a recursive ray tracing pipeline, acceleration
structures, and ray tracing special shaders is made possible.

The application has the following lifecycle: window and Vulkan initializa-
tion, application class initialization, scene loading and building, creation of
resources for GPU - buffers, descriptor sets, and pipelines, then a main loop,
and clearing of resources as showcased in Figure |5.1

Update uniform
settings

- - Creation of
Window and Vulkan Application - ) . .
Initialization Initialization > Scene building DescrlptO(Sets —>» Main Loop Update dynamic
and Pipelines resources
Clear Resources Raytrace

Figure 5.1: Overview of application lifecycle.
Main loop updates uniform buffers and all dynamic resources, raytraces

scene and adds GUI. The implementation allows for the result to converge,
and the number of pixel values used can be set in the GUIL

B 51 Scene Building

Because this work focuses mainly on the rendering of cities, there was a need
for a format that multiple real-world cities are available in and also that
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5. Implementation

Figure 5.2: Example of CityGML class diagram - building [I3].

encapsulates more semantic information than pure geometry. This is fulfilled
by the CityGML format standard [10].

B 5.1.1 CityGML

CityGML is an open standard used for describing 3D models of landscapes and
cities developed by the Open Geospatial Consortium. It is an implementation
of Geography Markup Language (GML), an XML encoding for geographical
data, ISO standardized.

The format supports geometrical 3D representations of city objects spatially
grouped into recursive hierarchies, for example, walls with windows can be
grouped under a building floor [13]. Features can carry topological information
between its subgeometries. Every object can be labeled under a specific type,
for example vegetation, city furniture, building, bridge, terrain, water body
etc. Example of class diagram for building is shown in Figure 5.2

Every object in the conceptual model is either of type feature, top-level
feature, or geometry. Geometries, features, and top-level features all carry a
featurelD, a unique identifier in the entire dataset. Furthermore, features and
top-level features can also contain an identifier, which would be the same for
all features that describe the same object - as each object can have multiple
versions within the same dataset. The featureID can be used for referencing
within the dataset, typically for the use of geometries within features, or
materials and textures for them. Thus topological relationships for shared
geometry, or object instantiation within a scene graph are realized.
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5.1. Scene Building

| Spatial representation

The format describes five main LOD levels; LODO is typically the terrain
model, LOD1 approximates city buildings as blocks, LOD2 roughly describes
the exterior of individual city buildings and LOD3 provides detailed architec-
ture models, as can be seen in Figure LOD4 was intended for the addition
of interiors; it was later, however, removed from the official conceptual model.

LODO LOD1 LOD2 LOD3

N}H%Y’ ‘

Figure 5.3: LODs in cityGML format [13].

Cities are represented under a root node CityModel, with CityObject nodes
as children. CityObject nodes can represent and contain various things, but
it is mostly terrains as TINRelief nodes and Building nodes. Building node is
an aggregation of building parts, usually thematic surfaces like ground, roof,
wall surface, etc., building installations like balconies and stairs, or for more
detailed models even openings like doors and windows, individual rooms and
furniture.

Main element of city object’s geometry is usually a polygon. Polygons in
GML are required to be planar surfaces or almost-planar, allowing small bends
and inaccuracies within a given small threshold. Polygons are defined with one
or more boundaries, LinearRing nodes. LinearRing node contains an ordered
sequence of points in 3D space, that forms a closed non-self-crossing or -self-
touching boundary. Polygon always has one as an ExteriorRing boundary, but
can also include representation of holes as InteriorRing boundaries. Polygon
has a defined normal vector. It is also important to note that geometry
represented in this format is usually not triangulated by default, although a
special variant of polygon does exist in GML as a Triangle element, a polygon
bounded by four points with no InteriorRings.

If two polygons share an edge and their normals are in the same direction
but they otherwise do not overlap or cross boundaries, they can be grouped
into a CompositeSurface. Polygons can also be grouped together much less
conservatively into an unstructured set called MultiSurface. MultiSurface
geometry does not need to be connected, oriented a certain way or non-
overlaping. In contrast a so-called Solid is a set of polygon boundaries,
where each two polygons either do not intersect or share points and edges
in-between, normal vectors of the defined surfaces point to the outside of the
object that the Solid represents and all polygons are connected. A special
type of CompositeSurface is TriangulatedSurface that consists of Triangle
polygons only. If two (or transitively more) Solids (partly) share a surface and
otherwise do not intersect, they can be further grouped into a CompositeSolid
element.
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EFE IF building ( )

FOR every analyze building

gml file root L J
get city object analyze city object

ELSE analyze geometry

A produce model object

Figure 5.4: Parsing of the city object during scene building.

Bl 5.1.2 Internal representation

The application stores vectors of model references and instance references in
the following format:

struct ObjModel

{
uint32_t nbIndices{0};
uint32_t nbVertices{0};
nvvk: :Buffer vertexBuffer;
nvvk: :Buffer indexBuffer;
nvvk: :Buffer matColorBuffer;
nvvk: :Buffer matIndexBuffer;

};

struct ObjInstance

{
glm: :mat4 transform;
uint32_t objIndex{0};

};

Each model stores its vertices with position, normal, color, and texture
coordinates (not used in this implementation). Material contains values for
phong shading. Simpler models (for cars and lamps) in Wavefront .obj are
loaded into the application with the framework’s provided loader.

For CityGML models, this implementation used an open source CityGML
model loader for C++, libcitygml. 1t provides a functionality to parse city
models of this format into a C++ instance of a citygml::CityModel object.
By recursively requesting geometries and child objects, the whole city model
is traversed as diagrams showcase in Figure |5.4] and |5.5.

B 5.1.3 City object traversal

During the traversal, the application stores every object labeled as a Building
as one model together with all its child nodes’ geometries. All other geometry
types are stored as one model each, not grouped together (this is applied
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5.1. Scene Building

FOR every 4 analyze geometry ]

geometry yuw

FOR every

[ analyze building sub)buildin: }[ analyze building ]

IF not part

. —

Figure 5.5: City gml structure traversal during scene building.

mainly to a terrain model). In the current implementation, for every model,
one instance is created.

Every geometry node is first pre-scanned for sizes of buffers that need to
be allocated. As mentioned previously, surfaces in cityGML format do not
have to be triangulated, and typically aren’t. This implementation uses a
build of the libcitygml library that provides a tessellator for needed geometry
triangulation. Every polygon in the geometry nodes contains lists of vertices
and their indices. This is also the first instance where the library’s code had
to be adjusted for this implementation, as the tessellation did not preserve
normal vectors, so with few small changes, the normal vector is correctly
preserved in the Polygon object itself.

Because every vertex needs to be processed and transformed to a different
format for this implementation anyway, differences between cityGML and
Vulkan coordinate systems are solved during this processing (y and z axis
coordinate switch, up flip) and not by applying transformations real-time.

Temporary vertex and index buffers are filled either as a single geometry
for non-buildings or as a union of geometry and sub-geometries for building
nodes. After the sub-tree is processed, model object can be produced. Model’s
buffers on the device are allocated and data submitted, an object descriptor
for access in shaders is created. An instance of the object is also saved in
the scene, together with transform if provided. Temporary vertex and index
buffers are cleared. Geometry processing is showcased in Figure |5.6l

B 5.1.4 Materials

During the geometry processing, shared predefined materials are also assigned
to individual primitives. Material properties can be adjusted at runtime
inside the GUI for the terrain, roofs, windows, walls and other. These groups
are differentiated based on the cityGML semantic labelling as surfaces and
geometry contain this information under a "type" property. However, this is a
place for a second adjustment in the libcitygml library that needed to be done.
Neither geometry nodes nor the object nodes contained this information most
of the time, as geometry nodes are typically predefined in the gml format
files and later only referenced in the building node, which got lost in the
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test on material
selection

test on window
generation

A
FOR every
index
IF windo
generate windows

Figure 5.6: City gml geometry processing.

preallocate resources
FOR every
|
polygon process polygon
analyze geometry

FOR every
vertex

analyze geometry

FOR every
sub)geometr

final structure production. The code was appropriately changed to retain
type information in individual polygons for easier information access. Every
primitive is then assigned a material index corresponding to the type of
polygon it came from.

B 5.1.5 Window Generation

As wall surfaces can be recognized during the polygon inspection, this imple-
mentation provides a very simple window generation algorithm. Firstly, the
normal vector of the polygon is evaluated. If it is perpendicular (within a
threshold) to the scene’s up vector, it is tested further. If bounding rectangle
of the polygon is of given minimal surface area, width and height, it is deemed
eligible for window generation.

The area of the bounding rectangle is divided into fixed size window areas
and centered, With a non-zero margin, new rectangles are created from two
triangles on every window area, shifted a small threshold in the direction of
the polygon’s normal vector forward, to in front of the wall surface. Wall
partition is shown in Figure [5.7. Triangles are assigned a window material
index and vertices get light color with random tint. Generated windows’
buffers are stored separately from the rest of the geometry and they are also
kept track of as separate light sources. Generated windows in the application
are shown in Figure 5.8/

Through the GUI, ratio of windows lit up and not lit up is given. On
change of the value, windows in the scene are iterated through and assigned
a status of "on" or "off" taking the ratio as the probability. The appropriate
material is then chosen at run-time in the shader according to this property.

B 5.1.6 Light Sources

The implementation supports light sources as point lights, sphere lights (by
adding radius to the point light position) and emissive triangles. In the city
scenes, street lamps, windows and car lights pose as light sources. While
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5.1. Scene Building

A

Figure 5.7: Wall partition for window generation. Window areas form a rectan-
gular grid of fixed-size cells the centered inside the wall rectangle. Each window
area holds a window - two triangles of new geometry each. Green is the normal
vector of the wall surface

street lamps and car lights can (in the case of point lights use) already contain
position and color information, for windows, the position needs to be uniformly
generated on the surface and color is drawn from window vertices. Meanwhile,
window area lights need to retain index information to appropriate buffers
about model instance and vertices. Based on these requirements, light source
instance is represented as a unified struct:

struct LightSource
{

vec3 pos;

vec3 col;

uint type;

uint midx;

uint vidx;

uint on;

uint idx;

Intensity and attenuation is controlled through global parameters. Indexing is
also unified, shaders assume fixed number of the static lights and the dynamic
lights, thus the light sources can be ordered and indexed as: the static lights
first, then the dynamic ones (if the scene is built as dynamic) and the area
lights (windows), whose number varies depending on the chosen lit-up ratio.
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5. Implementation

Figure 5.8: Showcase of generated windows(blue) on found wall surfaces(red) in
Prague scene. They add #60,550 triangles to the scene, 2 per window.

B Street lamps

Positions of real-world light sources were extracted as XML file from Open-
StreeMap, an open, community-maintained map database. Light sources
obtained are mainly of types "street_ lamp", "lantern" and "floodlight". All
nodes include latitude and longitude information, are loaded into the applica-
tion with xercerc XML parser for C++.

Light sources from XML are parsed into StreetLamp instances.

class StreetLamp

{
size_t idx;
glm::vec3 pos;
double lat;
double lon;
}

Then position is computed from latitude and longitude. For the Prague scene,
the precise conversion to Kiovak’s projection [17], that the scene uses, was
implemented; for the rest of the cities, the computation is not as accurate
and relies on manually defining latitude and longitude bounds on the city
model.

As the street lamps mostly do not contain information about elevation,
they get later, together with car way points if added, grounded by a separate
ray tracing pipeline. It simply finds the intersections with the ground in the
down direction from the sky and the data is read back from the GPU to
process.

The light source is not only added as a point light (spherical light), but
also a model instance of a light source outer object, in the case of test scenes
for this work - a lamp, and a visualization model instance of the light source
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5.2. ReSTIR

itself, which is masked in the shadow ray cast to not obscure the shadow ray
into the light source, but still be visible.

B Dynamic light sources

Windows are treated as emissive triangle light sources, while also being
dynamic, as they can be made active/inactive at run-time. Fully dynamic
light sources are also lights of moving cars through the scene. These have
manually predefined paths in the individual scenes, made out of line segments,
that instances of car models drive through in an animation loop. While
the cars cycle through all the paths, the paths are not cyclic. The format
of loaded path points is very simple XML of latitudes, longitudes and end
parameters for individual points. End set to true signals, that said point is
the end of the track and that the animation should not be interpolated to
the next one, rather just jump. Dynamic light sources are kept in separate
buffers for updating from the CPU.

B 5.1.7 BLAS and TLAS

BLAS are created only once, as the city scenes do not contain deformations
of geometry. After all models in the scene are loaded and windows generated,
BLAS is built for each registered model by transforming model’s geometry into
VkAccelerationStructureGeometryKHR geometry information representation
and built using nvpro-samples helper functions.

TLAS is built afterwards, from all model instances in the scene with
references to their built BLASes. However, as there are rigid animations in
the scenes, TLAS needs to be rebuilt every time some object is animated,
changing the instance’s transformation matrix.

B 52 ReSTIR

For ReSTIR implementation, reservoirs had to be implemented according to
the schema in Algorithm [2] as:

struct Reservoir
{
Sample s;
float w_sum;
float M;
float W;
}s

Reservoir stores light source candidate as a Sample structure. This sample
contains all the information needed for shading and reuse: vec3 position, vec3
normal, vec3 color, float pdf, a previously mentioned unified index of the
light source, and a light type.
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5. Implementation

B 5.2.1 Candidate selection

The implementation follows the algorithm steps presented in Chapter 3. PDF
is computed as suggested by Bitterli et al. [3] by p = p - L. - G, where p is a
very simple computation of the Phong model, L. is the light source’s emission
(length of its color vector multiplied by the intensity parameter), and G is a
geometric term of the cosine of the angle between the light direction vector
and the surface normal vector, divided by the squared distance of the visible
point to the light source. This PDF is unshadowed for faster computation.
Candidates are sampled uniformly from all active light sources, and also
uniformly on their surface (for emissive triangles and spherical lights) and
their number depends on global setting anywhere between one to forty. SRIS
is performed on a temporary Reservoir structure.

B 5.2.2 Reuse

After candidate is selected through SRIS as outlined in Algorithm [3], a shadow
ray is traced towards the candidate light source sample to check the occlusion.
If the sample is occluded, reservoir’s control weight is zeroed out.

For temporal reuse, pixel’s position is firstly reprojected to the previous
frame with the camera matrix from the previous frame and the visible point’s
world position, as illustrated in Figure |5.91 The computation directly mirrors
rasterization pipeline approach, ending with the visible point’s position in
framebuffer space in the previous frame. Reservoir structure produced by
candidate selection is then merged with a reservoir from this reprojected
position taken from a storage buffer of past frame reservoirs.

@ W

N
&

Figure 5.9: Temporal reprojection, camera position and orientation changed
from the past frame, framebuffer space projection with past frame’s camera
matrix of the currently visible point is needed.

Afterwards, produced reservoir is placed into a storage buffer. Hit point
and ray info is also stored, because memory barrier must be inserted into
the execution to read correct values during the spatial reuse. Spatial reuse is
thus executed in a ray generation shader after the execution is let through
the barrier. Number of neighbors to merge and the radius to choose them
in during spatial reuse is directed by a global parameter from the GUI. To
lessen bias, the Algorithm [6]is used. Also the difference in direction of surface
normals in the pixels is limited by a threshold, same for the differences in
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5.3. Exploration and Visualization Mode

depth. However, to eliminate bias completely, full, shadowed PDF would
need to be computed, as occluded surfaces which are close to the light are
otherwise much darker than ground truth. As this is a costly operation that
requires cast of the shadow ray, this setting is optional in the GUIL.

® & Check
visibility ¥
‘@i Y e e @
RXD
Trace ray to Light source Check visibility Temporal Spatial Final ray
visible point candidates % by ray tracing reuse reuse trace + shade

Figure 5.10: ReSTIR implementation overview. From visible point, to candidate

selection in SRIS, to visibility reuse, temporal reuse, spatial reuse and final
shading.

B 53 Exploration and Visualization Mode

After the whole process, visualized in Figure [5.10, a final shadow ray is
traced and weight zeroed out, if occluded. Then, for normal exploration
mode, the visible point gets shaded and optionally mixed with past results
to converge. Or, a visualization mode can be switched to instead. There
are two visualization modes available, first one shows which light source is
the most influential as the output color is set according to the chosen light
source’s index, and then outgoing radiance visualization, with values mapped
to a color gradient. These different modes in a scene with city model of
Rotterdam, can be seen in Figure 5.11}
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(a) : Model loaded, simple illumination.

(d) : Outgoing radiance visualization.

Figure 5.11: Different implementation modes, shown on the city model of
Rotterdam.
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Chapter 6

Results

This chapter showcases results on three city model scenes - Prague, Rotterdam
and Montreal. They are compared in terms of both visual quality and
performance.

Testing was done on a desktop computer with NVidia GeForce RTX 3060
16GB graphics card, AMD Ryzen 5 5600G CPU, 32 GB of memory, and
Windows 10 OS. For comparison with this work’s efforts, a raytracer sampling
all light sources across few frames was also added. This work used FullHD
resolution for rendering, meaning there are 2M temporal reservoirs maintained
and at about 6M rays traced per frame (visible point, candidate testing, final
shading - with spatial visibility testing, it is even more).

B 61 Testing scenes

The city scenes, of Prague, Rotterdam and Montreal, were chosen based on
their data availability in the cityGML format and street lamps registered in
OSM. They differ vastly both in the scene complexity and in the light source
count. These differences are introduced in Table 6.1l

Scene H #triangles ‘ #generated ‘ #windows ‘ #lamps ‘ F£cars ‘

Prague 1,081,353 60,550 30,275 337 22
Rotterdam 978,240 18,952 9,476 913 24
Montreal 1,587,696 2,524 1,262 115 -

Table 6.1: Comparison of scene characteristics: number of triangles, of those
how many are generated (windows), how many windows there are, lamps and
cars count. Lamps and cars are instanced (lamp model #72 triangles, car model
#60 triangles), but added all into these statistics.

B 6.1.1 Prague

The first testing scene used for this work was obtained from Prague’s Geo-
Portal website. It consists of the model of part of Prague’s buildings with
terrain [26], as can be seen in Figure |6.1!

The scene uses light sources exported from OpenStreetMap shown in
Figure [6.2a, and can also be loaded with a dynamic option to load tracks for
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Figure 6.1: Prague scene area.

cars. The waypoints are shown in Figure 6.2b], they are three sets representing
three different tracks. City scene after loading and building can be seen in
Figure Render with ReSTIR method is shown in Figure

R

(a) : Light sources from OSM through (b) : Car waypoints in Prague, exported
OverpassTurbo. from mapy.cz and processed.

Figure 6.2: Prague scene resources

(a) : City scene after load and build. (b) : City scene rendered with ReSTIR.

Figure 6.3: Prague city scene loaded, built and rendered.
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B 6.1.2 Rotterdam

Rotterdam scene was exported from an online application [24] by a selection
of three different regions, as Figure [6.4] shows.
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Figure 6.4: Rotterdam scene area (approximate).

Similarly to the Prague scene, street lamps were also exported from OSM
and tracks from mapy.cz. This is showcased in Figure As the conversion of
the GPS coordinates into Rotterdam model’s system (probably EPSG:25832,
but it is not specified in the portal) is not as precise as Prague’s, car waypoints
are visibly off in the renders.
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(a) : Light sources from OSM through (b) : Car waypoints in Rotterdam, ex-
OverpassTurbo. ported from mapy.cz and processed.

Figure 6.5: Rotterdam scene resources.

Loaded and built Rotterdam city scene is shown in Figure Figure
then shows the render using the ReSTIR method. The window generation
in this scene produced far fewer windows than in the Prague scene. While
the wall surfaces were still found appropriately and the test on wall width
passed, many building models here are short in height and thus the test on
wall surface did not pass.

45



6. Results
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(a) : City scene after load and build.

Figure 6.6: Rotterdam city scene loaded, built and rendered.

B 6.1.3 Montreal

3D data of the city Montreal are available directly at the city’s website [25].
The resources are shown in Figure The coordinate system used, NAD83
SCRS (98) Projection MTM-08, is very different from the implementation’s
general GPS latitude/longitude converter and thus no car waypoints were
added as none actually projected onto streets.

(a) : Montreal scene area. (b) : Light sources from OSM through
OverpassTurbo.

Figure 6.7: Montreal scene model and resources.

Loaded and built scene for the Montreal city can be seen in Figure [6.8al
Render using the ReSTIR method is showcased in Figure

(a) : City scene after load and build. (b) : City scene rendered with ReSTIR.

Figure 6.8: Montreal city scene loaded, built and rendered.
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The Montreal scene generated the least window instances out of the three
models. The scaling of the provided models differs, the model is smaller after
import compared to the others. And thus less windows generate, because the
wall surface area is smaller.

B 6.2 Visual Quality

Even without reuse, just candidate selection through SRIS, immediately
illuminates the scene considerably well, for Prague scene using the street
lights, effect of the number of SRIS samples is shown in Figure 6.9l

SRIS 1 sample 5 samples 10 samples 20 samples 30 samples 40 samples

Figure 6.9: From left to right the number of samples used for initial candidate
selection in SRIS increases and so does the visual quality. It can be noted that
above 30-40 samples, the quality does not increase as much anymore, but the
performance decreases.

However, as Figure [6.10 demonstrates, selected light samples for the scene
are still considerably noisy, but with the addition of temporal and spa-
tial(bisased /unbiased), the noise decreases dramatically. Biased version
produces black noise around corners, as visibility is not tested in spatial reuse.

SRIS 32 samples

Figure 6.10: From left to right, full ReSTIR method is pieced together, ending
with the unbiased variant, which traces shadow rays during spatial reuse - note
the dissapearance of black noise around shape corners. Bottom row showcases
the selected samples in the visualization mode.
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Compared to the reference (by sampling all the lights in the scene), the
unbiased variant of ReSTIR produces a close to identical render image. Such
comparison can be seen in Figure [6.11|

Reference

~

(b) : Montreal scene, root mean square error (RMSE) of 13.63.
Figure 6.11: Unbiased ReSTIR produces an image very close to the reference

image.

Comparison of converging first few frames of ReSTIR to the reference is
shown in Figure [6.12. Associated root mean square error values are presented
in a graph in Figure [6.13] The error stabilizes at around 11.0 for this shot.
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reference

Figure 6.12: ReSTIR convergence frame by frame compared to the reference.
Prague scene used.
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Figure 6.13: RMSE for the first 10 frames produced by the ReSTIR method.
Prague scene used.

Dynamic light sources are present in Prague and Rotterdam scenes, for
example of render with cars in Rotterdam, see Figure [6.14. With dynamic
light sources in the scene, it is better to not let the result converge, because
it will bring in a lot of ghosting, as full TAA is not implemented yet. This,
however, allows for a lot of noise.
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Figure 6.14: Cars as dynamic light sources in the Rotterdam scene. The car in
the middle of the image is moving relatively fast compared to the on the left,
and notice light selection ghosting on the ground from the car in the center. The
reservoirs of these illuminated points still hold light sample from the car and it
takes a few frames to lower its importance.

. 6.3 Performance

Testing showed that in terms of performance, the most influential are the
ReSTIR settings and memory access. Testing with only street lamps gives
the measurements in Table [6.2

’ Setup H Prague Scene ‘ Rotterdam scene ‘ Montreal scene ‘
SRIS#1 144/6.94 204/4.90 173/5.78
SRIS#5 141/7.09 202/4.95 172/5.81
SRIS#10 139/7.19 199/5.02 173/5.78
SRIS#20 139/7.19 196/5.10 172/5.81
SRIS#30 137/7.30 190/5.26 165/6.06
SRIS#40 130/7.69 188/5.32 156/6.41
TEMP 123/8.13 173/5.78 150/6.67
ReSTIR 99/10.10 140/7.14 121/8.26
Unbiased 85/11.76 125/8.00 98/10.20

Table 6.2: The table tracks FPS/(ms) for every city scene under candidate
selection only for the first six rows, with number representing the number of
candidates, then with temporal reuse, then with spatial reuse (making it full
ReSTIR) and then with shadow ray casting, making it unbiased. Illumination is
by street lamp light sources only.

However, as Table [6.3| shows, the performance goes drastically down once
window lights get sampled too. Testing various ratios of the lit-up windows,
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this seems to be an issue with very inefficient access to storage buffers with
resources for the window area lights. That is also proved by the fact that given
smaller resolution, when fewer threads access the same data, the performance
increases. Also as ReSTIR itself does not depend on the number of lights,
as its number of candidates and shadow rays is fixed based on settings, this
is the only explanation. It would also explain why the Prague scene suffers
from this performance decrease the most, as its number of generated windows
is the highest.

’ Setup H Prague Scene ‘ Rotterdam scene ‘ Montreal scene ‘
SRIS#1 137/7.30 174/5.75 169/5.92
SRIS#5 86/11.63 154/6.49 144/6.94
SRIS#10 59/16.95 137/7.30 125/8.00
SRIS#20 37/27.03 108/9.26 99/10.10
SRIS#30 30/33.33 88/11.36 83/12.05
SRIS#40 21/47.61 79/12.66 74/13.51
TEMP 21/47.61 72/13.89 69/14.49
ReSTIR 21/47.61 62/16.13 62/16.13
Unbiased 21/47.61 55/18.18 55/18.18

Table 6.3: The table tracks FPS/(ms) for every city scene under candidate
selection only for the first six rows, with number representing the number of
candidates, then with temporal reuse, then with spatial reuse (making it full
ReSTIR) and then with shadow ray casting, making it unbiased. Illumination is
by street lamp lights and the window lights.

Performance also depends on the number of neighbors used for spatial reuse,
as demonstrated in Table [6.4. Although these performance tests showcased
high settings, the visual quality stays consistent for the optimal setting of 32
initial candidates and 5 neighbors, which does not decrease performance as
much. Dynamic light sources decrease performance by about 3 FPS, given
that TLAS needs to be rebuilt and it is not done asynchronously in this work.

Prague Rotterdam Montreal
Setup bias ‘ unbias bias ‘ unbias bias ‘ unbias

#1 123/8.13 | 92/10.87 | 163/6.13 | 163/6.13 | 142/7.04 | 140/7.14
#5 98/10.20 | 83/12.05 | 139/7.19 | 125/8.00 | 120/8.33 | 99/10.10
#10 | 83/12.05 | 60/16.67 | 135/7.41 | 95/10.53 | 102/9.80 | 71/14.08
#20 | 64/15.63 | 39/25.64 | 112/8.93 | 63/15.87 | 81/12.35 | 45/22.22

Table 6.4: The table tracks FPS/(ms) for every city scene under full ReSTIR,
both biased and unbiased, with 40 initial candidates, depending on set number
of neighbors for spatial reuse in individual rows. Street lamp illumination only.

. 6.4 Discussion and Future Work

The main limitation of this work is the performance. The performance of
ReSTIR should remain unaffected by the number of light sources present
in the scene, only add noise. However, as the number of generated light
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6. Results

windows increases, the performance degrades significantly. This suggests that
the current implementation does not scale efficiently with scene complexity.
A crucial direction for future work will be the optimization of memory
access patterns and synchronization mechanisms, which currently represent
significant bottlenecks.

Another critical limitation is the observable noisiness in rendered images,
which can largely be attributed to the inefficient light candidate selection
strategy. For this work, candidate selection was performed uniformly, without
accounting for the relative contribution of each light source. A better sampling
strategy could be used, such as power-based selection, which would potentially
improve rendering quality. However, considering that the city scenes are
usually characterized by a high number of similar low-intensity "minor" light
sources, the benefits of power-based sampling may not be as high. Additionally,
integrating a denoising step could further help minimize visual noise and
enhance output quality.

A broader goal for future development is the visualization of light pollution.
This could be achieved by extending ReSTIR toward a generalized path tracer
and incorporating participating media like smoke, fog, clouds, and rain into
the rendering pipeline. This could be achieved through ReGIR grid sampling
in conjunction with ray tracing to accurately model light interactions within
these media.

Furthermore, an important point to note is the need for enhancement
of code modularity. The current implementation is not very flexible for
scalability and integration of new methods and their variants.
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Chapter 7

Conclusion

Firstly, I described the task at hand and mapped out existing methods of
rendering scenes with many light sources and possibly for light pollution and
participating media effects. Out of the methods mentioned, the ReSTIR
method seemed to surpass the others mentioned in terms of both quality,
performance, scalability, and flexibility.

I outlined features of Vulkan API which is used for this work. Then
I described the implementation’s architecture, functionality, data loading,
scene building, and rendering principles and details that were laid out. The
implementation is able to load and build the city test scenes, together with
lights and car tracks, and render them using the ReSTIR method, as I
showcased on three different city scenes made from open city data. This work
is limited in performance and lack of modularity, both of these issues, together
with focus on rendering with participating media, is a topic for future work.
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Appendix A

Abbreviations

3D 3-dimensional

BLAS bottom-level acceleration structure

BRDF bidirectional reflectance distribution function
BVH bounding volume hierarchy

CHC coherent hierarchical culling

FPS frames per second

GML Geography Markup Language

GUI graphic user interface

IS importance sampling

ISO International Organization for Standardization
MIS multiple importance sampling

RIS resampled importance sampling

SRIS streaming resampled importance sampling
TLAS top-level acceleration structure

UI user interface

URL uniform resource locator

WRS weighted reservoir sampling
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Appendix B
Attached files index

img
src
bin
"README"

B img - screenshots

B src - source code
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Appendix C

User Manual

B c.1 Build

Application is dependent on xercesc, libcitygml and nvpro_ core libraries.
Precompiled xerces and libcitygml binaries are prepared for x64 Windows
architecture in the /src/bin folder.

Either use them or build xercesc, then use it to build libcitygml included
in src/libcitygml (forked and modified!!).

These DLLs are expected next to the application binary on Windows
architecture.

Library nvpro_ core should be inserted as a folder into /src.

. C.2 Run

Application needs city and terrain model, light positions, and optionally car
track points to run as:

/src/media/city.gml
/src/media/terrain.gnml
/src/media/lights.xml
/src/media/tracks.xml

Prepared lights and tracks are already included for Prague tile 57-1 from
GeoPortal(as shown in the Prague scene description), models are not. Terrain
and city models are of cityGML format and are expected to be in Kiovak’s
projection.

Given the appropriate media files, the application can be run from the root
folder. If tracks are available the application accepts an additional parameter
—dyn which initiates loading and preparing of cars in the scenes.

. C.3 Controls

Figure illustrates the usage of this application.
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C. User Manual
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Figure C.1: Application controls.
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