
Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Graphics and Interaction

Procedural Content Generation in Unreal
Engine

Lukáš Jůza

Supervisor: doc. Ing. Jiří Bittner, Ph.D.
May 2025

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

518306 Personal ID number:​Jůza Lukáš Student's name:​

Faculty of Electrical Engineering Faculty / Institute:​

Department / Institute: Department of Computer Graphics and Interaction

Open Informatics Study program:​

Computer Games and Graphics Specialisation:​

II. Bachelor’s thesis details

Bachelor’s thesis title in English:​

Procedural Content Generation in Unreal Engine

Bachelor’s thesis title in Czech:​

Procedurální generování obsahu v Unreal Enginu

Name and workplace of bachelor’s thesis supervisor:​

doc. Ing. Jiří Bittner, Ph.D. Department of Computer Graphics and Interaction

Name and workplace of second bachelor’s thesis supervisor or consultant:​

Deadline for bachelor thesis submission: ___________​Date of bachelor’s thesis assignment: 08.02.2025

Assignment valid until: 20.09.2026

___________________________​___________________________​
prof. Mgr. Petr Páta, Ph.D.​

Vice-dean´s signature on behalf of the Dean​
Head of department’s signature​

III. Assignment receipt

The student acknowledges that the bachelor’s thesis is an individual work.​
The student must produce his thesis without the assistance of others, with the exception of provided consultations.​
Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.​

Student’s signature​Date of assignment receipt​

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

518306 Personal ID number:​Jůza Lukáš Student's name:​

Faculty of Electrical Engineering Faculty / Institute:​

Department / Institute: Department of Computer Graphics and Interaction

Open Informatics Study program:​

Computer Games and Graphics Specialisation:​

II. Bachelor’s thesis details

Bachelor’s thesis title in English:​

Procedural Content Generation in Unreal Engine

Bachelor’s thesis title in Czech:​

Procedurální generování obsahu v Unreal Enginu

Guidelines:​

Review procedural generation methods for video game environments. Focus on the support of procedural​
content generation (PCG) in Unreal Engine 5. Describe the PCG tools available in UE 5 and try to connect​
them with procedural methods known from the literature.​
Create practical examples of procedural generation of different environments (e.g., forests, meadows, mountains,​
cities) and procedural creation of individual objects (e.g., houses and building elements). Integrate the partial​
outputs into a project demonstrating the procedural generation of an infinite open world. Focus on the efficiency​
and smoothness of the PCG generation. Minimize visual artifacts when moving in the generated scenes and​
focus on maintaining constant rendering times.​
Conduct performance tests that evaluate the dependence of visual quality and rendering speed on the important​
parameters of the PCG setup, such as scene partitioning density, minimal generation distance, and memory​
allocation limits.​

Bibliography / sources:​

[1] Short, T., Adams, T. (2017). Procedural Generation in Game Design. CRC Press.​
[2] Gregory, J. (2017). Game Engine Architecture. 3rd ed. CRC Press.​
[3] Togelius, J., Yannakakis, G. N., Stanley, K. O., Browne, C. (2011). A Survey of Procedural Content​
Generation. IEEE Transactions on Computational Intelligence and AI in Games, 3(3), 166-184.​
[4] Togelius, J., Shaker, N., Nelson, M. J. (2016). Procedural Content Generation in Games: A Textbook and​
an Overview of Current Research. Springer.​
[5] Epic Games (2024). Procedural Generation in Unreal Engine 5. Available at: https://dev.epicgames.com/​
(Accessed: 7 October 2024).​

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

FAKULTA ELEKTROTECHNICKÁ
FACULTY OF ELECTRICAL ENGINEERING
Technická 2
166 27 Praha 6

DECLARATION

I, the undersigned

Jůza Lukáš Student's surname, given name(s):
518306 Personal number:
Open Informatics Programme name:

declare that I have elaborated the bachelor’s thesis entitled

Procedural Content Generation in Unreal Engine

independently, and have cited all information sources used in accordance with the Methodological Instruction
on the Observance of Ethical Principles in the Preparation of University Theses and with the Framework Rules
for the Use of Artificial Intelligence at CTU for Academic and Pedagogical Purposes in Bachelor’s and Continuing
Master’s Programmes.

I declare that I used artificial intelligence tools during the preparation and writing of this thesis. I verified the
generated content. I hereby confirm that I am aware of the fact that I am fully responsible for the contents of
the thesis.

Lukáš Jůza In Prague on 13.05.2025
..

student's signature

Acknowledgements
I would like to express my sincere grat-
itude to Mr. J. Bittner, Ph.D. for his
invaluable guidance and for granting me
the freedom to choose and develop this
topic in my own way.

Declaration
I declare that I have completed the sub-
mitted thesis independently and that I
have cited all sources used.

In Prague, 2 May 2025

Prohlašuji, že jsem předloženou práci
vypracoval samostatně, a že jsem uvedl
veškerou použitou literaturu.

V Praze, 2. května 2025

vi

Abstract
This thesis introduces a cohesive system
for infinite, on-the-fly world generation in
Unreal Engine 5.5. We present a multi-
threaded C++ terrain generator lever-
aging custom noise functions to stream
diverse landscapes without main-thread
stalls. In parallel, we develop modu-
lar PCG Graphs for procedurally plac-
ing natural elements (biomes, vegetation)
and man-made structures (roads, fences,
buildings, villages). Custom Blueprint
and C++ nodes enable advanced filtering
criteria—such as biome rules—and the
combination of world partitioning with
background-task scheduling preserves con-
stant frame rates.

Keywords: procedural generation,
Unreal Engine 5.5, C++, terrain
generator, PCG Graph, infinite world,
biome, chunk

Supervisor: doc. Ing. Jiří Bittner,
Ph.D.
Technická 2,
166 27 Praha 6

Abstrakt
Tato práce představuje soudržný systém
pro nekonečnou generaci světů za běhu
v Unreal Engine 5.5. Předkládáme více-
vazebný C++ generátor terénu založený
na vlastních šumových funkcích, který do-
káže plynule streamovat různorodé kra-
jiny bez blokování hlavního vlákna. Sou-
časně jsme navrhli modulární PCG grafy
pro procedurální rozmístění přírodních
prvků (biomy, vegetace) a lidských staveb
(silnice, ploty, budovy, vesnice). Vlastní
Blueprint a C++ uzly umožňují pokročilé
filtrování dle biomu a díky dělení světa na
zóny a zpracování úloh v pozadí zachovává
systém konstantní snímkovou frekvenci.

Klíčová slova: procedurální generování,
Unreal Engine 5.5, C++, generátor
terénu, PCG graf, nekonečný svět,
biotopy, sekce

Překlad názvu: Procedurální vytváření
obsahu v Unreal Engine

vii

Contents
1 Introduction 1
2 Foundations and Design 3
2.1 Procedural Content Generation:

Concepts and Algorithms 3
2.2 Related Work 5
2.3 Project Architecture and Design . 5

2.3.1 Dual Visual Style 6
2.3.2 Design Goal 6

3 Procedural Content Generation in
Unreal Engine 5 9
3.1 PCG Graph and Its Functionality 9

Basic Concept of Nodes 10
3.1.1 Commonly Used Nodes 10
Workflow and Scene Integration . . 13
Subgraphs and Modular Design . . . 13
Differences Compared to Previous

Versions of Unreal Engine 14
Extending Logic and Implementing

Custom Features 15
3.2 Procedural Meshes and Grammar

in UE 5.5 . 15
3.3 Optimization 16

Summary of PCG Graph Benefits . 18
3.4 PCG Graphs in the Project 19

3.4.1 Forests, Meadows, and
Mountains . 19

3.4.2 Roads and Urban Structures 30
3.4.3 Village Generator 35

4 Implementation 37
4.1 Landscape Materials and

Landscape Auto Materials 37
4.1.1 Landscape Materials in

General . 38
4.2 Infinite Procedurally Generated
World . 42
4.2.1 Generating and Computing

Terrain Data 43
4.2.2 Rendering Terrain with the

Procedural Mesh Component . . . 47
4.2.3 Rendering Terrain with Static

Meshes . 50
4.2.4 Rendering Terrain with Static

Meshes . 50
4.2.5 Dividing Terrain into Biomes 53

4.2.6 Auto-Material for Procedural
Terrain using UStaticMesh 61

4.2.7 Adapting PCG for a Fully
Procedural World 64

4.2.8 Results and Stylizations 67
5 Results 69
5.1 Procedural Content Generation . 69

5.1.1 Flora PCGs 69
5.1.2 Infrastructure PCGs 70

5.2 World Generation 71
5.2.1 Terrain Generation Results . . 71
5.2.2 Biome Results 72

5.3 Performance 75
5.3.1 Terrain Generation

Performance 75
5.3.2 PCG Performance 79

6 Conclusion 81
6.1 Key Contributions 81
6.2 Future Directions 82
Bibliography 83

viii

Figures
2.1 Motivational demonstration of

PCG in a stylized “red” biome: (a)
begins with empty terrain, (b) adds
procedurally spawned vegetation, and
(c) completes the scene with cliffs,
trees, and bushes—all generated at
the click of a button using PCG. . . . 3

2.2 Inspirational open-world vistas
from Breath of the Wild, Genshin
Impact, Red Dead Redemption 2, and
Just Cause. 7

3.1 Example of how to use the Surface
Sampler with different input sources.
The node can accept either collision
data from World Ray Hit Query or
heightmap data from Get Landscape
Data. 11

3.2 Showcase of points being created
using different samplers. 11

3.3 Sequence of point manipulation
using PCG nodes: (a) grid and
duplication, grid of point is being
created around the central one, (b)
noise-based variation, (c)
density-based filtering (shown in
grayscale). 12

3.4 Showcase of points manipulation
using nodes in (a), (b) and (c). . . . 12

3.5 Example of points being moved,
projected to landscape, and finally
used as spawning point for a branch
mesh. 13

3.6 Example of complex PCG graph
used to generate plains: 3.16. 14

3.7 Hierarchical generation with World
Partition: terrain is divided into
chunks of varying sizes that stream in
and out at different distances (e.g.,
grass appears only near the camera). 17

3.8 Example of dividing the world into
multiple Grid Size layers for custom
render distances. Smaller grids result
in higher density and closer spawning,
while larger grids are used for distant,
low-detail elements. Enabled through
the World Partition system. 18

3.9 Showcase of entire grass logic . . . 20
3.10 Showcase of grass spawning in

scene . 20
3.11 Showcase of flowers clusters being

spawned . 21
3.12 Showcase of flower spawning

logic . 21
3.13 Showcase of stones being spawn 22
3.14 Showcase of bush spawning logic 22
3.15 Showcase of bush 22
3.16 Final result of the Plains biome,

populated with grass, flowers, bushes,
and rocks. 23

3.17 Tree layer example. 24
3.18 Grass and ferns in the forest

environment. 24
3.19 Code snippet for spawning

grasss. 25
3.20 Sample logic for generating fallen

trees. 25
3.21 Fallen logs added to the forest. 26
3.22 Example blueprint for spawning

mushrooms. 26
3.23 In-game mushroom distribution

showcase. 27
3.24 Example of a complete forest

environment. 27
3.25 Predefined attributes assigned to

points. 28
3.26 Example how to divide points

based on height with threshold being
5000 . 28

3.27 Blueprint logic for converting an
up vector to density. 29

3.28 Visualization of steepness values
assigned to points. 29

3.29 PCG for mountains. 30
3.30 Example of editor only (a) and

PCG approach of creating roads (b). 32
3.31 Two examples of creating road

along spline using PCG. 32
3.32 Showcase of fence being correctly

generated in (a) and problem of
aligning fances on (b). 33

ix

3.33 Correct fence generation: (a) rails
spawned between matching sockets,
(b) rail pivot placement ensures
accurate positioning. 34

3.34 Showcase of fence being created
along spline . 34

3.35 Geometry for irregular roof using
Straight Skeleton 35

3.36 Simplified walk-trough of main
steps in creating road points for a
village . 36

3.37 Final result of procedural Village 36

4.1 Example of wrong and good tiling
on grass texture. 39

4.2 Comparison of incorrect and
improved tiling. First illustrates
repetitive tiling, while second
presents the final result generated by
the code from Figure 4.4 and
Figure 4.3. 40

4.3 Reducing texture repetition by
multiplying the base texture with
grayscale noise maps of different
scales. 40

4.4 Blending the base texture with a
color-variant version using a
noise-driven alpha. This interpolation
introduces large-scale variation and
helps to hide obvious tiling. 41

4.5 Example of the auto-material
usage in large landscape. 42

4.6 How triangular polygons combine
to form the terrain mesh. 43

4.7 Vertices displaced along the z-axis
by noise functions. 44

4.8 Examples of different noise types
used for terrain height. 46

4.9 Details panel for
AWorldGenerator, showing exposed
parameters. 49

4.10 Overview of biome partitioning:
distinct regions (Forest, Mountains,
Desert, Plains, Wetlands) highlight
visual variety, modular PCG logic,
modular terrain rules, and gameplay
mechanics. 54

4.11 Showcases how terrain is
recursively split into five biomes . . 55

4.12 Example of abrupt seams between
biomes when no smoothing is
applied. 57

4.13 Blending between biomes after
applying blending method 58

4.14 Real-world biome distribution in
humidity–temperature space (after
Whittaker [26]). 59

4.15 2×2 HT-lookup mask. The
sample point at (0.5, 0.4) is the
center of a square of side-length 2B. 60

4.16 Example of texture palate. 62
4.17 Material Blueprint setup for

unpacking per-vertex texture
weights. 63

4.18 Final terrain rendering showing
smooth, per-vertex blended
transitions between biomes and
elevation bands, driven entirely by
the custom VertexColor and
UV-packed weights. 64

4.19 Core logic inside our new
BP_SplitPointsToBiomes node . . 66

4.20 Terrain is partitioned into
multiple sampling scales to optimize
detail and performance. 67

4.21 Final procedural world rendered
in two distinct visual styles. 68

5.1 Point out details for plains PCG
shown in 5.1a and Forest in 5.1b. . 70

5.2 Forest biome with trees,
undergrowth based on sun access,
fallen logs, mushrooms, small and
large rocks, and fallen branches. . . 70

5.3 Examples of infrastructure PCGs
for fences and roads. 70

5.4 Village PCG showcasing
procedural street networks and
building placement. 71

5.5 High-detail terrain renderings for
two distinct biomes. 72

5.6 Panoramic view of the procedurally
generated world, showcasing seamless
streaming and biome transitions. . 72

x

5.7 Comparison of Desert biome in
low-poly vs. photorealistic styles. . 73

5.8 Comparison of Red Forest
(low-poly) and Tundra (photoreal)
biomes. 73

5.9 Forest biome rendered in both
low-poly and photorealistic modes. 73

5.10 Plains biome comparison:
low-poly versus high-fidelity
rendering. 74

5.11 Mountains biome shown in
low-poly and photorealistic styles. . 74

5.12 Desert Dunes biome rendered in
low-poly and photorealistic modes. 74

5.13 Chunk resolutions used in
performance tests. 76

5.14 Examples of world configurations
used in the build-time measurements.
Terrains (a)–(d) correspond to the
four test scenarios shown in
Table 5.1, in the same order. 76

Tables
5.1 Average chunk build times for

ProceduralMesh vs. Generator across
four configurations (verts per chunk
× number of chunks). 77

5.2 In the 20 × 20 radius test, the
ProceduralMesh approach
(Procedural Mesh) ramps from 70
FPS up to 110 FPS within the first 5
s and then oscillates within ±3 FPS
around that level, while the
Generator method (Static Mesh)
quickly stabilizes near 80 FPS with
minimal variation. 78

5.3 In the 5 × 5 radius scenario, the
ProceduralMesh component
(Procedural Mesh) climbs from 90
FPS to about 130 FPS in the first 5 s
and then fluctuates within ±5 FPS,
while the Generator approach (Static
Mesh) gradually rises from 60 FPS to
108 FPS and maintains smooth
performance around that level. . . . 78

5.4 In the 8 × 8 radius test,
ProceduralMesh (Procedural Mesh)
ramps from 73 FPS to 122 FPS in
the first 4 s and then oscillates within
±5 FPS around 125 FPS, while the
Generator (Static Mesh) maintains a
steady 90 FPS throughout. 79

xi

Chapter 1
Introduction

In recent years, the scale and ambition of game worlds have grown dramat-
ically. Open-world and live-service titles demand vast, varied landscapes
that remain engaging over hundreds of hours of play. Traditionally, such
environments required enormous manual effort from artists and level design-
ers—painstakingly placing each rock, tree, and building by hand. Procedural
Content Generation (PCG) offers a compelling alternative: algorithmic work-
flows that can spawn terrain, vegetation, structures, and even entire cities
with minimal human intervention. By encoding rules and randomness into a
generation pipeline, developers can achieve both diversity and consistency at
a fraction of the cost.

The aim of this work is to explore and analyze the possibilities of PCG
in Unreal Engine 5 and subsequently create a functional prototype of a
procedurally generated infinite world.

A key focus is to determine the feasibility of utilizing PCG in runtime
environments—where content must be generated on the fly as the player
moves—without introducing visible artifacts or stutters. Throughout this
work, we will measure performance and discuss trade-offs between quality
and speed. The outcome is both a theoretical framework relating PCG theory
to UE5’s toolset and a concrete prototype that demonstrates an end-to-end
pipeline for infinite procedural worlds.

1

2

Chapter 2
Foundations and Design

This chapter brings together the theoretical foundations of Procedural Content
Generation (PCG) with the design of our solution. We begin by reviewing
core PCG techniques and algorithms from the literature, then present the
high–level architecture and key components of our prototype.

(a) : Terrain before
PCG run.

(b) : Plants spawned
procedurally.

(c) : Cliffs, trees, and
bushes added.

Figure 2.1: Motivational demonstration of PCG in a stylized “red” biome: (a)
begins with empty terrain, (b) adds procedurally spawned vegetation, and (c)
completes the scene with cliffs, trees, and bushes—all generated at the click of a
button using PCG.

2.1 Procedural Content Generation: Concepts and
Algorithms

Procedural Content Generation (PCG) refers to the algorithmic creation of
game assets—terrain, vegetation, structures, levels—either at build time or
dynamically at runtime. Common methods include:.Noise Functions: Perlin, Simplex, and Value noise generate smoothly

varying fields used for terrain heightmaps, texture masks, and variation
in object placement. More discused later in 4.2.1.. Lindenmayer Systems (L-systems): L-systems are formal grammars
originally developed by Aristid Lindenmayer for modeling the growth
processes of plants and multicellular organisms. An L-system begins

3

2. Foundations and Design
with an initial “axiom” string and applies production rules iteratively
to replace symbols, yielding complex, self-similar branching structures
such as trees, ferns, and coral. This approach underpins many proce-
dural botany algorithms and is explored in depth by Prusinkiewicz and
Lindenmayer [27].. Flow Fields: Flow fields are continuous vector fields that guide the
placement of paths, roads, rivers, or crowd movement by indicating a
preferred direction at each point in space. By sampling the field and
following the vectors, one can generate natural, winding trajectories that
mimic fluid dynamics or erosion patterns. A practical introduction to
flow-field pathfinding is provided by Patel [28]..Tile-based Rules: Tile-based methods use a set of discrete tiles and
metadata-driven adjacency constraints (e.g., Wang tiles) to assemble
large environments without visible seams or repetitive patterns. Each
tile encodes edge compatibility, and procedural assemblers select tiles
based on neighborhood rules. This technique was pioneered by Wang [30]
and later applied to texture synthesis and environment tiling by Cohen
et al. [31].. Shape Grammars: Shape grammars extend the idea of string grammars
to geometric forms: starting from an initial shape, production rules
replace shapes with arrangements of sub-shapes according to recursive
rules. This hierarchical rewriting process can generate architectural
elements—walls, windows, roofs—and complex procedural meshes. The
foundational work on shape grammars was published by Stiny and
Gips [32]..Cellular Automata: Cellular automata consist of regular grids of cells
that update their states simultaneously according to simple local rules
based on neighbor values. Despite their simplicity, they can produce
elaborate patterns used for cave and dungeon layouts, terrain erosion,
or vegetation spread. Wolfram’s survey of cellular automata highlights
their complexity and applications [33], and they are often employed in
voxel-based cave generation systems [22].

Pragmatic Runtime Constraints. Generating tens of thousands of meshes
on the fly leaves no budget for heavy simulations or costly computations.
Instead, our system relies on lightweight, rule–based workflows—chaining
simple sampling, filtering, and transformation nodes, with Perlin-noise pertur-
bations—to introduce variation and break up repetition in both terrain and
object placement. While techniques such as L-systems, flow fields, tile-based
adjacency, shape grammars, and cellular automata offer rich, biologically
inspired patterns, they were not directly implemented here; rather, their
core ideas motivated our streamlined PCG graphs, where basic operations
and sequenced noise applications deliver real-time performance alongside
believable procedural detail.

4

................................... 2.2. Related Work

2.2 Related Work

Below are additional noteworthy theses in related areas of procedural genera-
tion:.Tile-based Procedural Generation (Rudolf Líbal, 2023): Analyzes

existing solutions for tile-based PCG, proposing a generic library that
supports multiple terrain layers, metadata-driven adjacency rules, and
weighted random tile selection using noise to minimize incompatible
placements [1]..Procedural Generation of Voxel Worlds (Lukáš Hepner, 2021):
Develops a voxel rendering engine with deterministic noise-based terrain
and L-system vegetation placement, emphasizing reproducibility via fixed
seeds [2].. 3D Modeling and Visualization of Underground Structures
(Martin Hudeček, 2021): Presents methods for creating and preserv-
ing accurate 3D models of underground spaces (e.g., the Johannes adit)
using mobile laser scanning and point-cloud processing in VR [3].. Procedural Terrain Generation Using GPU Acceleration (Jakub
Navrátil, 2016): Explores GPU-accelerated terrain generation with
CUDA-driven Perlin noise heightmaps, demonstrating performance im-
provements over CPU implementations [4].

2.3 Project Architecture and Design

The system design unfolds in two main phases, each focusing on building and
integrating core functionalities.

Phase 0: Conceptual Foundations of PCG. Before any implementation, we
establish the core concepts and workflows of Procedural Content Generation
in UE5:

Phase 1: Component Development.. Environment: PCG Graphs for forests, meadows, and mountains and
more are created.. Infrastructure: PCG Graphs for roads, fences, houses, and villages are
created and discussed..Procedural Material: A unified landscape material blends texture
layers based on elevation, slope, curvature, and noise masks to produce
seamless, context-aware terrain texturing.

Note: A PCG Graph is an object that spawns meshes based on its node
logic.

5

2. Foundations and Design
Phase 2: Integration into Infinite World..Terrain Streaming: A multithreaded C++ generator creates chunked

terrain and handles dynamic loading and unloading of chunks.. PCG Population: Terrain is being dynamically populated with meshes
using PCG Graphs at runtime.. Performance Tuning: Key parameters—chunk size, generation radius,
LOD thresholds—are adjusted to maintain consistent frame rates and
minimize runtime stalls.

Note: A chunk is a square section of terrain used to optimize loading and
processing.

2.3.1 Dual Visual Style

The prototype supports two distinct visual styles:. Low-Poly Style: Prioritizes minimal geometry and simple materials to
maximize performance on lower-end hardware, while maintaining clear,
stylized visuals..Photorealistic Style: Employs high-resolution meshes, detailed PBR
materials, and advanced lighting to achieve cinematic-quality visuals.

This dual-mode design allows us to:. Evaluate how easily the system’s graphical pipeline (terrain generation,
PCG Graphs, materials) adapts to different art directions..Measure performance differences—frame rates.. Provide flexibility for target platforms, enabling a single codebase to serve
both mobile/VR (low-poly) and AAA desktop/console (photorealistic)
builds.

These capabilities inform our performance tuning strategy and highlight
the modularity of the PCG pipeline.

2.3.2 Design Goal

The primary goal of our system is to generate rich, varied open-world en-
vironments in real time, while maintaining smooth, consistent performance
without frame-rate drops or loading hitches.

6

........................... 2.3. Project Architecture and Design

Figure 2.2: Inspirational open-world vistas from Breath of the Wild, Genshin
Impact, Red Dead Redemption 2, and Just Cause.

7

8

Chapter 3
Procedural Content Generation in Unreal
Engine 5

Procedural Content Generation (PCG) has emerged as a cornerstone of
modern game development, enabling artists and designers to create vast,
varied worlds with minimal manual effort. In Unreal Engine 5.5, Epic Games
has refined its PCG framework into a robust, node-based system that lets
you craft intricate procedural workflows entirely within the editor—no C++
required. Whether you’re populating rolling meadows, dense forests, or craggy
mountain passes, PCG Graphs offer the flexibility to sample, filter, transform,
and spawn thousands of models at runtime or during level build.

This chapter serves as your one-stop reference and hands-on guide to UE5’s
PCG. We’ll begin by exploring the core concepts of the PCG Graph—how
metadata, points, and attributes power every node—and then walk through
the most commonly used node types: samplers, filters, transformers, and
spawners. From there, you’ll learn best practices for integrating PCG assets
into your scenes, organizing complex graphs with subgraphs, and optimizing
performance using World Partition, Nanite, and LOD techniques.

Finally, we’ll dive deeper into biome-specific examples (meadows, forests,
mountains), advanced custom logic (Blueprint and C++ integration), and
the newest UE 5.5 features for grammar-based rules and procedural mesh
editing. By the end of this chapter, you’ll have a complete, reusable toolkit
for building your own advanced PCG graphs—and the confidence to push
them even further.

3.1 PCG Graph and Its Functionality

In this section, we will walk through the inner workings of the PCG Graph in
Unreal Engine 5.5. First, we’ll introduce the concept of metadata—collections
of points carrying transforms and custom attributes—and show how nodes
exchange and modify this data. Next, we’ll categorize and describe the pri-
mary node types (input/output, point generation, processing, Blueprint/C++
injection, and mesh/actor spawners) and illustrate how chaining them builds
powerful procedural workflows.

Note: This project was developed in Unreal Engine 5.5, which introduced

9

3. Procedural Content Generation in Unreal Engine 5
changes compared to previous versions. Some tools and concepts have different
names or functionality, requiring adaptation to the new environment and
workflow.

Basic Concept of Nodes

Nodes in the PCG Graph operate on metadata consisting of collections of
individual points. These points are not merely 3D coordinates but also include
attributes that define their properties. Each point contains information
about its transform (position, rotation, scale, bounds, color, density, seed
atc...). Additionally, user-defined attributes can be assigned to points,
making the system highly flexible and customizable.

We can think of a point as a structure containing all relevant data, with
the metadata represented as arrays of these points.

From a higher-level perspective, nodes in a PCG Graph can generally be
divided into several categories based on their primary function:. Input/Output Nodes – These nodes handle importing or exporting

metadata (collections of points) into or out of the graph.. Point-Generating Nodes – These nodes create new points (for example,
by sampling a surface or duplicating existing points)..Point-Processing Nodes – These nodes modify existing points (e.g.,
applying transformations or filtering based on attributes)..Blueprint Nodes – These nodes allow custom logic to be integrated
into the PCG Graph through Blueprints or C++.. Final Nodes (Mesh/Actor Spawners) – These nodes use the points
defined in the graph to instantiate static meshes, actors, or other objects
in the scene. They represent the final step in the procedural generation
workflow.

3.1.1 Commonly Used Nodes

For illustration of how PCG nodes work, here are some examples of commonly
used nodes in the project along with brief descriptions of their functionality:.Get Landscape Data: Retrieves data directly from Unreal’s built-in

Landscape system. This node provides essential information for various
samplers but is limited to use with the Landscape actor only..World Ray Hit Query: Performs a raycast in the world to retrieve
surface data from any object that supports collision. Unlike the previous
node, this method can sample both terrain and static meshes, making it
more versatile for runtime procedural generation.. Surface Sampler: Samples points on the surface of input geometry
(e.g., landscape, mesh) based on specified density and noise functions.

10

........................... 3.1. PCG Graph and Its Functionality

. Spline Sampler: Generates points along splines or between sequence of
guiding points, useful for creating paths, fences, or other linear features.

Figure 3.1: Example of how to use the Surface Sampler with different input
sources. The node can accept either collision data from World Ray Hit Query
or heightmap data from Get Landscape Data.

(a) : Surface sampler. (b) : Spline sampler.

Figure 3.2: Showcase of points being created using different samplers.

.Copy Points: Duplicates existing points at specified locations, allowing
for replication of objects or data..Create Points Grid: Creates a grid of points, often used for structured
layouts or uniform distributions..Attribute Noise: Adds variation to attributes like position, density, or
color using noise functions..Attribute Filter: Filters points based on specific attribute values or
conditions.

11

3. Procedural Content Generation in Unreal Engine 5

(a) : Create points grid
and copy points.

(b) : Attribute noise. (c) : Attribute filter.

Figure 3.3: Sequence of point manipulation using PCG nodes: (a) grid and
duplication, grid of point is being created around the central one, (b) noise-based
variation, (c) density-based filtering (shown in grayscale).

.Distance: Measures the distance between points or objects, often used
for spatial filtering..Difference: Calculates the difference between attributes, enabling com-
parisons or conditional logic.. Scale by Density: Adjusts the scale of objects based on their den-
sity, creating natural variation. (This node is accessed by executing a
Blueprint node and selecting "Scale by Density.")

(a) : Distance from center (b) : Scale by density (c) : Difference

Figure 3.4: Showcase of points manipulation using nodes in (a), (b) and (c).

.Transform Points: Modifies the position, rotation, or scale of points
either randomly within a given range or to a specified value..Projection: Projects points onto a surface or plane, aligning objects
with terrain or other geometry.
Note: Always use the Projection node when manipulating points that are
meant to be on the ground to ensure they do not end up floating above
or below the surface.. Static Mesh Spawner: Instantiates static meshes at the locations
defined by points, forming the final objects in the scene.

12

........................... 3.1. PCG Graph and Its Functionality

(a) : Transform Points (b) : Projection (c) : Static Mesh Spawner

Figure 3.5: Example of points being moved, projected to landscape, and finally
used as spawning point for a branch mesh.

Workflow and Scene Integration

Integrating the PCG framework into a project involves several key steps:..1. Activating the PCG Plugin: We enable the PCG plugin in Unreal
Engine to access PCG features...2. Creating the PCG Graph: We generate a new PCG Graph asset in
the Unreal Engine Editor. This graph can be opened in the PCG Editor,
where procedural logic is defined by adding and connecting nodes...3. Defining and Sampling Points: Input data is supplied to the graph
or generated using nodes such as Surface Sampler or Spline Sampler.
These points act as anchors for object placement...4. Transforming Points: We modify sampled points using nodes like
Transform Points (e.g., change scale, rotation, position) for specific use
cases...5. Debugging the Workflow: We can visualize the current state of points
and their attributes at various stages in the PCG Graph. This includes
position in the scene, metadata values (e.g., density, color), and any
user-defined attributes. Such visualization aids in refining logic and
ensuring correctness...6. Generating Objects: We instantiate objects (e.g., static meshes) in
the scene using nodes like Static Mesh Spawner or Blueprint Spawner.
Additional logic can refine placement and behavior, such as procedural
building or urban layout generation...7. Iterative Refinement: We expand the graph with additional nodes,
subgraphs, and conditional logic to create sophisticated and adaptive
procedural systems.

Subgraphs and Modular Design

Complex PCG Graphs can grow large quickly, as shown in Figure 3.6. To
manage this complexity, we can use PCG Subgraphs, similarly to functions

13

3. Procedural Content Generation in Unreal Engine 5
in programming, allowing us to package a specific subset of the logic (e.g.,
repetitive generation of rock formations or rules for creating fences) into a
separate file. This approach keeps graphs more organized and facilitates
reusability.

However, well-commented and clearly structured graphs can remain
readable even without subgraphs. In this project, we mostly preferred this
approach to reduce fragmentation and keep the logic visible in a single view
when possible.

Figure 3.6: Example of complex PCG graph used to generate plains: 3.16.

Differences Compared to Previous Versions of Unreal Engine.Terminology and Selected Nodes: In versions 5.0–5.2, the PCG
Graph was primarily experimental. Certain nodes or features had differ-
ent names or limited functionality. In version 5.5, several components
were renamed or refined; thus, when migrating older projects, we must
adapt to the new nomenclature and improved nodes..Performance and Debugging: Version 5.5 enhanced runtime gen-
eration, thanks in part to better collaboration with Nanite and newly
introduced Partitioning options. However, in complex scenes featur-
ing many generated objects, parameters such as generation distances,
instance types, and object details still require careful tuning..New Features in 5.5: Unreal Engine 5.5 introduced Grammar and

14

...................... 3.2. Procedural Meshes and Grammar in UE 5.5

Procedural Geometry systems, offering advanced tools for procedural
rule definition and geometry generation. We discuss these functionalities
in later sections of this document.

Extending Logic and Implementing Custom Features

Although the PCG Graph covers most common scenarios, there are instances
where extending the logic is appropriate:.Blueprint Integration: Within the PCG Graph, special nodes (Blueprint

Injection) can execute custom Blueprint logic, enabling any functionality
we might need. Examples of custom blueprint is provided in section:
3.4.1..C++ Code: For highly demanding operations, complex logic, or opti-
mization, we can create custom C++ classes that extend the existing
PCG modules. More technical details and example will be provided in
section: 4.2.7.

3.2 Procedural Meshes and Grammar in UE 5.5

This section discusses the enhanced tools in Unreal Engine 5.5 that integrate
Procedural Content Generation (PCG) with advanced 3D geometry editing
or creation (often referred to as Procedural Meshes) and with Grammar-
based (rule-driven) systems. The main goal is to simplify the development of
dynamic, rule-defined objects or entire scenes without the need for manual
modeling.

Procedural Meshes.. Tools for creating or modifying 3D models directly in the engine
– for instance, generating non-standard shapes, adjusting vertices, or
applying procedural noise.. In UE 5.5, one might implement a simple mesh-generation process using
the Geometry Script Plugin in combination with Blueprint nodes. For
example:

[GenerateBaseMesh] -> SubdivideMesh(2x) -> ApplyNoise(Amplitude=20)
-> PlaceUVs -> [FinalizeMesh]

This rule-based pipeline first creates a base mesh, then subdivides it
twice for additional detail, applies a noise modifier to achieve a natural,
irregular surface, and finally assigns UV coordinates before finalizing the
mesh. Each of these steps can be controlled via Blueprint logic or PCG
Graph nodes.
Additional details on implementing this workflow can be found in official
documentation [13].

15

3. Procedural Content Generation in Unreal Engine 5
Grammar-based Approaches.. These approaches draw on shape grammars or L-systems, where rule

sets define the placement and transformation of components (e.g.,
walls, doors, or tree branches).. In UE 5.5, such logic can be implemented within a PCG Graph using
the Execute Blueprint node. For instance, you might define a simple rule
that says:

Place two walls, then place a door. Next, again place
two walls, then place a window. Repeat this sequence
until there is no more available space.

By applying this rule repeatedly, the PCG Graph can automatically
generate a layout where walls, doors, and windows follow the specified
pattern.. Iterative development: Grammar-based systems grow quickly in
complexity, so it is advisable to start with simpler rules (e.g., generating
basic walls) and gradually add more (windows, doors, or specialized roof
shapes).. For more details on using shape grammar with PCG in Unreal Engine,
refer to official documentation [14] or watch those tutorial videos [15], [16].

Although official documentation for these features remains somewhat lim-
ited. While still evolving, these procedural mesh and grammar-based features
in UE 5.5 hint at powerful, flexible pipelines for creating complex worlds.
Early adopters often rely on custom Blueprint logic, partial documentation,
and experiments shared in community channels (forums, Discord, GitHub).
For large-scale projects or intricate designs, continuing to refine these tools,
especially in combination with PCG, can significantly reduce manual work
and foster rapid iteration on asset layouts.

3.3 Optimization

Effective optimization is crucial for maintaining performance in procedurally
generated worlds. Whether our project involves vast landscapes, dense forests,
or large urban scenes, the following techniques help ensure smooth gameplay
and efficient resource usage.

Hierarchical Generation and Partitioning..Hierarchical Generation: This approach splits content generation
into smaller segments and processes them hierarchically (one by one
based on distance from player). By using World Partition, we divide the
game world into chunks, and the PCG Graph generates content only for
the currently loaded chunks. Although node logic can run in parallel,

16

....................................3.3. Optimization

spawning meshes must still occur on the main thread, which can cause
brief lags when many meshes spawn at once..Partitioning (is partitioned = true): Enabling this feature allows
the PCG Graph to execute in sections (partitions). If we also set
Generation Trigger to Generated at Runtime, objects can be gen-
erated or unloaded dynamically during gameplay a crucial feature for
infinite open worlds.

(a) : Generated world from distance

(b) : Generated world from upclose

Figure 3.7: Hierarchical generation with World Partition: terrain is divided into
chunks of varying sizes that stream in and out at different distances (e.g., grass
appears only near the camera).

17

3. Procedural Content Generation in Unreal Engine 5
Draw Distance, Collisions, and LOD/Nanite. In addition to partition-
ing, several other optimizations help maintain high framerates and smooth
gameplay:.Custom Render Distances: We can control the visibility and spawning

distance of objects by assigning them to different grid sizes. For instance,
grass is generated using smaller grid cells and only appears close to the
player, while large objects like trees or rocks can be spawned at greater
distances using larger grids. This method improves performance by
avoiding unnecessary generation or rendering of distant objects. When
combined with World Partition, this system dynamically loads and
processes only the relevant sections of the world.

Figure 3.8: Example of dividing the world into multiple Grid Size layers
for custom render distances. Smaller grids result in higher density and closer
spawning, while larger grids are used for distant, low-detail elements. Enabled
through the World Partition system.

. Selective Collisions and Hitboxes: We should limit collision checks to
meshes where they are genuinely needed (e.g., rocks, buildings, interactive
props). Decorative or distant meshes can have simplified or no collision
bounds, reducing physics overhead..Using LOD or Nanite: By employing Level of Detail (LOD) models,
we dynamically reduce polygon counts for distant objects. In Unreal
Engine 5 and above, Nanite can render high-poly models efficiently
without the need for multiple LODs. This keeps rendering resources
focused where they are needed most.

Summary of PCG Graph Benefits.Visualization and Easy Modification: The node-based interface
quickly reveals how data flows and transforms, allowing immediate rule
and parameter adjustments in the editor.

18

..............................3.4. PCG Graphs in the Project

.Modularity and Reusability: PCG Subgraphs, hierarchical genera-
tion, and partitioning simplify work on large projects and enable reuse
of previously developed components.. Extensibility and Performance: Integration with Blueprints or C++
code, along with Nanite and World Partition, makes the PCG Graph
suitable for generating large open worlds—both static and dynamic.

3.4 PCG Graphs in the Project

In this chapter we present the key PCG Graphs developed for our prototype.
We begin with simple environmental graphs—meadows, forests, and moun-
tains—then proceed to more complex systems such as roads, villages, and
urban layouts. Each example highlights how node sequences translate design
goals into procedural workflows.

All photorealistic models used in this work are free assets from Quixel
on the Fab Marketplace [10] (To see all free meshes from Quixel you need
to open Fab through Unreal Engine), and the low-poly models come from
the “Low Poly Starter Pack” bundle, which was previously available free on
Unreal Engine Marketplace [11].

3.4.1 Forests, Meadows, and Mountains

We start by creating basic environmental graphs that:. Sample points on the terrain (surface or spline).. Apply filters and noise to control density and variation.. Transform point attributes (scale, rotation) for natural randomness.. Spawn meshes (grass, trees, rocks) via static-mesh spawners.

These simplified graphs demonstrate the core PCG concepts—sampling,
processing, and spawning—before moving on to more intricate generation
scenarios.

Meadows

Meadows are open, grassy areas that provide a sense of calm and spaciousness.
They are often characterized by a uniform grass layer interspersed with
patches of flowers, small plants, and occasional rocks maybe some bushes.
The goal is to create a natural yet visually appealing meadow that looks
dynamic and alive without being overly cluttered.

19

3. Procedural Content Generation in Unreal Engine 5
Implementation..Grass Layer: We aim to make grass evenly distributed across the

meadow. To achieve this, we can simply use the Surface Sampler node
with a high probability density for points. Adding some randomness is
always beneficial; this can be achieved by using Transform Nodes set
to random rotation along the vertical axis, with slight random offsets
and scaling. Next, we project our points onto the landscape to ensure
they remain aligned with the terrain. Finally, we use the Static Mesh
Spawner with several different types of grass to create variation.

Figure 3.9: Showcase of entire grass logic

Figure 3.10: Showcase of grass spawning in scene

. Flower Layer: We aim to create clusters of flowers. To get this effect, we
first generate starting points spaced far apart using the Surface Sampler
node. Next, we create a grid of points at each of these locations, which
forms the basis of a cluster. To add natural randomness, we use the
Transform Points node to slightly offset the flowers within the cluster.
At this stage, we have flower clusters, but to make them more visually
interesting, we can vary the flower size within each cluster. Specifically,
flowers on the edges can be made smaller, while those in the center
appear larger. To achieve this, we use the Distance node to calculate
the distance between the cluster’s origin and each point, modifying the
density attribute accordingly.
Important: In the Distance node, make sure to enable the Set Density
option—this stores the calculated distance into the point’s density
attribute, which is required for subsequent operations.

20

..............................3.4. PCG Graphs in the Project

The updated density is then used by the Scale by Density node to scale
the individual flowers based on their position in the cluster.
Finally, we use the Static Mesh Spawner to instantiate flowers at these
points, completing the flower layer. To add versatility to the scene, we
reuse this logic for two different flower species.

Figure 3.11: Showcase of flowers clusters being spawned

Figure 3.12: Showcase of flower spawning logic

. Small Stones and Rocks: To spawn stones, we can reuse the same
cluster logic as we used for flowers. For larger rocks, there is no need to
over-complicate the process; a simple Surface Sampler node with a very
low density of points, combined with the Transform Points node to add
some randomness, is ideal.

21

3. Procedural Content Generation in Unreal Engine 5

Figure 3.13: Showcase of stones being spawn

.Bushes: Once again, we can reuse the cluster logic from creating flowers.
However, in this case, we ensure that bushes appear only occasionally
by setting the Surface Sampler node to a very low probability of points.
Additionally, I discovered that creating two clusters at the same location
and slightly offsetting them still gives the appearance of a single bush
while adding more unique shapes. To duplicate the starting point for
the cluster, we use the Duplicate Points node and apply the Transform
Points node for the offset.

Figure 3.14: Showcase of bush spawning logic

Figure 3.15: Showcase of bush

22

..............................3.4. PCG Graphs in the Project

.Putting It All Together: Now we will combine all the individual
layers into a single PCG graph to create dynamic and visually appealing
meadows. The goal is to integrate the grass, flowers, stones, and bushes
in a way that feels cohesive and natural while preserving the unique
characteristics of each layer.

Figure 3.16: Final result of the Plains biome, populated with grass, flowers,
bushes, and rocks.

This demonstrates the power of PCG graphs. With just a few meshes,
we can create expansive grassy areas containing thousands of objects.
While designing each type of PCG may initially require extensive experi-
mentation and time, the resulting graphs can be reused across multiple
projects, saving significant effort in the long term.

Forests

We aim to create a dense European forest featuring tall trees, scattered
stones and rocks, fallen branches, and additional elements such as ferns and
mushrooms.

We spawn multiple varieties of trees uniformly throughout the forest. Under
the canopy, grass growth is more limited due to reduced sunlight. Occasionally,
we include fallen trees (with branches) to diversify the environment visually.
Mushrooms appear primarily in shaded, moist areas close to the trunks.

Implementation..Tree Placement: Smaller trees often appear at forest edges in nature;
however, our forest lacks strict borders. To mimic this distribution, we
use a Surface Sampler with a Transform Points node.
To achieve a dense forest, we set a suitably high sampling density and
apply randomness via Transform Points, ensuring Absolute Rotation
is set to true so that trees remain upright. Finally, we use the Static
Mesh Spawner to place a small selection of different tree meshes with
varied weights, achieving natural diversity.

23

3. Procedural Content Generation in Unreal Engine 5

Figure 3.17: Tree layer example.

. Ferns and Grass: Ferns typically grow in clusters, which can be
produced with the same “cluster logic” used for meadows.
Grass requires a slightly more nuanced approach. First, we distribute
points across the area with a Surface Sampler. Next, we use the Distance
node to measure how close each point is to a tree. We then apply Scale
by Density so grass appears smaller near trunks, simulating the reduced
sunlight under a canopy.
In the end, we randomly offset points again with Transform Points to
avoid unnatural radial patterns around the trees.

Figure 3.18: Grass and ferns in the forest environment.

24

..............................3.4. PCG Graphs in the Project

Figure 3.19: Code snippet for spawning grasss.

. Fallen Trees: To represent fallen logs, we use another Surface Sampler
at a very low density. We also enable debugging on the Projection node
and adjust Point Extent to match log length. Once these points are
spawned, we place the fallen trees.
Branches are then spawned around each log by generating a small grid
of points (Create Grid Points + Copy Points) and applying Transform
Points for randomness. We prevent overlap with the fallen tree using
the Distance + Density Filter nodes to remove them, and finally scale
branches near the log to enhance realism.

Figure 3.20: Sample logic for generating fallen trees.

25

3. Procedural Content Generation in Unreal Engine 5

Figure 3.21: Fallen logs added to the forest.

.Adding Mushrooms: We utilize the random density attribute on
existing tree points to decide where mushrooms appear. For instance,
we might remove a portion of these points with the Density Filter.
The remaining points are slightly shifted using Transform Points and
expanded into a small grid (via Create Grid Points and Copy Points).
Next, an Attribute Filter combined with Distance ensures mushrooms
spawn only within a suitable radius of tree trunks. After finalizing
the filtered points, we apply the Static Mesh Spawner for mushroom
placement.

Figure 3.22: Example blueprint for spawning mushrooms.

26

..............................3.4. PCG Graphs in the Project

Figure 3.23: In-game mushroom distribution showcase.

.Result: We can reuse logic from meadows (e.g., spawning rocks and
stones) to add more detail to forest floors. As a final step, we might
apply a Difference node to ensure these objects do not overlap trees or
fallen logs.

Figure 3.24: Example of a complete forest environment.

Once again, we manage to create a rich environment with just a few
well-structured PCG rules.

Mountains

Focus on Height and Steepness. For mountainous terrain, our primary
challenge is identifying areas based on altitude and slope, rather than repeating
the standard point-distribution logic used in other biomes (e.g., forests or
meadows). In this section, we concentrate on how to filter points by height
and normal direction to determine where to spawn relevant assets such as
rocks, sparse vegetation, or cliffs.

27

3. Procedural Content Generation in Unreal Engine 5
Filtering Based on Attributes. When we create or sample a point, Unreal

Engine automatically assigns several attributes (see Figure 3.35). We can
view these attributes at any node by pressing A; they appear at the bottom
of the PCG graph window. Many of these attributes (prefixed with a dollar
sign, $) are predefined, but we can also define custom ones.

Figure 3.25: Predefined attributes assigned to points.

To distinguish mountain regions, we often use:.Height (Altitude): Filter out points below a certain threshold to focus
on higher elevations..Normal: Identify points that lie on steep slopes or cliffs.

We can perform these operations via the Attribute Filter node. Simply
select the Target Attribute (e.g., $height) or type the name of a custom
attribute. Figure 3.26 shows an example of filtering points based on height.

(a) : Filtering points by height, settings. (b) : Attribute filter node.

Figure 3.26: Example how to divide points based on height with threshold being
5000

Custom Node for Calculating Steepness from Normal. Although a prede-
fined $steepness attribute exists, it serves a different purpose. Instead, we
can create a new Execute Blueprint node to measure slope more precisely...1. In the PCG Graph, add an Execute Blueprint node...2. In the Blueprint Element Type field, search for BoundsModifier. Lo-

cate its Blueprint and duplicate it (e.g., “Up Vector to Density”), then
open the duplicated Blueprint...3. We recommend reviewing the complete BoundsModifier Blueprint that
you just duplicated.

28

..............................3.4. PCG Graphs in the Project..4. In the PointLoopBody function, remove the default logic and replace it
with:..a. Break the point data to access its transform and rotation...b. Use Get Up Vector to extract the vector perpendicular to the

surface...c. Assign the Z component of that up vector to the point’s density.
Optionally square this value to emphasize steepness.

Figure 3.27 illustrates this custom Blueprint logic.

Figure 3.27: Blueprint logic for converting an up vector to density.

By modifying the density attribute according to slope, we can easily
visualize or filter steep areas in the PCG Graph. For debugging, enabling
color visualization (Show Debug in the PCG Graph) reveals how density
correlates with slope (see Figure 3.28).

Figure 3.28: Visualization of steepness values assigned to points.

29

3. Procedural Content Generation in Unreal Engine 5
Applying the Filters. Once we have robust height and steepness metrics,

we can decide whether (and what) to spawn on each point:. Steep Slopes: May host only rocks or no vegetation at all..High Altitude: Could have sparse trees or shrubs..Gentler Areas: Transition zones where we can blend forest or meadow
logic.

This targeted filtering enables dynamic biome transitions. We can, for
instance, spawn different static meshes, change foliage density, or apply
custom materials based on altitude or slope, thus forming more convincing
mountain landscapes without redoing standard distribution steps.

Figure 3.29: PCG for mountains.

3.4.2 Roads and Urban Structures

This section explains how we generate roads, houses, and villages using PCG
graphs, which in this context become significantly more complex. Rather than
offering a comprehensive, step-by-step tutorial for every scenario, we provide
references to relevant external guides where available or you can download
our entire project from git [17] for topics that lack existing resources.

Roads and Paths

In Unreal Engine, there is already a simple logic to create paths, as shown in
3.30a. Unfortunately, this method is limited to the editor and is not usable
within PCG graphs, requiring us to develop custom logic. While we can use
tiles to create roads, this approach does not support arbitrary shapes. Ideally,
we would have a tool capable of generating visually appealing roads along a
spline, with the spline itself being procedurally generated in a Blueprint.

To generate splines procedurally, there are several methods:.Noise-based Paths: Use noise to create natural, winding paths.

30

..............................3.4. PCG Graphs in the Project

. Flow Field Methods: Simulate water flow or erosion patterns to define
realistic path trajectories..A* or Pathfinding: Create roads between defined start and end points,
avoiding obstacles via pathfinding algorithms..Anchor-Based Splines via PCG: Approach used in this project.
Generate a set of anchor (control) points directly with PCG logic (e.g.,
distributing them based on terrain conditions or random noise). These
points then form the spline’s control vertices, allowing roads or paths to
adapt to local constraints. This approach can partially randomize road
layout while still conforming to desired terrain features.

Below are examples of different types of roads created using PCG.
Note: There is no official documentation or tutorial on creating PCG-based

roads I could find. If you are interested, you can explore the PCG_Village_Creation
PCG graph file in my project, where I demonstrate the process of creating
an entire village.

Cobblestone Roads. This is a type of road where PCG excels. Cobblestone
roads can adapt to any terrain or shape, which would be labor-intensive to
create manually by placing each brick individually. To achieve this:. Densely sample the spline using a Spline Sampler.. Create a grid of points for each brick using the Point Grid node.. Use the PCG logic to spawn individual cobblestones at these points.
This method ensures flexibility and seamless integration with uneven terrain,
as shown in Figure 3.30b.

Asphalt Roads. Creating asphalt roads is more challenging due to the
need for continuous textures and the visibility of seams. At the time of
implementation, geometry-based PCG was not supported, limiting available
options. The simplest solution was to use a tile-based system:. Combine different types of tiles to create a road.. This works well for grid-patterned roads, such as those in towns.. However, this approach struggles with uneven terrain and can appear

repetitive.

Dirt Roads. Dirt roads are simpler to create. One approach is to spawn
decals (explained below) along a spline or create paths within procedural
landscape te, but decals can alter the textures of objects placed on top of
them. Instead, a more reliable method involves using path tiles:. Dirt path tiles lack distinct lines, making connections less noticeable.. However, this method may require a relatively flat surface for best results.
A dirt road created with decals and tiles is shown in Figures 3.31a and
Figure 3.31b.

31

3. Procedural Content Generation in Unreal Engine 5
A decal. in Unreal Engine 5 is a material applied at runtime to project
textures onto existing geometry (e.g., bullet holes, stains, or dirt). Under
the hood, a Decal Actor uses a deferred decal pass: it renders the decal’s
material onto a frustum volume that overlaps scene meshes, blending its
textures (color, normal, roughness, etc.) with the underlying surface based on
projection parameters and the decal’s sort order. This lets you add localized
detail without modifying base materials or meshes.

These examples demonstrate the potential and limitations of PCG when
generating roads and paths. While some road types can be handled efficiently,
others require workarounds or additional tools for more polished results.

(a) : Road created in landscape mode. (b) : PCG cobblestone road.

Figure 3.30: Example of editor only (a) and PCG approach of creating roads (b).

(a) : Decal path.
(b) : Tile based path entirely created
by PCG graph.

Figure 3.31: Two examples of creating road along spline using PCG.

Fences and Buildings

In Unreal Engine, creating procedural fences and buildings using PCG is both
promising and challenging. For fences, the idea is relatively straightforward

32

..............................3.4. PCG Graphs in the Project

and works well even on uneven terrain, while procedural buildings face more
significant hurdles, particularly for non-standard shapes like pointed roofs.

Fences. Procedural fences can adapt seamlessly to terrain and splines,
making them an excellent candidate for PCG. To create fences:. Use a Spline Sampler to generate points along the spline.. Spawn fence posts and rails using PCG logic, ensuring that the posts

follow the terrain using projection nodes.. Adjust connections between fence sections by implementing custom logic
to align cross-pieces correctly.

For a more advanced tutorial, refer to my project (PCG_Fence and
BP_SplinePointOrientation node), where I have extended the logic shown
in a video tutorial by Unreal Engine [8]. The most challenging part of this
process was ensuring proper alignment of cross-sections on complex terrain.

(a) : Fence being generated. (b) : Problem with fence alignment.

Figure 3.32: Showcase of fence being correctly generated in (a) and problem of
aligning fances on (b).

Fence Rail Alignment. The tutorial [8] does not address rail alignment,
so we devised a solution. In the Static Mesh Editor, we add sockets at
the base and top of each fence post (“BottomSocket” and “TopSocket,”
highlighted by green boxes in Figure 3.33a) and position the rail’s pivot at
one end (Figure 3.33b). At runtime, each rail segment is spawned at a post’s
BottomSocket (or TopSocket) and oriented toward the corresponding socket
on the next post (Figure 3.33a). This ensures that rails connect cleanly and
align precisely between adjacent posts.

33

3. Procedural Content Generation in Unreal Engine 5

(a) : Rails correctly spanning between sockets on adjacent
posts.

(b) : Rail pivot at
mesh end.

Figure 3.33: Correct fence generation: (a) rails spawned between matching
sockets, (b) rail pivot placement ensures accurate positioning.

Buildings. Procedural building generation is more complex, especially when
dealing with irregular shapes such as pointed roofs that must interact with
arbitrary floor plans. We tried to make the roof system work for any house
shape, but after few unsuccessful days, we had to move on. While creating
modular apartment buildings is achievable with PCG, as demonstrated in a
tutorial by Procedural Minds [12], more intricate structures require additional
effort.

Figure 3.34: Showcase of fence being created along spline

Straight Skeleton. To solve our roof-generation challenge—deriving consis-
tent ridge lines and slopes from arbitrary floor plans—we employ the straight

34

..............................3.4. PCG Graphs in the Project

skeleton algorithm (Angular Bisector Network). By offsetting each polygon
edge inward at a constant rate and tracing where adjacent edges collide, it
naturally produces the internal network of roof ridges and facets needed for
any house footprint. A more detailed description of the algorithm and its
implementation can be found in [29].

Figure 3.35: Geometry for irregular roof using Straight Skeleton

3.4.3 Village Generator

This section presents a procedural approach to generating a network of
roads within a village. The method is based on creating an initial grid of
intersections, refining it, and finally generating roads through an iterative
connectivity process.

This road-network algorithm was developed entirely in isolation; only later
did I realize it closely parallels the core method presented by Parish and
Müller in their seminal SIGGRAPH paper on procedural city modeling [34].

Generating the Road Network. The road network is generated through the
following steps:..1. Grid Initialization: A regular grid of points is created with a fixed

spacing, representing road intersections (See Figure 3.36a)...2. Random Point Removal: Some intersections are randomly removed
to introduce irregularity (See Figure 3.36b).

35

3. Procedural Content Generation in Unreal Engine 53. Point Perturbation: The remaining intersections are slightly displaced
randomly to break the uniformity (See Figure 3.36c)...4. Connecting Intersections: Roads are generated by connecting points
in such a way that all intersections remain accessible...5. Adding Additional Roads: Extra connections are introduced to create
a denser city layout (See Figure 3.36d)...6. Applying Noise-based Displacement: Perlin noise is used to displace
the roads, making them more natural and winding.

(a) : Step 1, ini-
tialization.

(b) : Step 2,
removing points
randomly.

(c) : Step
3, moving
points.

(d) : Step 5, cre-
ating roads.

Figure 3.36: Simplified walk-trough of main steps in creating road points for a
village

Results. The final city road network follows an organic layout with a
balanced mix of structure and randomness. The generated roads serve as the
foundation for placing houses, green areas, and other village features. By
leveraging Perlin noise, the roads appear naturally curved, avoiding artificial
grid-like patterns commonly found in procedural generation approaches (See
Figure 3.37).

The full implementation of the procedural road generation system can be
found on GitHub [17]. in the file ProceduralRoads.cpp

Figure 3.37: Final result of procedural Village

36

Chapter 4
Implementation

In this chapter we describe the design and construction of or an infinite,
procedurally generated world in Unreal Engine 5. First, we present the
approach to terrain creation and real-time rendering, including mesh data
generation, noise-based height synthesis, and chunked streaming. We then
explain how the raw terrain is segmented into distinct biomes—meadows,
forests, mountains—using attribute filters on height and slope. Next, we
cover the application of both manual landscape materials and rule-driven
auto-materials to achieve seamless, non-repetitive texturing. Finally, we
demonstrate how PCG Graphs are integrated to populate each biome with
foliage, rocks, and other environmental actors, balancing visual richness with
performance through World Partition, Nanite, and LOD optimizations.

4.1 Landscape Materials and Landscape Auto
Materials

To ensure our infinite world is not only functional but also visually compelling,
we begin with a discussion of landscape materials and the creation of a
universal procedural material that adapts to any terrain.

In Unreal Engine, terrain texturing can be approached in two complemen-
tary ways:

Landscape Materials Traditional materials composed of one or more layers
(e.g., grass, rock, sand, snow), manually painted onto the terrain using
the Landscape Editor. This approach offers maximum artistic control
over texture placement and is ideal for key areas that require precise
attention.

Landscape Auto Materials A single, rule-driven material applied across
the entire terrain. Within its material graph, parameters such as eleva-
tion, slope angle, surface curvature, or procedural noise determine where
each texture appears. This method automates large-scale texturing and
ensures consistency across chunks in an infinite world.

To build a universal procedural landscape material, we proceed as follows:

37

4. Implementation...................................
. Define core texture layers and create noise-driven masks for subtle surface

variation.. Configure height- and slope-based blending to achieve smooth transitions
between biomes.. Expose editable parameters (e.g., seam intensity, noise contrast, tile
scale) for real-time tuning of the material’s appearance.

This foundational material serves both manual and auto-material workflows,
ensuring a harmonious look as the PCG system populates the environment.

4.1.1 Landscape Materials in General

Landscape materials in Unreal Engine operate similarly to standard materials
but are optimized for large-scale terrains. These materials use textures, which
are mapped onto the surface of the terrain using UV coordinates (UV mapping
defines how a 2D texture is applied to a 3D surface).

UV Mapping and Tiling

Textures are mapped onto the terrain through UV calculations, which deter-
mine how the image wraps around the surface. To cover large areas, textures
are typically tiled, meaning they repeat across the terrain. While tiling is
essential for performance and scalability, it introduces challenges such as
noticeable seams and repetitive patterns.

Seamless Textures

These challenges can be mitigated through the use of seamlessly designed
textures. Seamless textures are carefully designed to repeat without visible
seams or artifacts, but creating them is non-trivial, as the human eye is
particularly adept at detecting patterns and inconsistencies. Careful attention
must be paid to blending edges and ensuring uniformity.

38

................... 4.1. Landscape Materials and Landscape Auto Materials

(a) : Seam grass texture tiles. (b) : Great grass texture tiles.

Figure 4.1: Example of wrong and good tiling on grass texture.

Proposed Solution: Breaking Repetitive Patterns. To address the issue of
repetitive patterns in terrain textures, a combination of texture blending and
noise variation was implemented. The approach involves the following steps:..1. Creating a Mask with Grayscale Noise: A mask is generated by

blending two grayscale noise textures of different scales (e.g., T_Default_MicroVariation
from the Unreal Engine library). This mask is then used to modulate
the base texture, introducing subtle variations across the terrain. The
result is a more natural look that helps break up noticeable repetition in
surface patterns. See Figure 4.3...2. Interpolating the Original Texture with a Color Variation: The
base texture is linearly blended with a color-modified version of itself,
using a larger tiling scale. The blend factor (alpha) is driven by a noise
map, creating smooth color transitions across the surface. This technique
introduces color diversity over a wide area and effectively reduces visible
tiling. See Figure 4.4...3. Dynamic Adjustments with Parameters: Parameters such as tiling,
alpha blending, and contrast can be adjusted to allow dynamic adjust-
ments and fine-tuning based on specific terrain requirements.

This implementation is highly inspired by the techniques demonstrated in
a video tutorial by Game Dev Academy [6].

Note: The base color for final texture is computed by multiplying the
results from Figure 4.4 and Figure 4.3.

39

4. Implementation...................................

Figure 4.2: Comparison of incorrect and improved tiling. First illustrates
repetitive tiling, while second presents the final result generated by the code
from Figure 4.4 and Figure 4.3.

Figure 4.3: Reducing texture repetition by multiplying the base texture with
grayscale noise maps of different scales.

40

................... 4.1. Landscape Materials and Landscape Auto Materials

Figure 4.4: Blending the base texture with a color-variant version using a
noise-driven alpha. This interpolation introduces large-scale variation and helps
to hide obvious tiling.

Landscape Materials

Landscape materials in Unreal Engine function like standard materials but are
optimized for large-scale terrain. They consist of multiple texture layers—such
as grass, rock, sand, and snow—blended together to cover vast areas seamlessly.
Core material nodes include:. Landscape Layer Blend – for combining texture layers based on defined

weights or masks.. Landscape Coordinate – for controlling UV tiling, offset, and scale
across the terrain.

Once the material graph is configured, you can apply the material to your
landscape actor and begin painting directly in the editor.

Painting Landscape Materials in the Editor. To paint landscape materials
in Unreal Engine, first define your texture layers and blend them with a
Landscape Layer Blend node. Next, use the Landscape Coordinate node
to adjust UV tiling and scale. Finally, switch to the Landscape Paint tool in
the editor and assign each layer to a paint channel—now you can paint grass,
rock, sand, or snow directly onto your terrain. For a detailed, step-by-step
walkthrough, see the video tutorial by Aziel Arts [7].

41

4. Implementation...................................
Landscape Auto Materials

Landscape Auto Materials streamline terrain texturing by:. Automatically assigning textures based on parameters such as height,
slope, or terrain layers. For instance, we use noise maps to determine
the type of grass placed on “grassy areas.”. Reducing manual effort, particularly for large or procedurally generated
terrains.. Recording the current texture (mapped onto a given UV) into the physical
material for later use (e.g., specialized collision handling and usage as
attribute in PCG graphs).. Reflecting changes in real time after any modifications to the terrain.

While efficient, this approach may limit artistic flexibility compared to
manually painted landscape materials. For a detailed tutorial on creating
Landscape Auto Materials, refer to the video by Aziel Arts [9], which also
inspired parts of this project.

Figure 4.5: Example of the auto-material usage in large landscape.

4.2 Infinite Procedurally Generated World

In this section, we describe how an infinite, procedurally generated world is
produced and rendered at runtime. We also show how to adapt both terrain
texturing and our PCG graphs so that they fulfill the needs of a fully dynamic,
infinite environment. All mesh parameters—vertex positions, normals, UVs,
and other per-vertex attributes—are computed in C++ to fully leverage
multithreaded processing and minimize game-thread overhead.

Initially, we prototyped terrain streaming using Unreal Engine’s Proce-
dural Mesh Component, which offers rapid iteration via Blueprint or
C++ APIs [?]. However, as the number of active chunks grew, the per-
chunk calls to CreateMeshSection introduced noticeable frame-rate hitches.

42

......................... 4.2. Infinite Procedurally Generated World

To achieve steady-state performance, we replaced this with a fully C++
pipeline: each terrain chunk is generated once as a UStaticMesh [24] asset
(see ProceduralWorldGenerator.cpp in our GitHub repository [17]), thus
eliminating the runtime overhead of the Procedural Mesh Component.

4.2.1 Generating and Computing Terrain Data

Before rendering either a Procedural Mesh or a Static Mesh, we generate all
the mesh data needed to represent the terrain. In our system, the terrain is
modeled as a continuous 3D surface composed of triangular polygons, whose
union forms the landscape the player traverses.

Figure 4.6: How triangular polygons combine to form the terrain mesh.

Computing Polygon Data

For each triangle, we compute and store three per-vertex attributes: vertex
positions, normals, and UV coordinates.

Vertex Positions Vertices lie on a uniform (x, y) grid (typically at (i ∆x, j ∆y)
for integers i, j). We compute the height z at each grid point by blending
multiple continuous noise functions

nk : R2 → R, (x, y) 7→ nk(x, y),

(e.g., Perlin, Simplex, or Value noise) and optionally adding a constant
offset c. Concretely,

z = wc c +
K∑

k=1
wk nk(x, y),

where each weight wk controls the amplitude of its corresponding layer.
We will discuss noise maps in more detail in Section 4.2.1.

43

4. Implementation...................................

(a) : Initial 20 × 20 vertex grid

(b) : After applying noise to the z-
coordinates

Figure 4.7: Vertices displaced along the z-axis by noise functions.

UV Coordinates For each vertex, we compute UV coordinates and save
them in an array at the same index as the vertex positions. In our
implementation, we tile the texture over the world grid by dividing the
(x, y) position by a TextureTileSize parameter:
// Inside the vertex - generation loops:
float U = WorldX / TextureTileSize ;
float V = WorldY / TextureTileSize ;
UVs.Add(FVector2D (U, V));

. WorldX, WorldY are the world-space coordinates of the vertex (in-
cluding any chunk offset).. TextureTileSize defines how many Unreal units correspond to
one full texture repetition.. UV values outside [0, 1] automatically wrap in the material, so tiles
repeat seamlessly across chunks.

Normal Vectors We adopt smooth shading by averaging adjacent face nor-
mals using Unreal’s UKismetProceduralMeshLibrary::CalculateTangentsForMesh()
function, which:..1. Computes each triangle’s face normal via the cross product of two

edges...2. Averages and normalizes those normals at each vertex...3. Generates tangent vectors for correct normal-mapped lighting.

Border issue: Edge triangles on an X × Y grid lack a full set of
neighbors, so their averaged normals would be incorrect. To address this,
we:..1. Expand our iteration to x ∈ [−1..X], y ∈ [−1..Y], creating a

(X + 2) × (Y + 2) vertex array...2. Build triangles (inner and border) into an extended index list.

44

......................... 4.2. Infinite Procedurally Generated World..3. Call CalculateTangentsForMesh on the extended mesh...4. Discard the outer-row/column triangles, preserving correct normals
on the original X × Y region.

Function signature:

void UKismetProceduralMeshLibrary::CalculateTangentsForMesh(
Vertices, // TArray<FVector>
ExtendedTriangles, // TArray<int32> index list
UVs, // TArray<FVector2D>
Normals, // TArray<FVector>
Tangents // TArray<FProcMeshTangent>

);

Noise Maps for Height Generation

A noise map is a 2D field of smoothly varying pseudo-random values—sampled
by coordinate—that we use to modulate terrain height.

Procedurally generated terrain relies on these noise functions to introduce
natural, pseudo-random variation in height while remaining fully reproducible
via a fixed seed..Motivation: Noise provides controllable randomness, so the same seed

always produces the same terrain..Core Noise Types:

Perlin Noise [19]: smooth, gradient-based noise ideal for rolling hills.
Simplex Noise [20]: computationally efficient, with fewer directional

artifacts.
Value Noise interpolates random grid values; simpler but less natural.
Cellular Noise produces cell-like patterns, useful for stylized features.

45

4. Implementation...................................

(a) : Perlin Noise
(b) : Simplex Noise

(c) : Value Noise
(d) : Cellular Noise

Figure 4.8: Examples of different noise types used for terrain height.

. Frequency & Amplitude:. Frequency controls how often peaks and valleys occur per unit
distance (higher frequency → finer detail).. Amplitude scales the output height range (higher amplitude → taller
features)..Most noise functions return values in [−1, 1]; you multiply by the
amplitude to map into world-space heights.. Fractal Noise (Octaves): Rather than a single layer, we sum several

“octaves” of noise at increasing frequencies and decreasing amplitudes:

H(x, y) =
N−1∑
i=0

Ai n
(
fi x, fi y

)
, fi = 2if0, Ai = piA0,

where p ∈ (0, 1) is the persistence. In FastNoiseLite:
if (octaves > 1) {

NoiseGen . SetFractalType (FastNoiseLite :: FractalType_FBm);
NoiseGen . SetFractalOctaves (octaves);
NoiseGen . SetFractalLacunarity (2.0f); // freq 2 each octave
NoiseGen . SetFractalGain (0.5f); // amp 0 .5 each octave

}

By tuning:. the number of octaves N (e.g. 2–6) for desired complexity; N = 3
often provides a good trade-off between computation time and visual
detail,. lacunarity (≈ 2.0) to control the frequency multiplier,. gain/persistence (0.4–0.7) to set the amplitude falloff,

46

......................... 4.2. Infinite Procedurally Generated World

you adjust terrain roughness versus performance.. 3D Noise for Caves and Overhangs: By sampling a 3D noise field
N(x, y, z) and applying an isosurface threshold, one can carve out caverns
and natural overhangs [22]. This is not used in the present project.. Implementation with FastNoiseLite: We use the FastNoiseLite
library in C++ to generate noise at runtime [21]. Example:
FastNoiseLite Noise;
Noise. SetSeed (Seed);
Noise. SetNoiseType (FastNoiseLite :: Simplex);
Noise. SetFrequency (0.002 f);
float raw = Noise. GetNoise (x, y); // [-1,1]
float height = raw * Amplitude ;

Note: The complete source code for this chapter—including all C++ classes,
PCG Graph assets, and materials—is available in the GitHub repository [17].

4.2.2 Rendering Terrain with the Procedural Mesh
Component

To display our dynamically generated terrain, we need a system that takes
raw polygon data and renders it at runtime while loading new chunks as
the player moves and unloading those that fall out of view. Unreal Engine’s
Procedural Mesh Component exposes C++ APIs (and Blueprint nodes)
for creating, updating, and destroying mesh sections on the fly.

Full source code for this project is available online [18].

Setup Overview

In this setup, each terrain chunk is represented by its own Blueprint actor
(BP_TerrainActor). The workflow is as follows:..1. C++ Actor: Implement AWorldGenerator and expose key properties

in the header with UPROPERTY(EditAnywhere, BlueprintReadWrite),
for example:. Vector2D ChunkSizes — Size of each chunk.. TSubclassOf<AActor> TerrainActorClass — the Blueprint class

containing a UProceduralMeshComponent.. UMaterialInterface* TerrainMaterial — optional material to
assign to each mesh...2. Instantiate Generator: Create a Blueprint subclass of AWorldGenerator,

configure defaults in the Details panel, and place one instance in your
level...3. Terrain Actor: Create BP_TerrainActor with a UProceduralMeshComponent.

47

4. Implementation.....................................4. Terrain Actor reference: pass a reference of BP_TerrainActor to
AWorldGenerator...5. Runtime Spawning: On each tick, process up to ChunksPerTick
chunks:

AActor * NewActor = GetWorld ()-> SpawnActor <AActor >(
TerrainActorClass , Position , Params);

if (NewActor)
{

// Create mesh section
if (UProceduralMeshComponent * MeshComp =

NewActor -> FindComponentByClass <... >())
{

MeshComp -> CreateMeshSection (
0,
MeshData ->Vertices ,
MeshData ->Triangles ,
MeshData ->Normals ,
MeshData ->UVs ,
MeshData -> VertexColors ,
MeshData ->Tangents ,
true

);

MeshComp -> SetMaterial (0, TerrainMaterial);

}

// Track this chunk for later updates / removal
ActiveChunks . Emplace (NewActor ,

MeshData -> SectionIndex ,
MeshData -> SectorPosition);

}..6. Chunk Management: We store each spawned actor and its section
index in ActiveChunks, allowing us to clear or update individual chunks
later (e.g. via ClearMeshSection or respawn).

48

......................... 4.2. Infinite Procedurally Generated World

Figure 4.9: Details panel for AWorldGenerator, showing exposed parameters.

Throttled Chunk Submission

In Tick(), we process up to ChunksPerTick ready chunks per frame (we
found 1 section/frame is ideal to maximize FPS while still loading chunks
quickly enough):
void AWorldGenerator :: ProcessRenderQueue (float DeltaTime)
{

int32 Count = 0;
Generating = true;
while (Count < ChunksPerTick)
{

// chunk spawning logic
}
Generating = false ;

}

By offloading data creation to worker threads and throttling section creation
on the game thread, we maintain smooth, consistent frame rates. For the raw
array-generation code, see Section 4.2.1.

Common Issues with Procedural Mesh Component.Array length mismatches: All input arrays (Vertices, Triangles,
Normals, etc.) must match expected sizes or CreateMeshSection will
assert..Duplicate indices: Recreating a section under the same index without
clearing it first may cause flicker or stalls..Thread safety: Only call CreateMeshSection (and other component
APIs) on the game thread—Unreal Engine will not allow calls from
background threads..Memory leaks: Always delete your FMeshData after use, and clear
inactive sections to free GPU buffers.

49

4. Implementation...................................
Limitations of UProceduralMeshComponent

UProceduralMeshComponent provides only one extra per-vertex data chan-
nel—vertex color (4×8-bit)—and does not expose any UV channels. By
contrast, UStaticMesh (and plugin URealtimeMesh) support up to eight UV
sets (UV0–UV7) in addition to the standard vertex attributes (position,
normal, tangent, color). In practice, UV0 is usually reserved for texture
coordinates and UV1 for lightmaps, leaving UV2–UV7 (each two 16-bit floats)
available for custom data.

4.2.3 Rendering Terrain with Static Meshes

While the Procedural Mesh Component provides a straightforward API for
dynamic geometry, it only exposes a single extra data channel (vertex color)
and does not support multiple UV sets, severely limiting the amount of per-
vertex data available to the vertex shader. To work around these constraints,
we implemented a pipeline that converts each chunk into a UStaticMesh asset.
Unfortunately, the Static Mesh build library is only accessible within the
Unreal Editor and cannot be invoked at runtime in packaged (shipping) builds.
Consequently, runtime generation of UStaticMesh assets is not supported in
shipped games without either pre-cooking the meshes or integrating a custom
runtime mesh plugin.

4.2.4 Rendering Terrain with Static Meshes

While the Procedural Mesh Component provides a straightforward API for
dynamic geometry, it only exposes a single extra data channel (vertex color)
and does not support multiple UV sets, severely limiting the amount of per-
vertex data available to the vertex shader. To work around these constraints,
we implemented a pipeline that converts each chunk into a UStaticMesh asset.
Unfortunately, the Static Mesh build library is only accessible within the
Unreal Editor and cannot be invoked at runtime in packaged (shipping) builds.
Consequently, runtime generation of UStaticMesh assets is not supported in
shipped games without either pre-cooking the meshes or integrating a custom
runtime mesh plugin.

We use the same AWorldGenerator actor (Section 4.2.2) and data-generation
code (Section 4.2.1), but instead of feeding a UProceduralMeshComponent,
we:. Convert each FMeshData into a UStaticMesh using CreateStaticMeshFromMeshData().. Spawn an AStaticMeshActor and assign that mesh at the correct world

position.. Track spawned actors (or their mesh components) for later removal.

50

......................... 4.2. Infinite Procedurally Generated World

Key Steps in CreateStaticMeshFromMeshData

In Unreal Engine, a UStaticMesh is a fully optimized, GPU-friendly mesh as-
set. Internally, you build it by populating an editable FMeshDescription—which
holds vertices, faces, UVs, normals, and other per-vertex attributes—before
baking it into the final static mesh format. Our function CreateStaticMeshFromMeshData
takes the runtime-generated FMeshData arrays, fills a FMeshDescription, and
produces a ready-to-spawn UStaticMesh.

Rather than include every line here, the essential operations are:..1. Instantiate a new UStaticMesh:
UStaticMesh * NewSM = NewObject < UStaticMesh >(this);
if (! NewSM) return nullptr ;..2. Prepare the mesh description:. Allocate one source model: NewSM->SetNumSourceModels(1);. Create a FMeshDescription and register FStaticMeshAttributes...3. Populate vertices and polygons:
// For each vertex : CreateVertex () + set its position
// For each triangle : CreateVertexInstance (), set UV , normal , color
MeshDescription . CreatePolygon (PolygonGroup , VertexInstanceIDs);..4. Build and finalize the mesh:
NewSM -> CreateMeshDescription (0, MeshDescription);
NewSM -> CommitMeshDescription (0);
// Configure BuildSettings (disable recompute normals / tangents)
NewSM ->Build(true);..5. Set up collision and bounds:
NewSM -> CalculateExtendedBounds ();
NewSM -> GetBodySetup ()-> CollisionTraceFlag = CTF_UseComplexAsSimple ;

These steps convert the raw FMeshData buffers into a fully configured
UStaticMesh asset at runtime, ready for spawning in the level. The full imple-
mentation is in WorldGenerator.cpp under CreateStaticMeshFromMeshData(FMeshData*
MeshData) [18]. For details on the UStaticMesh class, see the Unreal Engine
5.5 API Reference [24].

Spawning and Removing Static Mesh Chunks

Once a UStaticMesh has been created, we need to spawn it into the world
and later remove it when it is out of view.

51

4. Implementation...................................
Spawning a Static Mesh Chunk. Unreal Engine requires that you spawn
actors on the game thread. For each ready FMeshData* MD:..1. Spawn an AStaticMeshActor and attach the mesh:

// Spawn actor (must be on game thread)
auto* SMActor = GetWorld ()

->SpawnActor < AStaticMeshActor >();

// Configure its component
auto* SMC = SMActor -> GetStaticMeshComponent ();
SMC -> SetMobility (EComponentMobility :: Static);
SMC -> SetStaticMesh (NewSM);
if (TerrainMaterial)

SMC -> SetMaterial (0, TerrainMaterial);

// We offset vertices when building the mesh , so we spawn
// at world origin
SMActor -> SetActorLocation (FVector :: ZeroVector);
// (Alternatively , you could leave vertices un - offset and
// spawn at MD -> SectorPosition)..2. Record it for culling:
// Track for later removal
ActiveChunks .Add(FGeneratedChunk (SMC , MD -> SectorPosition));..3. Free the CPU data:
// Clean up
delete MD;

Removing Distant Chunks. Each frame in Tick(), we compute the distance
from the player and destroy any chunk beyond MaxDistance:
for (int i = ActiveChunks .Num () - 1; i >= 0; --i)
{

float Dist2 = FVector :: DistSquared (
FVector (ActiveChunks [i]. SectorPosition , 0),
PlayerLocation);

if (Dist2 > FMath :: Square (MaxDistance))
{

// Destroy the actor owning this component
ActiveChunks [i]. MeshComponent -> GetOwner ()-> Destroy ();
ActiveChunks . RemoveAt (i);

}
}

This ensures that only nearby static-mesh chunks remain in the scene,
keeping memory and draw calls under control.

52

......................... 4.2. Infinite Procedurally Generated World

Issues of UStatiMesh. Lightmap UV Preservation: Unreal Engine will regenerate lightmap
UVs if TexCoord[1] is modified or left uninitialized at runtime. Re-
serve TexCoord[1] exclusively for your lightmap coordinates—and never
overwrite it—to avoid costly UV rebuilds.. Editor-Only API: The static mesh build functionality is exposed only
in the Unreal Editor. Consequently, CreateStaticMeshFromMeshData()
cannot be called in packaged (shipping) builds without integrating a
custom runtime mesh plugin or pre-cooking assets.

Alternative: URealtimeMesh Plugin

As an alternative to the editor-only static mesh build pipeline, the URealtimeMesh
plugin enables runtime mesh creation in shipped builds and provides full
control over vertex formats and updates. However, its current release is not
fully compatible with Unreal Engine 5.5, and we were unable to fully integrate
it—particularly for generating collision geometry at runtime.

4.2.5 Dividing Terrain into Biomes

In large, varied worlds it is essential to group regions with similar environ-
mental characteristics into biomes. A biome is a contiguous area classi-
fied by its dominant terrain features, climate, vegetation type, and appear-
ance—examples include forests, mountains, plains, deserts, and wetlands.

Why divide into biomes?. Visual variety and realism: Each biome can use its own textures, foliage
rules, and object placement logic to evoke a distinct look and feel..Modular PCG logic: By tagging terrain points with a biome identifier,
we can apply different PCG graphs or subgraphs (e.g. forest spawner vs.
mountain spawner) without mixing rules..Modular Terrain logic: By tagging terrain points with a biome identifier,
we can create its own local generation rules..Gameplay mechanics: Biomes often drive game systems (weather, AI
behavior, resource distribution), so a clear biome division supports
higher-level design.

53

4. Implementation...................................

Figure 4.10: Overview of biome partitioning: distinct regions (Forest, Mountains,
Desert, Plains, Wetlands) highlight visual variety, modular PCG logic, modular
terrain rules, and gameplay mechanics.

How do we divide terrain into biomes?

Noise maps are ideally suited for biome classification, as they provide smoothly
varying, seedable values across the world. In this work we explore two
complementary approaches:..1. Thresholded Perlin-noise biome partitioning (novel contribu-

tion): We devised a recursive Perlin-noise splitting algorithm in this
work. At each level, a 2D Perlin noise field ni(x, y) is thresholded to
divide the current region into two subregions, and we recurse until exactly
N terminal regions (biomes) remain. To our knowledge, this specific
recursive-thresholding method has not been published elsewhere...2. Humidity–Temperature lookup (widely used): We generate two
independent 1D Perlin noise values per point—one for humidity (H),
one for temperature (T)—and then classify the resulting (H, T) pair via
a predefined biome table (e.g. desert, grassland, rainforest). This hu-
midity–temperature method is a commonly used approach in procedural
world generation.

Thresholded Perlin-noise Biome Partitioning

This method guarantees exactly N biomes by recursively splitting the terrain
using successive threshold tests on Perlin noise fields.

Algorithm. Starting with the full region R and a target of k biomes:..1. Evaluate the 2D Perlin noise field

ni(x, y) : R2 → R

54

......................... 4.2. Infinite Procedurally Generated World

at frequency fi...2. Partition R into two subsets via threshold Ti:

Rleft = {(x, y) ∈ R | ni(x, y) > Ti}, Rright = {(x, y) ∈ R | ni(x, y) ≤ Ti}...3. Allocate the remaining k leaves between left and right:

L =
⌈
k/2

⌉
, R =

⌊
k/2

⌋
...4. Recurse on

(
Rleft, L

)
using noise ni+1 (typically fi+1 = fi/2), and on(

Rright, R
)

likewise, until each region becomes a final biome.

(a) : First division to
left and right

(b) : Second division
to left and right

(c) : Result after final
iteration

Figure 4.11: Showcases how terrain is recursively split into five biomes

Example for Five Biomes. Suppose we need exactly five biomes: Forest,
Mountains, Meadow, Desert, and Tundra. We proceed as follows:..1. Level 1 (k = 5) Compute n1(x, y) at f1, choose threshold T1. Split into

Rleft = {n1 > T1}, Rright = {n1 ≤ T1},

then assign L = ⌈5/2⌉ = 3 leaves to the left, and R = ⌊5/2⌋ = 2 leaves
to the right...2. Level 2.On Rleft with k = 3: Compute n2 at f2 = f1/2, threshold T2, split

into

R2L = {n2 > T2}, k2L = ⌈3/2⌉ = 2, R2R = {n2 ≤ T2}, k2R = ⌊3/2⌋ = 1.

Then recurse on R2L (k = 2) into two single-leaf biomes, and declare
R2R a single biome..On Rright with k = 2: Split by n′

2 at f ′
2 = f1/2, threshold T ′

2, into
two single-leaf biomes...3. Label the five leaves (in left-to-right order):

Forest, Mountains, Meadow, Desert, Tundra.

55

4. Implementation...................................
Visualizing the Split Tree. The binary-split process for k = 5 biomes can
be illustrated as follows. Starting from the root “(5)”, we split into a left
child “(3)” and a right child “(2)”. The left “(3)” node then splits into “(2)”
and “(1)”, where that “(2)” further splits into two leaf nodes. The right “(2)”
node likewise splits into two leaf nodes. In total we obtain five leaves, which
we label (left to right) as Forest, Mountains, Meadow, Desert, and Tundra.

(5)

(3)

(2)

(1) (1)

(1)(1)

(2)

(1)(1) (1)

Here each “(1)” is one final biome. By tuning each fi (e.g. halving at each
level) and threshold Ti, you control both large-scale placement and relative
area (rarity) of the five biomes.

Calculate biome’s height. Once each point (x, y) has been assigned a final
biome i, we compute its height by blending per-biome noise functions nj(x, y).
For example:

z(x, y) = bi(x, y) = Ci +
Ki∑
j=1

nj(x, y) ,

where. Ci is a constant base-height offset,. nj(x, y) is the noise function (height contribution) for biome j.. bi(x, y) is the height function of i-th biome..Ki is number for noise base height functions for i-th biome.

Biome blending issue. If we now generate the terrain with hard thresholds,
there will be noticeable jumps between each biome.

56

......................... 4.2. Infinite Procedurally Generated World

Figure 4.12: Example of abrupt seams between biomes when no smoothing is
applied.

We address abrupt seams by introducing a transition band of half-width
B around each split threshold T . Consider a split of region R into two child
regions—left and right—and let

ni = ni(x, y), T = Ti, B ≥ 0.

We compute provisional weights (wL, wR) at this split as

(wL, wR) =


(wprev, 0), ni ≤ T − B,(
wprev

T + B − ni

2B
, wprev

ni − (T − B)
2B

)
, T − B < ni < T + B,

(0, wprev), ni ≥ T + B.

At the root we initialize
wprev = 1.

At each split we ensure
wL + wR = wprev,

and propagate each branch’s weight as the new wprev for subsequent splits.
Upon reaching the N leaf regions, the resulting weights

αi = wi, i = 1, . . . , N,

automatically satisfy
N∑

i=1
αi = 1

by construction, so no further normalization is required.

57

4. Implementation...................................
Finally, the terrain height at each point (x, y) is computed as a weighted

sum of the per-biome height functions bi(x, y):

z(x, y) =
N∑

i=1
αi bi(x, y), bi(x, y) = Ci +

Ki∑
j=1

nj(x, y).

Here:. αi is the blending weight for biome i, with
∑N

i=1 αi = 1.

Figure 4.13: Blending between biomes after applying blending method

Summary. The thresholded Perlin-noise partitioning lets us generate exactly
N biomes of arbitrary count, each covering an area proportional to our
chosen thresholds. By fine-tuning each threshold Ti and corresponding noise
frequency fi, we control both the size and relative rarity of every biome
while preserving smooth blends along their boundaries. Once segmented,
each biome can be treated independently—applying bespoke height functions,
textures, and object placements—rather than overlaying global modifiers
across the entire world. This yields coherent, visually seamless results with
minimal manual effort.

Humidity–Temperature lookup

The humidity–temperature lookup method classifies each terrain point into
a biome by sampling two independent 1D noise functions—one controlling
humidity H, the other controlling temperature T—and then consulting a
predefined biome table. In nature, biomes occupy characteristic regions in
an H–T diagram (e.g. tundra at low H, low T ; tropical rainforest at high H,
high T), as shown in Figure 4.14.

58

......................... 4.2. Infinite Procedurally Generated World

Figure 4.14: Real-world biome distribution in humidity–temperature space
(after Whittaker [26]).

In our implementation we map each sampled pair (H, T) ∈ [0, 1]2 directly
into a continuous 2D biome graph, avoiding a large discrete table. A minimal
discrete example would be

T < 0.5 T ≥ 0.5
H < 0.5 Tundra Grassland
H ≥ 0.5 Swamp Rainforest

Algorithm...1. Compute humidity
H = nH(x) : R → [0, 1],

where nH is a 1D Perlin (or other) noise at frequency fH ...2. Compute temperature

T = nT (y) : R → [0, 1],

via an independent 1D noise at frequency fT ...3. Classify (H, T) by locating it in the 2D biome graph (or lookup table).

Smooth-blend weights (abbreviated). To avoid hard cell boundaries, we
blend the four neighboring (H, T) cells. Let

δH = {H mod 1}, δT = {T mod 1},

59

4. Implementation...................................
and define

dH = min(δH , 1 − δH , B), dT = min(δT , 1 − δT , B), N = 0.25
B2 .

Then the bilinear weights are

w00 = (B + dT) (B + dH) N,

w10 = (B − dT) (B + dH) N,

w01 = (B + dT) (B − dH) N,

w11 = (B − dT) (B − dH) N,

which satisfy w00 + w10 + w01 + w11 = 1. These weights blend the four
candidate biomes around (H, T).

Figure 4.15: 2×2 HT-lookup mask. The sample point at (0.5, 0.4) is the center
of a square of side-length 2B.

As shown in Figure 4.15, we compute blending weights for the four sur-
rounding biomes, with each biome’s weight proportional to the fraction of
the square mask’s area that lies within that biome.

Summary. The humidity–temperature lookup method assigns biomes by
sampling two independent 1D noise fields—humidity H and temperature
T—and mapping each (H, T) pair into a 2D biome diagram. This yields
immediately clear adjacency relationships and allows designers to create
biome palate via a simple table, without touching code. Per-cell blend
weights can be precomputed for runtime efficiency, and each biome retains
its own isolated parameters for height, textures, and gameplay rules. The
resulting distribution closely mirrors real-world climate zones, and with proper
choice of noise frequencies (fH , fT) delivers visual fidelity and performance
comparable to recursive splitting—though it offers less fine-grained control

60

......................... 4.2. Infinite Procedurally Generated World

over individual biome threshold shapes than the thresholded Perlin-noise
method.

4.2.6 Auto-Material for Procedural Terrain using
UStaticMesh

In modern real-time 3D engines, every rendered triangle carries per-vertex
attributes—position, normal, UV coordinates, vertex colors, and so on—which
the GPU interpolates across the face and hands off to the fragment shader
(the little “pixel program” that actually writes out your screen image). By
stuffing our biome-blend data into those per-vertex channels, we can drive
entirely custom, smoothly blended terrain materials.

How Texturing Normally Works

UV Mapping. Each mesh vertex carries a pair of texture coordinates
(u, v) ∈ [0, 1]2. When the triangle is rasterized, the GPU linearly interpolates
these UVs across the surface and looks up a color from your base terrain
texture (grass, rock, etc.) at each pixel.

Vertex Colors. Most engines also let you paint an RGBA color on each
vertex. These per-vertex colors are interpolated over the triangle and exposed
in the material as a four-component input. In a conventional workflow you
might use this to tint or blend textures, but since our terrain’s base color
comes entirely from texture sampling, we repurpose the Vertex Color channel
purely as compact storage for per-vertex metadata (blend weights, biome IDs,
etc.).

Multiple UV Channels. Unreal Engine UStaticMesh supports up to eight
UV sets (UV0–UV7). By convention:. UV0 holds the main UV coordinates.. UV1 is reserved for lightmaps.. UV2–UV7 are available for any additional two-component data you

need per vertex (e.g. further blend weights, biome masks, procedural
parameters).

61

4. Implementation...................................

Figure 4.16: Example of texture palate.

What Do We Want to Achieve

Our goal is for each biome to use its own palette of three textures—lowland,
highland, and slope (see Fig. 4.16)—and to blend smoothly all of them
between neighboring biomes and within each biome’s internal bands. In
total we support eight textures (enough to cover all six biomes and their
transitions). To accomplish this:

1. Compute per-vertex biome weights. We reuse the thresholded
Perlin-noise partitioning or H-T lookup table (see Section 4.2.1), but for
more natural look we tighten the blend threshold from B to B′ = B/4.
We get

{ wforest, wdesert, . . . },
∑

i

wi = 1,

so that each vertex smoothly interpolates with adjacent biomes.

2. Compute three intra-biome band weights. Within each biome k,
we split into:. Lowland vs. highland, based on height z, using a center threshold

Tℓ→h and blend half-width ∆ℓ→h;. Slope, based on steepness σ, with angle threshold Θs and blend
half-width ∆s.

Concretely, define two “alpha” factors via clamped linear ramps:

αh = clamp
(

z+∆ℓ→h−Tℓ→h
2 ∆ℓ→h

, 0, 1
)
, αs = clamp

(
σ+∆s−Θs

2 ∆s
, 0, 1

)
.

Then:
bs = αs, b′

ℓ = 1 − αh, b′
h = αh,

62

......................... 4.2. Infinite Procedurally Generated World

and we scale the lowland/highland pair to occupy the (1 − bs) remainder:

bℓ = (1 − bs) b′
ℓ, bh = (1 − bs) b′

h.

By construction bℓ + bh + bs = 1.

3. Combine biome and band weights. Each biome k now contributes
three texture weights; we multiply by its biome weight wk:

wk,ℓ = wk bℓ, wk,h = wk bh, wk,s = wk bs.

Across all biomes this produces up to eight nonzero per-vertex weights,
whose sum remains

∑
k,ℓ,h,s wk,∗ = 1.

4. Pack and blend in the shader. We encode the eight [0, 1] weights
into the vertex’s RGBA color and extra UV channels (two floats each).
Generated code when creating mesh sections might look like this:

for (int i = 0; i < MeshData -> Triangles .Num (); i += 3) {
// Texture weights 0 4 VertexColor (RGBA)
Attributes . GetVertexInstanceColors ()

.Set(VtxInstID , weights0_4);

// Texture weights 5 6 UV channel 2
Attributes . GetVertexInstanceUVs ()

.Set(VtxInstID , 2, weights5_6);

// Texture weights 7 8 UV channel 3
Attributes . GetVertexInstanceUVs ()

.Set(VtxInstID , 3, weights7_8);
}

FinalColor =
8∑

i=1
wi Texturei

5. Accessing weights in Material Blueprint. In your material, add a
VertexColor node to read weights 0–4, then two TexCoord nodes with
“Coordinate Index” set to 2 and 3. Pass each through a ComponentMask
(R,G) to extract weights 5–6 and 7–8 respectively, as illustrated in
Fig. 4.17.

Figure 4.17: Material Blueprint setup for unpacking per-vertex texture weights.

63

4. Implementation...................................

Figure 4.18: Final terrain rendering showing smooth, per-vertex blended tran-
sitions between biomes and elevation bands, driven entirely by the custom
VertexColor and UV-packed weights.

Note: This scheme lets us pass up to 16 independent 8-bit values per vertex
into the material:.VertexColor (RGBA) provides 4 channels..TexCoord[2–7] each carry two 8-bit values, for a total of 6 × 2 = 12

channels.

All 16 channels can store blend factors or other metadata, giving us ample
bandwidth for complex, per-vertex control of our procedural terrain shader.

Why This Matters. Familiar pipeline. We never stray from standard UVs and vertex
channels—no engine hacks required.. Smooth transitions. Because the GPU linearly blends vertex at-
tributes, neighboring biomes dissolve seamlessly..Per-vertex control. You can mix any combination of up to eight
textures on every triangle—perfect for edge cases where multiple habitats
meet.

4.2.7 Adapting PCG for a Fully Procedural World

Our original PCG graphs assumed a static Landscape asset. For an infinite,
runtime-generated world, we must revise them as follows:

Replacing Landscape Data and Integrating World Partition

In our updated PCG graphs, each Get Landscape Data node is replaced by
a World Ray Hit Query, allowing us to sample height, normal, and layer
data from any collision-enabled geometry—not just Landscape actors. We
enable World Partition’s Runtime Generation so that PCG graphs execute

64

......................... 4.2. Infinite Procedurally Generated World

dynamically as new chunks appear, and set Partitioned to split each graph
into per-chunk sections for optimized, staggered execution. These combined
settings let the system sample arbitrary terrain at runtime, spawn objects on
freshly streamed chunks, and maintain high performance by processing only
the chunks currently loaded.

Filtering Points by Biome

To correctly assign each point to its biome, we create a custom PCG node
that divides points into their respective biomes (see Figure 4.19).

Creating a Custom PCG Node: BP_SplitPointsToBiomes. We want a
single PCG node that takes an incoming point list and dispatches each point
into exactly one of six biome-specific output pins (Forest, Plains, Desert,
Taiga, Mountains, Dunes). Here’s how to implement it in Blueprints:..1. Define the new node class.

Duplicate GetSteepness and rename it to BP_SplitPointsToBiomes...2. Expose six output execution pins.
In BP_SplitPointsToBiomes’s PCG graph:. Drag off the Execute pin and select Add Output Exec six times.. Rename each pin to Forest, Plains, Desert, Taiga, Mountains,

and Dunes.. Set each pin’s data type to “Point Data” (or your PCG metadata
type)...3. Loop over incoming points.

. Pull in the In point-array pin and feed it into a ForEach loop.. Each iteration yields one Point structure...4. Classify each point’s biome.

. Call your Blueprint-exposed function GetBiomeAtLocation(FVector
Position) on Point.Transform.Location.. This returns an EBiome enum value (Forest, Plains, . . .)...5. Accumulate points per biome (see Figure 4.19).

. After the GetBiomeAtLocation node, add a Switch on EBiome.. For each case, Add the current Point to a dedicated local array:
ForestPoints, PlainsPoints, etc.

65

4. Implementation.....................................6. Dispatch grouped arrays to outputs.

. After the loop completes, wire each biome’s array into its matching
Exec-output pin.. Downstream PCG subgraphs now receive exactly those points be-
longing to each biome.

Figure 4.19: Core logic inside our new BP_SplitPointsToBiomes node

Now, in your main PCG graph you can hook the Forest pin into one
subtree (e.g. tree spawners), the Desert pin into another (cacti), and so on,
all driven by the procedural terrain.

Optimization and Distance Culling

To maintain high performance in a large, procedurally generated world, we
employ three complementary strategies:. Selective Collision (Hitboxes)

Only enable collision where it’s truly needed—rocks, buildings, and
interactive props—while disabling physics on purely decorative elements
(grass, flowers, distant foliage). This dramatically reduces the per-frame
physics workload..Multi-scale Sampling Sections
We partition terrain sampling into several nested grid sizes, each driving
a different level of detail as shown in Figure 4.20:

66

......................... 4.2. Infinite Procedurally Generated World

. Small cells (e.g. 3 200 UU): precise data for near-ground foliage
(grass, weeds)..Medium cells (e.g. 6 400 UU): low bushes and small props.. Large cells (e.g. 12 800 UU): trees, rocks.. Huge cells (e.g. 25 600 UU): large landscape features (mountains,
cliffs).

In our PCG graph, a single World Ray Hit Query feeds four Grid
Sampler nodes—one per cell size—which then dispatch to separate
subgraphs (SmallLandscapeData, MediumLandscapeData, etc.). This
ensures each feature uses just the resolution it requires.

Figure 4.20: Terrain is partitioned into multiple sampling scales to optimize
detail and performance.

Combining selective hitboxes, multi-scale sampling, and distance culling
focuses computation and rendering on the player’s vicinity, while distant
regions incur minimal overhead.“‘

4.2.8 Results and Stylizations

With the PCG pipeline fully integrated into a runtime-generated world (includ-
ing biome splitting via BP_SplitPointsToBiomes, see Section 4.2.7), creating
the final environment is now trivial: you simply assign each PCD biome dis-
cussed in Section 3.4 to its corresponding biom pin from BP_SplitPointsToBiomes
or you create new one to suit your theme.

Beyond functional correctness, the same system supports multiple artistic
styles by swapping only the terrain textures and meshes in PCG graphs. For
example, Figures 4.21a and 4.21b show the exact same world geometry and
PCG logic rendered in:. Low–Poly Style: flat colors, sharp edges, minimal texture detail.

67

4. Implementation...................................
.Photorealistic Style: high-resolution albedo, normal and roughness

maps for lifelike terrain.

(a) : Low–poly stylization

(b) : Photorealistic stylization

Figure 4.21: Final procedural world rendered in two distinct visual styles.

68

Chapter 5
Results

The procedural world generation runs smoothly and delivers ample visual
detail to engage players, while maintaining a stable frame rate suitable for
performance-sensitive games.

5.1 Procedural Content Generation

We implemented a flexible PCG (Procedural Content Generation) framework
in Unreal Engine 5.5 that unifies terrain shaping and runtime asset placement.
The core system consists of custom PCG Graphs featuring:.On-Demand Sampling: Real-time noise evaluation and environmental

queries to drive dynamic spawning of meshes and foliage..Rule-Based Filters: Configurable attribute tests (e.g. slope, altitude,
biome weight) to constrain placement to valid regions..Hierarchical Density Control: Multi-tier density settings allowing
coarse feature zoning and fine-grained detail distribution.. Streaming Integration: Seamless triggering of PCG tasks via Unreal’s
World Partition as the player traverses streaming cells.

5.1.1 Flora PCGs

The following PCG graphs focus on vegetation placement across various
biomes, using density controls and environmental filters to create natural
plant distributions. More detailed flora configurations for each biome are
provided in the “Biomes” subsection of the next chapter.

69

5. Results

(a) : Wildflowers distributed across
landscape.

(b) : Mushroom clusters occasionally
growing under the trees.

Figure 5.1: Point out details for plains PCG shown in 5.1a and Forest in 5.1b.

Figure 5.2: Forest biome with trees, undergrowth based on sun access, fallen
logs, mushrooms, small and large rocks, and fallen branches.

5.1.2 Infrastructure PCGs

These PCG graphs automate the placement of man-made elements—fences,
roads, and village layouts—by adapting to terrain contours and applying rule-
based filters. Further implementation details and parameters are discussed in
the “Biomes” subsection of the next chapter 5.2.2.

(a) : Fence generation following
terrain contours and slope con-
straints.

(b) : Dynamic road placement adapt-
ing to landscape features.

Figure 5.3: Examples of infrastructure PCGs for fences and roads.

70

..................................5.2. World Generation

Figure 5.4: Village PCG showcasing procedural street networks and building
placement.

5.2 World Generation

Our pipeline procedurally generates an expansive, voxel-inspired landscape
at runtime and populates it using the PCG framework. To enhance visual
interest and ecological variety, the world is divided into six distinct biomes in
2 different artstyles:.Desert: Sparse vegetation and undulating dunes sculpted by low-

frequency noise..Dunes: Sharply contoured sand hills with wind-driven ripple patterns..Mountains: Rugged peaks generated via fractal Brownian motion,
supporting rocky outcrops and sparse conifers..Tundra: Flat, frost-covered plains populated with low-lying shrubs and
periodic ice patches.. Forest: Dense groves of procedurally scaled trees, undergrowth, and
fallen logs..Meadows: Rolling grasslands with wildflowers and scattered rock for-
mations.

Each biome’s logic is implemented in its own PCG subgraph, and adjacent
zones blend smoothly using linear interpolation of biome weights, ensuring
natural transitions without abrupt borders.

5.2.1 Terrain Generation Results

Our refined runtime terrain generator supersedes the initial Procedural Mesh
Component prototype, overcoming its performance and streaming constraints.
By dividing the world into biome-specific zones—each governed by its own
noise-driven height formula and tailored texture set—we achieve richly varied

71

5. Results
landscapes at scale. Large areas are generated in seconds, thanks to multi-
threaded mesh construction and World Partition–based streaming, all while
maintaining smooth frame rates.

(a) : Desert biome: undulating dunes
and sandy textures.

(b) : Mountain biome: rugged peaks
and rocky outcrops.

Figure 5.5: High-detail terrain renderings for two distinct biomes.

Figure 5.6: Panoramic view of the procedurally generated world, showcasing
seamless streaming and biome transitions.

5.2.2 Biome Results

Below are examples of several biomes presented in low-poly and photo-real
variants.

72

..................................5.2. World Generation

(a) : Low-poly Desert style. (b) : High-fidelity Desert terrain
with photoreal textures.

Figure 5.7: Comparison of Desert biome in low-poly vs. photorealistic styles.

(a) : Fictional low-poly Red Forest
biome.

(b) : Photorealistic Tundra terrain
with detailed snow and ice.

Figure 5.8: Comparison of Red Forest (low-poly) and Tundra (photoreal) biomes.

(a) : Low-poly Forest with simplified
geometry and flat shading.

(b) : Photorealistic Forest with high-
resolution foliage and lighting.

Figure 5.9: Forest biome rendered in both low-poly and photorealistic modes.

73

5. Results

(a) : Low-poly Plains with minimal
geometry and stylized grass.

(b) : High-detail Plains using photo-
realistic grass and rocks.

Figure 5.10: Plains biome comparison: low-poly versus high-fidelity rendering.

(a) : Low-poly Mountains with
blocky peaks and simplified tex-
tures.

(b) : Photorealistic Mountains fea-
turing detailed rock faces and snow
caps.

Figure 5.11: Mountains biome shown in low-poly and photorealistic styles.

(a) : Low-poly Dunes. (b) : Photorealistic Dunes.

Figure 5.12: Desert Dunes biome rendered in low-poly and photorealistic modes.

For hands-on experimentation, you can download the demo implementation
of our world-generation system from the project’s Git repository [17].

74

.................................... 5.3. Performance

5.3 Performance

Leveraging Unreal Engine 5’s built-in streaming, occlusion culling, and Nanite-
friendly mesh pipelines, our system maintains consistent frame rates even in
extensive worlds. Key optimizations include:.Multi-threaded terrain mesh construction and PCG computations off

the game thread.. Nanite-enabled assets with automatic LOD scaling, delivering high-detail
geometry up close while efficiently culling distant objects..Grid-based world partitioning to limit active PCG workloads to nearby
cells.

While runtime generation incurs initial CPU overhead, once terrain chunks
and assets are instantiated, subsequent navigation through the scene yields
consistently high performance, with frame rates comparable to static levels.

5.3.1 Terrain Generation Performance

For smooth terrain streaming in real-time environments, both generation
speed and frame-rate stability are critical. In this section, we compare two
approaches used to chunk generation:. Procedural Mesh Component: dynamic mesh creation via CreateMeshSection()

from chapter 4.2.2.. Static Mesh Generation: runtime construction of UStaticMesh assets
and their spawning from chapter 4.2.4.

Performance Benchmarks

We compared the two streaming approaches—Procedural Mesh Component
vs. Static Mesh Generation—by measuring the average build time (total time
to generate and submit all chunks) over five runs. Tests cover different chunk
resolutions and world sizes.

75

5. Results

(a) : Small chunk: 8×8 vertices (b) : Large chunk: 20×20 vertices

Figure 5.13: Chunk resolutions used in performance tests.

(a) : 100 large chunks (20×20 verts) (b) : 400 large chunks

(c) : 400 small chunks (8×8 verts) (d) : 25 small chunks

Figure 5.14: Examples of world configurations used in the build-time measure-
ments. Terrains (a)–(d) correspond to the four test scenarios shown in Table 5.1,
in the same order.

76

.................................... 5.3. Performance

ProcM StaticM
0

1

2 1.8

2.9

Av
g.

bu
ild

tim
e

(s
)

Generation time of: 5.14a

ProcM StaticM
0

5

10 8.2

12.4

Av
g.

bu
ild

tim
e

(s
)

Generation time of: 5.14b

ProcM StaticM
0

2

4

6

8

3.5

8.6

Av
g.

bu
ild

tim
e

(s
)

Generation time of: 5.14c

ProcM StaticM
0

0.2

0.4

0.6

0.8

0.22

0.85

Av
g.

bu
ild

tim
e

(s
)

Generation time of: 5.14d

Table 5.1: Average chunk build times for ProceduralMesh vs. Generator across
four configurations (verts per chunk × number of chunks).

During these performance tests, terrain is generated on-the-fly as the player
moves at high speed. Chunks outside the streaming radius are unloaded, so
only the terrain within the active load radius remains around the player:. First test: 20 × 20 chunk radius (see Fig. 5.14a, Table 5.2).. Second test: 5 × 5 chunk radius (see Fig. 5.14d, Table 5.3)..Third test: 8 × 8 chunk radius, covering roughly one-quarter of the

large-area scenario (see Fig. 5.14a, Table 5.4).

77

5. Results

1 5 10 15 20 25 300

20

40

60

80

100

120

Time (s)

Fr
am

e
R

at
e

(F
PS

)

Continuous streaming and unloading in a 20 × 20 radius (5.14a)

Procedural Mesh
Static Mesh

Table 5.2: In the 20 × 20 radius test, the ProceduralMesh approach (Procedural
Mesh) ramps from 70 FPS up to 110 FPS within the first 5 s and then oscillates
within ±3 FPS around that level, while the Generator method (Static Mesh)
quickly stabilizes near 80 FPS with minimal variation.

1 5 10 15 20 25 300

20

40

60

80

100

120

140

Time (s)

Fr
am

e
R

at
e

(F
PS

)

Continuous streaming and unloading in a 5 × 5 radius (5.14d)

Procedural Mesh
Static Mesh

Table 5.3: In the 5 × 5 radius scenario, the ProceduralMesh component (Pro-
cedural Mesh) climbs from 90 FPS to about 130 FPS in the first 5 s and then
fluctuates within ±5 FPS, while the Generator approach (Static Mesh) gradually
rises from 60 FPS to 108 FPS and maintains smooth performance around that
level.

78

.................................... 5.3. Performance

1 5 10 15 20 25 300

20

40

60

80

100

120

Time (s)

Fr
am

e
R

at
e

(F
PS

)
Continuous streaming in an 8 × 8 radius (196 verts/chunk, 64 chunks)

Procedural Mesh
Static Mesh

Table 5.4: In the 8 × 8 radius test, ProceduralMesh (Procedural Mesh) ramps
from 73 FPS to 122 FPS in the first 4 s and then oscillates within ±5 FPS
around 125 FPS, while the Generator (Static Mesh) maintains a steady 90 FPS
throughout.

Key observations.Procedural Mesh is faster in all scenarios.. Procedural Mesh performance is more dependent on individual chunk
size.. Static Mesh incurs a higher upfront build time per chunk yet stabilizes
at roughly ∼ 80 FPS regardless of world size.

5.3.2 PCG Performance

We evaluated the runtime cost of our PCG–driven vegetation placement using
low-poly assets. Key findings include:.Point sampling dominates cost. Mesh assets are loaded once and

cached, so instantiation overhead is minimal—there is virtually no dif-
ference between low- and high-poly models during PCG. Instead, the
number of spawn points (tens of thousands of grass blades and small
props) drives CPU usage..Distance-based spawn radius trade-off.. Tight radius around the player: Limits per-frame work, minimizes

frame-rate impact and eliminates stalls, but may cause terrain or
vegetation pop-in at the edge of the distance threshold.

79

5. Results
.Wide radius: Ensures full local scene density, but incurs large

CPU spikes and frame-rate drops when many instances spawn
simultaneously..Balancing fidelity and performance. An intermediate spawn ra-

dius—wide enough to mask pop-in yet small enough to bound work per
frame—offers the best compromise between visual richness and smooth
frame rates.. Low-poly vs. high-poly. While PCG instantiation time is similar for
low- and high-poly assets, a static low-poly scene sustains significantly
higher frame rates due to its lower vertex count..Dominance of grass in PCG cost. Grass and other abundant plants
comprise up to 80% of the PCG computation in lush biomes. Minimizing
grass spawn radius is therefore critical. Disabling non-interactive or
purely decorative objects can reduce PCG overhead to as little as 20% in
tundra or 10% in meadows. Similar optimizations apply to other heavily
represented models across biomes.

In practice, tuning the number of sample points and spawn distance per
asset type is the most effective way to optimize PCG performance without
sacrificing visual fidelity.

80

Chapter 6
Conclusion

Throughout this thesis, we develop and validate a comprehensive system
for infinite, runtime-driven world generation in Unreal Engine 5.5. Our
approach seamlessly merges C++-based noise algorithms with the PCG
Graph framework to produce richly varied terrains, dynamic biomes, and
procedurally placed assets—all delivered in real time at interactive frame
rates.

6.1 Key Contributions

.Comprehensive PCG Documentation: Delivered clear, example-
driven guidance for Unreal Engine’s PCG framework, demonstrating
core principles and workflows via custom graph examples—providing a
concise, practical supplement to the official documentation..Modular PCG Graphs: Developed reusable, extensible graphs for
biome-based vegetation, infrastructure (roads, fences, buildings), and
procedural village layouts, facilitating rapid prototyping and iteration..Multi-threaded Terrain Generator: Implemented a C++ solution
that computes mesh data off the game thread and streams new chunks
dynamically, eliminating stalls and enabling uninterrupted exploration.. Performance-Driven Integration: Leveraged World Partition, Nanite,
and background task scheduling to sustain stable frame rates under heavy
load—significantly outperforming the basic Procedural Mesh Component
approach across varied world scales..Dynamic Biome Blending: Employed biome-specific noise formulas
and weight-based interpolation to create seamless transitions between ad-
jacent regions, maintaining ecological consistency without visible seams.. Scalability and Customization: Provided configurable noise layers,
spawn radii, and LOD settings, allowing developers to balance visual
fidelity and performance for targets ranging from high-end PCs to mobile
devices.

81

6. Conclusion.....................................
6.2 Future Directions

To build on this foundation, we plan to:.Publish as a C++ Library: Refine, package, and document the
terrain and PCG modules as an Unreal Engine plugin—complete with
example projects, API references, and tutorials—to ease adoption by
other developers..Mobile Indie Demo: Create a lightweight, mobile-focused prototype
that leverages our library to validate performance and usability on lower-
end devices, showcasing commercial viability across hardware tiers.. Enhanced Biome Fidelity: Integrate multi-layer noise blending, proce-
dural erosion, and GPU-accelerated simulation (e.g., hydraulic or thermal
processes) to achieve more realistic terrain morphology..Persistent Chunk Caching: Implement on-disk serialization and
differential updates for generated chunks, minimizing recomputation
when revisiting areas and further reducing runtime CPU load.

By delivering both a well-documented toolkit and a practical proof-of-
concept, we aim to lower the barrier for high-quality procedural generation
in Unreal Engine and demonstrate its versatility for games, simulations, and
real-time applications.

82

Bibliography

[1] R. Líbal, “Tile-based Procedural Generation: A Generic
Library for Multi-layer Terrain,” Bachelor’s thesis, Czech
Technical University in Prague, 2023. [Online]. Available:
https://dspace.cvut.cz/bitstream/handle/10467/108634/
F3-BP-2023-Libal-Rudolf-thesis.pdf. [Accessed: May 1, 2025]

[2] L. Hepner, “Procedural Generation of Voxel Worlds,” Master’s thesis,
Czech Technical University in Prague, 2021. [Online]. Available: https:
//dspace.cvut.cz/handle/10467/101198. [Accessed: May 1, 2025]

[3] M. Hudeček, “3D Modeling and Visualization of Underground Structures,”
Master’s thesis, Czech Technical University in Prague, 2021. [Online].
Available: https://dspace.cvut.cz/bitstream/handle/10467/
95898/F1-DP-2021-Hudecek-Martin-Martin_Hudecek_dp-final.
pdf. [Accessed: May 1, 2025]

[4] J. Navrátil, “Procedural Terrain Generation Using GPU Acceleration,”
Bachelor’s thesis, Czech Technical University in Prague, 2016. [Online].
Available: https://theses.cz/id/5req06/12666.pdf. [Accessed: May
1, 2025]

[5] Epic Games, "Procedural Content Generation Framework in Unreal
Engine," Unreal Engine Documentation, [Online]. Available: https:
//dev.epicgames.com/documentation/en-us/unreal-engine/
procedural-content-generation--framework-in-unreal-engine.
[Accessed: Jan. 18, 2025].

[6] Game Dev Academy, "The Secret to Hide Texture Repetition in Unreal
Engine 5: 4 Pro Tips," YouTube, May 7, 2023. [Online]. Available:
https://www.youtube.com/watch?v=zY8AtjM2Jxg. [Accessed: Jan. 18,
2025].

[7] Aziel Arts, "How to Make Landscape Layer Materials with Natural Height
Blending in Unreal Engine 5," YouTube, Aug. 29, 2024. [Online]. Avail-
able: https://www.youtube.com/watch?v=W-BMbadinPI. [Accessed:
Jan. 18, 2025].

83

https://dspace.cvut.cz/bitstream/handle/10467/108634/F3-BP-2023-Libal-Rudolf-thesis.pdf
https://dspace.cvut.cz/bitstream/handle/10467/108634/F3-BP-2023-Libal-Rudolf-thesis.pdf
https://dspace.cvut.cz/handle/10467/101198
https://dspace.cvut.cz/handle/10467/101198
https://dspace.cvut.cz/bitstream/handle/10467/95898/F1-DP-2021-Hudecek-Martin-Martin_Hudecek_dp-final.pdf
https://dspace.cvut.cz/bitstream/handle/10467/95898/F1-DP-2021-Hudecek-Martin-Martin_Hudecek_dp-final.pdf
https://dspace.cvut.cz/bitstream/handle/10467/95898/F1-DP-2021-Hudecek-Martin-Martin_Hudecek_dp-final.pdf
https://theses.cz/id/5req06/12666.pdf
https://dev.epicgames.com/documentation/en-us/unreal-engine/procedural-content-generation--framework-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/procedural-content-generation--framework-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/procedural-content-generation--framework-in-unreal-engine
https://www.youtube.com/watch?v=zY8AtjM2Jxg
https://www.youtube.com/watch?v=W-BMbadinPI

6. Conclusion.....................................
[8] Unreal Engine, "Introduction to PCG Workflows in Unreal Engine 5 |

Unreal Fest 2023," YouTube, Oct. 26, 2023. [Online]. Available: https:
//www.youtube.com/watch?v=LMQDCEiLaQY&t=1356s. [Accessed: Jan.
18, 2025].

[9] Aziel Arts, "How to Make an Auto Material in Unreal Engine 5," YouTube,
Oct. 25, 2024. [Online]. Available: https://www.youtube.com/watch?
v=2h2kzV7_o9c&t=4s. [Accessed: Jan. 18, 2025].

[10] Quixel, “Megascans Free Assets,” FAB Marketplace, [Online]. Available:
https://www.fab.com/search/channels/unreal-engine?q=quixel&
sellers=o-cbf5bbfdb340d6a839b5520cb31328&listing_types=
3d-model&categories=nature-plants. [Accessed: May 1, 2025].

[11] FAB.com, “Low Poly Starter Pack,” FAB Marketplace,
[Online]. Available: https://www.fab.com/listings/
fbda9e5c-00fe-4667-a2df-5849182512c8. [Accessed: May 1,
2025].

[12] Procedural Minds, "Get Started with PCG 5.4 by Creating a Full Building
| UE 5.4 P1," YouTube, Jul. 28, 2024. [Online]. Available: https://www.
youtube.com/watch?v=oYNA24tcYc0&t=40s. [Accessed: Jan. 18, 2025].

[13] Epic Games, "Geometry Scripting User’s Guide," Un-
real Engine Documentation, [Online]. Available: https:
//dev.epicgames.com/documentation/en-us/unreal-engine/
geometry-scripting-users-guide-in-unreal-engine. [Accessed:
Jan. 18, 2025].

[14] Epic Games, "Using Shape Grammar with PCG in Unreal En-
gine," Unreal Engine Documentation, [Online]. Available: https:
//dev.epicgames.com/documentation/en-us/unreal-engine/
using-shape-grammar-with-pcg-in-unreal-engine. [Accessed: Jan.
18, 2025].

[15] Procedural Minds, "PCG Grammar Is Here and It’s Amazing," YouTube,
Oct. 20, 2024. [Online]. Available: https://www.youtube.com/watch?
v=4Y7sOTolI-M&t=248s. [Accessed: Jan. 18, 2025].

[16] Yazan Hanna, "The New PCG Grammar Is Too Good |
Tutorial | Procedural Building Generator | Unreal Engine
5.5," YouTube, Nov. 26, 2024. [Online]. Available: https:
//dev.epicgames.com/documentation/en-us/unreal-engine/
using-shape-grammar-with-pcg-in-unreal-engine. [Accessed: Jan.
18, 2025].

[17] Lukáš Jůza, "Procedural Road Generation System," GitHub Repos-
itory. [Online]. Available: https://gitlab.fel.cvut.cz/juzaluk2/
pcg-and-terrain-generation-in-ue5.5. [Accessed: Jan. 18, 2025].

84

https://www.youtube.com/watch?v=LMQDCEiLaQY&t=1356s
https://www.youtube.com/watch?v=LMQDCEiLaQY&t=1356s
https://www.youtube.com/watch?v=2h2kzV7_o9c&t=4s
https://www.youtube.com/watch?v=2h2kzV7_o9c&t=4s
https://www.fab.com/search/channels/unreal-engine?q=quixel&sellers=o-cbf5bbfdb340d6a839b5520cb31328&listing_types=3d-model&categories=nature-plants
https://www.fab.com/search/channels/unreal-engine?q=quixel&sellers=o-cbf5bbfdb340d6a839b5520cb31328&listing_types=3d-model&categories=nature-plants
https://www.fab.com/search/channels/unreal-engine?q=quixel&sellers=o-cbf5bbfdb340d6a839b5520cb31328&listing_types=3d-model&categories=nature-plants
https://www.fab.com/listings/fbda9e5c-00fe-4667-a2df-5849182512c8
https://www.fab.com/listings/fbda9e5c-00fe-4667-a2df-5849182512c8
https://www.youtube.com/watch?v=oYNA24tcYc0&t=40s
https://www.youtube.com/watch?v=oYNA24tcYc0&t=40s
https://dev.epicgames.com/documentation/en-us/unreal-engine/geometry-scripting-users-guide-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/geometry-scripting-users-guide-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/geometry-scripting-users-guide-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/using-shape-grammar-with-pcg-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/using-shape-grammar-with-pcg-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/using-shape-grammar-with-pcg-in-unreal-engine
https://www.youtube.com/watch?v=4Y7sOTolI-M&t=248s
https://www.youtube.com/watch?v=4Y7sOTolI-M&t=248s
https://dev.epicgames.com/documentation/en-us/unreal-engine/using-shape-grammar-with-pcg-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/using-shape-grammar-with-pcg-in-unreal-engine
https://dev.epicgames.com/documentation/en-us/unreal-engine/using-shape-grammar-with-pcg-in-unreal-engine
https://gitlab.fel.cvut.cz/juzaluk2/pcg-and-terrain-generation-in-ue5.5
https://gitlab.fel.cvut.cz/juzaluk2/pcg-and-terrain-generation-in-ue5.5

.................................. 6.2. Future Directions

[18] Lukáš Jůza, "Procedural Road Generation System," GitHub Repos-
itory. [Online]. Available: https://gitlab.fel.cvut.cz/juzaluk2/
pcg-and-terrain-generation-in-ue5.5. [Accessed: Jan. 18, 2025].

[19] K. Perlin, “An Image Synthesizer,” ACM SIGGRAPH Computer Graph-
ics, vol. 19, no. 3, pp. 287–296, July 1985.

[20] S. Gustavson, “Simplex Noise Demystified,” Linköping University, Swe-
den, Mar. 22, 2005. [Online]. Available: https://itn-web.it.liu.se/
~stegu76/TNM084-2011/simplexnoise-demystified.pdf. [Accessed:
Jan. 20, 2025].

[21] J. Peck, “FastNoiseLite: a portable single-header open source noise
generation library,” GitHub, 2020. [Online]. Available: https://github.
com/Auburn/FastNoiseLite. [Accessed: Jan. 20, 2025].

[22] Dan O., “Voxel cave generation using 3D Perlin noise iso-
surfaces,” [Online]. Available: https://blog.danol.cz/
voxel-cave-generation-using-3d-perlin-noise-isosurfaces/.
[Accessed: Jan. 20, 2025].

[23] Epic Games, “Programming with C++ | Unreal Engine 5.5 Documen-
tation,” Unreal Engine Documentation, [Online]. Available: https://
dev.epicgames.com/documentation/en-us/unreal-engine/API. [Ac-
cessed: Apr. 26, 2025].

[24] Epic Games, “UStaticMesh,” Unreal Engine 5.5 API Reference,
[Online]. Available: https://dev.epicgames.com/documentation/
en-us/unreal-engine/API/Runtime/Engine/Engine/UStaticMesh.
[Accessed: Apr. 26, 2025].

[25] P. Felkel and Š. Obdržálek, “Straight Skeleton Implementation,”
ResearchGate, 1998. [Online]. Available: https://www.researchgate.
net/publication/2398714_Straight_Skeleton_Implementation.
[Accessed: May 13, 2025].

[26] R. H. Whittaker, Communities and Ecosystems, 2nd ed., Macmillan,
1975.

[27] P. Prusinkiewicz and A. Lindenmayer, The Algorithmic Beauty of Plants,
Springer-Verlag, 1990.

[28] A. Patel, “Flow Field Pathfinding,” Red Blob Games Blog, Apr.
27, 2024. [Online]. Available: https://www.redblobgames.com/blog/
2024-04-27-flow-field-pathfinding/ [Accessed: May 1, 2025]

[29] P. Felkel and Š. Obdržálek, “Straight Skeleton Implementation,” in
Proceedings of the Spring Conference on Computer Graphics, Budmerice,
Slovakia, pp. 210–218, 1998. :contentReference[oaicite:0]index=0

85

https://gitlab.fel.cvut.cz/juzaluk2/pcg-and-terrain-generation-in-ue5.5
https://gitlab.fel.cvut.cz/juzaluk2/pcg-and-terrain-generation-in-ue5.5
https://itn-web.it.liu.se/~stegu76/TNM084-2011/simplexnoise-demystified.pdf
https://itn-web.it.liu.se/~stegu76/TNM084-2011/simplexnoise-demystified.pdf
https://github.com/Auburn/FastNoiseLite
https://github.com/Auburn/FastNoiseLite
https://blog.danol.cz/voxel-cave-generation-using-3d-perlin-noise-isosurfaces/
https://blog.danol.cz/voxel-cave-generation-using-3d-perlin-noise-isosurfaces/
https://dev.epicgames.com/documentation/en-us/unreal-engine/API
https://dev.epicgames.com/documentation/en-us/unreal-engine/API
https://dev.epicgames.com/documentation/en-us/unreal-engine/API/Runtime/Engine/Engine/UStaticMesh
https://dev.epicgames.com/documentation/en-us/unreal-engine/API/Runtime/Engine/Engine/UStaticMesh
https://www.researchgate.net/publication/2398714_Straight_Skeleton_Implementation
https://www.researchgate.net/publication/2398714_Straight_Skeleton_Implementation
https://www.redblobgames.com/blog/2024-04-27-flow-field-pathfinding/
https://www.redblobgames.com/blog/2024-04-27-flow-field-pathfinding/

6. Conclusion.....................................
[30] H. Wang, “Proving theorems by pattern recognition—II,” Bell System

Technical Journal, vol. 40, no. 1, 1961.

[31] M. F. Cohen and J. R. Wallace, “Wang Tile based Texture Synthesis,”
in Proceedings of ACM SIGGRAPH, 2003.

[32] G. Stiny and J. Gips, “Shape Grammars and the Generative Specification
of Painting and Sculpture,” in Proceedings of the IFIP Congress, 1972.

[33] S. Wolfram, “Cellular Automata as Models of Complexity,” Nature,
vol. 311, pp. 419–424, 1984.

[34] Y. Parish and P. Müller, “Procedural modeling of cities,” in Proceedings
of ACM SIGGRAPH, 2001, pp. 301–308.

86

	Introduction
	Foundations and Design
	Procedural Content Generation: Concepts and Algorithms
	Related Work
	Project Architecture and Design
	Dual Visual Style
	Design Goal

	Procedural Content Generation in Unreal Engine 5
	PCG Graph and Its Functionality
	Basic Concept of Nodes
	Commonly Used Nodes
	Workflow and Scene Integration
	Subgraphs and Modular Design
	Differences Compared to Previous Versions of Unreal Engine
	Extending Logic and Implementing Custom Features

	Procedural Meshes and Grammar in UE 5.5
	Optimization
	Summary of PCG Graph Benefits

	PCG Graphs in the Project
	Forests, Meadows, and Mountains
	Roads and Urban Structures
	Village Generator

	Implementation
	Landscape Materials and Landscape Auto Materials
	Landscape Materials in General

	Infinite Procedurally Generated World
	Generating and Computing Terrain Data
	Rendering Terrain with the Procedural Mesh Component
	Rendering Terrain with Static Meshes
	Rendering Terrain with Static Meshes
	Dividing Terrain into Biomes
	Auto‐Material for Procedural Terrain using UStaticMesh
	Adapting PCG for a Fully Procedural World
	Results and Stylizations

	Results
	Procedural Content Generation
	Flora PCGs
	Infrastructure PCGs

	World Generation
	Terrain Generation Results
	Biome Results

	Performance
	Terrain Generation Performance
	PCG Performance

	Conclusion
	Key Contributions
	Future Directions

	Bibliography

