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Abstract
Non-playable characters (NPCs) are im-
portant for creating immersive gaming
experiences by simulating a world that
feels alive at all times. Achieving this
often involves implementing artificial in-
telligence that challenges the player and
exhibits natural and realistic behaviors.
This project explores the development of
such behaviors through the implementa-
tion of steering behaviors and a flocking
algorithm. These techniques are designed
to ensure that NPCs interact organically
with the environment and the player. The
result is a prototype of a 2D diving and
fishing game, where these behaviors form
the foundation of gameplay mechanics,
demonstrating their potential to enhance
game dynamics and realism.

Keywords: Group behaviors, Steering
behaviors, Fish simulation

Supervisor: doc. Ing. Jiří Bittner,
Ph.D.
Praha 2,
Karlovo náměstí,
E-421

Abstrakt
Nehráčské postavy (NPC) jsou důležité
pro vytvoření pohlcujícího herního zážitku
tím, že simulují svět, který je neustále živý
i když hráč zrovná není aktivní. Dosažení
tohoto cíle často zahrnuje implementaci
umělé inteligence, která je pro hráče vý-
zvou a projevuje přirozené a realistické
chování. Tento projekt se zabývá vývojem
takového chování prostřednictvím imple-
mentace tzv. steering behaviors a tzv. floc-
king algoritmu. Tyto techniky jsou navr-
ženy tak, aby zajistily přirozenou interakci
NPC s prostředím a hráčem. Výsledkem je
prototyp 2D hry s potápěním a chytáním
ryb, kde tato chování tvoří základní herní
mechaniky a demonstrují svůj potenciál
pro zlepšení herní dynamiky a realistič-
nosti.

Klíčová slova: Skupinové chování,
Řízení, Simulace ryb

Překlad názvu: Modelování
skupinového chování pro videohry
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Chapter 1
Introduction

Most games nowadays have some form of non-playable characters (NPCs or
agents. These are essential to make the player feel that the world around them
exists independently, even without them actively interacting with it. This
can be achieved through the use of artificial intelligence and well-designed
NPCs.

Implementing algorithms that play optimally and outperform the user is
common, a different question arises: How can I create NPCs that do not
simply play perfectly, but behave naturally? How can I program complex
behavior that appears organic and believable? How can I ensure that such
behaviors will remain effective in different environments?

1.1 Goals

In this thesis, I will investigate how to create behaviors for agents in a 2D
game. Specifically, I will focus on complex lifelike movements and strategies
for fish in changing environments. I will implement these behaviors using the
steering behaviors proposed by Craig W. Reynolds [REY+99].

The goals of this thesis are to:. Describe and explore methods of group behavior simulation.. Use steering behaviors to create natural motion for the fish in a proce-
durally generated world.. Create a game in which the player will be able to catch the fish in their
net.. Compare the simulation to a video of real movement of fish.
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Chapter 2
Related work

In this chapter, we will dive into why it is beneficial for animals to create
groups, how ants are great at finding short paths, how hundreds of agents can
navigate through complicated terrains, and how simple steering behaviors
can be used to create complicated patterns.

2.1 Flocks, herds and schools

Herds, flocks, schools, shoals are all commonly used terms to describe a group
of animals. They are often mixed up, below I will try to make the differences
clear.

In biology, groups of birds are called flocks, a group of mammals is called a
herd, and a group of fish swimming together in a coordinated way is called
a school. Shoal is a broad term used to describe a group of fish that stay
together for social reasons, such as feeding and mating, while schooling is
a behavior within shoal. Schools are a specific type of shoal, where the
movement of the fish is highly coordinated and synchronized. [PIT98]

In computer graphics, schools, flocks and herds are commonly modeled
using a flocking algorithm. Therefore, the term flock in computer graphics
refers to all types of groups of agents moving together as a single body. In
this work, the terms flock and school will be tightly tied together since we will
be working with a flocking algorithm and modeling the schooling behavior of
fish.

2.1.1 The tendency to create groups

Most animals, have a tendency or a need to create groups. The main reason
for this behavior is survival. According to Landa [LAN98], living in a group
has many advantages such as:.Risk dilution: Each individual is less likely to be picked off by a predator

when moving in a large group..Food searching: Searching for food in a group requires each individual to
spend less energy.
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.................................... 2.2. Ant colony optimization

.Ease of movement: Moving in a fish school is easier thanks to the
surrounding increased water flow by the other fish..Camouflage: Fast-moving individuals of different colors or textures limit
the predator’s ability to focus on a specific individual.

Each individual acts in a way to increase his own chance of survival,
however their individual goal benefits the whole group. This shows how
multiple individuals, each acting on their own, create a certain global pattern.
This phenomenon is one of the main characteristics of a group behavior.

2.2 Ant colony optimization

In this section we will discuss the Ant colony optimization technique proposed
by Dorigo [DBS06].

In nature, ants living in colonies have perfected a method to find optimal
pathways to food sources. The ants do this by randomly stumbling into a
food source, and once they do, they leave a pheromone trail on their way
back to the colony. Other ants can smell this, stop moving at random, and
move along the pheromone trail navigating to the previously discovered food
source. If they manage to find the food source, they again start leaving the
pheromone trail, reinforcing the previously followed trail while offering a
slightly different path to the food source. Since each ant moves along its
own path before it finds the pheromone trail, multiple paths to the food
source are discovered. The pheromone trails evaporate over time and only
the continuously reinforced parts of the pheromone trails stay around longer.
Effectively "forming" the individual trails into a narrower trail. No single ant
would find the optimal path to the food source, but the colony as a group
will find the optimal path.

In optimization algorithms, ant colony optimization (ACO) is commonly
used to find optimal paths through graphs. Dorigo [DBS06] proposed ACO as
a possible optimal solution to the traveling salesman problem. The traveling
salesman problem boils down to a simple question: "Given a list of cities and
the distances between each pair of cities, what is the shortest possible route
that visits each city exactly once and returns to the origin city?" [CON25c].
The straightforward solution is to find all possible permutations of the towns
and pick the one with the smallest sum of distances between the towns.
However, this approach runs in O(n!), where n is the number of towns,
making this approach practically unusable. Ants, on the other hand, solve
this problem every day.

To solve the traveling salesman problem, the issue is represented as finding
a sequence of nodes in a fully connected graph with the lowest sum of costs
of the edges. The ACO for the traveling salesman problem is described in
Algorithm 1.

3



.................................... 2.2. Ant colony optimization

Algorithm 1 Ant Colony Optimization for TSP
// Use small positive constant on all edges

1: Initialize pheromone_level on all edges
2: for each iteration until max_iterations do
3: for each ant do
4: Place ant at a random starting_vertex
5: Initialize tour with starting_vertex
6: while not all vertices visited do

// Calculate the desirability of all unvisited vertices
7: for each unvisited_vertex do
8: desirability = Pow(1 / dist_to_vertex, distance_bias) *

Pow(pheromone, pheromone_bias)
9: end for

10: Pick the next_vertex randomly weighted by the desirability
11: Append next_vertex to tour
12: Deposit pheromone on the used edge
13: end while
14: Return to the starting_vertex to complete the tour
15: Save the tour and its tour_length along with the ant
16: end for
17: for each edge do

// Combine newly deposited pheromone with existing value using the
length of the path constructed by the ant

18: for each ant that used this edge do
19: pheromone = pheromone + Q / ant.tour_length
20: end for

// Evaporate pheromone
21: pheromone = (1 - evaporation_rate) * pheromone
22: end for
23: Update best_tour if a shorter one was found
24: end for
25: return best_tour

The optimization relies on multiple parameters being set up:.distance_bias: How much do the ants prefer the closer nodes when
picking the next node to visit.. pheromone_bias: How much do the ants prefer the nodes, that were
reinforced by visits of the other ants when picking the next node to visit.. evaporation_rate: How quickly the pheromones evaporate with each
iteration..Q: How large is the deposit of pheromones by each ant.

Tinkering with these parameters is an important part of the method; each
problem can benefit from different settings.

4



.......................................... 2.3. Flow fields

In the work of Dorigo [DBS06], three variants of the ACO discussed: Ant
System, MAX-MIN Ant System and Ant Colony Systems. Each variant
specifies how the pheromones at each place should be updated when another
pheromone is placed and how the evaporation is handled. In Algorithm 1 the
Ant system variant is shown.

The behavior of the ants form a pleasing group behavior. The ideas can be
used in an animation or in a game. In a video by Sebastian Lague [LAG21]
a large map was created with multiple ants, their nest, and multiple food
sources. The pheromone trail was implemented by emitting a pheromone
particle in constant periods of time. The ants then slowly over time steered
toward the pheromones. As seen in Figure 2.1, after a short period of time,
the ants managed to find an optimal path between food sources.

(a) A) Start of the simula-
tion. Green dots represent
food sources, the brown cir-
cle marks the nest.

(b) B) The right cluster is
running out, and the other
two are being discovered.

(c) C) The right cluster is
depleted, and the other two
are the primary clusters.

(d) D) The cluster at
the top is depleted, the red
pheromone trail there is fad-
ing out. There are no
pheromones left where the
right cluster was previously.

Figure 2.1: Visualization of ant colony optimization in a game-like environment.
Green dots represent food sources, blue dots are left behind by ants when
searching for food, and the red dots are left behind when they find food source
(source: [LAG21].

2.3 Flow fields

Often, in games, simulating large numbers of NPCs is needed. These NPCs
often need to navigate toward a specific target. Finding a path to a target
is simple when using one of the pathfinding algorithms mentioned later in

5
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Section 4.2.2. However, these algorithms, when run multiple times by a large
number of agents, can slow down the game drastically, moreover, NPCs will
often pathfind to the same target from a similar starting position, or at least
they will end up using a similar portion of a path as a different agent. This
is where flow fields are a great solution.

Imagine a grid, where each cell of the grid contains a vector. This vector
points toward a cell that is closer to the target. Then, an agent can, at
any time, look up where in the grid its position is represented and use the
associated vector to move toward the target without the need to precisely
calculate the exact path from its position to the target position.

The flow field calculation typically incorporates a breadth-first search (BFS)
algorithm that will visit every cell of the grid. The BFS algorithm is explained
and discussed in Section 4.2.2. Then, in each cell, the algorithm visits a
vector that points to a cell closer to the target (see Figure 2.2a).

Flow fields also work with obstacles, simply by not allowing any vectors to
be stored at the position of the obstacle, making the NPCs using the flow
field literally flow around the obstacles. Example of flow field with obstacles
can be seen in Figure 2.2b.

(a) Example flow field generated using BFS
(source: [DEV25] 6:39).

(b) Example flow field with obstacles
(source: [DEV25] 7:42).

Figure 2.2: Visualization of the flow fields.

Flow fields are versatile and can simulate multiple aspects, such as difficult-
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to-traverse terrains and avoidance of other NPCs. To better understand flow
fields, look at the work of Emerson [EME13].

2.4 Steering

In this section, we will discuss work related to the work of Reynolds on
steering behaviors [REY+99] and his flocking behavior [REY87]. The work
of Reynolds himself will be discussed in detail later in Chapter 5.

In the work of Ježowicz [JEZ23], the flocking algorithm of Reynolds [REY87]
(later discussed in Section 5.3) was implemented and an interactive application
was created. The application consisted of an underwater fish simulation
projected onto a wall and the tracking of the position of the right hand. The
right hand was then cast into the scene, and the fish were either repulsed or
attracted by it. In the work, different optimization techniques of the flocking
algorithm are discussed, primarily focusing on the space partitioning issue
during the neighbor search of each agent. The Voronoi neighborhoods, the
K-D tree, and the Cube space partition map were discussed in detail.

In the work of Popelová [POP11], all the common steering behaviors
proposed by Reynolds [REY+99] are discussed and explained. Additionally,
a way to combine these behaviors and method to allow agents to change
their movement speed is discussed. The result of the project was a library
of implementations of steering behaviors and a graphical application that
allowed users to interact with the different behaviors and to tinker with their
parameters.

7



Chapter 3
The game concept

One of the goals of this project is to create a game that incorporates steering
behaviors and flocking. The intention was to develop a game that would be
suitable for mobile devices. Since controls for mobile games are typically
more intuitive when handling 2D characters, I decided to design the game in
2D.

The game concept revolved around the rogue-lite genre, where a diver
explores deep waters and catches fish in a fishing net. These fish exhibit
different behaviors and have varying stats, such as size, speed, health, etc.
The diver faces limitations, including oxygen capacity, inventory capacity,
and the size of the fish net.

3.1 Inspiration: Dave the Diver

Dave the Diver is a game similar to the one I have envisioned. Dave the
Diver is a 2D pixel-art game that builds on a story-driven gameplay and
various mini-games. The core part of the gameplay revolves around exploring
underwater environments and using harpoon to catch fish.

Dave is a diver by day and by night he manages a sushi restaurant and
a hotel. The diving part of the game incorporates deep-sea exploration and
interaction with fish. The management of the restaurant and the hotel part
is realized by the player competing in mini-games, such as taking orders,
preparing foods, breeding fish, etc. Additionally, some more aspects of the
game, such as battles with the fish are also implemented as mini-games.

Some notable features of Dave the Diver include. Stylized graphics: The game uses a mixture of pixel art and a 3D parallax
effect to make the background seem as an endless ocean..Procedural generation: Each time the player dies and dives into the
ocean again, the environment is randomly generated. Although the
world changes with each dive, some features act as anchor points and
are placed at the same location, since they are a part of the narrative or
crucial for the player to find with ease..Fishing mechanics and progression: The gameplay loop relies on grinding

8



........................................ 3.2. The game loop

through fishing activities. Players can upgrade their diving gear to allow
them to explore deeper locations and discover rarer fish species.

Although, Dave the diver and my project share the underwater exploration
aspect. My project focuses primarily on steering behaviors and group dynam-
ics in fish, with gameplay tailored primarily for mobile devices and a different
fishing mechanic.

Figure 3.1: The example visuals of Dave the Diver (source: [MIN23]).

3.2 The game loop

The game loop for the player is built as follows:. Dive as deep as possible.. Catch the most valuable fish that fit into the net.. Fight off or escape predators.. Explore caves and special locations..Tend to oxygen levels, health, inventory capacity, and surrounding pres-
sure.. Swim back to the surface and sell the collected fish.. Use earnings to upgrade gear, purchase new tools, and improve the base.

This game loop should balance aspects of exploration, resource management,
and progression while still giving the player plenty of opportunities to interact
with fish.

9



..................................3.3. Fish types and their behaviors

3.3 Fish types and their behaviors

The most exciting part of the game should be the interaction and observation
of the different fish species. The behaviors of the fish should be unique and
lifelike.

The fish should try to school with other fish as they do in nature.
In addition to larger fish schooling with their neighbors, the game should

also feature schools of gobies, a large number of miniature fish all moving
together as one entity, without the need to form a school over time.

Each fish should be able to move on its own, properly interact with the
player, interact with the environment, and interact with each other. Individual
requirements will be discussed in detail in Chapter 6.3.

3.4 World design

The player is spawned in the base. The base consists of three buildings:.The Selling Point: A place where players can sell everything they have
collected during their dive..The Shop with upgrades: A place where players can buy gear improve-
ments..The fishing hut: A place where payers can refill their oxygen tank and
heal up.

At the edge of the base is the entrance to the ocean. The ocean should
contain cave-like structures, such as overhangs and tunnels. Other parts of
the ocean should remain mostly clear with smaller obstacles. Each run should
be different to improve replayability.

Since the progression system relies on the player trying to dive as deep as
possible to find more valuable fish and more interesting places, it is crucial
to generate the ocean procedurally. The fish should inhabit the ocean in a
predefined way with some species living in the deeper parts of the ocean,
while others staying in the more shallow regions.

10



Chapter 4
Navigation of agents

Navigation is part of an agent’s behavior. Agent decides what is the current
goal - e.g., chase the player, go home, hunt a deer - and a navigational
component then figures out how the agent should move. For example, when
hunt a deer is the goal of the agent, the navigational component then tells the
agent how to move towards the deer and how to intersect the deer’s movement
to align the best attack angle. Navigation can be a complex procedure, since
the deer can be far ahead in an obstructed area, finding the shortest path is
crucial and once the deer is close enough the method to pursue the deer can
be totally different.

When designing a simulation with NPCs the navigational algorithm can be
one of the following: precomputed, partially precomputed or real-time. We
will discuss these algorithms below. Lastly, we will discuss a way to combine
these algorithms.

The navigational component should return a move step that satisfies the
agent’s current goal each time it is prompted to.

4.1 Precomputed navigation

Precomputed algorithms have a major advantage in the speed of computation
at runtime. At runtime, the program no longer uses a computationally
intensive algorithm to find the correct move step but uses a precomputed
database and can search for the correct move step in constant time. Thus,
the main part of this algorithm runs before execution, where we are not yet
concerned about the computation time because it does not affect the overall
sense of the game’s flow.

Imagine a game field where an agent can only be in a few limited locations.
We, as the game designer, want the agent to be in a specific location at a
specific stage. So we can consider manually setting exactly where the agents
should be at a certain time, and then the agent will just move in a fixed way
as we have defined beforehand. This approach may be appropriate for games
with a directed story, where we know exactly how the player will move and
how we want the agent to react.
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4.2 Partially precomputed navigation

This is a common approach to navigation for agents in games. Agents need a
precomputed structure to understand the game world, and then the agents
can run a real-time calculation that finds the move step. In this category, it
is most common for agents to find a path between their current position and
the desired target and simply follow the previously computed path. In this
section, we will focus on pathfinding algorithms that precompute the navmesh
first and then run real-time calculations to get the path to later follow.

However, not only pathfinding algorithms fall into this category. Flow fields
(Section 2.3) can be another example. The actual flow field is precomputed,
but the way the agent interprets the vectors from the flow field and uses
them to move can be far more complex.

4.2.1 Navigational mesh

Pathfinding algorithms require converting the game world into a graph repre-
sentation, commonly known as a navigational mesh or a so-called navmesh.
A navmesh is a network that defines where agents can move within the game
world. As shown in the work of Tomek [TOM13], a simple way to create a
navmesh involves the following steps:.Create a grid: Define a grid with dimensions M × N and a resolution R,

which determines the total number of vertices in the grid. Ensure that
all points are evenly spaced..Connect adjacent vertices: Create edges between all neighboring vertices
to establish possible movement paths..Mark walkable and non-walkable areas: Check each vertex to determine
whether it lies on terrain that the agent can move on..Remove non-walkable vertices: Delete all vertices that fall into non-
traversable areas along with their corresponding edges.

With these steps, we have translated the physical game world into a graph
representation. However, generating a navmesh can be computationally
expensive, especially for large maps or high-resolution grids. Additionally,
if the game world changes, for example, a piece of terrain is destroyed, the
navmesh must be recalculated, which can lead to lags during gameplay.

4.2.2 Pathfinding

Pathfinding is the process of finding a path from a specific point in space
to a destination. This problem is common to various branches of computer
science - e.g., navigating robots in space without colliding, navigating using
GPS, or finding the shortest path in a graph in more theoretical optimization
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problems. In video games, pathfinding plays a crucial role in the design of
the behavior of autonomous agents [NKO07].

Below, the basic pathfinding algorithms are described. All algorithms
require the problem to be transformed into the language of finding the
cheapest path in the graph, that is, a navmesh 4.2.1.

BFS algorithm

A base for more advanced pathfinding algorithms is the breadth-first search
(BFS) and its variants, such as Dijkstra’s algorithm or A*.

Consider points connected with edges in space, all edges are of equal length.
After picking a start and target point, we are trying to find a sequence of
edges that is the shortest. That is, we are effectively trying to find a path
through the graph that intersects as few points as possible.

Let us imagine that this algorithm is used when sending data between
routers in a computer network. We have a starting router and a destination
router, but the problem is that there is no direct path between them (no
signal reaches them), so we use BFS to find the shortest sequence of routers
between which there is a direct path. This will effectively minimize the load
on the network because we will be sending data between the smallest possible
number of routers. It is essential to note that BFS will find the correct path
only if it has a graph (network) in which all edges have the same value (i.e.,
it does not matter to which router the data is sent to at a given moment
because the difference in distance between routers is negligible).

The BFS is shown in described in Algorithm 2, to better understand the
steps of the algorithm see Figure 4.1.

Figure 4.1 also indicates an obvious problem with the use of BFS to find the
shortest sequence of nodes. The algorithm visits too many nodes. Looking at
the graph, it becomes obvious that some nodes are much more likely to be
in the final sequence of nodes than others. In our example from before, this
would cause many unnecessary packets to be sent to routers that are too far
from the target router. This issue can be solved by using the A* algorithm
and a proper heuristic as discussed below in Section 4.2.2, this approach will
prefer to send the packets in the general direction of the target router first.

Dijkstra’s algorithm

Dijkstra’s algorithm is a variant of BFS that allows us to infer the cost of
edges in the graph. Unlike the pure BFS, we now have the option to define a
distance between points that is different from 1. We can also say that BFS is
a variant of Dijkstra’s algorithm where all the edges have a cost of 1.

The algorithm follows the same general steps as BFS but replaces the FIFO
queue with a priority queue. Instead of processing nodes in the order they
were discovered, nodes are dequeued based on the shortest known distance
from the start node. When a neighbor is enqueued to the queue - as in
Algorithm 2 - its priority is determined by the total cost (i.e., distance) from
the start node.

13
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Algorithm 2 BFS with path reconstruction
1: Record start node
2: Initialize queue with start
3: Initialize visited set
4: Initialize parent map
5: while queue is not empty do
6: Dequeue a node from queue
7: if node == target then
8: // Path reconstruction
9: Initialize path list

10: current = target
11: while current is not start do
12: Append current to path
13: current = parent[current]
14: end while
15: return reverseOrder(path)
16: end if
17: for each neighbor of node do
18: if neighbor is not in visited then
19: Enqueue neighbor into queue
20: Put neighbor into visited
21: parent[neighbor ] = node
22: end if
23: end for
24: end while
25: return target is not reachable

Also, there is a slight change when marking the nodes as visited.. In BFS algorithm: A node is marked as visited when it is enqueued.. In Dijkstra’s algorithm: A node is only marked as fully visited when it is
dequeued. If a shorter path to a node is later found, it can be re-added
to the queue with the lower cost.

A* algorithm

A* is a variant of Dijkstra’s algorithm that improves the efficiency of shortest
path search by incorporating heuristics. A heuristic is a rough estimate of
the cost required to reach the destination from a given node. By prioritizing
nodes that are more likely to be on the optimal path, A* can significantly
reduce the number of nodes that need to be processed.

For example, when finding the shortest path between two buildings in a
city, we can use the Euclidean distance as a heuristic. This guides the search
toward the goal more efficiently compared to exploring all possible paths
blindly. The idea is to dequeue the nodes that are in the general direction of
the target first and the rest later. The steps of the A* algorithm are the same
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(a) Step 1 (b) Step 2 (c) Step 3 (d) Step 4

(e) Step 5 (f) Step 6 (g) Step 7 - the path
reconstruction.

Figure 4.1: Step-by-step visualization of the BFS algorithm. The triangle marks
the starting position, the cross marks the goal, black rectangles are obstacles,
red blocks mark the visited cells, the yellow cells represent the cells currently in
queue.

as Dijkstra’s algorithm, but with a modified cost calculation for the nodes in
the queue. Instead of prioritizing nodes solely based on their known distance
from the start node, A* prioritizes them using the following function:

f(n) = g(n) + h(n) (4.1)

Where:. g(n) is the actual cost from the start node to node n.. h(n) is the heuristic estimate of the remaining cost from node n to the
goal (that is, the Euclidean distance from the current building to the
target building).

The A* algorithm is a complex tool in optimization techniques that are
beyond the scope of this project. For more information on the benefits and
pitfalls of heuristics, see [FOE+21; RG20].

4.3 Real-time navigation

The real-time navigation component usually consists of an environment
detection component that allows the agent to "see" around and an algorithm
that interprets and uses what was detected to give precise navigational
instructions. The environment detection component can be imagined as a
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group of sensors that measure data. In games, this is often implemented
using raycasts. The other part of the algorithm then interprets the measured
data and figures out how to navigate the agent. This is similar to how robots
navigate in real-life. However, in games, this can be easier to implement
because the agent can ask the game for additional data that they might not
be able to gather themselves.

We will work on a game where the environment is generated procedurally,
can change rapidly and agents do not have a predetermined path nor prede-
fined points of interest. These algorithms are also suitable for games with
procedurally generated environments, since they do not rely on any previous
knowledge of the map layout.

For our project we will use steering behaviors discussed in Chapter 5.

4.4 Combining algorithms

Typically, agents in most video games do not utilize a single algorithm, but
rather combine them in different ways to achieve complex behaviors.

A common pattern occurring in video games, especially stealth games such
as Assassin’s creed series [UBI23], is the behavior of a Guard. The guard has
a predetermined behavior of patrolling between several guarding points and
stopping the patrol when the player approaches.

The guard patrolling can be fully precomputed, and the patrolling path
can be static. However, the moment the player approaches the guard and
the guard notices the player, the real-time component of the behavior is
activated. Currently, the guard must navigate the environment in pursuit of
the player. Typically, the game world offers a precomputed navmesh enabling
the agent to run a pathfinding calculation and perfectly navigate through the
environment directly to the player.

However, finding the shortest path to the player at all moments in time
is vastly different from real-life. The player would perceive the guard to be
cheating, causing an unpleasant experience for the player.

To make the agent’s behavior feel more natural, simulating a real-time
environment detection is crucial, as discussed in Section 4.3. In the case of the
guard, when the player hides behind a corner, the guard should not be able to
pathfind toward the player directly, but only to the position where the player
was last seen by the guard. Once the guard reaches the last-seen position of
the player and is not able to directly see the player after arrival, the guard
starts exploring the surrounding environment. For example, checking behind
close corners, looking into bushes and aimlessly wandering around. This can
go on until the guard either finds the player or loses interest.

This is a common pattern with which players are familiar and expect this
type of behavior. However, guard’s behavior can be much more complex and
challenging depending on the difficulty of the game and desired experience.
Games such as Kingdom Come: Deliverance [BOC23] let the guards slightly
"cheat" to further challenge the players and make the guards seem smarter.
The way Kingdom Come does this is by letting the guard scan the surrounding
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environment after losing the player and if the scan finds the player in proximity,
the guard can be hinted to pathfind directly to the player (see Figure 4.2).
This prevents players from hiding few steps away from the guard which the
guard would realize in real life.

(a) The guard sees the player and
navigates toward them.

(b) The player hides and the guard
navigates to the player’s last known
position.

(c) The guard scans the terrain and
finds the player.

(d) The guard calculates the exact
path to the hidden player.

Figure 4.2: Storyboard explaining the behavior of the "cheating" guard.

Separate parts of behaviors, such as patrolling, chasing the player, or
returning to base, and the transitions between them, can quickly grow in
complexity. Therefore, a structure called a behavior tree (see Figure 4.3) can
be used to better visualize, understand, and edit the behaviors of agents. The
creation, visualization, and usage of behavior trees is discussed in the work of
Gargula [GAR23].
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Figure 4.3: A simple behavior tree example (source: [GAR23]). The tree
describes the behavior of a guard using predefined nodes. The blue nodes
control the flow of behavior: the sequence (arrow) returns true if all child nodes,
processed from left to right, return true. The selector (question mark) returns
true if at least one of the child nodes returns true. Each leaf node represents
an action, and each action returns whether it was successful. The left part of
the tree is interpreted as follows: "If can see criminal is false, start/continue
patrolling."
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Chapter 5
Steering behaviors

In this chapter, we will look at the steering behaviors discussed in the work
of Reynolds [REY+99]. We will also discuss issues with the behaviors and
how to combine multiple behaviors.

5.1 Terminology

Reynolds focused on the movement and behavior of boids - bird-like creatures
that were featured in the Boids program developed by Reynolds in 1986.
Boids are typically modeled as vehicles that are free to move in a 2D plane
without any obstacles however, there is no reason why the behaviors could
not be expanded into 3D. There are three stages to navigation of the agent
according to Reynolds [REY+99]..Action selection: The agent decides what they want to do next.. Steering: Calculation of the desired_velocity and a corrective_steering

force to help fulfill the selected action..Locomotion: The actual execution of the movement of the agent.

These layers were originally mentioned in the work of Blumberg [BG95], but
their purpose remains the same.

To better understand the separate layers I will explain them using an
example with a fisherman navigating a boat (scenario shown on Figure 5.1).
Imagine a fishing boat with a fisherman. The fisherman’s goal is to get to
the nearest shore and dock. The fisherman pulls out a map, calculates which
shore is the closest, and determines the ideal heading of the boat, i.e., the
desired velocity. By adjusting the rudder, a corrective steering force is applied.
However, setting the rudder on its own does not change the heading of the
boat. The boat needs to start moving so that the flowing water can push
against the offset rudder and gradually change the heading. This is where
locomotion comes in - the boat’s propeller provides the actual movement.

The combination of the rudder (steering force) and the propeller (locomo-
tion) will change the direction of the boat over time until it aligns precisely
with the direction of the nearest shore, that is, the original desired velocity.
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Imagine that as the boat is moving toward the shore, another boat comes
in front of the fisherman. The fisherman needs to set a new goal - avoid the
boat - whilst ideally making a small enough adjustment to miss the boat and
still move in the general direction of the shore.

In an ideal scenario, the fisherman would just set the heading of the boat
instantly to align with the desired velocity. In the real world, this is not
possible, since the boat has a certain mass and the steering force would need
to be much larger than what the rudder can deliver.
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(a) The starting state of the
boat.

(b) The boat steers to the
shore.

(c) The boat detects the ap-
proaching boat and tries to
avoid it.

(d) The boat steers back to-
ward the shore.

(e) No need for corrective
steering anymore.

Figure 5.1: Storyboard explaining the boat scene.
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5.2 Common steering behaviors

In this section, we will discuss and explain the steering behaviors presented
in the work of Reynolds [REY+99]. The result of each steering behavior
should satisfy a particular goal of the boid. The goal is achieved by apply-
ing a particular steering_force, the steering_force is calculated using the
desired_velocity. The calculation and application of the two components is
discussed in detail in Section 5.2.1.

To help clarify the terminology and better understand the commonly used
behaviors, below is a breakdown of the individual variables used throughout
steering behaviors:. position: current location of the agent. velocity: agent’s current movement vector, representing direction and

speed. desired_velocity: ideal velocity satisfying agent’s desired goal. steering_force: corrective force applied to adjust the velocity closer to
the desired_velocity, calculated as: desired_velocity − velocity; limited
by max_force. acceleration: result of the applied steering_force, divided by the mass.mass: used to simulate inertia

5.2.1 Seek and pursuit behavior

This behavior is useful for agents to help them move toward a target. In our
example above 5.1, the fisherman could use the seek behavior to move toward
the shore. In that case the target would be stationary; however, the behavior
does not require the target to remain stationary. Meaning, the same behavior
could be used to navigate toward a moving fish during fisherman’s hunting
session.

I will use the seek behavior show in Figure 5.2 to explain the simple physical
model behind the Reynold’s steering behaviors.

At the core of the steering layer is the calculation of the steering force:

forcesteering = truncate(veldesired − velcurrent, forcemax)

The steering force calculation 5.2.1 requires a desired_velocity. In the case
of seek behavior, the desired_velocity is a vector pointing from the fisherman’s
boat toward the fish with a magnitude of the maximum speed of the boat:

veldesired = set_magnitude(postarget − posagent, velmax)

In an ideal world, the fisherman would immediately set the boat’s current
velocity equal to the desired_velocity. This approach does not seem natural.
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In real life, the only way to change the velocity of an object is to apply
an acceleration. In our case, the acceleration is achieved by applying the
steering_force to an object, i.e., the boat. The calculation of the acceleration:

acceleration = forcesteering
mass

The acceleration then updates the current velocity:

velcurrent = velcurrent + acceleration

The velocity is then applied to the position the boat:

posagent = agentcurrent + velcurrent

Figure 5.2: Seek steering force calculation diagram.

This approach will ensure gradual acceleration and turning toward the
target position, i.e., the fish’s position . The rate of these changes is controlled
by the max_force and mass.

The pursuit behavior shown in Figure 5.3 is very similar to the seek
behavior. While the seek behavior calculates the desired_velocity using the
exact target_position, the pursuit behavior uses the expected_position of the
target in the near future:

posexpected = postarget + velocitytarget ∗ lookahead

veldesired = set_magnitude(posexpected − posagent, velmax)

The target’s velocity, velocitytarget, can be replaced with a simple heading
direction of the target to simulate limited prediction in the pursuit behav-
ior. The lookahead parameter determines how far into the future the agent
attempts to predict and intersect the target’s position.
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Usage of expected_position in the pursuit behavior improves the likelihood
that the agent will intersect the target’s trajectory, rather than simple moving
toward the current_position of the target as in the seek behavior.

Current
velocity

Current
velocity

Lookahead

Desirsed
velocity

Steering

Seek path

Figure 5.3: Pursuit steering force calculation diagram where the lookahead = 3,
the purple circle marks the expected_position.

5.2.2 Flee and evade

The flee behavior is great to model behavior of a small creature running
away from the predator. In a sense, the flee behavior is the opposite of the
seek behavior. Basically, flee_desired_velocity = −seek_desired_velocity,
that is:

veldesired = set_magnitude(posagent − postarget, velmax)

Where the postarget is the position of the target the agent flees from, i.e., the
position of the predator. The calculated desired_velocity is used to determine
the steering force as discussed above 5.2.1.

The evade behavior uses the same principle as the pursuit behavior.It is a
bit more advanced than the flee behavior allowing the agent to guess where
the target will be and flee from that position. The calculation of the desired
velocity builds on the flee desired_velocity calculation is as follows:

posexpected = postarget + velocitytarget ∗ lookahead

veldesired = set_magnitude(posagent − posexpected, velmax)

5.2.3 Obstacle avoid

As one of the main goals for this thesis I set out to create a steering behavior
that will help our agents to avoid obstacles. Craig Reynolds already proposed
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such behavior in his paper. We will try to expand on this behavior in
upcoming chapters. First, let us break down the original obstacle avoidance
steering behavior shown in Figure 5.4.

The algorithm is often simplified and approximates all the obstacles with
spheres. The general idea is to cast three rays: center, left, and right. The
steering behavior evaluates the following cases to calculate the appropriate
steering_vector :.No rays are blocked: The steering_vector is set to the zero vector (no

steering is required). See Figure 5.4a..Only the center ray is blocked: steering_vector is set to the left or right,
depending on the clearer path. See Figure 5.4b..The left (or right) ray is blocked: The steering_vector is set to the
opposite side (right or left, respectively). See Figure 5.4c..Both the left and right rays are blocked: steering_vector is set to the
side with the least obstruction (the more distant obstruction). See
Figure 5.4d.

The steering_vector is then used to calculate the desired_velocity:

veldesired = set_magnitude(vectorsteering, velmax)

The desired_velocity is then used in the steering force calculation discussed
in Section 5.2.1.
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Center

Steering
Boid

Obstacle

Obstacle

RightLeft

(a) No rays are blocked. (b) Only the center ray is blocked.
Both steering_vectors are valid.

(c) The left ray is blocked. (d) Both rays are blocked. Steer
away from the closer obstacle.

Figure 5.4: Cases and appropriate steering_vectors(yellow arrow) of the wander
behavior.

5.2.4 Wander

In some case we might need an agent to appear as if they are moving
"randomly" around the environment. We can imagine such behavior as
exploring the surroundings. Reynolds presented a behavior that will achieve
such effect - the Wander behavior show in Figure 5.5. One of the challenges
for this behavior is to make the movement feel fluent and smooth while allow
in the agent to change direction of its movement. We might think of rolling
dice every few frames and switching the movement direction at random. Such
naive behavior does not look right. In case we roll the dice every second the
change in direction is too abrupt, also during the interval between dice rolls
the agent moves uniformly in a straight line. We could combat this by rolling
the dice more often, but that results in jittery movement. The issue is caused
by discrete changes in the direction.

We need a smoother transition between the directions to create nice smooth
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turns. This can be achieved by sampling a perlin noise function and using the
result to change direction every couple frames. This results in smooth and
fluid turns. The issue with this implementation is the lack of control for each
individual boid. It is difficult to control how big the changes in directions are.

The original wander behavior discussed in the paper by Reynolds [REY+99]
offers an elegant, simple, and visually intuitive solution.

We begin by creating a sphere at a fixed distance in front of the boid. The
sphere represents the wandering space for the boid, from which the boid selects
a new movement direction. Within this sphere a point is chosen as the target.
Each frame the sphere moves with the boid to preserve the fixed distance,
the target point is slightly offset to achieve an organic change in direction.
The random offset of the target is achieved by slight random increments, also
the perlin noise function can be used to determine the increments. The boid
then calculates its steering toward the target_point.

The desired_velocity is calculated as follows:

veldesired = set_magnitude(pointtarget − poscurrent, velmax)

The desired_velocity is then used to calculate the steering force as discussed
in Section 5.2.1.

Wandering space
distance

Current velocity

Wander space

Current displacement

Wander force

Figure 5.5: Wander behavior visualization.

This approach offers improved control over the behavior by adjusting these
parameters..The distance between the boid and the sphere influences how smooth and

forward oriented the movement feels. The larger the distance between
the sphere and the boid, the more forward-oriented and smooth the
movement feels..The radius of the sphere will affect how sharp the turns are..The shape of the wandering is usually a sphere, but it is also possible to
create a steering bias by stretching the sphere into capsule.
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5.2.5 Follow path

In the previous Section 4.2.2, we discussed the importance of finding a path
between two points. The path is commonly represented as a list of points
or nodes. Such representation allows us to interpolate the "shape" of the
path between the points. The easiest way is to linearly interpolate between
the points, creating a path where each point is connected to the next with a
straight line. There are different ways to interpolate the path, for example,
using a Catmull-Rom spline or a different type of curve.

Having an agent follow such path is a different issue often refereed to as
animating the gent along a path. The follow path steering behavior (see
Figure 5.6) presented in the work of Reynolds [REY+99] offers a solution.
The behavior follows these steps:

Algorithm 3 Path Following with Corrective Steering
1: Define pathRadius
2: Calculate futurePosition = currentPosition + currentVelocity * lookahead
3: Project the futurePosition onto the path to get projectedPoint
4: Compute distance between futurePosition and projectedPoint
5: if distance > pathRadius then
6: Compute a targetPoint:
7: targetPoint = projectedPoint + currentVelocity * lookahead
8: Apply corrective steering:
9: desiredVelocity = targetPoint - currentPosition

10: else
11: No steering needed; agent is within acceptable path bounds
12: end if

The path_radius controls how closely the agent follows the path. The
desired velocity calculated with Algorithm 3 is then used to apply the steering
force as discussed previously in Section 5.2.1.

Figure 5.6: Visual representation of the path follow steering behavior by Reynolds
(source: [REY+99]. The red curve represents the path, the yellow marks the
pathRadius, the dots in front of the boids represent the targetPoint
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5.3 Flocking

In nature, organisms have a tendency to move in groups as discussed previously
in Section 2.1. Each member of the flock moves in its own way, but when
observing the flock as a whole a certain pattern emerges.

For us, the goal is to make all the agents act as members of a flock. We
will use a popular flocking algorithm described in the Boids program and
discussed in the work of Reynolds Flocks, herds and schools [REY87].

Reynolds’s flocking behavior is the result of three rules, e.g., steering
vectors:. Separation: Calculate the sum of vectors pointing from each flockmate

toward the boid. Basically flee from each flockmate (see Figure 5.7).

Figure 5.7: Steer to avoid crowding of the flockmates (source: [REY25]) The
boids inside the gray area are the flockmates..

.Cohesion: Calculate the average position of the flockmates and use the
seek behavior to move toward this position (see Figure 5.8).

Figure 5.8: Steer toward the average position of the flockmates
(source: [REY25]).

.Alignment: Calculate the average heading of the flockmates and steer
toward the average (see Figure 5.9).
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Figure 5.9: Steer to align the heading to the average heading of the flockmates
(source: [REY25]).

Each rule results in a desired velocity. Their sum can be used as final
desired_velocity to determine the steering force as mentioned previously in
Section 5.2.1. Calculating and applying the steering force to each individual
boid results in a flocking behavior.

To gain a finer control of the flocking behavior a weighted sum of the
desired velocities can be used to determine the final desired_velocity.. Increasing the weight of the separation rule will result in boids keeping

a larger distance between each other.. Increasing the weight of the cohesion rule will result in boids sticking
more toward the center of the flock.. Increasing the weight of the alignment rule will result in boids quickly
changing their heading to move in the same general direction.. Decreasing the weights will have an opposite effect.

All rules are computed in a neighborhood of the individual boid. A
neighborhood is typically a group of boids in a certain radius around the
individual boid. The radius is an important parameter of the behavior and
represents the limited vision of each boid. A large radius results in larger
flocks and vice versa.

Since the algorithm needs all the boids to adjust their velocities according
to the velocity and position of every other boid, the algorithm runs at
O(n2). This can cause performance issues with a growing number of boids.
We can fight this issue using space partitioning structures such as Voronoi
Neighborhoods, K-D Trees, and the Cube Partitioning Map mentioned in the
work of Ježowicz [JEZ23].
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Chapter 6
Implementation

In this chapter we will discuss the implementation of the individual compo-
nents needed to bring the game concept from Chapter 3 to life.

6.1 Software and tools used

I used the Unity game engine since it is a great, versatile engine for mobile
game development. It includes a complete 2D physics engine, crucial for
tasks like ray casting, a built-in profiler to identify performance bottlenecks,
and robust cross-platform support, allowing builds for mobile, Windows or
WebGL.

I used Procreate and Krita for raster graphics and Affinity Designer for
vector graphics.

6.2 Player

The player has two types of movements: on land, in water. Movement in
water is handled with the use of the same principles of steering behavior.
Where the desired velocity is the current device input of the user. Usage of
the steering force grants slow turns and natural acceleration by tweaking the
maxSteeringFroce parameter.

6.2.1 The tools

The player is equipped with a fishing net. The net has a certain size, which
naturally sets a maximum size of the fish the player can catch. The net size is
an important stat that the player can upgrade during gameplay. The fishing
net is used by pressing the action button. The net moves in an arc above the
player’s head.

To make the act of catching fish feel more natural and challenging, multiple
points were placed along the shape of each fish as in thee Figure 6.1. Each
point acted as the center of a circle with a defined radius. When the net
entered the fish’s main collider, it checked whether all of these circles were
overlapped during the collision. If so, the catch was considered successful.

31



............................ 6.3. Modeling group behaviors for video games

This approach worked better than simply checking whether the net touched
the fish, as it required the player to properly align the net and move it along
the entire fish in a sweeping motion. The simpler method felt unconvincing,
since just barely touching the fish was enough to catch it.

Figure 6.1: The fish collider visualized in Unity. The yellow circles represent
the collider used for catching the fish. Each circle needs to be overlapped by
the net during a single sweep to catch the fish. The green capsule is the collider
used for Unity collision detection.

The player is also equipped with a spear. The spear can help the player
to weaken the predators or kill them and put them into the backpack. The
spear has a cool-down to prevent players from spamming the attack. The
player can switch between the net and the spear at will as show in Figure 6.2.

Figure 6.2: Net and the spear on the player. The spear is shown during
movement.

The fisherman’s abilities are constrained by multiple stats, such as maxi-
mum speed, swimming agility, maximum health, maximum oxygen capacity,
and pressure resistance. All the stats can be upgraded in the shop.

6.3 Modeling group behaviors for video games

In this chapter we will discuss all the individual components required to
simulate behaviors of grouping agents in a procedurally generated world. The
goal of the project is to create a game that simulates the behaviors of fish as
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mentioned in Section 3.3. The behaviors will be discussed regarding fish in a
2D however, these concepts can be transferred to 3D or completely different
scenarios and contexts.

There are three types of behaviors each fish expresses:. Interaction with the environment. Interaction with the player. Interaction with other fish

These behaviors are achieved by combining multiple steering behaviors 5,
each designed to satisfy a certain need or a goal of the fish. We will also later
discuss how to combine the individual behaviors.

6.3.1 Herbivores and carnivores

The fish species were split into two categories:.Herbivores: Neutral fish type that search for plants as the food source,
are scared of the player and will flee when the player gets close. This
type has a tendency to school with other fish that share the same goal..Carnivores: Hostile fish type that hunts smaller fish for food or even
the player. This fish type will not be aggressive unless it is hungry or
attacked. They prefer to hunt alone and do not school.

6.3.2 Environment interaction

In this section, we will focus on all behaviors related to the interaction of fish
with the game world.

Avoiding collisions

Each fish needs to be able to avoid unnecessary collisions with the environment.
Using the Obstacle avoid behavior 5.2.3 is a great start. However, the basic
behavior can have some limitations when the agent gets stuck near the corner
of an obstacle similarly as in Figure 6.3. When the center of the obstacle
avoidance rays is near a sharp corner of an obstacle. The obstacle avoid
behavior interprets all the rays as blocked and forces the fish to spin endlessly,
since the fish will turn to a side without moving away from the obstacle fast
enough.

This can be solved by detecting all obstacles inside a circle around the
fish and using the flee behavior with the closest intersection as a flee target.
The circular check forces the fish to keep distance between the fish and the
obstacles.

The circular check can cause issues in narrow corridors by forcing the fish
to repeatedly move away from one edge of the corridor to the other. It is
important to make the weight of this circular check low to gently nudge the
fish in the correct direction without creating a too big of a disturbance.
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Figure 6.3: The diagram showing the problematic case for the obstacle avoid
behavior when approaching sharp corners. Since all the rays start inside the
collider.

Moreover, the basic obstacle avoidance behavior looks slightly unnatural
because the fish steer away from the obstacle just enough to stop detecting
the collision, which causes the fish to swim along the walls.

Exploration

As previously stated, the fish will follow along the walls forever until they
reach another obstacle, then just steer away slightly and keep moving ahead.
It is important to give the fish a reason to not move in a straight line forever.
Using the wander behavior is a great start. The wander behavior will make
the fish move randomly around the world.

Giving fish long term goals is a great approach to make the fish move as if
they have a purpose. It is possible to randomly pick spots near the fish and
make the fish move toward that point. Once they reach the point a new one
is picked. These points should be easily reachable for the fish and picking
unreachable points should be avoided entirely. This is was implemented in
the early prototypes of the game but it was replaced with the food hunting
discussed next.

Food hunting

Simulating a fish’s need to search for food is crucial. The fish can be full,
satisfied, or hungry. Once the fish is full they should not even consider moving
toward a food source. Once the fish is satisfied, it will seek a food source when
it is close enough or passes directly by it. When the fish is hungry, its top
priority is to find a food source, otherwise it will die. In case of hunger, the
fish should be able to locate the food source directly, using the pathfinding
algorithm.

Following the path is solved by using the path follow algorithm, discussed in
Section 5.2.5, to move toward the food. A different method of path following
could be used to follow the path, such as the one discussed in the work of
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Silveria et al. [SIL+10] using harmonic functions. Otherwise, when the fish is
not pathfinding for food it just uses the seek behavior 5.2.1 and the nearest
food source as the seek target.

The navmesh (see Figure 6.4) used for the pathfinding algorithm was
generated using the algorithm discussed previously in Section 4.2.1.

Figure 6.4: The generated navmesh of the world visualized using Unity gizmos.

6.3.3 Interaction with the player

In this section, behaviors of fish when the player gets close will be discussed.

Fleeing from player

Herbivores, injured fish or smaller fish will always flee from the player when
it gets close. Fleeing from the player is a high priority and the fish will not
be able to eat from the food source at peace.

Attacking the player

Aggressive fish when threatened or hungry will attack the player. However,
when the fish feels like losing the battle it will try to survive and possibly flee
from the player. Bitting the player or a fish will give the fish the necessary
nutrition. Individual bites of the fish have a cool-down. During the cool-down
the fish will try to gain some distance from the player and get back close
when it is ready to bite the player again. When trying to catch the player,
the fish will mix the pursuit and the seek behavior 5.2.1 depending on its
specie to catch up with them.
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6.3.4 Interaction between the fish

In this section we will discuss how the fish should behave when they encounter
another fish. These behaviors will differ depending on whether the fish is a
herbivore or a carnivore.

Flocking

The flocking algorithm, discussed in Section 5.3 by Reynolds [REY87], is
the base of the interaction between the fish. Schooling with other fish is a
natural tendency for all the herbivore fish. This allows them to move together
as one large entity. It does not make sense for fish to school with others
if their current purpose does not match. This can be handled by each fish
broadcasting their purpose to the other flockmates. Fish will only school with
others if their purposes match. For example, fleeing fish will school with other
fleeing fish, fish that are food hunting will school with other food hunting fish.
Fish that do not have any current purpose will typically just wander around
and school with all other fish.

The fish decides its purpose by analyzing its current situation, e.g., when it
is hungry it is seeking for food. However when a predator is close its purpose
is to flee even when it is hungry.

Predator-prey relation

Fish will always flee from predators. This creates nice effect when a fish
school is gathered around a food source and suddenly a predator approaches.
The school can either flee as a whole or split into smaller groups and flee
individually. This is discussed in later in Section 7.2.2 and compared to a
video of real-life fish.

Hierarchy

There is a hierarchy in the fish schools. When a fish does not have any
other leader in its neighborhood it becomes the leader. This is specifically
useful when seeking for food. Only the leader fish will be allowed to run
the pathfinding algorithm to the nearest food. Other, follower fish, will just
school, i.e., basically copy the leaders’ movement. Follower fish will typically
just run the flocking algorithm and a wander behavior. This allows for a more
structured movement of the school and allows for performance improvement
by running the pathfinding once per school and not for all the individual fish.
The leader fish do not use the flocking algorithm since their movement is
usually along a path to food source.

In nature, the system of leaders is similar. They use a rule of any-one
leader [LAN98] typically when fleeing from predator, one fish decides the
direction of the whole school.
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6.3.5 Combining strategies

In this section, we will discuss solutions to the execution of multiple steering
behaviors. It is common for a fish to react to multiple things at once, e.g.,
avoiding an obstacle while trying to dodge the player. Designing a method
that supports growing number of behaviors, while maintaining a "natural"
pyramid of the needs is challenging. Some possible solutions will be offered
below.

State Machine

An easy way control the execution of behaviors is to use a state machine. The
first step is to define states, each state represents a reaction to a situation.
Each state is represented by a steering behavior. Each state returns a steering
force. An example of the state machine (see Figure 6.5) can look like this:. Idle state: Use wander steering behavior mentioned in Section 5.2.4..Flee from player state: Use a flee steering behavior 5.2.2. with the player

as the flee target..Avoid walls state: Use the obstacle avoid steering behavior 5.2.3 or flee
from the nearest wall.

The transition between states is handled by simple conditions:. Idle to flee from player: Switch if distance between the player and the
fish is smaller than an arbitrary threshold..Any state to avoid walls state: Switch if distance between a player and
some obstacle ahead is smaller than an arbitrary threshold..To idle state: Switch if no other transition is satisfied.

A state machine provides a precise and deterministic way to manage behav-
ior of an agent. Transitions between these states are triggered by specific
conditions (represented by arrows in Figure 6.5). This pattern offers full and
simple control over the behaviors, but abrupt transitions between states can
occur. Improving the smoothness transition is discussed below (see 6.3.5).

A state can also be represented by a list of steering behaviors each with
its own weight. The sum of the forces can be used to do the final steering -
similar approach will be discussed in the next Section 6.3.5.
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Player nearby

Wall nearby

Idle

Exit

dist(this, player) < treshold

dist(this, player) > treshold

Ray intersects wall

Ray intersects no walls

Figure 6.5: Example state machine visualized as a graph. The capsules represents
the transition conditions and the rectangles represent the individual states.

Using the state machine alone can have potential issues when transitioning
between states. Typically, when the Idle state is active and an obstacle is
approached the avoid walls state is triggered. The obstacle is successfully
avoided and back to the idle state is transitioned. However, the idle state can
often wander back to the previously avoided obstacle, the avoid walls state is
triggered again, the obstacle is dodged, the idle state is triggered and into
obstacle is wandered again. This can cause a loop of switching between the
individual states and can cause a jittering movement of the fish. This looks
unnatural and can happen quite often.

The issue can be fixed by putting in a delay between the transitions of the
states (i.e., exit times) or by blending the current desired velocity with the
desired velocity from the previous step.

Utility based weighting

This approach is different from the state machine. Rather than setting exact
conditions under which a behavior should run, all behaviors can run at the
same time and blend between them according to the current utility of the
behavior.

Each behavior requires a utility function. The utility function is a function
with range [0,1] the higher the utility the more useful is the function at the
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moment. The calculation of the final steering force weighted by utilities is
shown in Algorithm 4.

Algorithm 4 Utility-weighted steering force calculation
1: Define list behaviors
2: Initialize array utilities of length behaviors.count
3: Initialize array desired_velocities of length behaviors.count
4: total_utility = 0
5: for i = 0 to behaviors.count do
6: utilities[i] = behaviors[i].getUtility()
7: desired_velocities[i] = behaviors[i].getDesiredVelocity()
8: total_utility += utilities[i]
9: end for

10: desired_velocity = (0, 0)
11: if total_utility > 0 then ▷ Normalization of the utilities
12: for i = 0 to behaviors.count do
13: normalized_utility = utilities[i] / total_utility
14: desired_velocity += normalized_utility * desired_velocities[i]
15: end for
16: else
17: desired_velocity = fallback direction (e.g., agent’s forward)
18: end if
19: desired_velocity = set_magnitude(desired_velocity, max_speed)
20: steering_force = truncate(desired_velocity - current_velocity, max_force)

The normalization of the utilities keeps all the behaviors contribution as
expected. Each behavior_desired_velocity is the normalized desired_velocity
calculated by the steering behavior, in a sense it is the desired direction of
the individual steering behaviors.

This approach is the best for the case of our game. It allows the fish to be
part of school while still slightly jittering their movement with the wander
behavior and they will always avoid obstacles when approaching one. The
disadvantage of this approach is the need to define the utility functions. It is
a great practice for each utility function to be normalized in the range [0,1].

Utility functions for behaviors like seek, flee are easy to set up. The utility
should rely on the distance from the target as in Algorithm 5. However,
different behaviors require often much more difficult calculation and logic.

Algorithm 5 Flee behavior utility
1: d = distance(position, flee_target_position)
2: clamped_distance = Clamp(d, 0, danger_distance)
3: return 1 - (clamped_distance / danger_distance)

The danger_distance is the maximum distance at which the danger from
the flee target is relevant. If the distance is larger than the danger_distance
the behavior is not relevant to the fish.
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The utility function (shown in Algorithm 5) works great. However, it is
beneficial to add a threshold for the distance, so that once the distance is
smaller than a threshold value, the utility of the behavior is equal to 1. Using
this approach, the fish can try to flee from the player as the top priority and
react faster.

6.3.6 Deciding the speed of movement

The calculation of the steering force from Section 5.2.1 relies on setting the
magnitude of the desired velocity to the max_speed. However, it would be
nice to allow the fish to change their max_speed according to the situation.
For example, when the fish is wandering around it should move at a leisure
pace, but once a predator approaches and tries to attack the fish, it should
try to move away with all its energy and power.

An approach discussed in the work of Popelová [POP11] added an option
for each behavior to ask for a speed-up or a slow-down. If all behaviors
want to speed up or slow down collectively, the fish changes its speed. The
approach used in the game is similar to this one. However, rather than simply
deciding whether to speed up or slow down, each behavior contributes a vote
for a desired speed, along with an associated utility value calculated by the
steering behavior. The final speed is then calculated as a weighted average of
all suggested speeds, where the weights are given by the utility values. An
identical approach is used to allow the fish to momentarily increase their
maximum steering force.

6.3.7 Implementations of the fish object

In this section, the implementation of the fish object will be discussed. Each
fish uses some of the classes explained below.

Fish Movement base class

A fundamental component of the implementation is the Fish Movement ab-
stract base class. This class is responsible for calculation of the desired_velocity
for all the types of steering behaviors,

By abstracting this functionality, the base class simplifies the overall struc-
ture and ensures consistency across the different movement behaviors.
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Figure 6.6: Declaration of the base class for all fish movement types. Each
specific movement behavior inherits from this class. Implementations may range
from simple steering behaviors to more complex logic such as food-seeking, which
combines pathfinding with seek steering behavior.

.MoveStep: Returns the desired direction of the behavior, that is, the
normalized desired velocity..Mutate: Handles mutation of behavior according to fish specie, such as
size and speed, or steering behavior parameters..GetUtility: Calculates the utility of the behavior as discussed in Sec-
tion 6.3.5.

Steering behavior manager

The steering behavior manager class serves as the core component for in-
tegrating multiple steering behaviors. It calculates the final steering force
by combining the desired velocities from individual behaviors and then ap-
plies the resulting force to the fish. The class handles all the FishMovement
(see 6.3.7) scripts their MoveStep and uses the utility based weighting as
discussed in Section 6.3.5.

When a utility of the behavior is zero the desired velocity is not event
calculated, this can save us from some extra calculations.

This component can be also reworked to use the state machine approach
discussed earlier in Section 6.3.5.

School of gobies

A school of gobies is an entity that uses all the group behavior components
while maintaining a large group of miniature fish or gobies as shown in
Figure 6.7.

Each goby is a single sprite and its position is managed by a school manager
script which calculates the flocking rules, discussed in Section 5.3, and handles
its steering. When a goby moves outside of the radius of the school it uses
seek behavior to get closer to the middle of the school.
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Figure 6.7: A school of ∼45 gobies in the game. The green circle marks the
center of the school. All gobies use the flocking rules and created 2 smaller
distinct flocks. Some gobies are away from the flock but will move back once
they reach the outside border of the school.

The catching of the individual gobies is handled using a CapsuleCollider2D
which is scaled to fit most of the gobies. When the net enters the collider all
the gobies overlapped by the net are removed and put into the fisherman’s
bag.

The addition of the gobies improved the overall feel from the game. However,
there were performance issue with the naive implementation as discussed in
Section 7.1.

6.3.8 Debug view

An important tool during development was a custom debug view, which used
Unity’s Gizmos and Handles [UNI24]. The debug view was especially useful
when certain behaviors did not seem to work as expected, since it provided a
visual insight into what the fish perceives. Examples of these debug views
are shown in Figure 6.8.
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(a) Obstacle avoidance visualiza-
tion. The red circle checks for
nearby collisions and the yellow
rays detect upcoming obstacles.
The white circle marks the ra-
dius of the school, if gobies were
to move behind the border, they
would seek back towards center.

(b) Food-seeking behavior using a
follow-path method. The red line
represents the path to follow, yel-
low circle visualizes the projected
position onto the path. In the fig-
ure also the obstacle avoidance is
visualized.

(c) Space partitioning visualiza-
tion in the school of gobies. The
green circle shows the actual cap-
sule collider. The green rectangles
show the used the cells of the space
partition grid. Yellow circle repre-
sents the shool radius.

Figure 6.8: Steering behaviors visualized in the Unity editor.

6.4 Terrain generation discussion

In this section we will discuss, how the underwater terrain can be generated,
and how the terrain is generated in the game. The terrain generation method
needs to satisfy these features:.Travers-ability of the terrrain: The player needs to be able to reach all

important locations.
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.Tile-ability: The world should be composed of individual tiles to allow
unloading a loading the tiles only when needed..Randomness with control: We need to keep the terrain different in all runs
while still having a certain control over the overall look and difficulty.

All the discussed algorithms, when altered slightly, can be used to generate
a 3D terrain.

6.4.1 Randomized obstacle placement

The simplest approach to quickly generate the terrain is to use pre-made
obstacles and put them randomly on a grid. The terrain is generated layer
by layer, where each layer is composed of blocks arranged in a row and each
block contains a grid of points. The grid can have any dimensions but using
a square grid is the simplest approach.

To ensure that each generated level remains traversable, it is important
that the radius of each obstacle follows the condition 6.1:

robstacle < d − rplayer
2 (6.1)

Where:. robstacle is the radius of the smallest circle that fully encloses the obstacle.. rplayer is the radius of the player’s bounding circle.. d is the spacing between grid points where obstacles can be placed.

Satisfying the condition grants the player the ability to always squeeze between
the obstacles, ensuring that every level is traversable.

When generating the obstacles, the algorithm picks a few spots at random
and spawns a random pre-made obstacle at the place. Similarly, as in
Section 6.4.2, 2D perlin noise function can be sampled and only when the
sampled value reaches a certain threshold the point spawns a random obstacle.
This can incline toward creation of continuous obstacles and larger obstacle-
free areas.

6.4.2 Marching Squares

Marching squares algorithm requires a grid of points marked as either terrain
or air for input (Boolean value). The algorithm than uses a predefined set of
rules to connect points of terrain into triangles as shown in Figure 6.9. It is
important to notice that the algorithm connects only the mid-points of each
edge.

The real issue is to figure out which points should be marked as air or
terrain. Often, 2D perlin noise function is sampled and points with a value
above some arbitrary threshold are marked as air and vice versa. This
approach grants organic-looking cell-like mesh as seen in Figure 6.10a.
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Figure 6.9: Rules of triangulation for the marching squares (source: [CON24]).
The black circles represent solid terrain, the white circles represent air. The blue
line connects mid-points and creates the final mesh.

The algorithm can be tweaked to create more rounded edges. Instead
of using the binary approach and deciding whether a sampled perlin noise
value is above certain threshold, we can use the sampled value directly. The
sampled value is then used to interpolate the mid-point of each edge toward
a vertex with the higher value resulting in slightly more curved contours as
in Figure 6.10b.

(a) Example of a mesh generated
by the marching squares. The black
dots represent the terrain and the
white dots the air (source [TRA20]
17:31).

(b) Example of a mesh created
by the marching squares with inter-
polation and the perlin noise func-
tion setting the value for individual
points (source: [TRA20] 23:40).

Figure 6.10: Examples of marching squares output.

The 3D variant of this algorithm is the Marching Cubes algorithm; see
[CON25b] to better understand the differences.
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6.4.3 Room based generation

This method operates with pre-made rooms with defined exits and entrances.
The level is split into a grid of cells and a clear path through the level is
constructed first. The remaining cells are then filled with random rooms that
make the level feel more organic. Similar techniques are used in games such
as Spellunky [TOO16] and Wizard of Legend.

The first step of the algorithm is to construct a clear path through the level.
After the construction of the clear path, the rest of the level can be filled
with random fitting rooms using a similar approach to that in Section 6.4.1.

To find a clear path, we can use one of the pathfinding algorithms mentioned
in Section 4.2.2. However, the shortest path may not be the best approach.
Creating the shortest possible path through the level can be too streamlined
of an experience for the player and may prevent the desire to explore.

Using a random walker or depth-first-search (DFS) algorithm will create a
more tangled path. The random walker approach will be discussed next. The
DFS is the same algorithm as the BFS shown in Algorithm 2, with the only
difference being the use of stack (LIFO queue) instead of the queue (FIFO).

The Random walker is a simple algorithm that can be imagined as drill
making path through a cave without knowing which direction the end is. The
random walker generates the clear path using Algorithm 6.

Algorithm 6 Random-walker-based path generation (Lévy flight)
1: Choose start position for the drill
2: while drill has not reached the end position do
3: Select random direction
4: Determine step size using Lévy flight
5: Move drill in chosen direction by step size
6: Mark all visited points as on-path
7: end while

The random walker usually takes steps of magnitude equal to one. However,
introducing a varying step size, also called Levy’s flight, is a great way to
create distant clusters of rooms joined with long corridors (see Figure 6.11).
By giving a small chance to the random walker to increase its step size by a
large number while using a unit step the rest of the time, rooms connected
with "corridors" can appear. The unit steps will create clusters and the rare
occurrence of a flight will join the clusters with a corridor.

46



.................................. 6.4. Terrain generation discussion

Figure 6.11: The path generated by the random walker. Clusters of rooms
joined by corridors created by random walker with Levy’s flight can be seen
(source: [CON25a]).

The construction of the level is realized by instancing a room at each cell of
the clear path. The room can be picked randomly but has to have an entrance
or exit at each edge between the two cells of the path. After finishing the
clear path, the rest of the grid is filled with random rooms until no entrances
remain unused.

This method works great for creating intricate levels that contain complex
and well-designed elements while maintaining variety in the play-throughs.
Expanding the level generation is as simple as adding new room templates to
the algorithm. It is crucial that each room has predefined exits and entrances,
but whether the actual content of the room is generated at random during
run-time or is completely hand-crafted is entirely up to the developer.

6.4.4 Chosen approach

For the game the marching squares algorithm, discussed previously in sec-
tion 6.4.2, was implemented. To ensure a smooth path through the level, the
random walker from Algorithm 6 was used. In Figure 6.12, the generated
environment can be seen.

For the game it is important to have the world generated procedurally as
individual tiles. The tiles can be unloaded when the player is far enough. In
the game, the first layer of the ocean is generated as follows:. Create a layer containing 5 blocks in a row.. Start the random walker at the entrance to the level.. Count how many times the walker touched the bottom row of each block..When the bottom row of each block was visited at least once - Stop the

drill.

Tinkering with the ratio of how many blocks had to be visited or how many
times the walker touched the bottom row allows for more versatile terrains.
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(a) Generated terrain by the march-
ing squares and the random walk in
Unity.

(b) Generated terrain with the un-
derlying blocks highlighted.

Figure 6.12: Screenshots of the generated terrain in game by the marching
squares and the random walk.

Once the player approaches the end of the generated layer, a new layer is
generated. The only difference is now the drill continues where it last touched
the bottom row of any block.

When running the marching squares algorithm, the mesh was generated
using the grid of each block and the corresponding visited-by-drill Booleans.
Visited-by-drill points were interpreted as air. To ensure a continuity between
the blocks, the visited-by-drill boolean values of the last column of each block
were copied to the next neighboring block as the first column. The same goes
for layers, the last row of each layer was copied to the next layer as the first
row. This ensured continuity and the ability to keep all the tiles separated.

Each tile has a corresponding 2D Polygon collider component. The contour
of the mesh acted as the collider. The contour extraction was achieved using
Algorithm 7.
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Algorithm 7 The contour extraction algorithm
1: Initialize dictionary

Add all boundary edges to the dictionary
2: for each triangle of mesh do
3: for each edge of triangle do
4: if reversed edge is in dictionary then
5: Remove edge from dictionary
6: continue next iteration
7: end if
8: if dictionary does not contain edge then
9: Add edge to the dictionary

10: end if
11: end for
12: end for
13: Initialize list of loops
14: while dictionary is not empty do
15: Pick first edge from the dictionary as start_edge
16: current_edge = start_edge
17: repeat
18: Remove current_edge from dictionary
19: Find next_edge in dictionary that connects to current_edge, the

last vertex of current_edge equals to the first vertex of the next_edge
20: current_edge = next_edge
21: until current_edge is the start_edge
22: end while
23: Pass each loop as a path to the polygon collider

Spawning fish

The spawning of fish is determined by the specie of the fish. Each fish species
has these attributes:.Commonness: How likely is the fish to spawn when given the chance..MinY and maxY: Range of depths in which the fish has the ability to

spawn..Fish prefab: The object associated with the specie. Typically, herbivore
fish, piranha or goby school.. Stats: An object containing all the attributes of the fish, such as speed,
steering force, flocking radius or scale (see Figure 6.13).

The fish specie is implemented using the Unity Scriptable Object. The use
of the scriptable objects allows for creation of many species with different
attributes quickly.

When a new fish is needed to spawn. Each air point of the world block
becomes a valid spawn point for fish. A single point is picked at random.
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For the point a group of candidates is gathered by going through all the
species and checking whether the point’s Y position is within the minY and
maxY o the specie. The final candidate is then picked randomly from the
commonness-weighted list of the candidates and the associated fish prefab is
instantiated.

Each specie has its own average stats, and upon spawning the fish generates
an offset creating its own individual values. This allows each fish to be similar
while sometimes creating complete outliers - such as huge fast fish that will
not even try to flee from predator but will try its best to perfectly flee from
the player. Upon applying the stats to the spawned fish, diameter of the
fish measured and used as the mass in the steering force calculation 5.2.1.
Keeping track of the fish’s diameter allows the game to make sure that at
least some fish will always fit into the player’s net.

Figure 6.13: All the stas stored inside a fish specie. The fish create a copy of
these stats and mutate them. This is viewed from inside the Unity inspector as
Scriptable Object.
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Chapter 7
Results

7.1 Performance

In this section, performance issues and bottlenecks of the game will be
discussed. I have created a testing framework discussed below and used
Unity Profiler to locate bottlenecks. Some optimizations were made and are
compared with the unoptimized version.

7.1.1 Testing framework

To evaluate performance, frames per second (FPS) and frame time statistics
were recorded under increasing fish counts. The following procedure was used
for each test run:.The game is built and launched..An empty scene is loaded to initialize the environment..A static seed is set for Unity’s Random to ensure consistent results across

tests.. Spawner parameters are configured..The main game scene is loaded.. Five world layers are generated..A fixed number of fish is spawned across the layers..The game is left running for 5 seconds to allow for warm-up and stabi-
lization.. Performance data is collected over the next 10 seconds, with 5 samples
recorded per second..The game returns to the empty scene and prepares for the next test,
where the number of fish is increased.
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Figure 7.1: The state of the world right after the test starts. The circles display
the flocking radius of a fish. The fish counts are 50, 100, 200, 500, 1000.

The tests were carried out with fish counts of 50, 100, 200, 500, and
1000. Each test recorded detailed statistics, including total frame time, time
spent on flocking computations, and time consumed by steering behavior
calculations.

The tests were run on my desktop computer, with specifications in Table 7.1,
as a .exe build.

CPU Intel Core i7-13700KF, 3.4 GHz

GPU ASUS GeForce DUAL-RTX3060-O12G-V2,
LHR, 12 GB GDDR6

RAM 32 GB DDR5 5200 MHz CL40
Operating System Microsoft Windows 11 Pro (x64-based)
Unity Version 2022.3.10f1

Table 7.1: Hardware and Software Specifications of the computer that ran the
tests.

7.1.2 The neighbor search

After inspecting the test results and profiler, it was found that the flocking
algorithm, discussed in Section 5.3, significantly slows down the performance.
The issue lies within the O(n2) complexity of the neighborhood search.

Improving the neighborhood search procedure is a common optimization
technique when it comes to the flocking algorithm. The issue is commonly
solved using a space partitioning map as discussed by Ježowicz [JEZ23].

A 2D grid partition map was implemented for the game. Each fish now
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only calculates the distance between itself and the fish in the neighboring cells
of the grid, significantly reducing the number of distance calculations. A same
grid was used for each school of gobies itself to speed up the neighborhood
search.

Version without the space partitioning grid uses Physics2D.OverlapCircleAll
to get the flockmates of the fish. As seen in Figure 7.2 and Table 7.2, the
space partitioning grid was not helpful when used with fully simulated fish
objects.

Unity documentation does not state whether internal optimization tech-
niques are used to query nearby objects. However, the result of the test may
hint at the use of a space partitioning grid, quad-trees or other optimization
techniques, since it is a common practice for game engines to use advanced
and highly optimized algorithms to search for possible collisions.

Results summarized in Table 7.3 and Figure 7.3 show a significant improve-
ment in the speed of the flocking algorithm calculation. Since the gobies do
not use any Unity Physics 2D components such as colliders or rigidbodies,
the neighborhood was originally gathered by calculating the distance of every
fish with each other. The later use of the space partitioning grid lowered the
calculation time significantly.

Figure 7.2: Comparison of the flocking algorithm computation time of the fish
object. The optimized version uses a space partition grid and the unoptimized
version uses Physics2D.OverlapCircleAll to gather the neighborhood. The first 4
values seem very low since the fish did not always have many neighbors as can
be seen in Figure 7.1.
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Fish counts 50 100 200 500 1 000
Unoptimized time (ms) 0.000 0.006 0.026 0.413 75.5
Optimized time (ms) 0.001 0.004 0.015 0.428 76.8

Table 7.2: Measured values during the tests, visualized in Figure 7.3.

Figure 7.3: The graph shows a great difference in computation time between the
goby calculation using the distance check (unoptimized) and the space partition
grid (optimized). The goby count refers to the total number of simulated gobies,
where each school consists of 100 gobies.

Gobby counts 100 300 800 1 000 2 500
Unoptimized time (ms) 0.229 0.305 346 443 1135
Optimized time (ms) 0.035 0.038 0.545 7.42 229

Table 7.3: Measured values during tests, visualized in Figure 7.3.

In the figures, we can see that the computation time of the flocking algorithm
in the first few test scenarios is very low. This is caused by the size of the
world across which the fish are spawned (as seen in Figure 7.1). They often
may not even encounter any potential flockmates.

Deciding the size of the cells in the space partitioning grid is an important
parameter. Using a 1–1.5 multiple of the flocking radius resulted in the best
results. The same tests with different multiples of the flocking radius were
performed and the averaged values were used in Figure 7.3.

7.1.3 Reducing the count fo gobies

In Figure 7.4 a complete breakdown of performance is shown. The graph
shows a relative computation time of the individual steering behaviors. The
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data used to construct the graph comes from the test case with the starting
fish count being 1000.

Starting fish count 50 100 200 500 1 000
Fish alive 46 89 162 448 907
Gobies 700 500 1 000 4 100 7 200
School of Gobies 7 50 10 41 72
Frame (ms) 0.65 0.84 2.37 722.91 1 142.61
FPS 1 547.9 1 191.9 422.5 1.4 0.9

Figure 7.4: Visualization and performance table for original goby spawning
setup with 100 gobies per school. The major part of the calculation is spent on
flocking for gobies.

The major part of the calculation is the Gobies. Reducing the count
of gobies to 15 per school significantly reduced the computation time while
keeping the total number of gobies high. The Figure 7.5 shows the performance
breakdown with the lowered goby count.
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Starting fish count 50 100 200 500 1 000
Fish alive 48 87 177 445 894
Gobies 75 135 210 495 885
School of Gobies 5 9 14 33 59
Frame (ms) 0,55 0,68 1,22 7,57 494,46
FPS 1 824,8 1 462,0 818,3 132,0 2,0

Figure 7.5: Visualization and performance table when the goby count per school
was reduced to 15.

7.1.4 The final performance of the game

To better fit the gameplay, the spawn rates of the fish were slightly tweaked.
The biggest change was lowering the average count of gobies in school from
100 to 50 and increasing their scale for better clarity in the game.

Table 7.4 shows the final average fps during the tests after the tweaks.

Starting fish count 50 100 200 500 1 000
Average fish count 50 100 198 497 978
Goby count 116 417 1 182 1 985 4 477
Frame (ms) 0,56 0,77 2,36 414,54 1 039,73
FPS 1 776,2 1 300,4 423,7 2,4 0,9

Table 7.4: The average performance of the final game with tweaked spawn
rates,goby counts and all in-game fish species - 25 gobies per school on average.

In the extreme case with 1000 start fish, we can see that each frame
of the simulation takes approximately 1039 ms to compute. A significant
portion of 830 ms is spent evaluating the various steering behaviors of the
fish. Figure 7.6 illustrates the relative computation time of each individual
steering behavior. Behaviors such as gobies, flocking or obstacle avoidance
are more computationally expensive than others. This breakdown helps to
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identify which parts of the overall behavior are the most demanding and may
benefit from further optimization.

The very last optimization was chunk loading. Since the world generation
is split into layers, only closest 3 layers to the player active at all times. When
the player moves past a certain threshold the layers are either turned on or
off and all the fish in the layers as well. A collider is then constructed around
the loaded area to prevent fish from moving into the unloaded chunks.

Figure 7.6: Distribution of computation time among individual steering behav-
iors. The chart highlights the relative cost of each behavior such as flocking,
obstacle avoidance, and food seeking, measured over the duration of a frame.
The absolute computation times are high, however thanks to chunk loading and
the spawn rates, player will usually only need to simulate up to 150 fish during
gameplay.

7.2 Current state of the game

The game currently offers two play modes: Survival and Creative. The
Creative mode being functionally identical to the Survival mode, except that
the player’s stats are boosted significantly. This allows player to explore the
depths without the need to worry about their survival (see Figure 7.7).
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Figure 7.7: The game’s main menu, allowing the player to choose a play mode
or open the help window.

A contextual pop-up is displayed in the top right corner of the screen
providing in-game tips and explanations (see Figure 7.9). Additionally, a help
button opens a quick help window (see Figure 7.8) explaining all the game
core mechanics with visual aid.

Figure 7.8: The quick help window explaining the basic game mechanics to the
player with simple visuals.

The player’s progression involves diving into the sea, catching fish, returning
to the island, selling the fish, and purchasing upgrades. Players can level up
individual statistics, such as speed, oxygen, or net size. The upgrade cost
scales linearly with the current level (see Figures 7.9a, 7.9b, and 7.9c).

The game features a total of three different fish types: a herbivore, a preda-
tor, and a school of gobies. Each species includes three variants representing
different difficulty tiers: weak, medium, and hard. These variants differ in
attributes such as speed, size, strength, and behavior.

Fish display their status using visual indicators (see Figure 7.10). A bar
above a fish shows its health (the size of the bar) and the its hunger (color
of the bar). The circle behind the fish is green when the fish can potentially
fit into the player’s net. Additionally, the color of the trail behind the fish
shows its current speed.
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(a) Fisherman’s hut menu. Place for player to instantly
replenish health and oxygen.

(b) Upgrades menu. Here player can pick player stats to
upgrade.

(c) Selling menu. Here player can sell content of its inven-
tory. The shop shows fish name, icon, cost and whether it
was caught dead or alive.

Figure 7.9: Functional buildings in the game. In the top-right corner the
contextual pop-up can be seen.
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All game visuals were personally illustrated by the author using Procreate
and Affinity Designer.

(a) Predator fish with low health,
not hungry and will fit into the
net, moving with high speed.

(b) Herbivore fish with full health,
Very hungry and will fit into the
net, moving with high speed.

Figure 7.10: Fish indicators explained.

7.2.1 Player feedback

The game was tested by 12 players. Some filled a short form with questions
and multiple choice answers, while other provided their insights during an
open discussion. Several key points emerged from their feedback and will be
discussed here.

A common issue encountered by players was the difficulty of catching
the fish during their first few attempts. Initially, players found the fish-
catching mechanic frustrating, too difficult and their successful catches were
not consistent. This was fixed by giving players a slight room for error. In
the first version, the requirement for the 100% overlap between the net and
the fish’s body was too strict - the overlap was adjusted to 90% which made
the overall experience much more pleasant.

The players often drowned or were eaten by predators. The game did not
sufficiently warn the player when loosing health. This was later improved
with an effect of blinking red screen when the player took damage.

Numerous smaller bugs were also reported. The labels in the shop menu
not refreshing at time, issues with collisions between player and the main
island and issues with scaling the instantiated corpse of the fish.

Overall, the players enjoyed the interaction with the fish and found the
basic gameplay loop engaging. However, the lack of the long-term content,
the lack of variability between the fish types and very simple upgrades were
not enough to maintain the player’s interest. The possible additions in terms
of content will be discussed later in Section 8.

Some players never used the fisherman’s spear, since they upgraded the
size of the fishing net to an excessive extent, allowing them to catch all the
fish from a large distance without being threatened. This can be fixed by
setting a maximum size of the fish net and forcing the player to weaken the
fish before letting the player catch them.

Some player reported unusual behavior when the fish was cornered by the
player and the environment. The fish exhibited a jittery movement, likely

60



................................... 7.2. Current state of the game

due to inability of the fish to surrender or stop moving when cornered.
Lastly, the players were asked to report the seed used to generate the world

if they encountered lag spikes or crashes. The lag spikes could be caused by
issues in world generation. However, no such problems occurred during the
testing sessions.

7.2.2 Comparison with real life examples

To compare the simulated behavior with real-life examples, I visited Mořský
svět Praha and recorded videos of fish in their aquariums.

It is difficult to compare the similarities and differences directly, since
the game is in 2D while real fish move in 3D. However, some similarities
are clearly visible. The overall schooling behavior of smaller fish in the
game seems similar to its real-life model. In both the real footage and
the simulation (see Figures 7.12 7.11), fish tend to stay close together and
maintain a similar heading. While moving, they avoid collisions with each
other. More specifically, they become startled when another fish gets too
close and react quickly. These components are roughly modeled using the
flocking rules discussed earlier.

Figure 7.11: Schooling fish in the game. We can see the fish being aligned
together, while eating the yellow plant. We can also see multiple smaller schools.

As can be seen in the attached video (see Appendix A.2.1), an interesting
moment occurred when a large fish swam through a school of smaller fish:
the school split and moved away from the larger individual. A very similar
behavior can be observed in the game (see Appendix A.2.2) when a predator
disrupts a group of fish (see Figure 7.12). We can observe similar behaviors;
however, the real-life fish react much slower than those simulated.

A major difference from real life is that, in the aquarium, fish often remain
stationary for longer periods. This does not happen in the game, since the
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(a) Large fish startling a group of smaller fish (see Appendix A.2.1).

(b) School of fish before and after predator approaches in the game (see
Appendix A.2.2.

Figure 7.12: Comparison of real and simulated group behavior when a school is
startled by a large fish or predator.

fish are constantly moving, even if without any reason. The simulation does
attempt to approximate this behavior by reducing movement speed when a
fish has no reason to move.

An area for improvement in the simulation is the fish movement animation.
In real life, fish move by bending their bodies sideways. This could be
simulated in the game using sprite deformations to create a more lifelike
swimming animation.
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Chapter 8
Conclusion and future work

In this project, I have explored various algorithms that exhibit group behaviors.
I have examined steering behaviors in depth and used them to create a fishing
and diving game. The game’s terrain is procedurally generated, and multiple
fish species were designed. Herbivores seek plant-based food sources, while
predators hunt herbivores. In addition to larger fish, I have implemented a
school of gobies, which controls a large group of miniature fish.

To ensure smooth performance, I have analyzed performance of the game
and improved it using a space-partitioning grid and chunk loading. I have
compared the movement and group behavior of the fish to real-life footage of
fish swimming in aquariums. Lastly, multiple players tested the game and
provided valuable feedback, which I took into account and used to adjust and
improve the game accordingly.

Although the game successfully demonstrates group behavior and real-
time interaction, there are some limitations to address. For example, fish
sometimes fail to recognize that a food source is accessible if it is too close
to a wall, due to their simplistic collision avoidance logic. This is fine-tuned
with the utility functions; however, it can still cause issues in particular cases.
Additionally, fish do not yet have the ability to stop moving or remain idle
when appropriate, which can lead to unnatural motion when cornered by
player. On the technical side, while chunk loading currently works well on
a per-layer basis, switching to a block-based loading system could further
improve performance. Currently, the fish in the unloaded chunks cannot move
into the loaded chunks and vice versa, which could be improved by using a
harshly simulated movement of fish when unloaded.

The design and implementation of these behaviors was a valuable learning
experience. It was particularly interesting to balance the complexity of the
fish AI, while showcasing interesting and behaviors, that are fun to engage
with. Navigating fish through a dynamically changing environment required
a careful combination of algorithms and tuning of parameters. The project
offered insights into both game development and the challenges of simulating
lifelike group behavior in real-time systems.

While the current version of the game serves as a solid foundation, multiple
improvements are planned to enhance gameplay, some of which were proposed
by players in their feedback:
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. Interesting locations: Add areas containing treasures or maze-like caves
to improve the exploration aspect of the game..Encouraging spear usage: Currently, players can upgrade the net to catch
any fish, so they do not have to learn how to use the spear. A better
approach could involve limiting the net to only catch weakened fish,
making the spear a necessary tool..Fish mating system: Right now, fish only spawn at the beginning and
when a different fish dies. Introducing a breeding system where fish can
reproduce would add a new layer of depth and realism to the simulation..Genetic mutations: Allowing newly spawned fish to mutate based on a
selection of the best existing fish (e.g., using a basic genetic algorithm)
would increase the challenge for the player. Poorly mutated fish that
cannot navigate terrain effectively could die off over time, simulating a
natural selection..New underwater creatures: Introducing more species with unique behav-
ior patterns would enrich gameplay. For example, sharks that relentlessly
pursue prey, piranhas that hunt cooperatively in flocks, or pufferfish that
inflate to damage the player’s net. Unique creatures like squids could
shoot ink to temporarily disable the player’s abilities.. Skills and upgrades: Currently, players can only improve base stats like
movement speed and damage. Adding active skills such as a temporary
swim "burst" for speed could make gameplay more dynamic and strategic.. Island buildings: The fisherman’s hut is currently only used to restore
health and oxygen. Expanding its functionality to allow decoration or
customization could give players more to do outside of fishing..Quests and economy system: Right now, the value of fish is based solely
on size and species. Introducing dynamic pricing, by reducing the prices
for commonly sold fish, could encourage players to seek out rare species.
Adding time-limited quests, such as catching specific fish under certain
conditions, could also increase engagement.
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Figures

2.1 Visualization of ant colony optimization in a game-like environment.
Green dots represent food sources, blue dots are left behind by ants when
searching for food, and the red dots are left behind when they find food
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Appendix A
Attached Files

This appendix provides an overview of the supplementary files submitted
along with this thesis. These include video recordings, game build, and source
code. The files are organized into folders for easier navigation.

A.1 Folder Structure

The attached files are structured as follows:.Videos: Contains video recordings of both real-life and in-game fish
schooling behavior used for comparing their behavior..Build: Contains playable game build for Windows.. Source: Contains the Unity project files necessary to open and modify
the game in the Unity Editor (game was develoepd with Unity Editor
version 2022.3.10f1).

A.2 Videos

A.2.1 School of Fish Startled by Large Fish in Aquarium

This video shows real footage of a large fish swimming through a school of
smaller fish in a controlled environment. As the predator approaches, the
school reacts by splitting momentarily.. Filename: predator_startle.mp4. Location: Captured in a closed aquarium at Mořský Svět Praha.

A.2.2 School of Fish Startled by Predator in the Game

This video demonstrates the same behavioral concept simulated within the
game. A predator entity causes the virtual school to break apart in response.. Filename: predator_startle_game.mp4. Location: Captured during a simulated scenario in the game.
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Appendix B
User manual

Below, the basic game mechanics, tips and controls for the game are explained.

B.1 Game Overview

. Objective: Dive as deep as possible, discover all fish species, and survive.. Survival threats: Oxygen depletion, water pressure, predators.. Core loop: Catch fish, sell them in the shop, upgrade stats, explore
deeper.

B.2 Interaction with the fish

. Net: Use to catch fish alive (full overlap in one sweep required). Live
fish are worth full price.. Spear: Give damage to fish. Dead fish are worth half the price.. Swap tools with E.

B.3 Locations

. Fisherman’s Hut: Instantly restores health and oxygen.. Shop: Sell caught fish (Click button or Enter).. Upgrade Shop: Improve player stats via mouse clicks.

B.4 Essential Upgradable Stats

. Swimming Agility: Improves turning underwater..Movement Speed: Increases swim and move speed.. Fish Net Size: Increases net radius, essential for progression.
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. Pressure Resistance: Allows deeper diving.. Backpack Capacity: Allows player to carry more fish..Max Oxygen: Allows to spend more total time underwater.

B.5 HUD

. Bars in top left corner: Oxygen, backpack capacity, health. Popup window in top right corner: Contextual hints for current events.. Help button: Opens the quick help window.. Fish count in bottom right: Shows currently existing fish count, count
of the loaded fish, and count of total gobies isndie the brackets.. Numbers in top left corner: Current player’s currency, the potential
income if player was to sell everything in the bag, the current depth.

B.6 Controls

Action Key
Move WASD / Arrows
Use Net / Spear Space
Swap Tool E
Sell Fish (Shop) Enter
Upgrade (Shop) Mouse Click
Focus on Random Fish Numpad 1
Focus Back on Player Numpad 2

Table B.1: The game’s controls. The focusing on fish and back on player is
intended for debugging and creative purposes.

B.7 Game modes

. Survival: Intended way of playing with upgrades, survival mechanics.. Creative: Intended for testing and exploration, player has increased base
stats to an absurd amount.
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