
Master’s Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Graphics and Interaction

Efficient ray tracing algorithms exploiting
kd-trees on a GPU

Bc. Robert Papay

Supervisor: prof. Ing. Vlastimil Havran, Ph.D.
Field of study: Open informatics
Subfield: Computer Graphics
January 2025

ii

ZADÁNÍ DIPLOMOVÉ PRÁCE​

I. OSOBNÍ A STUDIJNÍ ÚDAJE

492304 Osobní číslo:​Robert Jméno:​Papay Příjmení:​

Fakulta elektrotechnická Fakulta/ústav:​

Zadávající katedra/ústav: Katedra počítačové grafiky a interakce

Otevřená informatika Studijní program:​

Počítačová grafika Specializace:​

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:​

Efektivní algoritmy s využitím kd-stromů pro vrhání paprsků na GPU

Název diplomové práce anglicky:​

Efficient ray tracing algorithms exploiting kd-trees on a GPU

Pokyny pro vypracování:​
Nastudujte literaturu ke stavbě a použití datových struktur na grafickém akcelerátoru pro metodu sledování paprsku se​
zaměřením na paralelizaci výpočtu a kd-stromy. Implementujte a porovnejte efektivní algoritmy traverzace paprsku​
kd-stromem na sadě testovacích 3D scén různé velikosti a prostorové distribuce. Dále se zabývejte rychlými algoritmy​
pro stavbu kd-stromu na grafické kartě pro vrhání paprsku. Vybrané algoritmy implementujte a otestujte pro alespoň deset​
testovacích scén o počtu trojúhelníků 100K až cca 100M.​
Následně se zabývejte algoritmy pro slučování (merge) dvou či více kd-stromů do jednoho kd-stromu a reverzní operaci​
vyjmutí již vloženého kd-stromu, testovacími implementacemi těchto algoritmů na CPU a následně i jejich přenosem na​
grafický akcelerátor. Otestujte aplikovatelnost slučování kd-stromu pro jednoduché dynamické scény s jedním i více objekty​
o počtu trojúhelníků 1K až 50K . Změřte časovou a paměťovou náročnost algoritmů pro stavbu, traverzaci i slučování​
kd-stromů pro alespoň 5 testovacích scén obsahujících animaci..​
Pro implementaci na grafické kartě použijte jazyk CUDA firmy NVIDIA, případně jazyk popsaný standardem OpenCL,​
případně jiným vhodným programovacím jazykem formou nadstavby nad těmito jazyky jako je HIP/SYCL.​

Seznam doporučené literatury:​
1) Zhou et al.: Real-Time KD-Tree Construction on Graphics Hardware,​
SIGGRAPH ASIA 2008 and references to this paper.​
2) M. Vinkler: Construction of Acceleration Data Structures for Ray Tracing, PhD thesis, Masaryk University 2014.​
https://is.muni.cz/th/w0k6h/? kod=PV204​
3) D. Horn, J. Sugerman, M. Houston, P. Hanrahan, Interactive k-D Tree GPU Raytracing, 2007.​
4) Z. Wu, F. Zhao, X. Liu: SAH KD-tree construction on GPU, HPG 2011.​
5) S. Chung, M. Choi M, D. Youn D and S. Kim S. (2019). Comparison of BVH and KD-Tree for the GPGPU Acceleration​
on Real Mobile Devices. Frontier Computing. 10.1007/978-981-13-3648-5_62. (535-540).​
6) X. Liang X, H. Yang, Y. Zhang, J. Yin J and Y. Cao (2016). Efficient kd-tree construction for ray tracing using ray​
distribution sampling. Multimedia Tools and Applications. 75:23. (15881-15899).​
Další literaturu dodá vedoucí práce.​

© ČVUT v Praze, Design: ČVUT v Praze, VIC Strana 1 z 2 CVUT-CZ-ZDP-2015.1

Jméno a pracoviště vedoucí(ho) diplomové práce:​

prof. Ing. Vlastimil Havran, Ph.D. Katedra počítačové grafiky a interakce

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:​

Termín odevzdání diplomové práce: 07.01.2025 Datum zadání diplomové práce: 15.02.2024

Platnost zadání diplomové práce: 21.09.2025

___________________________​___________________________​___________________________​
prof. Mgr. Petr Páta, Ph.D.​

podpis děkana(ky)​
podpis vedoucí(ho) ústavu/katedry​prof. Ing. Vlastimil Havran, Ph.D.​

podpis vedoucí(ho) práce​

III. PŘEVZETÍ ZADÁNÍ
Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VIC Strana 2 z 2 CVUT-CZ-ZDP-2015.1

Acknowledgements
I would like to primarily thank my su-

pervisor, prof. Ing. Vlastimil Havran,
Ph.D., for his guidance and advice while
working on this thesis. I would also like
to express my deepest gratitude to my
family and friends for their invaluable sup-
port for the whole duration of my studies.
Lastly, I would like to thank my friends
that helped me proofread the thesis.

Declaration
I declare that the presented work was de-
veloped independently and that I have lis-
ted all sources of information used within
it in accordance with the methodical in-
structions for observing the ethical prin-
ciples in the preparation of university
theses.

In Prague, 7. January 2025

v

Abstract
This work focuses on parallel al-

gorithms for building and traversing k-d
trees to accelerate ray tracing, mainly for
dynamic scenes. It provides an introduc-
tion to k-d trees as well as GPU architec-
tures. It also provides an overview and
analysis of existing solutions for building
k-d trees in parallel, for building k-d trees
for dynamic scenes, and for traversing k-d
trees on the GPU.

A game engine–like framework is de-
signed and implemented to provide a basis
for implementing the ray tracing related
algorithms. An algorithm design and im-
plementation for building k-d trees on the
GPU using binning and exploiting a task
pool is presented, with detailed descrip-
tion of all its steps. An algorithm design
for merging k-d trees on the CPU and
GPU is also presented.

Nine algorithms are implemented in
total: two CPU single-threaded k-d tree
building algorithms using exact and ap-
proximate split selection, one GPU k-d
tree building algorithm using binning,
one CPU k-d tree merging algorithm
and four traversal algorithms designed for
the GPU, in addition to the traditional
stack-based traversal algorithm. The im-
plemented algorithms are tested on ten
static and five dynamic scenes, with tables
for each scene presenting the final results.

Keywords: ray tracing, k-d tree, GPU,
GPGPU, min-max binning, task pool,
k-d tree merging

Supervisor: prof. Ing. Vlastimil
Havran, Ph.D.
Katedra počítačové grafiky a interakce,
ČVUT FEL

Abstrakt
Tato práce se zaměřuje na paralelní

algoritmy pro stavbu a procházení k-d
stromů za účelem zrychlení algoritmu
sledování paprsku, převážně pro dyna-
mické scény. Práce poskytuje úvod do k-d
stromů a do architektury grafických karet.
Dále poskytuje přehled a analýzu exis-
tujících řešení pro paralelní stavbu k-d
stromů, pro stavbu k-d stromů pro dyna-
mické scény, a pro procházení k-d stromů
na grafické kartě.

Je navrhnut a implementován frame-
work podobající se hernímu enginu, aby
poskytl základ na implementaci algoritmů
souvisejících s algoritmem sledováním pa-
prsků. Je představen návrh a popis im-
plementace algoritmu stavby na grafické
kartě využívající binning a frontu úloh,
s podrobným popisem všech kroků. Je
také představen návrh algoritmů na vklá-
dání k-d stromů na CPU a GPU.

Celkem je implementováno devět al-
goritmů: dva jednovláknové algoritmy
stavby na CPU, používající přesný a při-
bližný výběr dělící roviny, jeden algorit-
mus stavby na GPU používající binning,
jeden algoritmus na CPU pro vkládání
k-d stromů, a čtyři algoritmy na prochá-
zení k-d stromů určené pro grafické karty
spolu s tradičním algoritmem na prochá-
zení založeným na zásobníku. Implemento-
vané algoritmy jsou otestovány na deseti
statických a pěti dynamických scénách.
Výsledky jsou prezentovány v tabulkách
pro každou scénu.

Klíčová slova: sledování paprsku,
kd-strom, GPU, obecné výpočty na
GPU, min-max binning, fronta úloh,
vkládání k-d stromů

Překlad názvu: Efektivní algoritmy s
kd-stromy pro ray tracing na GPU

vi

Contents
1 Introduction 1
2 Theoretical background 3
2.1 Construction 3
2.2 Surface Area Heuristic 5
2.3 Split clipping 7
2.4 Traversal . 8
3 Massively parallel architectures 11
3.1 Execution model 11
3.2 Memory model 13
4 Previous work on building k-d
trees 15
4.1 Early approaches 15
4.2 Exact split selection 18
4.3 Modified k-d trees 19
4.4 Other relevant work 20
5 Building k-d trees for dynamic
scenes 21
5.1 Rebuilding the whole tree 21
5.2 Building two separate trees 21
5.3 Two level trees 22
5.4 Merging trees 22
6 Specialised traversal algorithms 23
6.1 kd-restart . 23
6.2 Push-down and short-stack 23
7 Analysis 29
7.1 Algorithm comparison and

selection . 29
7.2 Task pool on the GPU 30
7.3 GPGPU language selection 31
7.4 Software design philosophy 31
7.5 Functional requirements 31
7.6 Non-functional requirements . . . 32
8 Ray tracing application framework
design and implementation 33
8.1 Scene definition 34
8.2 Component system. 34
8.3 Models . 35
8.4 Animations 36
8.5 Rendering 37
8.6 Frame tracer 38
8.7 Visualisation and validation 38
8.8 Scene configuration 39
8.9 External libraries 39

9 k-d tree building algorithm design
and implementation 43
9.1 Primitive references 44
9.2 Reference CPU implementations 44
9.3 Task pool . 45
9.4 Parallel scan using a task pool . . 48

9.4.1 Up-sweep 50
9.4.2 Down-sweep 51

9.5 GPU binning algorithm. 51
9.5.1 Binning 52
9.5.2 Classification 53
9.5.3 Classification scan 53
9.5.4 Distribution 53
9.5.5 Make leaf 54

9.6 Caching bounding boxes 54
9.7 Creating nodes 55
9.8 Dynamic memory allocation 56
10 k-d tree merging algorithm design
and implementation 59
10.1 Merging a single dynamic tree . 62
10.2 Merging multiple dynamic trees 63
10.3 Merging on the GPU 64
11 Results 67
11.1 Hardware 67
11.2 Statistics 68
11.3 Testing . 68

11.3.1 Static scenes 69
11.3.2 Dynamic scenes 76

12 Conclusion 81
Bibliography 83
A Attachment list 87
B Manual 89
B.1 Build instructions 89
B.2 Usage instructions 89
C Assignment translation 91
D Tables 93
D.1 Static scenes 94
D.2 Dynamic scenes 104

vii

Figures
2.1 An example of a 2-dimensional k-d

tree . 4
2.2 k-d trees for point sets built using

different axis selection methods 5
2.3 Visualisation of the SAH function

along the x axis 6
2.4 Issues when not using split clipping 8
2.5 Ray intersecting an inner node

with two leaf child nodes 8

3.1 Comparison of the CPU and GPU
architectures 12

3.2 GPU memory and execution
models with 4 groups, 2 subgroups
and 8 lanes . 13

4.1 Top and bottom layers of a k-d
tree when building using the DFS
approach with four cores 16

4.2 Min-max binning for the x axis . 16

6.1 Traversing a k-d tree using
kd-restart . 24

8.1 An example scene graph with game
objects, components and models . . 34

8.2 Hierarchy of the renderer
components and mesh classes 35

8.3 Application screenshots with frame
tracer UI window 41

8.4 Application screenshot with
structure navigator and validator UI
windows . 42

9.1 Structures used in the kd-tree
implementation in C++ language . 43

9.2 Task pool structure example . . . 45
9.3 Scanned filter array used as indices

for inserting filtered elements 49
9.4 Parallel scan for larger arrays . . 49
9.5 Visualisation of the parallel scan

using the task pool for
w = 4, N = 34 51

9.6 Primitives classified based on the
bounds of their bounding boxes . . . 53

9.7 Primitive distribution into left and
right child nodes according to
scanned classification 54

9.8 Passing memory to children for
copying primitive references 57

10.1 Step by step merging of a
dynamic tree into a static tree 62

11.1 Renders of static scenes 69
11.2 Comparison of costs of the

algorithms with exact and
approximate split selection 70

11.3 Comparison of ray tracing
performance of the algorithms with
exact and approximate split
selection . 71

11.4 Comparison of build times for the
CPU and GPU algorithms 72

11.5 Comparison of the total build
time of the GPU algorithm and the
time it took for the task pool to
finish . 73

11.6 Comparison of the memory
consumption of the CPU and GPU
algorithms . 74

11.7 Comparison of ray tracing
performance for the different
traversal algorithms 75

11.8 Renders of dynamic scenes 76
11.9 Comparison of merging and

rebuilding the dynamic tree 77
11.10 Comparison of ray tracing

performance for all dynamic scene
configurations 78

11.11 Comparison of frame render
times for all dynamic scene
configurations 79

viii

Tables
D.1 Bistro scene k-d tree statistics . 94
D.2 Bistro scene k-d tree build

statistics . 94
D.3 Bistro scene ray tracing statistics 94
D.4 Bistro traversal algorithm

statistics . 94
D.5 Buddha scene k-d tree statistics 95
D.6 Buddha scene k-d tree build

statistics . 95
D.7 Buddha scene ray tracing

statistics . 95
D.8 Buddha traversal algorithm

statistics . 95
D.9 Conference scene k-d tree

statistics . 96
D.10 Conference scene k-d tree build

statistics . 96
D.11 Conference scene ray tracing

statistics . 96
D.12 Conference traversal algorithm

statistics . 96
D.13 FairyForest scene k-d tree

statistics . 97
D.14 FairyForest scene k-d tree build

statistics . 97
D.15 FairyForest scene ray tracing

statistics . 97
D.16 FairyForest traversal algorithm

statistics . 97
D.17 Field scene k-d tree statistics . 98
D.18 Field scene k-d tree build

statistics . 98
D.19 Field scene ray tracing statistics 98
D.20 Field traversal algorithm

statistics . 98
D.21 Powerplant scene k-d tree

statistics . 99
D.22 Powerplant scene k-d tree build

statistics . 99
D.23 Powerplant scene ray tracing

statistics . 99
D.24 Powerplant traversal algorithm

statistics . 99
D.25 SanMiguel scene k-d tree

statistics . 100

D.26 SanMiguel scene k-d tree build
statistics . 100

D.27 SanMiguel scene ray tracing
statistics . 100

D.28 SanMiguel traversal algorithm
statistics . 100

D.29 Sibenik scene k-d tree statistics 101
D.30 Sibenik scene k-d tree build

statistics . 101
D.31 Sibenik scene ray tracing

statistics . 101
D.32 Sibenik traversal algorithm

statistics . 101
D.33 Sponza scene k-d tree statistics 102
D.34 Sponza scene k-d tree build

statistics . 102
D.35 Sponza scene ray tracing

statistics . 102
D.36 Sponza traversal algorithm

statistics . 102
D.37 Street scene k-d tree statistics 103
D.38 Street scene k-d tree build

statistics . 103
D.39 Street scene ray tracing

statistics . 103
D.40 Street traversal algorithm

statistics . 103
D.41 Bistro scene dynamic k-d tree

build statistics 104
D.42 Bistro scene dynamic ray tracing

statistics . 104
D.43 FairyForest scene dynamic k-d

tree build statistics 104
D.44 FairyForest scene dynamic ray

tracing statistics 104
D.45 Field scene dynamic k-d tree

build statistics 105
D.46 Field scene dynamic ray tracing

statistics . 105
D.47 Sibenik1 scene dynamic k-d tree

build statistics 105
D.48 Sibenik1 scene dynamic ray

tracing statistics 105
D.49 Sibenik2 scene dynamic k-d tree

build statistics 106

ix

D.50 Sibenik2 scene dynamic ray
tracing statistics 106

D.51 Sibenik3 scene dynamic k-d tree
build statistics 106

D.52 Sibenik3 scene dynamic ray
tracing statistics 106

D.53 Street scene dynamic k-d tree
build statistics 107

D.54 Street scene dynamic ray tracing
statistics . 107

x

Chapter 1
Introduction

Ray tracing and rasterisation are the two leading methods of image synthesis
in computer graphics. Ray tracing simulates how light behaves by tracing
the path of light particles (rays) shot from light sources, capturing the light’s
colour and intensity when they hit the sensor of the camera. Because most of
the light rays would not hit the sensor, rays are traditionally shot from the
camera through a pinhole instead (sometimes called backward ray tracing).
The main disadvantage of ray tracing is its computational complexity. Even
the simplest ray tracing algorithm with only primary rays (rays shot directly
from the camera) needs to shoot as many rays as there are pixels to be
displayed, which is, for instance, approximately two million rays for a Full HD
screen. A more advanced ray tracing algorithm that includes light bounces
and shadows is the Whitted ray tracing algorithm [Whi80]. It simulates
real-world effects by reflecting and refracting on each bounce of each ray and
shooting shadow rays (rays shot towards lights, used to determine whether
the point is under direct light or not) to simulate shadows. This increases the
amount of rays exponentially as the rays bounce on various surfaces. The large
number of rays means that to get an interactive frame rate, we have to get a
performance of several megarays per second (Mr/s) or even better gigarays per
second (Gr/s). Due to this, the much less demanding rasterisation has been
and still is the preferred rendering method for most real-time applications,
even though physical effects are much harder to simulate with it. But as the
performance of GPUs has been increasing over the years, ray tracing is slowly
becoming more and more affordable.

To simulate ray bounces and shadowing, the rays need to intersect with
scene geometry. The naive algorithm of intersecting each primitive with
each ray has linear time complexity for a single ray. To get a reasonable
performance, we have to implement acceleration data structures that improve
it, most commonly to a logarithmic average case time complexity. The most
popular ones for ray tracing are uniform and non-uniform grids, bounding
volume hierarchies (BVHs) and k-d trees. There are many modifications
to each of these base data structures, and there is generally no "best" data
structure for all scenes. The main disadvantage of k-d trees is the memory
requirements, which are unknown until the tree is built and require copies of
primitive references to be distributed among leaf nodes (=leaves). This work

1

1. Introduction
will mainly focus on k-d trees for ray tracing [Hav00].

Let us assume that we have built a k-d tree for the scene we want to display.
As each primary ray is independent, ray tracing is inherently parallelisable.
Therefore, we can accelerate it using a GPU (graphics processing unit), a
computation unit designed to be a massively parallel system, but we have
to be careful when porting algorithms designed for a CPU to the GPU. The
traditional k-d tree traversal algorithm uses a stack. Each thread needs its
own copy and the size of the stack is unknown, although we know it cannot
exceed the depth of the tree. Because GPU memory and programmability
was much more limited in the past, Foley et al. [FS05] developed two stack-
less algorithms, kd-restart and kd-backtrack. Horn et al. [HSH07] then
expanded the kd-restart algorithm with two optimisations, called push-down
and short-stack. A part of this work focuses on implementing and comparing
the traditional and stack-less traversal algorithms (excluding kd-backtrack)
on modern graphics cards using GPGPU (General-Purpose computing on
GPUs).

We have yet to mention how to build a k-d tree. For static scenes, the
tree needs to be computed only once at the beginning or even precomputed,
so it is not important for real-time interactive applications. But in most
interactive applications, the scenes are rarely completely static, instead being
composed of static and moving (dynamic) parts. When rendering a dynamic
scene, at least some parts of the tree need to be rebuilt each frame, so the tree
creation also becomes a critical part of the rendering process. The surface
area heuristic (SAH, [GS87; MB90]) is a widely used heuristic for building
good quality k-d trees. A popular algorithm that uses it, developed by Wald
and Havran [WH06] with its O(n log n) time complexity, is unfortunately still
too slow for interactive applications when run on a single thread. Large part
of this work focuses on building algorithms, with the main focus being on
parallelisation.

If something in this work is not explained clearly or the reader would like
to learn more about the topic than what is explained in this work, we forward
the reader to an overview of modern ray tracing by Li et al. [LDG17].

2

Chapter 2
Theoretical background

The k-dimensional tree is a space partitioning data structure, which extends
binary trees to k dimensions [Ben75]. A 1-d tree equates to a classic binary
search tree. Each node corresponds to an axis-aligned bounding box and
contains the coordinate and axis of a partitioning plane. The plane partitions
the node into two children, representing two smaller, neighbouring bounding
boxes (see Figure 2.1a). When traversing the tree, we can decide whether to
traverse the "left" and/or "right" sub-tree based on whether we are interested in
the corresponding sub-space the sub-tree envelops. The left child corresponds
to the one oriented to the negative infinity along the partitioning axis, right
child to the positive infinity. It was originally developed for point sets and
its most well-known use is the nearest neighbour search. Due to being a
binary tree, it has expected logarithmic insertion, deletion, and query times.
Although organisation of points is the most straightforward use of k-d trees,
it can also be used to organise other primitives, such as triangles, according
to their bounding boxes, which is also used in computer graphics.

2.1 Construction

The efficiency of tree data structures depends on their quality, which depends
on the building algorithm. If a binary tree has only left children, the expected
logarithmic times become linear. Different uses have different metrics that
describe how the tree should be built. A simple metric for binary trees that
ensures logarithmic times is how balanced it is. Balanced trees minimise the
absolute difference of depths of left and right sub-trees for all nodes. When
building a k-d tree, the selection of the coordinates and axis of the partitioning
plane is crucial, as it is the only variable that influences tree quality. We can
construct the tree incrementally in O(n log n) time by repeatedly inserting
primitives, but when all primitives are known at the time of construction, it
is easier to optimise the tree quality by considering all primitives at once. For
a uniform distribution of points, the basic algorithm places the partitioning
plane near the object median, which creates a balanced tree. The axis is
chosen in a round-robin fashion (in 3D: x, y, z, x and so on, see Figure 2.2a
for a 2D example). If we always chose the x axis, the tree would be balanced,
but the space would be partitioned into narrow rectangles, hindering the

3

2. Theoretical background

T1

B

A

D

C

E

T2

T3

T5

T4 T6

T7 T9

T8

(a) Diagram of the 2-d tree

A

B C

D E

T6 T7T2 T3T1 T6 T8 T9

T4 T5

(b) Graph of the 2-d tree

Figure 2.1 An example of a 2-dimensional k-d tree. Notice how triangle T6
crosses the splitting plane and thus has to be stored in both leaves of node E.

performance of nearest-neighbour searches (see Figure 2.2b). These heuristics
work well for uniform distributions, but both fail in the example in Figure 2.2c.
There, it would be best to place the first split near the second left-most point
on the x axis, and then place the rest of the splits on the y axis. As we can
see, general cases require more sophisticated heuristics to create more efficient
trees.

As mentioned above, we can use k-d trees to organise other primitives such
as triangles (see Figure 2.1). Primitives belong in a sub-tree if they intersect
the corresponding bounding box of the node. The position of the splitting
plane determines into which child or children a primitive belongs. There are
cases where a splitting plane always crosses some primitives or where a split
that crosses primitives will be considered optimal. This leads to increased
memory requirements when duplicating primitive references in both sub-trees.
It also causes the memory requirements to be unknown until the whole tree
is built.

4

................................ 2.2. Surface Area Heuristic

(a) Round-robin (b) Single axis (c) Smart

Figure 2.2 k-d trees for point sets built using different axis selection methods

2.2 Surface Area Heuristic

For ray tracing purposes, Surface Area Heuristic (SAH, [GS87; MB90]) has
been considered the state of the art heuristic for building good quality k-d
trees for over 25 years. Let us assume that the rays are uniformly distributed
infinite lines, the costs of the traversal step KT and the primitive intersection
KI are known, the cost of intersecting N primitives is linearly dependant on
N and that we are intersecting bounding boxes. We can then derive a formula
using geometric probability theory [Sol78] for the conditional probability that
a ray will intersect box Bsub located inside box B if it hits B:

P (Bsub|B) = SA(Bsub)
SA(B) , (2.1)

where SA(B) is the surface area of B. The cost function C for an inner node
represented by its bounding box B and split by splitting plane π, having two
child nodes represented by boxes BL and BR, is then equal to

C(B, π) = KT + P (BL|B) · C(BL) + P (BR|B) · C(BR) (2.2)

We choose the splitting plane so that the cost is at its minimum:

C(B) = min
π

C(B, π),

where the cost of a leaf node containing primitives T is defined as

C(Bleaf) = |T | · KI

The cost of a tree is equal to the cost of the root node. As we can see,
the cost function is recursive. When computing the cost of an inner node,
we need to compute costs for each position of the splitting plane to find the
minimum. For each position of the splitting plane, we need to compute the
costs of child nodes, which require the same process. That means that finding
the true minimum cost of a tree has exponential time complexity.

5

2. Theoretical background

0 11 22 33 44 55 66 77 88 99 1010 1111 1212

Figure 2.3 Visualisation of the SAH function along the x axis

To avoid this, we usually simplify the heuristic by using a locally greedy
approximation that assumes that the cost of a child node is roughly equal to
the cost of a leaf node containing the same primitives, meaning we compute
C(BL) and C(BR) as

C(BL) = |TL| · KI , C(BR) = |TR| · KI (2.3)

Substituting Eq. 2.3 together with Eq. 2.1 into Eq. 2.2 gives us the locally
greedy approximation cost function that we will use:

C(B, π) = KT + SA(BL)
SA(B) · |TL| · KI + SA(BR)

SA(B) · |TR| · KI (2.4)

When moving the splitting plane, only SA(BL), SA(BR), |TL| and |TR|
change, while the other values remain constant. SA(BL) and SA(BR) are
linear and continuous with respect to the coordinate of the splitting plane.
Whenever one value rises, the other value decreases, and vice versa. The
numbers of primitives, |TL| and |TR|, change only when the splitting plane
starts or stops crossing a primitive. The resulting function is piecewise
constant. When we combine these four values into Eq. 2.4, we get a piecewise
linear function with points of discontinuity at the edges of bounding boxes of
primitives. This function is represented in green in Figure 2.3. The figure
also colours the function where the cost is at its minimum in red. In this

6

.................................... 2.3. Split clipping

case, the minimum is anywhere along the line segment between the two red
points. In general, there will always exist at least one point where the cost
function will have its minimum and that will lie on the edge of a bounding
box of some primitive. This means that it is necessary to compute the cost
function only at the edges of the bounding boxes of primitives and to take
the splitting coordinate where the cost function is at its minimum.

A naive approach of evaluating the SAH would be to iterate over all
primitives in the node and their bounding boxes and compute the surface
areas and primitive counts on the left and right. This approach leads to
O(N2) time complexity for each node with N primitives, because we have
to iterate over all primitives to count them. Because binary trees built over
N primitives have O(log N) nodes, the overall complexity is O(f(N) log N),
where f(N) is the time complexity of processing a node. The time complexity
of building the entire tree using the naive approach is thus O(N2 log N).

A better approach would be to first sort the minimal and maximal co-
ordinates of the bounding boxes of primitives. We can then sweep across the
coordinates (called events) along the splitting axis, increasing and decreasing
the primitive counts accordingly. Sorting (with O(n log n) time complexity
can be done either at each node, leading to an O(n log 2n) algorithm, or at
the start, as the node partitioning maintains the event order, leading to an
O(n log n) algorithm.

In later chapters, we talk about exact and approximate split selection.
Evaluating the SAH at primitive bounding box edges leads to selecting the
so-called perfect split and is the exact split selection. When approximating
the splitting plane position, we are computing exact cost values, but not
necessarily at the correct coordinates, which may lead to selecting a split that
is not perfect.

2.3 Split clipping

A way to further improve the quality is to clip primitives to the node’s
bounding box [Hav00]. If we simply intersect primitive bounding boxes with
node bounding boxes, we may include primitives in leaves where they do
not intersect the leaf’s bounding box (see Figure 2.4). To remove these false
positives, we have to clip the primitive with the bounding box of the node.
This may create a smaller primitive when the primitive is not entirely inside
the bounding box, or even remove the primitive entirely. We can remove the
false positives when splitting a node into two children by splitting primitives
that are straddling the splitting plane with the splitting plane.

Because clipping can change the order of events, we have to sort the events
again in each node, leading to the O(n log 2n) time complexity. Wald and
Havran [WH06] introduced an algorithm that allows for primitive clipping
with better time complexity. Based on the assumption that only O(

√
n)

primitives straddle the splitting plane and the observation that only these
need to be sorted, they introduce an O(n) algorithm for processing the nodes,
leading back to the O(n log n) time complexity.

7

2. Theoretical background

(a) (b) (c)

object bounding box

node bounding box split bounding box

splitting plane

Figure 2.4 Issues when not using split clipping. In (a) the primitive bounding
box intersects the node but the primitive is outside the node. In (b) the primitive
bounding box intersects both children but the primitive belongs only to the left
child. In (c) the primitive bounding boxes in both children without clipping are
larger than with clipping.

tMaxtMin
tSplit

tHit

(a) Closest intersection found is in-
side the first node, we can end tra-
versal.

tMaxtMin tSplit tHit

(b) Closest intersection found is
outside the first node, we have to
check the other node (where there is
a closer intersection).

Figure 2.5 Ray intersecting an inner node with two leaf child nodes. First, we
traverse the left child, then the right child.

2.4 Traversal

The goal of ray tracing is to find a primitive p that intersects a given ray r
with origin o and direction d at point I, parametrised as I = o + td, t ≥ 0.
We either want to find the closest intersection (= find I with lowest t, used
for primary and secondary rays) or find if there is any intersection (= find
any I, used for shadow rays). t may also be limited by tmax as 0 ≤ t ≤ tmax.
This is used, for example, by point lights, because without tmax, the shadow
ray would get blocked by primitives behind the light.

Calculating intersections is usually expensive. The purpose of acceleration
data structures is to prune as many primitives as possible, so that the ray has
to compute as little intersections as possible. k-d trees achieve this by dividing
primitives into nodes, as mentioned previously. The ray then has to traverse
only the nodes whose bounding boxes it intersects, computing primitive
intersections only in the leaves it reaches. Acceleration data structures
are designed so that traversing a node is much cheaper than intersecting a

8

...................................... 2.4. Traversal

primitive. Because k-d trees divide the space without overlapping, we can
also end primary and secondary ray traversal early if the intersection we
found is inside the leaf (see Figure 2.5a). When the closest intersection is
outside the leaf, there might be another, closer primitive in the other node
(see Figure 2.5b).

The classic algorithm (see Algorithm 1) uses a stack to store nodes that
need to be traversed later. It begins with intersecting the scene bounding box
and calculating the distances sceneMin and sceneMax, which is not shown
in the algorithm. If the ray does not intersect the scene bounding box, the
traversal ends. There are three distances we need when traversing the k-d tree:
the distance from the ray origin to the entry point of the node’s bounding box
tMin, the distance to the exit point tMax, and the distance to the intersection
with the splitting plane tSplit. There is also the distance to the intersection
tHit, which is the output of the algorithm.

In each step, the algorithm determines which child node to traverse. If
both children need to be traversed, it orders them so that the first one is
closer to the ray origin. The second node then goes onto the stack and the
algorithms continues traversing the first node. When it reaches a leaf, it
intersects all primitives inside that leaf with the ray. If it does not find an
intersection that can end the traversal, it pops a node from the stack and
uses it in the next traversal step. This is repeated until a traversal–ending
intersection is found or the stack is emptied.

9

2. Theoretical background

Algorithm 1: Stack traversal
1 begin
2 stack.push(root, sceneMin, sceneMax)
3 tHit = infinity
4 while tMax < sceneMax do
5 (node, tMin, tMax) = stack.pop()
6 while not node.isLeaf() do
7 a = node.axis
8 tSplit = (node.value - ray.origin[a]) / ray.direction[a]
9 (first, second) = order(ray.direction[a], node.left, node.right)

10 if tMax ≤ tSplit then
11 node = first
12 else if tSplit ≤ tMin then
13 node = second
14 else
15 node = first
16 tMax = tSplit
17 stack.push(second, tSplit, tMax)
18 end
19 end
20 for p in node.primitives do
21 tHit = min(tHit, intersect(ray, p))
22 end
23 if tHit < tMax then
24 return tHit
25 end
26 end
27 return tHit
28 end

10

Chapter 3
Massively parallel architectures

GPUs are massively parallel architectures, focused on data throughput rather
than complex flow control. The GPU is not suitable for executing whole
programs, because it would not be able to effectively do many needed tasks
such as processing input, executing complex algorithms not designed for
parallel computation and so on. Rather it is designed to work together with
the CPU, where the CPU offloads highly parallelisable work to the GPU,
which amortises the computation cost needed for large amounts of data with
its high throughput, all while the CPU can work on other tasks. Instead of
having several more complex processing units like the CPU that can run only
a few threads in parallel, it has many simpler, but powerful processing units
(called Streaming Multiprocessors in CUDA, Compute Units in OpenCL)
with many threads. Modern GPUs have two main concepts which differ from
the standard execution on a CPU, its execution model and the memory model.
There are other concepts like bank conflicts, latency masking and so on, but
we will not go into detail about them in this work. For more information
about GPGPU, refer to [HHS23]. The models described in this chapter are
based mainly on NVIDIA GPUs and the CUDA language [Cor] and may not
be accurate for other GPUs.

3.1 Execution model

Modern desktop CPUs have several cores (e.g. eight). Let us assume that
each core can only run a single thread at a time. Each thread is usually
executing different instructions on different data (the concept is called MIMD,
or multiple instructions, multiple data). MIMD can be used for almost
anything, but is best used for independent tasks, for example a main thread
rendering UI, while a secondary thread processes data so that the UI is
responsive. CPUs usually also have something called vector instructions,
which execute the same instruction on multiple data (this concept is called
SIMD, or single instruction, multiple data). Each thread can execute its own
vector instructions. SIMD can be used, for example, for vector addition or
matrix multiplication.

GPUs operate on a model called SIMT (single instruction, multiple threads),
where all threads execute the same program called the kernel, but not all

11

3. Massively parallel architectures

Figure 3.1 Comparison of the CPU and GPU architectures from [Cor]

threads have to be executing the same instruction at the same time. Instead
of several threads, GPUs usually operate with several thousand threads, and
GPU cores can run multiple threads at the same time. The threads are
grouped into three layers (see Figure 3.2b), depending on how they interact
with each other. We use the following terminology (with equivalents from
CUDA and OpenCL in parentheses):.Thread (CUDA thread, OpenCL work-item) - The base building block.

Each thread has its own stack and executes given instructions.. Subgroup (CUDA warp, OpenCL sub-group, AMD wavefront) - The
first layer, groups threads in a similar manner to vector instructions
on the CPU. On older architectures, all threads in a subgroup were
always executing the same instruction. It is the smallest synchronisation
primitive and exchanging data is most efficient at this layer. NVIDIA
warps consist of 32 threads, AMD wavefronts of 64 threads..Group (CUDA block, OpenCL work-group) - The second layer, consist-
ing of several subgroups. The number of subgroups in a group is usually
user-defined. Each group runs on the same processor, giving the threads
in a group access to faster, shared memory (explained more in the next
section). Synchronisation in this layer is usually still fairly cheap..Grid (CUDA grid, OpenCL nd-range) - This layer consists of groups
and includes all launched threads. Communication between groups must
happen through global memory and synchronisation is expensive (for
example, it is not even built-in in CUDA).. Lane (CUDA lane, OpenCL ×) - What we call threads when talking
about them in the context of subgroups. Thread 0 can mean the first
thread in the grid or a group, but lane 0 is always the first thread in a
subgroup.

12

....................................3.2. Memory model

global memory

shared memory

local memory

(a) Memory model

group 0 group 1 group 2 group 3

grid

subgroupssubgroupssubgroupssubgroups

subgroup 0

threads/lanes

(b) Execution model

Figure 3.2 GPU memory and execution models with 4 groups, 2 subgroups and
8 lanes

It is common for GPGPU language standards to provide methods for
retrieving indices in the context of at least some of the layers. The grid can
also be multi-dimensional. For example, we can run 64 threads in a 1D block
of 64 threads or a 2D block of 8×8 threads. This is mainly used for easier
indexing, for example when we are processing 2D arrays such as an image or
a matrix.

3.2 Memory model

The memory model is also different from the standard CPU memory model
with single global memory and several cache layers. The first differentiation
is between host and device memory. Host memory is the standard computer
memory, device memory is the GPU memory. Device memory has at least
three layers in concept - in CUDA it is the global memory, shared memory
and local memory (see Figure 3.2a). OpenCL names them global, local, and
private memory, respectively. Global memory is accessible by all threads in a
grid and is the only memory accessible from the host. It is also the slowest
memory to access (if we do not count accessing host memory from kernels),
so we have to be careful about using it when designing algorithms. Shared
memory is shared between threads in a group and is much faster to access
because it is generally located in a shared cache. It is best used to cache
data from global memory and operate on the data before writing them back,
instead of operating on them in global memory. Local memory is the memory
of each thread and can only be accessed by the owning thread.

13

14

Chapter 4
Previous work on building k-d trees

There have been several attempts at building the k-d tree in parallel, both on
the CPU and the GPU. GPU methods have become more prevalent due to
GPGPU becoming more accessible and large scenes requiring a lot of work.
In this chapter, we introduce research done on the topic with a focus on
dynamic scenes.

Parallelising the construction process is difficult due to several reasons. The
first reason is that almost all algorithms need to build the tree in a top-down
manner. We can choose between a depth-first (DFS) or breadth-first (BFS)
approach. When we choose DFS, we assume that the goal is to assign a
sub-tree to each thread, so that the sub-trees can be built independently.
The most prevalent problem with this approach is processing the first layers,
where the number of tree nodes is lower than the number of available cores.
We will call these first layers the top layers, and the rest the bottom layers
(see Figure 4.1). Processing the top layers without parallelisation can prove
to be a significant bottleneck.

In the BFS approach, we build one level of the tree at a time. If done
correctly, we should not have problems with any part of the process, but we
have to synchronise the threads for each level. In both approaches, we also
have to realise that the k-d tree is not a balanced tree and the number of
primitives in different nodes can vary greatly. Without proper load balancing,
some threads may be assigned significantly more work than others, leading
to wasted parallel potential.

The second reason is the unknown memory requirements. Dynamic alloca-
tions from running kernels hinder the performance on GPUs and were not
even possible in the early days of GPGPU. The final difficulty is evaluating
the SAH while split clipping, because we need to be constantly sorting the
event lists for each node. This also coincides with the previous reason, as
each node needs to hold its own sorted primitive list, whose size can grow
the deeper we go due to primitive reference duplication.

4.1 Early approaches

One of the first attempts to parallelise the construction process was made by
Shevtsov et al. [SSK07] on the CPU. They suggest a fully parallel algorithm

15

4. Previous work on building k-d trees

top layers

bottom layers

Figure 4.1 Top and bottom layers of a k-d tree when building using the DFS
approach with four cores

0 2 0 1

0 0 1 2

min-bins

max-bins

Figure 4.2 Min-max binning for the x axis

for a multi-core CPU architecture (they used four cores). The main idea is
to use min-max binning for both the initial decomposition into sub-trees in
the top layers and the approximate split selection.

Min-max binning works by creating two arrays for each dimension, essen-
tially splitting the space into equally sized bins. Each min-bin is used to store
the number of primitives whose bounding boxes start inside the space the bin
represents. Each max-bin does the same for the ends of primitive bounding
boxes (see Figure 4.2). The bin boundaries are taken as candidates for the
splitting plane. To calculate the number of primitives on the left of the left
candidate plane of bin b, we sum all min-bin values preceding bin b excluding
the value of b itself. To calculate the number of primitives on the right, we
sum all max-bin values following bin b, including value of b. So, for example,
the splitting plane candidate in the middle from Figure 4.2 has two primitives
on the left and three on the right. Using this information we can easily

16

................................... 4.1. Early approaches

and precisely compute the cost for each candidate. To eliminate repeated
calculations and allow for parallelisation, we can perform an exclusive scan on
the min-bins and inclusive scan on the max-bins and use the new bin values
as the numbers of primitives on the left and right.

The parallel version of the whole algorithm consists of three stages - the
initial clustering phase, the approximate local building phase, and the exact
local building phase.

The initial clustering phase handles the top layers. They use low resolution
parallel min-max binning to repeatedly find the approximate object median
and split the primitives according to it. They argue that using the object
median should result in natural load balancing for scenes with uniform
primitive distribution. The phase ends when the number of clusters is equal
to the number of available cores. The created sub-trees are distributed among
threads running on the cores.

The approximate local building phase uses min-max binning to find the
best split candidate. It uses a fixed number of bins for each node, which
exponentially increases the total number of bins in each layer. It ends when
the number of primitives is less or equal to the number of bins.

The exact local building phase uses exact split selection to find the perfect
split. To ensure good load balancing for general scenes, the local building
phases create tasks for new nodes. The tasks are put in a shared task pool
with a limited size, which distributes the work among the running threads.

Popov et al. [DPS10] also use min-max binning, but their implementation
runs on the GPU. They construct the tree in a BFS manner, where processing
a level is called a step. Each step consists of three phases: binning with cost
computation and split selection (Compute-Cost), creating the children (Split),
and split clipping (Triangle-Splitter). Steps are processed in different stages.
The specific stage is chosen based on the number of primitives in nodes.

The algorithm runs almost entirely on the GPU, but requires CPU syn-
chronisation. From what we understand, each combination of a stage and a
phase has its own kernel. For each level, they launch as many blocks as the
GPU can run. When a block finishes processing a task, it fetches another one
to work on from a pool, which is based on the idea of persistent warps [AL09],
but with blocks.

Zhou et al. [ZHW08] presented an algorithm that uses the GPU for parallel
computations with CPU coordination and synchronisation. They build the
tree in a BFS manner, but not strictly layer by layer due to their empty
space maximising heuristic. The main idea is to recognise two different types
of nodes during the building process based on the number of triangles they
currently contain - large and small nodes. If the node contains more than T
triangles, which is a user set parameter (equal to 64 in their implementation),
the node is recognised as large, otherwise it is considered small.

The algorithm first processes all large nodes using spatial median splitting
and empty space maximising, and then all small nodes using exact SAH
computations. The large nodes are processed in a loop, where in each
iteration, the current active list of nodes is processed. The newly created

17

4. Previous work on building k-d trees
nodes are saved to either a list for the next iteration if the node is considered
large, or to a list of small nodes if it is considered small. At the end of the
iteration, the list for the next iteration is assigned to the active list and is
cleared. When only small nodes remain, the algorithm moves onto processing
them in a similar manner.

The implementation requires a lot of CPU synchronisation and many kernel
calls. Chang et al. [CSI15] tried to modernise the algorithm by using modern
enhanced intrinsic CUDA functions and calling fewer kernels. Their version
succeeded in improving the original, both in the number of kernel calls and
total build time.

4.2 Exact split selection

There were also attempts to parallelise algorithms with exact split selection
by using events for the whole construction. Some parts of the algorithm
are trivial to implement in a multi-threaded environment in isolation. For
example, the initial sorting can be performed by existing parallel sorting
algorithms [AR14] and the evaluation of the SAH is independent and can
also be parallelised. The main problems arise from the primitives straddling
the splitting plane, which increase memory requirements and create the need
to re-sort event lists in each node when split clipping.

The algorithms presented by Choi et al. [CKL10] forego the clipping, allow-
ing them to create two parallelisations, which they call "nested" and "in-place".
The nested version works as a parallelised version of the sequential algorithm.
It uses two levels of parallelism, node and geometry level parallelism. The
geometry level parallelisation uses parallel scans on event lists to evaluate
the SAH. It also uses a parallel scan to distribute primitives into child nodes.
Similarly to [SSK07] the algorithm employs parallelism in both the top layers
by using the above-mentioned techniques and in the bottom layers by building
independent trees when the number of nodes reaches the number of cores.

The in-place algorithm tries to alleviate memory consumption problems
that arise from nodes having duplicated primitives by operating on triangles
instead of nodes in a BFS manner. Each triangle gets pointers to its events
and an array of nodes it belongs to at the current level. The idea builds
on the assumption (which was experimentally backed up) that while a node
can contain many triangles with duplicates, a triangle mostly belongs to
only a few nodes at each level. As with the previous algorithm, they suggest
switching to local k-d tree construction when the number of nodes exceeds
the number of cores.

Wu et al. [WZL11] attempted to parallelise the exact split selection al-
gorithms with split clipping. They use the same idea for SAH evaluation as
[CKL10], using parallel scans and reductions, but include split clipping. Their
main contribution is a bucket-type sorting algorithm that is better suited
for GPU computations (mainly because it is easily parallelisable) than the
sequential sort-and-merge algorithm presented by Wald and Havran [WH06].
They also deduce that the sorting has to be done only on axes that are not

18

.................................. 4.3. Modified k-d trees

the splitting axis. They claim that their algorithm runs entirely on the GPU,
but it seems that it runs mostly on the GPU with some CPU synchronisation.
Evidence for this is the ParGenTree function, which uses dynamic memory
allocation (first added with compute capability 2.0 on Fermi architecture in
2010 [Cor]) and calls functions that have the parallel keyword in them, which
the authors use to signify spawning multiple threads, hinting at it meaning
running a kernel.

Zhou and Meng [ZM11] introduced an algorithm for a hybrid CPU-GPU
architecture. They process nodes on the CPU in parallel, and when the
number of events is larger than a constant parameter, they offload the split
selection onto the GPU. To provide good load balancing, work-stealing is
allowed. Each CPU thread has a local queue of nodes to process. When one
of the threads empties its queue, it "steals" half the work (measured in total
number of events, not nodes) from another, so-called "victim" thread.

4.3 Modified k-d trees

There were also attempts to slightly modify the basic structure of k-d trees
to improve its parallelisation. Some use the scene graph to build a multi-level
data structure. Kang et al. [KNP13] propose a new data structure they call
"gkDtree", or group-based k-d tree. It uses the scene graph to build a two-level
k-d tree, where scene nodes are translated into "group" nodes that form a k-d
tree with scene objects as their primitives. Each group leaf node then has
an attached local, classic k-d tree built for the scene object. The base tree is
built for the whole scene, but is updated only for dynamic groups (groups
with dynamic objects), for which the article provides a parallel load balanced
algorithm. Wang et al. [WGD14] propose a similar data structure. Instead of
using the scene graph, they build a BVH directly over the scene objects. The
leaves of the hierarchy again contain local data structures built for the scene
objects and the base tree is updated only for parts that are dynamic.

Another approach is taken by Li et al. [LDG17]. They use Morton codes to
uniformly divide space and construct a fully balanced binary tree. This tree
resembles an octree, but exists only conceptually and is used to construct a
k-d tree by collapsing nodes without primitives and minimising empty space.
They call this step "path compression". By computing Morton codes for all
primitives, they determine which nodes are essential (that is nodes whose
Morton code is included in the list of primitive Morton codes) and run a
thread for each essential node to compress the path up to a parent essential
node. This allows the algorithm to run in parallel without the need to build
the tree layer by layer.

19

4. Previous work on building k-d trees
4.4 Other relevant work

Research has also been carried out in areas related to k-d tree construction
besides construction algorithms themselves. Tillmann et al. [TPK16] use an
online auto-tuner library to dynamically search for build parameters, such as
the cost of traversal or intersections, while the scene is raytraced each frame.
They report an improvement of 1× to 2× depending on the scene, and a
slower convergence for dynamic scenes.

20

Chapter 5
Building k-d trees for dynamic scenes

As mentioned in Chapter 1, dynamic scenes are much more difficult to raytrace
than static scenes. For static scenes, the acceleration data structure has to
be built only once when the scene gets loaded, and can even be pre-built
and only loaded into memory together with the scene. This is because the
data structure does not depend on the position or rotation of the camera.
When we introduce dynamic objects that change their position, rotation or
scale, essentially moving the primitives that define them, the acceleration
data structure has to be rebuilt or somehow modified to reflect this change.
The following sections will introduce different (not necessarily all) approaches
to solving this problem.

5.1 Rebuilding the whole tree

The simplest option is to rebuild the entire k-d tree each frame. This approach
can work for smaller scenes with mostly dynamic objects, but should perform
the worst when the number of static primitives is many times larger than the
number of dynamic primitives. Scenes that are mostly static are common
for example in the video game industry, where most of the environment is
static. The dynamic objects like the player, vehicles, interactable objects
and so on consist of only a small fraction of primitives compared to the
whole scene. This is also partly because static objects allow for a variety of
precomputations that can be used at runtime for better performance, so most
developers try to make most of the scenes static.

5.2 Building two separate trees

An approach that should lead to the best build time performance is pre-
computing the static tree (= tree containing static objects), and then rebuild-
ing only the dynamic tree (= tree containing dynamic objects) [SBS03]. We
can also build separate trees for each dynamic object. The main drawback is
that when we render the scene, we have to traverse two (or all) trees instead
of only one and combine the traversal results into one. This essentially means
that we trade off render time performance for build time performance.

21

5. Building k-d trees for dynamic scenes
5.3 Two level trees

To improve on the previous method, we can define a data structure built over
the existing data structures, as mentioned in Section 4.3. We rebuild the
data structures for each dynamic object separately and update the higher
level data structure. This allows us to combine the benefit of not needing to
rebuild the static tree while also traversing only a single acceleration data
structure, with the cost of updating the higher level data structure. This
should improve build time performance without hindering render times too
much. There is even another optimisation we can do for dynamic objects with
rigid transformations. As the acceleration data structure built over them does
not change, only moves, rotates and scales in space, we can use it without
rebuilding it. The only change we need to make is to transform the ray we
are tracing into the local space of the dynamic object.

5.4 Merging trees

Another approach is to build separate trees for each object and then merge
them into one tree. This approach is studied by Eleftheriades [Ele10]. While
this eliminates the need to traverse multiple acceleration data structures,
it does not solve the problem of rebuilding the data structure for static
primitives. That can be solved by merging the dynamic tree(s) into the static
tree in a way that can be reversed, so it can be done again the next frame
while only recomputing the dynamic tree(s). This approach is studied in
Chapter 10.

22

Chapter 6
Specialised traversal algorithms

In this chapter, we present two different algorithms: the stack-less restart
algorithm and the short-stack algorithm. We also present the push-down modi-
fication. All algorithms are presented in pseudo-code form with highlighted
differences. The differences are always relative to the previous algorithm.
The kd-restart algorithm is compared to Algorithm 1. The code is taken from
[HSH07].

6.1 kd-restart

The restart algorithm (Algorithm 2, [FS05]) alleviates the need for a stack by
cleverly using the tMin variable and simply "restarting" from the root node
when a leaf node is reached. With the classic stack-based algorithm, when
we reach a node whose both children need to be traversed (we will call this a
dual node), we would push the farther one onto the stack. The node on the
stack would be traversed later. With this algorithm, we ignore the farther
node but take advantage of the fact that the condition to traverse the second,
farther node (tSplit ≤ tMin) uses the variable tMin. After we reach a leaf,
we "restart" the traversal instead of popping a node and set tMin to tMax.
This ensures that when the same path is taken again and we reach the last
dual node, the farther node will be traversed this time (note that tMin is now
equal to tSplit, see Figure 6.1). The obvious drawback of this approach is
that the tree needs to be traversed from the root up to a leaf as many times
as there are dual nodes. This can significantly increase the time complexity
and the number of uncached memory reads.

6.2 Push-down and short-stack

Push-down (Algorithm 3, [HSH07]) is a simple but logical extension of the
restart algorithm. It builds on the idea that we do not always need to restart
from the root. When we traverse the left or right child of the root without
the need to traverse the other child later, we can "push down" the root and
restart from it later. We can keep pushing it down until we reach a dual node.
After restarting, the dual node that stopped the root from being pushed

23

6. Specialised traversal algorithms.............................

tMaxtMin tSplit

(a) Inner node is being
traversed.

tMax = tSplit
tMin

(b) The closer node is
traversed first. tMax is
set to tSplit.

tMax
tMin = tMax

(c) After restarting,
tMin is set to tMax and
the second node is tra-
versed.

Figure 6.1 Traversing a k-d tree using kd-restart

down will now be able to be pushed down, so we can repeat this each time
we restart.

The short-stack algorithm (Algorithm 4, [HSH07]) is a hybrid between
the stack and restart algorithms. It assumes that when using the restart
algorithm, most time is lost when a dual node is located deep in the tree near
the leaves. The long path needs to be traversed again after restarting only to
check a neighbouring node, assuming the root cannot be pushed down too
deep. To help with these cases, it uses a small stack with limited capacity.
When the stack is not full or empty, it functions in the same way as the stack
in the classic stack-based traversal. When it is full and a new item should
be pushed to it, we pop the oldest item, throw it away, and push the new
item to the top. When it is empty and an item should be popped from it, we
restart instead of ending traversal. [HSH07] also integrate push-down into
the traversal, but restarting without push-down can also be used.

24

.............................. 6.2. Push-down and short-stack

Algorithm 2: Restart traversal
1 begin
2 stack.push(root, sceneMin, sceneMax)
3 tMin = tMax = sceneMin
4 tHit = infinity
5 while tMax < sceneMax do
6 (node, tMin, tMax) = stack.pop()
7 node = root
8 tMin = tMax
9 tMax = sceneMax

10 while not node.isLeaf() do
11 a = node.axis
12 tSplit = (node.value - ray.origin[a]) / ray.direction[a]
13 (first, second) = order(ray.direction[a], node.left, node.right)
14 if tMax ≤ tSplit then
15 node = first
16 else if tSplit ≤ tMin then
17 node = second
18 else
19 node = first
20 tMax = tSplit
21 stack.push(second, tSplit, tMax)
22 end
23 end
24 for p in node.primitives do
25 tHit = min(tHit, intersect(ray, p))
26 end
27 if tHit < tMax then
28 return tHit
29 end
30 end
31 return tHit
32 end

25

6. Specialised traversal algorithms.............................

Algorithm 3: Push down traversal
1 begin
2 tMin = tMax = sceneMin
3 tHit = infinity
4 while tMax < sceneMax do
5 node = root
6 tMin = tMax
7 tMax = sceneMax
8 pushdown = true
9 while not node.isLeaf() do

10 a = node.axis
11 tSplit = (node.value - ray.origin[a]) / ray.direction[a]
12 (first, second) = order(ray.direction[a], node.left, node.right)
13 if tMax ≤ tSplit then
14 node = first
15 else if tSplit ≤ tMin then
16 node = second
17 else
18 node = first
19 tMax = tSplit
20 pushdown = false
21 end
22 if pushdown then
23 root = node
24 end
25 end
26 for p in node.primitives do
27 tHit = min(tHit, intersect(ray, p))
28 end
29 if tHit < tMax then
30 return tHit
31 end
32 end
33 return tHit
34 end

26

.............................. 6.2. Push-down and short-stack

Algorithm 4: Short stack traversal
1 begin
2 tMin = tMax = sceneMin
3 tHit = infinity
4 while tMax < sceneMax do
5 if stack.empty() then
6 node = root
7 tMin = tMax
8 tMax = sceneMax
9 pushdown = true

10 else
11 (node, tMin, tMax) = stack.pop()
12 pushdown = false
13 end
14 while not node.isLeaf() do
15 a = node.axis
16 tSplit = (node.value - ray.origin[a]) / ray.direction[a]
17 (first, second) = order(ray.direction[a], node.left, node.right)
18 if tMax ≤ tSplit then
19 node = first
20 else if tSplit ≤ tMin then
21 node = second
22 else
23 node = first
24 tMax = tSplit
25 pushdown = false
26 stack.push(second, tSplit, tMax)
27 end
28 if pushdown then
29 root = node
30 end
31 end
32 for p in node.primitives do
33 tHit = min(tHit, intersect(ray, p))
34 end
35 if tHit < tMax then
36 return tHit
37 end
38 end
39 return tHit
40 end

27

28

Chapter 7
Analysis

In this chapter, we analyse the building algorithms introduced in previous
chapters and provide reasoning behind which ones were chosen. We also
introduce the design philosophy behind the base application and present the
requirements.

7.1 Algorithm comparison and selection

When choosing an algorithm, we have to consider two things: how fast the
building algorithm is and the quality of the tree it produces. The quality
of the tree directly affects the ray tracing performance. Usually, the easier
and faster it is to build the tree, the worse quality it has. The speed of the
building algorithm increases in importance as the size of the scene increases.
The quality of the tree increases in importance as more rays per second are
traced per frame. Modern applications usually have large scenes and also use
algorithms that shoot many rays, requiring balance between tree build times
and their quality.

Our goal was to design an algorithm that:. could be parallelised. ran with minimal or ideally no CPU synchronisation. produced good quality k-d trees

Due to the complexity of the GPU implementation, we decided to implement
only one building algorithm.

Algorithms that do not use the SAH usually suffer from worse quality.
[ZHW08] use spatial median splitting in the large node stage and require
CPU synchronisation. [LDG17] essentially also use spatial median splitting,
although their fast build times might accommodate for the worse quality,
making it an interesting candidate for comparison with algorithms with slower
build times but better output quality.

Because a part of this work focuses on building k-d trees and then mer-
ging them into a single data structure, multi-layered data structures were
considered only for performance comparison. Algorithms using exact split

29

7. Analysis
selection with events were considered and would be the base for a second
algorithm design.

For the one GPU building algorithm we implemented, we decided to
use min-max binning like [SSK07] and [DPS10], as binning is suitable for
parallelisation and the quality of the k-d tree it produces is not much worse
than using exact split selection.

From what we understand, none of the solutions described in Chapter 4
run entirely on the GPU, mainly because of dynamic memory allocation. In
the following section, we describe the idea of a task pool, which is the solution
we used.

7.2 Task pool on the GPU

As mentioned in Chapter 4, we face several issues when parallelising the
construction algorithm. With the DFS approach, we must handle the initial
decomposition when processing the top layers. With the BFS approach,
we must handle the layer-by-layer synchronisation and load balancing when
some subtrees end much earlier than others. We must also take into account
dynamic memory allocation. One way to solve these problems is to use a task
pool, as suggested by Vinkler [Vin14]. It allows the entire implementation
to run on the GPU and solves parallelisation of processing both the top and
bottom layers.

The task pool consists of a list of tasks, where each task represents some
work to be carried out. The amount of work is represented by an atomic
integer that corresponds to the number of chunks that needs to be processed
before the task is completed. Chunks are processed by subgroups, and each
subgroup can take multiple chunks to process at once (see Figure 9.2). When
working on the top layers, it allows subgroups to cooperate on processing a
single large node represented by one task with many chunks. As the depth of
the tree increases, so does the number of tasks, but the number of chunks
in each task decreases. This naturally distributes the work evenly between
subgroups, until each subgroup will essentially work independently on its own
task. Assuming there are no chunks that would require significantly more
processing than others, there are no load-balancing issues because the task
pool is shared among all subgroups and subgroups can work on any task in
the pool.

The main issue is that to synchronise the whole kernel, most of the work
must be done in the slowest memory layer, the global memory. Most al-
gorithms that optimally utilise the GPU work in shared memory whenever
possible, which is hard to achieve with the task pool approach. An issue the
task pool does not solve is dynamic allocation. We also cannot predict the
required size of the task pool and not increasing the size of the task pool when
it is full could lead to a deadlock, so it in itself requires dynamic allocation.
The deadlock would happen after the task pool fills up, and each subgroup is
waiting for an empty slot to store a newly created task. The full design and
implementation details will be given in Section 9.3.

30

.............................. 7.3. GPGPU language selection

7.3 GPGPU language selection

There are several language standards for implementing code that runs on the
GPU. The oldest is the shader language. Originally used for vertex, fragment
and other shaders that are part of the rasterisation pipeline, it has recently
added compute shaders, which are shaders designed for GPGPU and run
independently using the same libraries that define the other shaders (OpenGL
[Wol18], Vulkan (vulkan.org), etc.). Another language standard is OpenCL
[MGM11], developed by the Khronos Group. It focuses on general parallel
computations and its code can also be run on other hardware besides GPUs.
CUDA [Ans22] is a language developed by Nvidia and it uses the proprietary
Nvidia CUDA compiler, so it is limited to Nvidia graphics cards. Another
standard developed by the Khronos Group is SYCL (khronos.org/sycl), a
more modern version of OpenCL based on C++17 (where OpenCL is based
on C).

We decided to use CUDA because it uses C++, has many features including
support for using some C++ classes from the STL in device code, and mainly
because it is the only GPGPU language we found to have dynamic memory
allocation from device code. The biggest disadvantage of CUDA is that it
cannot run on GPUs from other companies like AMD, at least not directly
(see [Adv]).

7.4 Software design philosophy

The application has two objectives. The primary objective is to provide
an environment for implementing the chosen algorithms, testing them, and
measuring their performance. The secondary objective is to create a reusable
implementation that could serve as a basis for implementing and testing
other algorithms connected to ray tracing, complete with support for visual
debugging and an interface hierarchy that would allow for injecting code
wherever would be needed.

7.5 Functional requirements

.The application shall be able to load and display a scene defined in a
structured file..The scene specification shall allow for static, dynamic and animated
meshes..The application shall be able to render the scene using ray tracing..The application shall have an interactive mode with a user controlled
camera used for viewing the scene and testing functionality.

31

https://www.vulkan.org/
https://www.khronos.org/sycl/

7. Analysis
7.6 Non-functional requirements

.The application shall be responsive and run at a stable frame-rate while
not ray tracing..The code shall be structured such that implementing new ray tracing
algorithms and/or acceleration data structures requires minimal changes
in existing code.

32

Chapter 8
Ray tracing application framework design
and implementation

To simulate an application we are familiar with and allow for further extending
the functionality, we decided to design the application as a simple game
engine with a scene hierarchy containing game objects housing components.
The main application class is called RTApp. It is a singleton class and
contains methods for running the main application loop, which is entered
after processing command line arguments. The main application loop is
described in Algorithm 5. The information described in this chapter is
hand-picked and does not necessarily contain all the information about the
implementation. All details are available in the documentation and comments
in the implementation.

Algorithm 5: Main application loop
1 begin
2 while not ShouldExit() do

// Switch scene if requested
3 SwitchScene()

// Call all pre-render methods
4 PreRenderUpdate()

// Update UI
5 UIUpdate()

// Render the scene, either with OpenGL or the current
raytracer

6 Render()
// Call all post-render methods

7 PostRenderUpdate()
// Render UI elements

8 RenderUI()
// Swap window buffers to display rendered scene

9 SwapBuffers()
// Process input events

10 PollEvents()
11 end
12 end

33

8. Ray tracing application framework design and implementation
Scene roots

Player

Camera

Movement

Car

MeshRenderer

CurveAnimation

Driver PassengerMeshRenderer MeshRenderer

Car mesh

Person mesh

Figure 8.1 An example scene graph with game objects (blue rectangles), com-
ponents (red ovals), and models (green diamonds). Transform components are
not displayed (every GO has one).

The code is compiled with the help of CMake with the goal of being
compatible with multiple platforms. External libraries that are not included
in the source code itself are included using CMake’s find_package function,
which uses the currently available package manager to retrieve them. A list
of used libraries can be found in Section 8.9.

8.1 Scene definition

The scene is represented as a tree graph, where the nodes of the graph are
called game objects (= GO). Game objects are simply containers designed
to hold a list of components, which give them functionality. Each GO has
a mandatory Transform component, which gives it a position, rotation and
scale in the scene. They also have a list of child GOs, that create the scene
hierarchy. To be precise, the scene is a forest and not a tree in reality, as
there is no root game object, instead there is a list of root game objects
(see Figure 8.1). This design was modelled after the Unity game engine
(unity.com).

We have two options if we want to create our scenes. We can either
implement a scene editor, similar to ones that already exist as parts of other
popular game engines, or define a human-readable and editable text format.
Both options mean that we have to be able to serialize the scene. Due to the
complexity of implementing our own scene editor, we chose to serialize the
scenes in a simple JSON format, which allows for both hierarchies (the scene
graph) and lists of objects (components and GO children).

8.2 Component system

A game object without components is just an empty scene graph node.
The mandatory Transform component gives each game object a position in
space. Each transform has its local position, rotation and scale, which are

34

https://unity.com/

....................................... 8.3. Models

Renderer

MeshRender MorphRenderer

Component

Mesh MorphMesh

GenericMesh

TriangleMesh IndexedTriangleMesh OrientedBoundingBoxMesh IndexedTriangleMorphMesh

Figure 8.2 Hierarchy of the renderer components and mesh classes. Arrows
represent inheritance.

relative to the parent game object’s transform. This creates a hierarchy of
transformations, where multiple game objects can move by moving a single
common parent, which does not change their local positions, but changes
their world positions. World position (and rotation and scale) is the position
relative to the root of the scene and it is the position we perceive. For example,
by moving the Car GO in Figure 8.1, that is changing its local position, we
would also be moving the driver and the passenger. Their local positions
would not change, but their world position would.

Components allow for the functionality of game objects to be implemen-
ted as composition over inheritance [Wika]. Each component can load its
properties from the scene JSON file on scene load. On certain events, such
as the scene update that happens every frame, after rendering the scene,
etc., a scene updater calls the relevant virtual method for each component.
The components then execute their functionality inside these methods. For
example, an animator component would update its animation time based on
the time since the last frame, or a movement component would move the
transform of the GO it is attached to based on user input.

We have implemented several components needed for running the ap-
plication and also others to implement relevant application requirements.
The complete list of components and their descriptions can be found in the
attached source code.

8.3 Models

The main feature of our application is displaying models. To do that, we
first define the Asset class and the AssetID. Asset represents anything that
can be loaded from the disk using an AssetID (for example a mesh, texture,
etc.), which is currently represented as a path relative to the Assets folder
that must be located next to the executable. Models consist of meshes and

35

8. Ray tracing application framework design and implementation
materials. Meshes consist of lists of primitives, usually triangles. Because ray
tracing allows to easily incorporate other types of primitives like spheres, we
have prepared a system that allows for other types of primitives, as long they
have implemented their mesh class and methods needed for ray tracing, such
as intersecting with a ray. Materials contain properties used when shading
and determining the colour of the mesh surface. Each submesh corresponds
to a material.

To display the loaded meshes, we define a MeshRenderer component that
holds a shared pointer to the Mesh class and a list of submeshes it is supposed
to display. The subdivision into submeshes allows for a single mesh to have
multiple materials and hold multiple objects, each rendered with a different
MeshRenderer with possibly different location in the scene hierarchy (see
Figure 8.1 and Figure 8.2).

8.4 Animations

Our focus is on dynamic scenes, which differ from static scenes by having
animations in them. We have implemented two types of animations. The
first type is transform animation, where we change the position, rotation, and
scale of the object. This type of animation comes naturally after defining a
scene hierarchy with transforms and is implemented by changing the game
object’s or its parent’s position and/or rotation each frame using a custom
component.

The second type of animation has different names, but we will refer to
it as morph (target) animation [Wikb]. With this type of animation, each
primitive in a mesh can change their shape (without changing into another
type of primitive). It is defined as a set of key frames, which are meshes
with primitives in different positions, and the animation is created by lin-
early interpolating between these frames. To enable this type of animation,
we define a MorphRenderer component that holds a shared pointer to a
MorphMesh class, similarly to MeshRenderer and Mesh. The MeshRenderer
and MorphRenderer components both inherit from the Renderer component,
and the Mesh and MorphMesh classes both inherit from the GenericMesh
class. The Renderer and GenericMesh classes are purely virtual and hold
common methods of their children (see Figure 8.2).

Each morph animation asset consists of a text file with .animation extension
containing a list of mesh file names (one per line) that represent the key
frames. The animation is controlled by the MorphController component, to
which each MorphRenderer holds a reference. This allows multiple renderers
to have the same animation time. The controller has an animation length
property, which defines how fast the animation will play. Key frames are
assumed to spaced equidistantly in time and the animation is looped.

36

...................................... 8.5. Rendering

8.5 Rendering

The application has two rendering modes, OpenGL mode and Raytracing
mode. The first mode is meant for displaying the scenes (even without
functional ray tracers) and debugging and visualising built acceleration data
structures. It displays the scene using standard rasterisation with OpenGL.

The second mode is meant for testing ray tracing performance and should
be used after implementing a functional ray tracer. For automating per-
formance testing, it can also be run together with no-gui and stop-frame
switches. The no-gui switch disables any OpenGL calls and does not open
any application windows. The stop-frame switch with an integer argument
stops the application after running for the specified number of frames.

The rendering is handled by two renderer instances located in the RTApp
class. The first instance is an instance of Rasterizer class, which handles
rendering using OpenGL. It is created only when in OpenGL mode. The
second instance is an instance of any class implementing the IRaytracer
interface, which handles rendering by ray tracing the scene and gets created
in both modes. IRaytracer has the following pure virtual methods (not all
methods are listed):. Init - Called once after loading the first scene. This method exists in place

for a constructor, because the ray tracer gets constructed before loading
the scene and other things, which might be needed for initialisation..BuildStatic - Called once every time a new scene gets loaded, used for
building acceleration data structures for static objects..BuildDynamic - Called every frame before rendering. Used for building
acceleration data structures for dynamic objects..RaytraceScene - Called after every call to BuildDynamic (not neces-
sarily immediately after). Used for rendering the scene..GetRender/GetRenderTexture - Returns the rendered image.

The IRaytracer interface allows for implementing custom ray tracers, but
for standard acceleration data structures that do not need special handling, we
have implemented StructureRaytracer. It implements most of the IRaytracer
methods including the ray tracing algorithm. It only needs a class that
implements the IAccelerationStructure interface, which it uses to intersect
rays with the scene. IAccelerationStructure has the following pure virtual
methods (not all methods are listed):. Init - Same as IRaytracer..BuildStatic - Same as IRaytracer, but takes a list of static renderers to

build the data structure over.

37

8. Ray tracing application framework design and implementation
.BuildDynamic - Same as IRaytracer, but takes a list of dynamic active

renderers to build the data structure over..Traverse - Takes a ray and its length, outputs an empty optional if the
ray does not hit any primitives, or an optional with a structure with info
about the closest hit primitive..TraverseShadow - Takes a ray and its length, outputs true if the ray
hits any primitive, false otherwise.

For ray tracing on the GPU using k-d trees, we have implemented the
KDTGPURaytracer class.

8.6 Frame tracer

There is also a special class, FrameTracer, that allows ray tracers to be
run during OpenGL mode. It has a UI window with its controls displayed
automatically in OpenGL mode, while being disabled in Raytracing mode.
To use it, the user must first pause the scene to pause animations. When the
scene is paused, only components with AllowDuringSnapshot set to true are
updated, and three buttons are enabled - Build static, Build dynamic and
Raytrace (see Figure 8.3). These buttons correspond to calling the similarly
named methods of the current IRaytracer.

8.7 Visualisation and validation

Each implementation of IRaytracer/IAccelerationStructure can implement a
navigator (INavigator) and a validator (IStructureValidator). The navigator
is used by the StructureNavigator component to navigate and visualise the
current data structure, which is useful for seeing what the algorithm does in
the context of 3D space and can help find issues with the data structure that
would be hard to see just from data. The component is accompanied by a
UI window with navigation controls (see Figure 8.4). The buttons again call
the similarly named methods of the navigator of the current IRaytracer. If a
ray tracer does not have a navigator implemented, the buttons are disabled.
An implementation of INavigator can add its own navigation UI to the main
navigation window. The INavigator has the following virtual methods:. StartNavigating - Initialises or resets navigation..Navigate - Renders the data structure specific navigation UI and pro-

cesses input..CanNavigateInto - Returns true if this navigator has another internal
navigator and it is possible to navigate into it, for example navigating
inside a tree node.

38

..................................8.8. Scene configuration

.NavigateInto - Returns the pointer to an allocated and initialised
internal navigator..NavigateOut - Called when navigating out.Render - Renders the visualisation.

Validators are used by the StructureValidator component to test if the
currently built data structure is built correctly. The component displays a
UI window with a button that calls the Validate method, which returns an
optional string (see Figure 8.4). If the optional value is empty, the validation
is treated as successful, otherwise the string is treated as the error message
and is displayed in the UI window next to the Validate button.

8.8 Scene configuration

To allow changing some parameters without recompiling the program and ease
testing automation, we have implemented a simple configuration (=config)
scheme. Each scene can have a config file, defined as a file next to the scene
file with the same stem but with a .config extension instead of .scene extension.
The config file is a JSON and is loaded together with the scene. Config values
can be accessed using two different methods with a string key. The GetValue
method takes an additional argument, which serves as the default value if the
key is not found in the config. The TryGetValue method takes an additional
reference argument and if the key is found, it writes the requested value to
the reference and returns true. Otherwise, it only returns false. For values
that are needed before a scene is loaded or do not depend on the scene, an
additional app config file can be passed as a command line argument which
is used when a value is not found in a scene config.

8.9 External libraries

In this section, we list all external C++ libraries we used, provide a link to
their homepage, and briefly describe what they were used for..Assimp (assimp.org) - Used for loading meshes.. stb (github.com/nothings/stb) - Used for saving rendered images to disk.. OpenGL (opengl.org), glfw (glfw.org), vkfw (github.com/Cvelth/vkfw),

glbinding (glbinding.org) - Used for the graphics.. nlohmann/json (json.nlohmann.me) - Used for loading JSONs.. cxxopts (github.com/jarro2783/cxxopts) - Used for parsing cmd line
arguments.. Dear ImGui (github.com/ocornut/imgui) - Used for UI.

39

https://assimp.org/
https://github.com/nothings/stb
https://www.opengl.org/
https://www.glfw.org/
https://github.com/Cvelth/vkfw
https://glbinding.org/
https://json.nlohmann.me/
https://github.com/jarro2783/cxxopts
https://github.com/ocornut/imgui

8. Ray tracing application framework design and implementation
. CUDA (developer.nvidia.com/cuda-toolkit) - Used for GPGPU program-

ming,. CMake (cmake.org) - Used for project compilation.

40

https://developer.nvidia.com/cuda-toolkit
https://cmake.org/

................................... 8.9. External libraries

Figure 8.3 Application screenshots with frame tracer UI window (unpaused and
paused)

41

8. Ray tracing application framework design and implementation

Figure 8.4 Application screenshot with structure navigator and validator UI
windows. The currently built k-d tree was successfully validated and is being
navigated. The node bounding box is coloured pink, the splitting plane yellow,
and the model in green. Because the application does not support transparency,
everything is rendered in wireframe mode.

42

Chapter 9
k-d tree building algorithm design and
implementation

Our work consists of three implementations of k-d tree building algorithms:
two reference CPU implementations for correctness testing purposes and one
GPU implementation of the proposed min-max binning k-d tree building
algorithm. All implementations use the same data structures for k-d tree
nodes (see Figure 9.1).

enum class NodeType {
InnerX = 0 , InnerY , InnerZ , Leaf

} ;
struct KDTInnnerNode
{

NodeType tag ;
f loat s p l i t V a l u e ;
in t32 l e f t C h i l d I d x ;
in t32 r i gh tCh i ld Idx ;

} ;
struct KDTLeafNode
{

NodeType tag ;
in t32 pr imit iveN ;
PUID∗ p r i m i t i v e s ;

} ;
struct Node
{

union {
KDTInnnerNode inner ;
KDTLeafNode l e a f ;

} ;
} ;

Figure 9.1 Structures used in the kd-tree implementation in C++ language

43

9. k-d tree building algorithm design and implementation...................
9.1 Primitive references

The k-d tree leaf nodes contain a list of references to primitives. The reference
is a data structure called PUID, or Primitive Unique IDentifier. It consists
of two integers, an instance index and the offset of the primitive inside the
instance. Instances are essentially references to submeshes. On the CPU,
they consist of a pointer to a Renderer and the index of the submesh they
reference. On the GPU, they consist of a pointer to a list of primitives of the
submesh they reference, the transformation matrix, and other information
about the submesh, such as its material.

To build a k-d tree, we need a mesh manager and a builder. The mesh
manager creates and manages instances, and PUIDs are unique to the mesh
manager that created them. The builder takes instances from a mesh manager
and builds the tree over them. This structure allows us to have a single mesh
manager implementation with multiple different builder implementations
inheriting from a single abstract builder. The specific builder can then be
selected at runtime based on user parameters.

9.2 Reference CPU implementations

We have implemented two reference solutions on the CPU. One uses min-max
binning and is used to check the correctness of the GPU implementation.
The second implementation uses events to select the perfect split and can be
used to compare against the use of approximate split selection.

When a primitive is parallel to one of the three main axes, it causes its
bounding box to have zero volume and it generates a start and end events
at the same coordinate on one axis. This special case (that happens often
in practice, for example in walls and floors) has to be handled separately or
can be solved by slightly expanding the bounding box of planar primitives
by a small ϵ. The expansion does not cause any issues, the only thing it can
cause is a primitive being included in a leaf where it does not belong, similar
to what happens when not split clipping. We chose to expand the bounding
boxes. To avoid creating nodes with zero volume, we also forbid splitting
planes to be placed at the borders of the bounding boxes of nodes.

For both the CPU and GPU implementations, we use similar termination
criteria and parameter values as [VHB16]. The algorithms terminate when (a)
the maximum depth dmax is reached, (b) the number of primitives in the leaf is
less then nmax, or (c) the cost of making the node a leaf is less then splitting at
the perfect split. We limit the maximum depth with dmax = k1 + k2 log2(N),
k1 = 2.0, k2 = 1.2, N = number of primitives. nmax is based on the number of
primitives in the scene, 2 for small scenes (less than 700 thousand primitives),
8 for medium scenes (around million triangles), 12 for large scenes (more
than 3 million triangles).

44

...................................... 9.3. Task pool

work chunks left

custom data

task data

task headers

phase
step

L E A A - active

E - empty

L - locked

EEEE

- - - - -0

0

732

48 15

A

working
subgroups

chunks
32 - 39

chunks
40 - 47

chunks
7 - 14

creating
task

Figure 9.2 Task pool structure example

9.3 Task pool

As mentioned in Section 7.2, the task pool consists of a list of tasks and a
list of atomic integers called the headers. A header can have one of three
distinct types of value - empty, locked, and active. We adopt the same values
as [Vin14], that is:. Locked, value = 0: Either means that a task is being prepared or that

the task’s chunks have all been retrieved..Active, value > 0: The positive number represents the number of chunks
that have yet to be retrieved.. Empty, value = INT_MIN: Theoretically signified by any negative
value. In practice, we may have a scenario where multiple subgroups
read a positive header (for example equal to one) and they all atomically
subtract some number, which can take the header quite deep below zero.
Of course, only one subgroup will retrieve and process the chunk, but to
avoid needing to set the header to zero afterwards, we ignore as many
negative values (basically leaving them as undefined values) as possible
and set the value that signifies the task is empty as the largest negative
representable number.

The task itself consists of the task phase, task step, number of chunks left
and algorithm specific data. The concept is that each task can have multiple
task phases, and each task phase can have multiple task steps. The task steps
serve as a synchronisation primitive for a specific task phase, as shown in the
next section. The atomic number of chunks left tells us how many subgroups
have finished processing their chunks, which is needed for post-processing
(explained later). This is different from the header, which tells us how many
chunks have yet to be retrieved and start being processed. Intuitively, these

45

9. k-d tree building algorithm design and implementation...................
Algorithm 6: Main task pool loop
1 begin
2 while RetrieveTask(task, C ′, R′) do
3 ProcessTask(task, C ′, R′))
4 if laneIdx == 0 then
5 task.workChunksLeft -= R′

6 end
7 if task.workChunksLeft == 0 then
8 TaskPostProcess(task)
9 end

10 end
11 end

numbers will be the same when the task is created, and the header will always
be less than or equal to the number of chunks left. The task pool structure is
illustrated in Figure 9.2.

The general loop for working with the task pool is described in Algorithm 6.
The loop is expected to be executed by a subgroup, but can also work for
groups with some modifications to the called functions. First, the subgroup
retrieves R′ chunks from a single task. The chunks are then processed. Finally,
R′ is subtracted from the remaining number of chunks needed to complete
the task step or phase. If the subgroup is the last subgroup working on the
task, that is, the remaining number of chunks is zero after subtraction, it
does some additional processing we call post-processing.

The retrieval algorithm is described in Algorithm 7. We need to search
the whole task pool for a task that can be retrieved, which happens in a
loop. In one step of the loop, each lane in the subgroup loads its own value
from the header. We then find the lane that has loaded a positive value
and atomically subtract R. If the value C equal to the header value at the
time of subtraction (returned by the atomic subtraction) is still positive, we
have successfully retrieved R′ chunks to process starting at chunk C ′, where
R′ := R, C ′ := C − R if (C − R) >= 0, otherwise R′ := C, C ′ := 0. To
distribute the work equally, we define the size of the pool as a multiple of
the total number of work threads and make each subgroup start the search
at an offset based on the current number of active tasks in the pool and the
index of the subgroup (see Algorithm 7). When the task pool is full, each
subgroup starts at a different offset, not interfering with each other. When it
is mostly empty, each subgroup will start the search at the front of the task
pool, where the few tasks will be located.

To define R, [Vin14] suggest a value proportional to the number of chunks
left in the task. Instead, we use a fixed value to save time on additional
computations. When creating a new task or updating an existing one, we can
skip the retrieval algorithm, and keep working on the task we updated/created.
When the number of chunks is less than or equal to (some multiple of) R,
we can also skip updating the task in global memory, if the subgroup has
a local copy of it. Skipping retrieval saves a lot of time, because even if we

46

...................................... 9.3. Task pool

Algorithm 7: Task retrieval
1 begin
2 failedOnce = false
3 while task not retrieved do
4 if workingSubgroups == 0 then
5 return False
6 end
7 startIdx = (activeTasks / subgroupN) · subgroupIdx
8 startIdx = startIdx - (startIdx % subgroupSize)
9 startLane = subgroupIdx % subgroupSize

10 poolIdx = startIdx
11 repeat
12 taskIdx = poolIdx + laneIdx
13 C = atomicGet(taskHeaders[taskIdx])
14 if C > 0 then
15 for i = 0 to subgroupSize do
16 lane = (i + startLane) % subgroupSize
17 if lane == laneIdx and C > 0 then
18 C ′ = atomicSub(taskHeaders[taskIdx], R)
19 if C ′ + R > 0 then
20 R′ = R
21 if C ′ < 0 then
22 R′ = C
23 C ′ = 0
24 end
25 task = tasks[taskIdx]
26 if failedOnce then
27 atomicAdd(workingSubgroups, 1)
28 end
29 return True
30 end
31 end
32 end
33 end
34 poolIdx = (poolIdx + subgroupSize) % taskPoolSize
35 until poolIdx != startIdx
36 if not failedOnce then
37 failedOnce = True
38 if laneIdx == 0 then
39 atomicSub(workingSubgroups, 1)
40 end
41 end
42 end
43 end

47

9. k-d tree building algorithm design and implementation...................
retrieved a new task immediately, at least w + 1 atomic operations would be
performed, with several additional computations and global memory accesses
(w = subgroup size).

Processing depends on the algorithm that utilises the task pool. However,
it should not modify non-atomic task variables and should generally do work
that is local to the work chunk it is processing. The work it should do, for
example in an array, can be computed from work chunk indices C ′ to C ′ + R′

obtained during task retrieval.
Post-processing is always performed only once by a single subgroup for

each task after all other subgroups working on the task have finished. This
allows the post-process function to change any variables associated with the
task without atomic operations. Usual post-processing consists of changing
the task phase or task step, finishing the task and unlocking the slot, or
creating new tasks.

The task pool can be used for multiple algorithms. We group the common
functionality into the GPUTaskPoolProcessor class and the ProcessTasks ker-
nel. The ProcessTasks kernel implements the basic loop from Algorithm 6. Its
argument is an instance of the processor class, on which it calls RetrieveTask,
ProcessTask, and TaskPostProcess. Because we are transferring instances
between the CPU and GPU, we did not want to use virtual methods. Fortu-
nately, CUDA supports templates, so we used a type of static compile-time
polymorphism called CRTP [Cop95] instead.

Our class also provides several other utility methods for working with the
task pool, including a method for locking a task slot. Locking a task works
in a similar manner to the retrieval algorithm, just instead of looking for an
active task and subtracting chunks to be processed, we look for empty slots
and change their header to the locked state.

9.4 Parallel scan using a task pool

A scan, also called a prefix sum [Ngu07], is an operation where an input array
[x0, x1, ..., xn] is transformed such that every element equals the sum of its
previous elements, or [x0,

∑1
j=0 xj , ...,

∑i
j=0 xj , ...,

∑n
j=0 xj]. If the element

at position i is included, it is an inclusive sum/scan, if not, it is called an
exclusive sum/scan. We can get the exclusive scan from the inclusive scan by
shifting all elements of the inclusive scan right and vice versa, supplementing
the first element with zero when shifting right and last element with the
total sum when shifting left. We can also get the reverse scan by subtracting
the elements of a forward scan of the other type from the total sum. The
operation can also be substituted for any other binary associative operation,
for example multiplication or maximum/minimum.

The scan operation is extremely useful in parallel applications when distrib-
uting array elements. When selecting elements from an array and creating a
new array from them sequentially, we can simply carry the index of the last
inserted element and insert the next element at the next index. When we
try to do this in parallel, we realise that we do not know to which index the

48

............................. 9.4. Parallel scan using a task pool

A B C

C

D E

E

FF

F

G H

H

0 0 1 0 1 1 0 1

A B C D E FF G H

0 0 0 1 1 2 3 3

scan

Figure 9.3 Scanned filter array used as indices for inserting filtered elements

Figure 9.4 Parallel scan for larger arrays, taken from [Ngu07]

current thread should write, as it does not know how many elements where
selected before it. This problem can be solved by creating an array of binary
values, where zero means the element is not selected and one means it is,
then doing an exclusive scan and using the result as the insertion index (see
Figure 9.3). The scan also tells us the total number of selected elements so
that we can allocate an appropriately sized array. All of these steps can be
done in parallel. Because we need the scan when building the tree, we need to
implement it using a task pool. Let us first talk about how it is done without
a task pool.

First, we launch enough groups to process the whole input array. Each
thread group loads its assigned memory block into shared memory, where it
performs a parallel scan on it, using either the Hillis and Steele algorithm or
the Blelloch algorithm (both described in [Ngu07]). The scanned elements are
then copied back into the global array. When the total number of elements
does not exceed the number of elements one group can process, the algorithm
is finished. If it does, we have to save the sum of each memory block into an
intermediate array and end the kernel, as we do not have a synchronisation
primitive for the whole kernel (or it is unnecessarily expensive). We then
run the same process over the intermediate array. If it can be processed
by a single group, we do not end the algorithm, but instead distribute the
scanned sums from the intermediate array into the global array, where what
was previously the sum of memory block 1 gets added to all elements of
memory block 2, sum of block 2 gets added to elements of block 3 and so on.

49

9. k-d tree building algorithm design and implementation...................
If the intermediate array cannot be processed by a single group, we repeat
the same process, saving the group sums into a second intermediate array
with the first intermediate array acting as the global array (see Figure 9.4).

By using the task steps, we have the advantage of being able to synchronise
the whole kernel, so we do not have to split the computation, no matter how
big the input array is. A big disadvantage, though, is that we cannot sensibly
use shared memory for the computation, because we do not know which
subgroups from which groups will be working on the task. We also have to be
careful about the intermediate result arrays, because we must use dynamic
memory allocation for them, which is expensive. We have three options:

(a) Allocate the next intermediate result array after processing a task step.

(b) Precompute the required number and allocate memory for all intermediate
arrays together with the input array.

(c) Use the input array to save the intermediate results.

Option (a) is the easiest, but most inefficient. Both options (b) and (c)
reduce the number of required allocations to a constant one. Option (b)
should have better performance due to the elements being processed always
being next to each other in memory resulting in better cache performance.
Option (c) trades the performance benefit for requiring less memory.

We decided to use option (c). The task pool computation consists of two
task phases, the up-sweep and the down-sweep, corresponding to the phases
of the standard parallel scan algorithm. In the following explanation of the
task phases, we provide the formulas for these variables:.The number of task steps nsteps for the phase, based on the total number

of elements N and subgroup size w.The stride stride, based on the current task step s.The number of chunks nchunks for each step.The index into the global array gid for each lane in the subgroup, based
on the chunk index it is processing c and index of the lane laneIdx

9.4.1 Up-sweep

nsteps = log2log2(w)(N)
stride = ws

nchunks =
⌈

N

ws+1

⌉
gid = stride − 1 + chunk · stride · w + laneIdx · stride

In the up-sweep phase, each subgroup processes w elements with increasing
stride. Each lane loads an element based on gid, then the whole subgroup
performs a scan over the elements and saves them back into the array (see
Figure 9.5).

50

................................ 9.5. GPU binning algorithm

1 1

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 1 23 4

1 2 3 4 1 2 3 8 1 2 3 12 1 2 3 16 1 2 3 4 1 2 3 8 1 2 3 12 1 2 1 23 16

1 2 3 4 1 2 3 8 1 2 3 12 1 2 3 16 1 2 3 4 1 2 3 8 1 2 3 12 1 2 1 23 32

1 2 3 4 1 2 3 8 1 2 3 12 1 2 3 16 1 2 3 20 1 2 3 24 1 2 3 28 1 2 1 23 32

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 33 3431 32

s = 0

s = 1

s = 2

s = 1

s = 0

Figure 9.5 Visualisation of the parallel scan using the task pool for w = 4, N = 34.
The first three task steps are part of the up-sweep phase, the last two are part
of the down-sweep phase. The red underlining highlights elements that belong
to the first chunk in task step s, blue highlights elements of the second chunk.

9.4.2 Down-sweep

nsteps = log2log2(w)(N) − 1
stride = ws

nchunks =
⌈

N

ws+1

⌉
gid = stride − 1 + (chunk + 1) · stride · w + laneIdx · stride

In the down-sweep phase, the task steps and stride decrease instead of
increasing, and the task step starts at nsteps − 1 instead of 0. Each chunk
corresponds to the same w elements from the up-sweep phase for the same
task step, just shifted w · stride elements to the right. Each lane except the
last one reads its corresponding element and adds the sum of the previous
chunk to it. The sum is saved in the last element of the original w elements
without the shift. The element corresponding to the last lane is the sum of
the current chunk used by the next chunk, computed by the previous task
steps. This process distributes the chunk sums and completes the scan (see
Figure 9.5).

9.5 GPU binning algorithm

In this section, we describe the GPU k-d tree building algorithm we imple-
mented that uses min-max binning for split selection. The whole building
algorithm runs by using the task pool, thus we will describe the algorithm in
terms of its task phases. Except for the scan phases and the make leaf phase,
the number of task steps in each phase is one, the number of chunks is N/w
rounded up, and the global id is computed as chunk · w. The custom task
data contain: list of node primitives, lists for child primitives, classification

51

9. k-d tree building algorithm design and implementation...................
array, node pointer, array stride and number of task steps, bins, primitive
counts (parent and children), node bounding box and depth, best split axis
and coordinate.

9.5.1 Binning

The first phase is binning. Because we decided to use the min-max binning
from [SSK07] (see Figure 4.2), we need two bin arrays per axis, so six arrays
in total. A chunk represents w consecutive elements in the primitive array.
Each lane takes a primitive from the chunk and computes in which bins the
primitive belongs. The number of bins is static, and to make computation
easier, we limit it to a multiple of w. Each primitive belongs in one min bin
and one max bin on each axis.

Because the task bins are in global memory and any thread can access
them, they need to be atomic. Each subgroup processes multiple chunks, so
we have two options, either atomically increase the bin counter with each
primitive, or compute the bin counters locally and then do the global binning
at the end.

After binning all primitives, we move onto the binning post process, where
we compute the best splitting plane for the current k-d tree node. The
candidates are defined by the bins except the bin edges, that is nbins − 1
splitting planes position candidates spaced uniformly (sbin units) apart. We
compute the cost using the SAH at all candidates and take the candidate
with the lowest cost as the splitting plane of the node.

To evaluate the SAH, we need to know the surface areas and number
of primitives to the left and right of the splitting plane. As explained in
[SSK07], we can get the primitive counts by performing an exclusive scan
on the min-bins and a reverse inclusive scan on the max-bins. Because the
number of bins is static and small, this work can easily be performed by a
single subgroup in post-process. By limiting the number of bins to a multiple
of w, we can use subgroup-level primitives like the __shfl_up_sync [Cor]
and others to perform a quick scan with only a single subgroup. Each lane
computes a single cost value, after which we use subgroup-level reduction
to find the minimum cost. Using a combination of __ballot_sync, which
creates an integer with bits set to 1 where a statement is true, and __ffs,
which returns the index of the first bit set to 1 in an integer [Cor], we can find
the lane index of the lane with the minimum cost, which we use as the lane
that does the remaining post-process work. If we have more than w bins, we
iterate over them. In each iteration, we compute the cost for the current bins.
Each lane than saves the minimum of the current value and the previous
value. After iterating over all the bins, we perform the final reduction.

After finding the best splitting plane, we either move onto the next phase
called classification, or decide that the minimum cost is worse than the cost
of making the node a leaf instead, setting the next phase to make the node a
leaf.

52

................................ 9.5. GPU binning algorithm

1 1 0

A B C

0 1 1

A B C

left classication

right classication

A
B C

Figure 9.6 Primitives classified based on the bounds of their bounding boxes

9.5.2 Classification

The goal of this phase is to prepare the primitives for distribution to the left
and right child nodes. The first step is marking which primitives belong to the
left child and which to the right child. For that we need two additional arrays
of integers of size equal to the number of primitives. The first array belongs
to the left child, the second to the right child. Each integer corresponds to a
primitive in the same position and we fill the arrays so that there is a 1 if the
primitive belongs to the left/right child, and 0 if it does not (see Figure 9.6).

Each chunk again represents w consecutive elements in the primitive array,
and to figure out to which child a primitive belongs to, we simply look at
its bounding box in relation to the splitting plane. If the min bound is less
than the splitting coordinate, it belongs to the left child. If the max bound is
greater than the splitting coordinate, it belongs to the right child. A primitive
can also belong to both children (see Chapter 2). Notice for future reference
that we need the primitives’ bounding boxes again.

There is no notable post-processing performed for this phase besides chan-
ging the phase and updating the work chunk count.

9.5.3 Classification scan

Next, we need to perform a scan of the classification. A description of the
scan algorithm using the task pool can be found in Section 9.4.

9.5.4 Distribution

The final phase for an inner node is distribution. Processing consists of
distributing primitive references into their respective arrays belonging to child

53

9. k-d tree building algorithm design and implementation...................

0 1 2 2

A B

left size

left classif.

left prim.

A B C

(a) Only A and B have a different next
element

0 0 1 2

B C

right size

right classif.

right prim.

A B C

(b) Only B and C have a different next
element

Figure 9.7 Primitive distribution into left and right child nodes according to
scanned classification

nodes. Chunks once again represent w consecutive elements. By looking at
the current element in the scanned classification arrays (and subtracting one
if the scan was inclusive), we get the index into which we should copy over
the reference (see Figure 9.7). To decide whether we should copy it or not,
we must simply look at the next (or previous for an inclusive scan) element in
the classification arrays. If the element is different from the current one, we
know that the current element was a 1 after classification (before scanning)
and thus should be copied.

The final step is to create the next two tasks for the child nodes, which is
done in the post-process. We update the current task with the task for the
left child and we lock a new task slot for the task for the right child. The
starting phase for the child tasks is either binning if the child node should be
an inner node, or make leaf if it should be a leaf.

9.5.5 Make leaf

This phase always consists of a single work chunk and empty processing, with
a simple post-process of assigning the variables for a leaf node.

9.6 Caching bounding boxes

We may notice that we need bounding boxes of primitives in both the binning
and classification phases. Computing them might get expensive, as computing
the bounding box itself, especially with split clipping, is not cheap itself. On
top of that, although primitive references are located next to each other
in memory, the primitives they reference will mostly not be. This leads to
bad cache coherency, decreasing performance. To improve performance and
coherency for the cost of memory, we can cache the primitive bounding boxes
along with the primitive references.

When distributing primitive references into the left and right child nodes,
we now also have to distribute their bounding boxes. Bounding boxes of
primitives that lie entirely to the left or right of the splitting plane do not
change. For primitives straddling the splitting plane, we have to either split
the bounding box at the splitting plane coordinate if we are not clipping

54

....................................9.7. Creating nodes

them perfectly, or recompute them if we are. The algorithm we used for split
clipping triangles is described in Algorithm 8 and visualised in Figure 2.4.
It computes all intersections between the triangle and the bounding box,
including the splitting plane. First, it computes the intersections of the edges
of the triangle with the sides of the bounding box and the face defined by
the splitting plane inside the bounding box. Then, it computes intersections
of the edges of the bounding box and the edges of the splitting plane face
with the the face of the triangle. It then adds vertices of the triangle to the
intersection list. The final step is to create a bounding box of all intersections
to the left of the splitting plane, and the bounding box of all intersections to
the right.

9.7 Creating nodes

The last part related to dynamic memory allocation is creating nodes. We
create nodes during distribution post-process, where we reserve space for two
nodes and pass a pointer to them to the created tasks. We decided that each
subgroup will have its own list of nodes as that will get copied into a single
large array an at the end of the algorithm. Because we did not want to waste
performance on copying old elements when reaching capacity for the current
array (see any standard implementation of a dynamic array, e.g. std::vector),
we implemented an array linked list hybrid called DeviceLinkedList. We took
advantage of the fact that we only add nodes, not remove them. It has a
head DeviceLinkedListHead with pointers to the first and last list. Each
DeviceLinkedList consists of a pointer to the actual array, the size (number of
current elements), capacity (maximum number of elements) and a pointer to
the next list. Whenever the size exceeds the capacity, the next list is created
with its capacity double of the current one and linked to the current one.
No additional work such as copying all elements to a new array is needed.
Another advantage is that direct pointers into memory are preserved.

The inner nodes created during this algorithm are not the same as the
common KDTInnerNode. Instead of an index as the pointer to its children,
its child pointer consists of two integers - the index of the subgroup that
created the child is and the offset in that subgroup’s list of lists os. The
number of nodes created by each subgroup is kept in a separate array ac.
Whenever creating a new node, this number becomes the offset. When time
comes to copy the nodes to the single large node array, we perform a parallel
scan of the node counts, which become offsets into the large array. The total
sum also tells us how much space to allocate for an. The code for copying
would than be an[ac[is] + os] := as[os]. When copying the nodes, we also
transform the special inner build node into the standard KDTInnerNode.

55

9. k-d tree building algorithm design and implementation...................
9.8 Dynamic memory allocation

As mentioned before, one of the main reasons for choosing CUDA was its
ability for dynamic memory allocation, and we used new in device code for
all allocations during prototyping. After profiling the algorithm, we noticed
that one of the main bottlenecks were these dynamic allocations. This lead
us to creating our own, very simple, but functional allocator.

First, let us collect and analyse all uses of dynamic allocation:

(a) Extending the task pool

(b) Creating new linked node lists

(c) Creating room for primitive references and bounding boxes for child
nodes

(d) Creating classification arrays

(a) and (b) are simple and only need allocation of new memory. (c) and
(d) are a bit more complicated. First of all, the simplest way to implement
them is to allocate a new array, fill it, and then deallocate it after not needing
it any more. Even though this approach makes sense, we may notice that
the children will need the arrays again, just smaller. For (d), if there was no
primitive reference duplication, we could simply divide the array into two
parts and pass it directly to the children for their own use, instead of deleting
it and allocating two new arrays for each child. But because we are building
a k-d tree, the duplication is inevitable. We could still divide it without
any allocations if there was enough extra empty room, but we do not know
the amount of extra room needed. This thought lead us to developing the
MemoryPool class.

The MemoryPool class consists of two pointers and an integer. The first
pointer is the start of the memory pool and the integer is its capacity, which
cannot be exceeded (__trap [Cor] is executed when the capacity is exceeded).
The second pointer is an atomic pointer to a 1-byte type that signifies the
top of the pool. Each allocation increases the pool top pointer by the amount
of bytes needed for the allocation padded to conform to the pool’s memory
alignment (e.g. if the pool has 8-byte alignment and we are allocating 4 bytes,
the pool allocates 8 bytes). The allocation method returns the pointer to
the first element and the size of the allocation, wrapped in a struct called
AllocatedMemory. The class also has a method called AllocateOrSplit that
takes AllocatedMemory together with two sizes as arguments. It tries to split
the memory in AllocatedMemory into two, each with its size at least as large
as the corresponding size from the arguments. If it can be split, it does not
perform any atomic operations and returns the result of the split. If it cannot
be split, it allocates new memory for the second requested allocation and
assigns the AllocatedMemory from the argument to the first one, resulting in
a single atomic increment. Because the first AllocatedMemory is much larger

56

.............................. 9.8. Dynamic memory allocation

pass

data

pass

data

new pass

new data

(a) Passing without splitting

pass

data

pass

data

pass

data

(b) Passing without splitting

Figure 9.8 Passing memory to children for copying primitive references

than it needs to be, there is a high change it will allow for a successful split
next time it gets passed into this function.

Now what about case (c)? The issue is that we need both the parent’s
and children’s arrays at the same time, as we would otherwise overwrite
the data we need when copying from parent to child. Notice that after we
distribute the data from the parent to the child, we do not need the parent
data any more. That means we can split the parent array into two and
pass each part to each child. The children can then use the memory as the
memory for their child data. To summarise: Each node keeps two pieces of
AllocatedMemory. The first piece holds valid data from the parent such as
the primitive references of the current node. The second piece is split and
used for data of child nodes, becoming the first piece of AllocatedMemory for
the children. When creating the next task, the first piece also gets split and
is passed down to the children as their second piece. This is illustrated in
Figure 9.8.

The implementation focuses on requiring minimal synchronisation with
other subgroups. With the knowledge that we only need to allocate new or
split old memory, we achieved an allocation algorithm that only needs a single
atomic increment, and only when allocating new memory. The disadvantage
is that it wastes space for a chance to be split. Also the inability to deallocate
becomes a slight issue when reaching a leaf node, as a leaf node does not need
more splitting, but we cannot return the memory back to the pool, wasting
even more memory.

57

9. k-d tree building algorithm design and implementation...................

Algorithm 8: Split clipping of a triangle
1 def SplitClip(triangle : Triangle, clippingBox : AABB, split):
2 leftBox = {∞, ∞, ∞, −∞, −∞, −∞}
3 rightBox = {∞, ∞, ∞, −∞, −∞, −∞}
4

// Intersect triangle with the bounding box and splitting
plane

5 I = Intersect(triangle.edges, clippingBox.sides + split.face)
6 I += Intersect(clippingBox.edges + split.face.edges, triangle.face)
7 for vertex in triangle.vertices do
8 if clippingBox.Includes(vertex) then
9 I += vertex

10 end
11 end
12

// Make bounding boxes from intersections
13 for intersection in intersects do
14 if intersection[split.axis] ≤ split.coord then
15 leftBox.Include(intersection)
16 end
17 if split.coord ≤ intersection[split.axis] then
18 rightBox.Include(intersection)
19 end
20 end
21

// Expand bounding boxes if their volume is zero
22 if Volume(leftBox) == 0 then
23 Expand(leftBox, ϵ)
24 end
25 if Volume(rightBox) == 0 then
26 Expand(rightBox, ϵ)
27 end
28
29 return (leftBox, rightBox)

58

Chapter 10
k-d tree merging algorithm design and
implementation

[Ele10] propose two algorithms for merging multiple trees into a single one,
namely MergeBSPTrees and PartitionTrees. Both algorithms are built
upon the PartitionTreeWithPlane method, which splits the tree into two
parts along a (axis-aligned) splitting plane, one part for each side (see Al-
gorithm 9). We will briefly describe both algorithms, but for further explan-
ation and illustrations, we recommend reading Chapter 3 from their work.
Algorithms 9 and 10 were taken and modified from [Ele10].

The first algorithm recursively uses the partition method to split one of the
trees into two parts using the splitting plane of the root of the other tree. In
each level of recursion, it splits one of the trees and creates two sets of trees,
the first set having the left partition of the split tree and the left child of the
other tree, and the second set having the right partition and right child. It
then repeats the process for both sets. After returning to the current level of
recursion, there is a single root for each set and the two roots can be set as
new children of the current node. Finally, it returns the current node as the
root.

The second algorithm (see Algorithm 10) is also recursive and works in a
similar manner. It looks at all bounds of the bounding boxes of the input
trees and chooses one of them as the splitting plane. It then splits the trees
into two sets, one for trees to the left of the splitting plane, one for trees to
the right. For trees whose bounding boxes intersect with the splitting plane,
it splits them using the partition method. It then repeats the process for both
sets, once again returning with a single root for each set. Finally, it creates a
new inner node, sets the returned roots as its children and returns it. When
the splitting plane overlaps trees, it tries to generate better candidates using
their Dissolve method, which essentially just removes the root of each tree,
splitting each tree into two smaller trees and generating a single candidate
per tree (that is not a leaf). This can happen only once in a row and it turns
the algorithm into the MergeBSPTrees algorithm for trees that completely
overlap.

The PartitionPrimitives method takes the primitives of a leaf node and a
splitting plane and splits the primitive references in the leaf according to it,
creating two new leaves. The IsTightlyBounding method takes a bounding

59

10. k-d tree merging algorithm design and implementation
Algorithm 9: Partitions a tree with a plane [Ele10].
1 def PartitionTreeWithPlane(root, split):
2 if root is leaf then
3 return PartitionPrimitives(root, plane)
4 end
5
6 if root.split.axis == split.axis then
7 leftPar = PartitionTreeWithPlane(root.left, plane)
8 rightPar = PartitionTreeWithPlane(root.right, plane)
9 leftNode.left = leftPar[0]

10 leftNode.right = rightPar[0]
11 rightNode.left = leftPar[1]
12 rightNode.right = rightPar[1]
13 return leftNode, rightNode
14 end
15
16 if split.coord < root.split.coord then
17 left, right = PartitionTreeWithPlane(root.left, plane)
18 leftNode = left
19 rightNode.left = root.left
20 rightNode.right = right
21 else if root.split.coord < split.coord then
22 left, right = PartitionTreeWithPlane(root.left, plane)
23 leftNode.left = root.left
24 leftNode.right = right
25 rightNode = right
26 else
27 leftNode = root.left
28 rightNode = root.right
29 end
30 return leftNode, rightNode

box and a list of trees and returns true if the bounding box of all the trees is
equal to the input bounding box. The MakeTreeFromLeaves method merges
all primitive references into a single leaf node. It could also try to further
subdivide them.

The first algorithm is good for merging two overlapping trees. As [Ele10]
mention, the algorithm creates bad-quality trees if the trees do not overlap.
For that reason, the second algorithm was developed, as it should put separate
non-overlapping trees on the same level, with a new splitting plane separating
them. The second algorithm is also better suited for merging more than two
trees.

We assume that the static part of the scene is many times larger than the
dynamic one, thus building the static tree requires much more time than
building the dynamic tree(s). We also assume that most of the dynamic
objects do not overlap with other objects or have minimal overlap. Both
algorithms presented by [Ele10] have the disadvantage of destroying the
original trees, with the need to rebuild the static tree each frame. We might

60

...................10. k-d tree merging algorithm design and implementation

Algorithm 10: Creates a single k-d tree from input k-d trees [Ele10]
1 def PartitionTrees(trees, bb, comingFromDissolve):
2 if trees is empty then
3 return CreateEmptyLeafNode()
4 end
5
6 if length(trees) == 1 and IsTightlyBounding(bb, trees) then
7 return trees[0].root
8 end
9

10 split = FindBestPlane(trees, bb)
11 if (not split.isClean and not comingFromDissolve) or split.axis is None

then
12 allLeaves = Dissolve(trees)
13 if allLeaves then
14 return MakeTreeFromLeaves(trees)
15 else
16 return PartitionTrees(trees, bb, True)
17 end
18 end
19
20 for tree in trees do
21 if tree.boundingBox.maxBounds[split.axis] ≤ split.coord then
22 leftTrees.add(tree)
23 else if split.coord ≤ tree.boundingBox.minBounds[split.axis] then
24 rightTrees.add(tree)
25 else
26 leftTree, rightTree = PartitionTreeWithPlane(tree.root, split)
27 leftTrees.add(leftTree)
28 rightTrees.add(rightTree)
29 end
30 end
31 leftBB, rightBB = Split(bb, split)
32 leftRoot = PartitionTrees(leftTrees, leftBB, False)
33 rightRoot = PartitionTrees(rightTrees, rightBB, False)
34 return CreateInnerNode(leftRoot, rightRoot)

61

10. k-d tree merging algorithm design and implementation

Figure 10.1 Step by step merging of a dynamic tree into a static tree

get better performance if we were able to merge the dynamic objects into the
static tree while preserve it in a way that allowed it to be restored and the
restoration did not consume too much time. This is the focus of our research
on k-d tree merging.

10.1 Merging a single dynamic tree

Let us begin with a case where we either build a single tree over all dynamic
objects, or we have a single dynamic object. The main idea is to preserve
the static tree by destroying only the dynamic tree. First, we use the
PartitionTreeWithPlane method to recursively partition the dynamic tree
with the static tree nodes’ splitting planes until we reach the leaves of the
static tree (see figure Figure 10.1). We end up with a set of trees, where
each tree belongs in a single leaf of the static tree. Let us call this method
PartitionTreeWithTree (see Algorithm 11). Then we go over leaves that
have a dynamic root associated with it, and replace each leaf with the root,
while inserting primitives from the leaf into the dynamic tree. To preserve
the static tree, we just need to store the leaf node somewhere else, together
with a reference to its parent. When restoring the static tree, we go over all
stored leaf nodes and replace the corresponding children with them, based on
the attached parent references.

62

............................ 10.2. Merging multiple dynamic trees

Algorithm 11: Partitions a dynamic tree with the static tree
1 def PartitionTreeWithTree(dRoot, sRoot, split):
2 if sRoot is leaf then
3 Associate(sRoot, dRoot)
4 else
5 if dRoot.boundingBox.maxBounds[split.axis] ≤ split.coord then
6 PartitionTreeWithTree(dRoot, sRoot.left, sRoot.split)
7 else if split.coord ≤ dRoot.boundingBox.minBounds[split.axis]

then
8 PartitionTreeWithTree(dRoot, sRoot.right, sRoot.split)
9 else

10 left, right = PartitionTreeWithPlane(dRoot, split)
11 PartitionTreeWithTree(left, sRoot.left, sRoot.split)
12 PartitionTreeWithTree(right, sRoot.right, sRoot.split)
13 end
14 end

10.2 Merging multiple dynamic trees

We now have an algorithm that merges the dynamic tree into the static tree,
while being able to restore the static tree later. For situations where we
build separate dynamic trees for each object and there is more than one
dynamic object, we have one obvious option - repeat the same process with
each dynamic tree, but each time a new tree is merged, the tree with which
we split the next dynamic tree includes all previous merged dynamic trees
besides the static tree. For preservation purposes, we only store the replaced
leaves if they belong to the original static tree. This strategy should work
when each dynamic tree falls into a separate leaf of the original static tree, or
when the trees that do fall in the same leaf overlap. This algorithm is akin to
repeating a modified version of the MergeBSPTrees algorithm.

Algorithm 12: Merging multiple dynamic trees into the static tree
1 begin
2 for dynamicTree in dynamicTrees do
3 PartitionTreeWithTree(dynamicTree.root, staticTree.root,

staticTree.root.split)
4 end
5 for leaf, data in associations do
6 if leaf is not empty then
7 data.trees += leaf
8 end
9 data.SwapLeaf(PartitionTrees(data.trees, AABB(data.trees), False)

10 end
11 end

Let us recall the second assumption we made – most of the dynamic
objects do not overlap or have minimal overlap. If two dynamic trees fall

63

10. k-d tree merging algorithm design and implementation
into the same leaf of the original static tree, and the assumption is they do
not overlap, merging them one by one would have the same disadvantage
as the MergeBSPTrees algorithm, worsening the quality of the final tree.
To alleviate this issue we propose the following algorithm: First, we call
PartitionTreeWithTree for each dynamic tree. This cases some leaves to
have multiple dynamic roots associated with them. We then go over all
leaves that have at least one dynamic root associated with them, store them
for preservation and call the PartitionTrees method on the dynamic roots
together with the static leaf if it is not empty (see Algorithm 12).

[Ele10] mention that the method FindBestPlane used in PartitionTrees
is an equivalent for the same method used when building trees with the exact
split selection. For evaluating the SAH, we need the number of primitives to
the left and to the right of the splitting plane. Keeping track of the number
of primitives in each tree after partitioning them would either require more
computations or more memory. We decided to use our own simple heuristic
that prefers splitting at the tree median where the splitting plane crosses the
least number of trees. For a node B and a splitting plane candidate π, which
crosses o trees and has l trees to the left and r trees to the right, the cost is
calculated as:

C(B, π) = 2 · o · (1 + |l − r|) + o

We choose the split candidate with the lowest cost. The less trees the splitting
plane overlaps and the closer it is to the tree median, the lower the cost.
More weight is put on the number of overlapping trees, because we think it
is more important.

The presented algorithm merges the static tree with trees built over dynamic
objects and takes advantage of the PartitionTrees algorithm from [Ele10],
all while preserving the static tree so that it can be restored back to its
original form.

10.3 Merging on the GPU

[Ele10] mention trying another algorithm: inserting primitives from dynamic
objects into static leaves and subdividing further whenever needed. They
state that it was too slow, so they abandoned it. We suggest that it would
be well suited for GPUs, because of its potential for being parallelised.

Let us assume we have built the static tree. First, we need to associate
each dynamic primitive with all static tree leaves it intersects (intersect with
leaf = intersect with the bounding box associated with that leaf). All such
primitives need to be put into lists, one list per leaf. This can be performed
in parallel and there are two methods of computation. The first method is
that each thread takes a leaf and iterates over all primitives, saving primitives
that intersect with the leaf to a list owned by the thread. This method has
linear time complexity and all threads must iterate over all primitives, even
for leaves with which no primitives intersect.

64

.................................10.3. Merging on the GPU

The second method is that each thread takes a primitive and traverses the
tree to determine which static tree leaves the primitive intersects. This method
has expected logarithmic time complexity if we assume the primitives intersect
with a constant number of leaves. There are also no wasted computations, as
all primitives must intersect at least one leaf. The issue with this method
is that it requires synchronisation. When two threads determine that their
primitives belong in the same leaf, they need to avoid a data race.

Next, we need to build a tree for each static tree leaf that does not have an
empty list of dynamic primitives. Let us call such leaves marked leaves. This
part is solved easily with the use of the GPU task pool. For each marked
leaf, we first add the static primitives that belong to it to the list of dynamic
primitives associated with the leaf. We also store the original leaf so that
it can be restored later. We then create a task for each marked leaf in the
task pool. The tasks are created in the same way as in the normal building
process, we just start with multiple tasks and each task has the appropriate
leaf node set as the root.

After processing the whole task pool, the algorithm is complete. After
rendering the image, we can restore the static tree from the stored leaves.

65

66

Chapter 11
Results

The application was tested with the implemented algorithms and the per-
formance and other statistics were measured. In this chapter, we present the
hardware used to test the application and the test results.

11.1 Hardware

.OS: Windows 10 Pro, 22H2. RAM: 32 GB, 2400 Mhz. CPU:.AMD Ryzen 5 5600 6-core. Base frequency: 3.50 GHz. L1 cache: 384 KB. L2 cache: 3 MB. L3 cache: 32 MB.GPU:. NVIDIA GeForce RTX 4080. Dedicated GPU memory: 16 GB. Base clock speed: 2205 MHz.Architecture: Ada Lovelace. Compute capability: 8.9. Streaming Multiprocessors: 76. L1 cache (per SM): 128 KB. L2 cache: 64 MB. Compilation:. C++ compiler: MSVC cl.exe. Cuda Toolkit version: 12.6. Configuration: x64 Release

67

11. Results.......................................
11.2 Statistics

For testing, we need to save various measurements and later compute statistics
from them. The statistics could be processed by the same application that
creates them or by a separate application. Since we think Python is better
suited for data processing and analysis than C++, we decided to choose the
second approach.

To create measurements that could be processed by another application,
we save them in JSON files with a .stats extension. The statistics file is a
JSON object with two root keys: info and data. Both are JSON objects with
keys that represent the name of the measurement. Saving measurements is
performed by interacting with the TableStatistics class in C++ code. When
a measurement is saved to data, it is added to a list (JSON array) of values,
from which we can then take averages, medians, etc. When it is saved to
info, only the first input value for a specific key is added. We also wanted to
allow running the application multiple times while using the same statistics
file. Instead of overwriting it, if the specified config file exists, it is opened,
parsed, and the values are used as the initial values for the TableStatistics
class. This way, the data from the previous run are not lost, but extended.

To automatically process the statistics and make testing easier, we imple-
mented three helper scripts using Python. Script create_benchmark_configs.py
has methods to generate different configurations based on a template config.
Script TableUtil.py has classes and methods for retrieving values from statist-
ics files and creating tables from them. Script benchmarker.py has methods
for running tests using the generated configs. table_maker.py has dictionaries
to retrieve and calculate specific statistics using TableUtil and methods to
create tables from the results of the benchmarker script.

11.3 Testing

Testing was performed on ten static scenes and five dynamic scenes, where one
dynamic scene has three variations. Four of the static scenes are the dynamic
scenes with dynamic objects removed. The only exception is the FairyForest
scene, where the whole scene is dynamic, so the static version of the scene
consists of the first animation frame. Animation is achieved by using morph
animations and InterpolateTransform components. InterpolateTransform
takes the original transform the object started with and a target transform
and interpolates between them.

Each test consisted of running the application two times for 20 frames
without GUI with 3840×2160 resolution, for a total of 40 frames. Because
we feel that 40 frames is not enough to adjust for external influences, such as
OS scheduling, we chose to take the median as the final value of time-related
statistics. The scenes were shaded using primitive normals and material
colours, without textures, and with differing numbers of lights (mostly two
to three lights).

68

...................................... 11.3. Testing

Each test is represented by a global configuration file. Each scene also has
its own configuration file, with a custom R (see Section 9.3) and nmax (see
Section 9.2). The configurations with building algorithms use a GPU ray
tracer with the short-stack with push-down traversal algorithm. k-d trees
built on the CPU were transferred to the GPU before ray tracing.

11.3.1 Static scenes

Figure 11.1 Renders of static scenes. From left to right: Bistro, Buddha,
Conference, Fairy forest, Field, Power plant, San Miguel, Sibenik, Sponza,
Street.

Both CPU implementations with exact and approximate split selection
and the GPU implementation were tested on each static scene. The different
traversal algorithms were also tested on each scene. We present some of the
results in this subsection in the form of graphs, but all statistics, including
some not mentioned, and their values, can be found in Appenix D.1 in the
form of tables. Each set of tables has a caption at the top of the page with
the scene name and some common statistics. For the final renders for each
scene, see Figure 11.1.

The following is a list of configurations with explanations for each configur-
ation name:.CPU exact: exact split selection algorithm on the CPU.CPU approx: approximate split selection (binning) algorithm on the

CPU.GPU approx: approximate split selection (binning) algorithm on the
GPU. Stack: stack-based traversal algorithm.Restart: kd-restart traversal algorithm.PushDown: push-down traversal algorithm.RestartShortStack: short-stack traversal algorithm with kd-restart,
stack capacity in parentheses.PushDownShortStack: short-stack traversal algorithm with push-
down, stack capacity in parentheses

69

11. Results.......................................

Figure 11.2 Comparison of costs of the algorithms with exact and approximate
split selection

We can draw several conclusions based on the results. The algorithm with
exact split selection has better cost then the approximate split selection in all
scenes, but surprisingly does not always have better ray tracing performance
(see Figure 11.2 and Figure 11.3). The approximate split selection algorithm on
the CPU and on the GPU have similar tree statistics, but they are not identical.
The difference can be introduced when performing computations with floating
point numbers in parallel. Due to rounding errors, some operations, such
as addition and multiplication, lose their associative property under those
circumstances (see tables in Appenix D.1).

The build performance of the GPU algorithm is significantly better than
that of the CPU algorithms (see Figure 11.4). Because we expect the GPU
algorithm to have some performance overhead, which should be more notice-

70

...................................... 11.3. Testing

Figure 11.3 Comparison of ray tracing performance of the algorithms with exact
and approximate split selection

able in smaller scenes, we divided the time statistics based on the number of
primitives in the scene. In large scenes (more than one million primitives), the
GPU building algorithm is at least 38× faster, and at most 53× faster than
the CPU building algorithm with approximate split selection. On small scenes,
it is at least 15×, and at most 36× faster, which confirms our hypothesis. We
also included statistics for the time it took to complete processing the task
pool, because that is the most optimised part of the algorithm. As we can
see from Figure 11.5, the task pool takes about half of the total build time.
The total time includes operations like copying nodes after the tree is built,
and transforming them from build nodes to tree nodes (see Section 9.7). This
suggests that the GPU algorithm could be noticeably improved by optimising
node copying.

71

11. Results.......................................

(a) Build times for small scenes (b) Build times for large scenes

Figure 11.4 Comparison of build times for the CPU and GPU algorithms, both
using approximate split selection. The left graph is for scenes with less than a
million primitives, the right is for the rest.

The k-d trees built on the GPU take up more memory than the ones built
on the CPU, which can be seen in Figure 11.6. The presented amounts of
memory do not include the total amount of memory needed for building
the tree (for example the memory needed for cached bounding boxes and
classification arrays), which is much higher. For example, to build the Power
plant scene with more than 12 million primitives, we needed to allocate 2 GB
for the primitive memory pool (which stores primitive references) and 8 GB
for the data memory pool (which stores other data, such as the bounding
boxes, additional task pools, build nodes, etc.).

The performance of the different traversal algorithms can be seen in Fig-
ure 11.7. The stack-based traversal has the worst performance across the
board, presumably because the stack was located in global memory. The
short-stack traversal algorithms have better performance with lower stack
capacities, even though the number of traversal steps is higher (see tables
in Appenix D.1). Based on the results, we cannot decide which traversal
algorithm is the best, as both the stackless and the short-stack traversal
algorithms were the fastest for some scenes.

72

...................................... 11.3. Testing

Figure 11.5 Comparison of the total build time of the GPU algorithm and the
time it took for the task pool to finish

73

11. Results.......................................

Figure 11.6 Comparison of the memory consumption of the CPU and GPU
algorithms using approximate split selection

74

...................................... 11.3. Testing

Figure 11.7 Comparison of the ray tracing performance for the different traversal
algorithms. Only the stackless and short-stack traversal algorithms with push-
down and stack capacity of four are displayed.

75

11. Results.......................................
11.3.2 Dynamic scenes

Figure 11.8 Renders of dynamic scenes. From left to right: Bistro, Fairy forest,
Field, Street, and Sibenik with one, two and three dynamic objects.

The dynamic scenes were used to test the k-d tree merging implementation.
We have only implemented the CPU algorithm. For comparison, we have also
included the CPU exact split selection and the GPU binning implementations.
We also tested building the whole tree versus building a separate k-d trees
for the static and dynamic objects. The Sibenik scene was tested with one,
two, and three dynamic objects to determine the effect of varying the number
of objects on the tree build times and quality. Once again, some results are
presented in the form of graphs, but the complete results can be found in
Appenix D.1. For the final renders, see Figure 11.8.

The setup was the same as for the static scenes, only with different config-
uration files. The following is a list of configurations used for dynamic scene
testing with explanations for each configuration name..CPU single: approximate split selection algorithm on the CPU, k-d

tree rebuilt each frame for the whole scene.CPU both: static tree built using exact split selection, dynamic tree
built using approximate split selection, both on the CPU.CPU merge: static tree built using exact split selection, dynamic trees
built using approximate split selection and merged into the static tree
on the CPU.GPU single: approximate split selection algorithm on the GPU, k-d
tree rebuilt each frame for the whole scene.GPU both: static tree and dynamic tree built using exact split selection
separately on the GPU

As we can see from Figure 11.9, Figure 11.10, and Figure 11.11, the merging
algorithm is never better in our tests than building two separate trees for
the static and dynamic part of the scene. Although building two separate
trees means traversing two trees instead of one, the performance is not much
different than when traversing a single tree. The total time to render a frame

76

...................................... 11.3. Testing

Figure 11.9 Comparison of build times of the merging algorithm and the build
times of the standard algorithms for only the dynamic part of the scene

is about two times lower than when rebuilding the whole tree, which could
be improved by further optimising the merging algorithm, but it does not
seem better than building two separate trees. The merging times also depend
on the number of dynamic objects. Adding a dynamic object increases the
total time to render a frame by around 10% for the merging algorithm, and
by around 50% for the algorithm with two trees, which means that with
increased number of dynamic objects, the merging algorithm might get better
results.

77

11. Results.......................................

Figure 11.10 Comparison of ray tracing performance for all dynamic scene
configurations

78

...................................... 11.3. Testing

Figure 11.11 Comparison of total time it took to render a frame for all dynamic
scene configurations

79

80

Chapter 12
Conclusion

The goal of this thesis was to study, implement, and test algorithms for
building and traversing k-d trees to accelerate ray tracing. First, an overview
of the theory related to the discussed topics was provided. Then, a study of
existing solutions for building and traversing k-d trees was presented, focused
on parallel algorithms. The analysis of the existing solutions concluded with
proposing one GPU algorithm for building k-d trees and selecting two CPU
k-d tree building algorithms for comparison with the parallel algorithm. It
was decided that the GPU algorithm should run entirely on the GPU and
therefore a task pool with persistent warps was chosen as the main component
of the algorithm.

Then, an application framework was proposed to provide a basis for imple-
menting the proposed algorithms. The application was designed as a game
engine with support for debugging and visualising ray tracing algorithms,
with the intention of providing an environment for their implementation and
testing with extensive flexibility.

Next, the design and implementation of the proposed algorithm for building
k-d trees on the GPU were thoroughly examined. The algorithm utilises a
task pool to build nodes, and uses binning to evaluate the cost function. An
algorithm for merging k-d trees was also proposed. It is aware of the existence
of a static k-d tree that is assumed to be considerably larger than any k-d
trees built over dynamic objects and that does not change over time. It is
designed to preserve this static tree when merging all trees into a single tree
and restore it to its original form, so that the static tree can be used again
without the need to rebuild it. An algorithm for merging k-d trees on the
GPU was also proposed, but not implemented.

Finally, the implemented algorithms were tested and compared. Our
implementation of the GPU building algorithm was proven to be significantly
faster than the CPU implementations. The main drawback is the amount of
memory needed to build the k-d tree on the GPU, which could be improved
with a more sophisticated dynamic memory allocator. The algorithm still
has more potential, as the build time itself, signified by the time needed to
process the task pool, is around two times lower than the total build time.
The algorithm is also scalable, with better speed-ups for larger scenes.

81

12. Conclusion
The specialised traversal algorithms were proven to be better than the stack

algorithm, although we could not determine which of them is the best. The
k-d tree merging algorithm was discovered to be a valid option for dynamic
scenes, but not the best one in our tests.

82

Bibliography

[Adv] I. Advanced Micro Devices. HIP documentation. url: https:
//rocm.docs.amd.com/projects/HIP/en/latest/ (visited on
03/01/2024).

[AL09] T. Aila and S. Laine. ‘Understanding the efficiency of ray traversal
on GPUs’. In: Proceedings of the Conference on High Performance
Graphics 2009. HPG ’09. New Orleans, Louisiana: Association for
Computing Machinery, 2009, pp. 145–149. isbn: 9781605586038.

[AR14] S. Akl and W. Rheinboldt. Parallel Sorting Algorithms. Notes and
reports in computer science and applied mathematics. Academic
Press, Inc., 2014. isbn: 9781483268088.

[Ans22] R. Ansorge. Programming in Parallel with CUDA: A Practical
Guide. Cambridge University Press, 2022. isbn: 9781108855273.
doi: 10.1017/9781108855273.

[Ben75] J. L. Bentley. ‘Multidimensional Binary Search Trees Used for
Associative Searching’. In: Commun. ACM 18.9 (1975), pp. 509–
517. issn: 0001-0782. doi: 10.1145/361002.361007.

[CSI15] B. Chang, W. Seo and I. Ihm. ‘On the efficient Implementation of
a real-time kd-tree construction algorithm’. In: GPU Computing
and Applications (2015), pp. 207–219.

[CKL10] B. Choi et al. ‘Parallel SAH K-D Tree Construction’. In: Proceed-
ings of the Conference on High Performance Graphics. HPG ’10.
Saarbrucken, Germany: Eurographics Association, 2010, pp. 77–
86.

[Cop95] J. O. Coplien. ‘Curiously recurring template patterns’. In: C++
Rep. 7.2 (Feb. 1995). issn: 1040-6042.

[Cor] N. Corporation. CUDA C++ Programming Guide. url: https:
/ / docs . nvidia . com / cuda / cuda - c - programming - guide /
index.html (visited on 18/12/2024).

[DPS10] P. Danilewski, S. Popov and P. Slusallek. Binned SAH Kd-Tree
Construction on a GPU. Tech. rep. Saarland University, Computer
Graphics Lab, June 2010.

83

https://rocm.docs.amd.com/projects/HIP/en/latest/
https://rocm.docs.amd.com/projects/HIP/en/latest/
https://doi.org/10.1017/9781108855273
https://doi.org/10.1145/361002.361007
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

12. Conclusion
[Ele10] E. Eleftheriades. ‘Accelerating ray tracing for dynamic scenes

using kd-tree merging’. Bachelor thesis. University of Cyprus,
2010.

[FS05] T. Foley and J. Sugerman. ‘KD-tree acceleration structures for a
GPU raytracer’. In: Proceedings of the ACM SIGGRAPH/EURO-
GRAPHICS Conference on Graphics Hardware. HWWS ’05. Los
Angeles, California: Association for Computing Machinery, 2005,
pp. 15–22. isbn: 1595930868. doi: 10.1145/1071866.1071869.

[GS87] J. Goldsmith and J. Salmon. ‘Automatic Creation of Object
Hierarchies for Ray Tracing’. In: IEEE Computer Graphics and
Applications 7.5 (1987), pp. 14–20. doi: 10.1109/MCG.1987.
276983.

[Hav00] V. Havran. ‘Heuristic ray shooting algorithms’. PhD thesis. Czech
Technical University in Prague, 2000.

[HHS23] P. Hijma, S. Heldens, A. Sclocco, B. van Werkhoven and H. E.
Bal. ‘Optimization Techniques for GPU Programming’. In: ACM
Comput. Surv. 55.11 (Mar. 2023). issn: 0360-0300. doi: 10.1145/
3570638.

[HSH07] D. R. Horn, J. Sugerman, M. Houston and P. Hanrahan. ‘Inter-
active k-d tree GPU raytracing’. In: Proceedings of the 2007 Sym-
posium on Interactive 3D Graphics and Games. I3D ’07. Seattle,
Washington: Association for Computing Machinery, 2007, pp. 167–
174. isbn: 9781595936288. doi: 10.1145/1230100.1230129.

[KNP13] Y.-S. Kang, J.-H. Nah, W.-C. Park and S.-B. Yang. ‘gkDtree: A
group-based parallel update kd-tree for interactive ray tracing’.
In: Journal of Systems Architecture 59.3 (2013), pp. 166–175. issn:
1383-7621. doi: https://doi.org/10.1016/j.sysarc.2011.
06.003.

[LDG17] Z. Li, Y. Deng and M. Gu. ‘Path Compression Kd-Trees with
Multi-Layer Parallel Construction a Case Study on Ray Tracing’.
In: Proceedings of the 21st ACM SIGGRAPH Symposium on
Interactive 3D Graphics and Games. I3D ’17. San Francisco,
California: Association for Computing Machinery, 2017. isbn:
9781450348867. doi: 10.1145/3023368.3023382.

[MB90] D. J. MacDonald and K. S. Booth. ‘Heuristics for ray tracing using
space subdivision’. In: Vis. Comput. 6.3 (May 1990), pp. 153–166.
issn: 0178-2789. doi: 10.1007/BF01911006.

[MGM11] A. Munshi, B. Gaster, T. G. Mattson, J. Fung and D. Ginsburg.
OpenCL Programming Guide. 1st. Addison-Wesley Professional,
2011. isbn: 0321749642.

[Ngu07] H. Nguyen. GPU Gems 3. Addison-Wesley Professional, 2007.
Chap. 39. isbn: 9780321545428. doi: 10.5555/1407436.

84

https://doi.org/10.1145/1071866.1071869
https://doi.org/10.1109/MCG.1987.276983
https://doi.org/10.1109/MCG.1987.276983
https://doi.org/10.1145/3570638
https://doi.org/10.1145/3570638
https://doi.org/10.1145/1230100.1230129
https://doi.org/https://doi.org/10.1016/j.sysarc.2011.06.003
https://doi.org/https://doi.org/10.1016/j.sysarc.2011.06.003
https://doi.org/10.1145/3023368.3023382
https://doi.org/10.1007/BF01911006
https://doi.org/10.5555/1407436

...................................... 12. Conclusion

[SSK07] M. Shevtsov, A. Soupikov and A. Kapustin. ‘Highly Parallel Fast
KD-tree Construction for Interactive Ray Tracing of Dynamic
Scenes’. In: Computer Graphics Forum 26.3 (2007), pp. 395–404.
doi: 10.1111/j.1467-8659.2007.01062.x.

[Sol78] H. Solomon. Geometric Probability. CBMS-NSF Regional Confer-
ence Series in Applied Mathematics. Society for Industrial and
Applied Mathematics, 1978. isbn: 9780898710250.

[SBS03] L. Szécsi, B. Benedek and L. Szirmay-Kalos. ‘Accelerating anim-
ation through verification of shooting walks’. In: Proceedings of
the 19th Spring Conference on Computer Graphics. SCCG ’03.
Budmerice, Slovakia: Association for Computing Machinery, 2003,
pp. 231–238. isbn: 158113861X. doi: 10.1145/984952.984990.

[TPK16] M. Tillmann, P. Pfaffe, C. Kaag and W. F. Tichy. ‘Online-
Autotuning of Parallel SAH kD-Trees’. In: 2016 IEEE Inter-
national Parallel and Distributed Processing Symposium (IPDPS).
2016, pp. 628–637. doi: 10.1109/IPDPS.2016.31.

[Vin14] M. Vinkler. ‘Construction of Acceleration Data Structures for
Ray Tracing’. PhD thesis. Masarykova univerzita, 2014.

[VHB16] M. Vinkler, V. Havran and J. Bittner. ‘Performance Comparison
of Bounding Volume Hierarchies and Kd-Trees for GPU Ray
Tracing’. In: Computer Graphics Forum 35.8 (2016), pp. 68–79.
doi: 10.1111/cgf.12776.

[WH06] I. Wald and V. Havran. ‘On building fast kd-trees for ray tracing,
and on doing that in O (N log N)’. In: 2006 IEEE Symposium on
Interactive Ray Tracing. IEEE. 2006, pp. 61–69.

[WGD14] Y. Wang, P. Guo and F. Duan. ‘A fast ray tracing algorithm based
on a hybrid structure’. In: Multimedia Tools and Applications 75.4
(2014), pp. 1883–1898. issn: 1573-7721. doi: 10.1007/s11042-
014-2378-3.

[Whi80] T. Whitted. ‘An improved illumination model for shaded display’.
In: Commun. ACM 23.6 (June 1980), pp. 343–349. issn: 0001-
0782. doi: 10.1145/358876.358882.

[Wika] Wikipedia. Composition over inheritance. url: https://en.
wikipedia.org/wiki/Composition_over_inheritance (vis-
ited on 03/01/2024).

[Wikb] Wikipedia. Composition over inheritance. url: https://en.
wikipedia.org/wiki/Morph_target_animation (visited on
03/01/2024).

[Wol18] D. Wolff. OpenGL 4 Shading Language Cookbook: Build high-
quality, real-time 3D graphics with OpenGL 4.6, GLSL 4.6 and
C++17, 3rd Edition. Packt Publishing, 2018. isbn: 9781789342253.

85

https://doi.org/10.1111/j.1467-8659.2007.01062.x
https://doi.org/10.1145/984952.984990
https://doi.org/10.1109/IPDPS.2016.31
https://doi.org/10.1111/cgf.12776
https://doi.org/10.1007/s11042-014-2378-3
https://doi.org/10.1007/s11042-014-2378-3
https://doi.org/10.1145/358876.358882
https://en.wikipedia.org/wiki/Composition_over_inheritance
https://en.wikipedia.org/wiki/Composition_over_inheritance
https://en.wikipedia.org/wiki/Morph_target_animation
https://en.wikipedia.org/wiki/Morph_target_animation

12. Conclusion
[WZL11] Z. Wu, F. Zhao and X. Liu. ‘SAH KD-Tree Construction on GPU’.

In: Proceedings of the ACM SIGGRAPH Symposium on High
Performance Graphics. HPG ’11. Vancouver, British Columbia,
Canada: Association for Computing Machinery, 2011, pp. 71–78.
isbn: 9781450308960. doi: 10.1145/2018323.2018335.

[ZHW08] K. Zhou, Q. Hou, R. Wang and B. Guo. ‘Real-Time KD-Tree
Construction on Graphics Hardware’. In: ACM Trans. Graph.
27.5 (2008). issn: 0730-0301. doi: 10.1145/1409060.1409079.

[ZM11] P. Zhou and X. Meng. ‘SAH Based KD Tree Construction on
Hybrid Architecture’. In: 2011 Workshop on Digital Media and
Digital Content Management. 2011, pp. 185–189. doi: 10.1109/
DMDCM.2011.14.

86

https://doi.org/10.1145/2018323.2018335
https://doi.org/10.1145/1409060.1409079
https://doi.org/10.1109/DMDCM.2011.14
https://doi.org/10.1109/DMDCM.2011.14

Appendix A
Attachment list

Attachments:. source.zip - Full project source code (CMake project and Python scripts)
with a link to a gitlab repository with the latest version of the project
and other documents. imgs.zip - Full scale (4k) renders of the test scenes. scenes.zip - Four smaller scenes (static Conference, Sibenik and Sponza,
and all three versions of the dynamic Sibenik) with a link to the rest of
the test scenes.manual.pdf - Manual describing how to build and use the project (also
included in Appenix B)

87

88

Appendix B
Manual

The project is meant to be portable, but was tested only on Windows 10.
The following information is therefore mainly for Windows users.

B.1 Build instructions

First, we assume the following prerequisites have been fulfilled:. Installed CMake version ≥ 3.25.2. Installed package manager compatible with CMake for the current OS
(we used vcpkg on Windows). NVIDIA GPU with compatible compute capability. C++ compiler, CUDA Toolkit 12.6

To build the project, follow these instructions:..1. Download and unpack source.zip...2. Use a program such as Visual Studio Code to open the directory
ProperRaytracer...3. Select a configuration: Debug for an unoptimised build with debug info,
RelWithDbgInfo for an optimised build with debug info, or Release for
an optimised build...4. Build the project using CMake.

B.2 Usage instructions

After building the CMake project, the application executable should be
located in the build folder, called ProperRaytracer.exe. The application takes
several arguments, with a mandatory scene name argument that specifies the
scene to start on. Scenes, configs, models, and other assets can be provided
with both an absolute path, or a path relative to the Assets folder. The

89

B. Manual
Assets folder next to the project source code is copied to the current build
folder on each build.

When no arguments are provided to the application or the -h/--help argu-
ment is provided, the list of arguments with descriptions of what they do is
printed to the console. We refer the reader to this list for more information
on arguments.

The main feature of the application is viewing scenes and testing imple-
mented ray tracers. Scenes are in the JSON format and can be created and
edited manually. There is a simple test scene with some test objects in the
project’s Assets folder. The scenes used for testing are attached in a separate
file (scenes.zip). The description of all implemented components and other
scene properties is beyond the scope of this manual, but can be deduced from
reading the commented source code.

After starting the application, the scene is loaded and displayed. All
attached scenes have the camera movement component. Hold the right mouse
button and use WASD for horizontal movement, Space and CTRL for vertical
movement (relative to the orientation of the camera). Use Shift to double
the speed. Speed and look sensitivity can be modified in the scene files.

If opened in the OpenGL mode, the frame tracer window can be used to
pause the scene and run the current ray tracer. The built data structure can
then be viewed using the Structure navigator window, if the StructureNav-
igator component is in the scene. If opened in the Raytracing mode, the
application will build the specified data structure and ray trace the scene
automatically.

Configs used for testing are located in the StaticBenchmarks and Dy-
namicBenchmarks folders in next to the test scenes. To run the tests, run
benchmarker.py with the correct build path set in the script.

90

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

492304 Personal ID number: Papay Robert Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Computer Graphics and Interaction

Open Informatics Study program:

Computer Graphics Specialisation:

II. Master’s thesis details

Master’s thesis title in English:

Efficient ray tracing algorithms exploiting kd-trees on a GPU

Master’s thesis title in Czech:

Efektivní algoritmy s využitím kd-stromů pro vrhání paprsků na GPU

Guidelines:

Study the literature on building and using data structures on a graphics accelerator for ray tracing with a focus on
parallelization of computation and kd-trees. Implement and compare efficient kd-tree traversal algorithms on a set of 3D
test scenes of varying size and spatial distribution. Next, study the fast algorithms for building a kd-tree on the GPU.
Implement and test the selected algorithms for at least ten test scenes with the number of triangles from 100K to about
100M.
Then, address the algorithms for merging two or more kd-trees into one kd-tree and the reverse operation of removing an
already inserted kd-tree. Test implementations of these algorithms on the CPU, and then transfer them to the GPU. Test
the applicability of kd-tree merging for simple dynamic scenes with one or more objects with triangle counts of 1K to 50K.
Measure the time and memory requirements of the kd-tree construction, traversal, and merging algorithms for at least 5
test scenes containing animation.
For implementation on the GPU, use the NVIDIA CUDA language, or a language described by the OpenCL standard, or
another suitable programming language in the form of a common API exploiting these languages, such as HIP/SYCL.

Bibliography / sources:

1) Zhou et al.: Real-Time KD-Tree Construction on Graphics Hardware,
SIGGRAPH ASIA 2008 and references to this paper.
2) M. Vinkler: Construction of Acceleration Data Structures for Ray Tracing, PhD thesis, Masaryk University 2014.
https://is.muni.cz/th/w0k6h/? kod=PV204
3) D. Horn, J. Sugerman, M. Houston, P. Hanrahan, Interactive k-D Tree GPU Raytracing, 2007.
4) Z. Wu, F. Zhao, X. Liu: SAH KD-tree construction on GPU, HPG 2011.
5) S. Chung, M. Choi M, D. Youn D and S. Kim S. (2019). Comparison of BVH and KD-Tree for the GPGPU Acceleration
on Real Mobile Devices. Frontier Computing. 10.1007/978-981-13-3648-5_62. (535-540).
6) X. Liang X, H. Yang, Y. Zhang, J. Yin J and Y. Cao (2016). Efficient kd-tree construction for ray tracing using ray
distribution sampling. Multimedia Tools and Applications. 75:23. (15881-15899).
Další literaturu dodá vedoucí práce.

© ČVUT v Praze, Design: ČVUT v Praze, VIC Page 1 from 2 CVUT-CZ-ZDP-2015.1

Appendix C
Assignment translation

91

92

Appendix D
Tables

This appendix contains all tables made from the testing statistics. The
following is a list of statistics used in the tables and their full description:.NS : Total count of static primitives in the scene.ND: Total count of dynamic primitives in the scene.NQ: Total count of queries (rays).Nn: Total count of nodes in the k-d tree(s). RI2L: Ratio of inner nodes to leaf nodes. RE : Ratio of leaves with primitives to empty leaves.NAP : Average count of primitives in a leaf.NMP : Maximum count of primitives in a leaf.DAV G: Average depth of the k-d tree(s).DMAX : Maximum depth of the k-d tree(s). C: Cost of the tree according to the full cost model.NIT : Average count of intersections per ray.NT R: Average count of traversal steps per ray. TB,S : Total amount of time needed to build the static k-d tree, including

creating instances, copying nodes, etc.. TB,D: Total amount of time needed to build the dynamic k-d tree. TT P : Time taken for the task pool to finish. PERF : Ray tracing performance in mega rays per second (MR = mega
ray). TQ: Average time taken to finish tracing a ray. TF : Average time taken to build the data structure and finish rendering
the scene

93

D. Tables
D.1 Static scenes

Bistro (NS = 3878729, NQ : 24602534, DMAX = 29)

Config Nn RI2L RE NAP NMP DAV G C

CPU exact 3740437 1.00 10.47 9.74 464 26.50 480.11
CPU approx 4171557 1.00 8.29 9.67 439 26.64 494.78
GPU approx 4171171 1.00 8.29 9.67 439 26.63 494.70

Table D.1 Bistro scene k-d tree statistics

Config TB,D (ms) TT P (ms) NR (·10−6) NSR (·10−6) M (MB)
CPU exact 61750.53 — — — 411.064
CPU approx 45133.57 — — — 456.219
GPU approx 837.59 413.21 11.483 9.785 818.211

Table D.2 Bistro scene k-d tree build statistics

Config PERF (MR/s) TQ (ns) NIT NT R TF (s)
CPU exact 56.57 17.68 183.58 224.18 62.19
CPU approx 59.48 16.81 195.13 239.69 45.55
GPU approx 91.82 10.89 195.11 239.67 1.11

Table D.3 Bistro scene ray tracing statistics

Config PERF (MR/s) TQ (ns) NIT NT R

Stack 22.48 44.48 195.10 225.79
Restart 113.16 8.84 195.10 834.95
PushDown 115.65 8.65 195.11 766.18
RestartShortStack (4) 92.47 10.81 195.11 241.88
RestartShortStack (8) 69.56 14.38 195.11 226.52
PushDownShortStack (4) 91.33 10.95 195.11 239.67
PushDownShortStack (8) 67.76 14.76 195.11 226.46

Table D.4 Bistro traversal algorithm statistics

94

.................................... D.1. Static scenes

Buddha (NS = 1087474, NQ : 9653466, DMAX = 27)

Config Nn RI2L RE NAP NMP DAV G C

CPU exact 753815 1.00 5.50 4.51 41 21.23 410.48
CPU approx 1998349 1.00 4.10 4.17 55 23.65 426.78
GPU approx 1998265 1.00 4.10 4.17 55 23.65 426.80

Table D.5 Buddha scene k-d tree statistics

Config TB,D (ms) TT P (ms) NR (·10−6) NSR (·10−6) M (MB)
CPU exact 8756.46 — — — 51.339
CPU approx 15092.81 — — — 130.692
GPU approx 342.71 152.17 1.405 4.237 311.510

Table D.6 Buddha scene k-d tree build statistics

Config PERF (MR/s) TQ (ns) NIT NT R TF (s)
CPU exact 99.39 10.06 9.80 26.87 8.85
CPU approx 81.84 12.22 10.09 29.67 15.21
GPU approx 723.06 1.38 10.09 29.67 0.36

Table D.7 Buddha scene ray tracing statistics

Config PERF (MR/s) TQ (ns) NIT NT R

Stack 237.19 4.22 10.09 28.63
Restart 781.04 1.28 10.09 96.47
PushDown 836.12 1.20 10.09 79.94
RestartShortStack (4) 647.12 1.55 10.09 30.13
RestartShortStack (8) 557.86 1.79 10.09 28.66
PushDownShortStack (4) 651.91 1.53 10.09 29.67
PushDownShortStack (8) 552.04 1.81 10.09 28.65

Table D.8 Buddha traversal algorithm statistics

95

D. Tables
Conference (NS = 124619, NQ : 24883200, DMAX = 23)

Config Nn RI2L RE NAP NMP DAV G C

CPU exact 337411 1.00 4.03 2.98 101 21.58 147.96
CPU approx 335355 1.00 2.98 3.44 123 21.58 154.03
GPU approx 336283 1.00 2.98 3.44 123 21.58 153.96

Table D.9 Conference scene k-d tree statistics

Config TB,D (ms) TT P (ms) NR (·10−6) NSR (·10−6) M (MB)
CPU exact 2722.47 — — — 18.843
CPU approx 1945.62 — — — 19.972
GPU approx 129.24 28.41 0.219 0.712 177.437

Table D.10 Conference scene k-d tree build statistics

Config PERF (MR/s) TQ (ns) NIT NT R TF (s)
CPU exact 213.68 4.68 15.41 51.16 2.84
CPU approx 286.12 3.49 16.22 58.00 2.03
GPU approx 923.18 1.08 16.14 58.13 0.16

Table D.11 Conference scene ray tracing statistics

Config PERF (MR/s) TQ (ns) NIT NT R

Stack 240.06 4.17 16.14 56.06
Restart 773.57 1.29 16.14 172.10
PushDown 944.86 1.06 16.14 131.77
RestartShortStack (4) 939.31 1.06 16.14 58.65
RestartShortStack (8) 613.96 1.63 16.14 56.11
PushDownShortStack (4) 932.11 1.07 16.14 58.13
PushDownShortStack (8) 600.68 1.66 16.14 56.10

Table D.12 Conference traversal algorithm statistics

96

.................................... D.1. Static scenes

FairyForest (NS = 174117, NQ : 24883194, DMAX = 23)

Config Nn RI2L RE NAP NMP DAV G C

CPU exact 355597 1.00 2.93 3.35 161 21.79 143.98
CPU approx 445717 1.00 2.85 3.22 138 21.64 144.58
GPU approx 445751 1.00 2.85 3.22 138 21.64 144.41

Table D.13 FairyForest scene k-d tree statistics

Config TB,D (ms) TT P (ms) NR (·10−6) NSR (·10−6) M (MB)
CPU exact 3008.70 — — — 20.905
CPU approx 2598.70 — — — 25.757
GPU approx 143.95 36.37 0.323 0.936 186.027

Table D.14 FairyForest scene k-d tree build statistics

Config PERF (MR/s) TQ (ns) NIT NT R TF (s)
CPU exact 176.03 5.68 11.64 52.94 3.15
CPU approx 207.43 4.82 10.83 58.64 2.72
GPU approx 997.78 1.00 10.81 58.70 0.17

Table D.15 FairyForest scene ray tracing statistics

Config PERF (MR/s) TQ (ns) NIT NT R

Stack 254.28 3.93 10.81 56.87
Restart 845.45 1.18 10.81 161.07
PushDown 945.97 1.06 10.81 138.03
RestartShortStack (4) 1029.84 0.97 10.81 59.04
RestartShortStack (8) 650.53 1.54 10.81 56.91
PushDownShortStack (4) 1020.29 0.98 10.81 58.70
PushDownShortStack (8) 643.83 1.55 10.81 56.91

Table D.16 FairyForest traversal algorithm statistics

97

D. Tables
Field (NS = 3669924, NQ : 19286028, DMAX = 29)

Config Nn RI2L RE NAP NMP DAV G C

CPU exact 4247837 1.00 2.34 9.70 755 26.91 315.52
CPU approx 4277555 1.00 2.13 9.86 825 26.93 328.92
GPU approx 4278041 1.00 2.13 9.86 825 26.93 328.82

Table D.17 Field scene k-d tree statistics

Config TB,D (ms) TT P (ms) NR (·10−6) NSR (·10−6) M (MB)
CPU exact 49109.90 — — — 465.652
CPU approx 31839.25 — — — 474.410
GPU approx 831.98 423.73 10.232 10.387 984.727

Table D.18 Field scene k-d tree build statistics

Config PERF (MR/s) TQ (ns) NIT NT R TF (s)
CPU exact 65.78 15.20 38.89 76.30 49.40
CPU approx 67.64 14.78 40.59 80.97 32.12
GPU approx 252.35 3.96 40.58 80.97 0.91

Table D.19 Field scene ray tracing statistics

Config PERF (MR/s) TQ (ns) NIT NT R

Stack 83.66 11.95 40.58 77.50
Restart 273.10 3.66 40.58 275.96
PushDown 288.39 3.47 40.58 224.73
RestartShortStack (4) 255.54 3.91 40.58 82.21
RestartShortStack (8) 184.11 5.43 40.58 77.71
PushDownShortStack (4) 251.35 3.98 40.58 80.97
PushDownShortStack (8) 178.42 5.60 40.58 77.64

Table D.20 Field traversal algorithm statistics

98

.................................... D.1. Static scenes

Powerplant (NS = 12701147, NQ : 17026812, DMAX = 31)

Config Nn RI2L RE NAP NMP DAV G C

CPU exact 8834903 1.00 9.58 8.13 504 27.99 197.32
CPU approx 10956153 1.00 5.29 9.08 324 28.71 201.84
GPU approx 10955423 1.00 5.29 9.08 324 28.71 201.79

Table D.21 Powerplant scene k-d tree statistics

Config TB,D (ms) TT P (ms) NR (·10−6) NSR (·10−6) M (MB)
CPU exact 132673.95 — — — 857.070
CPU approx 104345.23 — — — 1146.268
GPU approx 2468.47 1265.33 48.031 25.922 1782.876

Table D.22 Powerplant scene k-d tree build statistics

Config PERF (MR/s) TQ (ns) NIT NT R TF (s)
CPU exact 49.26 20.30 110.16 147.70 133.02
CPU approx 46.06 21.71 110.11 158.17 104.71
GPU approx 64.87 15.42 110.04 158.16 2.73

Table D.23 Powerplant scene ray tracing statistics

Config PERF (MR/s) TQ (ns) NIT NT R

Stack 38.92 25.70 110.04 143.18
Restart 112.10 8.92 110.04 594.91
PushDown 113.71 8.79 110.04 575.84
RestartShortStack (4) 65.82 15.19 110.04 158.40
RestartShortStack (8) 64.87 15.41 110.04 144.18
PushDownShortStack (4) 65.88 15.18 110.04 158.16
PushDownShortStack (8) 64.35 15.54 110.04 144.17

Table D.24 Powerplant traversal algorithm statistics

99

D. Tables
SanMiguel (NS = 9963191, NQ : 24883196, DMAX = 30)

Config Nn RI2L RE NAP NMP DAV G C

CPU exact 7318341 1.00 7.40 8.24 494 27.13 560.50
CPU approx 8270597 1.00 6.38 8.36 530 27.34 565.42
GPU approx 8270455 1.00 6.37 8.36 530 27.34 565.35

Table D.25 SanMiguel scene k-d tree statistics

Config TB,D (ms) TT P (ms) NR (·10−6) NSR (·10−6) M (MB)
CPU exact 117197.53 — — — 716.747
CPU approx 82663.75 — — — 817.566
GPU approx 1844.33 890.69 27.925 19.215 1271.952

Table D.26 SanMiguel scene k-d tree build statistics

Config PERF (MR/s) TQ (ns) NIT NT R TF (s)
CPU exact 68.20 14.66 125.95 155.66 117.56
CPU approx 69.05 14.48 125.76 160.06 83.02
GPU approx 129.41 7.73 125.75 160.04 2.04

Table D.27 SanMiguel scene ray tracing statistics

Config PERF (MR/s) TQ (ns) NIT NT R

Stack 35.59 28.10 125.75 152.16
Restart 168.43 5.94 125.75 530.26
PushDown 171.71 5.82 125.75 484.37
RestartShortStack (4) 128.89 7.76 125.75 161.46
RestartShortStack (8) 99.87 10.01 125.75 152.54
PushDownShortStack (4) 128.30 7.79 125.75 160.04
PushDownShortStack (8) 98.54 10.15 125.75 152.48

Table D.28 SanMiguel traversal algorithm statistics

100

.................................... D.1. Static scenes

Sibenik (NS = 75284, NQ : 24883144, DMAX = 22)

Config Nn RI2L RE NAP NMP DAV G C

CPU exact 304177 1.00 4.56 2.02 62 20.30 170.45
CPU approx 381183 1.00 3.09 2.44 54 20.63 180.73
GPU approx 381253 1.00 3.09 2.44 54 20.63 180.63

Table D.29 Sibenik scene k-d tree statistics

Config TB,D (ms) TT P (ms) NR (·10−6) NSR (·10−6) M (MB)
CPU exact 2180.09 — — — 14.655
CPU approx 2131.99 — — — 19.645
GPU approx 128.53 29.99 0.206 0.785 176.644

Table D.30 Sibenik scene k-d tree build statistics

Config PERF (MR/s) TQ (ns) NIT NT R TF (s)
CPU exact 249.92 4.00 15.89 92.51 2.28
CPU approx 229.71 4.35 14.91 100.85 2.24
GPU approx 673.02 1.49 14.91 100.86 0.17

Table D.31 Sibenik scene ray tracing statistics

Config PERF (MR/s) TQ (ns) NIT NT R

Stack 190.26 5.26 14.91 96.44
Restart 458.96 2.18 14.91 312.91
PushDown 546.62 1.83 14.91 260.05
RestartShortStack (4) 682.08 1.47 14.91 102.10
RestartShortStack (8) 420.67 2.38 14.91 96.57
PushDownShortStack (4) 685.03 1.46 14.91 100.86
PushDownShortStack (8) 416.43 2.40 14.91 96.55

Table D.32 Sibenik traversal algorithm statistics

101

D. Tables
Sponza (NS = 262267, NQ : 32845488, DMAX = 24)

Config Nn RI2L RE NAP NMP DAV G C

CPU exact 1050685 1.00 3.67 2.25 63 22.75 251.75
CPU approx 1137767 1.00 3.13 2.54 82 22.84 266.29
GPU approx 1137805 1.00 3.13 2.54 82 22.84 266.01

Table D.33 Sponza scene k-d tree statistics

Config TB,D (ms) TT P (ms) NR (·10−6) NSR (·10−6) M (MB)
CPU exact 8221.02 — — — 52.499
CPU approx 6690.59 — — — 59.485
GPU approx 184.01 83.80 0.737 2.354 233.674

Table D.34 Sponza scene k-d tree build statistics

Config PERF (MR/s) TQ (ns) NIT NT R TF (s)
CPU exact 106.29 9.41 30.66 143.49 8.53
CPU approx 105.98 9.44 34.02 159.62 7.00
GPU approx 286.41 3.49 34.04 159.63 0.30

Table D.35 Sponza scene ray tracing statistics

Config PERF (MR/s) TQ (ns) NIT NT R

Stack 98.03 10.20 34.04 150.15
Restart 250.26 4.00 34.04 530.52
PushDown 259.85 3.85 34.04 489.74
RestartShortStack (4) 294.40 3.40 34.04 160.72
RestartShortStack (8) 194.10 5.15 34.04 150.39
PushDownShortStack (4) 294.06 3.40 34.04 159.63
PushDownShortStack (8) 192.92 5.18 34.04 150.38

Table D.36 Sponza traversal algorithm statistics

102

.................................... D.1. Static scenes

Street (NS = 961430, NQ : 24176866, DMAX = 26)

Config Nn RI2L RE NAP NMP DAV G C

CPU exact 639655 1.00 6.61 7.74 132 24.31 19.40
CPU approx 654381 1.00 4.99 9.37 196 24.48 20.40
GPU approx 654481 1.00 5.00 9.36 196 24.48 20.40

Table D.37 Street scene k-d tree statistics

Config TB,D (ms) TT P (ms) NR (·10−6) NSR (·10−6) M (MB)
CPU exact 9263.74 — — — 60.054
CPU approx 6087.83 — — — 69.967
GPU approx 231.47 68.30 1.148 1.565 260.519

Table D.38 Street scene k-d tree build statistics

Config PERF (MR/s) TQ (ns) NIT NT R TF (s)
CPU exact 99.71 10.03 31.65 67.62 9.51
CPU approx 94.54 10.58 33.11 69.39 6.34
GPU approx 583.60 1.71 33.13 69.40 0.27

Table D.39 Street scene ray tracing statistics

Config PERF (MR/s) TQ (ns) NIT NT R

Stack 142.04 7.04 33.12 67.38
Restart 542.52 1.84 33.12 212.27
PushDown 599.05 1.67 33.12 169.92
RestartShortStack (4) 588.02 1.70 33.13 70.37
RestartShortStack (8) 395.18 2.53 33.13 67.42
PushDownShortStack (4) 588.26 1.70 33.13 69.40
PushDownShortStack (8) 391.73 2.55 33.13 67.41

Table D.40 Street traversal algorithm statistics

103

D. Tables
D.2 Dynamic scenes

Bistro (NS = 3878729, ND = 99037, NQ : 24603957)

Config TB,S (ms) TB,D (ms) TT P (ms)
CPU single 0.00 45684.82 —
CPU double 61711.01 439.41 —
CPU merge 37382.95 23830.65 —
GPU single 0.00 844.88 415.97
GPU double 788.12 98.36 11.47

Table D.41 Bistro scene dynamic k-d tree build statistics

Config PERF (MR/s) TQ (ns) NIT NT R TF (s)
CPU single 54.35 18.40 193.88 239.90 46.14
CPU double 121.69 8.22 184.01 228.14 0.64
CPU merge 55.73 17.94 183.77 227.31 24.27
GPU single 92.08 10.86 193.92 239.80 1.11
GPU double 90.80 11.01 195.52 243.44 0.37

Table D.42 Bistro scene dynamic ray tracing statistics

FairyForest (NS = 0, ND = 174117, NQ : 24883194)

Config TB,S (ms) TB,D (ms) TT P (ms)
CPU single 0.00 2487.39 —
CPU double 0.36 2437.91 —
CPU merge 0.00 2542.29 —
GPU single 0.00 129.13 34.90
GPU double 0.06 128.16 35.09

Table D.43 FairyForest scene dynamic k-d tree build statistics

Config PERF (MR/s) TQ (ns) NIT NT R TF (s)
CPU single 203.80 4.91 11.11 59.46 2.61
CPU double 237.33 4.21 11.16 60.00 2.54
CPU merge 189.35 5.28 11.12 59.71 2.67
GPU single 882.99 1.13 11.11 59.55 0.16
GPU double 852.78 1.17 11.14 59.73 0.16

Table D.44 FairyForest scene dynamic ray tracing statistics

104

................................... D.2. Dynamic scenes

Field (NS = 3669924, ND = 10494, NQ : 19306559)

Config TB,S (ms) TB,D (ms) TT P (ms)
CPU single 0.00 32054.33 —
CPU double 48785.57 49.44 —
CPU merge 31455.25 16546.50 —
GPU single 0.00 822.36 422.19
GPU double 767.71 111.78 5.85

Table D.45 Field scene dynamic k-d tree build statistics

Config PERF (MR/s) TQ (ns) NIT NT R TF (s)
CPU single 70.67 14.15 40.61 82.80 32.33
CPU double 292.12 3.42 38.92 77.19 0.12
CPU merge 69.05 14.48 38.90 78.49 16.83
GPU single 252.00 3.97 40.61 82.74 0.90
GPU double 250.98 3.98 40.60 81.85 0.19

Table D.46 Field scene dynamic ray tracing statistics

Sibenik1 (NS = 75284, ND = 6658, NQ : 24883144)

Config TB,S (ms) TB,D (ms) TT P (ms)
CPU single 0.01 2097.86 —
CPU double 1733.11 127.81 —
CPU merge 529.51 1544.07 —
GPU single 0.00 113.84 30.19
GPU double 92.19 103.33 5.05

Table D.47 Sibenik1 scene dynamic k-d tree build statistics

Config PERF (MR/s) TQ (ns) NIT NT R TF (s)
CPU single 222.67 4.49 15.42 99.83 2.21
CPU double 758.95 1.32 15.93 92.80 0.16
CPU merge 391.50 2.55 16.10 94.86 1.61
GPU single 641.06 1.56 15.32 101.30 0.15
GPU double 670.49 1.49 15.04 101.88 0.14

Table D.48 Sibenik1 scene dynamic ray tracing statistics

105

D. Tables
Sibenik2 (NS = 75284, ND = 13316, NQ : 24883144)

Config TB,S (ms) TB,D (ms) TT P (ms)
CPU single 0.00 2131.95 —
CPU double 1714.91 230.50 —
CPU merge 535.40 1732.95 —
GPU single 0.00 123.39 31.07
GPU double 92.22 106.80 6.67

Table D.49 Sibenik2 scene dynamic k-d tree build statistics

Config PERF (MR/s) TQ (ns) NIT NT R TF (s)
CPU single 230.41 4.34 15.32 102.55 2.24
CPU double 748.17 1.34 16.04 93.75 0.26
CPU merge 285.64 3.50 16.12 96.13 1.82
GPU single 619.64 1.61 15.38 103.58 0.16
GPU double 658.79 1.52 15.16 103.04 0.14

Table D.50 Sibenik2 scene dynamic ray tracing statistics

Sibenik3 (NS = 75284, ND = 19974, NQ : 24883144)

Config TB,S (ms) TB,D (ms) TT P (ms)
CPU single 0.00 2136.12 —
CPU double 1743.84 351.98 —
CPU merge 533.34 1889.51 —
GPU single 0.00 127.93 31.04
GPU double 91.90 99.16 8.29

Table D.51 Sibenik3 scene dynamic k-d tree build statistics

Config PERF (MR/s) TQ (ns) NIT NT R TF (s)
CPU single 232.53 4.30 15.77 106.79 2.24
CPU double 569.49 1.76 16.14 95.17 0.40
CPU merge 252.29 3.96 16.16 98.61 1.99
GPU single 600.99 1.66 15.81 106.45 0.17
GPU double 647.29 1.54 15.22 104.03 0.14

Table D.52 Sibenik3 scene dynamic ray tracing statistics

106

................................... D.2. Dynamic scenes

Street (NS = 961430, ND = 198312, NQ : 24177507)

Config TB,S (ms) TB,D (ms) TT P (ms)
CPU single 0.00 9067.82 —
CPU double 9078.73 1906.54 —
CPU merge 5209.54 5625.74 —
GPU single 0.00 277.62 98.97
GPU double 174.85 119.42 24.65

Table D.53 Street scene dynamic k-d tree build statistics

Config PERF (MR/s) TQ (ns) NIT NT R TF (s)
CPU single 98.83 10.12 34.08 76.31 9.31
CPU double 206.10 4.85 32.28 70.41 2.02
CPU merge 147.54 6.78 33.20 73.90 5.79
GPU single 563.32 1.78 33.63 75.48 0.32
GPU double 574.16 1.74 33.76 72.03 0.16

Table D.54 Street scene dynamic ray tracing statistics

107

108

	Introduction
	Theoretical background
	Construction
	Surface Area Heuristic
	Split clipping
	Traversal

	Massively parallel architectures
	Execution model
	Memory model

	Previous work on building k-d trees
	Early approaches
	Exact split selection
	Modified k-d trees
	Other relevant work

	Building k-d trees for dynamic scenes
	Rebuilding the whole tree
	Building two separate trees
	Two level trees
	Merging trees

	Specialised traversal algorithms
	kd-restart
	Push-down and short-stack

	Analysis
	Algorithm comparison and selection
	Task pool on the GPU
	GPGPU language selection
	Software design philosophy
	Functional requirements
	Non-functional requirements

	Ray tracing application framework design and implementation
	Scene definition
	Component system
	Models
	Animations
	Rendering
	Frame tracer
	Visualisation and validation
	Scene configuration
	External libraries

	k-d tree building algorithm design and implementation
	Primitive references
	Reference CPU implementations
	Task pool
	Parallel scan using a task pool
	Up-sweep
	Down-sweep

	GPU binning algorithm
	Binning
	Classification
	Classification scan
	Distribution
	Make leaf

	Caching bounding boxes
	Creating nodes
	Dynamic memory allocation

	k-d tree merging algorithm design and implementation
	Merging a single dynamic tree
	Merging multiple dynamic trees
	Merging on the GPU

	Results
	Hardware
	Statistics
	Testing
	Static scenes
	Dynamic scenes

	Conclusion
	Bibliography
	Attachment list
	Manual
	Build instructions
	Usage instructions

	Assignment translation
	Tables
	Static scenes
	Dynamic scenes

