S MASTER'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

I. Personal and study details

~
Student's name: Poncék Adam Personal ID number: 485175
Faculty / Institute: Faculty of Electrical Engineering
Department / Institute: Department of Computer Graphics and Interaction
Study program: Open Informatics
Specialisation: Computer Graphics
N\ J
Il. Master’s thesis details
~
Master’s thesis title in English:
Interactive Editor of Road Network Blocks
Master's thesis title in Czech:
Interaktivni editor blokd silniéni sité
Guidelines:
Review methods used to represent road networks in navigation systems and tools for creating geometric models of the
road network and its surroundings.
Design an editor to create and edit the basic road network blocks (straight section, curved section, crossroads). The
definition of the block will be based on the skeleton of the road network, where the nodes will correspond to the points in
the centers of the lanes and the edges to the connectors between them. The editor will allow to define attributes for nodes
and edges of the road network (speed limit, possibility of overtaking, etc.). Based on these definitions, the tool will interactively
create a geometric model of the road surface, including a texture with traffic lanes, as well as a model of the immediate
surroundings (roadside, drainage, ditch). Consider also the procedural generation of details along the roads (bushes,
trees, grass).
The editor will be implemented inside a suitable framework such as Blender, Unity, or Virtual Reality Universal Toolkit
(VRUT). The resulting roadblocks will be used and tested in the VRUT system. The functionality of the editor will be tested
by creating at least ten different roadblocks that will be successfully used for the already implemented traffic simulation
inside VRUT.
Bibliography / sources:
[1] Daniel Aschermann. Modularni editor silni€ni sité. Master's thesis, CTU FEE, 2023.
[2] Vojtéch Kolinsky. Editor silniéni sité v systému Virtual Reality Universal Toolkit, Bachelor's thesis, CTU FEE, 2020.
[3] Jaroslav Minafik. Simulace okolnich dopravnich déji. Master's thesis, CTU FEE, 2014.
[4] Paden, B., Cép, M., Yong, S. Z., Yershov, D., & Frazzoli, E. A survey of motion planning and control techniques for
self-driving urban vehicles. IEEE Transactions on Intelligent Vehicles, 1(1), 33-55, 2016.
[5] Projekt OpenDrive. http://www.opendrive.org/
[6] Vaclav Kyba. Modularni 3D prohlizec. Master's thesis, CTU FEE, 2008.
[7] Alena Mikushina. Tvorba modularnich 3D komponent pro videohry, Bachelor's thesis, CTU FEE, 2020.
Name and workplace of master’s thesis supervisor:
doc. Ing. Jifi Bittner, Ph.D. Department of Computer Graphics and Interaction
Name and workplace of second master’s thesis supervisor or consultant:
Date of master’s thesis assignment: 15.02.2024 Deadline for master's thesis submission: 08.01.2025
Assignment valid until: 21.09.2025
doc. Ing. Jifi Bittner, Ph.D. Head of department's signature prof. Mgr. Petr Péata, Ph.D.
k Supervisor’s signature Dean'’s signature
J

CVUT-CZ-ZDP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

lll. Assignment receipt

The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZDP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

Master Thesis

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Computer Graphics and Interaction

Interactive editor of road network blocks

Bc. Adam Poncak

Supervisor: doc. Ing. Jiti Bittner, Ph.D.
Field of study: Open Informatics
Subfield: Computer Graphics

January 2025

ii

Acknowledgements

I would like to thank my supervisor,
doc. Ing. Jiti Bittner, Ph.D., for their pa-
tience, support, valuable feedback, and
the opportunity to work on this project.
I am especially grateful for their under-
standing and encouragement throughout
the process.

Additionally, I would like to thank
Czech Technical University in Prague for
providing a supportive environment, valu-
able opportunities, and the necessary re-
sources for my research.

I am also deeply thankful to my family
and friends for their mental support, pa-
tience, and belief in me, which gave me
the strength to complete this thesis.

iii

Declaration

I hereby declare that the submitted work
is my own, completed independently. I
have ensured that all sources and refer-
ences used are properly cited. Addition-
ally, I acknowledge the use of Al-based
tools to support the development of this
thesis. Specifically, I used Grammarly for
spellchecking, formatting, and vocabulary
enhancement, and ChatGPT for refining
and improving the clarity and style of text
originally prepared by me.
In Prague, January 2025

Abstract

This thesis addresses the need for an
interactive tool to create and edit road
network blocks for virtual environments,
particularly within the Virtual Reality
Universal Toolkit (VRUT). The devel-
oped editor supports the design of straight
sections, curves, and junctions using
a skeleton-based representation, where
nodes represent lane centers and edges of
their connections. Procedural generation
techniques enable the creation of detailed
road surfaces, lane markings, and roadside
features, such as vegetation and drainage.
The editor, implemented in Blender, em-
ploys geometry nodes for efficient model-
ing and customization.

Junction modeling is a focal point fea-
turing an algorithm for generating smooth
geometries and customizable connections.
Export functionality ensures compatibil-
ity with the VRUT system via its custom
XML-based format. The editor’s utility
was validated by creating ten road sce-
narios tested within VRUT’s simulation
environment, demonstrating robust inte-
gration and versatility. This work con-
tributes a flexible tool for road network
modeling, advancing VRUT’s capabilities
in virtual environment design and traffic
simulation.

Keywords: Road Network Modeling,
Procedural Content Generation, Blender
Geometry Nodes, VRUT System,
Junction Generation, Traffic Simulation

Supervisor: doc. Ing. Jifi Bittner,
Ph.D.

Karlovo namésti 13,

E-421,

12000 Praha 2

iv

Abstrakt

Tato diplomova prace se zabyva potte-
bou interaktivniho nastroje pro tvorbu a
upravu bloku silni¢nich siti ve virtualnim
prostiedi, konkrétné v ramci systému Vir-
tual Reality Universal Toolkit (VRUT).
Vyvinuty editor podporuje nédvrh pirimych
usekt, zatacek a kiizovatek pomoci re-
prezentace zalozené na kostie, kde uzly
predstavuji stiedy jizdnich pruht a hrany
jejich propojeni. Proceduralni generovani
umoznuje tvorbu detailnich povrchu silnic,
znaceni jizdnich pruhu a okolnich prvk,
jako jsou vegetace a odvodnovaci systémy.
Editor implementovany v prostiedi Blen-
der vyuziva geometry nodes pro efektivni
modelovani a prizpusobeni.

Hlavnim bodem prace je modelovani
krizovatek, které obsahuje algoritmus pro
generovani plynulych geometrii a prizpu-
sobitelnych spojeni. Funkce exportu za-
jistuje kompatibilitu se systémem VRUT
prostirednictvim vlastniho formatu XML.
Uzite¢nost editoru byla ovéfena vytvore-
nim deseti scénait silni¢nich blokl testo-
vanych ve VRUT simulétoru, ¢imz byla
prokazéana jeho robustni integrace a uni-
verzalnost.

Tato préace prispiva flexibilnim néstro-
jem pro modelovani silni¢nich siti, ktery
rozsituje moznosti VRUT systému v na-
vrhu virtualnich prostfedi a simulacich
dopravy.

Klicova slova: Modelovani silni¢ni sité,
Proceduralni generovani, Geometry
Nodes v Blendru, Systém VRUT,
Generovani kiizovatek, Simulace dopravy

Preklad nazvu: Interaktivni editor

blokt silni¢ni sité

Contents

1 Introduction 1
Part |
Foundations & Analysis
2 Geometry Background 5|
2.1 Representing Geometry
2.1.1 Conclusion rd

2.2 Definition & Properties of Curves
2.2.1 Curves and Their Relationship

to Control Points [7l
2.2.2 Curve Representations.
2.2.3 Piecewise Representations and

Splinescooviiiiii.
2.2.4 Properties of Curves.........

2.3 Specific Curve Types 9|
2.3.1B-splines..................
2.3.2 Bézier curves
2.3.3 Catmull-Rom splines
2.3.4 Euler Spiral
2.3.5 Summary of Curves in Road

Design L

2.4 Polylines
2.4.1 Approximating Curves with

Polylines
2.4.2 Conclusion 17
2.5 Polygonal Meshes.............
2.5.1 Mesh Triangulation
2.5.2 Textures
2.5.3 Export Formats............

2.6 Procedural Content Generation
(PCG).oiii
2.6.1 What is Procedural Content

Generation? 23
2.6.2 Usecases of PCG........... 23|
2.6.3 Advantages of PCG
2.6.4 Challenges of PCG
2.6.5 Generating Meshes using

CUrves . ..ovvveeeeeen 24]
2.6.6 Conclusion
3 Road Graph 27|
3.1 Standards of Data Representation
3.1.1 OpenStreetMap (OSM)
3.1.2 RoadXML 28]
3.1.3 Vector Map (VMap)........
3.1.4 Simulation-specific Formats .

3.2 VRUT representation

3.2.1 Roads Section
3.2.2 Attributes Section. .
3.2.3 Connections Section
3.2.4 Junctions
3.2.5 Summary of VRUT
representation.........
3.3 ASAM OpenDRIVE ..
3.3.1 File Structure
3.3.2 Road Reference Line
3.3.3 Geometries
3.34Roads
3.3.5 Lanes
3.3.6 Junctions
3.3.7 Summary of ASAM
OpenDRIVE
3.4 Conclusion

4 Implementation Suitable

Frameworks

4.1 VRUT

4.2 Game Engines........
4.2.1 Unreal Engine
422 Unity.............

4.3 3D modeling software .
4.3.1 Blender...........
4.3.2 Houdini...........
433 Maya.............

4.4 Conclusion

5 Virtual Reality Universal Toolkit

system (VRUT)

5.1 Overview

5.2 Core of VRUT

5.3 Relevant Modules.
5.3.1 Road Editor.......

5.3.2 Road Network Editor.......

5.3.3 Traffic Module.
Conclusion

Part 1l

Implementation

6 Road Geometry

6.1 Road-base Representation Types

6.1.1 Catmull-Rom curves
6.1.2 Bézier curves
6.1.3 NURBS curves
6.1.4 Hair curves........
6.1.5 Mesh representation

6.1.6 Conclusion
6.2 Road splines
6.2.1 Central Spline
6.2.2 Spline Classes
6.2.3 Secondary Splines
6.2.4 Output of spline creation ...
6.3 Road mesh generation
6.3.1 T-Vertices Problem
6.3.2 Proposed Solutions.........
6.4 Textures & Materials..........
6.4.1 Baking Textures

7 Junction Geometry

7.1 Internal data representation

7.2 Junction creation algorithm
7.2.1 Outline Intersections
7.2.2 Marking Intersection Pairs . .
7.2.3 Junction Geometry Generation

7.3 Junction Modifier............. [71]
7.4 Alternative Tested Approaches .

7.4.1 Initial Mesh-Based Approach
7.4.2 Curve-Based Approach with

Geometry Nodes
7.4.3 Influence on Final
Implementation
8 Features 75|
8.1 Modifier Stack [75]
8.2 Profile Along the Road
Preset and Custom Profiles 176l
Modifier Interface............... 176
Profile Stacking and Layering
Geometry Nodes Implementation .
Adding Custom Profiles
8.3 Object Along the Road

Curve Sampling and Side Selection
Material Handling and UV Mapping
Integration and Limitations

Surroundings
Graphical User Interface
Conclusion 81l
9 Road Network 83
9.1 Internal Representation.
9.2 Junctions 841
9.3 Export Formats

VRUT Format 841

OpenDRIVE Format

vi

9.3.1 Visualization of Road Network 85|
Conclusion

...................... 010,
10 Testing in VRUT 87
10.1 Compilation of VRUT
10.2 Exporting Geometry for VRUT

10.3 Importing Road Blocks into

11 Conclusion

Appendices

A Simple VRUT Road Network XML
example

B Simple ASAM OpenDRIVE XML
example

C Ten Road Blocks Tested in
VRUT

D Bibliography

I

=

Figures
2.1 Raw data representation types,
point cloud on the left (Source:
[49]) and polygon soup on the right
(Source: [28])l (§
2.2 Solid (volumetric) representation
types, CSG on the left (Source: [89])
and vertex grid on the right
(Source: [49]) ..., (g
2.3 Surface (boundary) representation
types, polygonal mesh on the left
(Source: [49]), émplicit surface in
the center (Source: [1]) and
parametric surface on the right
(Source: [32]) ...t (g
2.4 This image illustrates curve
continuities under the assumption
that the parameter ¢ represents time:
C° and GO ensure positional
continuity, C! and G enforce
tangent continuity, with C! also
ensuring matching velocity. Similarly,
C? and G? ensure curvature
continuity, with C? also enforcing
matching acceleration. Geometric
continuity focuses on directional
alignment, while parametric
continuity requires exact derivative
magnitudes (Source: [69])
2.5 a) Nonrational B-spline curves
with different degrees, b) Comparison
of nonrational and rational B-spline
curves (Source: [52])
2.6 Different degree Bézier curves
(Source: [87])...................
2.7 Different Catmull-Rom
parameterizations: a) Control
polygon, b) Uniform, ¢) Chordal, d)
Centripetal (Source: [93])
2.8 Euler spiral (Source: [23])......
2.9 A curve composed of Euler spirals,
line and circular-arc segments
(Source: [63])ot
2.10 A polyline composed of connected
line segments (Source: [78])

vii

2.11 Curve approximation. Different
sampling methods. a) Uniform
sampling, b) Adaptive sampling
based on curvature..............

2.12 Polygonal mesh representation
(Source: [2I[)....

2.13 Different triangulation methods.
a) Ear cutting; b) Randomized
incremental ¢) Constrained Delaunay
triangulation; d) Delaunay refinement
(Source: [60])...................

2.14 Different texture types visualized
with a final result at the bottom

(Source: [54])ot

3.1 OpenDRIVE reference line with
other features attached to it [5] . . .

3.2 ASAM OpenDRIVE: Road
geometry representation [4]

3.3 ASAM OpenDRIVE: Junction
example [5]

5.1 Examples of RoadEditor module’s
blocks [6]

5.2 A preview of Traffic editor GUI.
5.3 Traffic simulation module in
action 510

6.1 Visualization of hair curves in the
Blender viewport. The blue line
represents the actual curve, yellow
line indicate the control points of
NURBS curves, red lines represent
the control points of Bézier curves,
and the green line illustrates the hair
curve representation of these curves
visible in Blender’s viewport

6.2 Difference between a ‘curve‘ and a

‘spline’
6.3 Central spline creation
6.4 Spline classes - visualized
6.5 Function for profile on curve

generation and UV mapping
6.6 Demo of road objects generated

geometry 62|

6.7 Gaps between two lanes caused by
different curve sampling

6.8 Gaps between lanes fixed using
Merge by Distance, but corrupting

UV mapping
6.9 Gaps between lanes fixed by

overlaying neighbouring lanes,

maintaining UV mapping

6.10 Concept of optimal lane gap
fixing: blue vertices are created from
red vertices, with blue lines indicating
new edges splitting existing faces. .

6.11 Demo of UV mapping on road
object

7.1 Intersection chains forming
junction outlines

7.2 Example of mesh based approach
for junction generation

7.3 Intersecting splines using raycast
method, showing intersection points
in red with lines connecting them .

8.1 Interface of the profile-along-road
feature modifier (options for custom
profiles and general settings only) .

8.2 Demo of road features generated
geometry and corresponding modifier
stack

8.3 Example of a custom profile curve
and the resulting geometry

8.4 Interface of the road objects
modifier with red dots representing
the sampled curve control points and
the curve itself connecting them . .

8.5 Example of the surroundings
feature with terrain and vegetation

8.6 Graphical User Interface of the
editor in Blender’s side-panel

9.1 Example of object properties in
Blender used for connector pairing
9.2 Visualization of the road network

inBlender 86
10.1 A screenshot from CMake

capturing some of the available

modules 88

viii

C.1 Road Block 1: Simple straight

road ... 99
C.2 Road Block 2: Simple curved
road ... 100

C.3 Road Block 3: Straight road with
features along the sides 100
C.4 Road Block 4: Straight road with
features between lanes as well as
along the sides
C.5 Road Block 5: Straight multilane
road with multiple features 101
C.6 Road Block 6: X-shaped junction
with features 102l
C.7 Road Block 7: T-shaped junction

101

with features 102
C.8 Road Block 8: Junction with
connecting lanes and features.... [103

C.9 Road Block 9: Looped track with
features along the sides 103

C.10 Road Block 10: Complex road
network with multiple junctions and
features

Tables

ix

Chapter 1

Introduction

The automotive industry is undergoing a transformation driven by advances
in vehicle design, propulsion systems, and connectivity. These refinements
require tools to test and refine new functionalities, especially for autonomous
driving. One such initiative is the Virtual Reality Universal Toolkit (VRUT),
a collaborative project by students and engineers at Skoda Auto a.s. VRUT
provides a flexible simulation environment for creating and testing realistic
traffic scenarios, with a modular architecture enabling diverse applications.

Despite its capabilities, VRUT lacks an intuitive tool for creating realistic
and customizable traffic environments. Its current Road Editor module relies
on predefined geometric elements imported externally, making scene creation
labor-intensive and inflexible. This thesis aims to design and implement an
editor for generating and customizing road network elements to address this
limitation. These elements include configurable segments such as straight
lines, curved sections, and junctions, represented using a skeletal model where
nodes correspond to lane centers and edges define their connections. This
approach allows for scalable, flexible modeling of traffic environments without
fixed-size constraints.

The proposed editor will integrate features for editing road networks and
generating geometric surface models, including lane textures and roadside
features like ditches, pavements, and vegetation. Procedural generation will
enhance realism by populating scenes with features such as lamps, trees, and
grass. By enabling the creation of targeted traffic scenarios, the tool will
address challenges in simulating rare or complex situations that are difficult
to capture using real-world data.

This thesis will develop the editor within a framework compatible with
VRUT and suitable for generating road network elements. The planned editor
will provide an intuitive interface for interactive design, efficient configuration
of road properties, and generation of complex geometries. The contributions
of this work include a comprehensive review of methods for representing road
networks in navigation systems and geometric modeling tools. Additionally, it
involves designing and implementing an editor for customizable road network
elements, which incorporates procedural generation for surrounding details.
Finally, the editor will be validated by creating diverse road network elements
and testing them within the VRUT system.

1. Introduction

By addressing VRUT’s current limitations, this work aims to provide a
robust tool for efficient traffic scene creation, contributing to advancements
in simulation technologies and autonomous driving research, with potential
secondary benefits, such as supporting simulated driver training environments
or aiding in the study of traffic low and scenario planning in educational
contexts.

Part |

Foundations & Analysis

Chapter 2

Geometry Background

This chapter focuses on the geometric representation of objects, specifically
the road blocks and related structures generated by the add-on developed as
part of this thesis.

To build a foundation for understanding the design and implementation of
the add-on, we begin by discussing various formats and types of geometric
representations and analyzing their relevance to the modeling of road geom-
etry. For each representation, key concepts and algorithms are explored in
relation to their utility for this work. After identifying the most suitable
representations for roads, we delve into the process of creating such geometry
procedurally, relying on relevant user input to drive the generation.

This chapter then addresses additional geometry-related considerations,
such as enhancing the visual appeal of the generated objects through the
application of materials and textures. Finally, we explore the tools available
for geometry creation, highlighting their strengths and their applicability to
the goals of this thesis.

B 21 Representing Geometry

To begin, we examine the topic of geometric representation. In computer
graphics, geometric representations are often categorized into raw data, solids,
curves, and surfaces, each tailored to specific applications and workflows
[33, 38, [69).

Raw Data refers to unprocessed geometric information, such as point
clouds or polygonal meshes, directly from scanning devices or sensors. These
representations capture the external structure of objects but lack connectivity
or higher-level organization, making them insufficient for operations such as
collision detection without further processing [38|, 51, B3], [8§].

Solids represent both the interior and exterior of objects, allowing cal-
culations of physical properties such as volume and mass. Techniques like
Constructive Solid Geometry (CSG) and voxel grids are common in this
category. However, their computational intensity and focus on volumetric
properties make them less suitable for rendering-focused applications [35] [69].

Surfaces, in contrast, focus solely on the visible boundaries of objects,
offering a computationally efficient way to represent shapes for rendering

2. Geometry Background

INELY
\' v,
23

S
e
T

)

W
Wy
A

%

A\
o

Figure 2.1: Raw data representation types, point cloud on the left (Source:
[49]) and polygon soup on the right (Source: [28])

Figure 2.2: Solid (volumetric) representation types, CSG on the left (Source:
[89]) and vertex grid on the right (Source: [49])

and visualization. Surface models, such as polygonal meshes and parametric
surfaces, are widely used due to their compatibility with graphics hardware
and their ability to support smooth shading and texture mapping [53, [69].

RN
<R

£

]
5
:

£
e

)
Kt
S
oy
R
AL
&5

pIe!
)
ik

S

7
i
YAV
o
£

fn

o

K/
ghes

ATATATAT

o
WARAGISS:
odddoas
R
O

7
Uy
0
oA
o,
e

!

)

vy
AN
rarava

NG
78

5

i
¥
Z

v
S

2

W
X
s

=5

o
X2
A
=

=

:

7\

i
7

=

Figure 2.3: Surface (boundary) representation types, polygonal mesh on the
left (Source:

[49]), implicit surface in the center (Source: [I]) and parametric
surface on the right (Source: [32])

Curves play a fundamental role in defining contours and guiding shapes
in both 2D and 3D geometry. Representations like Bézier curves, B-splines,
and Catmull-Rom splines allow for precise control and are particularly useful
for generating smooth geometries, such as roads or guiding surfaces [45] [29]

6

2.2. Definition & Properties of Curves
53}, [63].

B 2.1.1 Conclusion

This thesis emphasizes the use of surfaces and curves, as they offer the
flexibility and computational efficiency required for applications such as the
generation of road geometry in simulation tools [29, [45]. While raw data and
solids have their merits in specific contexts, they are less suitable for the
rendering and geometry generation tasks central to this work. Among these
geometric constructs, curves stand out as foundational elements in procedural
workflows, serving as the basis for defining complex shapes like roads.

B 2.2 Definition & Properties of Curves

The following discussion on the theory of curves is primarily based on the
book Fundamentals of Computer Graphics [69].

Curves are foundational geometric constructs that can be intuitively un-
derstood as the path traced by a moving point over time, much like the
continuous stroke of a pen. Mathematically, a curve is a continuous path rep-
resented as the image of an interval in n-dimensional space, where the interval
serves as a parameter, such as time or arc length, guiding the progression of
the curve [69].

They serve as the basis for modeling and designing various real-world
structures, including roads. In road design, curves are essential for defining
smooth, navigable paths and ensuring transitions that prioritize safety and
efficiency [79].

B 2.2.1 Curves and Their Relationship to Control Points

Curves can be classified into two types based on their relationship with control
points—points that define their shape:

8 Interpolating Curves: These curves pass directly through all their
control points, ensuring precise adherence to specified positions. How-
ever, this exactness can lead to undesirable properties, such as reduced
continuity and a tendency to extend outside the convex hull of the control
points, especially in smooth interpolating curves such as Catmull-Rom
splines [53].

® Approximating Curves: These curves do not necessarily pass through
their control points but are influenced by them to shape the curve. This
approach provides better smoothness, local control, and continuity, with
Bézier and B-spline curves being prominent examples [69].

7

2. Geometry Background

B 2.2.2 Curve Representations

Curves can be mathematically specified through implicit, parametric, or
generative (procedural) representations:

#® Implicit Representation: Defines a curve as the set of points that
satisfy the equation f(x,y) = 0.

Parametric Representation: Expresses the coordinates as functions
of a parameter t, making it particularly favored in computer graphics
for ease of manipulation and rendering.

® Generative Representation: Constructs curves through procedural
methods such as fractals [69].

B Reparametrization

Reparameterization allows for tailoring parameterizations to specific applica-
tions, such as achieving uniform speed along the curve. Arc-length parame-
terization, a special case, ensures equal parameter intervals represent equal
lengths, which is especially beneficial for uniform motion along the curve.
However, computing arc-length parameterization often requires numerical
methods due to its complexity [69].

B 2.2.3 Piecewise Representations and Splines

Defining a parametric function for simple shapes such as lines, circles, or
ellipses is straightforward, but complex curves often require dividing them into
smaller, simpler segments. These piecewise representations, or splines,
use components such as line segments or arcs to approximate the overall
shape. Ensuring continuity between pieces is critical to avoid disruptions in
the flow of the curve. Although simpler pieces may not perfectly replicate
a curve, increasing their number improves accuracy. This trade-off between
accuracy, complexity, and simplicity makes piecewise representations highly
adaptable in computer graphics [69).

B 2.2.4 Properties of Curves

The properties of a curve describe its shape and behaviour, offering a frame-
work for analysis and representation. These properties can be categorized as
local or global. Local properties, such as continuity, position, direction, and
curvature, describe specific points on the curve without requiring knowledge
of the entire shape. In contrast, global properties, such as length, closedness
or self-intersection, involve the curve as a whole and provide a comprehensive
view of its structure [69].

The following discussion will focus on the most relevant properties of curves
in the creation of roads, particularly those that are less intuitive and require
deeper exploration.

2.3. Specific Curve Types

B Continuity

Continuity ensures smooth transitions between segments of a curve and can
be classified into two main types:

® Parametric Continuity (C"): Requires that the curve’s derivatives
up to order n match at the segment boundaries. It is dependent on the
parameterization, so differences in segment speeds can disrupt continuity.

® Geometric Continuity (G"): Focuses on the shape of the curve,
ensuring that derivatives align in direction but not necessarily in magni-
tude. For instance, G! continuity requires tangents to point in the same
direction, even if their lengths differ [69].

The degrees of continuity provide further classification:

® C° Continuity: Ensures continuity in position, meaning that the end-
points of adjacent segments meet.

® C! Continuity: Ensures the first derivative (tangent) is continuous,
resulting in no abrupt changes in direction.

® C? Continuity: Ensures continuity in the second derivative (curvature),
producing smoother transitions [69].

The choice of parametric or geometric continuity, as well as the degree of
continuity, depends on the specific requirements of the curve’s application
[69]. Figure 2.4] illustrates the distinctions between different parametric and
geometric continuities.

Bl Curvature

Is defined as the rate at which the direction of the curve changes. Higher
degrees of continuity, such as C?, are often crucial in applications requiring
smooth motion or fluid dynamics, where disruptions in curvature or higher
derivatives can lead to instability or turbulence [69]. Therefore, achieving
at least C? continuity (matching second derivatives) is essential to ensure
gradual changes in curvature, which is crucial for vehicle dynamics and safety
[26]. For roads, the curvature is crucial to determine how quickly vehicles
need to turn, which affects safety, efficiency, and comfort [86].

B 23 Specific Curve Types

In this section, we will explore specific types of curves, such as B-splines,
Bézier curves, Catmull-Rom curves, and Euler spirals (clothoids), examining
their properties and applications. These curves play a critical role in the
construction of roads, balancing functionality, efficiency, and safety in the
design of roads and infrastructure.

2. Geometry Background

C 0 [G 0
_—
Position
C1 G‘I
Tangent & Velocity Tangent
CZ GZ
Curvature & Acceleration Curvature

Figure 2.4: This image illustrates curve continuities under the assumption that
the parameter t represents time: C° and G ensure positional continuity, C*
and G! enforce tangent continuity, with C! also ensuring matching velocity.
Similarly, C? and G? ensure curvature continuity, with C? also enforcing match-
ing acceleration. Geometric continuity focuses on directional alignment, while
parametric continuity requires exact derivative magnitudes (Source: [69])

Bl 23.1 B-splines

B-splines (Basis splines) are a foundational tool for constructing smooth,
piecewise polynomial curves in computer graphics and geometric modeling.
Defined as a linear combination of basis functions, they are highly versatile and
exhibit C?~! continuity for degree d, making them suitable for applications
demanding smooth transitions. B-splines are approximating curves, which
means that they generally do not pass through their control points, but
instead, these points influence the shape of the curve [69] 53].

B Variants of B-Splines

® Uniform B-Splines: These curves have evenly spaced knots, ensuring
consistent behavior and straightforward computations. However, their
uniformity limits adaptability in applications with unevenly distributed
control points or variable curve features [69].

Nonuniform B-Splines: By allowing non-uniform knot spacing, these
curves provide more localized control, allowing for sharper transitions or
variable curve density where needed. This feature is particularly valuable
in animations and complex modeling scenarios [53].

® Cubic B-Splines: A specific subset of B-splines with degree 3, cubic B-
splines offer C? continuity and are frequently used in computer graphics

10

2.3. Specific Curve Types

due to their balance of smoothness and computational efficiency [69].

® Non-Uniform Rational B-Splines (NURBS): These curves enhance
standard B-splines by associating scalar weights with each control point,
enabling precise representation of conic sections such as circles and
ellipses, which standard B-splines cannot accurately model. The non-
uniform spacing of their knots provides greater control over localized
curve behavior, making NURBS highly adaptable for complex and precise
applications. Their ability to combine local control, high continuity, and
accurate geometric representation makes them essential in CAD systems
and other tools where both flexibility and precision are required [53].

NURBS are the most general form of B-splines, combining the strengths of
high continuity, local control, and adaptability with the ability to accurately
model complex and standard geometries. This makes them a preferred choice
in high-precision industries [53].

(] Control Point
= = = p=1(Linear)
p =2 (Quadratic)

1 e e =3 (Cubic) 3
’. — = 4 (Bezier) ‘!
' A \ !

! \ /
" / e -~ il - O

= 49 = Control Polygon
Non-rational B-spline
Rational B-spline

(b)

Figure 2.5: a) Nonrational B-spline curves with different degrees, b) Comparison
of nonrational and rational B-spline curves (Source: [52])

B-splines are a versatile framework for creating smooth curves and surfaces,
offering flexibility through their control points and knot vectors. Within
this framework, a special case arises when the degree of the curve equals the
number of control points minus one, and the knot vector is clamped at both
ends. Under these conditions, the B-spline curve simplifies to what is known
as a Bézier curve [68].

11

2. Geometry Background

B 2.3.2 Bézier curves

Bézier curves are widely used in computer graphics to represent free-form
shapes due to their simplicity, flexibility, and efficiency. A Bézier curve is a
polynomial curve defined by a set of control points, where the curve interpo-
lates the first and last control points and is influenced by the intermediate
points [69]. For cubic Bézier curves, the curve starts at the first control point
(Py) and ends at the last (Ps), with its initial and final tangents determined
by the vectors 3(P, — Py) and 3(P3 — P,), respectively [53].

These curves are particularly useful because they are bounded by the convex
hull of their control points, making them predictable and easy to manipulate.
Bézier curves are C''-continuous, ensuring smooth tangential transitions, and
can achieve C2-continuity with properly placed control points when forming
splines. Furthermore, their parametric form allows for efficient rendering,
subdivision, and approximation techniques, making them a cornerstone of
modern design tools and applications such as Adobe Illustrator and font
rendering [69].

For example, in the work of Darwiche and Nystrom [29], Bézier curves are
used to represent roads due to their smoothness and ease of manipulation. The
convex hull property of Bézier curves ensures that the curve remains within the
bounds defined by its control points, facilitating efficient collision detection,
a crucial aspect in junction generation proposed in their work. Additionally,
Bézier curves allow intuitive control over road shapes, enabling the creation
of complex road networks with smooth transitions and intersections.

B(112) .

Simple Bezier Curve Quadratic Bazier Curve Cubic Bazier Curve

Figure 2.6: Different degree Bézier curves (Source: [87])

B 2.3.3 Catmull-Rom splines

Catmull-Rom splines are a type of C! interpolating curve designed to
pass through a series of control points while ensuring smoothness between
segments. Each segment of the spline is a cubic polynomial determined by four
control points, with adjacent segments sharing three points, which provides
local control over the curve’s shape. At each control point, the tangent vector
is computed as a scaled difference between the neighboring control points,
ensuring C' continuity. For example, the tangent at a point P; is computed
as v; = %(Pi+1 — P;_1), allowing the curve to smoothly interpolate the control
points [53].

12

2.3. Specific Curve Types

Catmull-Rom splines are a special case of cardinal splines where the tension
parameter t is set to 0, producing a balance between smoothness and respon-
siveness to control points. The result is a curve that interpolates the control
points with minimal overshooting and retains local control, meaning changes
to one control point affect only the neighboring segments. This locality makes
them computationally efficient and suitable for animation paths or motion
trajectories, as only a fixed number of computations are required for any
point on the curve, regardless of the total number of control points [69].

Although Catmull-Rom splines provide smooth interpolations, their con-
tinuity is limited to C', which means that abrupt changes in curvature can
occur at control points. This property makes them ideal for animations
where exact interpolation is required but less suitable for applications such
as physically realistic motion paths, where higher degrees of continuity, such
as C?, are preferred [53].

B Parametrization types of Catmull-Rom splines

The behavior of Catmull-Rom splines is significantly influenced by the param-
eterization method used, with three primary types being uniform, chordal,
and centripetal parameterizations.

8 Uniform Parameterization: In this method, the parameter inter-
vals between control points are equal, regardless of the actual distances
between the points. While simple to implement, uniform parameteriza-
tion can lead to undesirable artifacts such as loops or self-intersections,
especially when control points are unevenly spaced.

® Chordal Parameterization: This approach sets parameter intervals in
proportion to the Euclidean distance between consecutive control points.
By accounting for the spacing between points, chordal parameterization
often produces curves that more accurately reflect the intended shape
compared to uniform parameterization. However, it may still result in
issues like overshooting or deviations from the control polygon.

® Centripetal Parameterization: In centripetal parameterization, the
parameter intervals are proportional to the square root of the distance
between control points. This method balances the influence of each
control point more effectively, minimizing abrupt changes in curvature
and reducing the likelihood of cusps and self-intersections within curve
segments. Consequently, centripetal parameterization often produces
smoother curves with gradual curvature transitions, resulting in visually
appealing shapes that closely follow the control polygon [93].

For road design, centripetal parameterization is the most suitable pa-
rameterization for Catmull-Rom splines, as it minimizes abrupt changes in
curvature, ensuring smoother transitions that align with safety and comfort
requirements. A visual comparison of these parametrization types can be
seen in Figure 2.7,

13

2. Geometry Background

(a)

(d)

Figure 2.7: Different Catmull-Rom parameterizations: a) Control polygon,
b) Uniform, c¢) Chordal, d) Centripetal (Source: [93])

B 2.3.4 Euler Spiral

An Euler spiral, also known as a clothoid or Cornu spiral, is a planar curve
characterized by a curvature that increases linearly with its arc length. This
unique property makes it particularly useful in applications that require
smooth transitions between straight and curved paths [61].

Mathematically, the curvature k at a distance s from the origin is expressed
as k = 45, where A is a constant that determines the rate of curvature
increase [50]. The Euler spiral is defined parametrically using the Fresnel
integrals:

= 2(t) = [;cos (u?) du
. y(t) = fisin (502) du

These integrals describe the curve coordinates as functions of the parameter
t, illustrating how the curvature of the curve evolves with its length [92].

Euler spirals have significant applications in various fields. In road and
rail engineering, they serve as transition curves between straight sections
and circular arcs, following a principle similar to piecewise representations
of splines (2.2.3)). This approach allows for smooth connections between
segments by utilizing their defining property: a linear change in curvature,
which enhances safety and comfort by reducing sudden lateral acceleration
[61].

Computationally, evaluating the Fresnel integrals required for plotting
Euler spirals can be complex, as they do not have closed-form solutions.
However, efficient numerical methods and approximations have been devel-
oped to compute these integrals with high precision, making the practical
implementation of Euler spirals feasible in engineering applications [61].

14

2.3. Specific Curve Types

Figure 2.8: Euler spiral (Source: [23])

In summary, the Euler spiral’s mathematical properties and computational
techniques ensure its utility in applications requiring smooth transitions,
particularly in engineering contexts such as transportation infrastructure.

clothoid __/—\

circular arc

t

curvature

arc-length .

Figure 2.9: A curve composed of Euler spirals, line and circular-arc segments

(Source: [63])

B 2.3.5 Summary of Curves in Road Design

The paper Spline Curves for Geometric Modelling of Highway Design [26] re-
views spline curves used in road design, focusing on their geometric properties
and effectiveness in shaping highway alignments.

® Bézier curves are easy to control and computationally simple but may
lack the flexibility and smoothness needed for complex designs.

15

2. Geometry Background

® B-Splines offer better adaptability, enabling smooth transitions and
accommodating geometric constraints.

NURBS excel in precision and versatility, making them ideal for model-
ing complex road alignments and transitions.

Catmull-Rom splines, while straightforward and interpolatory, lack
the precision and flexibility of B-Splines and NURBS in road applications.

Overall, the paper highlights B-Splines and NURBS as the most effective
tools for highway design due to their flexibility, precision, and capacity to
handle complex geometries [26]. However, it does not address approaches
that use piecewise combinations of Euler spirals, circular arcs, and straight
segments (as seen in 2.9).

® Euler spirals (Clothoids) are the state-of-the-art for railway design
[24], where smooth curvature transitions are critical for passenger comfort
and safety. In road design, they are similarly effective. Nevertheless, their
computational demands may limit their adoption in certain scenarios in
favor of simpler alternatives like splines.

While curves like B-Splines, NURBS, and Euler spirals are essential for
designing smooth and precise alignments in road infrastructure, their mathe-
matical representations must eventually be translated into geometric models.
This leads us to our next topics: polylines, which can approximate curves or
define geometric outlines, and polygonal meshes, which represent objects and
their surfaces in three-dimensional space.

B 2.4 Polylines

A polyline (also referred to as a path, piecewise linear curve or polygonal
segment) is a connected sequence of line segments, treated as a single ge-
ometric object (see Figure [2.10). Polylines are widely used to represent
paths, boundaries, and other linear features in computer-aided design (CAD),
computer graphics, geography information system (GIS), and other fields.
They provide flexibility by allowing users to modify individual segments or
the entire polyline as a whole, making them efficient for modeling and editing
complex geometric shapes [14].

B 2.4.1 Approximating Curves with Polylines

In computational geometry and computer graphics, curve sampling is used for
visualizing continuous curves on discrete digital screens. By sampling a curve
at discrete points and connecting these points with line segments, a polyline
approximation is created. This approach not only enables efficient rendering
and processing of complex shapes but also simplifies computational algorithms
by abstracting the underlying curve into a sequence of line segments. This
abstraction allows for operations independent of the curve’s type [36].

16

2.5. Polygonal Meshes

Figure 2.10: A polyline composed of connected line segments (Source: [78])

Curve approximation techniques aim to balance visual accuracy and com-
putational efficiency while maintaining the shape of the original curve. There
are numerous ways to sample points along the curve. The most common way,
uniform sampling, captures points evenly along the length. Alternatively,
adaptive sampling using curvature captures more points in areas of higher
curvature (see Figure 2.11) [36].

B Douglas-Peucker Algorithm

The Douglas-Peucker algorithm simplifies a polyline by reducing the number
of points. It works by finding the farthest point from the line connecting
a segment’s start and end points. If this point lies outside a set tolerance,
the algorithm splits the segment at that point and continues recursively. If
the point is within the tolerance, all intermediate points are removed. This
method keeps only the points that significantly deviate from the start-end
line, preserving the polyline’s shape while reducing number of points of the
polyline [31].

B 2.4.2 Conclusion

These approximation methods, integral to applications in computer graphics
strike a balance between precision and performance, making them versatile
tools for digital curve processing [36].

Although polylines effectively approximate curves in two dimensions, ex-
tending this concept into three dimensions allows for the creation of polygonal
meshes that represent surfaces and volumes through interconnected polygons.

B 25 Polygonal Meshes

A polygonal mesh is a representation of a 3D object using interconnected
polygons, typically triangles, quads, or n-gons, to form its surface. Each mesh
consists of three basic components: vertices, edges, and faces.

® Vertices are points in 3D space that define the shape’s structure.

17

2. Geometry Background

Figure 2.11: Curve approximation. Different sampling methods. a) Uniform
sampling, b) Adaptive sampling based on curvature
® Edges are straight lines connecting two vertices.

B Faces are enclosed loops of edges that create the visible surface of the
mesh.

These elements work together to form a network of polygons that represent

the geometry of an object (see Figure [53][69][21].

Figure 2.12: Polygonal mesh representation (Source: [21])

Triangle meshes, composed of triangular faces, are the most common 3D
representation in computer graphics due to their simplicity, reliability, and

18

2.5. Polygonal Meshes

inherent planarity. Triangles provide reliable rendering and are easy to deform,
which makes them ideal for tasks such as subdivision and simplifying models.
While quads are sometimes used for their deformation properties in animation,
they are typically converted to triangles for rendering, as most hardware is
optimized for triangle processing. Their efficiency and compatibility make
triangle meshes the standard for handling complex geometry in 3D applications
[53][69].

B 2.5.1 Mesh Triangulation

Triangulation refers to dividing a polygon into triangles such that no two
triangles overlap, and the union of these triangles exactly covers the polygon.
This creates a mesh useful for representing complex shapes and facilitating
computations [30].

B Different methods for triangulation

Several methods exist for constructing triangulations, each tailored to different
types of polygons or computational constraints:

8 Ear Clipping is a straightforward approach that iteratively removes
"ears"—triangles formed by three consecutive vertices—from the polygon
until it is completely decomposed.

8 Incremental algorithm dynamically adds triangles by introducing new
vertices and updating the triangulation.

8 Divide-and-Conquer method splits the polygon into smaller sub-
polygons, triangulates each individually, and merges the results.

® Sweep Line uses a moving line to systematically identify diagonals and
generate triangles, making it efficient for monotone polygons.

8 Delaunay Triangulation creates triangles that maximize the minimum
angle, avoiding skinny or elongated shapes. This makes it ideal for
applications like finite element analysis, terrain modeling, and mesh
generation, where stability and quality of the triangles are critical [30].

B 2.5.2 Textures

Textures offer an efficient way to add visual detail to 3D models without
increasing geometric complexity. At its core, a texture is a 2D image or pattern
used to modify the appearance of a 3D surface. By mapping textures onto the
polygons of a mesh, details such as colors, patterns, and even perceived depth
can be applied, enhancing the realism of a model while keeping computational
demands manageable [53].

19

2. Geometry Background
a)
c)

Figure 2.13: Different triangulation methods. a) Ear cutting; b) Randomized
incremental ¢) Constrained Delaunay triangulation; d) Delaunay refinement

(Source: [60])

E
E

B Texture Mapping and UV Coordinates

Texture mapping is the process of projecting a 2D texture onto a 3D surface.
This requires establishing a correspondence between points on the texture
(the 2D image) and points on the mesh’s surface. This correspondence is
typically defined using UV coordinates, a coordinate system where U and V
represent the axes of the 2D texture space. Each vertex in a polygonal mesh
is assigned UV coordinates, dictating how the texture is stretched or tiled
across the surface. Usually, the UV coordinates are clipped between values in
the range 0 and 1, and the texture is normalized to a unit square [53].

UV mapping can range from simple to highly complex. For example, a flat
plane can use straightforward, evenly spaced UV coordinates, while intricate
models like characters or vehicles often require careful UV unwrapping to
avoid distortions. The quality of the UV map significantly impacts the
effectiveness of the texture and its visual integration with the model [53].

B 25.3 Export Formats

To transfer 3D models between different software applications, they must
be saved in a compatible file format. Each of these formats has its own
specifications, advantages, and limitations, making them suitable for different
purposes. Some common 3D file formats include:

20

2.5. Polygonal Meshes

Albedo Map Ambient Occlusion Normal Map Roughness Map Specular Map

rﬁ%%ggﬂ
L]

o
i

Final Result

Figure 2.14: Different texture types visualized with a final result at the bottom

(Source: [54])

8 Wavefront OBJ, introduced by Wavefront Technologies, supports a
variety of geometry types, including lines, polygons, and free-form curves,
and is commonly represented in ASCII text format with the .obj exten-
sion. Materials are handled using an accompanying Material Template
Library (.mt1) file, which defines surface properties like diffuse, ambient,
and specular colors, along with transparency and texture mappings [65].

The OBJ format is now supported across almost all modern 3D software
platforms, including Blender, Maya, and Unity, making it one of the
flagship standards in 3D modeling and exchange workflows. Additionally,
the format remains relevant despite its age due to its human-readable
structure and ease of integration in pipeline scripts or software tools.

® COLLADA (Collaborative Design Activity) is an open-standard XML-
based format developed by the Khronos Group. It supports geometry,
materials, shaders, animations, and physics. COLLADA files use the

.dae (Digital Asset Exchange) extension and store data in a structured,
human-readable XML format [55].

The format is now widely supported in modern tools such as Blender
and Unreal Engine, though its adoption has lessened with the rise of
newer formats.

m STL (Stereolithography) The STL (Stereolithography) file format,
developed by 3D Systems in 1987, is one of the earliest and most widely
used file formats in 3D modeling and additive manufacturing. It is de-
signed to represent the surface geometry of 3D objects using a tessellated
structure of triangles, without including any color, texture, or material
properties. This lack of additional information has limited STL’s role to
geometry-focused tasks. STL files can be stored in two formats: ASCII
and binary, with binary being more compact and commonly used due to
its smaller file size [62].

In its current state, STL remains a standard in 3D printing and proto-
typing workflows, favored for its simplicity and near-universal support

21

2. Geometry Background

across 3D printing software and hardware [2].

® FBX (Filmbox) file format, originally developed by Kaydara in 1996
and later acquired by Autodesk in 2006, is a proprietary format widely
used in the 3D industry for the exchange and storage of complex 3D
assets. FBX supports a broad range of features, including geometry,
textures, animations, skeletal rigs, and even scene hierarchies, making
it a robust option for pipelines in game development, animation, and
visual effects. It is compatible with both binary and ASCII encodings,
with binary being more compact and commonly used for file storage and
exchange [7].

FBX files are maintained and extended by Autodesk, with the most
recent updates available through the FBX Software Development Kit
(SDK), which provides developers with tools to parse and manipulate
FBX data programmatically [7]. FBX remains a standard in production
pipelines due to its widespread support in tools like Maya, Blender, Unity,
and Unreal Engine.

® GL Transmission Format (glTF), developed by the Khronos Group
and introduced in 2015, is an open-standard file format designed for
efficient transmission and rendering of 3D assets. The format is opti-
mized for modern workflows, supporting compact storage through binary
.glb files and extensibility with human-readable .gltf files. glTF 2.0,
released in 2017, introduced support for Physically Based Rendering
(PBR), animations, and scene hierarchies, making it ideal for real-time
applications [56].

¢lTF minimizes runtime processing requirements by incorporating effi-
cient compression and embedding data such as textures and animations
directly into a single file or referencing external resources [56]. Its adop-
tion has grown significantly due to its focus on modern rendering needs
and its compatibility with tools like Blender, Unity, and Babylon.js.

B 2.6 Procedural Content Generation (PCG)

In the preceding sections, we established that defining a road using a curve
or a polyline is a highly effective method for capturing their trajectory.
This approach provides flexibility and precision, allowing user-defined input
to guide the final geometry. We also discussed meshes and their role in
representing surfaces within 3D modeling systems.

This chapter focuses on procedural content generation, particularly the
techniques used to transform curves into mesh representations. Examining
various approaches provides a more comprehensive understanding of how
trajectory curves and procedural techniques work together to produce the
final 3D geometry.

22

2.6. Procedural Content Generation (PCG)

I 2.6.1 What is Procedural Content Generation?

Procedural Content Generation (PCG) is defined as the automated creation
of digital assets for applications such as games, simulations, and movies.
This process relies on predefined algorithms and patterns, requiring minimal
input from users to produce large-scale or complex outputs. Unlike manual
modeling, PCG uses rules or constraints to generate assets such as textures,
terrains, road networks, and even narratives [44].

PCG methods include noise-based algorithms for natural features like
terrain, grammar-based systems for structured content such as cities or plant
growth, and agent-based systems for dynamic or organic pattern creation.
Additionally, search-based approaches use optimization techniques to adapt
generated content to specific design requirements [44].

B 2.6.2 Usecases of PCG

PCG is utilized in various domains to address challenges such as scalability,
diversity, and budget constraints. Key applications mentioned by J. Freiknecht
and W. Effelsberg [44] include:

8 Video Games: For instance, PCG is integral in generating levels, ter-
rains, and environmental details. These techniques enhance replayability
by creating unique content for each session.

® Simulations and Virtual Reality: Generated virtual environments
can support educational purposes, such as virtual driving schools, where
randomized road networks help train users in different scenarios.

Urban and Natural Modeling: PCG is also applied in urban planning,
terrain generation, and vegetation modeling, for automated and large-
scale creation of realistic environments.

B 2.6.3 Advantages of PCG

PCG offers several benefits that make it indispensable in modern content
creation:

®8 Scalability: It enables the generation of vast amounts of content effi-
ciently, reducing the need for extensive manual work.

® Customization: Parameters allow users to control the generated output,
tailoring it to specific requirements.

® Diversity and Replayability: PCG provides endless variations, ensur-
ing unique user experiences and reducing repetition in content.

8 Efficiency: By automating the creation process, PCG saves time and
resources, allowing developers to focus on high-level design [44].

23

2. Geometry Background

B 2.6.4 Challenges of PCG

PCG also presents challenges, such as:

Control vs. Randomness: Striking the right balance between proce-
dural randomness and user-defined control can be difficult. Excessive
randomness may lead to incoherent or unusable content, while rigid
control may reduce diversity.

#8 Integration Complexity: Incorporating PCG seamlessly into work-
flows and game engines requires specialized tools and expertise.

® Validation and Testing: Ensuring the quality and functionality of
procedurally generated content can be labor-intensive, as procedural
systems may occasionally produce errors or undesired results [44].

B 2.6.5 Generating Meshes using Curves

There are many different techniques that fall under the category of procedural
geometry generation. This section, however, will focus only on methods
that convert curves into detailed mesh representations. These techniques are
particularly relevant for road design, as they allow for the transformation of
road trajectory curves into realistic 3D models. These methods are:

B Sweep Surfaces: A sweep surface is generated by moving a curve,
referred to as the profile C'(u), along another trajectory or applying a
transformation rule 7'(w). The transformation can involve translation,
rotation, scaling, or shearing. The surface is mathematically expressed
as P(u,w) = C(u) - T'(w). Sweep surfaces are commonly used to create
tubes, roads, or other extruded geometries [67].

#8 Surfaces of Revolution: A surface of revolution is a specific type of
sweep surface formed by rotating a profile curve P(u) around an axis.
The surface is defined by P(u,0) = P(u)T(0), where T'(0) is a rotation
matrix applying the rotation transformation. This method is widely used
for creating symmetric objects such as spheres, vases, and mechanical
components [67].

® Skinned Surfaces: A skinned surface is created by interpolating or
approximating a set of predefined curves, known as cross-sections or
profiles. These profiles represent the shape of the surface at specific
intervals. The resulting surface P(u,w) is computed as an interpolation
between these curves. This technique is particularly useful when the
surface needs to follow a complex path or vary in cross-section, such as
in designing pipes or other intricate structures [67].

24

2.6. Procedural Content Generation (PCG)

B 2.6.6 Conclusion

Procedural content generation offers a set of tools for creating complex and
diverse 3D assets, including roads and their surroundings. By combining pro-
cedural techniques with curve-based representations, developers can efficiently
generate detailed meshes that accurately represent road trajectories.

Multiple procedural methods, such as sweep surfaces, surfaces of revolution,
and skinned surfaces, were discussed in this section. The most suitable
approach for road design from these methods is sweep surfaces, as they allow
for the extrusion of road trajectories along a path. This technique uses a
profile curve to define the road’s cross-section, enabling detailed and realistic
road meshes to be created.

Now, with a solid understanding of geometry and its applications, we
can explore techniques for representation and simulation of road networks,
focusing on the road graph as a fundamental structure for modeling road
infrastructure.

25

26

Chapter 3
Road Graph

A road graph, also called a road network, is a fundamental representation of
road infrastructure, capturing the connectivity and topology of roads and
junctions. This chapter explores the road graph’s structure and different
representations in road design, traffic simulation, autonomous driving, and
navigation systems. After a concise overview of varying representation meth-
ods, the two most relevant road graph representations are discussed in more
detail: the representation currently used in the VRUT system and the ASAM
OpenDRIVE standard, which is to replace it inside VRUT in the future.

B 3.1 Standards of Data Representation

In the automotive industry, particularly within the domains of autonomous
driving and advanced driver-assistance systems (ADAS), ensuring a stan-
dardized representation of road networks and environments plays important
role for promoting effective communication and collaboration among diverse
stakeholders. Standards, which are embraced as guidelines or specifications
by industry organizations or corporations, establish a common language and
structure. These standards facilitate the seamless exchange of data, promoting
interoperability and accelerating innovation within the industry. [34]

We will now introduce some prominent standards and methods used for
representing road networks and environments in the context of autonomous
driving and navigation systems. The aim is to provide an overview of the
existing standards that are outside this project’s scope. The following sections
will delve into the specifics of the VRUT system’s road graph representation
and the ASAM OpenDRIVE standard, which are most relevant to this project.

B 3.1.1 OpenStreetMap (OSM)

OpenStreetMap is a collaborative project that creates a free, editable map of
the world, built by volunteers through manual survey, GPS devices, aerial
imagery, and other free sources.

OSM represents physical features on the ground—such as roads, buildings,
and natural elements—using a system of tags attached to its basic data
structures: nodes, ways, and relations. Each tag consists of a key-value

27

3. Road Graph

pair that describes a specific attribute of a feature, enabling detailed and
customizable mapping. This flexible tagging system allows contributors
to define an unlimited number of attributes for each feature, facilitating
a comprehensive and nuanced representation of real-world objects. The
community collaboratively agrees on certain key and value combinations for
commonly used tags, which act as informal standards; however, users are
encouraged to create new tags to capture previously unmapped attributes,
enhancing the map’s richness and utility [66].

B 3.1.2 RoadXML

RoadXML is an XML-based file format (extension .rnd) designed for driving
simulation applications. Developed through years of collaboration between
universities and industry, it supports traffic simulation, scenario control,
vehicle dynamics, and 3D road network generation [3].

Road networks in RoadXML consist of connected tracks and intersections,
enhanced with additional layers such as road profiles, traffic descriptions,
and environmental elements like road signs. It uses a graph-based structure
to organize these features and supports user-defined data for customization.
RoadXML’s extensibility and structured design make it a valuable resource
for simulating realistic road networks in various scenarios [3].

B 3.1.3 Vector Map (VMap)

Vector Map (VMAP), also known as Vector Smart Map, is a geospatial data
format developed by the National Geospatial-Intelligence Agency (NGA)
to provide detailed vector-based representations of geographic features. It
includes road networks, terrain features, hydrological systems, and points of
interest. VMAP data is structured using the Vector Product Format (VPF)
[o1].

VMAP is available in multiple resolution levels: VMAP Level 0 (VMAPO)
provides global coverage at a scale of 1:1,000,000 and is in the public domain,
while higher-resolution levels such as VMAP Level 1 (1:250,000 scale) and
VMAP Level 2 offer more localized and detailed data. This format sup-
ports applications in mapping, navigation, and geospatial analysis, offering
comprehensive environmental context for a variety of use cases [91].

B 3.1.4 Simulation-specific Formats

In addition to the above standards, there are simulation-specific formats
used in autonomous driving research and development. Examples include
the Unified System for Automation and Robot Simulation (USARSim) and
the Simulation Open Framework Architecture (SOFA). USARSim is a high-
fidelity simulation platform based on the Unreal Tournament game engine,
designed for research in robotics and automation. It provides a realistic
virtual environment for testing autonomous vehicle algorithms and systems
under various scenarios [27].

28

3.2. VRUT representation

SOFA, on the other hand, is an open-source framework primarily targeted
at real-time physical simulation, with a focus on medical and robotics ap-
plications. It is widely used in research for prototyping and developing new
simulation algorithms, as well as serving as a robust physics engine [90].

These simulation frameworks help researchers and developers test and
improve autonomous driving systems in realistic virtual environments.

B 32 VRUT representation

The VRUT system currently uses a custom representation for road networks,
which uses a polyline-based structure to model the road network, with nodes
representing road segments and edges representing connections between them.
The system also incorporates additional attributes to capture lane information,
road attributes, and traffic regulations. A visualization of the VRUT road
graph representation is shown in Figure [5.2. Information provided in this
chapter is gathered from examples of road networks and from a code of a
VRUT format parser, defined in VRUT’s traffic module. An example of a
VRUT road graph XML representation is shown in Appendix [Al

B 3.2.1 Roads Section

At the base level, this road graph representation uses a hierarchical structure
to organize road elements, with roads containing lanes and lanes containing
nodes.

® Roads are the highest level of the hierarchy, representing the entire
road segment. Roads are defined by an identifier and a type (e.g.,
"motorway"=0, "first-class road"=2, "second-class road"'=3, etc.).

<road id="5" type="0">

® Lanes represent, as the name suggests, the lanes of the road. Each lane
has a unique identifier, node count, a type (e.g., highway lane, highway
exit, turning lane) and some optional attributes.

<lane id="0" nodes="3053" type="0" level="3" o="1">

® Nodes represent points along each lane that guide the path of vehicles.
Edges later connect these nodes to form a continuous path. To define the
lane geometry, they have multiple attributes, such as position, curvature,
and lane width.

<node id="1" x="-7.67172" y="-21.0457" z="1" s1="120"
w="3.7" r="10880.5" r2="10000" vmax="120" vdop="120" />

29

3. Road Graph

B 3.2.2 Attributes Section

After all the road elements are defined with all the nodes’ attributes set, the
attributes section allows for the bulk setting of attributes for nodes. This
section is handy for simplified setting of optional attributes across multiple
nodes and is defined between the <attributes> tags. An example of how this
section may look is:

<attributes>
<level from="1" to="154" value="4" />
<overtakable from="1" to="154" value="1" />
<speedlimit from="1" to="154" value="130" />
<vmax from="1" to="154" value="130" />
<vdop from="1" to="154" value="130" />
<navevt from="1" to="154" value="2" />
</attributes>

B 3.2.3 Connections Section

This section, defines all the connections between different nodes, as well as
defining junctions. The nodes already defined in the Roads section are not
automatically interconnected between each other, even though they are a part
of the same lane and the same road. That is partly because the nodes defined
in each lane and the lanes defined in each nodes is not strictly ordered in a
sorted manner, and even if that is most of the times the case, it’s not a rule.

There are three different ways to define connections between nodes of roads
and before they were defined, all the connection has to be defined manually,
much like nodes are:

B Sequence: Defines, as the name suggests, a sequence of connections
given a start and end index of nodes. Nodes are expected to be indexed
in order, in which they appear in the road.

<sequence from="1" to="3053" dir="2" closed="1" />

® Interconnection: Characterizes connections between parallel lanes, to
allow changing lanes and overtaking. Takes in start indices of nodes on
both lanes, count of nodes that should be interconnected and direction
in which the connections should be added.

<interconnection from="1" to="3054" count="3053" dir="2" />

Connection Group: Used to group multiple connections into one
structure and define default connection type for all of them (left, right,
backwards, forwards). Connections inside this group connect two different
nodes together and the default connection type for this group can be
overriden for each connection.

30

3.2. VRUT representation

<connectiongroup type="0">
<connection from="6296" to="6297" type="0"/>
<connection from="6297" to="6296" type="1"/>
</connectiongroup>

B 3.2.4 Junctions

Each junction is encapsulated by the <junction> tag, which includes details
about its auxiliary paths, interconnections between lanes, and priority rules.
This tag is defined within the connections section. Below, the key components
of a junction definition are explained:

Each junction is identified by its name and a unique ID, as shown in the
following example:

<junction name="T-crossing" id="1">

B Auxiliary Paths

Auxiliary paths within junctions are defined using the <path> tag. Each path
connects specific nodes representing points in the junction, with attributes
describing the path’s geometry and operational constraints:

<path id="0" nodes="2" type="11">
<node id="O0" x="5659.1785" y="-16528.178" z="29.743277"
s1="30" w="3.6" vmax="30" vdop="30"/>
<node id="1" x="5663.2515" y="-16522.1156" z="29.743277"
s1="30" w="3.6" vmax="30" vdop="30"/>
</path>

Attributes of the <path> tag include the path’s ID, the number of nodes it
contains, and its type (general connection, left & right turn, etc.). Each node
within the path is defined by its ID, position (x, y, z), speed limit (sl), width
(w), maximum speed (vmax), and design speed (vdop).

I Lane Interconnections

The <laneLink> tag specifies how lanes from different roads are interconnected
within th e junction:

<lanelink road="3" lane="1" node="11572">
<successor road="3" lane="0" node="11576" path="0" />
</laneLink>

Attributes of the <laneLink> tag include the road and lane IDs, as well as
the node ID where the connection occurs. The <successor> tag defines the
connected road, lane, and node, along with the path ID which the connection
follows.

31

3. Road Graph

B Priority Rules

Priority rules are critical for managing vehicle precedence at junctions. They
are defined using the <priority> tag, with <check> elements specifying lanes
and nodes with higher priority:

<priority road="3" lane="0" node="11589">
<check road="3" lane="0" node="11557" />
<check road="3" lane="1" node="11572" />
</priority>

Attributes of the <priority> tag include the road, lane, and node IDs where
the priority rule applies. The <check> elements define lanes and nodes that
have priority over the specified lane. In the example above, nodes 11557 and
11572 have priority over node 11589 during traversal.

B 3.2.5 Summary of VRUT representation

The VRUT road graph representation uses polyline-based structures to define
road network. It uses hierarchical organization to model roads, lanes, and
nodes. Attributes for nodes such as overtakability, level or speed-limit can
be set for each node separately and overriden in bulk in attributes section.
Connections section defines edges between nodes, representing the connectivity
of the road network, as well as junctions with all their attributes.

This representation is intuitive and efficient for modeling simple road
networks, but it may seem sporadic when dealing with complex road structures,
such as intersections with multiple lanes and traffic rules. Some of the
necessary attributes may feel redundant (such as a necessity manually adding
connections between nodes that are already ordered and grouped inside lanes).

To address these limitations, the VRUT system (as well as this text) is
transitioning to the ASAM OpenDRIVE standard, which provides a more
complete and standardized representation of road networks and environments.

B 3.3 ASAM OpenDRIVE

All the information provided in this section is based on the latest ASAM
OpenDRIVE standard documentation [4].

ASAM OpenDRIVE, developed by the Association for Standardization
of Automation and Measuring Systems (ASAM e.V.), is an XML-based
standard for describing static road networks in driving simulation applications.
It provides a framework to represent roads, lanes, signals, junctions, and
other roadside objects such as traffic islands. By focusing on static elements,
ASAM OpenDRIVE facilitates simulation scenarios while excluding dynamic
elements like vehicles and pedestrians.

The specification promotes compatibility and standardization, enabling
seamless data exchange between various simulation tools.

32

3.3. ASAM OpenDRIVE

e | O
+

+

Features

Figure 3.1: OpenDRIVE reference line with other features attached to it [5]

B 3.3.1 File Structure

ASAM OpenDRIVE files are structured with the root element <OpenDRIVE>
encapsulating all data. The mandatory <header> element contains metadata
such as the ASAM OpenDRIVE version and default regulations.

Key elements include:

B <license>: Stores licensing information about the file.

B <defaultRegulations>: Specifies default road parameters like speed
limits or overtaking rules, applicable unless overridden by specific defini-
tions.

Files are stored using the .xodr extension for uncompressed XML files,
while compressed files use the .xodrz extension, following the gzip format.
The standard also supports extensibility through the <userData> element for
custom data and the <include> element for integrating external files.

An example of an ASAM OpenDRIVE file is provided in Appendix Bl. This
example demonstrates a road composed of a straight section, an Euler spiral,
and a curved segment. The combination of these elements highlights the
flexibility and detail achievable with the OpenDRIVE format.

B 3.3.2 Road Reference Line

The road reference line is a central element in ASAM OpenDRIVE, defining
the road’s geometry and alignment. It runs along the s-axis, with lateral
deviations in the t-direction. Elevation changes are represented along the
h-axis. The reference line serves as the foundation for defining road segments
and features, ensuring consistency and alignment across the network.

Furthermore, the road reference line forms the foundation for individual
road definitions, serving as the central axis along which road segments are
described.

The reference line is constructed using a series of geometric elements, which
will be discussed in the next section.

B 3.3.3 Geometries

ASAM OpenDRIVE defines road layouts using following geometry elements:

33

3. Road Graph

line

road reference line

]

—

spiral

arc |:>

spiral / 1
‘\/'5

arc X

T curvature @ @ @ steering wheel
0+ @ @/ - ® s

Figure 3.2: ASAM OpenDRIVE: Road geometry representation [4]

® Straight Lines: Straight road segments are represented by the <line>
element with attributes specifying the start position, heading angle, and
length.

® Spirals (Euler Spirals/Clothoids): Spirals transition smoothly be-
tween curves of varying curvature. They are defined using attributes for
start and end curvature.

® Arcs: Arcs represent road segments with constant curvature.

® Parametric Cubic Curves: Parametric cubic curves provide flexibility
for modeling complex road shapes using coefficients for lateral and
longitudinal splines. These curves allow precise modeling of continuous
curves, making them suitable for approximating smooth polylines.

This representation is similar to the one discussed in section [2.3.4, where
Euler spirals are used to model smooth transitions between straight and
circular road segments. We can compare the OpenDRIVE representation (see
Figure 3.2)) with the one discussed in that section (see Figure 2.9)) and see
the similarity. The addition of this representation is parametric cubic curves,
which provide a more detailed and flexible approach to modeling complex
road shapes.

B 3.3.4 Roads

Roads are the primary elements in ASAM OpenDRIVE, serving as the
structural backbone of any road network. Defined along the road reference
line, roads can represent continuous stretches, smaller segments between
junctions, or even multiple distinct roads. Each road is represented by a
<road> element and includes a unique set of properties and structural details.
Road linkage ensures continuity by connecting roads either directly or via
junctions. This linkage is defined through <1ink> within <road> elements,
specifying how roads connect and ensuring logical navigation across the
network. Roads must be explicitly linked to maintain network consistency.

34

3.3. ASAM OpenDRIVE

Each road type specifies its primary function and traffic rules, such as
motorways or rural roads. A road type remains valid until another type is
explicitly defined or the road ends.

Elevation changes along a road are handled by defining the elevation profile
along the reference line. This allows roads to model realistic terrain, including
hills and slopes, while ensuring a smooth transition in elevation. Additionally,
cross-sections divide the road into segments that describe properties like
superelevation and lane-specific details across the road’s width.

Key attributes of a road include:

® an ID, which uniquely identifies the road;

® a junction identifier (-1 if the road does not belong to a junction);
® the length of the road;

® an optional name for descriptive purposes; and

® the traffic rule, specifying driving direction (e.g., Left-Hand Side or
Right-Hand Side).

By integrating all these aspects, roads in ASAM OpenDRIVE form a
coherent and robust framework for representing diverse and complex road
networks, providing the foundation for lanes, junctions, and additional road-
related elements.

B 3.3.5 Lanes

Lanes are essential components of roads and are defined relative to the road
reference line. Each road must have a center lane, which is a reference for
lane numbering. The centre lane (ID 0) has no width and aligns with the
road reference line by default. Additional lanes are numbered relative to
the center lane: lanes on the left (positive t-direction) are numbered with
positive integers, while lanes on the right (negative t-direction) are assigned
negative integers.

For ease of organization, lanes are grouped into left, center, and right
categories based on their position relative to the center lane. Lanes are
further divided into lane sections, which segment the road whenever the
number or characteristics of lanes change. Lane sections ensure consistency
in lane definitions over the length of a road.

Lane geometry incorporates parameters such as width, lateral offset, and
elevation, which can vary along the road. A lane offset can shift the center
lane laterally, allowing for more complex road designs, such as turn lanes.
Lane borders and widths define the boundaries of individual lanes, with
widths adjustable along the road’s length.

Linkage information for lanes, defined using <predecessor>/<successor>
elements, connects lanes across road segments and ensures smooth navigation.
Lane linkage is independent of driving direction, enabling flexible connections
in diverse scenarios.

35

3. Road Graph

Additional properties include lane type (e.g., driving, parking, shoulder),
speed limits, access restrictions, and surface material. Road markings, defined
with <roadMark>, further enhance lane definitions by specifying line styles,
colors, and visibility.

B 3.3.6 Junctions

Junctions in ASAM OpenDRIVE provide a structured way to connect multiple
roads, enabling complex traffic scenarios. They can be categorized based on
their functionality:

#8 Common Junctions: The default type, these allow traffic to cross using
overlapping drivable lanes, such as ordinary intersections or junctions
with traffic lights.

® Direct Junctions: Used for entries and exits without crossing traffic,
reducing the complexity of connecting roads. These are ideal for slip
roads and certain highway interchanges.

B Virtual Junctions: Model connections within uninterrupted roads,
such as driveways or parking lot entries, without altering the main road
geometry.

® Crossings: Allow roads to intersect at the same level without enabling
vehicles to change roads, e.g., railway or pedestrian crossings.

B Junction Components:

Each junction consists of several key components. Incoming roads lead into
the junction and may also function as outgoing roads. Connecting roads
define paths through the junction, linking lanes of incoming roads to those of
outgoing roads, and are modeled similarly to standard roads. Additionally,
some junctions may include cross paths, which add direct connections
between specific lanes, enabling more precise traffic flow management.

B Additional Features:

Junctions incorporate additional features to handle more complex scenarios.
Junction boundaries define the extent of the junction, including sidewalks
and similar areas, forming a closed boundary. For cases where roads with
different elevations meet, elevation grids provide smooth transitions by
interpolating height data within the junction area. Junctions can also be
grouped into junction groups to represent constructs such as roundabouts
or complex interchanges. To improve traffic management, signal synchro-
nization groups enable the coordination of multiple traffic signals within a
junction.

By combining these elements, ASAM OpenDRIVE ensures that junctions
can model a wide variety of real-world traffic scenarios, from simple intersec-
tions to highly complex interchanges.

36

3.4. Conclusion

road id =3

-3 2 1|11 2 3

-3 3
) 2
Lonl
road id =2 -1 = 1 road id = 1
3
1 o road id 64 =1l
2 road id 28 9 -2
L]

| roadid=4

Figure 3.3: ASAM OpenDRIVE: Junction example [5]

B 3.3.7 Summary of ASAM OpenDRIVE

ASAM OpenDRIVE uses a detailed geometric representation to define road
layouts, including Euler spirals for smooth curvature transitions. This method
is more precise than polyline-based approaches, such as the one used in
VRUT, and better suited for representing precise road graph in simulation
environments.

The standard allows for the representation of complex road networks, in-
cluding roads, lanes, junctions, and various roadside features. Its flexibility
and structured format make it ideal for creating realistic simulations and
ensuring compatibility between different systems. ASAM OpenDRIVE effec-
tively handles everything from simple roads to complex interchanges, making
it a reliable foundation for modern driving simulations.

. 3.4 Conclusion

The main difference between VRUT format and OpenDRIVE standard is
the approach to storing geometry of the road network. Where VRUT stores
nodes and edges between them, much like polyline representation of a curve,
OpenDRIVE stores parametric curve sections with three main forms: line
segment, spiral, circular section, meaning that OpenDRIVE representation is
much more precise where VRUT representation is more of an approximation,

37

3. Road Graph

but is easier and more intuitive to implement and model.

The way of storing attributes also differs. VRUT stores custom attributes
directly within nodes, offering simplicity but limited flexibility for complex
scenarios. OpenDRIVE uses a hierarchical structure, associating attributes
with specific road elements like lanes or junctions, allowing for greater pre-
cision and modularity. While VRUT is easier to implement and suitable
for straightforward networks, OpenDRIVE excels in representing complex
geometries and advanced configurations.

38

Chapter 4

Implementation Suitable Frameworks

This chapter examines various frameworks considered during the selection
process for implementing the RoadBlocks editor. The editor’s functionality
focuses on two primary outputs: road geometry and the road graph. The
ideal framework should seamlessly handle geometry and mesh operations
while also supporting the definition of custom data structures and variables
required for the road graph.

In addition to VRUT, which emerged as the most convenient choice for
future developers and users, two other categories of applications were eval-
uated: Game Engines and Geometry Modeling Software. Both categories
are inherently suited for working with geometries, satisfying the primary
requirement. Game Engines are also highly programmable, and Geometry
Modeling Software typically provides interfaces that enable developers to
create custom add-ons.

An additional factor influencing the final framework selection was profi-
ciency and prior knowledge of the framework, as familiarity can significantly
streamline the development process and reduce onboarding efforts.

B 241 VRUT

Given that the output of RoadBlocks editor must be compatible with VRUT,
a detailed description of VRUT will be provided in Chapter 5, regardless of
whether it is ultimately selected as the implementation framework. Please
refer to that chapter for a comprehensive explanation of VRUT’s internal
mechanisms. This section will focus solely on aspects pertinent to the frame-
work selection process.

Since the final results are intended to integrate seamlessly with VRUT, and
developers working within VRUT are the primary users of the editor, VRUT
represents the most convenient option from a user perspective. Implementing
the editor within VRUT would eliminate users needing to install or familiarize
themselves with additional software. Furthermore, this approach would
streamline workflows by removing the necessity of exporting results from
external tools and subsequently importing them into VRUT.

However, VRUT also presents significant challenges as an implementation
framework. It is the most complex option to work with due to the lack

39

4. Implementation Suitable Frameworks

of prior development experience, the absence of recent documentation, and
the scarcity of individuals available to provide active support during the
development process. Additionally, VRUT offers limited built-in tools for
handling geometries compared to alternative frameworks. Consequently, most,
if not all, of the required geometric methods would need to be implemented
from scratch.

B 22 Game Engines

Game engines provide a balance between precise geometry programming and
the convenience of predefined functions found in modeling software. They offer
a steeper learning curve but compensate with extensive documentation, active
community support, and a wealth of online resources, which can simplify the
development process.

These frameworks are highly programmable, supporting custom features
like road geometry generation and road graph construction through scripting
capabilities. Game engines also excel in rendering and interaction, enabling
real-time visualization of geometries and graphs. Additionally, built-in tools,
such as physics engines or pathfinding systems, may be repurposed to enhance
the editor’s functionality.

However, their broad functionality and abstraction can add complexity
for geometry-focused tasks. Moreover, integration with VRUT would still
require export-import workflows, potentially complicating the user experience.
Despite these challenges, game engines offer a versatile platform that balances
flexibility and capability for developing the RoadBlocks editor.

B 4.2.1 Unreal Engine

Unreal Engine is a real-time 3D creation tool widely used for simulation, game
development, and visualization. Its framework provides tools for representing,
creating, and exporting geometric models, supporting procedural content
generation [47].

B Representation of Objects

Unreal Engine supports splines and static meshes for representing objects.
The Spline Component allows the definition and manipulation of paths or
shapes in 3D space, useful as the skeleton for road geometry [48]. Static and
procedural meshes can be used to represent road surfaces and nearby objects,
enabling detailed modeling [47].

B Mesh Creation and Procedural Content Generation

Mesh creation in Unreal Engine includes manual tools and dynamic tools
like the Procedural Mesh Component, which generates meshes at runtime [46].
This capability is suited for generating road surfaces and procedurally placing

40

4.2. Game Engines

roadside features such as trees and grass based on spline data or custom
algorithms [47].

B Storing Custom Properties

Unreal Engine allows storing custom metadata through Actor Components and
Blueprint variables. Properties like speed limits and overtaking permissions
can be added to splines or meshes, making road attributes accessible for
further simulation [47).

B Exporting Geometry and Meshes

Unreal Engine supports exporting static and skeletal meshes, as well as
animations [47]. Procedural geometry generated at runtime can also be
exported using custom scripts or plugins, ensuring compatibility with external
systems.

B 4.2.2 Unity

Unity is a widely used game engine that supports the creation of real-time 3D
content for games, simulations, and visualizations. It offers robust tools for
representing, creating, and exporting geometric models, as well as procedural
content generation [85].

B Representation of Objects

Unity uses Splines and Meshes to represent objects. The Spline Package
in Unity allows for the definition of curves that can act as the skeleton for
roads [84]. Static meshes are supported through Unity’s MeshF'ilter and
MeshRenderer components, enabling the visualization of geometric shapes

[85].

B Mesh Creation and Procedural Content Generation

Unity provides tools for both manual and automated mesh creation. Meshes
can be created using the ProBuilder package [82], which supports manual
modeling and editing. Procedural mesh generation can be achieved through
scripting via the Mesh class, enabling runtime generation of road surfaces
and procedural placement of roadside details such as trees and grass [81].

B Storing Custom Properties

ScriptableObjects allow for storing custom metadata, and can be attached to
objects to define attributes like speed limits, overtaking permissions, and lane-
specific details. These properties can also be serialized for use in simulations
and further processing [83].

41

4. Implementation Suitable Frameworks

B Exporting Geometry and Meshes

Unity supports the export of models through various formats, such as FBX,
using the FBX Exporter package [80]. Additionally, procedurally generated
meshes can be serialized and exported via scripting, ensuring compatibility
with external tools and platforms.

B 43 3D modeling software

Modeling software is highly specialized for geometric operations, making
these frameworks particularly effective for tasks centered on precise geometry
manipulation. Since geometry is the most complex output of the editor, these
tools offer an advantage with their robust feature sets designed for creating,
editing, and exporting geometric models. Additionally, they streamline the
geometry export process, a core functionality for such software.

A significant strength of modeling software lies in its procedural and
visual programming capabilities, which enable the development of complex
geometries through intuitive interfaces or scripting. This allows for greater
control and efficiency when generating intricate road geometries. Moreover,
these frameworks often support defining custom data structures and exporting
them alongside geometry, facilitating the integration of road graphs into the
workflow.

The active communities and comprehensive documentation associated
with modeling software provide further benefits, offering ample support and
resources for development. Their built-in tools and extensibility through
scripting make them versatile for addressing specific requirements, such as
defining road networks. Combined with their focus on geometry and ease of
exporting, modeling software presents a compelling option for developing the
RoadBlocks editor.

B 4.3.1 Blender

Blender is a versatile open-source 3D creation project widely used for modeling,
animation, and simulation. It offers robust tools for representing, creating,
and exporting geometric models, supporting procedural content generation,
and allows for extensive customization through its Python APT [I5].

B Geometry Representation and Procedural Modeling

Blender utilizes splines and meshes to represent objects. Meshes, consisting
of vertices, edges, and faces, form the basis for most 3D objects and can
be extensively edited for fine-tuned geometry. Curves and surfaces, such as
NURBS and Bézier curves, provide flexible representations for smooth and
flowing forms, ideal for defining paths or skeletons for procedural modeling.
These structures are enhanced by modifiers and the Geometry Nodes system,
which supports procedural manipulation and complex object generation [19,
42).

42

4.3. 3D modeling software

B Mesh Creation and Custom Attributes

Blender’s Geometry Nodes system enables procedural mesh generation through
a visual node-based programming approach [42]. For advanced geometry
manipulation, Blender’s Python API provides the bmesh module, offering
direct access to Blender’s internal mesh editing capabilities [41]. Additionally,
Blender supports custom attributes on geometry through the Geometry Nodes
system or via Python scripting. The bpy module facilitates the creation and
manipulation of user-defined properties for various elements [40].

B Add-on Development and Exporting

Blender’s Python API supports the development of add-ons with custom
graphical interfaces, enabling developers to create panels, menus, and oper-
ators to extend functionality. Comprehensive tutorials guide users through
the process of developing tools with integrated GUIs [39]. Blender also
supports exporting geometry and meshes in various formats, such as OBJ,
FBX, and STL, which can be accessed via the user interface or automated
through Python scripting [43]. These features ensure seamless integration
with external workflows and applications.

B Strengths and Accessibility

Blender’s open-source nature and free license make it highly accessible for
personal and professional use. Its combination of procedural generation
capabilities, extensive scripting support, and robust export options make it a
powerful tool for implementing road network modeling tasks. However, its
steep learning curve for advanced procedural workflows may pose challenges
for new users, particularly those unfamiliar with its node-based and scripting
environments [19].

B 4.3.2 Houdini

Houdini is a high-end 3D animation and visual effects software renowned for its
node-based procedural workflow. Widely used in film, gaming, and simulation
industries, it provides a robust toolset for road network modeling, including
procedural generation, attribute handling, and export capabilities [75].

B Geometry Representation and Modeling

Houdini uses splines (referred to as curves) and geometry nodes to represent
objects. The Curve SOP facilitates the creation and manipulation of curves,
which can act as skeletons for road systems [71]. Geometry in Houdini is
represented through procedural networks of nodes, enabling detailed and
customizable modeling of road surfaces and related structures [74].

43

4. Implementation Suitable Frameworks

B Procedural Mesh Creation and Custom Attributes

Houdini excels in procedural content generation through its node-based
architecture. Tools like the PolyFxtrude SOP and Sweep SOP allow developers
to dynamically create meshes from curves [76]. Custom attributes, such as
speed limits, overtaking permissions, and lane-specific details, can be added
and manipulated through nodes or scripting, ensuring compatibility with
simulations and external tools [70]. The VEX and HScript scripting systems
further enhance procedural workflows, enabling the automated placement of
roadside elements such as trees, grass, and ditches [77].

B Tool Development and Exporting

Houdini provides extensive support for custom tool development through
Digital Assets (HDA), allowing developers to package procedural systems into
reusable tools with custom graphical interfaces [72]. Exporting capabilities
include industry-standard formats like FBX, Alembic, and USD, ensuring
seamless integration with external platforms such as VRUT. Additionally,
procedural geometry can be baked into static models or exported dynami-
cally [73].

B Strengths and Limitations

Houdini’s node-based procedural workflow offers unparalleled flexibility and
scalability, making it a powerful tool for road network modeling tasks. How-
ever, the software’s commercial nature poses accessibility challenges, as its
full functionality requires a commercial license. While a free version, Houdini
Apprentice, is available, it comes with significant feature limitations, making
it less suitable for widespread use in accessible frameworks. Moreover, Hou-
dini’s steep learning curve and complexity may present additional challenges
for developers unfamiliar with its workflow [75].

B 4.3.3 Maya

Autodesk Maya is a professional 3D modeling and animation software widely
used in the film, gaming, and visualization industries. It provides a robust
toolset for modeling, scripting, and exporting geometry, making it a potential
candidate for road network modeling tasks [g].

B Geometry Representation and Modeling

Maya supports object representation through NURBS curves and polygon
meshes, which can be combined and manipulated with precision to model road
networks [I1]. The Modeling Toolkit offers features like extrusion, beveling,
and bridging, providing flexible tools for creating and refining geometry.
Advanced tools like Bifrost enhance procedural workflows, enabling the
dynamic creation of road surfaces and roadside elements [12].

44

4.4. Conclusion

B Custom Attributes and Procedural Tools

Custom attributes can be added to objects using the Attribute Editor or
through scripting, enabling the storage of metadata such as speed limits, lane
types, and overtaking permissions [9]. Maya integrates with Maya Embedded
Language (MEL) and Python scripting, supporting automated workflows and
procedural content generation. These tools allow for the efficient creation
and customization of road network elements [§].

B Add-on Development and Exporting

Maya supports the creation of custom tools and graphical interfaces through
its Python API and Qt framework. This functionality enables the development
of user-friendly workflows tailored to road modeling tasks [13]. Exporting
capabilities include formats like FBX, OBJ, and USD, ensuring compatibil-
ity with simulation frameworks and rendering engines. Automated export
workflows for procedurally generated content are also supported [10].

B Strengths and Limitations

While Maya offers powerful tools and extensive scripting capabilities, it has
several limitations that affect its suitability for this project. Its commercial
nature and high price point may limit accessibility for many users, despite
Autodesk’s free educational licenses. Additionally, while Maya provides robust
geometric tools, its learning curve and complexity may present challenges for
those without prior experience with the software.

B 4.4 Conclusion

In summary, the framework selection process highlighted several key con-
siderations. While VRUT offers the greatest convenience for end-users by
minimizing external dependencies and streamlining integration, it also presents
significant implementation challenges. Its complexity, lack of documenta-
tion, and limited tools for geometric operations make it the most demanding
framework to work with.

Although versatile and capable of handling various tasks, game engines
are not inherently specialized for working with geometries or managing the
efficient export and import of geometric data. These capabilities are critical
for the RoadBlocks editor, and the learning curve associated with game
engines would have required significant time and effort, given my limited
prior experience with such frameworks.

In contrast, modeling software is more suitable for tasks involving complex
geometry manipulation and data export. Its specialized focus on geometric
operations, support for custom structures, and intuitive tools for add-on
development align closely with the requirements of the RoadBlocks editor.
Among the available options, Blender emerged as the optimal choice, thanks

45

4. Implementation Suitable Frameworks

to its free accessibility, extensive feature set, compatibility with the project’s
needs, and developers prior experience with the platform.
For these reasons, Blender was selected as the framework for implementing

the editor.

46

Chapter 5

Virtual Reality Universal Toolkit system
(VRUT)

Starting with a disclaimer, the data presented in this chapter is mostly based
on information obtained from VRUT documentation (Dokumentace aplikace
VRUT, 2010, [59]). It is essential to acknowledge that this documentation is
outdated, and no updated version has been identified during the course of this
research. Consequently, there is a possibility that the presented information
may not accurately reflect the current state of the subject matter due to
the ever-evolving nature of the application. The accuracy of all information
relevant to the implementation of this work has been verified. Having said
that, readers are advised to verify the data independently and consider seeking
more recent sources for a comprehensive understanding of the topic, given
that VRUT has mostly been used as "output checker” in the implementation
chain.

. 5.1 Overview

The VRUT (Virtual Reality Universal Toolkit) application is a collaborative
project between SKODA AUTO a.s. and the Czech Technical University
in Prague, specifically the Faculty of Electrical Engineering, the Computer
Graphics and Interaction Department. It aims to visualize and edit 3D
data while incorporating new technologies and providing special functionality.
The primary goal of VRUT is to support Skoda Auto systems and formats,
ensuring high-speed performance and usability for both educational and
experimental purposes [59].

The VRUT focuses on graphical data visualization and modular support.
The modular approach allows for the expansion of core application func-
tionality by developing compatible modules or plugins. These modules can
address various tasks related to data visualization and manipulation, enabling
developers to concentrate on their specific problems within their own modules
while benefiting from the overall VRUT framework [59].

While the university employs VRUT as an auxiliary development tool,
Skoda Auto utilizes it to implement diverse modules created by students and
other individuals. By utilizing VRUT, these module developers can bypass

47

5. Virtual Reality Universal Toolkit system (VRUT)

the necessity of implementing parts such as input/output, graphical output,
scene graph management, and more. This approach enhances development
efficiency and fosters innovation [59).

As noted in the introductory disclaimer, the documentation accompanying
VRUT hasn’t evolved over time and therefore contains outdated sections due
to the application’s dynamic nature. The main portion of the documentation
originated from Vaclav Kyba’s diploma thesis (Moduldrni 3D prohliZec¢, 2008,
[58]). However, an unified documentation system for individual modules has
been established and appended to the original documentation.

In subsequent sections, we will delve into the core of VRUT and explore
several relevant modules associated with this study.

B 5.2 Core of VRUT

TThe core of VRUT, known as the Jddro, is the backbone of the applica-
tion, integrating essential functionalities for seamless operation. It manages
modules, graphical data, and auxiliary elements while facilitating control
and communication among components. The event management system is a
key feature that acts as the module’s central communication hub. The core
also includes specialized managers for various tasks: the Module Manager
handles module compatibility and activation; the Import/Export Manager
supports file operations for loading and exporting scenes; and the Visualiza-
tion Manager ensures proper rendering and updates to visualization windows.
Manipulators are coordinated by the Manipulator Manager, linking scene
nodes like cameras to input devices. Additionally, the General Manager
oversees modules unrelated to core functionality, while the Variable Manager
allows real-time variable adjustments during runtime. The Scene Manager
organizes graphical data into scenes, serving as a repository for shared re-
sources like textures. Other features include event logging for debugging and
a command console integrated into the user interface, providing active inter-
action capabilities. Together, these components enable VRUT to function
efficiently and adapt to diverse user and application demands [59].

. 5.3 Relevant Modules

Within this section a exposition is presented on key modules that bear
significance to the context of this work, including an exploration of their
relevance to this study. There are many modules that are relevant by nature
of their functionality, such as the Light Editor, Material Editor, and Scene
Manager. However, the following modules are particularly pertinent to the
development of the editor in this thesis.

48

5.3. Relevant Modules

Figure 5.1: Examples of RoadEditor module’s blocks [6]

B 5.3.1 Road Editor

The Road Editor module was initially envisioned as a foundational component
for the editor developed in this thesis to build upon its functionality to support
the creation and interconnection of various roadblocks. This module, created
as a master thesis by D. Aschermann [6], designed to interconnect predefined
roadblocks to form a network and construct scenes within VRUT, introduced
a drag-and-drop mechanism for adding blocks to a predefined plane, enabling
their seamless connection and deformation as needed (see Figure 5.1)) [6].

As the implementation of this thesis progressed, the Road Editor module
was ultimately excluded from the workflow. The editor developed in this
thesis evolved to autonomously generate its roadblocks while creating new
structures and merging them to form the whole traffic scene. Nonetheless,
the concept of the Road Editor remains an interesting approach to modular
scene creation and served as a reference point in the early stages of this work.

B 5.3.2 Road Network Editor

The Road Network Editor module, developed as a bachelor’s thesis of V. Kolin-
sky [57], provides users with an intuitive interface to modify the road graph
structure without manually editing the XML file or restarting the system,
significantly improving the workflow for road graph manipulation. The edi-
tor developed as part of this thesis is specifically designed to facilitate the
creation of connections and ensure uniform spacing between nodes, stream-
lining the initial generation of road networks. Additionally, this tool can
be used to fine-tune auto-generated nodes that do not meet the specific
requirements of developers, offering greater flexibility and precision in road
network adjustments. Figure 5.2 [57] shows an example of this module’s GUI.

49

5. Virtual Reality Universal Toolkit system (VRUT)

trafficGraphFile C\DulezitaData\VR| B

road_pos_x 4T4T130176
road_pos_z 0.990002
road_id 0
road_type 1
level_of_node 3
overtakable 1
road_width 3.700000
radius2 10000.000000
vdop_max 60.000000
Edge Mode is active:

drawleftAdjacentEdge drawrighAdjacentEdge

Figure 5.2: A preview of Traffic editor GUI

Figure 5.3: Traffic simulation module in action

B 5.3.3 Traffic Module

The Traffic Module, developed as a component of the VRUT project by
J. Minarik [64], enables realistic autonomous traffic simulation in virtual
environments. It employs a road graph structure to model traffic behavior,
including lane following, overtaking, and intersection handling, while ensuring
adherence to traffic rules and preventing collisions.

One of the module’s key features is the "simulation window," which opti-
mizes computational resources by limiting simulation efforts to vehicles within
a specific range of the user-driven vehicle. This approach ensures high-fidelity
simulation for nearby traffic while maintaining overall efficiency.

The module dynamically generates and manages vehicles in the scene,
adjusting their behavior to traffic conditions and scenarios defined in an XML-
configured road graph. This design ensures that pre-defined traffic scenarios,
described in an XML-configured road graph, are efficiently simulated during
runtime. An example of a vehicle overtaking within the system is illustrated
in Figure [64].

The editor developed in this thesis is expected to produce output compati-
ble with the Traffic Module, enabling seamless simulation of traffic on the
roadblocks generated by this editor.

50

5.3. Relevant Modules

. Conclusion

The detailed exploration of VRUT, its core functionalities, and relevant
modules provided a foundation for ensuring the compatibility and seamless
integration of the editor developed in this thesis. By analyzing the modular
design of VRUT and its capabilities, this study identified key aspects that
influenced the design and functionality of the editor.

With this foundational understanding of VRUT, we now transition to
the implementation phase, where the design and development of the editor
of roadblocks are detailed. This second part includes the algorithms, user
interface, geometry generation, and testing processes necessary for creating
an efficient and interactive tool for roadblock creation.

o1

52

Part 11

Implementation

53

o4

Chapter 6
Road Geometry

In this chapter, the system that generates the geometry of the roads in the
editor is described. The way of representing roads before the generation and
the way the geometry is generated is discussed.

Throughout this project, multiple approaches were explored to implement
road generation. From the outset, geometry nodes were regarded as the most
promising method for geometry generation in Blender, due to their real-time
capabilities and ease of implementing complex concepts. The key difference
between the tested approaches is the type of input used for the geometry
nodes. The input data should first and foremost be intuitive for users to
input, while also being compatible with geometry nodes.

B 6.1 Road-base Representation Types

In this section, Blender-supported curve types will be analyzed as road-base
representation types. Since the goal is to represent roads as curves internally
inside geometry nodes, inputting a curve directly and generating geometry
based on it is an intuitive solution. There are multiple curve types in Blender,
each with its own advantages and disadvantages. These curve types, as well
as some alternatives, will be analyzed in the context of road generation in
the following sections.

B 6.1.1 Catmull-Rom curves

Catmull-Rom curves are a type of curve that is C' continuous, meaning
that the curve is smooth, but the curvature is not continuous. Based on the
analysis made in the previous chapter, for a more optimal road representation,
aspecially in context of highways, the curve should be at least C? continuous.
On top of the C! continuity, the Blenders implementation of Catmull-Rom
curves uses uniform parameterization, which can lead to unevenly distributed
control points. However, Catmull-Rom curves are a good starting point for
road generation, as they are easy to manipulate and visually pleasant for
simple road shapes.

Blender does not natively support the Catmull-Rom curve type outside
of geometry node modifiers, therefore an alternative input representation is

55

6. Road Geometry

required for Catmull-Rom curves. These curves can be generated from other
geometry types by transforming them into Catmull-Rom curves inside the
geometry nodes modifier. Choosing the most fitting geometry representation
for this conversion depends on multiple factors, hovewer a representation like
polylines has many similarities with control points of Catmull-Rom curves.
Now, polylines are also not natively supported in Blender outside of geometry
nodes, but they can be easily simulated using meshes without faces. So in
order to generate Catmull-Rom curves from polylines, the input representation
should be a mesh with vertices and edges, where the edges represent the
connections between vertices.

B 6.1.2 Bézier curves

Using the most common curve type present in Blender, the Bézier curve
was the first tested option. As discussed in the chapter about curves, these
curves have C? continuity, which is a requirement for more optimal road
design in real world scenarios. However, since the conversion to any other
representation only considers control points and ignores handles, the handles
become redundant and may confuse the user. Therefore it’s not a good
representation in case a different curve is to be generated from this curve.
There is also an issue with storing custom attributes since this type doesn’t
provide such capabilities.

But a Bézier curve can be generated as a spline inside a Hair Curves object
in Blender, which is supported outside of geometry nodes, and supports
custom attributes. This means that Bézier curves have the potential to be
a good representation for road generation, but only if created as a part of
a Curves object, not as a Bézier curve object. We will discuss this in more
detail in a section about hair curves.

B 6.1.3 NURBS curves

Alternatively, the NURBS input representation avoids using handles, relying
solely on control points. NURBS curves meet this requirement as they are
supported outside of geometry nodes and do not require handles. They are also
C? continuous, however, a significant drawback is the absence of the intrinsic
‘attributes‘ property within the data, meaning custom attributes cannot be
easily added from outside geometry nodes. This limitation severely restricts
the add-on’s functionality and makes it nearly impossible to implement many
desired features without a workaround. This makes NURBS curves a similar
choice to Bézier curves.

As well as Bézier curves, NURBS curves can be generated as splines inside
a Hair Curves object in Blender. This means that NURBS curves have the
potential to be a good representation for road generation, but only if created
as a part of a Curves object, not as a NURBS curve object. We will discuss
this in more detail in a section about hair curves.

56

6.1. Road-base Representation Types

AL
— =

Figure 6.1: Visualization of hair curves in the Blender viewport. The blue line
represents the actual curve, yellow line indicate the control points of NURBS
curves, red lines represent the control points of Bézier curves, and the green
line illustrates the hair curve representation of these curves visible in Blender’s
viewport

B 6.1.4 Hair curves

As of Blender 4.2.0, the only curve type capable of storing custom attributes
per control point is the hair curve type [37, [16]. The standard Curve data
block, which stores standard curves, splines, and NURBS, is represented by
the bpy.types. Curve data type [17]. In contrast, the hair data block, which
stores hair curves, is represented by the bpy.types. Curves data type, with an
"s" at the end [I§].

The naming convention can be confusing here, and so the distinction, along
with the capabilities of hair curves, was discovered later in the development
process after the current implementation had already been completed.

Hair curves provide the capability to store all Blender-supported curve
types, including Bézier, NURBS, and polyline representations, while also
allowing for the inclusion of custom attributes. This combination positions
hair curves as a particularly versatile and possibly optimal choice for curve
representation. However, their visual representation in Blender’s viewport
interpolates control points with a large sampling step, rendering the curves as
polylines (see Figure 6.1)). This visualization can potentially cause confusion
for users unfamiliar with the underlying data structure.

B 6.1.5 Mesh representation

The mesh representation is similar to a polyline, as it consists of vertices and
edges. This representation is the most versatile, as it can be easily converted
to any curve type, including Catmull-Rom, Bézier, and NURBS and it can
also store attributes for each vertex, edge or face.

However, the absence of handles for a Bézier type and a fact that NURBS
type needs at least four control points to create a curve and such constraint

o7

6. Road Geometry

can’t be enforced in the mesh representation, the mesh representation is
considered less intuitive for users for these types.

On the other hand, the visual representation of the curves inside of mesh
type object rendered in Blender’s viewport is the most accurate, as it rep-
resents the actual curve and not a simplified polyline representation. This
representation type is the best suited for either Catmull-Rom curves or
NURBS curves, as they can be easily generated from the mesh representation.

Also, already approximated curves by polylines can be easily represented
using mesh representation, which gives the user the most control over the
curve, since he can first create the approximation in any way he wants and
then input it as the mesh representation of the road. This allows user to
generate scripts that can use other curves, that might not be supported
by Blender, like the optimal Euler spiral curve, and then convert them to
the mesh representation as use it as the road representation. Since this
representation is the most versatile, it is the contender for the most suitable
representation for the road generation.

B 6.1.6 Conclusion

The chosen input representation, mesh, relies solely on vertices as control
points. While this method has drawbacks, these limitations primarily effect
the user experience and not the functionality of the add-on. The mesh
representation is the most versatile. As a result, the mesh representation will
serve as the base input for the geometry nodes, allowing the generation of
the remaining road geometry.

An even more optimal solution would be to use the hair curve representation
and mesh representation in conjunction. The mesh representation would be
used for polylines, Catmull-Rom and any other unsupported curve types,
while the hair curve representation would be used for Bézier and NURBS
curves. This would provide the most intuitive and versatile input for the
user, as well as the most accurate visual representation of the curves in the
viewport. However, this approach was not implemented in this work since it
would reequire a significant rewrite of the current implementation and would
not bring significant improvements.

B 6.2 Road splines

First, it is important to clarify the difference between a spline and a curve
in context of Blender. In general, a curve is a general term for any smooth,
continuous path, while a spline is a specific type of curve made of piecewise
polynomials joined at control points. In short all splines are curves, but not
all curves are splines. That holds true for Blender as well, where a curve is
an object type, similar to mesh or text, that can contain multiple splines and
their associated control points, which means that a single curve object can
be composed of multiple splines that are not connected (see 6.2).

o8

6.2. Road splines

v :D Curve
() Control Point

/' Spline

Figure 6.2: Difference between a ‘curve‘ and a ‘spline’

Mesh to Catmull Rom Curve

Figure 6.3: Central spline creation

The road is represented from multiple splines that all serve a different
purpose. At the core of the road is the central spline, which represents the
center of the road and is used as a base for generating any other spline used
in geometry generation. This approach of having the geometry of the curve
defined by a central spline is similar to ASAM OpenDRIVE representation,
where the road is also defined by a central line.

B 6.2.1 Central Spline

A road is constructed from a central spline generated from the input data
discussed in the previous section. In case of Catmull-Rom representtaion, the
process begins by converting the mesh into a curve and setting the spline
type to Catmull-Rom. The spline resolution is then set to a predefined value,
after which the curve is resampled, as shown in [6.3. Custom attributes are
subsequently stored either in the control points of the spline or bound to the
spline instance. These attributes include lane count, lane width, roadside
width, road width, factor, and spline class. These values are stored as
attribbutes already before the geometry nodes start generating the geometry
by a script, in order to pass them inside the geometry nodes. But for some
attributes, like the factor, the value is calculated inside the geometry nodes,
and for some, the default value is set inside the geometry nodes since no value
is provided by the user or the initialization script. The central spline can
also be trimmed on the basis of the factor (or length) of the curve to which
it belongs, which is later used in the junction generation process to trimm
parts that would overlay the junction.

99

6. Road Geometry

Figure 6.4: Spline classes - visualized

B 6.2.2 Spline Classes

Multiple additional splines are created from this central spline: one spline
for each lane of the road, one spline for each outline, left and right and one
spline for each lane marking line. Each of these splines is marked with a
custom spline class attribute according to its purpose, which can be found
inside constants.py file under the SplineClass enum.

By default, the spline class value is set to 0. The central spline’s class is
set to 1, lane splines are set to 2, outlines are set to 3, etc. These class values
are used to differentiate between the splines, as shown in

B 6.2.3 Secondary Splines

Outline splines and lane splines are generated by duplicating the central
spline and shifting its control points in the direction of or opposite to its
normal vector by a specified distance. As a clean-up step, these splines are
converted to meshes, and a merge-by-distance operation is applied to remove
control points that are too close together, which might create unwanted
shapes. After this, the geometry is converted back to a curve and resampled.
The effects of this clean-up process are most noticeable for curved splines.
Custom attributes are updated, stored, or removed as necessary after the
clean-up. For example, some attributes of the central spline, such as width,
may need adjustments. The width attribute, for instance, represents road
width for the central spline, lane width for lane splines, and roadside width
for outline splines.

B 6.2.4 Output of spline creation

These splines are then joined into a single curve object, forming the output
of the initial part of the geometry nodes generation process. This output

60

6.3. Road mesh generation

> Multiply

Figure 6.5: Function for profile on curve generation and UV mapping

serves as input for the geometry generation and junction creation processes.
These parts will be discussed in greater detail in later sections, with the next
section focusing on geometry generation.

B 6.3 Road mesh generation

The process of generating road geometry can be divided into three main
parts: lane geometry, roadside geometry, and lane markings. All three parts
rely on the same fundamental principle: creating a mesh by extruding a
subdivided plane along a curve (see sweep surfaces in section [2.6.5). The
plane’s width is defined using the Set Curve Radius node, after which a
custom function is applied. This function generates the geometry based on
a provided profile curve, calculates and stores UV coordinates, and assigns
a material to the geometry. These topics are discussed in greater detail in
the following section. The implementation of the nodes of the functions is
illustrated in 6.5 Roadside geometry is generated from the outlines in the
inward direction, while lane geometries and separating lines are created along
the center of the curve. The results can be seen in [6.6.

B 6.3.1 T-Vertices Problem

Each curve is resampled separately to ensure a consistent spacing between
points. For example, the outer outline of a curved road maintains the same
distance between points as the inner outline. Lane geometries are resampled
similarly. However, this approach introduces a problem: gaps can appear
where the sampling of two neighbouring lanes does not align. This issue
is demonstrated in [6.7, Although it resembles the T-vertex triangulation
problem, it differs because no vertices are shared between lanes, as they are
distinct mesh instances.

B 6.3.2 Proposed Solutions

1. Merge by Distance: The first solution uses Blender’s Merge by Dis-
tance tool. Although this method can close gaps, it is heavily dependent
on the merge distance parameter. It also destructively alters the road
geometry by merging all mesh instances into a single mesh, overwriting

61

6. Road Geometry

Figure 6.6: Demo of road objects generated geometry

the previously generated UV mapping. The effects of this approach are
shown in [6.8]

2. Overlaying Lane Geometries: The second solution overlays the neigh-
bouring lane geometries. This approach preserves the UV coordinates,
as shown in [6.9. However, the drawback is the appearance of z-fighting
in overlapping areas. In this graphical artefact, two or more surfaces
occupy the same space, causing flickering or other rendering issues.

3. Optimal Solution: An optimal solution would preserve UV coordinates
while connecting lane geometries into a single mesh. It involves adding
vertices along edges of mismatched lanes, merging only affected vertices,
and maintaining UV mapping. While it may introduce minor inaccuracies,
its impact is less significant than the Merge by Distance approach. This
concept, shown in was not implemented due to time constraints
and shifting priorities, as the existing solutions were sufficient.

62

6.4. Textures & Materials

Figure 6.7: Gaps between two lanes caused by different curve sampling

. 6.4 Textures & Materials

The previous section of this document described the creation of UV coordinates
for road geometry. They are visualized in A custom node group called
RB_get UV__coords has been created to load these coordinates in Blender’s
Shader Editor. This group can be used for any custom texture or material
that a user wants to map onto junctions or roads.

Default procedurally generated materials for junctions, roads, and sepa-
ration lines are defined in the "geometry nodes.blend"” file. These materials
need to be baked onto the geometry, as described in the following section. In
addition, pre-baked versions of these materials are available and ready for
export. This allows the user to choose from existing presets, and if none of
them fits their requirements, they can use Blender’s capabilities to create
custom material textures or effects as desired.

B 6.4.1 Baking Textures

The process of baking textures in Blender is relatively straightforward but is
primarily useful for procedurally generated textures. It is important to clarify
the distinction between materials and textures. In Blender, material refers to
what is assigned to an object, while textures are optional components of that
material.

To bake a texture, start by assigning a procedural material to the mesh
of the object. In the Shader Editor for the material, create a Image Texture
node. Using the New button in this node, create an image that will serve
as the base for the baked texture. Here, you can specify parameters such as
file name, image resolution, and color depth. Ensure that the Image Texture
node is selected during the baking process to indicate where Blender should

63

6. Road Geometry

Figure 6.8: Gaps between lanes fixed using Merge by Distance, but corrupting
UV mapping

store the baked data.

Next, in the Properties window, navigate to the Renderer tab. Set the
Render Engine to Cycles, and under the Bake section, adjust the settings
according to the type of texture you are generating. For instance, select
Diffuse to bake color textures. Once configured, press the Bake button. After
the process is completed, the baked texture will be available [22].

64

6.4. Textures & Materials

Figure 6.9: Gaps between lanes fixed by overlaying neighbouring lanes, main-
taining UV mapping

Figure 6.10: Concept of optimal lane gap fixing: blue vertices are created from
red vertices, with blue lines indicating new edges splitting existing faces.

65

6. Road Geometry

Figure 6.11: Demo of UV mapping on road object

66

Chapter 7

Junction Geometry

In this chapter, the process of generating junction geometry is discussed. The
geometry is generated based on road objects already present in the scene.
The exact process of creating the junctions and generating the geometry is
described in better detail in the following sections. A simphasis is put on
customization options for the user and a generalized approach to junction
creation.

The road network connections, the way they are generated and the data
stored inside is also be discussed briefly, but the Chapter [3| will provide a
more detailed explanation.

. 7.1 Internal data representation

We discuss what kind of data is used to generate the junctions and how it
is stored in Blender. At the beginning of the junction generation process,
the original road objects are duplicated into a temporary collection as they
are. The junctions are generated based on the outlines of the roads, therefore
we first need to extract these outlines. To discard the rest of the geometry,
we convert the road objects to a "bpy.types. Curves" objects, which Blender
typically uses to represent hair curves. As discussed previously, hair curves
allows for storing custom attributes, and can store multiple curves in one
object. It’s shortcomings are that it simplifies the curves on render, but since
we are not rendering the objects, this is not a problem. This conversion works
on mesh objects, as well as on curve objects, since curve object and curves
object are different types in Blender (which was discussed in . And so,
the input data for junction generation is a collection of "bpy.types. Curves”
objects, each containing multiple curves, each representing a different aspect
of the road geometry (as discussed in .

B 7.2 Junction creation algorithm

The junction creation algorithm is structured around several key steps. First,
the outlines of the roads are processed to calculate all potential intersection
points. These intersections are then grouped into distinct junctions and orga-

67

7. Junction Geometry

nized in a clockwise order. Subsequently, geometric structures are generated
based on these intersections, and the roads are trimmed accordingly to ensure
coherence with the junction geometries. The following sections provide a
detailed examination of each stage of the algorithm.

B 7.2.1 Outline Intersections

At the initial stage of junction creation, all roads are duplicated and converted
into Hair Curves. This process eliminates the original geometry, retaining
only the curve representations generated within the geometry nodes. Only
the outlines are preserved from these curves. The curves are sampled at a
high density, effectively resulting in a polyline representation.

Following the extraction of road outlines, the curves undergo simplification.
The Douglas-Peucker algorithm is employed to remove redundant points from
the curve representation. A brute-force intersection algorithm is run on these
simplified curves to determine intersection points, but only on the outlines of
the roads whose bounding boxes intersect. This approach reduces the number
of intersection checks, improving the algorithm’s efficiency. Once intersections
are identified within the simplified polyline representation, the indices of the
vertices of the two intersecting simplified line segments are retrieved. The
precise intersection points are then calculated using bilinear interpolation on
the non-simplified versions of these line segments.

While the intersection points derived from the simplified and non-simplified
versions are nearly identical, the attribute values computed from the neigh-
boring points around the intersection are significantly more accurate. This
improvement in precision is particularly evident in straight road segments,
where simplification reduces the entire curve to a single line segment, and
interpolating attribute values from only the endpoints would result in a
substantial loss of accuracy.

Finally, each intersection is appended to a list of intersections, along with
all relevant attributes, such as the curve factor and the length along the curve
at the intersection point.

B 7.2.2 Marking Intersection Pairs

An essential step in generating junctions is grouping intersections into pairs
and junctions to facilitate the subsequent generation of junction geometry.
This process pairs intersections logically, preparing the data required for
constructing coherent junction structures.

To achieve this, the algorithm processes all road outlines, iterating through
their intersections. The outlines are sorted by the roads they belong to, so
the two outlines of the same road are adjacent in the list. This arrangement
ensures efficient pairing of intersections.

For each outline, the algorithm loops through all intersections. For each
intersection, it identifies the intersecting outline of the other road, reads the
stored road width parameter for later use, and checks if a junction ID is

68

7.2. Junction creation algorithm

already assigned. If an ID exists for this intersection, it updates the pairing.
Otherwise, it assigns a new junction ID.

If a pair for the intersection is not found or if this is the first mention of the
road intersecting the current outline, a half-empty pair containing only this
intersection is created and added to a list of pairs that are still awaiting the
other intersection. When a pair for some intersection is found, the algorithm
read lengths along the outlines from pair intersections, applies padding to
extend the interval between the two intersections, and derives spline factors
from the adjusted lengths. This information is stored as part of a new interval,
which is then added to the road. Overlapping intervals on the same road are
merged into larger intervals, ensuring that all intersections within an interval
share the smallest junction ID.

Unpaired intersections are handled separately. These occur when there
is an odd number of intersections between tqo outlines of two different
roads, typically when a road starts or ends within another road. Therefore,
for unpaired intersections, the algorithm creates endpoint intervals. If the
intersection is in the first half of the outline, a start interval is created; for
those in the second half, an end interval is generated. These are assigned the
junction ID and added to the road similarly to paired intersections.

Additionally, if the unpaired intersection is surrounded by other inter-
sections on the crossing outline, no further action is needed. However, if
the unpaired intersection is an endpoint for the junction and outline, it is
paired with the endpoint intersection of the opposite outline. If no such
endpoint exists, the intersection is paired with a placeholder value of -1. This
placeholder is used in subsequent steps to copy and process the entire section
of the outline.

By systematically pairing intersections and managing unpaired cases, this
step ensures that all intersections are grouped into junctions and prepared
for the generation of junction geometry.

B 7.2.3 Junction Geometry Generation

To generate junction geometry, the algorithm follows a multi-step process
designed to create smooth and accurate transitions between intersecting roads.
This process begins with the calculation of intersection chains, which define
the core structure of the junction, and proceeds through the generation of
outlines, lane paths, and trimming lines, ultimately resulting in a complete
mesh representation of the junction.

B Intersection Chains

Before the junction geometry can be generated, the algorithm calculates what
are referred to as intersection chains. An intersection chain is a polyline
formed by a sequence of intersections that begins on one outline of a road
entering the junction and ends on an outline of a different road exiting the
junction. In most cases, this chain consists of a single intersection, but in
more complex scenarios, it can include multiple intersections. Conceptually,

69

7. Junction Geometry

these chains can be thought of as forming one of the outline curves of the
junction.

The algorithm calculates intersection chains by iterating through all inter-
sections in a junction. For each intersection, it checks if the intersection has
already been visited. If not, it marks the intersection as visited and traverses
the outlines in both directions, collecting intersections until reaching the end
of an outline, an intersection belonging to a different junction, or looping
back to another intersection in the same junction. This process continues
until all intersections have been processed, forming chains of intersections
that represent junction outlines.

B Junction Geometry Generation

Once intersection chains are defined, the algorithm generates the junction
geometry. For each junction, it processes the connected roads. Using the
interval calculated during the intersection pairing step, the algorithm deter-
mines the portion of the road’s central spline that lies within the junction. If
no intersections on a road’s outline are part of the junction, the algorithm
copies the entire segment of the outline. If intersections exist, it calculates
the start and end vertices for both outlines and determines handle vertices
extending away from the junction. These handles and vertices are used to
form polylines, which are converted into curves and resampled to create
smooth junction outlines. A custom attribute, is_outline, is saved for these
points to distinguish them in Blender, and copied points are tagged with
is_copied.

B Trimming Lines and Final Geometry

At the junction-road interface, a trimming line is generated to separate the
road geometry from the junction geometry. This trimming line connects the
final vertices of the road before the junction and is merged with the junction
outlines to form the complete geometry.

The final junction geometry consists of copied outlines, trimmed lines, and
smoothed outlines generated from handles. These components are combined
into a new mesh object, stored in a dedicated junctions collection in Blender.
The algorithm assigns custom attributes and applies a geometry nodes modifier
to manage the visual aspects of the junction.

Example of handle vertices influencing final junction geometry is shown in
Figures |7.1.

B Trimmed Roads and User Interaction

Additionally, the road objects are duplicated and trimmed according to the
junction intervals. The original road objects are hidden for user convenience
but remain accessible in a Roads collection, while the trimmed copies are
stored in a Roads Trimmed collection. A reset button in the interface allows
users to revert to the original state by removing all junctions and trimmed

70

7.3. Junction Modifier

Figure 7.1: Intersection chains forming junction outlines

roads. However, this action deletes any user customizations, so users are
advised to finalize the road layout before generating junctions. A more sophis-
ticated solution for selectively regenerating junctions was not implemented
due to time constraints.

B Road Network Connections

A similar process is used to generate vertices and handles for lane splines as for
outlines. These vertices and handles define smooth vehicle paths through the
junction, which are then used as the foundation for road network connections.
By linking lane paths across the junction, these connections represent the
flow of vehicles and ensure logical transitions between roads. Further details
on road network connections are provided in the section on road network
implementation.

. 7.3 Junction Modifier

The junction modifier is responsible for enhancing the visual appearance
of the junction geometry generated by the algorithm. Implemented using
Blender’s geometry nodes, the modifier creates complex procedural effects,
enabling customization and refinement of the junction’s visual details.

To ensure consistent geometry across different junctions, the copied out-
lines of the junction are converted into curves and resampled to a uniform
one-meter sampling distance. Outlines with handles are transformed into

71

7. Junction Geometry

Catmull-Rom splines and resampled at a higher density to produce smooth
curves. A node setup trims these curves to remove handle vertices from the
visible representation. These two curve types are then combined to form the
junction’s outline, with the spline_ class attribute set to a value designated
for outlines. This setup allows junction outlines to inherit features assigned
to road outlines. When merged with trimming lines, this outline creates the
complete border of the junction geometry. A Fill Curve node is used to
generate a flat, triangulated mesh surface, with a UVMap calculated based
on vertex positions. The material passed in as a parameter is then assigned
to the geometry. By modifying the handles of the junction outlines, users can
customize the appearance of the junction.

Additional visual details enhance the realism of the junction. Thin lane
marking lines are offset into the junction to simulate roadside markings while
trimming lines are overlaid with thicker lines to depict the separation between
the road and the junction. These features contribute to a more realistic and
visually appealing junction representation.

B 7.4 Aiternative Tested Approaches

Several alternative methods were explored before adopting the current ap-
proach of using Blender API scripting in conjunction with geometry nodes.
These alternatives, particularly the attempt to implement junction generation
exclusively with geometry nodes, consumed a significant portion of the de-
velopment timeline. Although these approaches ultimately proved infeasible,
they were instrumental in shaping the final solution and provided valuable
insights.

B 7.4.1 Initial Mesh-Based Approach

The first approach attempted to represent the road network as a singular mesh
object designed to act as the skeleton of the road geometry. This method
showed initial promise but encountered several critical challenges. Splitting
the mesh at intersections disrupted road continuity, causing roads to appear
fragmented. Additionally, managing large structures within geometry nodes
became unwieldy due to complexity and performance limitations. Junction
generation in this approach relied on creating 3D tubes from the road skeleton
and calculating boolean unions. While the results were visually satisfactory,
they failed to meet road design requirements. Sharp curvature changes in
roads and junctions and sections of roads shrinking excessively into junction
centers resulted in unrealistic geometry unsuitable for vehicle navigation.
Furthermore, the computational cost was prohibitive, leading to significant
performance degradation and an unworkable user experience. Despite its
limitations, this approach demonstrated potential for specific use cases, as
shown in Figure effig:editor-alpha-version, where early features of the road
editor were evident. However, its reliance on a rigid skeletal representation
rendered it less adaptable than the current method.

72

7.4. Alternative Tested Approaches

Figure 7.2: Example of mesh based approach for junction generation

B 7.4.2 Curve-Based Approach with Geometry Nodes

The second approach also attempted to leverage geometry nodes exclusively
but shifted to representing roads as individual curve objects. Roads were
organized in a collection; each assigned a geometry node modifier to generate
the necessary curves. Junction generation was handled by a separate object
that manipulated these splines to create intersections. Early attempts to
find intersections involved sampling curves at regular intervals and merging
points within a defined distance. While functional, this method suffered
from severe performance issues. A subsequent method, inspired by CG
Build Up[25], utilized a raycasting technique to detect intersections more
efficiently (see Figur. Despite improved performance, the complexity
of generating junctions in geometry nodes remained a significant obstacle.
Additionally, junctions were created as singular objects, limiting user control
and customization, which conflicted with the project’s evolving requirements.

Bl 7.4.3 Influence on Final Implementation

Reflecting on these attempts underscores how the current approach emerged
as the most optimal solution. While these alternative methods led to several
dead ends, they contributed to a deeper understanding of the challenges
involved and informed key design decisions.

73

7. Junction Geometry

Figure 7.3: Intersecting splines using raycast method, showing intersection
points in red with lines connecting them

74

Chapter 8

Features

Achieving realism in geometric model generation involves efficiently populating
the surroundings of roads with diverse elements, such as barriers, vegetation,
and pavements. These features enhance both the visual fidelity and immersion
of the virtual environment. This chapter examines the procedural generation
of these elements, focusing on the implementation of roadside features and
customization options.

Creating geometric features along the road relies on two primary methods:
profiles and objects. Both approaches utilize Blender’s geometry nodes
modifier stack, enabling users to combine multiple modifiers to construct
complex and customizable features.

. 8.1 Moaodifier Stack

The modifier stack is a core feature in Blender that enables non-destructive,
automated operations on an object’s geometry. Modifiers alter the appear-
ance and rendering of an object without affecting its base geometry. This
non-destructive approach allows users to efficiently perform tasks such as
smoothing surfaces or generating intricate patterns [20].

A modifier stack consists of multiple modifiers applied sequentially, with the
order determining the final output. Users can rearrange the stack to adjust
the interaction between modifiers, ensuring flexibility in creating the desired
geometry. In the road editor, the modifier stack is essential for combining
and layering multiple features, allowing users to define a structured workflow.
This concept supports the implementation of roadside profiles and other
elements, as detailed in the following sections.

B 8.2 Profile Along the Road

The profile method generates features along the length of the road by combin-
ing a curve with a profile curve to define the geometry. This approach mirrors
the technique used for generating road geometry and provides extensive
customization options.

75

8. Features

Ditch
GMN_GenProfileAlongRoad.001
Profile Custom

Width

Both
Trim Start
Trim End
» Pavement
» Ditch
dSide

o Custom

Profile Curve M, MyCustomProfile

Material M3 Dirt
~ Add Moise
Moise Strength 1.000

» Manage

Figure 8.1: Interface of the profile-along-road feature modifier (options for
custom profiles and general settings only)

B Preset and Custom Profiles

The editor includes several preset profile curves, such as pavements, grass,
and ditches, which simplify the creation of standard roadside elements. Addi-
tionally, users can define custom profiles by specifying their geometry and
materials. Customization options extend to applying noise displacement to
create more natural-looking features, such as uneven dirt or grass surfaces.
These settings allow users to balance functionality with ease of use.

B Modifier Interface

The interface for the profile modifier, shown in Figure is divided into
several panels, including General Settings, Curve, and feature-specific
panels such as Pavement, Ditch, Roadside, Grass, and Custom. These
panels allow users to customize geometry generation with precision, whether
using preset profiles or defining unique features.

The General Settings panel includes parameters such as width and offset,
which control the size and position of the profile along the selected curve.
The Curve panel provides options for trimming the start and end points of
the curve and selecting the sides (left, right, or both) for profile generation.
This functionality, however, is only available when generating profiles from

76

8.2. Profile Along the Road

> Central Curve < il =
V=@
YiE@

VH=O
Vo=@

Tim@

Figure 8.2: Demo of road features generated geometry and corresponding
modifier stack

shifted outlines, not from the central spline.

For custom profiles, the Custom Profile panel allows users to select a
custom curve object, assign materials, and enable or adjust noise displacement
to add surface irregularities. Other panels, such as Pavement and Grass,
provide predefined options for standard roadside features, while still allowing
for further customization.

B Profile Stacking and Layering

Profiles are layered using the modifier stack, starting with the road outline
and incrementally adding features outward. Each profile modifies the padding
parameter for subsequent profiles, ensuring proper alignment and avoiding
overlap. This structured approach facilitates the addition of multiple roadside
features while maintaining the integrity of the overall geometry.

Central profiles, such as pavements or grass areas between lanes, are added
to the central spline before the road geometry is generated. This process
ensures the seamless integration of these features into the road layout. Users
can control the order of operations within the modifier stack, disable specific
modifiers, or rearrange them to experiment with different configurations. An
example of the generated geometry and corresponding modifier stack is shown
in Figure 8.2,

B Geometry Nodes Implementation

The geometry nodes implementation begins with a function GetFeatureCurve,
which extracts either the central spline or the shifted outlines of the road,
depending on the arrangement of the modifier stack. Geometry is generated
outward from the selected curve, even for profiles originating from the central
spline. The user selects the profile type via a dropdown menu in the modifier
interface, and the profile is then extruded along the curve to create the
geometry.

77

8. Features

Figure 8.3: Example of a custom profile curve and the resulting geometry

Padding adjustments are made to the original road outlines to reflect
the width of the selected profile, as the shifted outlines are used solely for
geometry generation. Additional implementation details, such as ditch profile
logic and curve selection mechanisms, are omitted for brevity but are part of
the overall process.

B Adding Custom Profiles

Custom profiles can be incorporated into the editor by creating a new curve
object in Blender. For clarity and easier editing, it is recommended to
position the curve at the world origin, with one end at the origin and the
other extending in the positive z and y directions. While this positioning
is not strictly required, it helps users visualize the resulting geometry more
intuitively. Maintaining a unit width for the profile curve is also advised, as
the modifier automatically scales the curve to unit width for compatibility
with its settings.

This workflow provides users with flexibility and precision when designing
custom roadside features. An example of a custom profile curve and its
resulting geometry is illustrated in Figure |8.3

B s3 Object Along the Road

Another method to enhance the visual detail of the road model is through the
placement of discrete objects along the road using the object-based method.
This approach enables the user to select a mesh object, such as a streetlamp,
and generate instances of this object along the road curve. Similar to the
profile method, the order of modifiers in the modifier stack influences the
starting point of these instances, ensuring compatibility with other features.

The object-based method provides additional customization options to
fine-tune the placement of instances. Users can adjust the distance between
instances, as well as apply offsets in the latitudinal, longitudinal, and altitu-

78

8.3. Object Along the Road

- -\f) &/ eet Lamp Double

0.000

\

Figure 8.4: Interface of the road objects modifier with red dots representing the
sampled curve control points and the curve itself connecting them

dinal directions. Further adjustments include scaling the objects and rotating
them around the vertical axis (z-axis). These settings provide flexibility in
defining the arrangement of objects, allowing for a diverse range of roadside
elements. An example of streetlamps generated by this modifier and the
corresponding interface is shown in Figure |8.4

B Curve Sampling and Side Selection

The object-based method uses the same principle as the profile method to
extract the curve. The curve is resampled based on length using the Curve
Sampling parameter available in the interface. However, this parameter does
not correspond directly to the exact distance between instances, leading to
discrete jumps in behavior, where gradual adjustments to the parameter cause
no change until a threshold is crossed. A more precise approach for controlling
instance placement would improve usability and accuracy. To address edge
cases, the curve can be trimmed from both endpoints, and users can specify
the side of the road where objects should be placed.

79

8. Features

B Material Handling and UV Mapping

When instances are realized as actual mesh geometry, they automatically
retain their original materials. However, the UV map of the geometry is
overwritten during the realization process. To preserve the UV map and
enable the use of complex textures or materials, the UVMap parameter from
the original geometry is captured using the Capture Attribute node.

This captured attribute is then reassigned to each instance using the Store
Named Attribute node for face corners. As long as the original geometry has
a UV map named UVMap, the instances will inherit it. This workflow allows
users to apply intricate materials without the need to manually unwrap the
UVs for each instance.

B Integration and Limitations

The object-based method provides robust functionality for enhancing roadside
features through various customization options. Users can adjust the place-
ment of instances with transformations such as scaling, rotation around the
vertical axis, and latitudinal or altitudinal offsets. However, the longitudinal
shift parameter exhibits step-like behavior, where changes only take effect
after crossing specific thresholds, potentially complicating precise adjustments.
Despite this limitation, the overall flexibility of this method, combined with
automatic material handling and UVMap preservation, makes it an efficient
tool for adding detailed features to the road environment.

[] Surroundings

An additional feature of the road editor is the ability to generate surroundings
around the road. This feature is implemented as a separate modifier applied
to a separate object, stored in a collection called Surroundings. It takes on
input a collection of objects and creates an uneven surface under the road
that represents the terrain. The terrain is generated by taking a bounding
box of the input collection and placing a grid of vertices on the bottom. The
vertices are then displaced using a noise texture to create an uneven surface.
Users can expand the terrain around the objects, set the influence of the noise
texture, and set the minimal distance from the collection objects at which
the distortion starts taking effect. The terrain is then triangulated, and a UV
map is generated based on the vertex positions. The material passed in as a
parameter is then assigned to the geometry.

Finally, this surroundings object allows for adding vegetation using a new
modifier group assigned directly to the surroundings object. The vegetation
modifier generates instances of the objects of the collection passed as a
parameter, placing them randomly on the terrain. The user can set the
vegetation’s density, the objects’ scale, and the random seed for the placement.
Minimal and maximal distances from road elements can be set to control the
placement of the vegetation. This feature is illustrated in Figure [8.5].

80

8.3. Object Along the Road

Figure 8.5: Example of the surroundings feature with terrain and vegetation

[Graphical User Interface

In addition to the modifier-specific customization options, the graphical user
interface (GUI) simplifies the workflow with dedicated buttons for each major
feature. By selecting a road object (or multiple objects) and clicking a
corresponding button, the appropriate modifier is automatically loaded into
the Blender file from a pre-packaged .blend file within the add-on directory.
The modifier is then applied to the selected road objects and can be further
customized or reordered in the Modifiers tab of the Properties Editor.

This streamlined interface bridges the gap between automation and flexibil-
ity, enabling users to quickly implement features while retaining full control
over the modifier stack. An example of the GUI layout and functionality is

shown in Figure 8.6/

. Conclusion

This chapter explored the key features implemented for enhancing the realism
and functionality of road models, focusing on the two primary methods:
profile-based and object-based generation.

The profile-based method enables the creation of continuous roadside
features, such as pavements, ditches, and grass, along the length of the road.
By leveraging the geometry nodes modifier stack, users can layer profiles
sequentially, adjust parameters like width, offset, and noise displacement, and
even define custom profiles for unique geometry. The structured stacking
process ensures compatibility between features and provides flexibility for
customization.

The object-based method complements this by allowing discrete objects,
such as streetlamps or signs, to be positioned along the road. With transfor-
mation controls for scaling, rotation, and offsets, users can fine-tune object
placement to suit their needs. While the longitudinal shift parameter exhibits

81

8. Features

Az

Set Road Attribute

s3§o01g peoy

Generate Junctions
Only Selected Roads

Reset ALL Junctions

Add Pavement
Add Roadside
Add Grass
Add Ditch
Add Custom Profile
Add Object
rroundings
Add Surroundings
Add Vegetation
on

Toggle Road Network

Export Network

Export Geometry [FBX)

Figure 8.6: Graphical User Interface of the editor in Blender’s side-panel

step-like behavior, the method remains a powerful tool for adding detail, with

seamless material and UVMap handling.
Together, these features provide a robust framework for generating and

customizing road environments.

82

Chapter 9
Road Network

The road network serves as the foundational framework for any traffic simula-
tion system, providing the structure and connections required for vehicles to
navigate their environment. This chapter outlines the implementation of the
road network within the road editor, focusing on the internal representation
of road network data, the generation of network structures, and the export
process for integration with external simulation systems, such as VRUT.

B 9.1 Internal Representation

The road network forms the skeleton of road geometry, consisting of nodes
and edges, where nodes represent points at the center of lanes, and edges
define the connections between them. In Blender, the internal representation
of road network data is modeled using curves generated from lane splines,
with each node corresponding to a control point on the lane curve. These
lane splines are generated as part of the road geometry creation process.

A geometry nodes modifier is applied to the road geometry to extract the
lane splines and prepare the network structure. This modifier also provides a
visualization of the road network, enabling users to preview the generated
structure before export.

Extracted lane splines are resampled uniformly based on a user-defined
sampling distance, which can be set either in the export window or within
the modifier for visualization purposes. Any existing road network modifiers
are removed prior to export to ensure the network structure is generated
consistently and with uniform sampling.

Most attributes, such as lane IDs for VRUT and OpenDRIVE formats, are
calculated during the lane spline generation process. The modifier allows for
additional attributes to be computed before export, including the curvature
attribute and a unique node__index used for global node ID calculations in
VRUT format export. Users can also define additional parameters, such as
lane width or speed limit, through the Set Road Attribute button in the
GUI. Available attribute options can be extended in future updates.

83

9. Road Network

» Properties

lane_id_in
lane_id_out
road_id_in

road_id_out

Figure 9.1: Example of object properties in Blender used for connector pairing

. 0.2 Junctions

The junction generation process also incorporates road network data, primarily
through the creation of connectors between lanes entering and exiting the
junction. For each lane, a vertex with a handle is generated, similar to the
approach used for junction outlines. Connections between these vertices are
then created based on predefined rules.

To keep the junction geometry clean, connectors are exported as separate
objects, parented to the junction geometry. This approach facilitates simpler
editing and allows unwanted connectors to be removed easily. Users can
also manually add connectors if required. Future extensions could include
options to generate all possible connectors, restrict generation to rule-based
connectors, or define custom rules for connector creation.

Additional data, such as junction IDs, junction in/out IDs for trimmed road
segments, and lane/road segment in/out IDs for connectors, are added during
the junction generation process. These values, stored as object properties, are
used for pairing objects in the road network export process (see Figure .
It is recommended not to modify these properties manually, as this could
disrupt the add-on’s functionality.

N 93 Export Formats

As analyzed in the discussion on road graph representations, this project
examines two road network formats: the VRUT format and the OpenDRIVE
format. Given the requirement to validate the implementation within the
VRUT system, the main focus is on the VRUT format. This chapter begins
with the implementation details of the VRUT format and subsequently
addresses the OpenDRIVE format.

84

9.3. Export Formats

B VRUT Format

The VRUT format is a custom XML-based representation used by the VRUT
system to define road networks. It describes the network as a skeleton
structure comprising nodes and edges, where nodes correspond to control
points on lane splines and edges represent the connections between them.

The export process involves the geometry nodes modifier and a separate
export operator. The modifier filters relevant data, such as lane splines and
junction connectors, and calculates additional attributes required for export.
The export operator reads this data using the Blender API and transforms it
into the final VRUT format.

Fach node in a road object is assigned a unique ID for each control point
on the curve. At the start of the export algorithm, global node offsets are
calculated for each road, ensuring unique global node IDs across all roads as
required by the VRUT format.

Control points from resampled splines are exported as nodes, with splines
representing lanes and curve objects representing roads. Junction connectors
are matched to roads using junction IDs and to lanes using lane IDs. Connector
control points, excluding endpoints, are used to generate node paths for
junctions. These paths link lanes by matching road IDs, lane IDs, and node
IDs to establish connections.

For each lane, sequences and interconnections are defined to represent
connections between nodes. By default, lanes traveling in the same direction
are interconnected, ensuring overtaking is always possible within a single
direction. This approach reflects the current Blender interface capabilities,
which do not support this specific scenario of detailed lane marking.

The final data is formatted as XML and saved to a file, ready for import
into the VRUT system.

l OpenDRIVE Format

The OpenDRIVE format represents road networks as a series of connected
road segments defined by geometric primitives, such as lines, arcs, and spirals.
This format differs fundamentally from VRUT and requires a distinct approach
for generating network structures.

The OpenDRIVE format has not been implemented in this project; however,
groundwork has been laid for its future development. Attributes such as
OpenDRIVE-style lane indices and curvature per node are calculated in the
road network modifier and assigned to the geometry. The implementation
of the OpenDRIVE format is beyond the current scope of this thesis but
remains a potential avenue for future work.

B 9.3.1 Visualization of Road Network

The road network is visualized in Blender using the geometry nodes modifier,
the same that prepares the network for export. Lane curves and intercon-
nections are visualized with directional arrows to indicate vehicle movement,

85

9. Road Network

Figure 9.2: Visualization of the road network in Blender

and nodes are represented as yellow spheres. This visualization, inspired by
the VRUT system and based on the work of V. Kolinsky [57], allows users to
preview the road network structure before export.

Users can test different sampling distances and observe the resulting net-
work. Interconnections are displayed to show overtaking possibilities between
lanes. An example of the visualization is shown in Figure 9.2

. Conclusion

This chapter outlined the implementation of the road network within the road
editor, focusing on its internal representation, junction integration, export
formats, and visualization. The road network is modeled as a skeleton of
nodes and edges extracted from lane splines, using a geometry nodes modifier
to prepare the network structure for export. Junctions are integrated into the
network with connectors, enabling seamless transitions between lanes. The
VRUT format, as the primary focus of this project, is a custom XML-based
format specific to the VRUT system. The OpenDRIVE format remains a
future avenue for development. Visualization tools within Blender allow users
to inspect and test the road network structure, providing valuable insights
before final export. This workflow ensures the road network is both functional
for simulation and adaptable for future enhancements.

86

Chapter 10
Testing in VRUT

The editor’s compatibility and functionality within the VRUT system were
evaluated as stated in the requirements of this project. This chapter details
the testing process, including the compilation and execution of VRUT, the
import of road network data, and the validation of road network geometry
and behavior within VRUT.

B 101 Compilation of VRUT

This section outlines the steps required to compile the VRUT system on a
Windows 10 environment.

The process begins by cloning the VRUT project from Skoda’s remote
repository. CMake is then utilized to configure the project and generate the
required binaries. It is recommended to build the CMake project within a
"build" folder located in the root directory of the VRUT project. During
configuration, CMake allows users to enable or disable specific modules.
Ensuring that all necessary modules are activated is essential, as some may be
disabled by default. Key modules relevant to this thesis, such as ROAD_EDITOR,
I0_IOVRUT, and JSSCRIPTING, are illustrated in the module selection interface
shown in Figure [10.1.

Once configuration is complete and project binaries are generated, the
project is opened in Visual Studio for compilation. Initial compilation may
encounter issues related to library paths or linking. Common problems include
incomplete configuration parameters in CMake, such as missing paths to
external libraries, or the need to manually delete specific auto-generated files
in Visual Studio. These issues can typically be resolved by carefully reviewing
CMake settings and the Visual Studio output log.

The compilation process, which may take several minutes depending on
the device’s performance, concludes with a fully built VRUT system.

B 102 Exporting Geometry for VRUT

Blender offers various geometry export functionalities that can be utilized for
exporting models. The VRUT system supports multiple input formats, the

87

10. Testing in VRUT

VRUT_MODULE_|O_IOSTL
VRUT_MODULE_|O_|OVRML
VRUT_MODULE_|O_|OVRUT
VRUT_MODULE_|O_IOWIRE
VRUT_MODULE_|0_|OXTEX
VRUT_MODULE_JSSCRIPTING
VRUT_MODULE_LIGHTEDITOR
VRUT_MODULE_MANIP_NAVIGATION
VRUT_MODULE_MATERIALASSIGN
VRUT_MODULE_MATERIALEDITOR
VRUT_MODULE_MATERIALLIBRARY
VRUT_MODULE_MEASURE
VRUT_MODULE_NETAPI
VRUT_MODULE_OPTIMIZE
VRUT_MODULE_POSTPROCESS
VRUT_MODULE_RENDERIMAGE
VRUT_MODULE_RENDERLAYERS
VRUT_MODULE_RENDER_DXRENDER
VRUT_MODULE_RENDER_RAY TRACER
VRUT_MODULE_RENDER_RENDERSTREAM
VRUT_MODULE_RENDER_VREMDER
VRUT MODULE_ROADBLOCKEDITOR
VRUT_MODULE_ROADEDITOR
VRUT_MODULE_SCENEGRAPH
VRUT_MODULE_SEATSTITCHER
VRUT_MODULE_SHADOWCALCULATOR
VRUT_MODULE_SOUMDRENDERER
VRUT_MODULE_SWITCHES
VRUT_MODULE_TESSELATOR
VRUT_MODULE_TESSELATOR_DEBUG
VRUT_MODULE_TEX TUREMANAGER
VRUT_MODULE_TOUCHSENSOREDITOR
VRUT_MODULE_TRACKING
VRUT_MODULE_TRACKINGMANIPULATOR.
VRUT_MODULE_TRAFFIC
VRUT_MODULE_TRANSFORM
VRUT_MODULE_UVUMWRAP
VRUT_MODULE_VARIANTSETEDITOR
VRUT_MODULE_VEHICLESIMULATOR
VRUT_MODULE_VIEWEDITOR
VRUT_MODULE_VIRTUALTRAINING
VRUT_MODULE WIIMOTE

Figure 10.1: A screenshot from CMake capturing some of the available modules

most optimal being the .vrut format. An export option was integrated into
the road editor to enhance user convenience, enabling geometry preparation for
VRUT and its export in the . fbx format—a format supported by both Blender
and VRUT. The export process is straightforward and can be completed with
a single click. A typical Blender export window appears, pre-configured with
options tailored for VRUT compatibility.

The export functionality duplicates all objects under a new root empty
object, which serves as the main element for collision detection in VRUT.
Each object is assigned an additional layer, and all objects are split into
separate parts based on their respective materials. This approach addresses
issues encountered with single objects containing multiple materials in VRUT.
Finally, the prepared objects are exported as .fbx files, ready for import into
the VRUT system.

88

10.3. Importing Road Blocks into VRUT

B 103 Importing Road Blocks into VRUT

The process of exporting the road network and roadblock geometry has been
described previously. This section focuses on importing these files into VRUT.

Before importing roadblocks into the traffic simulation interface, it is
recommended to export the geometry into the .vrut format using VRUT’s
export tool. To open the scene in VRUT, simply drag and drop the .fbx
file into the main VRUT window. The Scene Graph module, accessible via
the side panel, allows users to verify the correctness of the scene structure.
Additional lighting can be configured in the Light Editor module within
the same panel. To save the scene in the .vrut format, use the command
exportscene "scene-number" "relative-save-path".

With the scene optimized, the traffic simulation module can be started.
The simplest way is to launch VRUT using the pre-configured traffic.cfg
file available in the repository. This configuration opens VRUT alongside
a window for selecting scenes and starting simulations. To add a custom
scene, modifications to the traffic.js file are required. This file defines
available scenes, vehicle models, and key parameters. Adding a new scene
involves creating a new case in the switch statement, specifying the geom-
etry file (.fbx or .vrut) as trackFile, and the road network file (.xml)
as trafficGraphFile. Other parameters include trackCFGFile, which is
required but can be reused from other scenes, and the worldNodeName which
should be set to the root object name of the scene structure. The editor’s
exporter automatically sets this to root. Adjustable parameters include
CAR_COUNT for the number of cars in the simulation and carPositions for
their starting positions.

Once the simulation is started, the behavior of vehicles and the road net-
work’s structure can be observed. The Traffic module interface includes
checkboxes for visualizing nodes and connections of the road network, provid-
ing a means to validate its structure.

B 104 Testing

Now that the whole process of creating the roadblock, exporting it into VRUT,
and running the simulation is described, it is time to test the roadblock editor.
The testing process was divided into several stages, each focusing on the
editor’s functionality.

The primary objectives were to validate the roadblock’s geometry, ensure
the correct generation of road features, and verify the compatibility of the
exported data with the VRUT system. This process included checking the
generated scene structure in the scene manager of VRUT, where the correct
hierarchy of the scene was verified. The geometry was also visually inspected
in the VRUT interface to ensure the correct scaling and positioning of the
roadblock and to check for any potential defects not present in Blender.
Finally, the materials were inspected for proper assignment.

89

10. Testing in VRUT

The road network was tested for accuracy using a combination of visual
inspection, thanks to the traffic module’s road network visualization capabili-
ties, and observation of the behavior of the simulated vehicles. Ten different
road blocks, or road scenarios, were created using the editor, exported and
tested in VRUT. The scenarios included various road geometries, junctions,
and road features to ensure the editor’s versatility and compatibility with the
VRUT system. The complete list of tested road blocks and their appearance
in Blender and VRUT is provided in the appendix |B.

Although the testing was conducted in a limited time frame, the results were
positive, with all tested road blocks successfully imported into VRUT and
displayed correctly. The road network structure was accurately represented,
and the road features were visible and functional within the simulation.
There were some minor visual defects, but they stem from the geometry
generation process and not from exporting and importing process. The
editor’s compatibility with VRUT was confirmed, demonstrating its potential
as a robust tool for traffic simulation and virtual environment modeling.

90

Chapter 11

Conclusion

This thesis presented the design and implementation of an interactive ed-
itor for road network blocks, addressing the need for flexible and efficient
tools to create and customize road geometries and networks within virtual
environments. The project focused on enhancing the VRUT system by of-
fering a robust editor that integrates seamlessly with existing modules while
expanding its capabilities.

The contributions of this work are multifaceted. A comprehensive review
of existing methods for representing road networks and geometric modeling
techniques was conducted, highlighting the strengths and weaknesses of
standards like ASAM OpenDRIVE and VRUT’s custom format. These
insights informed the design choices for the editor’s implementation. Blender
was selected as the development framework due to its procedural modeling
capabilities, extensibility, and integration potential with VRUT.

The editor supports the creation of essential road elements such as straight
sections, curves, and junctions, using a skeleton representation where nodes
represent lane centers and edges define their connections. Procedural gen-
eration techniques were employed to produce detailed road surfaces, lane
markings, and surrounding features like ditches and vegetation. These work-
flows were implemented using Blender’s geometry nodes, ensuring efficiency
and customization in geometry generation. Challenges such as the T-vertices
problem were addressed with practical solutions to maintain visual quality.

Junction modeling was a critical focus, resulting in the development of
an algorithm for generating smooth junction geometries. This algorithm
incorporates intersection chains and customizable handle placements, enabling
flexible and precise junction design. A modular approach to junction creation
ensures compatibility with the broader road network structure and supports
various junction types.

The editor includes tools for procedural roadside feature generation and
the placement of objects such as lamps and signs, enhancing the realism
and functionality of the created road environments. Export functionality
was implemented to ensure compatibility with the VRUT system, focusing
on its XML-based road network format. While support for the ASAM
OpenDRIVE format remains incomplete, the groundwork has been laid for
future integration.

91

11. Conclusion

Testing in the VRUT system validated the editor’s outputs by simulating
at least ten distinct road scenarios. These tests confirmed the editor’s
effectiveness and compatibility with the VRUT framework, demonstrating
its potential as a robust tool for traffic simulation and virtual environment
modeling.

Despite its accomplishments, this work identifies several areas for future
exploration. Completing support for the OpenDRIVE format would enhance
interoperability with other platforms. Addressing the elevation limitations of
the current implementation and integrating additional junction types, such as
lane merges and diverges or roundabouts, would further enhance the editor’s
utility. Finally, enhancing the graphical user interface could make the tool
more accessible and intuitive for users.

In conclusion, this thesis contributes a significant interactive roadblocks
modeling tool, bridging the gap between geometric precision and procedu-
ral flexibility. Combining this editor with the VRUT system’s capabilities
supports advanced traffic simulations and fosters innovation in virtual envi-
ronments for automotive research and beyond.

92

Appendices

93

94

Appendix A
Simple VRUT Road Network XML example

Disclaimer: The following VRUT file is a fictional example created solely

for illustrative purposes and does not represent a real-world road graph or
functional data.

<?xml version="1.0" encoding="UTF-8"7>
<xml>
<roadgraph version="1.2" />

<!-- Roads Definition -->
<road id="1" type="0">
<lane id="0" nodes="2" type="0" level="3">
<node id="1" x="0.0" y="0.0" z="0.0" sl="120" w="3.7" />
<node id="2" x="50.0" y="0.0" z="0.0" s1="120" w="3.7"
</lane>
<lane id="1" nodes="2" type="0" level="3">
<node id="3" x="0.0" y="3.7" z="0.0" sl1="120" w="3.7" />
<node id="4" x="50.0" y="3.7" z="0.0" s1="120" w="3.7"
</lane>
<lane id="2" nodes="2" type="0" level="3">
<node id="5" x="0.0" y="7.4" z="0.0" sl="120" w="3.7" />
<node id="6" x="50.0" y="7.4" z="0.0" s1="120" w="3.7"
</lane>
</road>

<road id="2" type="0">
<lane id="0" nodes="2" type="0" level="3">
<node id="7" x="50.0" y="0.0" z="0.0" s1="80" w="3.7" />
<node id="8" x="100.0" y="0.0" z="0.0" s1="80" w="3.7"
</lane>
<lane id="1" nodes="2" type="0" level="3">
<node id="9" x="50.0" y="3.7" z="0.0" s1="80" w="3.7" />
<node id="10" x="100.0" y="3.7" z="0.0" s1="80" w="3.7"
</lane>
</road>
% more roads

<!-- Attributes -->
<attributes>
<speedlimit from="1" to="2" value="80" />
<overtakable from="1" to="2" value="1" />
</attributes>

95

A. Simple VRUT Road Network XML example

<t--

Connections -—-->

<connections>

<sequence from="1" to="2" dir="2" closed="0" />
<sequence from="3" to="4" dir="2" closed="0" />
<interconnection from="1" to="3" count="2" dir="2" />

%

<!-- Junction Definition -->
<junction name="Simple,Intersection" id="1">
<path id="0" nodes="2" type="0">
<node id="11" x="50.0" y="0.0" z="0.0" />
<node id="12" x="50.0" y="3.7" z="0.0" />
</path>
<lanelLink road="1" lane="0" node="2">
<successor road="2" lane="0" node="7" path="0"
</laneLink>
<lanelLink road="1" lane="1" node="4">
<successor road="2" lane="1" node="9" path="0"
</laneLink>
<priority road="1" lane="0" node="2">
<check road="2" lane="1" node="9" />
</priority>
<priority road="1" lane="1" node="4">
<check road="2" lane="0" node="7" />
</priority>
</junction>

</connections>

</xml>

96

/>

/>

Appendix B
Simple ASAM OpenDRIVE XML example

<?xml version="1.0" encoding="UTF-8"7>
<0OpenDRIVE>

<header revMajor="1" revMinor="8" name="SimpleRoadExample"
version="1.8" date="2024-12-28">
<geoReference>WGS84</geoReference>

</header>

<!-- Road Definition -->
<road name="StraightToCurve" length="300.0" id="1" junction="-1">
<!-- Road Geometry -->
<planView>
<!-- Straight Section -->
<geometry s="0.0" x="0.0" y="0.0" hdg="0.0" length="100.0">
<line/>
</geometry>
<!-- Euler Spiral Section -->

<geometry s="100.0" x="100.0" y="0.0" hdg="0.0" length="50.0">
<spiral curvStart="0.0" curvEnd="0.02"/>

</geometry>

<!-- Curve Section -->

<geometry s="150.0" x="150.0" y="0.5" hdg="0.5" length="150.0">
<arc curvature="0.02"/>

</geometry>
</planView>
<!-- Lanes -->
<lanes>

<laneSection s="0.0">
<center> <lane id="0" type="driving" level="false"/> </center>
<left>
<lane id="1" type="driving" level="false">
<width sO0ffset="0.0" a="3.5" b="0.0" c="0.0" 4="0.0"/>
</lane>
</left>
<right>
<lane id="-1" type="driving" level="false">
<width sOffset="0.0" a="3.5" b="0.0" c¢c="0.0" d4="0.0"/>
</lane>
</right>
</laneSection>
</lanes>
</road>

</0penDRIVE>

97

98

Appendix C
Ten Road Blocks Tested in VRUT

Disclaimer: Images with dark blue background are top-down views of the
roadblocks in Blender with the road network visualized. Images with a light
blue background are screenshots from Blender showing the roadblocks geometry.
Images with a dark gray background are screenshots from VRUT showing
the roadblocks in the traffic simulation environment with the road network
visualized.

Figure C.1: Road Block 1: Simple straight road

99

C. Ten Road Blocks Tested in VRUT

Figure C.2: Road Block 2: Simple curved road

Figure C.3: Road Block 3: Straight road with features along the sides

100

C. Ten Road Blocks Tested in VRUT

Figure C.4: Road Block 4: Straight road with features between lanes as well as
along the sides

Figure C.5: Road Block 5: Straight multilane road with multiple features

101

C. Ten Road Blocks Tested in VRUT

Figure C.7: Road Block 7: T-shaped junction with features

102

C. Ten Road Blocks Tested in VRUT

Figure C.8: Road Block 8: Junction with connecting lanes and features

Figure C.9: Road Block 9: Looped track with features along the sides

103

C. Ten Road Blocks Tested in VRUT

Figure C.10: Road Block 10: Complex road network with multiple junctions
and features

104

Appendix D
Bibliography

Implicit surface, 2024. Accessed: December 17, 2024.
3D Systems. What is an stl file?, 2024. Accessed: December 17, 2024.

David Aimsun and Contributors. Roadxml repository, 2024. Accessed:
2024-12-23.

ASAM e.V. ASAM OpenDRIVE 1.8.1 Specification, November 21 2024.
ASAM e.V. ASAM OpenDRIVE standard, 2024.

Daniel Aschermann. Modularni editor silni¢ni sité pro vrut. Master’s
thesis, Czech Technical University in Prague, Faculty of Electrical Engi-
neering, 2023.

Autodesk. What is autodesk fbx technology?, 2020.

Autodesk. Autodesk maya 2023, 2023. Accessed: 2024-12-30.
Autodesk. Custom attributes in maya, 2023. Accessed: 2024-12-30.
Autodesk. Export formats in maya, 2023. Accessed: 2024-12-30.
Autodesk. Nurbs modeling in maya, 2023. Accessed: 2024-12-30.

Autodesk. Procedural workflows with bifrost in maya, 2023. Accessed:
2024-12-30.

Autodesk. Python api documentation for maya, 2023. Accessed: 2024-
12-30.

Autodesk. Creating and editing splines, 2025.

Blender Foundation. About blender, 2024. Accessed: 2024-12-23.
Blender Foundation. Blender API: Attributes, 2024.

Blender Foundation. Blender API: bpy.types. Curve(ID), 2024.

Blender Foundation. Blender API: bpy.types. Curves(ID), 2024.

105

D. Bibliography

[19]

[20]

[21]

Blender Foundation. Blender Python API Documentation, 2024.

Blender Foundation. Introduction to Modifiers, 2024. Accessed: 2024-12-
23.

Blender Foundation. Mesh Structure. Blender Foundation, 2024. Ac-
cessed: December 17, 2024.

Blender Foundation. Render Baking, 2024.

Tanita Brustad. Preliminary studies on transition curve geometry:
Reality and virtual reality. Emerging Science Journal, 4:1-10, 02 2020.

Tanita Fossli Brustad and Rune Dalmo. Railway transition curves: A
review of the state-of-the-art and future research. Infrastructures, 5(5),
2020.

CG build up. Creating intersection points along the intersecting parts
of two splines in blender geometry nodes, 2022. Accessed: 2024-08-23.

Giuseppe Cantisani, Davide Dondi, Giuseppe Loprencipe, and Alessandro
Ranzo. Spline curves for geometric modelling of highway design. In
Proceedings of the SIIV Conference, 2003.

Stefano Carpin, Mike Lewis, Jijun Wang, Stephen Balakirsky, and Chris
Scrapper. Usarsim: a robot simulator for research and education. In
Proceedings 2007 IEEFE International Conference on Robotics and Au-
tomation, pages 1400-1405, 2007.

Thomas Colleu, Luce Morin, Stéphane Pateux, and C. Labit. Floating
polygon soup. pages 1-8, 07 2011.

Danny Darwiche and Isak Nystrom. Finding junctions in spline-based
road generation, 2022.

Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars.
Computational Geometry: Algorithms and Applications. Springer, Berlin,
Heidelberg, 3rd edition, 2008.

DAVID H DOUGLAS and THOMAS K PEUCKER. Algorithms for the
reduction of the number of points required to represent a digitized line
or its caricature. Cartographica, 10(2):112-122, 1973.

Dr. Huang’s Mathematics and Science Resources. Parametric surface,
2024.

Ridhima Dutta and Poonam Dhand. 3d object representations, 2024.
Accessed: December 17, 2024.

Encyclopedia.com. Information technology standards, 2024. Accessed:
2024-12-23.

106

D. Bibliography

Engineering.com. What is solid modeling?, 2024.

Gerald Farin, Josef Hoschek, and Myung-Soo Kim. Interactive Curve
Modeling: With Applications to Computer Graphics, Vision and Image
Processing. Springer, London, 2008.

Dalai Felinto et al. New curves object type, 2019.

Adam Finkelstein. Overview of 3d object representations. COS 426
Lecture Slides, Princeton University, 2005. Accessed: December 17, 2024.

Blender Foundation. Add-on tutorial for blender, 2024. Accessed: 2024-
12-30.

Blender Foundation. Attributes in blender, 2024. Accessed: 2024-12-30.

Blender Foundation. Bmesh module documentation, 2024. Accessed:
2024-12-30.

Blender Foundation. Geometry nodes documentation, 2024. Accessed:
2024-12-30.

Blender Foundation. Importing & exporting files, 2024. Accessed: 2024-
12-30.

Jonas Freiknecht and Wolfgang Effelsberg. A survey on the procedural
generation of virtual worlds. Multimodal Technologies and Interaction,
1(4):27, 2018.

Christina Gackstatter, Sven Thomas, Patrick Heinemann, and Gudrun
Klinker. Stable road lane model based on clothoids. In Proceedings of the
10th International Conference on Advanced Microsystems for Automotive
Applications (AMAA), 2010.

Epic Games. Procedural mesh component, 2024. Accessed: 2024-12-30.
Epic Games. Unreal documentation, 2024. Accessed: 2024-12-30.
Epic Games. Uspline component, 2024. Accessed: 2024-12-30.

Mengran Gao, Ningjun Ruan, Junpeng Shi, and Wanli Zhou. Deep neural
network for 3d shape classification based on mesh feature. Sensors, 22(18),
2022.

GeoGebra. Curves and their properties, 2024.

Andy Green. Polygon soup — for 3d artists, 2024. Accessed: December
17, 2024.

Seyed Masoud Hosseini Sarvari. Optimal geometry design of radiative
enclosures using the genetic algorithm. Numerical Heat Transfer, Part
A: Applications:127-143, 07 2007.

107

D. Bibliography

[53]

[54]

[55]

[56]
[57]

[58]

[59]

[60]

[68]

[69]

[70]

James F. Hughes. Computer Graphics: Principles and Practice. Addison-
Wesley, 3rd edition, 2014.

Gary Keen. Texture maps, 2024.

Khronos Group. COLLADA - Digital Asset FExchange Schema: Version
1.5 Specification, 2008.

Khronos Group. ¢giTF 2.0 Specification, 2020.

Vojtéch Kolinsky. Editor silni¢ni sité v systému virtual reality universal
toolkit (road network editor for virtual reality universal toolkit), 2024.

Vaclav Kyba. Modularni 3d prohlizec. Master’s thesis, Czech Technical
University in Prague, Faculty of Electrical Engineering, November 2008.

Vit Kyba, Ales MiSek, et al. Documentation of the vrut application.
Accessed: 2024-12-23.

Marko Lamot and Borut Zalik. An overview of triangulation algorithms
for simple polygons. 1999 IEEE International Conference on Information
Visualization (Cat. No. PR00210), pages 153-158, 1999.

Raph Levien. The euler spiral: A mathematical history. Technical
Report EECS-2008-111, University of California, Berkeley, 2008.

Library of Congress. Stl (stereolithography) file format family, 2024.

J. McCrae and K. Singh. Sketching piecewise clothoid curves. In
C. Alvarado and M.-P. Cani, editors, EUROGRAPHICS Workshop on
Sketch-Based Interfaces and Modeling, 2008.

Jaroslav Minafik. Simulace okolnich dopravnich déju (simulation of
surrounding traffic). Master’s thesis, Czech Technical University in
Prague, Faculty of Electrical Engineering, Department of Computer
Graphics and Interaction, 2014.

James D. Murray and William VanRyper. Graphics File Formats.
O’Reilly Media, 2nd edition, 1996.

OpenStreetMap Contributors. Map features, 2024. Accessed: 2024-12-23.

David Salomon. The Computer Graphics Manual. Springer, 1st edition,
2011. An ebook version is available for subscribers.

Shene, C.-K. B-spline: Special case, 2024.

Peter Shirley, Michael Ashikhmin, and Steve Marschner. Fundamentals
of Computer Graphics. A K Peters/CRC Press, 3rd edition, 2009.

SideFX. Attributes in houdini documentation, 2024. Accessed: 2024-12-
30.

108

~ [\

=)

~ Ut
~ XX S 2 2 = & N~ =

D. Bibliography

SideFX. Curve sop documentation, 2024. Accessed: 2024-12-30.
SideFX. Digital assets documentation, 2024. Accessed: 2024-12-30.
SideFX. Exporting documentation, 2024. Accessed: 2024-12-30.
SideFX. Geometry nodes documentation, 2024. Accessed: 2024-12-30.
SideFX. Houdini documentation, 2024. Accessed: 2024-12-30.
SideFX. Polyextrude sop documentation, 2024. Accessed: 2024-12-30.
SideFX. Vex language documentation, 2024. Accessed: 2024-12-30.
Signum Ops. Polylines help documentation, 2024.

Gregory J. Taylor. Roadway horizontal alignment. Technical Report
C04-034, Continuing Education and Development, Inc., 2023. Accessed:
2024-12-19.

Unity Technologies. Fbx exporter package in unity, 2024. Accessed:
2024-12-30.

Unity Technologies. Mesh class documentation in unity, 2024. Accessed:
2024-12-30.

Unity Technologies. Probuilder package in unity, 2024. Accessed: 2024-
12-30.

Unity Technologies. Scriptableobjects in unity, 2024. Accessed: 2024-12-
30.

Unity Technologies. Spline package in unity, 2024. Accessed: 2024-12-30.
Unity Technologies. Unity 6 user manual, 2024. Accessed: 2024-12-30.

True Geometry. Radius of curvature in context of road radius calculation,
2024.

TutorialsPoint. Computer graphics - curves, 2024.

Zhengren Wang. 3d representation methods: A survey. arXiv preprint
arXiv:2410.06475, 2024. Accessed: December 17, 2024.

Wikimedia Commons contributors. Csg tree, 2005.

Wikipedia Contributors. Simulation open framework architecture, 2024.
Accessed: 2024-12-23.

Wikipedia Contributors. Vector map, 2024. Accessed: 2024-12-23.
Wolfram MathWorld. Cornu spiral, 2024.

Cem Yuksel, Scott Schaefer, and John Keyser. Parameterization and
applications of catmull-rom curves. Comput. Aided Des., 43:747-755,
2011.

109

	Introduction
	Foundations & Analysis
	Geometry Background
	Representing Geometry
	Conclusion

	Definition & Properties of Curves
	Curves and Their Relationship to Control Points
	Curve Representations
	Piecewise Representations and Splines
	Properties of Curves

	Specific Curve Types
	B-splines
	Bézier curves
	Catmull-Rom splines
	Euler Spiral
	Summary of Curves in Road Design

	Polylines
	Approximating Curves with Polylines
	Conclusion

	Polygonal Meshes
	Mesh Triangulation
	Textures
	Export Formats

	Procedural Content Generation (PCG)
	What is Procedural Content Generation?
	Usecases of PCG
	Advantages of PCG
	Challenges of PCG
	Generating Meshes using Curves
	Conclusion

	Road Graph
	Standards of Data Representation
	OpenStreetMap (OSM)
	RoadXML
	Vector Map (VMap)
	Simulation-specific Formats

	VRUT representation
	Roads Section
	Attributes Section
	Connections Section
	Junctions
	Summary of VRUT representation

	ASAM OpenDRIVE
	File Structure
	Road Reference Line
	Geometries
	Roads
	Lanes
	Junctions
	Summary of ASAM OpenDRIVE

	Conclusion

	Implementation Suitable Frameworks
	VRUT
	Game Engines
	Unreal Engine
	Unity

	3D modeling software
	Blender
	Houdini
	Maya

	Conclusion

	Virtual Reality Universal Toolkit system (VRUT)
	Overview
	Core of VRUT
	Relevant Modules
	Road Editor
	Road Network Editor
	Traffic Module

	Conclusion

	Implementation
	Road Geometry
	Road-base Representation Types
	Catmull-Rom curves
	Bézier curves
	NURBS curves
	Hair curves
	Mesh representation
	Conclusion

	Road splines
	Central Spline
	Spline Classes
	Secondary Splines
	Output of spline creation

	Road mesh generation
	T-Vertices Problem
	Proposed Solutions

	Textures & Materials
	Baking Textures

	Junction Geometry
	Internal data representation
	Junction creation algorithm
	Outline Intersections
	Marking Intersection Pairs
	Junction Geometry Generation

	Junction Modifier
	Alternative Tested Approaches
	Initial Mesh-Based Approach
	Curve-Based Approach with Geometry Nodes
	Influence on Final Implementation

	Features
	Modifier Stack
	Profile Along the Road
	Preset and Custom Profiles
	Modifier Interface
	Profile Stacking and Layering
	Geometry Nodes Implementation
	Adding Custom Profiles

	Object Along the Road
	Curve Sampling and Side Selection
	Material Handling and UV Mapping
	Integration and Limitations

	Surroundings
	Graphical User Interface
	Conclusion

	Road Network
	Internal Representation
	Junctions
	Export Formats
	VRUT Format
	OpenDRIVE Format
	Visualization of Road Network

	Conclusion

	Testing in VRUT
	Compilation of VRUT
	Exporting Geometry for VRUT
	Importing Road Blocks into VRUT
	Testing

	Conclusion

	Appendices
	Simple VRUT Road Network XML example
	Simple ASAM OpenDRIVE XML example
	Ten Road Blocks Tested in VRUT
	Bibliography

