IMPROVEMENTS TO
THE I3T USER
INTERFACE

Bc. Dan Rakusan

Master’s thesis

Faculty of Electrical Engineering

Czech Technical University in Prague

Department of Computer Graphics and Interaction
Study program: Open Informatics

Specialisation: Computer Graphics

Supervisor: Ing. Petr Felkel, Ph.D.

May 23, 2025

cTU MASTER'S THESIS ASSIGNMENT

CZECH TECHNICAL
UNIVERSITY
IN PRAGUE

. Personal and study details

Student's name: Rakus$an Dan Personal ID number: 493291
Faculty / Institute: Faculty of Electrical Engineering
Department / Institute: Department of Computer Graphics and Interaction

Study program: Open Informatics

Specialisation: Computer Graphics

Master’s thesis details

\.

Master’s thesis title in English:

Improvements to the I3T user interface

Master’s thesis title in Czech:

Vylepseni uzivatelského rozhrani aplikace 13T

Name and workplace of master’s thesis supervisor:
Ing. Petr Felkel, Ph.D. Department of Computer Graphics and Interaction

Name and workplace of second master’s thesis supervisor or consultant:

Date of master’s thesis assignment: 12.02.2025 Deadline for master's thesis submission:

Assignment valid until: 20.09.2026

Head of department’s signature prof. Mgr. Petr Pata, Ph.D.
Vice-dean’s signature on behalf of the Dean

lll. Assignment receipt

r

The student acknowledges that the master’s thesis is an individual work.
The student must produce his thesis without the assistance of others, with the exception of provided consultations.
Within the master’s thesis, the author must state the names of consultants and include a list of references.

Date of assignment receipt Student’s signature

CVUT-CZ-ZDP-2015.1 Page 1 from 2 © CVUT v Praze, Design: CVUT v Praze, VIC

cTU MASTER'S THESIS ASSIGNMENT

CZECH TECHNICAL

UNIVERSITY
IN PRAGUE

l. Personal and study details

(N

Student's name: Rakusan Dan Personal ID number: 493291

Faculty / Institute: Faculty of Electrical Engineering
Department / Institute: Department of Computer Graphics and Interaction

Study program: Open Informatics

Specialisation: Computer Graphics

\. J

Il. Master’s thesis details

4 3\

Master’s thesis title in English:

Improvements to the I3T user interface

Master’s thesis title in Czech:

Vylepseni uzivatelského rozhrani aplikace 13T

Guidelines:

I3T is an interactive learning tool for transformations developed by students at the Department of Computer
Graphics and Interaction FEL CTU. The application is in the later stages of development, but there are still
some major issues with the Ul implementation of the node-based editor of the application (the "workspace"),
which needs to be reviewed and reworked to allow the introduction of new improvements.

1) Familiarize yourself with the current workspace node editor implementation in the I3T application [1, 2].

2) Evaluate functional and visual issues with the current implementation and issues with the codebase and its
documentation.

3) Design and implement changes to address issues with the old workspace editor.

4) Use the new editor in collaboration with other students, whilst employing user-centered design, to implement
design changes and features to enhance the usability of I3T, such as improving node and pin layout, making
connecting nodes easier, invalid matrix value highlighting, addressing DPI scaling issues, or displaying individual
nodes in a separate window.

5) As a secondary goal, explore the possibility of better visualizing the projection and viewport transformations
and implement any necessary improvements to the 3D scene view [3]. Include a comparison between the
OpenGL and Vulkan normalized device coordinate systems.

Bibliography / sources:

[1] Jaroslav Hole€ek: Adaptive learning in 13T software for education of geometric transformations, Master's
thesis, http://hdl.handle.net/10467/107077

[2] Martin Herich: Restructuralization of Interactive Tool I3T for Teaching Transformations and Reimplementation
of User Interface Using Dear ImGui Library, Bachelor's thesis, http://hdl.handle.net/10467/96746

[3] Dan Rakusan: Scene view for the I3T application, Bachelor's thesis, http://hdl.handle.net/10467/109656

CVUT-CZ-ZDP-2015.1 Page 2 from 2 © CVUT v Praze, Design: CVUT v Praze, VIC

Czech Technical University in Prague

Faculty of Electrical Engineering

© 2025 Be. Dan Rakusan. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic. It
has been submitted at Czech Technical University in Prague, Faculty of Electrical
Engineering. The thesis is protected by the Copyright Act and its usage without
author’s permission is prohibited (with exceptions defined by the Copyright Act).

Citation of this thesis: Rakusan Dan. Improvements to the I3T user interface. Mas-
ter’s thesis. Czech Technical University in Prague, Faculty of Electrical Engineering,
2025.

I would like to thank my supervisor, Ing. Petr Felkel,
Ph.D., for his valuable comments and numerous pieces
of advice. I would also like to thank the other members
of the 13T team for all their cooperation throughout the
project, especially Barbora for her help with the testing
and for various design suggestions.

vi

FAKULTA ELEKTROTECHNICKA CTU
FACULTY OF ELECTRICAL ENGINEERING
Technicka 2

CZECH TECHNICAL

166 27 Praha 6 :JNNL\;EAI::::Y

DECLARATION

I, the undersigned

Student's surname, given name(s): Rakusan Dan
Personal number: 493291
Programme name: Open Informatics

declare that | have elaborated the master’s thesis entitled

Improvements to the 13T user interface

independently, and have cited all information sources used in accordance with the Methodological Instruction
on the Observance of Ethical Principles in the Preparation of University Theses and with the Framework Rules
for the Use of Artificial Intelligence at CTU for Academic and Pedagogical Purposes in Bachelor's and Continuing
Master’'s Programmes.

| declare that | used artificial intelligence tools during the preparation and writing of this thesis. | verified the
generated content. | hereby confirm that | am aware of the fact that | am fully responsible for the contents of
the thesis.

In Prague on 23.05.2025 Bc. Dan Rakusan

student's signature

Abstract

13T is an interactive tool for teaching 3D transformations. This thesis focuses
on improving the user interface of its node-based matrix editor implemented
using the Dear ImGui C++ library. The first part of the thesis develops a new
node editor component UT library to replace the existing implementation and
then uses it to enhance usability and visual design of I3T. The second part of the
thesis implements a new animated camera visualization technique, allowing the
user to physically view the transformation of model vertices from world space
all the way to screen space coordinates, bringing clarity to this often obscured
and hard to understand process.

Keywords computer graphics, 3D transformations, I3T, OpenGL, C++, Dear

ImGui, perspective projection visualization, Dear ImGui, user interface, node
editor component

viii

Abstrakt

I3T je interaktivni nastroj pro vyuku 3D transformaci. Tato prace se zaméruje
na vylepseni uzivatelského rozhrani jeho maticového editoru implementovaného
pomoci C++ knihovny Dear ImGui. V prvni ¢asti prace je vyvinuta nova
knihovna realizujici Ul komponentu node editoru, kterd nahrazuje stavajici im-
plementaci, a kterd je vyuzita ke zlepseni pouzitelnosti a vizualniho designu
I3T. Druh4 c¢ast prace se vénuje implementaci nové techniky animované vizual-
izace transformaci kamery. Ta uzivateli umoznuje nazorné sledovat transformaci
vrcholtt modelu ze soufadnic svétového prostoru az do souradnic prostoru obra-
zovky, ¢imz vnasi do tohoto ¢asto neprehledného a $patné pochopeného procesu
novou miru jasnosti.

Klicova slova pocitacova grafika, 3D transformace, 13T, OpenGL, C++,

Dear ImGui, vizualizace perspektivni projekce, Dear ImGui, uzivatelské rozhrani,
komponenta node editor

ix

Contents

1 Introduction 1
1.1 Goals 2
1.2 Thesis structureo 3
1.3 Application overview 3

1.3.1 Concurrent work L. 5
1.3.2 Codebase 6

2 The workspace 7
2.1 Dear ImGui library o 7
2.2 DIWNE library o 8
2.3 Existingissueso o 11

2.3.1 Codebase 11
2.3.2 Functionality and appearance 14
24 New DIWNE library 15
24.1 Refactoring 16
2.4.2 New architecture 16
2.4.3 Input propagation L. 17
2.4.4 Object lifecycle and input processing 19
245 Actionsin DIWNE 21
2.4.6 Node containers, 23
2.4.7 Node iterators L. 24
24.8 Layouting 25
2.5 Workspace improvements 26
2.5.1 Tterative design process 27
2.5.2 Notable design changes 28

3 Tracking 33

3.1 Analysis 35
3.1.1 Standard tracking L. 35
3.1.2 Camera tracking 37
3.1.3 Perspective projection visualization 40
3.1.4 Reference frame 43

3.2 Current implementation 45
3.2.1 Functionality and user interface 45
322 Codebase 47

3.3 New implementation 50
3.3.1 New architecture 51

Contents

3.3.2
3.3.3
3.3.4

Traversal iterators
MatrixTracker object
User interface

3.4 Camera tracking implementation

3.4.1
3.4.2
3.4.3
3.4.4
3.4.5
3.4.6
3.5 Testing

4 Discussion

5 Conclusion

Reference frame and view space
Multiple scene views
Camera projection L.
Viewport transformation
Vulkan support
User-defined reference frame

A Multiple perspective projections

List of acronyms

Glossary

Contents of the attachment

73

75

77

79

81

87

xi

1.1

1.2

1.3

2.1
2.2
2.3
24

2.5
2.6

3.1
3.2
3.3
3.4
3.5

3.6
3.7

3.8

3.9

3.10

3.11

3.12

3.13

List of Figures

Screenshot of the 13T application at the beginning of this thesis.
The loaded scene contains two transformations that share a third
parent transformation, each applied to a cube.
An I3T scene demonstrating orthographic projection using oper-
ator nodes (wih blue headers) to construct the projection matrix.
Package diagram of the I3T project’s relevant codebase.

Node editor interface examples from Blender (left) and I3T (right).

(Class diagram of the current architecture of the DIWNE library.
Class diagram of the basic workspace classes and how they relate
to the DIWNE library.
Package diagram of the new DIWNE library.
Class diagram of the main classes of the new DIWNE library.

Comparison of the old and new sequence and model node design.
Both light and dark modes.

OpenGL coordinate systems
Camera viewing a simple scene inside of old I3T.
Example of tracking across multiple sequences in the old I3T.
Example of tracking a pair of translation and rotation transfor-
mations from the left and from the right in the old I3T.

Proof of concept visualization of orthographic projection inside
of the old I3T using standard tracking.
OpenGL viewport and projection matrices
Screenshot of the YouTube video by Josh’s channel [16] that
inspired camera tracking. L.
Proof of concept visualization of perspective projection inside of
the old I3T using standard tracking.
A duck model being tracked into the NDC space of a camera,
leaving other models stationary in world space.
A translated and rotated cube viewed in world space (left) and

viewed from the reference frame of the inverse of its transformation.

Example of branching sequences connected to multiple models

12
15
17

27

34
35
36
37

38
39

41

42

44

45

(the new node design with collapsed nodes from Chapter 2 is shown) 46

The tracking example from Figure 3.3 shown after the workspace
redesign.
Partial class diagram of the Core» Nodes directory.

xii

47
48

3.14

3.15

3.16

3.17

3.18
3.19
3.20
3.21
3.23
3.22

3.24
3.25

3.26

3.27
3.28

3.29

3.30

3.31

3.1

Class diagram of the main parts of the new tracking implemen-
tation.o

Class diagram of the new graph traversal iterators implemented
in Core/Nodes/Iterators.h

Object diagram of the TrackedNodeData instances managed by
the MatrixTracker,

Tracking example from Figure 3.3 shown in the new tracking
implementation.

Dark mode variant of Figure 3.17..
Tracking of a sequence connected to a camera.
Tracking of the view transformation.

View space visualization using two separate scene view windows.

Gradual flip of the X axis of the local axes indicator

Composite image showing the interpolation of the perspective
transformation.

Visualization of the NDC space of a camera.

Perspective decomposition by Shirley et al. visualized with cam-
era tracking. o

Visualization of NDC space depth values and a comparison with
the rendered image.

The camera node with the “Show viewport” option enabled. . .
Visualization of camera screen space using an explicit viewport
transformation.
New Vulkan variants of the camera, projection transformations
and viewport transformation.
Comparison between Vulkan and OpenGL normalized device co-
ordinates.
User-defined reference frame of Jupiter in a scene of the Solar
System. . .o

92

o4

95

56
o7
99
60
62
62

63
64

65

66
66

67

69

70

List of Tables

Functional requirements of the new tracking implementation.

xiii

50

xiv

2.1
2.2
2.3
2.4
2.5
2.6
2.7

2.8
2.9

List of Code listings

List of Code listings

Example of an Dear ImGui button 8
Example usage of the imgui-node-editor library [9] 9
Example DIWNE pseudocode! 10
Old DiwneObject drawing code. 18
New DiwneObject drawing stages, its frame “lifecycle”. 18
The DrawInfo struct 19
Usage of the ContextTracker class to track changes of a DrawInfo

instance passed to a draw method. 19
Outline of the DiwneAction object. 22
Outline of the InteractionState object. 22

2.10 Example of initiating, querying and ending the connect pins action. 23
2.11 A code snippet of the right aligned pin layouting code. 25

Chapter 1

Introduction

The Interactive Tool for Teaching Transformations, or 13T, is an educational
application developed at the Department of Computer Graphics and Interaction
at FEL CTU. It is used to help students learn about matrix transformations in
the computer graphics programming class taught at FEL as well as FIT.

It takes the form of a C++ desktop application in which the user can com-
pose together various matrix transformations and view their effects on objects
in a 3D world. The application is made up of two key interfaces: the 3D scene
view and a 2D node editor (the workspace) in which the user can create and
connect together nodes representing transformation matrices, models, and cam-
eras. Inside the workspace, the user can construct a scene graph of the 3D scene
rendered in the viewport. Both of these components are interactive, so changes
to the matrices can be immediately observed to help with building intuition for
how transformation matrices work.

I3T has been developed for many years now by numerous students of the
faculty. It was originally developed in 2015 in a master’s thesis by Michal Folta
[1], but the development of a newer, more advanced, and user-friendly version
started later in 2019 [2]. T joined the project in 2022 to work on my bachelor’s
thesis [3], which focused on a new viewport implementation that was previously
started but unfinished by a previous student [4].

In the new version of 13T, the Dear ImGui library [5] was chosen to be used
for the user interface. It is generally used for custom tooling for OpenGL/Vulkan
applications rather than for more complicated end-user applications, but it is not
a bad choice for a simple learning tool and students are often familiar with it.
One issue that arose was the need for a Dear ImGui implementation of a node
editor component, which is a rather complex Ul component. There are existing
open-source implementations around, but ultimately it was decided to imple-
ment it from scratch due to the need of nesting nodes inside other nodes. This
was done as part of a master’s thesis by Jaroslav Holecek [6, s. 92], in which

Introduction

he created the DIWNE! library implementing the node editor component and
built upon it the current workspace implementation.

Since 2022, the application has progressed to a much more stable and usable
state. However, one growing concern is the state of the workspace, which still
contains many bugs, visual glitches and unusual behaviours that need attention.
Perhaps more alarming is the underlying codebase that has been left largely
unmaintained since Jaroslav left the team after completing his studies.

The workspace implementation was not the main topic of Jaroslav’s the-
sis and was unfortunately developed very hastily to get a working solution,
rather than a polished and scalable result. Over time, as other members of the
team required new functionality, additional code was mixed in with the existing
codebase without a proper understanding of the underlying design and prob-
lems, which only worsened the situation and made further development more
difficult.

1.1 Goals

The primary goal of this thesis is to review and improve the workspace node
editor implementation of I13T. Evaluating and eliminating its current issues,
which primarily stem from the custom-made DIWNE node editor Ul library
upon which its built. The DIWNE library should be reviewed and reworked to
achieve modular and maintainable code, improving the workspace implementa-
tion in the process.

The new codebase and UI implementation will be used to enhance the us-
ability of the I3T application. If possible, this should be done in collaboration
with other members of the I3T team, who work on the project concurrently and
should include iterative testing in line with the user-centered design methodol-
ogy.

Another key goal of this thesis is to expand the application’s visualization
tools to include a descriptive 3D depiction of the wiew, projection and wview-
port transformations — expanding the horizons of the application beyond the
world space into the intricacies of the camera transformations and fixed-function
stages of the OpenGL and Vulkan graphics pipelines. A particular focus will be
placed on the perspective projection transformation, which is often difficult to
understand and visualize.

Y Dear IMGUI Wrapper Node Editor

Thesis structure

1.2 Thesis structure

The thesis is structured into two main chapters. Chapter 2 addresses the
first goal of the thesis, focusing on the Ul improvements of the application’s
workspace node editor and the underlying codebase. Chapter 3 builds upon the
new Ul implementation, but explores the largely unrelated concept of camera
transformations in pursuit of the secondary goal. Although this goal is intro-
duced as the secondary goal in the assignment, it does in a way carry more
importance, and the primary goal could be understood as its means to an end.
For that reason, Chapter 3 is in fact longer and more detailed than Chapter 2.

1.3 Application overview

In case the reader is unfamiliar with I3T, this section serves as a brief introduc-
tion to it. It is followed by an even shorter cursory overview of the project’s
codebase.

I3T is a desktop application, developed in C++, consisting of two main
components: the workspace and the scene view (formerly called the viewport or
the world).

The workspace functions as a node-based editor, where users can create
nodes (sometimes referred to as “boxes”) which can be connected together using
links by connecting their input and output pins. The most important nodes are
the transformation nodes, represented as editable matrices, which can be placed
into sequence nodes in a desired order, allowing users to construct composite
transformations whose internal order can be changed easily via drag-and-drop.

Sequences can be chained together using links representing matrix multipli-
cation, and a 3D model can be attached to a sequence to visualize the result
of the final transformation matrix on the model’s vertices. The scene view
displays these models in a 3D world from the perspective of an independent
user-controlled camera.

Transformation sequence chains can branch out, forming a structure akin to
a scene graph (specifically, a directed acyclic graph). Each sequence computes
its general “model” matrix by multiplying its parent’s output matrix with its
own local transformations.

Figure 1.1 shows an example scene in 13T: Two cubes (grey and red) share
a parent transformation that translates by two units along the Z axis. The
grey cube is then rotated around the Y axis, and the red cube is further
translated by minus four units along Z. This places the red cube at world
coordinates (0,0,—2). If disconnected from its parent, the red cube would in-
stead be at (0,0, —4).

A camera node can be placed at the beginning of a transformation chain,
allowing the user to input projection and view matrices. A connected screen
node displays the 3D scene from that camera’s perspective. Figure 1.2 shows
an 13T scene demonstrating a camera using the orthographic projection.

Introduction

v sequence
v eulerAngleY
0.7 0 07 00

v sequence 07 O 07 O
v sequence

By translate o = ! = = B v tanslate

B Figure 1.1 Screenshot of the I3T application at the beginning of this thesis. The
loaded scene contains two transformations that share a third parent transformation,
each applied to a cube.

Connections between nodes can also carry data. A sequence can output
a matrix computed only from its own local transformations, without including
its parent. These data connections are primarily used by the operator nodes,
which perform numerical operations such as matrix inversion, and allow manip-
ulation of numbers, vectors, matrices, and quaternions. They also handle type
conversions between data types. The result of such operations can be plugged
back into a sequence using its matrix data input. For example, operators are
used in figure 1.2 to assemble an orthographic projection matrix from individual
camera frustum plane position parameters.

Unlike other educational tools focused on fixed scenarios, I3T offers a flex-
ible environment capable of illustrating a broad range of computer graphics
concepts. The application also contains tutorials that guide the user through
various examples.

A similar introduction to I3T has been given in a previous thesis about the
application’s scene view implementation [3, pp. 6-7]. It contains similar figures
to 1.1 and 1.2, shown in the original I3T application by Michal Folta [1].

Application overview

13T 13T - An Interactive Tool for Tea

File Edit W (A0

Description

06. Orthographic projection

The scene def unction ortho(..) that is used for a construction of
the orthogonal projecti

1. Edit the input param plain how th the positions of the

1 Think of examples.

left, right, top and bottom

the e to the
with a single input value of the height or thy

v ortho
left
right
bottom
top
near
far

v camera
v projection v view v sequence

s lookAt translate

eye center up
X 00 00 00
Y 00 00 10
Z 10 00 00

B Figure 1.2 An I3T scene demonstrating orthographic projection using operator
nodes (wih blue headers) to construct the projection matrix.

1.3.1 Concurrent work

I3T as a project has been around since 2016, during which time many students
have collaborated on its development, be it with direct code contributions or
with design and usability studies. A comprehensive history of the projects and
theses contributing to it can be found in my previous thesis [3, p. 7].

The project has been open-sourced and is actively used in class. Although
not much effort has been put into its public propagation yet, as the development
still continues.

Currently, four students are working on I3T as part of their master’s and
bachelor’s theses concurrently with this one:

e Barbora Halova, bachelor’s thesis
User research and UX review of the I3T app. Design and prototyping to
improve the usability of the I3T app. [7]

e Martin Herich, master’s thesis
Working on a new scripting system and automatic GitHub publishing [8].

e Matvei Korikov, bachelor’s thesis

Dockable windows, history, logging, language mutations and optimization
of the I3T tool.

e Karolina Zapletalova, bachelor’s thesis

1.3.2 Codebase

Introduction

Optimizing the learning environment in the I3T Tool for different user types.

Figure 1.3 presents a package diagram of the application’s codebase, which will
be referred to occasionally in the coming chapters. Each package represents
a directory of the application’s main Source directory. The top-level directories
represent largely independent modules of the application. Chapter 2 focuses on
the improvements to the workspace, focusing on the GUI and DIWNE direc-
tories. Chapter 3 introduces new core functionality and makes changes in the
Corer» Nodes and Viewport directories as well.

Core

GUI |

Nodes

ﬁ + Input

ﬁ + Resources

Nodes

Core functionality

The logical implementation
of the node graph.

Other modules Viewport

EI + Commands EI + camera

El + Logger El + data

EI + Scripting EI + entity

El + State El + framebuffer
\i_l + Tutorial EI + scene

El + Utils El + shader

User interface:
windows and workspace

Elements

E’ + Dialogs
E| + Modals

E’ + Windows

[N

DIWNE

Other irrelevant packages

The 3D scene view
implementation

+ DiwneObject
+ Link
+ Node

+ Pin

The node editor Ul library

B Figure 1.3 Package diagram of the I3T project’s

relevant codebase.

+ Builder
+ WorkspaceCamera
+ WorkspaceCycle

+ WorkspaceElements

+ WorkspaceModel
+ WorkspaceOperator
+ WorkspaceScreen
+ WorkspaceSequence

+ WorkspaceTransformation

+ WorkspaceTransformation_s

<___

+ WorkspaceElementsWithCoreData

Chapter 2

The workspace

This chapter focuses on the primary goal of this thesis: improvement of the
application’s node-based editor (The workspace). To do so, the existing user
interface solution must first be analysed. It consists of two main parts, the
original DIWNE node editor component library, developed by Jaroslav Holecek
[6] and its use in the actual I3T node editor implementation.

First, the Dear ImGui library is introduced in further detail as it is the
library the entire application’s Ul is built upon and its design heavily influences
the design of the workspace implementation and the underlying node editor
library.

Next, the DIWNE library is introduced and its current issues are described.
The DIWNE library and the workspace implementation can essentially be con-
sidered to be the same codebase, as they are substantially interconnected, which
is one of the major issues this thesis aims to resolve.

From the beginning of this thesis, it has been clear that the DIWNE library
requires a major rewrite, a sort of DIWNE version 2, which is the focus of the
rest of the chapter.

2.1 Dear ImGui library

Dear ImGui is a popular open-source C++ library most commonly used to
develop user interfaces in game engines and real-time 3D applications as it
offers easy integration and quick iteration in development [5].

It uses the immediate mode paradigm®, a methodology and a style of API
that avoids any retained state and promotes direct synchronization of the Ul with
its data. In contrast, most Ul frameworks use a retained mode paradigm, which
generally uses object-oriented design and explicit data synchronization (using

events or callbacks).

"More info at https://github.com/ocornut/imgui/wiki/About-the-IMGUI-paradigm

BN OV I O R

The workspace

In Dear ImGui, the user interface is completely defined by a sequence of
commands executed every frame, which always builds the entire Ul from the
ground up. One frame may display an interface completely different from the
previous one. The actual rendering occurs once at the end of the frame, by
rendering all the so-called DrawLists, containing lists of rendering commands
that have been sequentially created by each call to the Dear ImGui functions
in that frame. Each frame responds dynamically to user actions directly when
building the UL The application queries the state of user input each frame when
constructing the Ul elements.

Code listing 2.1 illustrates the principle behind Dear ImGui with an exam-
ple of a button. Calling ImGui::Button() causes a button to appear at the
current position in the window. Inside this method, user input is immediately
evaluated and a boolean is returned indicating whether the user just clicked the
button. Thus, it is possible to react to the button press in the same place in the
code where the button was created. Since this reaction is directly in the code
building the UI elements, the reaction can be, for example, the creation of more
nested Ul elements.

if (ImGui::Button("Click me"))
{

std::cout << "Button was clicked" << std::endl;
}

B Code 2.1 Example of an Dear ImGui button

2.2 DIWNE library

The purpose of the DIWNE library is to implement a node editor Ul component
and allow the user to structure regular Dear ImGui code into free-floating nodes,
essentially tiny windows, that can be dragged around and connected together
using pins to create a node graph. This interface allows the user to express
a wide range of concepts like operations in regular or matrix algebra in our
workspace. This interface is often used in more technical applications such
as Blender (shader and geometry nodes), Unreal Engine (application logic) or
Houdini (visual effects). Node editor of Blender and the existing I3T workspace
can be seen in Figure 2.1.

As mentioned, there are existing libraries for implementing a node editor
using Dear ImGui, which usually follow its immediate mode paradigm. Code
listing 2.2 contains an example of how a node is constructed in the third-party
library imgui-node-editor [9].

DIWNE library

v sequence

v eulerAngleY
07 00 07 00

07 00 07 0

v sequence

By tanslate
£ v sequence

v translate

B Figure 2.1 Node editor interface examples from Blender (left) and I3T (right).

© 0 N O 1 & Wi -

[y
o

ed: :BeginNode(uniqueld++);
ImGui: :Text("Node A");
ed: :BeginPin(uniqueId++, ed::PinKind::Input);
ImGui::Text("-> In");
ed::EndPin();
ImGui: :SamelLine();
ed::BeginPin(uniqueld++, ed::PinKind::Output);
ImGui::Text("Out —>");
ed::EndPin();
ed: :EndNode();

B Code 2.2 Example usage of the imgui-node-editor library [9]

In contrast, DIWNE uses an object-oriented design, much more similar to
what conventional retained mode GUI frameworks use, like Qt? or Java Swing®.
This was a design choice made by Jaroslav, and it is largely implied in the
name ,, Dear Imgui Wrapper Node Editor“, as in wrapping the immediate mode
Dear ImGui function calls into methods called by an overarching object-oriented
structure.

Nodes in DIWNE are represented as DIWNE: : Node class instances which can
use inheritance to create various node types. Pins of the node are separate
instances of the DIWNE: :Pin class which the node can create in its constructor.
Similarly, the links connecting them are using the DIWNE: : Link class. The con-
tent of the node is specified by implementing the content method, which con-
tains regular immediate mode Dear ImGui code. These classes are all subclasses

2https://www.qt.io/product /framework
3https://en.wikipedia.org/wiki/Swing_ (Java)

https://www.qt.io/product/framework
https://en.wikipedia.org/wiki/Swing_(Java)

10

© 00 ~NO 1 WN -

= e e
2 W NRO

The workspace

of a DiwneObject class which serves as the root of the inheritance hierarchy, viz.
class diagram in Figure 2.2.

This approach mirrors the retained mode approach in the general node editor
implementation while still benefiting from the immediate mode paradigm inside
the actual contents of the nodes and other editor elements. The idea is that
object-oriented design is generally more intuitive and better suited for complex
systems like a node editor. It also offers fine-grained control over the library,
as each object can be modified using inheritance.

class ExampleNode : public DIWNE::Node {

BasicNode(NodeEditor& editor) : DIWNE::Node(editor, "Node A") {
// Constructor intialization code
Node: :addInputPin("-> In");
Node: :addOutputPin("Qut —>"

}

void content() {
ImGui::Text(...); // Any ImGui code

}

}

// Initialization called once
editor.createNode<ExampleNode>();
// Drawing every frame
editor.draw();

B Code 2.3 Example DIWNE pseudocode®

This hybrid design obviously breaks the main pillars of the immediate mode
paradigm. Notably, state, in the form of various DiwneObject instances, needs
to be stored manually by the user. Code listing 2.3 shows a DIWNE code
example equivalent to the previous code listing 2.2. A node is defined in a new
separate class, and then an instance must be created and stored in some data
structure (in this case handled internally by a node editor instance).

The actual drawing and input handling of the node is handled in an immedi-
ate mode manner by repeatedly calling a draw method of the overarching node
editor object, which internally calls draw methods for each node. Inside the
draw methods, any state synchronization is kept to a minimum as the standard
Dear ImGui API is used.

Compared to the immediate approach, the setup and storage are more com-
plicated, but at any point, we have an object-oriented representation of the
editor that can be used as a data model itself. If the node editor is used only
to visually represent an existing node graph model, explicit state synchroniza-
tion of nodes and their connections does become necessary, but the structure
of the node editor’s graph is expected to be mostly static with only occasional
creations of new nodes, pins or links.

4This is just illustrative pseudocode of the desired API

Existing issues 11

On the other hand, if the underlying node graph model is itself object-
oriented, as in the case of the core I3T node logic implementation, each Ul node
can be associated with its logical equivalent, and synchronization becomes rather
simple and self-contained.

2.3 Existing issues

The sections above outline what the DIWNE library should be, rather than
what it really is. The example code in listing 2.3 is fictional pseudocode that
cannot be realized yet, as the library was never properly finished to function in
a stand-alone manner. The following sections outline the individual issues with
the current implementation’s codebase itself, as well as its usage.

2.3.1 Codebase

One of the main issues with the current DIWNE implementation is that the
DIWNE library itself was not written independently from the workspace imple-
mentation of I3T. Instead, much of the core functionality is implemented some-
where down the inheritance hierarchy tree inside specialized workspace classes
that, ideally, should only be concerned with I3T-related functionality and not
the inner workings of the node editor.

enable_shared_from_this «abstract» REnUTEa CEnUm e .
«abstract» Node #m_nodePosMode DrawModeNodePosition DiwneAction
DiwneObiES + topContent(): bool OnCursorPosition None
+ drawDiwne(DrawMode): bool Q_ + leftContent(): bool OnltsPosition FocusOnObject
+ initialize(): bool + middleContent(): bool InteractingContent
+ beforeBegin(): bool + rightContent(): bool NewLink
+ begin(): void + bottomContent(): bool «abstract» HoldNode
+ beforeContent(): bool +diwne Diwne HoldPin
+ content(): bool) -] — - " HoldLink
+ afterContent(): bool <} + mp_settingsDiwne: DIWNE::SettingsDiwne HoldWorkarea
+ end(): void + clear(): void DragN_ode
+ afterEnd(): bool «abstract» + getDiwneAction(): DiwneAction DragP_ln
+ updateSizes(): void Pin + getlastActivePin(): std::shared_ptr<T> Draglink
+ finalize(): bool + getlastActiveNode(): std::shared_ptr<T> DragWorkarea
+ popupContent(): void + processPin_Pre_ConnectlinkDiwne(): + processZoom(): bool TouchNode
+ processinteractions(): bool bool TouchPin
+ processDrag(): bool + processConnectionPrepared(): bool #m_helperLink TouchLink
+ processHold(): bool - +m diwneAction TouchWorkarea
+ processUnhold(): bool <} el - SelectionRectFull
+ processFocused(): bool Link SelectionRectTouch
+ processFocusedForinteraction... «Enumeration»
DrawMode + updateEndpoints(): void #m_diwneAction_previousFrame
+ updateControlPaints(): void
+m_drawMode JustDraw
Interacting ’

B Figure 2.2 Class diagram of the current architecture of the DIWNE library. The library is located in the Source»

DIWNE directory, see Figure 1.3 for the package overview.

12 The workspace

Figure 2.2 shows all classes inside of the Source» DIWNE directory which
form the library. They contain a small percentage of the fundamental imple-
mentation that is otherwise scattered elsewhere. They effectively serve as a mere
abstract interface, which would not be a problem if there actually were an in-
dependent concrete implementation. But this is not the case.

Workspace implementation

The bulk of the general node editor implementation is contained in various
workspace classes located in the Source» GUI» Elements» Nodes. Their imple-
mentation completes the essential functionality of the DIWNE library, which

should be moved back into the library itself.
«abstract» «abstract» «abstract» «abstract»
DIWNE::Diwne DIWNE::Node DIWNE::Link DIWNE::Pin
A A +m_linksToDraw A A

2 7

#m_link
«global»
WorkspaceDiwne WorkspaceNode o WorkspaceCorelink WorkspaceCorePin
+ 4
m_workspaceCoreNodes _#m_node 1
WorkspaceNodeWithCoreData ’
+g_wo|rkspaceDiwne Z} WorkspaceCorelnputPin
#m_endPin | N
WorkspaceWindow ’ {WorkspaceNodeWithCoreData\Mtlﬁns]‘—f\ 0..
+m_workspacelnputs
#m_startPin
WorkspaceCoreOutputPin

+m_workspaceOutputs 0..*

B Figure 2.3 Class diagram of the basic workspace classes and how they relate to the DIWNE library.

Diagram in Figure 2.3 shows how the four primary DIWNE classes are
used in the workspace implementation. Each of them is subclassed to create
a workspace variant. This design makes sense if the classes contained in the
DIWNE library itself were purely virtual interfaces and the workspace classes
served as their concrete implementations. Which is almost true, except that
some of the implementation is already contained in the DIWNE classes and the
workspace classes also additionally contain I3T specific code’. A particularly
large offender is the WorkspaceDiwne class, which implements essential node
editor features while also serving as the main workspace class.

5Also if it were true, the DIWNE library wouldn’t be much of a library at all.

Existing issues 13

The WorkspaceNodeWithCoreData class acts as the base node for all workspace
nodes, wrapping and managing an instance of a core logical node from the Source
» Core» Nodes package. This is the internal logical representation of the scene
graph that the workspace Ul layer represents. This is a deliberate design choice
that splits the user interface and the node graph data into two separate mod-
ules. More information about the core nodes can be found in a previous thesis
by Martin Herich [2, p. 30] as well as his more recent thesis about scripting in
I3T [8]. A partial class diagram of the core nodes is shown later in Figure 3.13
in Chapter 3.

The remaining classes do mostly implement DIWNE functionality and are
not particularly related to the workspace implementation. There are some de-
sign choices that are tied to the specific design of I3T that might be worth
revisiting.

The new design should extract the essential node editor functionality, making
most of the classes from the 2.3 diagram a part of the DIWNE implementation.
This has the benefit of making the DIWNE library usable in other applications,
making its code more concise, reducing the intermingling of responsibilities, and
letting the workspace classes focus on 13T specific functionality.

The existing code contains many duplicated code fragments or functionality
that should instead use polymorphism or regular functions. A notable example
would be numerous reimplementations of the method responsible for drawing
node headers, which workspace nodes use to change their color.

Virtual methods are widely used to allow the user to override essentially
any method and functionality of the library. The issue is that sometimes tiny
essential code fragments are moved into separate methods that the user would
realistically have no need to override. This, combined with often very confusing
method names, often makes code highly unreadable, since anyone inspecting it
needs to follow a chain of many unnecessary method calls.

The code lacks any substantial Doxygen documentation, and the few regular
comments inside the files are sparse and often don’t explain much in detail.
There is some external documentation that does dwell into the general principles
of the library a little further, as well as some additional description of some of
the classes, which should have been added to the code as Doxygen comments in
the first place.

Crucially, there is no guide describing the usage of the library nor any code
examples. The issue of lack of examples is mentioned by the author himself
and is complicated by the aforementioned fact that the library cannot really be
used as a stand-alone component, due to its dependency on the I3T application
code.

14 The workspace

2.3.2 Functionality and appearance

The workspace is in a fairly usable state as it fulfills all basic requirements and
has already been used in practice by students in the Graphics programming
class, but there are some major issues with the usability of the interface.

Focus issues

One fundamental issue is behaviour regarding the focus of elements and context-
aware restriction of inputs, like keystrokes, to a specific element in the node
editor. For instance, editing a text field and pressing [Ctrl]+[A] will not only
select all the text inside the text field, as expected, but will also select all nodes
in the node editor, which is not desirable. This is because the node editor
registers a global keystroke and has no knowledge about what is happening
within that frame.

The node with the text field does pass along information to the node editor
that something is occurring in it, but gives no indication of what that something
is, since it is only passing a single bool flag. This flag indicates some kind of
,interaction“, but that includes any interaction such as a mere mouse hover
over the node, which cannot be used to decide whether to block keystrokes to
the node editor or not.

Another example of this issue is the inability to pan the node editor when
the mouse is hovering over a node, due to the editor not knowing whether the
node is being interacted with in such a way that should prevent panning, so it
just doesn’t allow panning at all. Similarly, dragging of a node is only allowed
when the mouse grabs its header, as any elements in the node’s body would
block the drag operation, even when they themselves do not react to the input.

In other words, the node editor is missing some kind of an input propagation
system that would inform subsequent elements whether they shall interact with
input or not. The meaning of the passed along bool flag could be modified to fit
that purpose, but at the same time, we might want to retain information about
hovering or any visual changes to an element, or perhaps information about
other interactions that don’t prevent other elements from receiving input.

This is a very common concept in user interface frameworks called “event
bubbling” or “event propagation” [10, p. 463] which is, for example, used in
JavaScript, Qt or Java Swing.

Visual inconsistencies

There are issues with the colors and widths of new connection links. The width
of links seemingly changes at random, and their color sometimes does not cor-
respond with the starting pin.

There are some problematic cases when links are drawn over existing nodes
and then disappear again when a different node is focused. It might be desirable
to always draw links behind all nodes to avoid that, as many node editors
generally do.

New DIWNE library 15

The visual style of nodes is also somewhat unappealing, consisting of only
a brightly colored square with sharp corners and an icon within. Not corre-
sponding to the more polished style of nodes with rounded corners and edge
borders.

Pin icons have scaling issues when zooming (inconsistent widths, and pins
themselves cannot be made bigger to make creating connections easier, as that
would break the hardcoded layout system inside the WorkspaceNodeWithCore-
DataWithPins class. In rare cases, the layout system also encounters an issue
at smaller zoom levels causing the pins to ,, vibrate® side by side by one pixel.

Lack of UI menus and auxiliary elements

The workspace does have basic key shortcuts for selection, duplication and dele-
tion of elements. However, there are no corresponding Ul menu bar items, and
thus no indication of their existence.

Some useful quality-of-life features are missing, for instance some sort of
background grid that would indicate the movement of the editor’s infinite plane
or a ,,minimap”“ indicating the position of the current view relative to all the
nodes present in the editor. Without these improvements, the user can easily
get ., lost* in the editor when panning to an area that has no nodes present.

2.4 New DIWNE library

The following sections describe the new implementation of the DIWNE library
and are accompanied by Figure 2.4 showing all packages and classes of the new
DIWNE library implementation.

Core | Basic |

= + = + i
j S Elements | Iterators Rk
% + NodeEditor + BasicNodeWithPins

(— . . (- T . —
% + SettingsDiwne + DiwneObject + BidirectionalNodelterator + SequenceNodeContainer
+ Link + FilteredNodelterator
LEitee = +Node = FilteredNodeRange
Style
E + ConnectPinAction +Pin + FilteredRecursiveNodelterator o
= = .) + Style
E + DiwneAction Containers | + FilteredRecursiveNodeRange @ + StyleBase
E + DragNodeAction = + ForwardNodelterator .
. . + INodeContainer = + StyleOverride
E + EditorAction — + Nodelterator
) . + NodeContainer =
E + SelectionRectAction = +NodeRange Layout
pllcCERiopZone + RecursiveNodelterator +Di —_—
Input [+ RecursiveNodeRange wnerane
+ HStack
E + InputAdapter @ + Layout
E + NodeEditorinputAdapter + Stack
+ VStack

B Figure 2.4 Package diagram of the new DIWNE library located in the Source» DIWNE direc-
tory.

The workspace

2.4.1 Refactoring

One of the first steps in the new implementation was to do a major refactor of
the existing code. There were many confusingly named methods and variables
that used terms that didn’t have a well-defined meaning. This was an issue
primarily due to the lack of documentation. A noteworthy example would be
the use of terms , focus“ and ,focus for interaction“, the former meaning the
mouse is hovering over an element and the latter meaning the element is actually
focused by previously clicking on it.

There were countless issues with the previous implementation regarding code
being in places it shouldn’t be, violating the single-responsibility principle®. The
node editor class, formerly named Diwne, was a giant class that included a large
amount of code related to the drawing of icons and geometric primitives within
the node editor’s coordinate system. This code was moved into a separate
Canvas class. As well as all code relating to keeping track of the node editor’s
viewport position and transformation from screen space into local coordinates
of the “infinite canvas”. Methods that handle the node editor’s zoom function
were moved into Canvas as well.

The Diwne class, now named NodeEditor, also contained a large amount of
methods that acted as proxies for querying input from Dear ImGui (methods like
bypassIsItemClicked®, bypassIsMouseDown® and bypassIsMouseReleasedl).
These were moved into another separate class named NodeEditorInputAdapter

that inherits from a more general InputAdapter object. These provide an
interface and default implementation of various input queries, which can be
modified by subclassing the adapter to change input bindings, at least at compile
time. Input rebinding is not supported by I3T yet, but these classes would serve
as a good basis for it.

The GUI» Nodes directory has been moved into a new GUI» Workspace
directory that now contains all files related to the workspace node editor imple-
mentation. Most workspace nodes have been renamed to shorten their names
and the “Workspace” prefix has been replaced with a namespace.

2.4.2 New architecture

As discussed in Section 2.3.1, key node editor functionality has been extracted
from the workspace classes and moved into DIWNE, only the DiwneObject
remains abstract. A new class diagram comparable to the one from Figure 2.3
can be seen in Figure 2.5.

For simplicity, the separate input and output pin classes were removed. The
pin now has a boolean parameter, specifying whether it is an input pin or not.
Links are no longer managed individually by input pins, but instead are owned
by the node editor, just like nodes. Links now get destructed when disconnected,
as previously they were only hidden, because every input pin contained a link
instance, no matter if it was plugged in or not.

Shttps://en.wikipedia.org/wiki/Single-responsibility_principle

https://en.wikipedia.org/wiki/Single-responsibility_principle

New DIWNE library 17

DiwneAction]

InputAdapter < NodeEditorinputAdapter]/ Canvas

A

NodeContainer NodeEditor InteractionState
+m_activeAction
+diwne +state
v #m_owner «abstract» |T""""17 777 = Drawlnfo
DiwneObject «use»
INodeContainer
+m_links #m_startPin
+m_nodes

(
Node Link Pin
#m_node #m_endPin
0"* 0"*
1
A +m_inputs
|
BasicNodeWithPins +m_0ultputs

B Figure 2.5 Class diagram of the main classes of the new DIWNE library.

To extract the core functionality of the library from the workspace imple-
mentation whilst retaining a reasonable level of abstraction in the DIWNE base
classes, an intermediary , reference“ concrete implementation of the DIWNE: :
Node class was created in a new Basic folder. This implementation extracts
the layout and rendering code of I3T nodes, giving a basic implementation of
a general node that is not specific to only our workspace.

This new class named DIWNE::BasicNode separates the rectangular node
into a header at the top, and below a content area divided horizontally into
a left portion, filled with input pins, an auto-expanding centered content in the
middle, and a right portion housing output pins.

The layouting of content inside nodes is a rather difficult topic due to the
absence of any standard Ul layouting tools in Dear ImGui. The previous im-
plementation relied on hardcoded calculations of specific sizes on a case-to-case
basis, leading to very inconsistent results and cluttered code. A more general
solution is presented later in Section 2.4.8.

The NodeEditor is now a subclass of a generic NodeContainer class that
holds all the nodes within it. This is explained in Section 2.4.6.

2.4.3 Input propagation

To resolve the focus issues mentioned in Section 2.3.2, the draw method of
DiwneObjects must return multiple bool values, flags, that indicate different
types of interaction. The draw method is called by the node editor in a front-

18 The workspace

to-back fashion, meaning the topmost node has its draw method called first,
then the nodes below it. This allows us to use these flags as a sort of a filter,
once a particular flag is returned as true by an element in the foreground, other
nodes can query some , global“ state and adjust their behaviour accordingly.
This state then resets each frame.

This is essentially how the old implementation worked, but it only used
a single bool flag as the return type for each draw method. As can be seen
in code listing 2.4. It contains the DiwneObject: :drawMethod that calls many
individual frame “lifecycle” methods that derived objects can override. Each
one of these methods returns its own flag value that is then combined with
a logical OR operator into a single flag that ultimately represents the whole
object.

This approach works well with a single boolean value, but is rather difficult to
extend to return multiple boolean values. It requires each method that contains
any drawing code to define and return a new boolean value, and any method
calling it to merge it with its own boolean flag. If this boolean was replaced with
an object (a struct), the code might get somewhat confusing, and it would be
good to reduce the amount of required boilerplate anyway.

1 bool drawDiwne(DrawMode drawMode) { 1 void drawDiwne(DrawInfo& context,
2 bool flag = false; 2 DrawMode mode)

3 flag |= initializeDiwne(); 3 {

4 if (allowDrawing()) { 4 initializeDiwne(context);

5 flag |= beforeBeginDiwne(); 5 if (allowDrawing()) {

6 begin(); 6 beginDiwne(context);

7 flag |= beforeContentDiwne(); 7 content (context);

8 flag |= contentDiwne(); 8 endDiwne(context);

9 flag |= afterContentDiwne(); 9 afterDrawDiwne(context);

10 end(); 10 }

11 updateSizes(); 11 finalizeDiwne(context);

12 flag |= afterEndDiwne(); 12 }

13 flag |= processInteractionsDiwne();

) o B Code 2.5 New DiwneObject drawing
15 flag |= finalizeDiwne(); . - "

16 return flag; stages, its frame “lifecycle”.

17 }

B Code 2.4 Old DiwneObject drawing
code.

Instead, the new implementation in code listing 2.5 adds a single argu-
ment , context of type DrawInfo to each drawing method. This context ob-
ject is passed along by reference and accumulates changes automatically. To
avoid any confusion, it provides utility methods with descriptive names to ap-
ply changes to itself. The number of methods the DiwneObject draw method
is split into was also reduced, to improve code readability.

The structure of the DrawInfo object can be seen in code listing 2.6. It
defines several types of flags. The focus issues are resolved by discerning three
different types of interaction: purely visual, logical and input blocking. Ad-

1
2
3
4
5
6
7
8

(62 =GV \S]

New DIWNE library

ditionally, extra information is retained about the state of hover and popup
menus, which was previously kept in the global state of the node editor.

class DrawInfo {
unsigned short visualUpdates{0};
void visualUpdate();
unsigned short logicalUpdates{0};
void logicalUpdate(bool isVisualUpdateAsWell = true);
unsigned short inputConsumed{0};
inline void consumeInput() { inputConsumed++; }
unsigned short hoverConsumed{0};
inline void consumeHover() { hoverConsumed++; }
unsigned short popupOpened{0};
inline void popup() { popupOpened++; }

B Code 2.6 The DrawInfo struct

Since this object is passed to each method by reference, and then modified
inside that method, it is not simple to capture information about what specific
changes were made inside a particular draw method. If each method returned
a new instance of DrawInfo, the returned object would contain that information,
but the whole merging step would need to be done everywhere. Knowing this
immediate change is required, for example, when figuring out whether a partic-
ular node encountered a , logical® interaction causing it to be brought into the
foreground. But in most cases, knowing the change is not necessary.

To allow working out the change, each flag is stored as a number (a short
), and a helper class named ContextTracker can be used to store a copy
of a DrawInfo object before making a draw method call, and then compare
the number values of each flag to determine the change, stored in a separate
DrawInfo object that can be queried. This process can be seen in code listing 2.7
showing an alternative to the DiwneObject draw method that does capture and
return the immediate change.

DrawInfo DiwneObject::drawDiwneEx(DrawInfo& context, DrawMode
drawMode) {
ContextTracker tracker(context);
drawDiwne(context, drawMode);
return tracker.end(context);

}

B Code 2.7 Usage of the ContextTracker class to track changes of a DrawInfo
instance passed to a draw method.

2.4.4 Object lifecycle and input processing

As shown in code listing 2.5, each DiwneObject is drawn using the draw method.
This method is responsible for drawing the object as well as reacting to any user

19

20

The workspace

input as it is equivalent to the usual Dear ImGui draw methods. The method
is divided into several stages which can be overridden in derived objects:

initialize()
First method to be called every frame. Does not handle drawing.

begin()
First method to be called during object drawing. Can be used to initialize
drawing code. Dear ImGui’s “begin” calls can be placed here.
content()
Draws the main object content.
end()
Used to end content drawing. Dear ImGui’s “end” calls can be placed here.
updatelLayout()
This method is responsible for keeping track of the objects size. The method
is called by DIWNE right after the end () method in the internal endDiwne()
method.
processInteractions()

Method for reacting to user input after the object is fully drawn and its
dimensions are known. Called internally right before afterDraw(), but after
the internal processInteractionsDiwne method that performs the usual
input processing.

afterDraw()
Called last during drawing. At this point the size of the object should be
calculated by the updateLayout method and this method should be able to
work with it. Because of that the drawing code within shouldn’t affect the
objects size anymore.

finalize()
The final method to be called, gets called every frame and doesn’t do any
drawing.

When the allowDrawing method returns false, only the initialize and fi-

nalize methods are called. The internal processInteractionsDiwne method
is also divided into several methods that incrementally check whether a partic-
ular interaction is occurring:

processHoverDiwne()
Checks whether the object is currently hovered. This is usually done by
simply checking the m_internalHover flag that has been previously set in
the end method by calling ImGui::IsItemHovered() on the drawn content.
Hovering is often a prerequisite for further interactions. Triggers the onHover
callback method.

New DIWNE library 21

e processPressAndReleaseDiwne()
Determines whether the object is pressed or released. Being pressed means
that an input is activated over the object while it was hovered. Triggers the
onPressed and onReleased callback methods.

e processDragDiwne()

Processes whether a dragging operation with this object as source should
begin. The object must be first pressed and then moved by more than
the mouse drag threshold while still being pressed (but may be no longer
hovered). Only one drag operation can be active at a time. When active, the
onDrag callback is triggered with the dragStart and dragEnd parameters.
The callback is guaranteed to be called at least twice, with each parameter
set to true once.

What input triggers a particular interaction state can be modified by over-
riding specific “input trigger methods”. The objects react to the left mouse
button by default, but they can react to any input and even multiple inputs.
The input processing methods do not differentiate between multiple allowed
inputs. That must be done manually later.

2.4.5 Actions in DIWNE

While the DrawInfo object solves issues with input blocking within a single
frame, there are also interactions that span multiple frames and require a kind
of special ,,mode* of operation. These interactions are called actions and are, for
example, the act of dragging a selection rectangle in the node editor to select
multiple nodes, or the dragging of a new link connection from a pin. When
these actions are occurring, the elements of the node editor should ignore any
irrelevant inputs.

Previously, some kind of an action was always occurring, in the form of
a fixed global DiwneAction enum that considered even trivial interactions like
hovering or holding a key down over an element to be an action. The actions
were then further divided into what type of element (node, pin or link) was
performing the action, each action being a separate value of the action enum,
which can be seen in Figure 2.2.

Elements then queried this global action state in various parts of their code
with complicated if statements that checked if a particular enum value was set.
This system was further complicated by storing action types for the current
and previous frame, often reacting if an action occurred in the current or the
previous frame, to avoid any race conditions relating to some value being set
from an element drawn before or after an element reacting to it.

The new implementation removed this system and introduces a self-contained
DiwneAction object, that represents a special mode that other elements can re-
act to. An action contains a reference to a source element that initiated it and
is responsible for ending it. This usually corresponds to the beginning and end

22 The workspace

of a drag operation. The active DiwneAction resides in an InteractionState
member variable of a node editor. This is in principle an extension of the
DrawInfo context that is persistent across frames.

The interaction state also contains information about dragging, which is ini-
tiated when the mouse (by default, can be changed to another keystroke)
is pressed above an element and then dragged away while still being held down.
This causes the dragging flag of the InteractionState object to become true
and a source element of the dragging operation is also noted down, the onDrag()
method of the element is then called, which can be used to initiate an action.
The onDrag () method is then called throughout the dragging operation until it
ends, at which point it is also called with an argument notifying that the drag
has ended, and any initiated action should be ended.

The InteractionState object is always accessible by reference from the
DrawInfo context object, and contains similar helper methods for querying and
initiating actions. For a specific action, the DiwneAction object can be sub-
classed to create a specialized action which can store specific data relating to
the action.For instance, the action responsible for connecting pins has a subclass
named ConnectPinAction that stores a reference to the currently dragged link
and the pin it originates from. Other pins can check if the ConnectPinAction’
is currently active and connect themselves to the dragged link if the dragging
operation happened to end above them. Example usage is shown in code list-
ing 2.10. The outlines of the DiwneAction and InteractionState classes can
be seen in code listings 2.8 and 2.9.

Specialized action objects can also override an DiwneAction: :onEnd() method
that gets called at the end of the frame they ended in to perform any cleanup
(like destroying an unconnected link). The action instance is only cleared at
the end of the frame to avoid race conditions where data of an action was al-
ready deallocated when it was stopped in an element drawn before another one
wanting to react to it.

1 struct DiwneAction { 1 class InteractionState {
2 std::string name; 2 std::unique ptr<DiwneAction> action;
3 std::weak ptr<DiwneObject> source; 3
4 bool endActionThisFrame{false}; 4 . action related helper methods ...
5 5
6 virtual void onEnd(){}; 6 bool dragging{false};
74 7 bool dragEnd{false};
8 std::weak ptr<DiwneObject> dragSource;
B Code 2.8 Outline of the DiwneAction 9 1}

object. B Code 2.9 Outline of the InteractionState

object.

"Each action has an id (name) that can be queried.

© 0 ~NO s WN

New DIWNE library

23

// DrawInfo& context is passed as an argument, state is an instance of InteractionState
// Start an action
auto connectPinAction = context.state.setAction<Actions::ConnectPinAction>(m_labelDiwne);

// Try to retrieve an action (will be null if not)
auto connectPinAction = context.state.getAction<Actions::ConnectPinAction>();

// End the active action
context.state.clearAction();

B Code 2.10 Example of initiating, querying and ending the connect pins action.

2.4.6 Node containers

At the heart of DIWNE is the idea of nodes containing other nodes. This was
cited as one of the reasons a custom node editor implementation was chosen in
the first place [6, p. 92]. When a node is inserted into a sequence, it is removed
from the NodeEditor’s list of nodes and moved into the internal list of the
sequence, which becomes responsible for drawing the node inside of it.

In many cases, it is required to iterate over all nodes in the editor, includ-
ing inner nodes and potentially the inner nodes of inner nodes®. The original
DIWNE implementation used hardcoded if statements to specifically check for
nested nodes inside cameras and sequences.

The new implementation generalizes this concept to all nodes using “node
containers”. A node container is a DiwneObject implementing the INodeCon-
tainer interface that exposes methods to query which nodes reside inside of
it. This is truly only an interface and a basic implementation of the storage
and management of nodes is provided by the NodeContainer class which any
DiwneObject can inherit from using multiple inheritance and gain the ability to
hold child nodes.

A DiwneObject can implement the INodeContainer interface directly and
provide its own node storage, but this is generally not recommended. Or it
can delegate the child node queries to an existing NodeContainer instance that
is held as a member variable. The NodeEditor class itself is an instance of
NodeContainer. The Sequence node only implements the INodeContainer in-
terface and delegates its calls to an internal NodeDropZone object. This object
is a Ul component into which nodes can be dragged and dropped, extracting
the functionality originally implemented only by the Sequence node. The se-
quence now uses a customized SequenceDropZone that is modified to only accept
transformation nodes. The NodeDropZone is a new component of the DIWNE
library into which any node can be placed, including ones with another drop
zone, allowing infinite nesting of child nodes.

The NodeDropZone is a DiwneObject that is meant to be used as part of
a Node, not on its own. For the DIWNE library example, the SequenceN-

8The camera, for example, contains sequences that contain transformations

The workspace

odeContainer node was added to the DIWNE)» Basic package to showcase its
functionality.

2.4.7 Node iterators

As mentioned in the previous section, it is quite common that for one reason
or another, the nodes of the node editor need to be queried from the outside.
Often only a particular subset of nodes is needed. Sometimes nested child nodes
should be included, sometimes not. Quite a common query is to, for example,
fetch all model nodes in the editor when processing scene view selection or
finding models that should be tracked (viz. Chapter 3).

In the old implementation, such queries were satisfied by methods that iter-
ated over the editor’s node list, allocating and constructing a new temporary list
that is then returned and eventually discarded. When child nodes were to be
included, special checks were added to detect sequence nodes, and additionally
also iterate over their list of child nodes.

These special checks are eliminated with the use of the INodeContainer
interface from the previous section. Only a single check whether a node is or
is not a node container is sufficient, and all nodes within, no matter the derived
node type, can be retrieved using the INodeContainer: :getNodes method.

Question however remains, what should this method return? To avoid the
need to constantly create new temporary lists, a better solution is to use the well-
established concept of iterators. As it is intended for DIWNE to be eventually
released as a Dear ImGui library, it was decided to target an older version of
C++ like C++411, which does not support C++20 Iterator Concepts, so the
“legacy” iterators are used”.

They are implemented in the DIWNE» Iterators package'’ (see Figure 2.4).
In order to implement common iterator functionality without resorting to using
virtual methods, the curiously recurring template pattern'' is used to achieve
compile-time polymorphism. The INodeContainer::getNodes method returns
a NodeRange object. This is a wrapper around a simple NodeIterator, which
enables iteration over an std: :vector of nodes. The RecursiveNodeRange and
iterator can be used to iterate over all nodes, including all nested child nodes.
This iterator detects nodes that implement the INodeContainer interface, and
steps into their child nodes as if it were traversing a tree. Furthermore, the
“filtered” variants of these node ranges can be used to filter the results to only
return nodes that fulfill a particular predicate. The recursive node range also
takes an optional predicate that decides which nodes the iterator will dive into.

9See https://en.cppreference.com/w/cpp/iterator.
1ONot a package, but the diwne_ iterators.h file.
1 See https://en.cppreference.com/w/cpp/language/crtp.

https://en.cppreference.com/w/cpp/iterator
https://en.cppreference.com/w/cpp/language/crtp

New DIWNE library

2.4.8 Layouting

One of the major challenges that the new DIWNE library must resolve is the
matter of Ul layouts. Specifically, the ability to center content in nodes, right-
align pins to the right edge, and right-align buttons and icons in the headers of
nodes. Due to how Dear ImGui operates, everything is left-aligned by default,
and aligning Ul elements requires manual calculations of the remaining space.
That often requires assumptions about the content.

This is a very inflexible and bug-prone approach. Dear ImGui does offer
some capacity to right-align content, but only within ImGui windows, which
the DIWNE nodes aren’t, as that would incur significant overhead. A glimpse
of hope is the “stack layout” implementation from the creator of the imgui-
node-editor library [11]. But upon further inspection, it does not quite fit the
required use case and doesn’t work well within the DIWNE canvas environment,
which does not guarantee integer coordinates, which is something Dear ImGui
struggles with.

In the end, a custom solution has been developed in the form of the Di-
wnePanel class. This is an independent object that represents a rectangular
area, in which “springs” can be placed, which occupy a portion of extra unused
space.

The functioning principle is quite simple: the total non-overlapping width
and height of all “fixed” elements is summed up during Ul construction. After
that, a layout manager sets the desired width and height of the panel. Then,
the fixed dimensions are compared to the adjusted dimensions to calculate extra
space in each axis. Next frame, this extra space is divided up proportionately
among the springs, which are freely placed between items (but they must not
overlap).

Since springs cannot overlap in the same axis, to achieve several rows of
right-aligned items, like is the desired layout for pins on the right side of a node,
several DiwnePanels can be arranged in a vertical stack. Each panel begins with
a spring that takes up 100% of the available space. The Stack layout manager
has been added to arrange panels in such a way. Its use in the right pin rendering
code can be seen in code listing 2.11.

25

1 m_vStack.begin();

2 for (auto const& pin : m_rightPins) {

3 if (pin—>allowDrawing()) {

4 DIWNE: :DiwnePanel* row = m_vStack.beginRow();
5 row->spring(1.0f);

6 pin->drawDiwne(context);

7 m_vStack.endRow() ;

8 }

9 1}

10 m_vStack.end();

Bl Code 2.11 A code snippet of the right aligned pin layouting code.

Although this system comes with an inherent delay of one frame, it does
work quite nicely. To account for inaccuracies in the size measurements as well

The workspace

as general floating point inaccuracies, a damping system is added that prevents
the springs from changing size below a certain threshold. Since the dimensions
of the fixed portion of the panel are recorded, instead of the spring size, there
should never be a feedback loop causing the springs to expand indefinitely.
Occasional issues with pixel oscillations have been observed, but much less often
than before.

DiwnePanels can be nested within each other without any special handling.
The BasicNode implementation uses diwne panels for each of its parts: the
header, left panel, center panel, right panel and “middle” panel that centers the
“center” panel between the left and right panels. The right panel then contains
individual pin panels that right-align the pins with the right edge of the node.

2.5 Workspace improvements

The structure of the workspace implementation from Figure 2.3 has largely
been retained, but the classes now rely more heavily on the underlying DIWNE
classes, narrowing their focus to I3T. As can be seen in the original architec-
ture overview in Figure 1.3, the individual workspace nodes are implemented in
specific subclasses of the original WorkspaceNodeWithCoreDataWithPins (now
renamed to CoreNodeWithPins). Figure 2.6 shows a comparison of the old and
new sequence and model node designs.

Armed with the new DIWNE library, all of these nodes benefit from the im-
provements to the input propagation system that has resolved focus issues when
interacting with UI elements nested within the nodes (Previously described in
Section 2.3.2).

The restriction that nodes could only be dragged by their header was lifted,
allowing nodes to be dragged from any part of their body, as long as the drag
operation isn’t first captured by a number input field, for example. This makes
it much easier to drag nodes around or to access their context menu, which can
also now be triggered by right-clicking its body, again, assuming a child element
doesn’t capture the “event” first.

The dragging operation can be disabled for a particular object in a partic-
ular area by overriding the additional user specified interaction condition. For
dragging, that is the DiwneObject::allowDragStart method.

An issue with nodes “shifting” around during the dragging operation has
been resolved, as well as various issues stemming from the old “action” system
that caused the node editor to freeze when a node was dragged outside of the
window.

The node selection system, which now allows shrinking of the selection with
the selection rectangle when is held. The logic determining which nodes
are dragged when multiple are selected has been improved to take child nodes
into account, preventing extraction of nodes out of sequences when they are not
the directly dragged node.

Workspace improvements 27

v eulerAngleY o eulerAngleY

*00
078 0.0 BOSAN 0.0
00 10 00 00
07 0.0 QO 0.0
00 00 00 1.0

v sequence

sequence sequence
v model

v eulerAngleY B-L.m o eulerAngleY
»-

0.7 0.7 (S 0.7 (0.7

-0.7 0.7 0.7 (0.7

B Figure 2.6 Comparison of the old and new sequence and model node design. Both light and dark modes.

2.5.1 Iterative design process

With the DIWNE rework finished and merged back into the development branch
of I3T. Work could begin on further improving the existing workspace imple-
mentation. As mentioned in Section 1.3.1, concurrently to this thesis, Barbora
Halova has been working on the user research and UX review of the applica-
tion [7]. Her assignment was to explore and test design changes that would
improve the usability of 13T.

This presented a good opportunity for close collaboration between our work,
as designs she created could be implemented as part of this thesis, and then
tested in the application itself. Avoiding the need for mockup testing. On the
other hand, this thesis can focus on the implementation itself and quickly receive
feedback.

The first round of testing was performed before the initial new implemen-
tation of the DIWNE library was finished and was performed using a paper
mockup. The testing focused on the ways transformations are inserted into se-
quences, context menu layout and connection options for the camera and screen
node.

The new designs were then implemented for the second round of testing,
which focused on new pin styles and new display mode icons.

The third round of testing further tested changes that were made in response
to the second round. But the focus of the test scenes was the new “tracking”
functionality which Chapter 3 of this thesis is about. This wasn’'t a problem

The workspace

as most of the relevant functionality to be tested was not tied to a specific scene.

As there were many individual changes, and some of the major ones are
thoroughly described in the thesis by Barbora, including their rationale and
detailed descriptions of the testing procedures and results, the following section
will mainly summarize some of the key design changes that were implemented,
together with a brief overview of their implementation.

2.5.2 Notable design changes

Pin design For a long time, there has been an issue with the pin layout and
design. The pins were too small, and there have been issues with their spacing,
right alignment and label centering. The new DiwnePanel layouts were used to
implement a new pin design, ensuring that they are laid out correctly at any
pin size.

The visual design has been changed as well, experimenting with four distinct
pin styles:

1. Square - The original square pins, but with better hover indicators and
rounded corners.

2. Socket - Inspired by the Unity’s Shader Graph plugin'?, socket pins are
unfilled circles with a shaded background. When hovered or plugged in,
a filled inner circle appears to signify the link connection. This style works
best with transparent node backgrounds and with the pins fully inside of
the node.

3. Square Socket - Same as the socket, but using an unfilled square and a filled
rounded inner square.

4. Circle - A very simple style of a filled circle with a dark border. Meant to
be placed at the node boundary, sticking out of the node. This is the pin
style used by Blender'®.

In the end, it was decided to use the square style for pins representing
operations, like the matrix multiplication or cycle node “pulses”. While the data
pins use the socket pin style. This creates a nice visual distinction between the
two, as students often confuse the matrix data pins with matrix multiplication
pins.

To further differentiate the matrix multiplication pin, it has been vertically
centered in the sequence node. This is done using two springs of the DiwnePanel
layout class from Section 2.4.8.

The square socket has been used for the special second “model” matrix data
output of the sequence node, which outputs a chain of transformations from the
scene graph root up to the sequence itself. Tooltips were also added to various
pins in order to clarify their function.

2https:/ /unity.com/
3https://blender.org/

https://unity.com/
https://blender.org/

Workspace improvements

As a new feature, pins support being “offset” outside of the node, placing
them over the edge of the node. This required some major adjustments as DI-
WNE has always assumed that the contents of a DiwneObject always remain
inside of its rectangle.

During the second round of testing, users were presented with combinations
of various styles. Settling on the one described above and shown in Figure 2.6.

Pin drag assist Even though pins were made bigger before the second round
of testing to ease the creation of link connections, users were still often strug-
gling. Despite the pins reaching a size that could no longer be reasonably
increased. To improve the situation, pins were extended to cover the horizontal
gaps between two pins to prevent situations where the node is grabbed instead
by this tiny gap.

Furthermore, the spacings around pins were increased, and it was made
possible to drag pins not just from the pin icon itself, but from its label as well.
This has improved the situation somewhat, but during the third testing round,
users still reported that they had occasional issues with dragging the correct
pin, especially when moving the mouse quickly.

One user suggested implementing a feature from Blender that allows nodes
to be connected by holding and dragging from one node to another. This
creates a connection from the first available output to the first available input.
This is a nice feature, but it is unlikely to help resolve the issue as it cannot be
used to connect specific pins and requires a modifier key to be pressed.

Instead, the pin drag assist was introduced. This feature makes every node
with pins periodically check the distance of the mouse to its nearest pin. When
this distance crosses a threshold, a special flag is set on the pin’s DiwneObject
which forces the processHoverDiwne method to trigger the hover state, even
though the hover checks fail. This allows a subsequent drag operation to start
on the pin, creating circular “drag assist” zones around pins. This makes it
much easier to start a connection. Making a connection still requires the mouse
to hover directly over the target pin, but that might be implemented in a similar
way in the future.

Unfortunately, the pin drag assist has not been tested with users due to time
constraints, but it does look very promising.

Pin hover backgrounds and hover indicators During the extension of
pins to allow dragging over a larger area that includes the label. Pins were
made to render a dark rectangle below them when hovered, to make it easier
to recognize when a pin is hovered. This required more adjustments to the
pin layout and spacings, to ensure that the object rectangles of pins were truly
symmetrical with even spacings.

The pin icon is also made brighter, and the square pin style grows in size
a little bit on hover.

The workspace

Link reconnecting In the previous implementation, links could be unplugged
by clicking the input pin, by selecting the link and deleting it with a shortcut, or
opening its context menu and selecting “delete”. Link selection is problematic
as it does not react to the selection rectangle, which is only meant to select
nodes. Many node editors in other applications do not support link selection at
all, and for simplicity, it has been removed.

Links can now be unplugged by simply dragging the pin to which its end
is connected. This unplugs the link and makes its end follow the mouse again.
Releasing the mouse deletes the link, but it can also be re-plugged into another
pin, which avoids the need to drag the link the entire way from the start pin,
which may be far away just to plug it again into a nearby node.

DPI-aware Ul scaling The entire application has been made DPI-aware.
Meaning the user interface scales itself to be larger on monitors with high pixel
density, like laptops. This was a matter of replacing all sizes defined in absolute
pixel values with sizes relative to a Ul scaling factor itself, or the font size, for
example.

The retrieval of the Ul scaling factor itself is already handled by Dear ImGui,
by querying the state of the GLFW'* platform windows.

Both I3T and DIWNE use a styling system in which variables can be fetched
using global enum keys. Not all of the variables are meant to be scaled by
the Ul scaling factor, so changes had to be made to include that information.
DIWNE already uses a scaling factor in a very similar manner to implement
its zooming functionality, so implementing the scaling factor in it was a rather
simple matter in principle. Making sure that all parts of the old code take
UT scaling into account was the hard part.

Background grid A background grid has been added to aid with navigation
inside of the node editor. It can be toggled on and off in the view menu of
the top menu bar. A grid of dots is shown by default instead of lines, which
is a common modern design used in node editors. A grid of faint dots still
provides clues about the relative movement and position of the node editor’s
viewport, while being less distracting. The inspiration for this design came from
Blender and the node editor of Embergen'®.

Node icons and context menu button Using the new layout system, it
is easy to right align content in the node header. Allowing the realization of
Barbora’s design that adds a button to the top-right corner of particular nodes
that contains a burger menu icon, opening the context menu on click. This was
done to ensure that users are aware that nodes have hidden options in their
context menus.

Only some notable nodes have this button, as making every operator and
transformation node have it would introduce a lot of visual clutter. Although

M GLFW is a C++ utility library for handling windows, OpenGL context and inputs.
15Volumetric simulation software https://jangafx.com/software/embergen

https://jangafx.com/software/embergen

Workspace improvements

some users noted that it is confusing that some nodes lack the button, but still
have a context menu. Ultimately, the button serves its purpose of making users
aware there are context menus in the first place.

The node header right align is also used to place the matrix validity icon
in the top right corner, as well as the tracking and reference frame indicators
introduced later in Chapter 3.

The top left corner of all nodes contains a “display mode” button, that
usually shows an arrow that can be used to collapse and expand the node. This
arrow used to be a letter, but now uses a proper icon font. The icons of nodes
with more than two states have been changed for a set of three dots, which was
a design proposal by Barbora [7].

Sequence drop zone In order to clearly indicate that transformation nodes
can be dragged and placed into sequences. The DIWNE: :NodeDropZone compo-
nent has been made to have a slightly visible background, denoting the area
into which nodes can be dragged. Since this is an absolutely key feature of 13T,
a clearly visible label indicating that transformation nodes are to be placed here
is displayed when the sequence is empty.

This was originally implemented as it was the easiest solution for the time
being. Alternative designs by Barbora proposed a few kinds of clickable icons
instead, but during the first round of paper mockup testing, users agreed that
a simple text label is sufficiently clear.

32

The workspace

Chapter 3

Tracking

This chapter expands on the established concept of “tracking” inside I3T, which
is a feature that visualizes the gradual application of individual transformations
inside sequences onto a model, or, in the other direction, the progressive changes
each transformation applies to the basis vectors of a vector space. Essentially,
instead of viewing the final effect of a single composite matrix on a model,
the piecewise effects of each transformation are shown, accumulating into an
interpolated matrix by multiplying each matrix along the chain from the left,
or from the right.

This feature, available in I3T from its very inception [1, p. 40] visualizes
the transformation of loaded model vertices' into their desired position in world
space. But when viewing the world in a 3D application, that is not quite the
full story, as what follows are transformations of the “imaginary” camera, which
then transform the world space models into their final position on the screen.
This entire journey vertices undertake in the graphics pipeline is captured in
Figure 3.1 and notably the current tracking implementation only operates within
the “model” matrix shown in the figure, that transforms vertices from the model
local space to their world space position.

The remaining transformations, that transform world space vertices into
a form that is eventually rasterized and displayed on the screen, are all repre-
sented in I3T by a camera node. This node is implicitly connected to the left
matrix multiplication pin of all sequences that would be otherwise disconnected,
placing the camera at the left end of every transformation chain. This connec-
tion is however purely visual and cannot be modified by the user, indicating
that every model in the scene can be seen by the camera.

The camera contains two child sequences inside of it, which are used to
specify the matrices of the view matrix and projection matrix transformations.
These matrices are used to determine its position in the world and to also
display the camera’s camera frustum. Its primary output is a screen pin, which
can be connected to a screen node, that will display what the scene looks like,

1The local space of the model

33

34

Tracking

;
k’ MODGEL MATRIX o WIEW MATRIX
—— —
1. LOCAL SPACE 2. WORLD SPACE
T i
| i
| |
| |
i |
| |
BN |
__________) T -
: VIEWPORT TRANSFORM
! PROJECTION MATRIX i
3. VIEW SPACE 4. CLIP SPACE 5. SCREEN SPACE

B Figure 3.1 Sequence of OpenGL coordinate systems that model vertices go through
before they can be rasterized on the screen. Image sourced from LearnOpenGL [12].

if rendered using the camera’s current view and projection matrices. A basic
scene containing a camera and displaying what that camera can see in a screen
node can be seen in Figure 3.2.

Tracking can begin in any regular sequence, but despite the camera being
connected to every sequence, the sequences inside of it cannot be tracked, which
prompts the entire premise of this chapter, and the realization of the second goal
of this thesis: extending the concept of tracking to include the camera,
bridging the existing gap between world and screen space coordinates and using
the existing tracking mechanism to progressively visualize the effects of the view,
projection and viewport transformations.

This can prove quite useful as beginning with the projection transforma-
tion, what truly happens is often perceived by students as a somewhat abstract
process, mainly due to the nature of the perspective projection transforma-
tion, which is not an affine transformation like most others, and uses the ar-
guably non-intuitive’ homogeneous coordinates to achieve a non-linear mapping
of space.

A lot of these key concepts, like the perspective divide, primitive clipping
as well as viewport mapping are performed opaquely as part of OpenGL’s fixed
function vertex post-processing pipeline [13, p. 441], which makes learning or
imagining these concepts more difficult.

The goal of I3T has largely been to visualize complex and hard to imagine
concepts in a visual and interactive manner, yet these very important concepts
of the camera are still hidden and performed under the hood inside of the camera
node. The need for such visualization has even been noted in the discussion of
the original thesis by Michal Folta in which 13T was created [1, p. 60].

?read — four dimensional

Analysis 35

B Figure 3.2 Camera viewing a simple scene inside of old I3T.

3.1 Analysis

The following sections will analyse how this could be achieved, starting with
a more detailed description of the current tracking mechanism, as it needs to be
reviewed and prepared for further extension. This has largely been made easier
now that the I3T workspace user interface has been reworked in Chapter 2.

3.1.1 Standard tracking

As stated, tracking can be used to view the effects of each individual matrix
along a chain of transformations. This is a very clear visualization of what
role each transformation fulfills. The entire tracking operation spans a chain of
transformations from some beginning sequence up to the root of the connected
sequence graph, ending at the first sequence with an unplugged matrix multipli-
cation input. The root sequence can have more than one matrix multiplication
output connection, serving as a root for many different sequences, but tracking
always works with a linear chain, a path of sequences from the root sequence to
the one that tracking was started from (the begin sequence).

To indicate tracking progress along the path, a cursor is shown in the
workspace as a thick yellow vertical line that moves horizontally across trans-
formation nodes inside sequences on the chain. As the chain is always linear,
there is always just one cursor.

The cursor splits the chain into the active and inactive sections. In right-
to-left tracking, transformations to the left of the cursor are ignored. Transfor-
mations to the right of the cursor are multiplied together (accumulated) and
then multiplied from the left with the transformation the cursor is currently in-
side of. But before doing so, this transformation is first interpolated depending
on the progress of the cursor within it. This is done with simple element-wise
linear interpolation between an identity matrix and the matrix of the trans-
formation. Or, in case it is known the transformation represents a rotation,

36 Tracking

B Figure 3.3 Example of tracking across multiple sequences in the old I3T. It was started from the
right of sequence seq2 and creates a chain of matrices from that sequence up to the root sequence
seql, displaying the effects on model m1.

the top left rotation matrix is converted to a quaternion and interpolated using
spherical linear interpolation, to ensure the basis vectors remain orthonormal
and interpolation looks natural®.

As an example, consider the situation shown in Figure 3.3. Right-to-left
tracking has been started on sequence seq2 and the cursor is located halfway
inside the tI translate transformation. As tracking began in seq2, only model
m1 is being tracked. The entire transformation chain consists of 4 matrices:

R181T1R2 (31)

which together form the model matrix of the model m1. During tracking, a copy
of the model is created and only the Ry and T; matrices are applied to it.
Furthermore, since the cursor is only halfway through Ty, the final interpolated
matrix applied to the tracked model is %Tle.

Tracking progress can be controlled by the user by using arrow keys to move
the cursor freely to either end of the transformation chain and in any direction.
In this case, the active part of the chain will always be to the right of the cursor.

Tracking can also be started “from the left” (left-to-right), which would
change the situation in Figure 3.3 so that the resulting interpolated matrix
would be RlsléTl. The difference being that the matrices along the chain are
accumulated from the left instead, which changes the interpretation of how the
transformations are progressively combined together to achieve the final trans-
formation, which in either case is the same. It can be thought of as two ways
to insert parentheses around matrix multiplications in equation 3.1, applying

3In this case, the translation part of the matrix is interpolated separately using linear
interpolation, and the last row is ignored.

Analysis 37

multiplication always from the left or right, giving different intermediary results
but the same final matrix, as can be seen in equation 3.2:

((R181)T1)R2) = (R1(S1(T1R2))) (3.2)

Figure 3.4 compares the two modes: in the first, the cube is translated and
then rotated around the world origin. In the other, the rotation is applied first,
and then the entire vector space is translated along its local x axis. Each mode
reaches the same destination, but the imaginary path the model takes to get
there is different.

Note that the direction the cursor is moving in during the actual tracking
operation just changes progress along this path, right-to-left or left-to-right
tracking does not refer to the movement of the cursor, but rather to the side of
the chain which is being accumulated.

v sequence

B Figure 3.4 Example of tracking a pair of translation and rotation transformations from the left
and from the right in the old I3T.

3.1.2 Camera tracking

Extending tracking beyond world space is, in principle, a simple task. What
occurs inside of a camera with a standard “look at” transformation as the view
matrix, and an orthographic projection can easily be visualized using the ex-
isting tracking mechanism of I3T, by adding these transformations not to the
camera node, but into a standard sequence like any other world space transfor-
mation and connecting it to an existing transformation chain from the left.

Taking the transformation chain from equation 3.1 (denoted as M), we can
expand it with a view matrix V and projection matrix P to get:

PV - R;S;T;R, = PVM (3.3)

38 Tracking

This allows us to track through the entire PVM* matrix representing trans-
formation from local model space all the way to clip space, which is equiva-
lent to normalized device coordinates when using a simple orthographic pro-
jection, placing the model vertices right before the viewport transformation in
Figure 3.1.

Putting all of this together, a custom scene can be created in I3T to demon-
strate this concept first using orthographic projection. The view matrix can
be interpolated like any other affine transformation, placing models within the
bounds of the viewing volume, positioning the camera at the world origin, and
the orthographic projection is affine as well and can be trivially interpolated®.

Such a scene can be seen in Figure 3.5, where a single model of a larger
scene is tracked to the normalized device coordinates, transforming the cuboid
orthographic frustum into a unit cube around the world origin.

B Figure 3.5 Proof of concept visualization of orthographic projection inside of the
old I3T using standard tracking. The elongated rectangular cuboid viewing volume
is transformed into the NDC “cube”, note that depth values are transformed linearly,
preserving the repeating checker pattern.

This proof of concept has some issues. The camera frustums visible in the
figure are manually placed in their respective positions, as only the camera
node is able to visualize them. For the same reason, the frustum itself is not
animated.

4The well known projection-view-model matrix commonly passed to or computed in
OpenGL shaders.
5Using element-wise linear interpolation, as it does not contain a rotation.

Analysis 39

Another major issue is that the real OpenGL orthographic projection (for-
mulated in Figure 3.6b) transforms points into a left-handed coordinate system
that has the Z axis inverted, but the I3T world is right-handed and cameras
view it along the negative Z axis. This means that if the orthographic matrix
is left unmodified (i.e. the orthographic transformation node is used), the trans-
formation physically flips the entire frustum along the Z axis during its gradual
tracking and the resulting NDC space is inverted on the X axis. The world X
axis also does not correspond to the NDC space anymore, as the world the NDC
is displayed in is still right-handed.

This means that special handling is required if the visualization is to be clear
and concise. It is a good idea to also modify the orthographic matrix, preventing
the Z flip as it distracts from the main concept of reshaping the frustum into
the NDC “cube”. A simple solution is to apply a “negation” matrix from the left
that flips the sign of the third row of the orthographic matrix, and add another
stage of interpolation that performs the Z flip.

Despite those problems, the concept works, and the entire transformation
can be viewed as an animation. The viewport transformation can further be
added to the left of this chain by manually constructing a matrix emulating the
transformation OpenGL does as part of its fixed function pipeline [13, p. 441].
Such a matrix can be seen in Figure 3.6a.

50 0 @t ril 0 0 —:J_ri r2_nl 0 :fﬁ 0

00 f;n fi—;n 0 0 f_—2n _ﬁi_z 0 0 _ij—LZ _fQinn

0 0 0 1 0 0 0 1 0 0 -1 0
(a) Viewport (b) Orthographic (c) Perspective

B Figure 3.6 (a) A transformation matrix equivalent to the default OpenGL viewport transformation [13,
p. 458]. (b) The usual OpenGL orthographic projection matrix [14, p. 153]. (¢) The usual OpenGL perspective
projection matrix [14, p. 143].°

The process described above clearly calls for a solution that handles these
issues automatically, without the need for a specialized node setup in a custom
scene. The camera node is the perfect fit for this as it is already separated into
two sequences for the view and projection transformation and has control over
them. It can even be expanded with a third sequence for the viewport transfor-
mation, which could be populated with a new viewport transformation node,

5The projection matrices are equivalent to what is generated by the OpenGL Mathemat-
ics (GLM) library in its default configuration. These matrices can have variations as they
are not explicitly defined by the OpenGL standard.

Tracking

that can use the established “set values” mode to accept the same parameters
as the OpenGL’s glViewport API calls.

Tracking can be expanded to be aware of which type of transformation it
is currently interpolating over and thus the coordinate system the user is view-
ing. Using this knowledge, the 3D scene view can take measures to display the
particular coordinate system correctly, physically switching into another coordi-
nate system or merely emulating a different coordinate system using additional
visual indicators.

3.1.3 Perspective projection visualization

One key aspect is still not addressed: how to visualize the perspective projection.
Various educational materials describing the perspective projection are often
accompanied by some sort of visualization, which typically consists of a static
image displaying the shape of the projection frustum’ prior to applying the
transformation in view space, or the bounds of the resulting normalized device
coordinates space®. Rarely are the effects of the transformation displayed on
non-trivial geometry within the frustum itself. It is even harder to find an
animation showing such an effect.

Displaying the perspective transformation in an interactive manner in a scene
consisting of regular textured models is a good visualization of the non-linear
effect it has on the depth values of the geometry, which is a concept that many
students struggle to understand. Such a visualization offers a more intuitive in-
sight, compared to, for example, showing the depth value relationship in a graph.

An example of such a visualization that this chapter is aiming to achieve can
be seen in a video by Josh’s channel on YouTube [16], which served as a ma-
jor inspiration for exploring the entire topic of camera tracking within I3T.
A screenshot from the video can be seen in Figure 3.7, which shows the render-
ing output of a camera viewing a room in a 3D game on the left”. On the right,
a visualization of the NDC space that produced such a rendering can be seen,
displaying the heavy distortion of world geometry that produces the perspective
effect.

The right side of Figure 3.7 is exactly what has been done above with ortho-
graphic projection in Figure 3.5. Achieving this effect in I3T would effectively
allow the user to “zoom out” of a resulting perspective image and view the NDC
space with a second independent camera, which is exactly what I3T does in the
example above.

The user-controlled camera which displays the scene view in I3T does in
reality add two more matrices to the left end of any transformation chain inside
of the workspace, like the one presented in equation 3.3. This is a somewhat
obvious fact that is not worth mentioning when working with “world space”

7A quadrilateral truncated pyramid
8As can for example be seen at page 148 and 151 of [14] and page 101 of [15].
9Tt is the Pillager Outpost tower from Minecraft.

Analysis 41

|

B Figure 3.7 Screenshot of the YouTube video by Josh’s channel [16] that inspired
camera tracking. The effect is equivalent to the one shown in Figure 3.8.

coordinates, that always have their 4th w equal to 1. Although points trans-
formed by an affine view and orthographic projection matrix are not in theory
in world space anymore, for the purposes of displaying them in I3T, they can
still be considered to be in the world space of the scene view.

However, when replacing the projection matrix P with a perspective projec-
tion matrix, the situation changes and it is worth looking at the full picture.
Adding the independent scene view camera’s own view (V) and perspective
projection matrices (Ps), equation 3.3 becomes:

P,V,-PV.-R;S;T;R; = P;,V,PVM (3.4)

This is a somewhat unusual situation where a second set of view and projec-
tion matrices is applied to previously projected points that have their depth
already encoded in their w component by the first projection matrix. This
is not discussed much in computer graphics literature as it is usually assumed
that projection is performed only once, so it is not immediately clear that the
mechanism of homogeneous coordinates continues to function.

It turns out that it does and this is not an obstacle at all, as the projection
can in fact be applied any number of times and does not require an immediate
application of the perspective divide. This stems from the properties of homo-
geneous coordinates [14, p. 152] and is at least partially proven in Appendix A
that shows that applying the perspective divide immediately after each appli-
cation of the perspective projection matrix yields the same results as applying
the perspective divide once at the end.

This means that no special handling of the perspective divide is needed, and
it can be done just once as part of the usual OpenGL fixed function pipeline,

42 Tracking

a fact that was not initially obvious'’.

Unlike the orthographic projection, perspective is not an affine transforma-
tion, and if the perspective divide is considered a part of it, it is not even a linear
transformation. That would perhaps indicate that special handling is at least
needed to interpolate it, but that also turns out to be false.

As can be seen in Figure 3.6¢, ignoring the fourth row, the perspective ma-
trix simply consists of non-uniform scaling on the diagonal, and a translation
on the Z axis, which can both be interpolated with element-wise linear inter-
polation. The third component of the fourth row, that moves the z value to the
w component of the resulting column vector, can be interpolated in the same
way, strengthening or weakening the effect of perspective.

Since no special handling is needed, the desired perspective projection visu-
alization can be achieved in the exact same way as in the orthographic projection
example. Result of which is shown in Figure 3.8.

B Figure 3.8 Proof of concept visualization of perspective projection inside of the
old I3T using standard tracking. The volume of the camera frustum is gradually
transformed into the NDC “cube” at world origin. The complex scene geometry
is distorted accordingly, showing the non-linear effect perspective has on the depth
values.

It should be noted that this method does not visualize the intermediary clip
space, which is somewhat difficult to interpret as it is a four-dimensional space
containing points with varying w components. This is not addressed further in
this text.

Another notable detail is that the tracking of the camera is always considered
to be a right-to-left tracking operation. Left-to-right tracking inside the camera

10Not to me at least.

Analysis 43

shall be forbidden, as applying the projection transformation directly to local
model coordinates does not convey much meaning, nor does it result in a clear
visual. The model vertices will rarely be initially positioned within the viewing
volume, making the visualization display largely unrecognizable results until the
model is placed into an appropriate position in world space.

3.1.4 Reference frame

The presented camera tracking proof of concepts have one last major issue.
Tracking was always conceptually understood to operate within the scene view
world, changing model transformations to move objects through this single
world’s space. Each tracking operation also originally only affected a single
model, moving it through the world while everything else remained stationary.

With the addition of camera tracking, this model-centric concept of tracking
becomes somewhat problematic as there can always be models that are unaf-
fected, which can become confusing.

For example, consider the view transformation of a camera being applied to
a set of models during camera tracking. This can be understood as transforming
the models into a different coordinate space of the camera, but since there are
other objects in the world that remain unaffected by the tracking operation,
what is seen is essentially a combination of both the view space and the original
world space. Continuing the tracking operation into NDC, the tracked set of
models is deformed and positioned near the origin of the world, while other
models are still in their original position and can be quite large by comparison,
often obscuring the tracked models.

Figure 3.9 shows the tracking operation within a scene with three models, the
duck is transformed into the NDC space of a nearby camera and is shrunk down
significantly and deformed by the perspective. As cameras are understood to
always “see” the whole world, it would be much better if the tracking operation
affected the whole scene in this case, avoiding the issues mentioned above.

The solution is to make the 3D scene view aware of the reference frame or
space it operates in. Nothing would change when tracking transformations in
regular sequences, but when tracking the camera, the model transformations
of tracked models would not be modified anymore, instead, the interpolated
matrices of the camera would be used to construct a special reference frame
matriz, which the 3D scene view would apply globally to every model in the
scene.

The scene view could also be made aware of what kind of space it is meant
to represent, making it possible to add custom visual indicators to the scene
view interface, like a second set of axis indicators'!, displaying the “original”
world space axes, which can no longer be parallel with the formerly world space
grid, or even orthogonal to each other.

" The existing indicator can be seen in the top right corner of Figure 3.8. Implemented
previously as part of [3].

44

Tracking

B Figure 3.9 A duck model being tracked into the NDC space of a camera, leaving
other models stationary in world space.

The infinite world grid'?, would no longer represent the world axes, but
rather the local axes of the reference frame. It is, of course, still the same grid,
but what it represents changes. The original conceptual world grid, could also
be shown, visualizing how the reference frame is positioned in relation to the
world space. This would require extension of the infinite grid implementation
to allow for rendering of a generalized non axis-aligned grid [3, p. 58].

This new feature of a scene view reference frame could prove to be very useful
outside of the camera tracking itself. The reference frame matrix can be set to
anything, like a model matrix output of a particular sequence, allowing the user
to view the world from the reference frame of any chain of transformations,
potentially giving additional insight to how regular world space transformations
operate.

An example of such use can be seen in Figure 3.10 which shows a 2D world
with a cube model, transformed by a composition of translation and rotation.
The unit cube is translated along the red X axis by 5 units (grid squares) and
then rotated by 30 degrees counter-clockwise, placing it at a world position that
can be seen on the left side of the figure.

On the right side, the world is viewed from the reference frame of the se-
quence containing this transformation, the original world grid and the cube are
transformed by the inverse of the cube’s model transformation, placing it at
the centre of the coordinate system, which is signified by the axis-aligned local
space grid in yellow.

From an implementation standpoint, the 3D scene view must be expanded
to insert the additional reference frame matrix R into the transformation chain
of every model. In the case of camera tracking examined in equation 3.4, the ref-
erence frame matrix replaces the camera’s projection (P) and view (V) matrices,
applying them to the entire world so the transformation chain becomes:

2Introduced and described in [3].

Current implementation 45

e

B Figure 3.10 A translated and rotated cube viewed in world space (left) and viewed
from the reference frame of the inverse of its transformation.

P,V,-R-R;$; TR, = P,V,RM (3.5)

3.2 Current implementation

Now that tracking has been introduced, and the concept of camera tracking
explored, this section will give a quick overview of the current tracking im-
plementation. The next section will address how this implementation can be
expanded to make camera tracking a reality. As tracking is at the heart of
its functionality, some issues with its current implementation must be resolved
first.

3.2.1 Functionality and user interface

The tracking operation can be started from the context menu of every sequence
node in the workspace. It contains the options to “start tracking from the
right” and “start tracking from the left”. Despite it being available for every
sequence, the tracking operation will not start upon activating either of these
options unless the sequence’s matrix multiplication pin is directly connected
to a model. If multiple models are connected, they will all get tracked, as long
as there isn’t another sequence along the connection.

Activating the tracking operation from a different sequence (including the
sequences in the camera) will fail. This is one of the major issues with the
current implementation as it is impossible to track multiple objects that are
connected to the sequence indirectly, meaning the sequence can be connected to
a model through another sequence connected to its output matrix multiplication

46 Tracking

pin. So ideally, the entire subtree, rooted in the sequence from which tracking
was activated, should be considered to be a single composite model instead.

s =B o =)

> seq2 =

> modell =
> =)

B Figure 3.11 Example of branching sequences connected to multiple models (the new node
design with collapsed nodes from Chapter 2 is shown)

Once activated, the tracking operation then constructs a transformation
chain by traversing the tree of connected sequences, starting from the begin'?
sequence, up to the root of the graph. In Figure 3.11, starting tracking from
sequence four (“seq3”) would construct a chain containing sequences one, two
and three. The current tracking implementation would only track model two,
but the entire subtree rooted in sequence three could be tracked instead, so that
models three and four are also part of the tracking operation, as if transforma-
tions inside sequences four and five were part of their local model coordinates.

In this context, in this text, sequences one, two and three are considered to
be the tracked chain, and the entire subtree of sequence three will be referred
to as the model subtree.

An alternative approach would be to expand the tracked transformation
chain to the whole subtree connected to sequence three, but that would turn
a linear path into a tree, requiring the tracking cursor to “split” into multiple
cursors when passing from sequence three to sequences four and five. This would
significantly complicate the design and its implementation, for little additional
benefit as the transformations of a model in the subtree can be tracked in their
entirety by starting the tracking operation directly from the sequence connected
to it.

There is also room for improvement in the user interface and visual indicators
of tracking. Figure 3.12 shows the tracking example shown previously in Figure
3.3, but using the updated workspace design. Right-to-left tracking has been
started on sequence two. The only visual indicator is the yellow cursor shown in
transformation t7 and an overlay is drawn over every transformation that is not
part of the interpolated matrix. There is no other indication of tracking and no
way to control it with the mouse as it can only be controlled by the arrow keys
on the keyboard.

3 The sequence the tracking operation was started from.

Current implementation 47

In the scene view, a copy of model m1 is shown, with the interpolated
transformation applied to it, but it is visually indistinguishable from the original
model.

B Figure 3.12 The tracking example from Figure 3.3 shown after the workspace redesign in
chapter 2 (using dark mode as that was the only one available at the time).

To summarize, from a visual and functionality aspect, the most notable
issues are as follows:

1. No visual indicator of the tracked nodes making up the chain as all nodes
in the workspace are dimmed with an overlay, not just the ones forming the
tracked transformation chain.

2. Aside from dimming all transformations and showing the tracking cursor,
there is no proper indication that tracking is active. The progress and direc-
tion of tracking can also be only determined by inspecting each node along
the chain, which again, is not highlighted in any way.

3. Tracking can only be controlled with the arrow keys, there is no way to
control it with the mouse and no indication that arrow keys must be used.

4. Tracked models must be directly connected to the begin sequence. Other
models connected indirectly will not be tracked, meaning the tracking op-
eration often cannot be started from the “root” or “inner” sequences, but
only from the “leafs”, which are usually connected to models directly.

3.2.2 Codebase

From a codebase perspective, there is also much left to be desired, the bulk of the
tracking logic is implemented in the Core» Nodes» Tracking.h'” file that contains
the main MatrixTracker class. It also contains some other auxiliary classes,

1 Qee architecture of the original I3T in Figure 1.3.

48 Tracking

as can be seen in Figure 3.13 displaying a class diagram of the relevant parts
of the Core» Nodes directory. Note that tracking operates with the underlying
logical core node graph implementation, which is distinct from the UI workspace
or DIWNE nodes.

<7 Matrixlterator
Matrixlterator(Sequence*)
Model Node Camera Operator

Matrixlterator(Sequence*, Ptr<Node>)
/,\ getSequence(): Sequence*

1
1
1

transforminfo(): Transforminfo&
IModelProxy

collect(): std::vector<Ptr<Node>>
collectWithInfo(): std::pair<std::vector<P...
operator++(): Matrixlterator&
operator*(): Ptr<Node>
operator==(Matrixlterator&): bool
operator!=(Matrixlterator&): bool

SequenceTree

-m_tree

+ SequenceTree(Ptr<Node>)
+ begin(): MatrixIterator
-m_beginSequence + end(): Matrixlterator

+ o+ o+ o+ F o+ o+ o+ o+ o+

Transform Sequence Transforminfo

* *
0. 0.. +sequence | |

-m_info

-—

-m_matrices) + isExternal: bool = false
-m_beginSequence

-m_tracker + sequence: Sequence* = nullptr
+ currentNode: Ptr<Node> = nullptr

MatrixTracker

getTrackingProgress(): std::map<Core::ID, float>&
getinterpolatedTransformID(): ID ‘
result(): TrackingResult& -m_tracker

B Figure 3.13 Partial class diagram of the Core» Nodes directory containing core node graph logic with focus
on the original tracking implementation.

+ MatrixTracker() TrackingResult
+ MatrixTracker(Sequence*, TrackingDirection, std::...) .
) -m_state | + fullMatricesCount: std::size_t =0
+ update(): void .
+ interpolatedTransformID: ID = 0
+ getSequence(): Ptr<Sequence> .)
+ interpolatedMatrix: gm::mat4 = {1.0f}
+ getSequencelD(): ID . ke <D float>
+ getModels(): std::vector<Ptr<Model>> N trac |fng r:)ir(?sst'ds.. ”m<a|p|3 T' o? s
+ getinterpolatedMatrix(): glm::mat4& S N B UIE AR
+ fullMatricesCount(): unsigned
+ getParam(): float «staticn
+ tP float): bool
N setPara M GraphManager
+
+

Tracking is started from sequences, which is likely why the Sequence objects
contain a pointer to a global MatrixTracker instance that is stored in a singleton
instance of the global GraphManager class. Each sequence receives a pointer to
this MatrixTracker instance upon its construction, which is performed in the
static GraphManager: : createSequence() method. For the time being, it might
be simpler to remove this pointer from sequences, and access the matrix tracker
directly through static calls to GraphManager, as it has been designed to be used.
Avoiding the need to manage many separate pointers to the MatrixTracker
object in each sequence.

When tracking begins, the MatrixTracker instance inside GraphManager
is reassigned to a new instance constructed inside the Sequence: :startTracking

Current implementation 49

method. Replacing this with static calls to GraphManager might also be prefer-
able. All nodes of the workspace are then iterated in order to find models,
whose parent is the begin sequence. This step needs to be switched to a tree
traversal algorithm in order to include indirectly connected models. This step
is also done only once at the beginning, making it impossible to change what
models are being tracked without restarting the tracking operation.

For each model, an IModelProxy object is created and stored in the Matrix-
Tracker instance. This is an abstract interface that is implemented in the user
interface Source» GUI» Nodes directory as the WorkspaceModelProxy.

This is an issue as it means that new models can only be tracked from within
the GUI classes that can instantiate the derived WorkspaceModelProxy object,
as this object cannot be created in the Core classes (like Tracking.h), since
that package is meant to be independent from the user interface layer. For this
reason, the tracking implementation cannot easily update the tracked model list
on its own.

Furthermore, in order to create a copy of the model, that the interpolated
transformation is applied to, a whole new hidden WorkspaceModel UI node
instance is created, that always remains hidden. This means the original model
node is more or less unaware of its tracked variant. This system should be
scrapped and instead, the original model node should be merely made aware
of the tracking operation, letting it create and manage a new 3D model entity
directly in the scene view’s Source» Viewport implementation.

Next, the actual transformation chain is constructed, this is done using
the SequenceTree container that exposes a MatrixIterator instance, which
is able to traverse the graph towards the root, collecting information about
each sequence and transformation in a dedicated TransformInfo data object.
This is performed in the MatrixIterator::collectWithInfo() method. Each
TransformInfo object represents one node containing a single matrix in the
chain and contains a reference to its sequence. A sequence containing two
transformations will be represented with two TransformInfo objects with the
currentNode pointer set to each Transform node and the sequence pointer set
to that sequence.

There are some special cases that are considered, every sequence has a ma-
trix data input pin; when this pin is connected, the contents of the sequence
are replaced with the passed data until the pin is disconnected. This is indi-
cated with the isExternal flag and the currentNode being set to the connected
source node (an operator or another sequence). Empty sequences are completely
ignored.

The collected TransformInfo is then processed in the MatrixTracker: :update
method, where it is potentially reversed depending on the tracking direction
(MatrixIterator always traverses upwards towards the root, e.g. right-to-left).
Based on the tracking progress, matrices are accumulated in the respective di-
rection up to the transformation the cursor is located in, which is interpolated,
and the final resulting matrix is saved in the internal TrackingResult data ob-
ject. The progress within each transformation is saved to a hash map, keyed

50 Tracking

with node IDs, and a similar map stores each TransformInfo object for each
node. Finally, the transforms of tracked models are updated with the resulting
matrix. This entire process is repeated every frame, from beginning to the end,
which is not ideal.

In order to display tracking indicators in the user interface, the workspace
UI layer nodes must first obtain a reference to the MatrixTracker object, and
then find their respective entries in the provided result hash maps. Which only
contain entries for the nodes that provide matrix data, hence not including en-
tries for sequences (unless connected externally), making it difficult to visualize
the entire tracking operation in the UI.

3.3 New implementation

Based on the conceptual analysis of the standard and camera tracking, and the
overview and analysis of the current implementation, this section summarizes
the requirements of the new tracking implementation into the following table of
functional requirements, followed by a brief description of each one:

B Table 3.1 Functional requirements of the new tracking implementation.

No. Name Category
TF01 Tracking of multiple models ~ Standard tracking
TF02 Better visual indicators Standard tracking
TF03 Mouse control Standard tracking
TF04 Camera tracking Camera tracking
TF05 Camera reference frame Reference frame

TF06 Multiple scene view windows Reference frame

TFO07 User-defined reference frame Reference frame

TFO01 - Tracking of multiple models Activation of tracking in a sequence
should track all models that are part of its subtree. Meaning models that
are connected directly to the sequence, as well as models that are connected
indirectly, preserving their relative transform set by any sequences along the
path.

TFO02 - Better visual indicators The entire tracked chain should be high-
lighted in the workspace, including model nodes and all sequences. The workspace
model node should also highlight tracked models in the scene view, having con-
trol over the tracked and original 3D model at the same time.

New implementation

TFO03 - Mouse control It should be possible to control the progress of the
tracking operation with the mouse. This can most easily be achieved by dis-
playing a slider in the workspace.

TFO04 - Camera tracking The camera can be connected to sequences by
the user, which allows any world space tracking operations to continue into the
camera. It can also be tracked on its own (but always beginning with the view
transformation, and only right-to-left).

TFO05 - Camera reference frame Discussed in Section 3.1.4, the camera
tracking should employ the scene view reference frames, together with space
indicators and a second non-axis-aligned grid keeping track of the previous ref-
erence frame.

TF06 - Multiple scene view windows Since the scene view should be able
to display the world from a specific reference frame, it would be useful to be
also able to see the original world in another dockable window.

TFO7 - User-defined reference frame The scene view reference frame
functionality used for camera tracking could be used to view the scene from the
reference frame of any transformation. An option can be added to sequence
nodes that sets the reference frame of the scene view to their model matrix
output, allowing the user to visualize local spaces of individual sequences.

3.3.1 New architecture

The following sections present the new tracking implementation and are accom-
panied by the class diagram of its architecture shown in Figure 3.14.

The new tracking implementation removes the old TrackingResult class
in favor of a more comprehensive set of TrackedNode objects, which are the
tracking representations of existing nodes, that are managed entirely by the
MatrixTracker object to keep a detailed internal representation of the entire
tracking operation at all times.

To allow easy and direct access to tracking information, each core Node
instance now contains a pointer to a TrackedNodeData object, which is managed
by the corresponding internal TrackedNode instance using RAII'®. When the
TrackedNode object is created by the MatrixTracker, the tracking data pointer
for that particular core node is set. When the tracking operation ends, this
pointer is reset back to nullptr to indicate that no tracking data is present.

This way, any node can access a set of parameters detailing the tracking
status of that node in an active tracking operation; this includes parameters
like the tracking progress and whether it is an active part of the chain or a part
of the model subtree, etc.

15 A C++ idiom, see [17] section E.6

52

Tracking

Nodes that directly carry transformation data, like transformations and se-
quences, are represented by the TrackedTransform class. It is a derived type of
TrackedNode, containing methods to access the underlying matrix data. Other
nodes involved in tracking, such as the models and, going forward, the cameras,
do not use this specialization. The TrackedNodeData of models carries an ad-
ditional TrackedModelData object, which contains the final interpolated matrix

data.

The IModelProxy and WorkspaceModelProxy classes have been removed en-
tirely. The workspace Model node implementation can now access the Tracked-
ModelData object through its core node reference. When tracking data is avail-
able, it adds and manages a new entity in the scene view, removing it when its

tracking data is reset back to nullptr.

Model Node Screen «Enumeration» «Enumeration»
ClipRange) DepthRange
+clipRange
MinusOneToOne ZeroToOne
Transform Camera OneToMinusOne
ZeroToOne
0..* ZeroToMinusOne +depthRange
oL weak_ptr #m_trackingData L
—1 - CameraCoordSystem
+m_coordinateSystem
Sequence [\ + yUp: bool = {true}
l TrackedNodeData TrackedModelData
‘ +data | g +space /E —
— «Enumerati...
[TrackedNode }<} TransformSpace
TrackedTransform
/’\ /'\ -m_trackedCamera -m_interpolatedTransform) Model
-m_models | -m_modelSequences + darale View
0.* 0.* +tracker. +m_trackedSequences getMatrixCount(): int Projection
! getMat(): glm::mat4& Screen
MatrixTracker 1. +space
+ MatrixTracker(Ptr<Sequence>, Ptr<Camera>, TrackingDirection) .
X . . " /|\ +coordinateSystem
+ isTracking(): bool {query} -m_trackedTransforms * | * 1..
+ reverseDirection(): void +translform
+ setProgress(float): void)
-m_trackedMatrices i
+ update(): void - TrackedMatrix
f o ovr=fl 1.*
+ requestChainUpdate(): void . + matrix: glm:matd = {1.f}
+ requestPro.gressU.pdate(): void -m_interpolatedMatrixObject + interpolating: bool = {false}
updateChain(): void . i
) + progress: float = {0.f}
updateProgress(): void
updateModelTransforms(): void «static» + getMat(): glm::mat4 {query}
updateModels(): void GraphManager

B Figure 3.14 Class diagram of the main parts of the new tracking implementation.

Although TrackedTransform objects represent individual transformation nodes,
which contain a single matrix, the TrackedTransform can itself contain multiple
matrices in special cases. The camera tracking implementation, which will be

New implementation 53

described in detail in a later section, requires the ability to split the matrix of
a projection transformation node into multiple separate matrices, in order to
achieve a more concise visualization. This was previously mentioned in Section
3.1.2.

For this reason, an additional list of TrackedMatrix objects is maintained.
During standard tracking, there is a one-to-one mapping between the Tracked-
Matrix and TrackedTransform objects, and each TrackedMatrix contains a ref-
erence to the corresponding TrackedTransform object, to which the acquisition
of matrix data is delegated.

Other changes introduced due to camera tracking and shown in Figure 3.14
are the introduction of the TransformSpace enumeration and the CameraCo-
ordSystem object. These objects are used in the camera tracking implemen-
tation to retain information about the coordinate system of the camera and
individual TrackedMatrix objects and will also be addressed later.

3.3.2 Traversal iterators

The old SequenceTree object has been reworked to represent the model sub-
tree of the tracking operation. It no longer uses a MatrixIterator, but a new
SequenceTreeIterator. The new iterator is a forward iterator'® that performs
a pre-order tree traversal on the subtree of a given sequence, traversing across
all matrix multiplication links. Encountered models are added to the Matrix-
Tracker::m models list, and encountered sequences are added to the m mod-
elSequences list, as it should be possible to distinguish them visually. This
way all directly or indirectly connected models will be tracked (TF01).

The MatrixIterator has been renamed to TransformChainIterator, serv-
ing as an iterator for a TransformChain object (that replaced the old Sequence-
Tree). In regards to standard tracking, the only change has been that it now
handles empty sequences properly, including them in the resulting list of Trans-
formInfo objects, as empty these sequences should also have a corresponding
TrackedNode representation. The iterator has otherwise been prepared to sup-
port camera tracking, by expanding its logic to take Camera nodes into account,
with proper handling of empty cameras, and an option to ignore cameras en-
tirely.

The TransformInfo object can thus also contain a camera, and a dataln-
dex variable now indicates which data storage of the underlying node should
be accessed to retrieve its matrix. This is an improvement over the previous
version, which always assumed that the first data storage should be accessed,
which corresponds to the data of the first output pin of the node [2, p. 31].
This is used to retrieve the local transformations of a sequence which has its
matrix data input plugged in. Previously, the connected node was set as the
TransformInfo::currentNode, but it is preferable to set it to the sequence node
itself'”, which contains that same data in its second data storage.

16Built upon the same forward iterator base class as described in Section 2.4.7.
"Because the connected node is not really a part of the transformation chain itself.

54 Tracking

TransformInfo also contains an identifier of the type of “space” the trans-
formation operates in. This is part of the new camera tracking and will be
explained in a later section.

ForwardIteratorBase
SequenceTree

SequenceTreelterator
+ SequenceTree(Node™®) | o o o e e >
+ begin(): Treelterator «instantiate» # m_root: bool = true
+ end(): Treelterator # m_curr: Node* = {nullptr}

m_transform: glm::mat4 = {1.0f}
TransformChainlterator + SequenceTreelterator()
TransformChain «instantiate») + dereference(): reference {query}
------------- + m_skipEmptySequences: bool = true + ptr{): pointer {query}
+ TransformChain(Ptr<Sequence>g&, + m_ignoreCamera: bool = true il eIt
Ptr<Camera>&) -m_tree + m_skipEmptyCamera: bool = true + next(): void
+ begln‘(): Transformchalnlterator getsequencelEnE
end(): TransformChRaiiIgEy transforminfo(): Transforminfo&
+ collectWithinfo(): std::pair<std::
-m_info vector<Ptr<Node>>, std::
Transforminfo vector<Transforminfo>> «Enumeration»
+ operator++(): Iterator& TransformSpace

+ isExternal: bool = false
+ sequence: Ptr<Sequence> = nullptr +type Model
+ currentNode: Ptr<Node> = nullptr View
+ camera: Ptr<Camera> = nullptr Projection
+ datalndex: int=0 Screen

B Figure 3.15 Class diagram of the new graph traversal iterators implemented in Core/Nodes/Iterators.h
and used in the new tracking implementation. The SequenceTree is used to traverse the model subtree, to
find all tracked models, and the TransformChain builds the tracked transformation chain.

3.3.3 MatrixTracker object

When tracking is started, the MatrixTracker object constructs all the vari-
ous TrackedNode objects, based on the traversal results of the TransformChain
started from the begin sequence, reversing the order if left-to-right tracking
is enabled.

Instances of TrackedNodeData contain details about the structure of the en-
tire tracking operation, which is reflected in the childIdxStart and end fields,
as illustrated in Figure 3.16. Tracking data instances linked to sequences con-
tain indices of contained transformation nodes (referred to as just transforms).
Transform nodes carry this information as well, as individual transformations
can actually consist of multiple matrices themselves, which is a topic discussed
later in the camera tracking section.

The SequenceTree is used to find all models and sequences connected to
the begin sequence. Tracking data is stored for all of those nodes with the
modelSubtree flag enabled.

The constructed chain is then stepped through to update progress infor-

New implementation

seq2: TrackedNodeData

childrenldxStart = 0

childrenldxStart = 1

childrenldxStart = 2

55

seql: TrackedNodeData

childrenldxStart = 3

\'/ \'/ \:/ + interpolating = true \i/ + interpolating = false
+ progress = 0.5 + progress = 0.0
r2: TrackedNodeData t1: TrackedNodeData sl: TrackedNodeData + space = Model rl: TrackedNodeData + space = Model
+ chain =true + chain = true
+ interpolating = false + interpolating = true + interpolating = false + active = true + interpolating = false + active = false
+ progress =10 + progress =0.5 + progress = 0.0 + modelSubtree = false + progress =0.0 + modelSubtree = false
+ space = Model + space = Model + space = Model + modelData = nullptr + space = Model + modelData = nullptr
+ chain = false + chain = false + chain = false + segindex=0 + chain = false + seqgindex=1
+ active =true + active = true + active = false + tindex=-1 + active = false + tindex=-1
+ modelSubtree = false + modelSubtree = false + modelSubtree = false + childrenldxStart =0 + modelSubtree = false + childrenldxStart = 3
+ modelData = nullptr + modelData = nullptr + modelData = nullptr + childrenldxEnd = 3 + modelData = nullptr + childrenldxEnd = 4
+ seqgindex=0 + seqgindex=0 + seqglndex=0 + seqindex=1
+ tindex=0 + tindex=1 + tindex=2 + tindex=3
+ + + +
+ + + +

childrenldxEnd = 1 childrenldxEnd = 2 childrenldxEnd = 3 childrenldxEnd = 4

m1: TrackedNodeData

+modelData

‘ filiackedMorE IRt + modelSubtree = true

+ seqgindex=1
+ tindex=-1

+ m_interpolatedMatrix = interpolated matrix
+ m_referenceSpace = identity

B Figure 3.16 Object diagram of the TrackedNodeData instances managed by the MatrixTracker in
the tracking example from Figure 3.3. Every node involved in the tracking operation has a corresponding
TrackedNodeData instance and the model has an extra TrackedModelData instance.

mation and compute the final interpolated matrix, just like before. Progress
is computed for overarching sequences as well.

In the end, the TrackedModelData of each model is updated with the result-
ing matrix. As models can be connected indirectly to the begin sequence, their
model matrix is not set to the tracked matrix directly, but it is first multiplied
by the inverse of the untracked begin sequence transformation, preserving its
local transformation within the model subtree.

Unlike before, these individual steps are not performed together every frame
anymore. Instead, they are separated into individual update methods, each
called only when necessary. This is achieved by leveraging the existing core node
update callbacks for value and structural changes. The methods are as follows:

1. updateChain() - Constructs the tracked chain by traversing the node graph.
Called on structural changes to the tracked chain.

2. updateProgress() - Cycles over the chain and computes the final track-
ing matrix whilst updating progress values. Called on value and structural
changes to the tracked chain or when the tracking progress changes.

3. updateModels() - Constructs the begin sequence model subtree. Called on
value and structural changes to the model subtree.

3.3.4 User interface

Finally, using the detailed information about tracking each core node holds. The
UI layer workspace nodes can easily draw visual indicators of the entire chain

56 Tracking

(TF02). The new visuals can be seen in Figure 3.17. The entire tracked chain
is highlighted with purple borders. The colors are, of course, subject to change,
as part of the I3T Ul theming system. The dark mode version of the new design
can be seen in Figure 3.18, which is the default I3T theme the solution is tuned
for'®.

Ad

€ Tracking 37.50%

)

B Figure 3.17 Tracking example from Figure 3.3 shown in the new tracking implementation. All nodes involved
in the tracking operation are highlighted, including the respective links. A tracking indicator is shown at the top
of workspace, containing additional settings and an interactive tracking slider, that also mimics the structure
of the tracked chain.

Since the UI layer is now aware which exact nodes are part of the tracking
operation, only the tracked transformations can be dimmed, making it easier to
see the transformations that are part of the interpolated matrix. The “active”
part of the chain, before the cursor, has also been made more visible.

Functional requirement T'F03 is realized by adding a custom Dear ImGui
slider to the top of the workspace when tracking is active. This slider controls
the tracking progress, making it possible to control tracking using the mouse.
The slider also visualizes the structure of the tracking operation, which is always
visible, no matter the workspace viewport position. The floating window the
slider is displayed in is also used to show tracking progress, its direction and
a button to switch tracking direction in the top left, and a button with various
settings in the top right.

Each transform is shown as a colored segment of the tracking slider. These
segments are separated by vertical ticks, which indicate how transforms are
structured into sequences. A short tick indicates a border between two trans-
forms within a sequence, while long ticks indicate a jump between two distinct

18The less polished light mode is mostly shown in this thesis due to contrast and print
quality.

Camera tracking implementation 57

sequences. The color of each transform represents the reference frame it operates
in. This is a prelude to the camera tracking implementation that will be dis-
cussed shortly. Blue, in this case, signifies world space, which is the conceptual
space standard tracking operates in.

File Edit Windows B Tutorials @ Help

Settings View

@ A B

Edit Add View Debug Style

= € Tracking 37.50%

B Figure 3.18 Dark mode variant of Figure 3.17, showing the scene view as well, in which the
tracked model is highlighted in purple and shown transparently in its original position.

When interacting with or hovering over the slider, a faint yellow line is drawn,
connecting the slider with the current cursor position in the workspace. This
is done to reinforce the correlation between the cursor and the slider, as well
as to make the cursor easier to locate in the workspace.

Figure 3.18 also shows the tracking visuals inside the scene view. Tracked
models are highlighted in purple, using the existing scene view highlighting
functionality used for selection [3, p. 59]. The original model is made transparent
for the duration of the tracking operation.

3.4 Camera tracking implementation

The matrix multiplication of the camera can now be connected to any se-
quence by the user. This link, much like before, does not have any effect
on the models in the scene view. But starting tracking from a sequence con-
nected to a camera will add the camera’s projection and view transformation

58

Tracking

to the tracked chain, which can be seen in Figure 3.19. These transforma-
tions are special in that their TrackedNodeData’s space parameter is set to
TransformSpace: :Projection and View respectively, identifying them as cam-
era transformations, which is shown by the tracking slider by coloring the corre-
sponding segments red (projection) and green (view). Transformations outside
of the camera are colored blue (world space, or).

Describing the individual stages as world, view and projection (or NDC)
space is perhaps slightly inaccurate, as each segment is an interpolation from
one space to another. For example, the “real” view space is shown when the
tracking slider is at the left end of the green segment, in other words when the
entire view transformation'’ is accumulated into the final tracking matrix.

The perspective frustum transformation serving as the camera’s projection
transformation is automatically split into two matrices and is displayed in the
tracking slider as two segments separated by a small dot. The frustum matrix
is modified to prevent the Z axis from flipping®” and the second one performs the
Z axis flip as a separate transformation, ensuring the final result is equivalent.
This is the reason why the TrackedMatrix objects are needed in the Matrix-
Tracker implementation from Section 3.3.3. Visually, the tracking cursor still
passes through the single frustum node, but slower.

Previously the camera was implicitly connected to all sequences with an un-
plugged matrix multiplication output to signify that the camera is positioned
at the left end of each transformation chain. This is not a bad concept, but in
practice, displaying many of these links leads to visual clutter when many se-
quences are present in the scene. For this reason, this idea has been abandoned.
To make it explicitly clear that the camera transformations are applied to the
left end of each sequence, the particular connections can be created manually
to make a point, but will be omitted in cases when they’re not relevant.

Tracking can be started from the camera itself, in which case the tracking
operation begins at the border of the world and view space’! in the right-to-left
direction??.

3.4.1 Reference frame and view space

In the simplest form of camera tracking, which can be called “world space
tracking”, the tracked camera transformations are applied to the tracked models
just like any other transformation. Leading to issues noted in Section 3.1.4,
which introduced the notion of a “reference frame” and a corresponding reference
frame matriz.

During camera tracking, the reference frame matrix is set to the result of

Y0r multiple view transformations, as the camera’s view sequence can contain multiple
transformations.

20gee Section 3.1.3.

2The “uninterpolated” view space, e.g. the right side of the green segment in Figure
3.19.

22Which is the only direction camera tracking is allowed in viz. Section 3.1.3.

Camera tracking implementation 59

€ Tracking 50.00% &

i

camera

Vv sequence

w0 frustum
20 00 00 22 [@BI oo [EOB] 0.0
eye o nter up 00 20 00 00 00 10 00 00
7 o 00 00 20 14 |8l oo OB oo
YOS 0.0 00 00 10 | 00 00 00 10
©o [Eae

B Figure 3.19 Tracking of a sequence connected to a camera.

-« projection

multiplying the interpolated view and projection transformations. These trans-
formations are handled in a special manner by the MatrixTracker, as they are
not added to the resulting interpolated matrix, but instead individually stored
in special variables m_iViewMatrix and m iProjMatrix. The scene view ref-
erence frame implementation then multiplies all models in the scene with the
interpolated camera transformations, which is why they are omitted from the
standard tracked matrix, as the camera transformations would be applied twice.

Reference frame is implemented in the scene view by extending the existing
scene view rendering method Viewport::drawViewport with an additional ref-
erence frame matrix parameter. Note that it is also internally referred to as the
“implicit model matrix” or just “model” matrix>*.

The scene view’s rendering method is called every frame and reacts to its
parameters dynamically, so when tracking is not active, an identity matrix can
be passed instead. The full signature of the main scene view rendering method
becomes: drawViewport(renderTarget, width, height, glm::mat4& ref-
erenceSpace, renderOptions, displayOptions) with the new parameter in
bold.

Internally, the scene view passes the reference matrix to the Scene object,
which performs the actual rendering of all entities in it. And then to the render-
ing method of each entity (Entity::render), which pre-multiplies the entity’s
model matrix with the reference matrix. Entities can opt out of this process with
a special m_ignoreReferenceSpace flag or by overriding the rendering method
implementation.

Setting the reference frame matrix to the currently tracked view allows the
scene view to display the view space as a whole, positioning the camera at
the centre of the local view space world. In order to keep track of the “origi-
nal” world, a second grid transformed by the reference frame matrix is shown,
indicating the relative orientation of the reference frame. The grey grid now
represents the original axis-aligned world grid, which has been recolored yellow.

23 Also note that the scene view Viewport class has nothing to do with the viewport
transformation, but refers to a generic “3D viewport window”. Which is admittedly a little
confusing.

60 Tracking

\ _ ., g@

L]
World space

D

View space

- = T = -

o e m @kfz ——

Reference frame matrix; _ ————u S
094000034 —(UISEESSSS S S
0.13 092 "-0.37 -0.00
-0.31__0.40 200:86 1-11:58
0.00 0.00 000 1.00]

Edit Add View Debug Style

2

[

€ Tracking 25.00%

| |
camera

T~ oo O
eco frustum oso |0OKAL > sequence = > duck =

eye center up

Y 46 00 1.0
Z 100 00 0.0 > sequence = > cube =

B Figure 3.20 Tracking of the view transformation, showing the scene using the view space
reference frame. The reference frame matrix is shown in the top left. World space and view space
axes indicators in the top right. The the original world grid is drawn in grey, and the local view
space grid in yellow.

The achieved effect can be seen in Figure 3.20, which shows the view space
of a camera looking down upon a scene of three objects sitting on a plane. The
camera is positioned at (0,0,0), looking along the —Z axis, and the scene now
appears rotated. The tracking progress can, of course, be animated, showing
the original world grid shift away and the reference frame grid slowly fades into
view.

Even though only the duck and cube models are connected to the camera,
every model is transformed by the camera’s “lookAt” transformation, preserving
a unified look into the camera’s view space. The original world space tracking
behaviour that does not use the reference frame functionality can be restored
by enabling the “track in world space” option in the tracking settings.

Models that are not connected to the camera could be hidden instead, but
that would mean they disappear from the scene view when tracking is activated,
which is odd, because the scene view acts as an independent view of the entire
scene. It would make sense if unconnected models were hidden in the camera’s
screen display output, but that has not been implemented.

The secondary non-axis aligned grid is implemented by modifying the origi-

Camera tracking implementation 61

nal infinite grid shader implementation to transform the ray segments represent-
ing each pixel by the reference frame matrix, prior to performing axis-aligned
intersection tests with the ground plane. This is a very simple modification
that preserves the original grid rendering logic that does not support generic
plane orientation. Transformation of the unprojected near and far ray points
is performed in the vertex shader, so the performance impact is minimal. A sin-
gle matrix multiplication is still performed in the fragment shader in order to
determine the final fragment depth, which leaves some room for improvement.
See [3, p. 58] for more details about the infinite grid implementation.

The reference frame matrix is displayed in the scene view window in the
top left corner”*. The world axis indicator in the top right corner has been
expanded to show a second set of axes. The original axes show the axes of the
now transformed world space orientation, and a second set of axes below it now
shows the local space. Each set of axes is labelled based on the current context.

3.4.2 Multiple scene views

In order to satisfy requirement T'F06, the scene view implementation has been
expanded to allow multiple scene view windows to be opened at the same time.
A new ViewportModule class has been added, which extracts common scene
view functionality from ViewportWindow. Each ViewportWindow has been given
its own scene view camera object to render the scene with, and changes were
made in the Viewport class to accept such cameras as parameters. Each window
now must also serialize its own set of camera parameters. Tracking currently
always sets the reference space of the first scene view window. An unlimited
amount of other windows can be created from the |Windows) Scene view window|
menu.

The example from Figure 3.20 can be viewed in the primary scene view,
and a secondary scene view can show the original scene in world space. Giving
crucial context about the original orientation and position of the camera. This
can be seen in Figure 3.21.

3.4.3 Camera projection

The projection transformation is tracked in the same way as the view transfor-
mation, but it does have its own specifics. As mentioned previously in Sections
3.1.2 and 3.3.1, the projection transformation is split into multiple matrices
when tracked. For simplicity, this is only done when the camera’s projection se-
quence contains a single transformation, which is usually the case. This process
is referred to as “decomposition” and can be toggled on and off in the tracking
settings.
It is implemented in the MatrixTracker’s handleProjectionTransform method

which takes a TrackedTransform object and splits it into multiple TrackedMa-

24Unless it is set to an identity matrix.

62 Tracking

¥ & Scene View 1 X ¥ 4 SceneView2 X
Settings View Settings View

0 J e J L E J .@ J = J

Reference frame matrix:
094 000 034 000
013 092 -0.37 -0.00
-0.31 040 086 -11.58
000 000 000 100

-~

B Figure 3.21 View space visualization using two separate scene view windows. The view space
of the camera is shown on the left, while the scene in world space is shown on the right.

trix objects when appropriate. The most basic decomposition was already pre-
sented before, splitting the projection into two matrices so that the projection
itself has its Z axis flipped. This is done so that the world does not physically
flip during the interpolation. Interpolation of such a decomposed perspective
projection is shown in Figure 3.22.

The OpenGL normalized device coordinates are a left-handed coordinate
system. The scene view and I3T in general uses a right-handed coordinate
system, which is largely ingrained in its internal design. For that reason, the
left-handedness of the OpenGL NDC space is only emulated by the visible axis
indicators. This can be done by omitting the second Z flip matrix entirely and
only explicitly flipping the Z axis indicator in the top right corner. This would
have to be done either instantly at the beginning or end of the interpolation, or
gradually during its progress.

To make it very clear that the NDC coordinate system is different, the
second flip matrix is retained, but it also flips the X-axis. Resulting in an
interpolation that flips the entire space, during which the local axis indicator’s
X axis is gradually flipped, adding the words “Left handed” below it when the
X axis flips. This is shown in Figure 3.23.

oo oo > > = >
o o

® @ o @ @ @
MDC space NDC space MNDC space NDC space NDC space MNDC space

(Left handed) (Left handed) (Left handed)

B Figure 3.23 Gradual flip of the X axis of the local axes indicator, which is per-
formed as a separate step after the projection interpolation.

Camera tracking implementation 63

B Figure 3.22 Composite image showing the interpolation of the perspective trans-
formation. The frustum is reshaped into the NDC “cube”. The Z axis of the resulting
NDC space is flipped.

This successfully emulates a left-handed NDC space, but the ZX flip does
often introduce lighting artifacts. An alternative is to only flip the Z axis of
the indicator, whilst interpolating over an identity matrix, but that might be
confusing as it could seem that nothing is happening.

The final NDC space visualization is displayed in Figure 3.24 showing the
same scene as Figure 3.21. During projection interpolation, the scene view
camera model is manually moved to an arbitrary position outside of the NDC
viewing volume. This is simply done to avoid visual obstruction and also to
retain an indicator of the near frustum plane. Four faint lines with the same
color as the camera frustum outline also connect the near plane corners with
the camera model origin. This is an additional new near plane indicator that
is always visible.

Shirley decomposition

A perspective projection matrix can further be decomposed into its orthographic
and projective components. Such a decomposition is described by Shirley et al.
in Chapter 7 of Fundamentals of Computer Graphics [14, p. 150] which separates
a perspective projection matrix into an orthographic (M) and perspective ma-

64 Tracking

e e =& z 0 ‘
Reference frame matrix:
-1.43 0.00 -0.52 0.00 X ‘
031 210 085 -0.00 [
0.54 -0.69 -1.51 11.42
031 -0.40 -0.86

FEdit Add View Debug Style

2] € Tracking 100.00% [

| J|

B Figure 3.24 Visualization of the NDC space of a camera. Corresponds to the scene from Figure
3.21.

trix (P) like so:

2 r—+1
0 0 —
r—1 r—1 n 0 0 0
2 t+b
0 — - 0 n 0 0
MorthP: t—b 9 ﬁlbf (36)
0 0 S — 0 0 n+f —fn
0 0 0 1 0 0 1 0

Splitting the transformation this way simplifies the matrix that is respon-
sible for the perspective distortion effect. It also makes the overall perspective
transformation interpolation much clearer, as the interpolation over the perspec-
tive matrix leaves the depth values of the near and far planes constant. In fact,
points on the near plane are not modified at all, and the far plane shrinks along
the XY axes until the entire frustum turns into a rectangular cuboid. This
cuboid is scaled and translated into the final NDC “cube” shape. Figure 3.25
shows the chess scene before and after applying the perspective matrix.

Brown decomposition

Another kind of decomposition that further splits the orthographic and per-
spective matrices into two more matrices each can be found at the Learn WebGL
website by Dr. Wayne Brown [18]. This approach simplifies the matrices fur-
ther, but loses the nice visualization properties compared to the decomposition
above.

Camera tracking implementation 65

World space

o lno

L]
HNDC space

-2291 368 18.22 9512 A N Epac
078 -0.12 -0.62 -0.94
o) [.0

NDC space

B Figure 3.25 Perspective decomposition by Shirley et al. visualized with camera tracking. Notice
that the near plane of the frustum does not move.

Nevertheless, both decompositions are implemented and can be enabled by
the respective options in the tracking settings. The “Shirley” decomposition
is the default.

Depth visualization and clipping

Figure 3.26 shows the resulting NDC space of the scene from Figure 3.25. The
display output of the camera is shown on the right in a screen node. To empha-
size the non-linear effect the perspective transformation has on depth values,
depth visualization mode can be enabled using one of the buttons in the top left
corner of the scene view. This mode renders eight color bands at the far side of
the camera frustum. The color bands are spaced evenly in world space, but in
NDC space, the first color band is disproportionately large, showing how depth
precision is “wasted” close to the near plane.

One of the buttons in the top left corner can also be used to toggle clipping
of the viewing volume. This feature enables custom clipping planes that are
used to clip vertices outside of the tracked camera’s viewing volume, visualizing
the clipping step of the fixed function graphics pipeline. It also makes the
visualization clearer by eliminating often heavily distorted models outside of the
viewing volume. Clipping is implemented using OpenGL user-defined clip planes
[13, p. 454], which are controlled in shaders by setting the gl_ClipDistance

66 Tracking

vertex shader output array. This means the clipping is performed in hardware
by OpenGL itself, staying true to what usually happens out of the view.

@ z —
sl@ kB [

Reference frame matrix D

095 000 -1.19 20.26 ,

018 182 -0.14 -3.60 {]

€ Tracking 100.00% 3

093 -015 -074 -6.64 NDC space
078 -0.12 -062 -094 (Lefthanded

B Figure 3.26 Visualization of NDC space depth values and a comparison with the rendered image.

3.4.4 Viewport transformation

The last step of camera tracking is the viewport transformation which scales and
translates the normalized device coordinates into pixel coordinates (the screen
space). As the viewport transformation was missing from I3T entirely, a new
sequence for it has been added to the camera node. The viewport sequence
is optional and hidden by default. It can be enabled from the camera’s context
menu, as can be seen in Figure 3.27.

Camera

] projection il
o © Tracking >
SO Osnowviewart v
left 12 eye center Setvisibilty >
right [297] X 36 0.0 | Change frustum color >
width 640.0 bottom [-1.4| Y 46 0.0 | L Coordinate system >
height 480.0 top 14 Z 100 00 | pyplicate Ctrl+D
near 0.0 near - D Delete Delete
far 1.0 far -

B Figure 3.27 The camera node with the “Show viewport” option enabled.

When disabled, the camera functions just like before. It outputs the view and
projection matrices from its blue display output pin, which can be plugged into

Camera tracking implementation 67

a screen node. The matrices are used to render the screen’s image. The viewport
transformation that is used to render the image is determined automatically
based on the current size of the screen node.

For the viewport information to be readily available to the screen node,
the data passed along the display output link has been changed from a pair of
matrices to a dedicated ScreenData object. This object contains the view and
projection matrices, an additional viewport transformation matrix, and a flag
indicating whether the viewport transformation is enabled.

When it is, the screen extracts the x, y, width and height parameters from
the viewport matrix and emulates their effect during Ul rendering by trans-
lating and scaling the resulting image. This is done for simplicity as the scene
view implementation currently does not support custom viewport settings. And
flexibility, as special handling is required to emulate Vulkan viewports inside
OpenGL.

An explicitly set viewport transformation is shown in Figure 3.28. Its result
is shown in the scene view as well as in the image of the screen node. The
viewport transformation is displayed in the tracking slider as an additional

segment.

© e z | |9

Reference frame matrix. ® [z) 9
400 145 211 4215 | 3¢ 13TScreen L]

1.05 2.4
0.0
031

€ Tracking 100.00% -]

It

Camera

xy Wl o viewport

oo |
1930 O
15 O X 82.0

¥ 30.0
width 200.0
height 140.0

near 0.0
far 10

B Figure 3.28 Visualization of camera screen space using an explicit viewport transformation.
Corresponds to the scene from Figures 3.24 and 3.21. The screen node in workspace is represented
with a 3D model of a screen into which the NDC space is transformed into.

During interpolation, the camera is faded out and a 3D model of a monitor
is faded in. This computer monitor has the same size and aspect ratio as the
screen node’s image. The screen size is now fixed and directly controllable by
the drag handle in its bottom right corner. The screen’s width and height in
pixels are now accessible using float output pins. These can be used to construct
a custom viewport transformation by using the new wviewport operator node.

As the viewport transformation scales the viewing volume to a size specified
in pixel units, the relative size difference between the viewing volume in NDC

Tracking

space and screen space is quite large. For that reason, the viewport matrix
is internally modified, similarly to the projection transformation, to reduce the
massive change in size and keep the viewing volume visible through its interpo-
lation, without the need to adjust the scene view camera. There is a separate
scaling factor for the XY and Z axes, and both are adjustable with sliders below
the axes indicators.

3.4.5 Vulkan support

I3T has always been developed with OpenGL in mind, as that is the main
graphics API that students at CTU encounter and work with. There are a few
other major graphics APIs, one of them being Vulkan, a successor to OpenGL
developed by The Khronos Group [19, p. 14]. Vulkan is different in many ways,
but the basic principles of its graphics pipeline remain similar, and the new
system of camera tracking can be used to visualize it as well.

There are, however, some differences in the used coordinate systems between
the two, which, although minor in principle, have a major impact on the result-
ing image. This section briefly describes how the camera tracking process can
be modified to faithfully visualize the same process when using the Vulkan API
instead of OpenGL.

The key differences are the following:

1. Vulkan NDC space is a right-handed coordinate system with the Y axis
pointing “downwards”. The depth range is changed from [—1, 1] to [0, 1].

2. The same is true for the Vulkan screen space. The screen origin is in the
top-left corner, as opposed to the bottom-left corner in OpenGL.

Note that these are differences between the default or “usual” Vulkan and
OpenGL coordinate systems. Both Vulkan and OpenGL offer ways to change
their coordinate systems to emulate each other. For example, in OpenGL, the
NDC space depth range can be controlled with glClipControl and the screen
space depth range with glDepthRange. Furthermore, the depth test comparison
function can be changed with glDepthFunc and the winding order of polygons
with glFrontFace. Meaning the graphics APIs can be made to use a wide
range of coordinate systems, but this thesis will focus on and compare the most
commonly used configurations in Vulkan and OpenGL.

The camera node, the new viewport transformation node and all of the
projection nodes (ortho, perspective and frustum) have been given an option to
switch their coordinate system to Vulkan. The new node variants are seen in
Figure 3.29.

For the transformation nodes, this changes how their matrix is constructed
from their respective parameters to account for the change in depth range. The
camera changes its assumptions about the viewing volume to ensure that the
camera frustum is visualized correctly. Screen nodes connected to the camera
also react by changing their assumptions about the screen space, placing the

Testing 69

frustum Wian J =se perspective Wisan

-1 1.1 Vie“’pon Thitican oo thu Wilican

X 0.0 left -5.0 left -1.0 fovy 1.2
y 0.0 right Rifame aspect 1.3
wifith 640.0 bottom Set display botton > near 1.0
height 480.0 top i } > far 10.0
near RN €A | pacimal digits >

far 1.0 far Unlock

Disable synergies
<> — -, A Coordinate system P Geo OpenGL

m Delete Delete

B Figure 3.29 New Vulkan variants of the camera, projection transformations and
viewport transformation.

3D computer monitor in the scene such that its top-left corner is placed in the
world origin. Tracking detects the change in the camera’s coordinate system and
adjusts the NDC and screen space axes indicators, so that the Y axis is visually
flipped during interpolation.

The comparison between Vulkan and OpenGL normalized device coordinates
of a camera with the same projection parameters can be seen in Figure 3.30.

3.4.6 User-defined reference frame

The reference frame feature from Section 3.4.1 can be set to use any user-defined
matrix, for example, the output of a sequence node, realizing TF07. Any of
the multiple scene view windows can be set a reference of any sequence from its
context menu: |Reference frame) Set as reference frame|. The reference frame is then
set to the inverse of the sequence’s model matrix Sy:

R =S,/

An example of a scene view with the reference frame set to a sequence that
defines the local coordinates of Jupiter in a Solar System scene can be seen in
Figure 3.31.

3.5 Testing

One testing session focused on the new tracking functionality was performed
with five students by Barbora [7]. Overall, the reception was positive. The
most notable complaint was that the matrices of the perspective decomposition

70 Tracking

B Figure 3.30 Comparison between Vulkan and OpenGL normalized device coordinates.

are not displayed anywhere, and so it is unclear what exactly the individual
matrix segments represent without prior knowledge about the decomposition.

Expanding transforms into multiple nodes inside a sequence is not a good
idea. Showing the matrices as part of the tracking slider is also potentially
very cluttered. A good solution would be to add a floating “popup node” above
the camera’s projection sequence, which could “expand” the projection transfor-
mation in order to view the individual matrices making up the decomposition,
with additional information available on hover. This popup would only be visi-
ble for the duration of the tracking operation progressing through the projection
sequence.

Testing

o e |8 &

Reference frame matrix: e |®
-0.71 -0.00 0,447_& 02 X
-0.00 0.83 -0.00 -0.57 —— :

044 -0.00 -0.71 819
-0.00 0.00 0.00 1.00

=1

World space

L

Edit Add View Debug Style

71

Vv jupiter /| =
(—
@ -06 00 -0.8 00)
00 1.0 00 00 o
=Ed 08 00 -06 00
00 00 0.0 1.0
Rename
Collapsenode
OTackng »
BB Reference frame | Set as reference frame in scene view
Decimaldigits P Reset A Scene View
Duplicate Ctiep | 4 Scene View2
o Delete Delete

B Figure 3.31 User-defined reference frame of Jupiter in a scene of the Solar System.

72

Tracking

Chapter 4

Discussion

DIWNE canvas zooming The zoom feature of the node editor could be
achieved by transforming resulting DrawlList vertex data, instead of scaling
Dear ImGui size variables. This approach probably should have been explored
in the beginning, but the old approach was already ingrained in the previous
DIWNE implementation, and is also used by a few older existing node editor
implementations. So the concept was not investigated much deeper.

But such an approach could significantly help with some of the current layout
issues and so is probably worth exploring in the future. The original zoom be-
haviour can be retained, and both methods could be implemented and switched
between for comparison. The current zoom behaviour can be disabled by fixing
the zoom level to one. The compiler would likely optimize any zoom factor cal-
culation overhead if this switch was made at compile-time. The DIWNE Canvas
class could be abstracted and contain two implementations.

Better text rendering Text tends to become unreadable with lower zoom
levels. There is some room for improvement within the implementation, but
unfortunately, this is largely a Dear ImGui issue, as its default implementation
of text rendering doesn’t support auto-hinting or sub-pixel rendering. There
is an experimental branch of Dear ImGui that could perhaps improve the current
rendering.

Clip space visualization This topic has not been explored in this thesis but
might be interesting. There are some attempts at visualizing the 4D homoge-
neous coordinates, but they are all somewhat confusing just due to the nature
of 4D.

Different types of perspective matrices Notably, ones with the reversed
NDC depth range of 1.0 to 0.0, which optimizes the floating point accuracy of
the depth buffer. Other example would be a perspective frustum with a far
plane at infinity.

73

Discussion

Frames and group nodes With generic support for nested nodes and the
fact that the node editor is itself a DiwneObject, nested node editors could be
supported. However, as this Blender dev article mentions (code.blender.org
/2012/01/improving-node-group-interface-editing/), inline group nodes with
visible inner graphs are not exactly the best approach, so a simple group node
that opens a second editor in another window or just as a window overlay would
also be possible, and likely not that difficult, as it is simply a matter of creating
and displaying a second NodeEditor instance.

Invalid matrix value highlighting Although invalid matrix value high-
lighting was mentioned in the assignment, it was given as an example and other
parts of the implementation took priority. The new DIWNE layout system
does improve the placement of the invalid matrix icon, but does not address
improvements like specific descriptions of the error, or indicators showing where
the error has occurred. Such functionality requires larger modifications of the
core node graph code, which was not the main focus of the workspace improve-
ments.

code.blender.org/2012/01/improving-node-group-interface-editing/
code.blender.org/2012/01/improving-node-group-interface-editing/

Chapter 5

Conclusion

The primary goal of the thesis has been largely fulfilled. The workspace user
interface implementation of I3T has been reworked and major issues with the
underlying DIWNE library have been addressed. Major improvements have
been made to the user interface. Giving the workspace a significant visual
upgrade that also majorly improved its usability and ease of interaction.

The work in progress implementation was consulted with and tested on
multiple occasions by a fellow student Barbora Halova, who was concurrently
working on a usability review of the application. This collaborative effort helped
gather crucial user feedback, whilst letting this thesis focus primarily on the
many aspects of the new implementation.

The DIWNE library was reworked from the ground up and predominantly
decoupled from the existing workspace Ul implementation that deals with the
specifics of I3T. The original ambition to completely separate the library did
not fully come into fruition due to time constraints, as the library is still kept
as a direct part of the application source code, but key parts of it do function
as an independent library, as it can be compiled and run as an independent
application. With little remaining effort, the last portion of I3T code responsible
for the new pin design can be moved into DIWNE and the library will be
ready for a stand-alone open-source release, expanding the Dear ImGui library
ecosystem.

The new codebase is accompanied by Doxygen documentation comments
and additional comments explaining basic principles, although for the codebase
to be released to the public, the documentation still needs some attention and
likely a separate set of documents explaining its higher-level concepts. For which
this thesis can serve as a basis.

Fundamental issues with input propagation and interaction modes have been
conceptually resolved in the form of the DrawInfo context object and an over-
arching object-oriented DiwneAction state.

75

Conclusion

The secondary goal of the thesis was thoroughly fulfilled, implementing
a fully interactive and animated visualization of all the camera transformations
within the context of OpenGL and Vulkan. The visualization was seamlessly
integrated into the existing transformation tracking functionality, which in itself
has been significantly improved using the new workspace Ul implementation.

The new camera tracking fills the conceptual gap between world and screen
space coordinates that could not have been previously easily explored within
I3T. Allowing the user to physically view the journey model vertices take through
the often opaque and hard-to-understand mechanism of the perspective camera,
all the way to the final screen space coordinates, which get rasterized onto the
screen.

With this functionality, essential concepts like the “lookAt” transformation,
viewport transformation, or the non-linear effects of the perspective divide can
be explored. With only the notable omission of the clip space coordinates, which
have been mostly omitted, as they cannot be easily visualized in a 3D world.

As a side effect of the camera tracking implementation, the reference frame
feature has been added to all sequences in the workspace, allowing the user to
view the 3D scene from the point of view of any transformation, while displaying
the relative orientation of the original world using a second rotated infinite grid.
Hopefully further deepening the understanding of regular model transformations
13T focused on from its inception. Or at least making experimenting with them
more interesting.

To add context, the 3D scene can now be viewed from multiple independent
cameras at the same time, possibly each with a different reference frame, which
was previously not possible.

Proof.

Appendix A

Multiple perspective
projections

Comparison of transforming a 3D point by two distinct OpenGL perspective pro-
jection matrices with the perspective divide being performed once at the end,
and twice after each matrix multiplication. This serves as a basic proof that the
perspective division operation can truly be performed just once, despite apply-
ing multiple distinct projection matrices. The proof certainly isn’t definitive,
as an intermediary view transformation between the projections is omitted. For
simplicity, a symmetrical perspective projection matrix is used with r =t =1
and [= b = —1. Although the result is the same for any valid values of those

parameters.

» Proposition A.1. Given two distinct projection matrices Ps and P, and
a 3D point x, are the two following sequences of operations equivalent?

Pers Pers
Pw 14 x/ - Ps / 14 1
divide divide
Persp.
PPz —2 1y
divide
?
T =712
n 0 0 0 T ne
Por— 0 n 0 0 Y - ny Persp.
w 0 0 —f-n _ 2fn . _ 2fn+fz+nz divide
f-n f-n f-n
0 0 -1 0 1 —z

77

_nx
z

_ny
z

2fn+fz4+nz

fz—nz

1

/

(A1)

78 Multiple perspective projections
) o) [NITNg
ns 0 0 0 - ngfns
0 0 0 - z
Psx,: s z = (fs+ns)(2fn+fz+nz)+2fn
—JsT s 2 slls 2
0 0 e —jln || Asties AL —n) —
fs —Ns
I 0 0 -1 0 11 1 | Sfnifaine
L fz—nz
| nans(f —n) i
2fn+ fz+nz
nyns(f —n)
:PBTSP' 2fn+ fz+nz
divide | ns(2fn+ fz4+nz)+ fs 2z(f —n)ns +2fn+ fz+ nz)
(fs = ns) (2fn+ fz +nz)
1
ng 0 0 0 n 0 0 0 T
PP e 0 ng 0 0 0 n 0 0 vyl
S B = e = N = A N
0 0 -1 0 0 0 -1 0 1
nng 0 0 0
0 nng 0 0 v
= 0 0 (f+n)ns+ fs (f +n+2(f —n)ny) 2fn (fs +ns) Z
(f —n) (fs — ns) (f =);fs_nS) 1
0 0 fin 2fn
f—n f—n
i NnIrns T
nYns
_ | ns@2fn+ fr+nz) + fs 22(f —n)ns +2fn+ fz+nz) | Persp.
(f — n) (fs — ns) divide
2fn+ fz+nz
L f—n J
i nans(f —n) 7
2fn+ fz+nz
nyns(f —n)
Persp. 7 W 7
— 2fn+ fz+nz
divide

ns(2fn+ fz+nz) + fs (22(f —n)ns + 2fn+ fz + nz)
(fs =ns) (2fn+ fz + n2)
1

=77

Persp.
3

divide

:7’2

(A.2)

(A.3)

List of acronyms

API Application Programming Interface
CTU Czech Technical University in Prague
DIWNE Dear ImGui Wrapper Node Editor
DPI Dots Per Inch

FEL Faculty of Electrical Engineering
FIT Faculty of Information Technology
GLFW Graphics Library Framework

GLM OpenGL Mathematics

GUI Graphical User Interface

13T Interactive Tool for Teaching Transformations
NDC Normalized Device Coordinates

RAII Resource Acquisition Is Initialization

Ul User Interface

79

80

List of acronyms

Glossary

affine transformation

A type of geometric transformation that preserves points, straight lines,
and planes. It includes operations such as translation, scaling, rotation, and
shearing. Affine transformations maintain parallel lines but not necessarily
distances and angles. 34, 38, 42

camera frustum

The 3D volume captured by the camera. Sometimes referred to as the
viewing frustum or viewing volume. The term frustum refers to the shape
of the captured volume which is a quadrilateral truncated pyramid when
using the perspective projection. However at least in this text, the viewing
volume is still referred to as a frustum even in cases when it takes shape
of a simple rectangular cuboid, like when using the simpler orthographic
projection for example. 4, 33

clip space

The coordinate system projection transformations map into from view space
before performing the perspective divide. The divide doesn’t need to be
performed when not using the perspective projection, in which case the clip
space and normalized device coordinates are equivalent. 38, 42

mockup testing

Mockup testing involves testing a mockup, which is an early prototype or
a simplified representation of a product, to evaluate its design, usability, and
performance. 27, 31

node editor

A user interface component that is made out of draggable nodes on an
infinite canvas that can be connected together to form a graph. 1

81

82 Glossary

normalized device coordinates

The coordinate system projection transformations map into from the view
space. If the w component of a transformed vector is not equal to one, like
it is the case after applying a perspective projection, a perspective division
must be performed to reach NDC. The space before applying the perpsec-
tive divide (or homogeneous division [14, p. 169]) is called clip space [14,
p. 141]. Normalized device coordinates are usually followed by a fixed func-
tion viewport transformation done in hardware that maps vertices into the
final screen space coordinates, on which rasterization is performed. 38, 40,
62, 66, 81

projection matrix
A transformation matrix used to map 3D coordinates from view space to
normalized device coordinates. 33

view matrix

A view matrix is a transformation that converts world coordinates into view
space coordinates (determining the observer’s position and setting the view-
ing direction. [20, p. 307] 33, 38

10.

Bibliography

FOLTA, Michal. Teaching of Transformations. 2016. Available also from:
http://hdl.handle.net /10467/64836. Master’s thesis. FEL CTU.

HERICH, Martin. Restructuralization of Interactive Tool IS8T for Teach-
ing Transformations and Reimplementation of User Interface Using Dear
ImGui Library. 2021. Available also from: http://hdl.handle.net/10467/9
6746. Bachelor “s thesis. FEL CTU.

RAKUSAN, Dan. Scene view for the I3T application. 2023. Available also
from: http://hdl.handle.net/10467/109656. Bachelor s thesis. FIT CTU.

GRUNCL, Daniel. Transformation manipulators and scripting in I3T.
2021. Available also from: http://hdl.handle.net /10467 /94657. Bache-
lor“s thesis. FEL CTU.

CORNUT, Omar. Dear ImGui Bloat free Graphical User interface for C++
[online]. 2014. [visited on 2025-01-19]. Available from: https://github.com
/ocornut /imgui.

HOLECEK, Jaroslav. Adaptive learning in IS8T software for education of

geometric transformations. 2023. Available also from: http://hdl.handle.n
et/10467/107077. Master’s thesis. FEL CTU.

HALOVA, Barbora. User research and UX review of the IST app. Design
and prototyping to improve the usability of the 13T app. 2025. Bachelor s
thesis. FEL CTU.

HERICH, Martin. Scripting in 13T and automating GitHub publishing.
2025. Available also from: http://hdl.handle.net/10467/120310. Master’s
thesis. FEL CTU.

CICHON, Michat. Node Editor in ImGui [online]. 2016. [visited on 2025-
01-19]. Available from: https://github.com/thedmd/imgui-node-editor.

FLANAGAN, David. JavaScript: the definitive guide. “ O’Reilly Media,
Inc.”, 2011.

83

http://hdl.handle.net/10467/64836
http://hdl.handle.net/10467/96746
http://hdl.handle.net/10467/96746
http://hdl.handle.net/10467/109656
http://hdl.handle.net/10467/94657
https://github.com/ocornut/imgui
https://github.com/ocornut/imgui
http://hdl.handle.net/10467/107077
http://hdl.handle.net/10467/107077
http://hdl.handle.net/10467/120310
https://github.com/thedmd/imgui-node-editor

84

11.

13.

14.

15.
16.

17.

18.

19.

20.

Bibliography

CICHON, Michat. ImGui Stack Layout [online]. 2025. [visited on 2025-03-
23]. Available from: https://github.com/thedmd/imgui/tree/feature/layo
ut-external.

SEGAL, Mark; AKELEY, Kurt. The OpenGL® Graphics System: A Spec-
ification (Version 4.6 (Core Profile)-May 5, 2022). The Khronos Group.-
2006-2022 (hitps:/ /registry. khronos. org/OpenGL/specs/ql/glspec46. core.
pdf). 2022,

SHIRLEY, Peter; ASHIKHMIN, Michael; MARSCHNER, Steve. Funda-
mentals of computer graphics. AK Peters/CRC Press, 2009.

DE VRIES, Joey. Learn opengl. Licensed Under CC BY. 2015, vol. 4.

JOSH’S CHANNEL. In Video Games, The Player Never Moves. 2022.
Available also from: https://www.youtube.com/watch?v=wiYTxjJjfxs.

STROUSTRUP, Bjarne; SUTTER, Herb, et al. C++ Core Guidelines [on-
line|. 2025. [visited on 2025-05-16]. Available from: https://isocpp.github.i
0/CppCoreGuidelines/CppCoreGuidelines.

BROWN, Wayne. LearnWebGL - Perspective Projections [online]. 2025.
[visited on 2025-04-30]. Available from: https://learnwebgl.brown37.net/0
8 projections/projections_ perspective.html#building-the-prospective-pr
ojection-transform.

KHRONOS GROUP, The Khronos® Vulkan Working Group. Vulkan®
1.4.815 - A Specification (with all registered extensions) [online]. 2025.
[visited on 2025-05-09]. Available from: https://registry.khronos.org/vulk
an/specs/latest/pdf/vkspec.pdf.

ZARA, Jiti; BENES, Bedfich; SOCHOR, Jiif; FELKEL, Petr. Modern
Computer Graphics (2nd edition). Computer press, 2005. ISBN 80-251-
0454-0.

https://github.com/thedmd/imgui/tree/feature/layout-external
https://github.com/thedmd/imgui/tree/feature/layout-external
https://www.youtube.com/watch?v=wiYTxjJjfxs
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://learnwebgl.brown37.net/08_projections/projections_perspective.html#building-the-prospective-projection-transform
https://learnwebgl.brown37.net/08_projections/projections_perspective.html#building-the-prospective-projection-transform
https://learnwebgl.brown37.net/08_projections/projections_perspective.html#building-the-prospective-projection-transform
https://registry.khronos.org/vulkan/specs/latest/pdf/vkspec.pdf
https://registry.khronos.org/vulkan/specs/latest/pdf/vkspec.pdf

12.

Image sources

DE VRIES, Joey. OpenGL coordinate systems [online]. 2017. [visited on
2025-05-16]. Available from: https://learnopengl.com/Getting-started/Co
ordinate-Systems. Licensed under CC BY-SA 4.0 (http://creativecommo
ns.org/licenses/by/4.0/).

85

https://learnopengl.com/Getting-started/Coordinate-Systems
https://learnopengl.com/Getting-started/Coordinate-Systems
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

86

Image sources

Contents of the attachment

The attached medium contains relevant parts of the source code of the ap-
plication. An executable version of the application for Windows is located in
a compressed archive in the bin directory.

The source code does not contain all necessary files to build the application.
The application is, however, open source and published at the following GitHub
repository:

https://github.com/i3t-tool /i3t

A more recent version of the application is usually available at the internal CTU
FEL GitLab repository:
https://gitlab.fel.cvut.cz/i3t-diplomky /i3t-bunny

readine. tXt . . oo
DA . o
| 13T -binary.zip Archive with the Windows executable
SCEIES v v ettt et Additional camera tracking scenes
STC .ttt ettt et e Source code of the application
SOUTCE .. v vt Main C++ source code directory
et oo GTest test cases
Data
LoShaders. ..o Used GLSL shaders

87

https://github.com/i3t-tool/i3t
https://gitlab.fel.cvut.cz/i3t-diplomky/i3t-bunny

	Acknowledgments
	Abstract
	Abstrakt
	Introduction
	Goals
	Thesis structure
	Application overview
	Concurrent work
	Codebase

	The workspace
	Dear ImGui library
	DIWNE library
	Existing issues
	Codebase
	Functionality and appearance

	New DIWNE library
	Refactoring
	New architecture
	Input propagation
	Object lifecycle and input processing
	Actions in DIWNE
	Node containers
	Node iterators
	Layouting

	Workspace improvements
	Iterative design process
	Notable design changes

	Tracking
	Analysis
	Standard tracking
	Camera tracking
	Perspective projection visualization
	Reference frame

	Current implementation
	Functionality and user interface
	Codebase

	New implementation
	New architecture
	Traversal iterators
	MatrixTracker object
	User interface

	Camera tracking implementation
	Reference frame and view space
	Multiple scene views
	Camera projection
	Viewport transformation
	Vulkan support
	User-defined reference frame

	Testing

	Discussion
	Conclusion
	Multiple perspective projections
	List of acronyms
	Glossary
	Contents of the attachment

