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algorithm in the real-time rendering framework Falcor from NVIDIA. We start with
an introduction to the problematic of ray tracing. Then we go through several ray
tracing algorithms. Ending with the mentioned focal path guiding algorithm. We
describe the implementation written in GPU shaders. In the end, we evaluate this
implementation on different scenes and identify its strengths and weaknesses.

Key words: ray tracing, path guiding, photorealistic computer graphics

Název práce:
Navádění světelných cest podle ohnisek

Autor: Bc. Petr Šádek

Vedoucí práce: doc. Ing. Jiří Bittner, Ph.D.

Abstrakt: Hlavním cílem této práce je reimplementace algoritmu navádění světel-
ných cest podle ohnisek v real-time renderovacím frameworku Falcor od NVIDIA.
Začneme úvodem do problematiky vrhání paprsků. Poté se podíváme na různé
metody vrhání paprsků. Jako poslední z nich popíšeme zmíněný algoritmus navádění
světelných cest podle ohnisek. Popíšeme implementaci napsanou v GPU shaderech.
Na konec zhodnotíme tuto implementaci na různých scénách a identifikujeme její
kvality a nedostatky.

Klíčová slova: vrhání paprsků, navádění cest, fotorealistická počítačová grafika



Contents

Acronyms xi

List of Figures xii

1 Introduction 1

2 Ray Tracing 3
2.1 Physics background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 BRDF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 Reflection Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.3 Rendering Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Monte Carlo Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 Uniform Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Importance Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.3 Multiple Importance Sampling . . . . . . . . . . . . . . . . . . . . . . 7
2.2.4 Path Tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Scene Intersections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 ReSTIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4.1 Resampled Importance Sampling . . . . . . . . . . . . . . . . . . . . . 9
2.4.2 Weighted Reservoir Sampling . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.3 Spatiotemporal Reuse . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4.4 ReSTIR Global Illumination . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Path Guiding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5.1 Collecting Estimated Radiance . . . . . . . . . . . . . . . . . . . . . . 12
2.5.2 Tree Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5.3 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.6 Focal Path Guiding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.6.1 Estimating Focal Densities . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6.2 Tree Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6.3 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Implementation 19
3.1 Falcor Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1.1 NVIDIA Raytracing Pipeline . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Render Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Focal Density Octree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.1 Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.2 Ray Traversal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Focal Density Accumulation Pass . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4.1 Initial Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4.2 Narrowing Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 Splitting Pass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.6 Pruning Pass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

viii



Contents ix

3.7 Focal Path Guiding Pass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.8 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.8.1 Focal Density Visualization . . . . . . . . . . . . . . . . . . . . . . . . 31
3.8.2 Ray Sampling Visualization . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Results and Evaluation 35
4.1 Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Focal Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.1 Direct Light Source . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.2 Indirect Light Source . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.3 Lens Focal Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.4 Camera Obscura . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Complex Scenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.1 Bistro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.2 Dining Room . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Conclusion 47

Bibliography 49

Appendix 51
A Source code repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
B NVIDIA Falcor framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
C Blender . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51





Acronyms

AABB Axis-Aligned Bounding Box

BRDF Bidirectional Reflectance Distribution Function

BSDF Bidirectional Scattering Distribution Function

CPU Central Processing Unit

FPS Frames Per Second

GI Global Illumination

GPU Graphics Processing Unit

GUI Graphical User Interface

IS Importance Sampling

MIS Multiple Importance Sampling

MSE Mean Squared Error

PDF Probability Density Function

RIS Resampled Importance Sampling

ReSTIR Reservoir-based Spatio-Temporal Importance Resampling

xi



List of Figures

1.1 Camera obscura scene comparison . . . . . . . . . . . . . . . . . . . . 1

2.1 BRDF terms visualized . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Path tracing visualized . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Comparison of ReSTIR and ReSTIR GI . . . . . . . . . . . . . . . . 11
2.4 Spatio-directional subdivision trees . . . . . . . . . . . . . . . . . . . 12
2.5 Different types of focal points . . . . . . . . . . . . . . . . . . . . . . 14
2.6 Comparison of path guiding methods . . . . . . . . . . . . . . . . . . 14
2.7 Visualization of the focal density estimation . . . . . . . . . . . . . . 15
2.8 Visualization of the octree pruning . . . . . . . . . . . . . . . . . . . 17

3.1 Example render graph in Falcor framework . . . . . . . . . . . . . . . 20
3.2 Mogwai application from Falcor framework . . . . . . . . . . . . . . . 20
3.3 NVIDIA Raytracing Pipeline . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Focal path guiding render graph in Falcor . . . . . . . . . . . . . . . 22
3.5 Focal path guiding render graph flow diagram . . . . . . . . . . . . . 23
3.6 Octree data structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.7 Focal density octree node structure . . . . . . . . . . . . . . . . . . . 24
3.8 Initial phase of density accumulation . . . . . . . . . . . . . . . . . . 27
3.9 Narrowing phase of density accumulation . . . . . . . . . . . . . . . . 28
3.10 Splitting together with narrowing . . . . . . . . . . . . . . . . . . . . 28
3.11 Pruning of the focal density octree . . . . . . . . . . . . . . . . . . . 29
3.12 Focal path guiding algorithm used on a simple scene . . . . . . . . . . 30
3.13 Visualization of focal densities . . . . . . . . . . . . . . . . . . . . . . 31
3.14 Maximum intensity projection visualization of focal densities . . . . . 32
3.15 Average intensity projection visualization of focal densities . . . . . . 32
3.16 Visualization of ray paths . . . . . . . . . . . . . . . . . . . . . . . . 33
3.17 Visualization of PDF . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1 Simple Cornell box with just the light . . . . . . . . . . . . . . . . . . 36
4.2 Simple Cornell box comparison . . . . . . . . . . . . . . . . . . . . . 37
4.3 Indirect light source . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4 Indirect light source comparison . . . . . . . . . . . . . . . . . . . . . 38
4.5 Indirect analytical light source . . . . . . . . . . . . . . . . . . . . . . 38
4.6 Indirect analytical light source comparison . . . . . . . . . . . . . . . 39
4.7 Lens focal point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.8 Lens focal point comparison . . . . . . . . . . . . . . . . . . . . . . . 40
4.9 Camera obscura in Blender . . . . . . . . . . . . . . . . . . . . . . . . 41
4.10 First few samples of the camera obscura render . . . . . . . . . . . . 42
4.11 Density visualization of the camera obscura scene . . . . . . . . . . . 42
4.12 Camera obscura scene comparison . . . . . . . . . . . . . . . . . . . . 43

xii



List of Figures xiii

4.13 Bistro scene comparison . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.14 Bistro scene densities . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.15 Dining room comparison . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.16 Dining room densities . . . . . . . . . . . . . . . . . . . . . . . . . . . 45





Chapter 1

Introduction

Focal path guiding is a specialized method of ray tracing. Ray tracing is a
general term for computer graphics methods that use simulation of rays of light
to compute (photorealistic) images of an artificial scene. There are many different
approaches to ray tracing. We will go over some of them in the following chapter. We
will start with the necessary theory to describe the distribution of light in the scene.
Then we will go over the methods, starting with the simple ones, then continuing to
more complicated ones, and finally ending with the main focus of this thesis - focal
path guiding.

The distinguishing aspect of this method is its ability to recognize focal points.
Focal points are, in general, some small areas of space with high density of light
passing through them. Some examples of focal points are caustics or focal points
of lenses. This method is the first one that generalizes for handling of all possible
types of focal points. Up until now, there were only methods that specialize just for
a subset of them. This method is even capable of effectively rendering the famous
camera obscura scene (figure 1.1).

Figure 1.1: Camera obscura scene comparison of multiple methods (Rath et al. 2023 [1]).

The main goal of this thesis is to re-implement the focal path guiding algorithm
from Rath et al. 2023 [1] in real-time rendering framework Falcor [2] from NVIDIA.
It will be described in the chapter 3. The hardest challenge is the transition from
their CPU implementation to the GPU implementation in Falcor shaders. Some
simplifications of the original algorithm must be made for this transition to be
possible.
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Chapter 2

Ray Tracing

Ray tracing, in general, is a simulation of interactions of rays of light with
some artificial scene. Specifically, this thesis concentrates on applications of ray
tracing in realistic image synthesis, but the concept of ray tracing is used in many
different areas other than computer graphics such as, for example, estimation of
signal strength for wireless networks, ballistic analysis, or optical design of lenses.

Ray tracing in computer graphics is a somewhat inverse approach to rasteri-
zation. Rasterization projects every visible object in the scene onto the screen and
colors the associated pixels. On the other hand, ray tracing goes through every pixel
and computes its color based on intersections of shot rays with scene objects.

In most applications, we do specifically backward ray tracing, which means that
we are shooting rays of light from the viewer to the light sources. This may be a
little counterintuitive, because in reality it happens in the opposite direction. But
because we are only interested in light which hits the viewers eyes, it is more effective
to shoot rays from the eye, let it bounce in the scene until it hits some light source,
and then reconstruct the light contribution from this path as would happen in the
opposite direction.

In this chapter, we will first describe required theoretical light physics back-
ground - BRDF [3] and the rendering equation [4]. Then we will go through several
ray tracing methods. There are many ways to approach ray tracing. Some might be
targeting more for computational speed, others for quality, they can be biased/un-
biased, or specialized for some specific scene conditions or some specific light effects.
We will start by describing the basic path tracing method [4], which is a general
approach to solving the rendering equation and works as a foundation for other
methods that we will describe. After that, we will continue with ReSTIR [5], [6], [7],
which introduces a smart way of sampling to make path tracing more effective. In
the end, we will look at path guiding [8], [9] and its variant focal path guiding [1],
which is the main topic of this thesis.

3



4 Chapter 2. Ray Tracing

2.1 Physics background
To express the amount of light at some point in space and in some direction we

will use physical quantity radiance, mostly represented by the symbol 𝐿 with unit
[𝑊𝑚−2𝑠𝑟−1]. It basically means how many photons are emitted in some direction
in unit solid angle on unit area in one unit of time.

2.1.1 BRDF
Now we need to describe how the light interacts with some surface with some

kind of material. Basic light interactions with some material at some point in space
can be described with the relationship of incoming and outgoing radiance. The func-
tion describing this relationship is called the bidirectional reflectance distribution
function (BRDF [3]) and looks like this:

𝑓 (𝜔𝑖, 𝑥, 𝜔𝑜) = 𝑑𝐿𝑜 (𝑥, 𝜔𝑜)
𝑑𝐸 (𝑥, 𝜔𝑖)

= 𝑑𝐿𝑜 (𝑥, 𝜔𝑜)
𝐿𝑖 (𝑥, 𝜔𝑖) cos 𝜃𝑖𝑑𝜔𝑖

Figure 2.1: BRDF terms visualized.

Where 𝑓 is the BRDF, 𝑥 is a point on the surface, 𝜔𝑖 and 𝜔𝑜 are the incoming
and outgoing directions and 𝜃𝑖 is an angle between the incoming direction and the
surface normal. You can see these terms visualized on figure 2.1. We can see that
it is simply the ratio of change in outgoing radiance 𝐿𝑜 and change in incoming
irradiance 𝐸. Irradiance is similar to radiance, but it’s not dependent on the solid
angle (the unit is [𝑊𝑚−2]). Therefore, there is a relationship between radiance and
irradiance that we can use to obtain the final identity with only radiances. This
function could also be defined for each light wavelength separately, but in computer
graphics we typically reduce the problem to just RGB.

With the BRDF we can express many different properties of the material, such
as the overall color by changing how much of the light is reflected and how much is
absorbed for each color channel, or for example glossiness by increasing the reflected
amount around the perfect reflection direction. There are many illumination models
for describing the BRDF. One of the most basic ones is Phong’s illumination model,
which divides the light into 2 components, diffuse and specular. But there are more
complicated models such as Cook-Torrance or Ward.
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2.1.2 Reflection Equation
Now that we have the description of interaction with the surface materials, it’s

time to compute how much radiance we actually see when looking at some point
from some direction. From the BRDF formula, we can derive:

𝑓 (𝜔𝑖, 𝑥, 𝜔𝑜) = 𝑑𝐿𝑜 (𝑥, 𝜔𝑜)
𝐿𝑖 (𝑥, 𝜔𝑖) cos 𝜃𝑖𝑑𝜔𝑖

𝑑𝐿𝑜 (𝑥, 𝜔𝑜) = 𝐿𝑖 (𝑥, 𝜔𝑖) 𝑓 (𝜔𝑖, 𝑥, 𝜔𝑜) cos 𝜃𝑖𝑑𝜔𝑖

𝐿𝑜 (𝑥, 𝜔𝑜) =
∫︁
Ω

𝐿𝑖 (𝑥, 𝜔𝑖) 𝑓 (𝜔𝑖, 𝑥, 𝜔𝑜) cos 𝜃𝑖𝑑𝜔𝑖

In this way, we can obtain the total reflected radiance by integrating over a
hemisphere Ω of all input angles. Also, the material itself could emit some light, so
we will add the term 𝐿𝑒 and we will get the local reflection equation:

𝐿𝑜 (𝑥, 𝜔𝑜) = 𝐿𝑒 (𝑥, 𝜔𝑜) +
∫︁
Ω

𝐿𝑖 (𝑥, 𝜔𝑖) 𝑓 (𝜔𝑖, 𝑥, 𝜔𝑜) cos 𝜃𝑖𝑑𝜔𝑖

2.1.3 Rendering Equation
However, the previous equation describes only the local behavior of the light.

It ignores the fact that the light may bounce multiple times before reaching its
destination. So, we will introduce a function 𝑟 (𝑥, 𝜔𝑖) that returns the surface position
𝑦 from where the light comes. Now we can describe the input radiance as the output
radiance of the previous reflection.

𝐿𝑖 (𝑥, 𝜔𝑖) = 𝐿𝑜 (𝑦, −𝜔𝑖) = 𝐿𝑜 (𝑟 (𝑥, 𝜔𝑖) , −𝜔𝑖)

By applying this to the local reflection equation, we will finally get the rendering
equation [4], which describes global light propagation in the scene. For simplicity,
we will replace 𝐿𝑜 with just 𝐿.

𝐿 (𝑥, 𝜔𝑜) = 𝐿𝑒 (𝑥, 𝜔𝑜) +
∫︁
Ω

𝐿 (𝑟 (𝑥, 𝜔𝑖) , −𝜔𝑖) 𝑓 (𝜔𝑖, 𝑥, 𝜔𝑜) cos 𝜃𝑖𝑑𝜔𝑖

We could use another form of this equation, which is more useful in some
scenarios. Instead of integrating over all directions on the hemisphere Ω, we could
integrate over all surfaces in the scene 𝑆. We achieve this by substituting 𝑑𝜔 =
𝑑𝐴 cos Θ

𝑟2 .

𝐿 (𝑥, 𝜔𝑜) = 𝐿𝑒 (𝑥, 𝜔𝑜) +
∫︁
𝑆

𝐿 (𝑦, 𝑦 → 𝑥) 𝑓 (𝑥 → 𝑦, 𝑥, 𝜔𝑜) 𝐺 (𝑥, 𝑦) 𝑉 (𝑥, 𝑦) 𝑑𝐴

Where 𝑦 is the point from which the light comes, 𝑦 → 𝑥 is a unit directional
vector from 𝑦 to 𝑥, 𝐺 (𝑥, 𝑦) = cos Θ𝑥 cos Θ𝑦

𝑟2 is the geometric term, which decreases the
incoming radiance by distance 𝑟 and by cosines of angles to the surface normals,
𝑉 (𝑥, 𝑦) is the visibility term, which is 1 when 𝑦 is visible from 𝑥 and 0 otherwise.
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2.2 Monte Carlo Integration
Now that we have the model for describing global illumination, it’s time to

compute our radiance at some desired position and direction by solving the rendering
equation. But this is a very hard problem, the equation contains something like an
infinite recursive integral. Even for very simple scenes, it is nearly impossible to
solve this problem analytically. So, we will have to solve it numerically, in this case
specifically by Monte Carlo integration [10].

First, we will show how to integrate locally with one bounce with different
sampling methods. We will then extend it to paths with multiple bounces, and thus
using the path tracing algorithm.

2.2.1 Uniform Sampling
We will first simplify the rendering equation in the form with integral over

surfaces. We will drop the surface point 𝑥 and the viewing direction 𝜔𝑜 (look at
them as inner parameters). We will denote the function inside the integral as 𝑙 and
rename the point 𝑦 to 𝑠.

𝑙 (𝑠) = 𝐿 (𝑠, 𝑠 → 𝑥) 𝑓 (𝑥 → 𝑠, 𝑥, 𝜔𝑜) 𝐺 (𝑥, 𝑠) 𝑉 (𝑥, 𝑠)

𝐿 =
∫︁
𝑆

𝑙 (𝑠) 𝑑𝐴

Now we can approximate this integral by uniformly generating 𝑁 random sam-
ples 𝑠1 . . . 𝑠𝑁 . And averaging their 𝑙 function results:

⟨𝐿⟩𝑁
𝑢𝑛𝑖𝑓𝑜𝑟𝑚 = 1

𝑁

𝑁∑︁
𝑖=1

𝑙 (𝑠𝑖)

This is the simplest Monte Carlo estimator. Increasing the number of samples
should increase the quality of the approximation. It works, but it converges to the
correct solution very slowly. Because we are sampling all the points with the same
uniform probability, we will generate many samples whose contribution to the result
is minimal (for example, points in the darker places in the scene).

2.2.2 Importance Sampling
To solve the problems of uniform sampling, we could sample the points with

different probabilities 𝑝 (𝑠𝑖) based on how important they are - how much they
contribute to the result (thus importance sampling). However, for the result to
remain unbiased (the average should converge to the integral), we need to weight
the results by 1/𝑝 (𝑠𝑖).

⟨𝐿⟩𝑁
𝑖𝑠 = 1

𝑁

𝑁∑︁
𝑖=1

𝑙 (𝑠𝑖)
𝑝 (𝑠𝑖)

In this way, the results of more probable samples will be decreased, and the
results of less probable samples will be increased, which balances the fact that more
probable samples will be generated more often.
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If the probabilities are chosen well, then we converge faster to better solutions.
The problem is that we do not know the actual underlying distribution. However,
we can use some pretty good estimates that somehow correlate with the results
of the 𝑙 function. We could use BRDF sampling, which samples directions with
higher BRDF with higher probability (for example, sampling according to diffuse
and specular components in the Phong reflectance model [11]), or we could use
light source sampling, which samples directions to light sources depending on their
emitted power (for example, sampling directions in environmental map based on
intensities at each pixel [12]).

2.2.3 Multiple Importance Sampling
We can improve the previous approach by combining multiple probability den-

sity functions (MIS [13]). For example, combining the BRDF sampling with light
source sampling. If we have 𝑀 such sampling methods, we generate 𝑁1 . . . 𝑁𝑀 num-
bers of samples for each method, then we combine the results with the following
estimator:

⟨𝐿⟩𝑀,𝑁
𝑚𝑖𝑠 =

𝑀∑︁
𝑗=1

1
𝑁𝑗

𝑁𝑗∑︁
𝑖=1

𝑤𝑗 (𝑠𝑖)
𝑙 (𝑠𝑗,𝑖)
𝑝𝑗 (𝑠𝑗,𝑖)

We have added another weight 𝑤𝑗 (𝑠𝑖), which should compensate for the different
sampling of different methods. It is recommended to use, for example, the balance
heuristic:

𝑤𝑗 (𝑠) = 𝑁𝑗𝑝𝑗 (𝑠)
𝑀∑︀

𝑘=1
𝑁𝑘𝑝𝑘 (𝑠)

If we use the balance heuristic and the numbers of samples are all the same,
then the estimator simplifies to the following:

⟨𝐿⟩𝑀,𝑁
𝑚𝑖𝑠 = 𝑀

𝑁

𝑀∑︁
𝑗=1

𝑁/𝑀∑︁
𝑖=1

𝑙 (𝑠𝑗,𝑖)
𝑀∑︀

𝑘=1
𝑝𝑘 (𝑠𝑗,𝑖)

So, in the end instead of dividing by one probability, we divide by sum of
probabilities of the current sample with respect to all the sampling methods. This
ensures that the better sampling method for the specific scenario has more impact
on the result.

2.2.4 Path Tracing
In path tracing [4], we recursively create a path of multiple bounces. At each

bounce, we compute the light source sample and add it to the result. At each bounce,
we randomly decide based on the albedo of the material whether to continue the
path or not (if we don’t continue, then it means the light was absorbed by the
material). If we decide to continue, then we create a new bounce by computing the
BRDF sample. Similarly to integrating multiple outgoing samples in methods with
just one bounce, we will integrate multiple path samples by uniformly averaging
their results.
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This algorithm is very simple to implement. It should be unbiased and should
slowly converge to correct solutions. So, it is mostly used as a reference algorithm
for comparison with some other more optimized algorithms. You can see simple
depiction of path tracing on figure 2.2.

Figure 2.2: Path tracing visualized.

2.3 Scene Intersections
We should also mention one complicated part of ray tracing, which is finding

ray intersections with the scene objects. It is not the main focus of this thesis, but it
has great impact on the performance of ray tracing algorithms and it is the reason
that rasterization is more beneficial in terms of performance for computation of di-
rect illumination. The problem is usually solved by using some kind of hierarchical
data structure, which accelerates spatial search of scene objects (typically triangles),
giving us candidates of objects that could intersect the ray. For each of these candi-
dates, we perform an intersection test to check if the intersection actually happens.
The popular data structures for this task with best practical results are kd-trees [14]
and BVH (bounding volume hierarchy [15]) trees. We will use similar types of data
structure in this thesis for path guiding, namely an octree [16].
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2.4 ReSTIR
In this section, we will describe the Reservoir-based Spatio-Temporal Impor-

tance Resampling (ReSTIR [6]) algorithm, which drastically improves the render
time performance in comparison with the classical path tracer. First, we will de-
scribe a variant of this algorithm limited to direct illumination, starting with a new
sampling algorithm (RIS [5]), then simplifying this sampling process by using reser-
voirs and then reusing samples by combining multiple reservoirs. In the end, we will
look at a generalized variant of this algorithm for computing global illumination [7].

2.4.1 Resampled Importance Sampling
The main principle of Resampled Importance Sampling (RIS [5]) is that we gen-

erate 𝑀 samples {𝑠1, . . . , 𝑠𝑀} according to some simple PDF 𝑝 and then randomly
select one of them with probabilities proportional to some more complicated PDF
𝑝. The simple PDF 𝑝 should be easy to sample from, it could be, for example, light
source sampling. The complicated PDF 𝑝 should be something that better repre-
sents the actual underlying distribution of radiance in the scene, but we may not be
able to sample from it. We could choose 𝑝 as the unshadowed light contribution of
the sample 𝐿 (𝑠, 𝑠 → 𝑥) 𝑓 (𝑥 → 𝑠, 𝑥, 𝜔𝑜) 𝐺 (𝑥, 𝑠), which is basically the inside of the
integrand in the rendering equation without the visibility term 𝑉 (𝑥, 𝑠). In this way,
by selecting the samples proportional to 𝑝 we approximate the underlying distribu-
tion of radiance in the scene and thus select samples with higher contributions more
often.

We will now concentrate on how to select the sample with probability propor-
tional to 𝑝 from 𝑀 generated candidates. In our case, if we choose 𝑝 to be the
mentioned unshadowed light contribution, then 𝑝 is not even a valid PDF, because
the result of the integration over it may be greater than 1. But that won’t be a
problem, because we will construct a new valid PDF from 𝑝 for selection of the
samples in the following way. First, we will define weights 𝑤 as ratio of complicated
PDF 𝑝 and simple PDF 𝑝:

𝑤(𝑠) = 𝑝(𝑠)
𝑝(𝑠)

Then the probability of selecting index 𝑖 ∈ {1, . . . , 𝑀} from candidate samples
s = {𝑠1, . . . , 𝑠𝑀} is:

𝑝 (𝑖 | s) = 𝑤(𝑠𝑖)
𝑀∑︀

𝑗=1
𝑤(𝑠𝑗)

We can clearly see that this PDF sums up to 1 and the probabilities are pro-
portional to 𝑝. Now we can select a sample 𝑦 = 𝑠𝑖 by randomly generating a number
from 0 to 1 and then finding the index 𝑖 by searching in which of the intervals of
the 𝑝 (𝑖 | s) the generated number belongs to. From this sample we can compute
1-sample RIS estimator:

⟨𝐿⟩1,𝑀
𝑟𝑖𝑠 = 𝑙 (𝑦)

𝑝 (𝑦) · 1
𝑀

𝑀∑︁
𝑗=1

𝑤(𝑠𝑗)
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If 𝑝 is the PDF from which we sample, then we could simply use the 𝑙 (𝑦) /𝑝 (𝑦)
term. But because it is not the case, we compensate it by the average of the weights
of the 𝑀 samples. Finally, we can get 𝑁 sample estimator by repeating this process
𝑁 times and averaging the results, each time we select from new M samples.

⟨𝐿⟩𝑁,𝑀
𝑟𝑖𝑠 = 1

𝑁

𝑁∑︁
𝑖=1

⎛⎝ 𝑙 (𝑦𝑖)
𝑝 (𝑦𝑖)

· 1
𝑀

𝑀∑︁
𝑗=1

𝑤(𝑠𝑖,𝑗)
⎞⎠

2.4.2 Weighted Reservoir Sampling
We can simplify the process of selecting the 𝑦 sample from the 𝑀 generated

candidates. Instead of first generating all of the 𝑀 samples, remembering their
weights 𝑤 and after that selecting one sample, we could select the resulting sample
in the process of generating the 𝑀 samples and don’t remember the individual
samples and their weights.

So, we generate the samples one by one. At each step, we remember sum of
all the processed weights 𝑤𝑠𝑢𝑚 up to this point. We also remember the currently
selected sample 𝑦, in the beginning we could set it to the first generated sample.
At each step we generate a new sample 𝑠𝑖, compute it’s weight 𝑤𝑖, generate random
number 𝑟 ∈ ⟨0, 1⟩. If 𝑟 < 𝑤𝑖/𝑤𝑠𝑢𝑚, then we set the resulting sample to 𝑠𝑖.

This procedure is equivalent to the selection of samples in RIS. If we add a new
sample 𝑠𝑚+1 to the reservoir of 𝑚 already processed samples, then the probabilities
of selecting the samples are:

𝑝 (𝑚 + 1) = 𝑤(𝑠𝑚+1)
𝑚+1∑︀
𝑗=1

𝑤(𝑠𝑗)

𝑝 (𝑖) = 𝑤(𝑠𝑖)
𝑚∑︀

𝑗=1
𝑤(𝑠𝑗)

⎛⎜⎜⎜⎝1 − 𝑤(𝑠𝑚+1)
𝑚+1∑︀
𝑗=1

𝑤(𝑠𝑗)

⎞⎟⎟⎟⎠ = 𝑤(𝑠𝑖)
𝑚+1∑︀
𝑗=1

𝑤(𝑠𝑗)
∀𝑖 ∈ {1, . . . , 𝑚}

2.4.3 Spatiotemporal Reuse
The reservoirs are not only useful for simplifying the local sample selection.

If we have 2 reservoirs, we can easily combine them in 𝑂(1) time. Let there be 2
reservoirs 𝑟1, 𝑟2 with the selected samples 𝑦1, 𝑦2 and weight sums 𝑤𝑠𝑢𝑚,1, 𝑤𝑠𝑢𝑚,2.
Then we can combine them simply by treating 𝑦2 as a new sample, which we put in
the 𝑟1 reservoir with weight 𝑤𝑠𝑢𝑚,2 (the same procedure as described in the previous
section). The combined result now lies inside the 𝑟1 reservoir.

In this way, we could, for example, combine reservoirs of neighboring pixels.
Because their distributions of radiance are probably very similar, it makes sense to
apply this reuse. But the distributions are still a little different, so we compensate
for this by multiplying the resulting weight sum by 𝑝1(𝑦)/𝑝2(𝑦), where 𝑝1 is the
complex PDF of the pixel of the reservoir to which we are adding the result of the
second reservoir, whose complex PDF is 𝑝2.

Spatial reuse does exactly this combining procedure described in previous para-
graphs with 𝑘 neighboring pixels (for example, 𝑘 could be 8 immediately neighboring
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pixels). We repeat this 𝑛 times and we effectively get a combination of 𝑘𝑛 neighboring
reservoirs.

We could also combine reservoirs with temporal reuse. This means that we
combine the reservoir in the current pixel with the reservoir from the previous frame
at the same pixel. The reasoning behind this is similar to that of spatial reuse. If we
don’t move with the camera drastically, then the distributions should be similar. But
we should still compensate with the 𝑝1(𝑦)/𝑝2(𝑦) term. After that, if the results that
we propagate to the next frame are these combined results, then we are effectively
reusing reservoirs from all the previous frames, not just the reservoirs from the
previous frame.

2.4.4 ReSTIR Global Illumination
To generalize ReSTIR for global illumination (ReSTIR GI [7]), we sample even

the points that are not light sources, instead of sampling only from light sources.
The radiance at these points is now computed with path tracing. We can compute
RIS with weighted reservoir sampling in the same way as in basic ReSTIR. Spa-
tiotemporal reuse is still being applied in a similar way, but in Ouyang et al. 2021
[7], they made a few changes. Instead of representing the samples as directions, they
represent them as positions of surface points. This preserves the samples more ac-
curately when spatial reuse is used. When merging 2 reservoirs, they also compute
similarity of the samples and decide whether to merge them or not.

Figure 2.3: Comparison of ReSTIR (a), (b) and ReSTIR GI (c), (d) from Ouyang et
al. 2021 [7].
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2.5 Path Guiding
Path guiding is a general term for methods which somehow approximate the

global distribution of radiance in the scene and leverage this knowledge for better
sampling in the path tracing algorithm. One of those methods is Practical Path
Guiding for Efficient Light-Transport Simulation [8].

This method uses hierarchical data structures to divide the space and directions
of the scene and stores the approximate amount of radiance inside of the nodes of
these data structures. Specifically, it uses a kd-tree for subdivision of space and at
each leaf of the spatial kd-tree it subdivides all directions with a quadtree. The spa-
tial kd-tree (or spatial binary tree) divides its nodes always in half, and alternates
between the 𝑥, 𝑦, 𝑧 axes in order. The directional quadtree uses cylindrical coordi-
nates to represent directions. Similarly to the spatial tree, it subdivides the nodes
in half of the intervals. You can see an example of the trees in the figure 2.4.

Figure 2.4: Spatio-directional subdivision trees from Müller et al. 2017 [8].

In the algorithm, there are 2 phases that are iteratively repeated. In the first
phase, we are collecting estimated radiance inside our tree structures. Based on this,
in the second phase, we adapt the trees to our current distribution of radiance by
subdivision when some conditions are met.

2.5.1 Collecting Estimated Radiance
In this step, we perform the classical path-tracing. When we form a path, we

iterate over all its vertices 𝑣, with their respective directions 𝜔. First, we perform a
search in the spatial tree and accumulate radiance at each node that contains the
position 𝑣. We also remember the number of vertices that visited each node. After
that, when we reach a leaf node containing 𝑣, we will traverse its directional tree in
a similar way: visit nodes containing 𝜔 and accumulate the estimated radiance.

An important observation is that because we accumulate only inside the spatial
nodes that contain the current path vertex 𝑣, it means that we approximate only
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the distribution of the radiance at the surface. So we have no information about
the distribution in the empty space between the surfaces, which may lead to some
problems, which are solved by the method described in the section about focal path
guiding.

2.5.2 Tree Adaptation
We split the nodes of the spatial kd-tree based on the number of vertices that

visited each node. If the number is higher than some tweaked constant, we will split
the node. In Müller et al. 2017 [8] they use specifically 𝑐

√
2𝑘, which is proportional

to the number of traced paths in the 𝑘-th iteration, because they are increasing the
number of samples in each iteration exponentially.

The nodes inside the directional quadtree are split based on the ratio of ac-
cumulated radiance of the current node and the total accumulated radiance in the
current quadtree (value stored at the root node). In Müller et al. 2017 [8] they use
the threshold ratio 𝜌 = 0.01. The total number of nodes in the quadtree is then
proportional to 1/𝜌.

2.5.3 Sampling
Now that we have an approximation of the radiance distribution stored in our

spatio-directional trees, it’s time to use it for better sampling of outgoing directions
(technique from McCool et al. 1997 [17]). The process is simple. We first traverse
the spatial kd-tree, to find a leaf node that contains our current vertex 𝑣. We then
take its directional quadtree. Then we randomly traverse the nodes in depth, with
the probability 𝑝𝑛 of choosing a specific node equal to 𝑝𝑛 = 𝐿𝑛/𝐿𝑝, where 𝐿𝑛 is
the accumulated radiance of the current node and 𝐿𝑝 is accumulated radiance of its
parent. When we reach a leaf, we simply generate the sample by randomly choosing
one direction from the range that the leaf represents with uniform probability. Then
after we compute the incoming radiance of the sample 𝑙(𝑠), we will weight the result
similarly to IS by 1/𝑝(𝑠), where 𝑝(𝑠) = 𝐿𝑛/𝐿𝑡, where 𝐿𝑛 is the accumulated radiance
of the current node and 𝐿𝑡 is accumulated radiance of the entire directional quadtree
(value stored in root node).

This method of sampling could be used, for example, instead of standard light
source sampling in the classical path tracer algorithm, which should have better re-
sults for non-analytical light sources. Or, it could be used for sampling new bounces,
which should have better results at surface caustics.
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2.6 Focal Path Guiding
Focal path guiding [1] is a variant of path guiding, which specializes in capturing

the so-called focal effects and is the main topic of this thesis. We define term focal
point as a small region of space where multiple light paths from different directions
converge. Focal effects are then arsing due to presence of focal points in the scene.

There are many different types of focal points. Some are illustrated in figure 2.5.
In Rath et al. 2023 [1] they established 3 main categories of focal points: direct focal
points, indirect focal points and virtual images. Direct focal points are either small
light sources themselves (image a), or the camera position. Indirect focal points
are either surface caustics (brightly iluminated spots, image b), or light passing
through narrow gaps (camera obscura effect, image c). Virtual images are caused by
reflections or refractions (image d), or multiple combinations of them.

Figure 2.5: Different types of focal points from [Rath et al. 2023 1].

This method should handle all of these types of focal effects well. In contrast,
the path guiding method Müller et al. 2017 [8] from previous section is capable of
handling direct focal points and some of the indirect focal points, such as surface
caustics. But it performs poorly for the other types of focal points that are not
surface-bound. The main reason for this behavior is that the data structure from
Müller et al. 2017 [8] approximates only the surface distributions, not the distribu-
tions in the space between.

Figure 2.6: Comparison of path guiding from Müller et al. 2017 [8] on the left and focal
path guiding on the right. Taken from Rath et al. 2023 [1].

The main difference from the previous method is in the data structure itself
and in the method of accumulating estimated radiances inside of it. You can see
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comparison of the methods in figure 2.6. Here we use an octree [16] instead of a
kd-tree [14] for spatial subdivision (which itself shouldn’t change the results, it’s
more a performance matter, but it would be worth a try to keep the kd-tree and
compare), and we drop the dependence on direction, so we don’t use the directional
quadtrees anymore. The radiance estimates are now accumulated at each node that
is intersected with a specific ray from our path, instead of accumulating only at the
nodes containing the starting point of the ray. In the following sections, similarly to
classical path guiding, we will describe the process of collecting estimated radiance,
which we use to estimate focal densities, then adaptation of the tree structure and
finally sampling random directions from the tree.

2.6.1 Estimating Focal Densities
In the nodes of the octree data structure, we store accumulated radiance 𝑎𝑣,

from which the so-called focal densities 𝑝𝑣 can be computed (𝑣 represents the voxel
of the octree node). First we compute density times volume 𝛼𝑣 = 𝑝𝑣|𝑉𝑣|, also called
the selection probability:

𝛼𝑣 = 𝑎𝑣

𝑎𝑟

Where 𝑎𝑣 is accumulator of our current node and 𝑎𝑟 is accumulator of the root
node. Now we can simply divide by volume |𝑉𝑣| of the node to get the focal density
𝑝𝑣:

𝑝𝑣 = 𝛼𝑣

|𝑉𝑣|
The estimation of focal densities has two iterative phases. The first phase is the

initial guess, which roughly places higher densities near our focal points. The second
phase is the narrowing phase, which narrows the distribution closer to the true focal
points. You can see these phases visualized in the figure 2.7. In Rath et al. 2023 [1]
they use 10 iterations for the initial guess and 5 for the narrowing phase.

Figure 2.7: Visualization of the focal density estimation, from Rath et al. 2023 [1].

The initial guess phase is simple. We perform a classical path tracing for each
pixel with multiple samples. For each bounce in the path, determined by generated
sample point 𝑠, we go through every octree node voxel 𝑣 that is intersected by the
ray and we add the following value to its accumulator 𝑎𝑣:
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(𝑡1 − 𝑡0)
𝑙(𝑠)
𝑝(𝑠)

Where (𝑡1−𝑡0) is the distance traveled through the voxel (𝑡0 and 𝑡1 are the entry
and exit point distances from the ray start), 𝑙(𝑠) is estimated radiance at sample 𝑠
(same notation as used so far) and 𝑝(𝑠) is the probability of selecting the sample 𝑠
(which will be described in the section about sampling). The reasoning for dividing
by 𝑝(𝑠) is similar to that in IS. The (𝑡1 − 𝑡0) results from the integration over the
voxel.

The narrowing phase is a little more complicated. Our goal is to weight the
accumulated contributions by how likely is the sample generated from voxel inter-
sected along the ray (in the initial guess phase, the contributions were roughly the
same along the ray). In this way, we shift the greater values closer to the focal points.
We will mark the mentioned weight of the voxel 𝑣 as 𝑤𝑣. If we have our sample point
𝑠 and a starting point of the ray 𝑥, we will define the normalized ray direction as 𝜔.
Our contribution to the accumulator 𝛼𝑣 now looks like this:

𝑤𝑣(𝑥, 𝜔) 𝑙(𝑠)
𝑝(𝑠)

Where 𝑙(𝑠) and 𝑝(𝑠) are the same as previously in the initial guess and the
𝑤𝑣(𝜔) is:

𝑤𝑣(𝑥, 𝜔) = 𝛼𝑣𝑝𝑣(𝑥, 𝜔)∑︀
𝑣′∈𝐼(𝑉 )

𝛼𝑣′𝑝𝑣′(𝑥, 𝜔)

Where 𝐼(𝑉 ) are all the voxels intersected along the ray, 𝛼𝑣 and all the 𝛼𝑣′

are selection probabilities from the previous iteration, 𝑝𝑣(𝑥, 𝜔) is a probability of
randomly selecting a voxel along the ray, which is equal to:

𝑝𝑣(𝑥, 𝜔) = 𝑡3
1 − 𝑡3

0
3|𝑉𝑣|

Where 𝑡0 and 𝑡1 are again the entry and exit point distances from the ray start
𝑥 and |𝑉𝑣| is volume of the voxel 𝑣.

2.6.2 Tree Adaptation
There are two operations that are performed with the tree: splitting and prun-

ing. The splitting operation is performed after each density estimation iteration and
the pruning operation is performed only after the last iteration of the algorithm.

In the splitting phase, a node is split if the selection probability 𝛼𝑣 is greater
than some threshold 𝛾. In this way, we give more precision to the areas potentially
containing focal points. In Rath et al. 2023 [1] they state that the value 𝛾 = 10−1

works well for their scenes.
We also perform the pruning phase because the variance between child nodes of

some parent node may not be large enough to justify the cost of the traversal. The
decision whether to collapse a node is simple. We collapse the node if the maximum
leaf node density 𝑝𝑚𝑎𝑥 in the subtree at the node is less than two times the average
density 𝑝𝑎𝑣𝑔 in the subtree.
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Figure 2.8: Visualization of the octree pruning, taken from Rath et al. 2023 [1].

2.6.3 Sampling
Sampling of the ray direction is done in a similar way as sampling from direc-

tional quadtree in path guiding from Müller et al. 2017 [8]. In our case we randomly
traverse the octree, with probability of selecting a child node 𝑐ℎ from some par-
ent node 𝑝 equal to 𝑎𝑐ℎ/𝑎𝑝. In this way, a leaf node 𝑙 is selected with probability
𝛼𝑙 = 𝑎𝑙/𝑎𝑟 (where 𝑟 is the root node). If we reach a leaf node 𝑙, then we randomly
select a point 𝑦 ∈ 𝑉𝑙 from inside of it’s volume 𝑉𝑙 with uniform probability. Finally,
we create our sample direction 𝜔 by normalizing the vector from our current surface
point 𝑥 to the generated point 𝑠.

To compute the probability of selecting the sample 𝑝(𝑠), we need to accumulate
the selection probabilities of all nodes that could generate the same direction:

𝑝(𝑠) =
∑︁

𝑣∈𝐼(𝑉 )
𝛼𝑣𝑝𝑣(𝑥, 𝜔)

Where, similarly as in section 2.6.1, 𝐼(𝑉 ) are all the voxels intersected along the
ray, 𝛼𝑣 are the selection probabilities, 𝑝𝑣(𝑥, 𝜔) is a probability of randomly selecting
a voxel along the ray.





Chapter 3

Implementation

The implementation was done with the Falcor rendering framework [2]. The
Focal Path Guiding method [1] is implemented as a collection of several custom
render passes integrated within the framework. These render passes are then put
together in a render graph with a script. When we run this script with some input
scene and configuration, we will get our rendered image.

In this chapter we will first start with a small introduction into the Falcor
framework. Then we will describe the main parts of the implementation from top-
down approach. First, we will look at the render graph and introduce the used render
passes and describe how they are connected. Then we will describe how the main
data structure of this algorithm - focal density octree is implemented in memory
and how the traversal algorithm works. Then we will describe each of the custom
render passes. Starting with focal density estimation passes which maintain the focal
density octree - accumulation, splitting and pruning. Then we will finally look at
the focal path guiding pass, which uses the focal density octree to sample guided
rays and outputs estimated radiance for the final image. In the end we will look at
passes used for visualization.

3.1 Falcor Framework
Falcor is a real-time rendering framework from NVIDIA, written in C++. It’s

use is targeted mainly for research and prototype projects. Supports DirectX 12
and Vulkan graphics APIs, Python scripting, DXR raytracing API from NVIDIA
and many other features. It provides basic rendering functionality which abstracts
the lower level graphics APIs, scene loading, window creation and simple immediate
mode GUI.

The intended way to use the framework is by writing custom render passes.
Render pass is a rendering unit that has some inputs and outputs and can be con-
nected to other render passes in a render graph. The render graph is then the final
product that renders our desired scene into some image. The inputs and outputs
of the render passes are images that represent some intermediate results. The scene
and global settings can be accessed by all render passes.

To give an example, we could create a simple render graph from 3 passes: path
tracer pass, accumulate pass and tone mapper pass. The path tracer pass traces the
scene with 1 sample for each pixel and outputs the resulting radiancies. Then the
accumulate pass accumulates the path tracer outputs to a local storage and outputs
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their average. Finally, the tone mapper pass maps the high dynamic range values
from the accumulate pass to values that could be displayed on the monitor. You can
see this example visualized in the Falcor render graph editor in figure 3.1.

Figure 3.1: Example render graph in Falcor framework.

The render passes are written in C++. Falcor provides many standard render
passes that we can use in our render graph together with our custom render passes,
such as the mentioned standard path tracer, accumulator and tone mapper passes.
The render graph can be created in C++ too by making a separate custom applica-
tion that calls the Falcor framework. But a simpler way to create a render graph is
with a Python script. We can open these scripts in Mogwai application (figure 3.2)
which is part of the Falcor framework. It displays the render graph output in real-
time and provides simple GUI for tweaking of the render passes and scene settings.
You can also create simple scenes with Python scripts and load them with Mogwai.

Figure 3.2: Mogwai application from Falcor framework.

An important part of the implementation of render passes are shaders, which
are the part of the code that is executed on GPU. Shaders in Falcor are written
in Slang programming language. Slang is a fairly new programming language. One
of the advantages is multi-platform support - cross-compiles to many other shading



3.1. Falcor Framework 21

languages, such as HLSL, GLSL, SPIRV and even C++ CPU code. It also brings
in many modern language features. The main one is the support for better code
modularity with imports. You can simply import some shared functionality from
another file which is not supported by default in languages such as GLSL and HLSL.
This allows for creation of shader libraries that can be easily shared and used.
The Falcor framework has one such library in its codebase and it contains many
useful functionalities for rendering, such as several BSDF sampling and evaluation
methods, material and scene helper code, random number generators and much
more.

Slang supports standard shader types, such as vertex and pixel shaders from
rasterization pipeline and compute shaders. But it also supports new raytracing
shaders, which allow us to take advantage of the hardware acceleration for this
specific task on latest graphics cards. The raytracing shaders are extensively used
in implementation of this project because of their performance advantages. We will
briefly introduce how they work in the next section.

3.1.1 NVIDIA Raytracing Pipeline

Figure 3.3: NVIDIA Raytracing Pipeline [18].

The raytracing pipeline consists of 5 shaders, 3 mandatory and 2 optional. You
can see them in figure 3.3. The 3 mandatory are: ray generation shader, miss shader
and closest hit shader. The ray generation shader is the starting point of raytracing.
It is called for each pixel and creates initial ray pointing from camera through that
specific pixel. It then calls TraceRay function, which shoots the ray into the scene.
The ray is then evaluated with acceleration structure traversal, which finds if there
are any intersections. If there are no intersections, then the miss shader is called.
This shader is typically used to sample from an environment map or simply use
some background color. If there are some intersections, then the closest hit shader
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is called for intersection closest to the ray origin. This shader is typically used for
lighting calculations of opaque geometry.

The 2 remaining optional shaders are any hit shader and intersection shader.
The any hit shader is called for each intersection and is typically used for alpha
testing for evaluation of non-opaque objects. The intersection shader can be used to
implement custom intersections of user-defined geometry.

3.2 Render Graph
The render graph of the focal path guiding implementation consists of 4 custom

render passes and 3 standard passes from the Falcor framework. The 4 custom render
passes in code are FocalDensities, NodeSpliting, NodePruning and FocalGuiding
passes. The 3 standard passes are VBufferRT, AccumulatePass and ToneMapper
pass. You can see how they are connected in Falcor render graph editor on figure
3.4. This shows the exact connections how they are in the framework, but it doesn’t
show how exactly are the passes executed, because some of them are executed only
for specific number of iterations. To get a better idea of the execution flow, we will
describe it with the diagram in figure 3.5.

Figure 3.4: Focal path guiding render graph in Falcor framework.

In figure 3.5 the graph is divided into 2 parts: estimation of focal densities and
rendering of the final image with focal path guiding. The focal density estimation
part builds the focal density octree and is run only at start of the program for fixed
amount of iterations equal to 𝑛𝑖𝑛𝑖𝑡 + 𝑛𝑛𝑎𝑟𝑟𝑜𝑤 + 1. The rendering part then uses this
precomputed octree for the guiding and can be run as long as we want, depending
on the desired number of samples.

The focal density estimation starts with the initial density accumulation which
computes the initial guess as described in section 2.6.1. It runs for 𝑛𝑖𝑛𝑖𝑡 itera-
tions. Then it switches to the density accumulation with narrowing, which works
mostly the same as initial density accumulation, but it additionally applies narrow-
ing weights, similar to those described in section 2.6.1. Both accumulation phases
are implemented in the same pass FocalDensities (figure 3.4). The narrowing accu-
mulation runs together with the splitting pass, which deepens the octree. Both the
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Figure 3.5: Focal path guiding render graph flow diagram.

narrowing and splitting are run for 𝑛𝑛𝑎𝑟𝑟𝑜𝑤 iterations. At the end of the focal density
estimation, the pruning pass is executed to reduce the size of the final tree. Both the
splitting and pruning pass use the same criteria for splitting/pruning as described
in section 2.6.2.

After the focal density estimation is finished, it begins rendering the image with
focal path guiding pass, which uses sampling described in section 2.6.3. Each run
of this pass evaluates radiance of one sample per pixel. Then the accumulate pass
accumulates the focal path guiding pass outputs to a local storage and outputs their
average. Finally, the tone mapper pass maps the high dynamic range values from
the accumulate pass to values that could be displayed on the monitor.

3.3 Focal Density Octree

Figure 3.6: Octree data structure. Simple tree node visualization on left. Visualization
of stored densities on right.

Similarly to Rath et al. 2023 [1], in this implementation an octree data structure
[16] has been chosen to represent the distribution of focal densities in space. You
can see a simple visualization of an octree in figure 3.6 on the left. Each node can
be visualized as a cube and its child nodes are the 8 cubes that are created from
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subdivision of this cube. On the right image of the figure 3.6 you can see an example
visualization of focal densities stores inside an octree.

The reason for choosing an octree for this task is that it is simple to represent
volumetric data with it, which is our case with the focal densities. We could use kd-
tree instead, for example. But that could have some disadvantages. The tree would
be deeper and it would be more complicated to maintain the structure. But it could
be interesting to implement this method with kd-tree in the future and compare it.

3.3.1 Data Structure

The octree is stored in a buffer on GPU as an array of DensityNode struct shown
in figure 3.7. This struct actually does not contain focal density of that specific
node, but it contains densities of all 8 of its node children stored in DensityChild
struct. The index stored in DensityChild is an index to DensityNode containing
children of the DensityChild. If this index is 0 it means that the node is a leaf. The
accumulator attribute contains accumulated radiance in this node. When divided
by global accumulator (all accumulated radiance) and volume of the node it gives
us the focal density for the node. The parentIndex and parentOffsetAndDepth are
used to access parent nodes from children nodes, which is needed for the pruning
pass.

Figure 3.7: Focal density octree node structure.

The size of each DensityNode is 8 × (4 + 4) + 4 + 4 = 72 bytes, which is 9 bytes
per octree node, because we store 8 nodes together in one DensityNode. It could be
further reduced if we remove the parentIndex and parentOffsetAndDepth attributes,
which could be done after the density estimation phase is finished and copy the values
to the simplified structure. The size of each node would then effectively be 8 bytes.
To minimize the size of the structure is important, because it has a great impact on
performance through the cache miss ratio. That is the main reason why the structure
is specified in this way. Little disadvantage is that the root node cannot store any
data inside, so its accumulator is stored in a separate variable.
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3.3.2 Ray Traversal
The main algorithm that uses the focal density octree is traversal of the nodes

intersected by some ray. In this implementation it is used for accumulation of focal
densities, PDF estimation of sampled ray directions and visualization of the stored
densities. The algorithm used in Rath et al. 2023 [1] for octree traversal is from
Revelles et al. 2000 [19]. It is one of the most effective algorithms for this task. But
for our implementation, it has some disadvantages. The main goal of the algorithm
from Revelles et al. 2000 [19] is to find the first intersection of the ray with some
geometry. This implies that the algorithm must traverse the nodes in order from
the to the ray origin. But in our case it does not matter in which order are the
nodes traversed. We can remove a lot of complexity of the algorithm by not caring
about the order. Also, the original algorithm is recursive, which is problematic on
GPU. This implementation uses while cycle in combination with a stack. But this
does not mean that the implemented algorithm is more effective than some GPU-
friendly variant of the one from Revelles et al. 2000 [19]. This is something worth
investigating in future work.

Algorithm 1 Density Octree Ray Traversal
parentStack = {0}
childStack = {0}
stackSize = 1
box = sceneBoundingBox
while nodesStackSize > 0 do

topIndex = stackSize - 1
if childStack[topIndex] ≥ 8 then

stackSize−−
if stackSize > 0 then

box = extendBox(box, childStack[topIndex−1]−1)
end if

else
node = getNode(parentStack[topIndex], childStack[topIndex])
currBox = shrinkBox(box, childStack[topIndex])
if rayIntersectsAABB(rayOrigin, rayDirection, currBox) then

if node.isLeaf() then
evaluateLeaf(node)

else
evaluateInnerNode(node)
parentStack[stackSize] = node.index
childStack[stackSize] = 0
box = currBox
stackSize++

end if
end if
childStack[topIndex]++

end if
end while
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Now we will look at the pseudocode of the algorithm 1 used in this implemen-
tation. It uses 2 stacks of the same size: parentStack and childStack (in the actual
implementation, they are in one stack, but for simplicity here they are split into
two). The parentStack contains indices of parents of currently traversed nodes, ini-
tially it contains zero index - their root node. The childStack contains child indices
(0 to 7) referring to the child nodes of parent node stored in parentStack, also ini-
tially zero - first child. Each iteration of the while cycle evaluates one child node and
increments the index in childStack. When all 8 children are evaluated, it pops top
of the stack. The evaluation of each node fist checks for intersection with its AABB.
If intersected and the node is not a leaf, then push this node on the parentStack
and in next iteration we will evaluate it’s children. This means that the traversal
is depth-first. The bounding box used in the traversal can be shrank or extended
based simply on the index of the current child.

3.4 Focal Density Accumulation Pass
The focal density accumulation pass accumulates the estimated radiance into

the octree. The pass itself does not change the structure of the octree (it does not
add or delete the nodes), it only updates the accumulators stored inside the nodes.

Radiance is estimated with path tracing, using the same algorithm as in Focal
Path Guiding pass, which will be described later in section 3.7. For each evaluated
path for each ray bounce the algorithm from section 3.3.2 is used to traverse the
intersected octree nodes and atomically adds to their accumulators the estimated
radiance for this specific path.

Because path guiding is used to generate the ray paths, the accumulated re-
sults are influenced by estimated densities from previous iterations. Because of this,
the octree is double-buffered. In the first buffer we store the octree from previous
iteration that is read-only and is used in path guiding. The second buffer is used
for accumulation of the newly estimated radiance, initially contains the copy of the
first buffer. The buffers are then swapped after each iteration.

Additionally, between each two iterations, all node accumulators are multiplied
by configurable decay (default value is 0.5), which is there to prevent the values of
growing to high, which would cause numeric problems.

3.4.1 Initial Phase

Before the density accumulation begins, an initial octree with fixed depth is
created (default starting depth is 3). The accumulators are initialized with values
greater than zero to prevent division by zero when sampling directions from the
tree. So the initial tree represents uniform focal density in space. The root node of
the octree has the same position and dimensions as bounding box of the rendered
scene.

The accumulation of estimated radiance 𝑙(𝑠) uses the same weights as described
in section 2.6.1:

(𝑡1 − 𝑡0)
𝑙(𝑠)
𝑝(𝑠)



3.4. Focal Density Accumulation Pass 27

In figure 3.8 we can see visualization of the resulting densities stored in the
octree after the initial accumulation phase is finished. On left is the testing scene
used for this example and will be used in multiple next sections. On the right, we
can see the visualization. Brighter colors correspond to higher densities, and darker
colors correspond to lower densities. You can see that the algorithm found the light
source, the bright cube in the top part of the image. Here the light is not analytic,
it’s just a polygon with emissive material, so it’s important to locate it.

Figure 3.8: Initial phase of density accumulation. On the left is used testing scene. On the
right are visualized computed densities (brighter colors correspond to higher densities).

This phase basically approximates the distribution of light in the scene. But it
does not necessarily locate all the focal points in the scene, because the radiance
passing through can be much lower than the one emitted from the light sources. For
example, the light focused from the lens placed in the middle is not that prominent
when we look at the visualization of the densities. To give more importance to these
regions, the narrowing phase comes in.

3.4.2 Narrowing Phase
The narrowing phase is almost identical to the initial phase. The only difference

is in the weights used when accumulating the densities. Again we use the same
weights as in Rath et al. 2023 [1] described in section 2.6.1, but with a little tweak,
adding narrow factor 𝑛:

𝑤𝑣(𝑥, 𝜔) = (𝛼𝑣𝑝𝑣(𝑥, 𝜔))𝑛∑︀
𝑣′∈𝐼(𝑉 )

(𝛼𝑣′𝑝𝑣′(𝑥, 𝜔))𝑛

If we use narrow factor 𝑛 ≥ 1, we can tweak the strength of the narrowing.
Default value 𝑛 = 1 makes it identical to the original implementation.

In figure 3.9 we can see the impact of the narrowing weights on the stored
densities. Some parts, for example inside of the lens and the caustic on the floor,
are more prominent here. Contrary, areas close to the wall or inside of the box and
sphere are darker. This is still with the same number of nodes and depth. To get
more precise focal areas we add in the splitting pass.
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Figure 3.9: Narrowing phase of density accumulation. On the left is result of 2 iterations
of the initial phase. On the right is result of 3 more iterations of the narrowing phase
(narrowing factor 𝑛 = 1).

3.5 Splitting Pass
The splitting pass deepens the octree based on the stored densities. Each iter-

ation can deepen the structure by 1 level. It is done with a compute shader that
is executed on all nodes. If node is a leaf and fulfills the splitting criterion, then
8 child nodes are created. Accumulator value stored in their parent is distributed
between them equally. The number of nodes is an atomic variable, by incrementing
it we reserve index in the nodes buffer for the newly created children. The buffer
has some preallocated free space, so we simply fill it up this way.

The splitting criterion is the same as in Rath et al. 2023 [1]. We split the node
if its density times volume 𝛼 is lower than the splitting threshold (default value is
0.001).

Figure 3.10: Splitting together with narrowing. On the left is result of 2 iterations of the
initial phase. On the right is result of 3 more iterations of the narrowing phase together
with splitting (narrowing factor 𝑛 = 1).
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In figure 3.10 we can see the splitting applied together with narrowing. The
focal areas are now even more prominent and their shape is more precise. But it also
created a lot of nodes in areas with roughly the same density, which has negative
impact on the performance of the traversal - more nodes need to be traversed and
it is not always justified by some benefit. The pruning pass helps with this problem.

3.6 Pruning Pass
The pruning pass reduces the size of the octree by removing children of nodes

that have a small density variance in their subtree. The heuristic for deciding whether
we should prune a node is the following: prune the node if 𝑝𝑚𝑎𝑥 ≤ 2𝑝𝑎𝑣𝑔, where 𝑝𝑚𝑎𝑥

maximum leaf node density in the subtree and 𝑝𝑎𝑣𝑔 average leaf node density in the
subtree.

The implementation is done with a compute shader that is called iteratively for
each depth layer, starting from the lowest one. In each iteration, the shader prunes
nodes on the current depth level that fulfill the heuristic and computes the 𝑝𝑚𝑎𝑥

and 𝑝𝑎𝑣𝑔 densities that are reused in the next iterations. A node is pruned simply
by marking it as a leaf, this is done by setting the index in DensityChild structure
to 0.

In figure 3.11 we can see the pruning applied after the narrowing and splitting.
Many of the unnecessary nodes, for example the ones close to the walls, were pruned.
It also pruned many of the nodes with higher density, but the most important parts
remained and the representation is more compact now.

Figure 3.11: Pruning of the focal density octree. On the left is a result of 2 initial
accumulation iterations and then 3 iterations of the narrowing phase together with splitting
(narrowing factor 𝑛 = 1). On the right is the same execution with a pruning pass added
at the end.
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3.7 Focal Path Guiding Pass
This is the final pass that renders the image of our scene with path tracing. In

figure 3.12 we can see an example scene render with this pass. It is implemented
on GPU with shaders from the raytracing pipeline described in section 3.1.1. The
ray path is generated with a simple cycle that is limited by configured maximum
number of bounces (default is 5). At each iteration, it samples new ray direction
and calls the standard TraceRay() function, which searches for intersections of the
ray with the geometry by traversing the acceleration data structure handled by the
GPU drivers. The path can be terminated early in the cycle either when the ray
shot is evaluated as a miss, or when the sampling decides to absorb the incoming
ray.

Figure 3.12: Focal path guiding algorithm used on simple Cornell box scene. On the left
is render after 40 seconds. On right is render after 20 minutes.

For sampling of ray directions at each bounce we use a combination of BSDF
sampling and guided sampling using the focal density octree. If analytical light
sources are present in the scene, light source sampling is used additionally. The BSDF
sampling and light source sampling is performed with a standard implementation
provided by the Falcor framework. The guided sampling uses the procedure from
Rath et al. 2023 [1] described in section 2.6.3.

Each bounce is generated either by BSDF sampling or by guided sampling.
To decide which sampling method is used at each bounce, we use static selection
probability 𝑝𝑔, which is set to 0.5 by default. We generate random number 𝑟 ∈ [0, 1]
and if 𝑟 ≤ 𝑝𝑔, then guided sampling is used, otherwise BSDF sampling is used.

In cases when roughness of the material is close to zero (perfect reflection) or
when the material has high specular transmission (perfect transmission), we use
only the BSDF sampling. The perfect reflection/transmission BSDF is zero for most
directions and only the value of the direction representing the perfect reflection/-
transmission is greater than zero (and probably very high). Because of that the
guided sampling has near to zero probability of generating the perfect reflection or
transmission.

To make the Monte Carlo integration of the estimated radiance unbiased, in
cases when we select between both BSDF and guided sampling, we use MIS weights:
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𝑤𝑚𝑖𝑠(𝑠) = 1
𝑝𝑔𝑝𝑔𝑢𝑖𝑑𝑒(𝑠) + (1 − 𝑝𝑔)𝑝𝑏𝑟𝑑𝑓 (𝑠)

Where 𝑝𝑔 is probability of selecting guided sampling, 𝑝𝑔𝑢𝑖𝑑𝑒 is the PDF of the
guided samples and 𝑝𝑏𝑟𝑑𝑓 is the PDF of BRDF samples. We multiply our estimated
radiance 𝑙(𝑠) by this weight.

3.8 Visualization
There are 2 types of visualizations implemented: visualization of densities stored

inside the focal density octree and visualization of rays generated by focal guiding.
These visualizations are useful for debugging and for analyzing the effectiveness of
certain parts of the implementation. They are implemented as additional render
passes, that can be optionally connected to the render graph described in section
3.2.

3.8.1 Focal Density Visualization
The focal density visualization is done by shooting rays from the camera into

the density octree for each pixel. The traversal algorithm described in section 3.3.2 is
used to traverse all intersected nodes. The algorithm then outputs either maximum
or average of all the intersected nodes based on the configuration. These values are
then mapped to colors. Here we use the Inferno color map, which is perceptually
uniform and should therefore be ideal for visualization of the scalar density values.
Brighter values correspond to high focal densities and darker values correspond to
low focal densities. The used color map can be configured and switched to, for
example, Viridis or Plasma. In figure 3.13 we can see visualization of maximum
densities. The output is blended with the scene geometry, which can be turned off.

Figure 3.13: Visualization of focal densities. On the left is the render of used scene. On
the right is the visualization of maximal densities blended with the scene geometry.

Because the focal densities can be of arbitrary non-negative size, we need to
use minimum and maximum thresholds for clamping the density values before we
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map them to color. We can see example of different thresholds in figure 3.14. The
thresholds are configurable and it’s useful to be able to tweak them to get better
idea of where the highest values are. In the figure on the right image with higher
threshold you can see that the light source has largest focal density, which is not
deducible from the left image with lower threshold.

Figure 3.14: Maximum intensity projection visualization of focal densities. Maximum
thresholds 1 on the left, 8 on the right.

In the figure 3.15 you can see the same visualization, but the displayed values
are average densities along the ray. The average intensity projection can sometimes
give us better idea of the distribution of the densities in space. On the other hand,
the maximum intensity projection can be better for locating important parts of the
scene and also, because it displays sharp edges of the nodes, it can be useful for
analyzing structure of the octree.

Figure 3.15: Average intensity projection visualization of focal densities. Maximum
thresholds 1 on the left, 8 on the right.
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3.8.2 Ray Sampling Visualization
We can visualize the rays generated by the focal path guiding pass described in

section 3.7. The implementation is similar to the one in focal path guiding pass, only
instead of storing the estimated radiance to output image, we store the lines of the
evaluated paths to a buffer so that we can render them in rasterization pass. Also,
the rays start from the same position, which can be changed by pressing Shift and
right mouse button at some position in the scene when using the Mogwai application.
In the figure 3.16 we can see visualization of ray paths of length 3.

Figure 3.16: Visualization of ray paths (not depth tested). On the left are generated
paths from a single position at the middle of the floor. On the right are the same paths,
but the intensity of the lines is set proportional to radiance estimated from the path - only
paths that hit the light are visible.

We can also visualize PDF at some point. You can see the example in figure
3.17. This can be useful for checking correctness of the guided sampling.

Figure 3.17: Visualization of PDF with current view direction (not depth tested). On
the left is BRDF PDF. On the right is guided PDF.





Chapter 4

Results and Evaluation

In this chapter, we will analyze the outputs of the implementation, described in
chapter 3, on multiple different scenes. We will examine the quality of the generated
octree and compare the rendered results with a standard path tracer implementation.
We will start with simple scenes demonstrating different types of focal points. Then
we will look at how the implementation handles more complicated scenes (in terms
of number of objects and size). In the end, we will summarize the results in the last
section.

4.1 Environment
All presented images were rendered on a PC with AMD Ryzen 5 3600 pro-

cessor and NVIDIA GeForce RTX 3060 graphics card. If not specified otherwise,
the focal path guiding render graph has the following parameters: 5 maximum ray
bounces, 12 iterations of density estimation, first 6 are the initial estimation passes,
the other 6 are narrowing passes in combination with splitting. For comparison with
our results, we use classical path tracer implementation from the Falcor framework,
MinimalPathTracer. It also uses a maximum of 5 ray bounces by default.

In figures comparing the two methods, we use the following description scheme:
method, time, spp, MSE. Where method is the method used to render the image and
is either pt or guided: pt is the classical path tracer, guided is the focal path guiding
algorithm implemented in this thesis. Time shows the time it took to render the
image in seconds or minutes. When comparing 2 renders, we use equal time. Next,
spp means samples per pixel - in our case it is the number of generated ray paths for
each pixel, which is equal to the number of executions of the path tracing/guiding
pass. MSE is the mean squared error of the presented image and a reference image,
which was rendered separately for a very high number of samples per pixel, typically
taking up to an hour to render.
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4.2 Focal Points
In this section we will go through several different types of focal points to

evaluate the quality of the generated octree and check if the specific focal point is
captured inside.

4.2.1 Direct Light Source
We start with the simplest type of focal point, the light source itself. As a light

source, we use an emissive polygon. This means that the light is not analytic. The
path tracer does not know the position of the light and cannot sample to it with light
source sampling. We do this to demonstrate that the algorithm finds the position of
the light source. In the density visualization in figure 4.1, we can see that it indeed
found the position of the light source, because the density is much higher there than
in the rest of the scene.

Figure 4.1: Simple Cornell box with just the light source. Reference render on the left.
Density visualization on the right.

In the figure 4.2 we can see a render comparison with a classical path tracer.
Because the classical path tracer does not know the position of the light, the samples
are less effective and result in more noise and higher MSE compared to the focal
path guiding.
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(a) pt, 20 s, 4800 spp, MSE 2.4e-3 (b) guided, 20 s, 429 spp, MSE 6.5e-4

Figure 4.2: Comparison of classical path tracer (a) and focal path guiding (b) on a simple
scene with one emissive light source.

4.2.2 Indirect Light Source
The main light source is made with a hollow cylinder with emissive light source

inside simulating a flashlight. The bounced light from the ceiling then creates the
indirect light source. In figure 4.3 we can see that both the main emissive light source
and the indirect light source are captured in the density octree.

Figure 4.3: Indirect light source. Reference render on the left. Density visualization on
the right.
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In figure 4.4 we can see the comparison with a classical path tracer. Again,
because the classical path tracer cannot use light source sampling, it has more noise
and higher MSE.

(a) pt, 20 s, 5154 spp, MSE 4.6e-2 (b) guided, 20 s, 237 spp, MSE 1.1e-2

Figure 4.4: Comparison of classical path tracer (a) and focal path guiding (b) on a scene
with indirect light source.

Now we try a similar scenario, but with an analytical spot light source instead
of the emissive one. In figure 4.5 we can see that only the indirect light source
is captured with the densities. Analytical light samples are not accumulated when
building the density octree, because we don’t need to detect analytical light sources.

Figure 4.5: Indirect analytical light source. Reference render on the left. Density visual-
ization on the right.
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In figure 4.6 we can see the comparison with a classical path tracer. The focal
path guiding still has less visible noise and lower MSE. So, in some cases, the focal
path guiding method can give better results even with analytical light sources.

(a) pt, 20 s, 2419 spp, MSE 2.0e-3 (b) guided, 20 s, 477 spp, MSE 8.1e-4

Figure 4.6: Comparison of classical path tracer (a) and focal path guiding (b) on a scene
with indirect analytical light source.

4.2.3 Lens Focal Point
We use a converging lens placed near the bottom of the scene roughly in distance

of its focal length. In figure 4.7 we can see that the focal point of the lens is captured
in the density octree.

Figure 4.7: Lens focal point. Reference render on the left. Density visualization on the
right.

In figure 4.8 we can see the comparison with a classical path tracer. Again, the
focal path guiding method appears to be better in terms of overall noise and has
a lower MSE. But if we examine closer the lens in the focal path guiding render,
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it appears to have more noise on the surface of the lens and in the shadow below
compared to the classical path tracer. This could be caused by a combination of
perfect refraction of the lens with guided rays being shot more often in the direction
of the light source through the lens.

(a) pt, 20 s, 4580 spp, MSE 2.7e-3 (b) guided, 20 s, 370 spp, MSE 1.3e-3

Figure 4.8: Comparison of classical path tracer (a) and focal path guiding (b) on a scene
with lens focal point.
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4.2.4 Camera Obscura
One of the most impressive result of the original implementation from Rath et

al. 2023 [1] is the ability to efficiently render the camera obscura scene. We try to
replicate this with a custom scene shown in figure 4.9. In the left room there is a
bunny model that we want to project on the barrier located in the right room. The
pinhole is located in the middle of the wall that separates the two rooms. The bunny
is illuminated with an analytical spot light.

Figure 4.9: Camera obscura scene created in Blender, the pinhole is located in the middle
of the wall separating the two rooms.

For purposes of this scene, the render graph settings were changed. It uses 15
iterations of density estimation, first 5 are the initial estimation passes, the other 10
are narrowing passes in combination with splitting. This means that the octree can
have an increased depth (each splitting pass can deepen the tree only by one depth
level). Due to this, we can accurately represent the focal density of the pinhole.

The render of the first few samples of the focal path guiding method can be
seen in figure 4.10. The low number of samples is used intentionally, because the
spot light has very high intensity. If we would let it integrate further, the left part
would be so bright that we could either set the exposure to make the bunny on
the left visible, or set it so that the projection on the right is visible. Figure 4.11
shows visualization of the computed densities. The algorithm successfully found the
pinhole.
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Figure 4.10: First few samples of the camera obscura render.

Figure 4.11: Density visualization of the camera obscura scene.
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Figure 4.12 contains comparisons with the classical path tracer of the projected
bunny image render. In the result of the classical path tracer after 20 seconds of
rendering the projection is not much visible, only a few samples managed to pass
through the pinhole. Whereas in the 20 seconds focal path guiding render the bunny
is clearly visible and the result is even much better than 10 minute classical path
tracer render.

(a) pt, 20 s, 1246 spp, MSE 2.5e-3 (b) guided, 20 s, 234 spp, MSE 2.4e-4

(c) pt, 10 m, 71272 spp, MSE 2.0e-3 (d) guided, 10 m, 10235 spp, MSE 7.9e-6

Figure 4.12: Comparison of classical path tracer (a), (c) and focal path guiding (b), (d)
on the camera obscura scene.
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4.3 Complex Scenes
Now we will test the implementation on more complicated and realistic scenes.

We use the Bistro scene from ORCA library [20] and the Dining Room scene from
Benedikt Bitterli [21].

4.3.1 Bistro
For this scene, as seen in figure 4.13, the focal path guiding performs much

worse compared to the classical path tracer. The reason why is that the scene has
analytical light sources and most of the scene has diffuse materials. The computed
densities (figure 4.14) are uniformly distributed around the camera view. Therefore,
the focal path guiding method does not provide any advantage and the additional
overhead causes worse results.

(a) pt, 2 m, 5298 spp, MSE 6.3e-3 (b) guided, 2 m, 924 spp, MSE 1.1e-2

Figure 4.13: Comparison of classical path tracer (a) and focal path guiding (b) on the
bistro scene.

Figure 4.14: Bistro scene density visualization. Viewed from outside.
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4.3.2 Dining Room
Quite similar to the Bistro scene, the focal path guiding method performs worse

than the classical path tracer (figure 4.15). Again, the density octree distributes its
values uniformly around illuminated parts of the scene and does not provide much
benefit to the quality of the generated samples (figure 4.16).

(a) pt, 2 m, 8324 spp, MSE 3.9e-5 (b) guided, 2 m, 1038 spp, MSE 3.8e-4

Figure 4.15: Comparison of classical path tracer (a) and focal path guiding (b) on the
dining room scene.

Figure 4.16: Dining room scene density visualization.
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4.4 Summary
From the analysis of scene renders, it can be concluded that the implemented

method is beneficial in cases where the scene lighting consists mainly of emissive non-
analytic light sources. In such cases, the method finds the locations of these light
sources and works as a substitute for light source sampling, which would normally
be used when analytical light sources are present.

Other cases where this method is beneficial are when lighting is focused in
small area by refraction (lens), reflection (spot light, mirrors) or small narrow gaps
(camera obscura). The method successfully locates these focal points and guides the
generated paths through them to increase the chance of hitting the original source
of light.

However, the method performs poorly for scenes that contain mainly diffuse
materials and analytical light sources and the distribution of the light in the scene
is not greatly influenced by the mentioned types of focal points. In such cases, the
distribution represented by the focal density octree is mostly uniform. Therefore, the
sampling does not provide any benefit, because it is equivalent to uniform sampling.

Path Tracer Focal Guiding
Scene time (s) spp FPS MSE spp FPS MSE spp ratio

Direct light 20 4800 240 2.4e-3 429 21 6.5e-4 0.09
Indirect e. l. 20 5154 258 4.6e-2 237 12 1.1e-2 0.05
Indirect a. l. 20 2419 121 2.0e-3 477 24 8.1e-4 0.20
Lens Focal p. 20 4580 229 2.7e-3 370 19 1.3e-3 0.08

Camera obscura 20 1246 62 2.5e-3 234 12 2.4e-4 0.19
600 71272 119 2.0e-3 10235 17 7.9e-6 0.14

Bistro 600 5298 9 6.3e-3 924 1.5 1.1e-2 0.17
Dining room 600 8324 14 3.9e-5 1038 1.7 3.8e-4 0.12

avg 0.13

Table 4.1: Summary of the comparisons of classical path tracer and implemented focal
path guiding method on different scenes. FPS are frames per second when run in the
Mogwai application, which is equal to the number of path tracer passes run per second
and can be computed from 𝑠𝑝𝑝

𝑡𝑖𝑚𝑒 . The spp ratio is the spp of focal path guiding method
divided by spp of the classical path tracer.

In table 4.1 are summarized measurements from the presented scene renders.
When we look at the spp ratio, the average is 0.13, which means that the focal
path guiding method generates roughly 1

8 of the samples generated by the classical
path tracer in the same time. The overhead of the implementation is significant. For
comparison, the CPU implementation from Rath et al. 2023 [1] generates roughly
1
2 of the samples generated by the classical CPU path tracer in the same time. So,
there is probably a lot of room for improvement. On the other hand we are more
limited by the GPU environment. Possible improvements could be made by trying
out some GPU-friendly variant of the octree traversal algorithm from Revelles et al.
2000 [19].
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Conclusion

In the beginning of this thesis we described the problematic of ray tracing, start-
ing with the physical background: BRDF [3] and the rendering equation [4]. Then we
continued with several Monte Carlo integration [10] methods used for estimation of
resulting radiance from our generated samples. Then we introduced path tracing [4]
and described several methods that are its extensions. Starting with ReSTIR [6] and
ReSTIR GI [7], which use clever sampling with weighted reservoirs implementing
the RIS [5] method. Then we end the chapter with path-guiding methods. Starting
with Practical Path Guiding for Efficient Light-Transport Simulation [8], which uses
combination of spatial k-d tree and directional quadtree to approximate distribution
of radiance in the scene. And finally, we described the Focal Path Guiding for Light
Transport Simulation [1] method, which is the main focus of this thesis.

In the implementation chapter, we first gave a quick introduction to the Falcor
framework [2]. Then we show the render graph of the implemented render passes,
which take advantage of the GPU hardware acceleration. We described the imple-
mentation of the octree data structure that stores focal densities. We went through
GPU implementation of each render pass, starting with passes for density estimation
building the density octree, then the focal path guiding pass, which guides the ray
paths according to the density octree and outputs the radiance estimates, which are
then used in the final image. In the end, we described the visualization implementa-
tion, which is used in many parts of the thesis to get a better idea of values stored
in the density octree.

The main goal of reimplementing the focal path guiding method in GPU shaders
with Falcor framework was achieved. The implementation gives correct results: when
compared with verified standard path tracer, the results are converging together,
therefore it is unbiased.

One thing from the original implementation is still missing: handling of diverg-
ing focal points. This could be easily implemented in the future by adding a second
density octree, with the difference that the rays we would use for PDF computations
and density accumulation would be opposite to the ones we use in the original oc-
tree. Guiding with this octree would help, for example, with sampling to focal points
that are reflected in a mirror. This creates so-called virtual focal point behind the
mirror.

From the result renders, we concluded that the method is beneficial for scenes
containing non-analytic emissive light sources. The method locates these light sources
and can effectively sample in their direction. We also confirmed that it handles well
different types of focal points such as lens focal points, intense indirect light sources
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and light passing through narrow regions. The most impressive of them is the last
one, demonstrated in the camera obscura scene, which is very ineffective to render
with classical path tracer.

The method performs poorly in comparison with classical path tracer for scenes
that use mainly diffuse materials and analytical light sources. The density octree will
be mostly uniform in such cases and the advantages of guided sampling will be lost.

There is a lot of room for improvement. The traversal of the density octree could
be more optimized, either by trying out a GPU adapted variant of the algorithm
from Revelles et al. 2000 [19], or by considering to switch the data structure itself
altogether with, for example, a k-d tree.
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Appendix

A Source code repository
Implementation of Focal Path Guiding in a fork of Falcor framework:
https://github.com/shetr/falcor_focal_guiding.git

B NVIDIA Falcor framework
https://github.com/NVIDIAGameWorks/Falcor

C Blender
Used for the creation of some of the testing scenes.
https://www.blender.org/
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