
Master’s Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Graphics and Interaction

Bc. Matěj Sakmary

Supervisor: doc. Ing. Jiří Bittner Ph.D.
Field of study: Open informatics
Subfield: Computer Graphics
May 2025

ii

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

487342 Personal ID number:​Sakmary Matěj Student's name:​

Faculty of Electrical Engineering Faculty / Institute:​

Department / Institute: Department of Computer Graphics and Interaction

Open Informatics Study program:​

Computer Graphics Specialisation:​

II. Master’s thesis details

Master’s thesis title in English:​

Virtual Shadow Maps

Master’s thesis title in Czech:​

Virtuální stínové mapy

Name and workplace of master’s thesis supervisor:​

doc. Ing. Jiří Bittner, Ph.D. Department of Computer Graphics and Interaction

Name and workplace of second master’s thesis supervisor or consultant:​

Deadline for master's thesis submission: ___________​Date of master’s thesis assignment: 10.09.2024

Assignment valid until: 15.02.2026

___________________________​___________________________​
prof. Mgr. Petr Páta, Ph.D.​

Vice-dean´s signature on behalf of the Dean​
Head of department’s signature​

III. Assignment receipt

The student acknowledges that the master’s thesis is an individual work.​
The student must produce his thesis without the assistance of others, with the exception of provided consultations.​
Within the master’s thesis, the author must state the names of consultants and include a list of references.​

Student’s signature​Date of assignment receipt​

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

487342 Personal ID number:​Sakmary Matěj Student's name:​

Faculty of Electrical Engineering Faculty / Institute:​

Department / Institute: Department of Computer Graphics and Interaction

Open Informatics Study program:​

Computer Graphics Specialisation:​

II. Master’s thesis details

Master’s thesis title in English:​

Virtual Shadow Maps

Master’s thesis title in Czech:​

Virtuální stínové mapy

Guidelines:​

Review existing methods for rendering shadows using shadow maps. Focus on virtual shadow map techniques​
that virtualize the shadow map by decoupling it from its storage [1,2]. Implement the virtual shadow map method​
using C++ and the Vulkan API. The implementation will support directional, point, and spotlights and allow the​
rendering of shadows for volumetric effects. Focus on optimizing rendering performance by exploiting visibility​
culling methods for rendering shadow maps [3, 4]. Perform a thorough measurement of the rendering​
performance and compare the quality of the rendered shadows with the reference generated by the path tracing​
on at least two complex scenes. Identify the strong and weak points of the implementation and discuss a​
possible combination of virtual shadow maps and ray-traced shadows.​

Bibliography / sources:​

[1] Unreal Engine 5.4 documentation. Virtual Shadow Maps.​
https://dev.epicgames.com/documentation/en-us/unreal-engine/virtual-shadow-maps-in-unreal-engine. Accessed​
9/9/2024.​
[2] Giegl, M., Wimmer, M. (2007). Queried virtual shadow maps. In Proceedings of the 2007 symposium on​
Interactive 3D graphics and games (pp. 65-72).​
[3] Bittner, J., Mattausch, O., Silvennoinen, A., Wimmer, M. (2011). Shadow caster culling for efficient shadow​
mapping. In Symposium on Interactive 3D Graphics and Games (pp. 81-88).​
[4] Greene, N., Kass, M., Miller, G. (1993). Hierarchical Z-buffer visibility. In Proceedings of the 20th annual​
conference on Computer graphics and interactive techniques (pp. 231-238).​
[5] Boksansky, J., Wimmer, M., Bittner, J. (2019). Ray traced shadows: maintaining real-time frame rates. Ray​
Tracing Gems: High-Quality and Real-Time Rendering with DXR and Other APIs, 159-182.​
[6] Eisemann, E., Schwarz, M., Assarsson, U., Wimmer, M. (2011). Real-time shadows. CRC Press.​

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

FAKULTA ELEKTROTECHNICKÁ
FACULTY OF ELECTRICAL ENGINEERING
Technická 2
166 27 Praha 6

DECLARATION

I, the undersigned

Sakmary Matěj Student's surname, given name(s):
487342 Personal number:
Open Informatics Programme name:

declare that I have elaborated the master’s thesis entitled

Virtual Shadow Maps

independently, and have cited all information sources used in accordance with the Methodological Instruction
on the Observance of Ethical Principles in the Preparation of University Theses and with the Framework Rules
for the Use of Artificial Intelligence at CTU for Academic and Pedagogical Purposes in Bachelor’s and Continuing
Master’s Programmes.

I declare that I did not use any artificial intelligence tools during the preparation and writing of my thesis. I am
aware of the consequences if manifestly undeclared use of such tools is determined in the elaboration of any
part of my thesis.

Bc. Matěj Sakmary In Prague on 22.05.2025
..

student's signature

vi

Acknowledgements
I would like to thank to everyone who
supported me throughout the creation of
this work. Specifically, I would like to doc.
Ing. Jiří Bittner Ph.D., my supervisor, for
offering advice and guidance throughout
the whole process. I would also like to
thank to Patrick Ahrens for his valuable
insights and expertise which were invalu-
able during the algorithm’s design.

Declaration
I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

vii

Abstract
In this work I present Virtual Shadow
Maps (VSMs), a method for rendering
shadow maps with greatly improved qual-
ity and memory efficiency compared to
current methods. I separate logical ad-
dress space from its physical backing by
splitting each shadow map into a set of vir-
tual pages. This achieves the appearance
of a large contiguous memory without the
need to reserve backing physical memory.
For each frame, I find the set of visible
pages by analyzing the depth buffer. Each
visible page is assigned physical memory
allocated from a designated memory pool.
To efficiently fill visible pages with shadow
map information, I utilize granular culling
of the scene geometry. This is paired with
caching of individual pages, which greatly
reduces the number of pages that need
to be filled each frame. I show that my
implementation is well suited for multiple
light sources of various types, including
directional lights, point lights, and spot-
lights. Further, I show that this technique
scales to an arbitrary number of cascades
as only a fraction of virtual pages are vis-
ible and need to be backed each frame.
The method can thus achieve any desired
texel-to-pixel density at any distance with
few wasted shadow texels.

Keywords: Shadows, Shadow map,
Shadow Mapping, Virtual, Virtual
textures, Memory Paging, Meshlets,
Mesh Shading, Sparse, Culling, Real
Time Shadows, Point Light Shadows

Supervisor: doc. Ing. Jiří Bittner Ph.D.
Katedra počítačové grafiky a interakce,
ČVUT FEL

Abstrakt
V této práci prezentuji Virtuální Stínové
Mapy (VSMs), metodu pro vykreslování
stínových map s výrazně lepší kvalitou
a paměťovou efektivitou v porovnaní se
současnými metodami. Metoda odděluje
logický adresový prostor od jeho fyzické re-
alizace rozdělením každé stínové mapy na
sadu virtuálních stránek. Tímto je dosa-
ženo zdánlivě vělkého a souvislého pamě-
ťového prostoru bez nutnosti kompletně
rezervovat fyzickou paměť. V každém
snímku jsou nalezeny viditelné stránky po-
mocí analýzy hloubkové textury. Fyzická
stránka z designované paměťi je poté při-
řazena každé viditelné stránce. Pro efek-
tivní vyplění viditelných stránek využí-
vám granularní ořezávání geometrie scény.
Toto je zkombinováno s ukládáním jednot-
livých stránek, což výrazně snižuje počet
stránek, které musí být v každém snímku
vyplněné. Ukazuji, že moje implementace
je vhodná pro libovolný počet světelných
zrojů různých typů, včetně směrových svě-
tel, bodových světel a reflektorů. Dále uka-
zuji, že tato technika škáluje na libovolný
počet kaskád. Toto je způsobeno omeze-
nou velikostí množiny viditelných stránek,
které vyžadují přiřazenou fyzickou paměť.
Tato metoda tedy může dosáhnout libo-
volné hustoty texelů na pixel v jakékoliv
vzdálenosti s minimem vyplýtvaných stí-
nových texelů.

Klíčová slova: Stíny, Stínová mapa,
Stínové mapování, Virtuální, Virtuální
textury, Paměťové stránkování, Meshets,
Mesh Shading, Sparse, Ořezávání, Stíny
v reálném čase, Stíny bodových světel

viii

Contents
1 Introduction 1
1.1 Goals . 2
2 Virtual Shadow Maps 3
2.1 Previous Work 3
2.2 Scene Description 7

2.2.1 Graphics Library Transmission
Format . 7

2.2.2 Geometry Processing 8
2.2.3 Drawlists 8

2.3 Shadow Map Virtualization 8
2.3.1 Page Caching 10
2.3.2 Light Type Specifics 11

2.4 Algorithm Overview 13
2.4.1 Page Invalidation 14
2.4.2 Page Marking 14
2.4.3 Page Allocation 15
2.4.4 Page Drawing 15

3 Implementation 19
3.1 Virtualization Setup 19

3.1.1 Virtual Page Texture 19
3.1.2 Physical Page and Meta

Memory Textures 20
3.2 Toroidal Addressing 22
3.3 Page Invalidation 24

3.3.1 Toroidal Invalidation 24
3.3.2 Dynamic Object Invalidation 27

3.4 Page Marking 27
3.4.1 Processing Marked Page 29
3.4.2 Light Culling 30
3.4.3 Scalarization 32

3.5 Page Allocation 33
3.5.1 Classification 34
3.5.2 Allocation 36
3.5.3 Clear . 37

3.6 Page Drawing 39
3.6.1 Drawlist Expansion 39
3.6.2 Geometry Culling 42

4 Results and Discussion 47
4.1 Qualitative Analysis 47

4.1.1 Final Results 47
4.1.2 Bistro . 49
4.1.3 San Miguel and Sun Temple . 50

4.2 Performance Analysis 51
4.2.1 Cached and Uncached

Performance 52

4.2.2 Performance of Algorithm
Steps . 52

4.2.3 Scene Dependent Differences 54
4.2.4 Differences Across

Configurations 56
4.2.5 Performance with Multiple

Samples . 57
4.2.6 PPT Size Analysis 59

5 Conclusion and Future Work 61
Bibliography 63
A Attachment List 65
B Manual 67

B.0.1 Controls 67

ix

Figures
1.1 Showcase picture obtained by my

method . 1

2.1 Issues caused by insufficient
shadow map resolution 4

2.2 Results obtained by Adaptive
Shadow Maps 5

2.3 Results obtained by Efficient
Virtual Shadow Maps for Many
Lights . 6

2.4 Scene hierarchy representation . . . 9
2.5 Virtualization Layout 10
2.6 Virtualization sceheme of a

directional light 11
2.7 Page snapping for directinal lights 12
2.8 Directional light virtualization

project into world 13
2.9 Paging scheme visualization 14
2.10 Issues encoutering when

shadowing volumes 16

3.1 VPT entry format 19
3.2 VPT array layout 21
3.3 MMT entry format 22
3.4 Toroidal addressing in world . . . 23
3.5 Issues with caching and camera

movement . 24
3.6 Reconstruction of a world-space

footprint . 28
3.7 Marking a page from footprint . 29
3.8 Processing of a marked page . . . 30
3.9 World light grid slice 31
3.10 Shader scalarization visualization 32
3.11 Classification writeout

scalarization visualization 35
3.12 Indirect dependencies within

allocation step 37
3.13 The allocation procedure 39
3.14 Power of two mesh to meshlet

expansion . 40
3.15 Power of two dispatching scheme 41
3.16 Standard culling methods 42
3.17 Visualization of Hierarchical Page

Buffer . 43
3.18 Hierarchical Page Buffer culling 44

4.1 Final images 48

4.2 Bistro Quality Comparison 50
4.3 San Miguel and Sun Temple

quality comparison 51
4.4 Cached and uncached fly-through

performance . 53
4.5 Detailed timings of individual

stages . 53
4.6 Overdraw from the shadowmap

perspective . 54
4.7 Comparison of Methods on

individual scenes 56
4.8 Bistro and Sun Temple Overdraw

Comparison . 58
4.9 Correlation between PPT size and

performance . 59

x

Tables
4.1 Parameters of tested 47
4.2 Performance of multiple shadow

map samples 57
4.3 Times of individual stages of the

algorithm . 60

xi

Chapter 1
Introduction

Figure 1.1 Image rendered using my application.

Shadows are one of the most important aspects of a three-dimensional scene.
By providing visual queues on shapes and the relative positions of objects, they
define how the scene is perceived and interpreted. Calculating and storing
visibility, which is at the core of each shadowing solution, remains a challenging
problem. Even though recent advancements in hardware technology make
ray tracing a promising direction, shadow mapping remains a standard and
widely used technique for solving visibility queries.

Despite that, current shadow mapping techniques still suffer from artifacts
caused by insufficient shadow map resolution. Increasing resolution to alleviate
these issues quickly becomes impractical due to memory consumption and
hardware limitations. These issues are further accentuated if multiple light
sources are considered, each requiring one or more separate shadow maps.
Even when we ignore the memory consumption issues, naively rendering all
shadow maps becomes prohibitive due to the sheer cost of rasterizing the
scene for each shadow map.

Although many current techniques reduce issues caused by insufficient
resolution, the fundamental compromise between shadow quality and memory

1

1. Introduction
cost remains. It is common for rendering engines to provide several options for
shadows, each with their own set of trade-offs. For example, screen-space ray
tracing [MM14] can be used in addition to shadow mapping implementations.
This is done to achieve sharper and more detailed contact shadows. Specialized
techniques are often used for different light sources, further complicating the
implementation.

In Section 2, I start by discussing the current solutions to the problems
outlined above and their shortcomings. This is followed by the description
of the scene and geometry representation in my implementation. A section
describing the virtualization concepts in more detail follows. Finally, this
chapter provides an overview of the entire algorithm. In the next chapter, I
provide a description of the implementation of the described method. The
Individual steps are discussed in detail, including the necessary optimizations,
allowing for real-time framerates. The following chapter describes the results
I was able to achieve using my technique. Here, I also discuss and analyze
the performance of the method. In the last chapter, I conclude the work and
offer promising directions for further research.

1.1 Goals

The goal of this work was to develop a technique capable of efficiently storing
and rendering a large number of shadow maps. The technique needs to be
unified and should not require any additional methods to provide consistent
shadows at all ranges and in all scenarios. This means that this technique
should be general enough to allow rendering of shadows from various light
source types. It should also not rely on any offline baking. A part of the
goal is to provide shadows, which can be applied to highly dynamic scenes.
As such, the technique should be able to handle and represent shadows for
moving, appearing, or disappearing objects.

The technique should be fast and efficient enough to run on consumer
hardware. Further, since the main target of real-time shadows are games,
the technique should be fast enough to be combined with many different
aspects that go into rendering a game. Due to this, the performance of the
technique needs to be roughly consistent and independent of the specific
viewing conditions. The memory required to store the shadow maps also
needs to be bounded and within the bounds present on modern hardware.

Finally, it should be possible to use the shadow maps from this technique
for other effects often present in real-time applications. That is, it should
allow for rendering of shadows in volumetric effects such as fog. It should also
be possible to store shadows of volumetric effects themselves. For example,
the technique should be able to represent shadows cast by clouds on the
underlying terrain.

2

Chapter 2
Virtual Shadow Maps

In this chapter, I will provide the relevant background for the following
chapter that describes the implementation. First, I will describe how previous
work attempts to solve the issues introduced by shadowmapping. Next, I will
talk about how the scene and geometry are represented in my implementation.
Following this, the concepts relating to texture virtualization and their
application to shadow maps will be explained. Finally, I will provide a
high-level overview of the algorithm utilized by my method.

2.1 Previous Work

The fundamental issue with shadow mapping are the artifacts introduced by
insufficient shadow-map resolution. These occur when a pixel projected into
the shadow map covers less than a texel in the shadow map. The same shadow
map texel is used to determine visibility for multiple pixels, resulting in blocky
looking shadows. To avoid this, at least one-to-one mapping between shadow
map texels and pixels needs to be ensured. An example of the discussed
issues can be seen in Figure 2.1. As such many of the shadow mapping
improvements lie in improving the shadow map texel distribution.

Cascaded Shadow Maps (CSM) is a popular algorithm used to ensure
a better distribution of shadow map texels for directional lights [Dim07].
Instead of storing a single high-resolution shadow map, CSM represents the
shadow map as multiple separate textures, also called cascades. The viewer’s
frustum is partitioned into smaller frusta such that each cascade can be paired
with its own slice of the view range. Each cascade is then fitted with its
own light space matrix covering the entiry-assigned frustum slice. The scene
is then rendered once for each cascade using the appropriate cascade light
matrix. Due to the shape of the perspective frustum, this results in a denser
shadow map being placed near the viewer, where detail is most needed. In
contrast, constant regions receive coarser shadows. It is also common for the
resolution of textures representing individual cascades to vary. For example,
two near-cascades can be used to represent detailed shadows near the viewer.
This can be complemented with a third, lower-resolution cascade which is
used to render all distant shadows.

Fitting the frustum to cover the entire frustum can be suboptimal in many

3

2. Virtual Shadow Maps

Figure 2.1 On the left undesirable effects caused by insufficient shadow map
resolution which results in blocky looking shadows. On the right shadows
produced by Virtual Shadow Maps.

situations. Rarely is the geometry uniformly distributed throughout the scene.
An example of this would be a camera placed inside a room. The walls of the
room obscure the rest of the scene from being seen; however, shadow maps
corresponding to the rest of the scene are still rendered. These shadow maps
will never be sampled and as such, they are completely wasted. This can,
to some extent, be solved by manually tweaking the cascade placement for
individual areas of the scene. However, this is both very tedious and still fails
to achieve optimal results in many scenarios.

Sample Distribution Shadow Maps (SDSM) leverage this fact and improve
CSM by using a per-frame analysis of the currently visible portion of the
scene [LSL11]. The analysis is then used to maximize the efficiency of
the shadow sample distribution for the current viewing angle. The current
view analysis is performed by utilizing the depth texture rendered from the
main viewpoint. The extent of the analysis can vary between individual
implementations. For example, only the minimum and maximum visible
depth can be used to omit placing cascades in regions of the viewer frustum
that are obscured by geometry. Another example would be to construct
a histogram of depth values, which can be used to further optimize the
placement of individual cascades to regions with the highest concentration of
samples.

In SDSM the individual cascade positioning is then updated every frame
to best fit the geometry currently viewed. Due to these constant updates,
SDSM often suffers from temporal instability. When the light cascades update
in sub-texel increments, this can manifest itself as visible shimmering and
aliasing of the shadow map. Because of this, care must be taken when placing
the individual cascades.

Adaptive Shadow Maps (ASM) take a different approach [FFB01]. Instead
of partitioning the shadow map into multiple cascades, ASM attempts to
refine the quality of the shadow map locally. A hierarchical structure is
introduced that is used to match the resolution of the shadow map with the
resolution required by individual pixels. By evaluating the contributions of

4

.................................... 2.1. Previous Work

Figure 2.2 Image taken from [FFB01]. Showcase of adaptively refined shadow
map on the right, compared to a conventional shadowmap with resolution
2048 × 2048 texels. This is very similar to the figure shown in 2.1 obtained by
my method.

the individual shadow map pixels to the overall image quality, this structure
is refined. This is done using an edge detection algorithm that ensures
an efficient distribution of the texel shadow edges. The structure is thus
iteratively refined to provide the best results for each viewpoint. A memory
limit specified by the user is then used to bound the final quality of the
shadow map obtained. The results obtained by this method can be seen in
Figure 2.2.

A slightly different but still similar approach was proposed by Resolution
Matched Shadow Maps (RMSM) [LSO07]. The same quadtree structure used
in ASM was utilized to represent and refine the shadow map. A big downside
of ASM is the highly variable amount of time that the iterative edge finding
algorithm takes to converge. This makes ASM based shadows very expensive
for dynamic scenes. To avoid this, RMSMs forgo the expensive iterative
refinement step in favor generating a list of all shadow map texels requested
by the by all pixels of the main view.

Another approach building upon and improving ASM is called Queried
Shadow Maps (QSM) [GW07]. By using occlusion queries present in GPU
hardware and improving the heuristics of the refinement algorithm, QSMs
offer much better performance in highly dynamic scenes. This is mainly
because the improved refinement algorithm can be executed completely in
each frame, which is not true for ASMs, which rely on caching to deliver the
best performance.

Recently, Efficient Virtual Shadow Maps for Many Lights introduced the
concept of virtualizing shadow maps by separating the shadow map itself from
its physical storage [OSK14]. They discuss hardware-supported virtualization
of cubemaps used to store shadows. Every cube map is split into individual
tiles that are then requested by individual pixels.

Similarly to ASM, RMSM and QSM, the proposed algorithm allows for

5

2. Virtual Shadow Maps

Figure 2.3 Image taken from [OSK14]. Two images obtained by utilizing virtual
approach proposed by the authors of the Efficient Virtual Shadow Maps for
Many Lights publication. Their method allows for rendering of large amounts of
individual point lights. Specifically, there are 256 point lights in the left image
and 356 lights in the right image.

dynamic scaling of the shadow map resolution. However, this is done on a
much coarser level than the previous methods. As opposed to individual
pixels requesting the shadow map tiles, the resolution of each cube map face
is determined by taking the maximum resolution requested by all pixels.

This publication also proposes a highly efficient geometry culling scheme,
which is required to achieve real-time frame rates. The culling is based on
clustering the geometry into a Bounding Volume Hierarchy (BVH). Each
leaf of the BVH stores batches of triangles represented by an axis-aligned
bounding box (AABB). This hierarchical scheme allows for quick discarding
of geometry in the top levels, improving culling performance.

Finally, to shade the extreme amount of individual lights, the authors
propose a clustered shading approach. The entire view frustum is subdivided
into a set of cells. First, the cells that contain geometry are used to analyze
the rendered view. This is done in a fashion similar to how SDSM analyze
the scene. Each cell containing visible geometry is then intersected with the
spheres that represent the individual lights. This yields a list of contributing
lights for each cell, which is used to drastically reduce the number of lights
that need to be considered during shading of each pixel. The results of this
method can be seen in Figure 2.3.

A work-in-progress version of this thesis was used to co-authorImplementing
Virtual Shadow Maps (VSM) and author Resolution Matched Virtual Shadow
Maps (RMVSM). The first describes the complexities of implementing virtual
shadow maps for directional lights [SRH24]. Although there is some overlap
between this work, the technique I present here has been significantly improved
and modified. The second publication describes a more up-to-date version
of the algorithm. It provides an explanation of the generalized method that
allows for point- and spot-light sources. In addition, the scene representation
and culling scheme is described. This means that there is significant overlap
between this work. However, the RMVSM publication only described a
high-level overview of the method without delving into the implementation
details. As such, parts of the RMVSM publication were taken from the
work-in-progress version of this chapter.

6

.................................. 2.2. Scene Description

2.2 Scene Description

In this section, I describe how the scene and geometry are represented and
laid out in memory. I will discuss the pre-processing and optimization steps
that geometry goes through to arrive at a format that is the most efficient
for VSMs. Finally, I will talk about how the scene is parsed into a set of
drawlists consumed by the GPU.

2.2.1 Graphics Library Transmission Format

The implementation supports loading files in the second version of the Graph-
ics Library Transmission Format (glTF). Although this is not the most efficient
when it comes to representing a scene, its flexibility makes it a very popular
choice for development purposes. This is mainly due to the wide support in
existing tools as well as the option to add custom features using extensions.
Every glTF contains one or more binary files that store the data required to
render the content of the scene. Binary files contain unique raw geometry
and texture data and need to be accompanied by a tree-like hierarchical
data structure. This structure describes the relationship between individual
objects in the scene and is stored in a JSON file.

At the root of the scene hierarchy is the scene node. This contains one
or more child nodes, which can themselves contain more child nodes. In
glTF there are many types of nodes, but only a few are relevant to this
work. Specifically, those are transform, mesh and light nodes. As the
name suggests, the transform nodes contain only a transform and are used to
affect the transforms of the objects directly below them in the hierarchy. In
addition to containing a transform, mesh nodes are used to instance one or
more meshes into the scene. As such, these contain a list of indices pointing
to individual meshes. Similarly, the light nodes contain an index to the light
that they are introducing into the scene.

A mesh in glTF represents a group of triangles with shared properties. The
triangles contained in the same mesh use the same material and textures. To
avoid storing duplicate vertices, index buffers are a de facto standard when
representing geometry. Thus, each mesh is represented by two buffers, the
first storing all vertices and the second storing the indices.

The scene in my framework adopts a similar structure; however, there is
one key difference in the mesh representation. As already mentioned, VSMs
require hierarchical culling in order to be efficient. To allow this, the geometry
in the meshes also needs to be represented as a hierarchy. Instead of meshes
containing the data of individual triangles directly, they contain a list of
meshlets. Each meshlet contains information about a bounded number of
triangles. The bound is typically set very low; around 64 to 128 is used in
practice. This greatly aids in work distribution on the GPU by closely fitting
the mesh shading pipeline.

The triangles of each meshlet are again represented as a list of indices. The
index buffer for the entire mesh consists of 32bit entries to allow for very

7

2. Virtual Shadow Maps
large meshes. Because of the limited number of stored primitives and the
relative close spatial locality of the vertices for each meshlet, the indices of
individual meshlets do not need to be this large. For each meshlet, only a
micro-index buffer is stored. It consists of a single 32 bit offset and a set of
8bit entries.

2.2.2 Geometry Processing

The meshlets and micro-indices are generated utilizing an open source library
called Meshoptimizer [Kap25]. Meshoptimizer also generates axis-aligned
bounding boxes (AABBs) and levels of detail (LODs) for both meshes and
meshlets. AABBs are used to cull geometry during the drawing stage. The
LODs are used to reduce the complexity of geometry that is farther away
from the observer. Mesh processing can be quite costly; however, individual
meshes are completely separate and can be processed in isolation. As such, I
utilize a thread-pool approach to process multiple meshes in parallel.

2.2.3 Drawlists

All mesh data are processed on the CPU; however, immediately after the
processing is done, the data are moved to the GPU. This is not true for the
node graph that represents the scene. In contrast to meshes, the node graph
is used purely on the CPU. At the start of every frame, the it is thus flattened
into a set of draw lists. Furthermore, each frame, the combined transforms
for each individual mesh are computed and stored in a GPU buffer. By doing
this, I avoid the recursive process of parsing the node graph, which is not
well-suited for GPU processing.

A draw list is a list of mesh indices that logically group meshes with shared
properties. For the purposes of VSMs three draw lists are required. The
first two are used when drawing the VSMs and split the geometry into alpha-
masked and opaque meshes. This separation is important for performance
reasons. Alpha-masked meshes require a texture fetch to determine the
transparency of each texel. The third draw list required for VSMs holds all
dynamic objects. That is, all objects for which the transform changed in
between frames. This draw list is used to invalidate cached pages, as will be
explained in further chapters. This also highlights an important property;
a mesh instance can be simultaneously referenced by multiple draw lists at
once.

2.3 Shadow Map Virtualization

As already stated above, the main issue that shadowmapping faces is insuffi-
cient resolution. However, naively increasing the resolution has its drawbacks.
First, the memory cost scales quadratically with resolution, quickly making
high-resolution shadow maps impractical. Second, higher resolution reduces
the spatial locality for situations where a single pixel maps to too many

8

.............................. 2.3. Shadow Map Virtualization

Figure 2.4 Scene representation Hierarchy. The bottom half shows the unique
meshes and meshlets present in the scene as well as the unique lights. The upper
part shows an example of the node graph. Nodes in blue reference at least one
mesh, while green entities only contain a transform. Yellow nodes reference
individual lights. Note that a single mesh or light can be referenced by more
than one node in the entity graph.

shadow map texels. This increases the likelihood of cache misses, reducing
overall performance. The last issue arises from the limits of the rasterization
resolution placed by the target hardware. To overcome this, the scene would
need to be rendered in multiple passes, further reducing the performance.

To avoid all shadow mapping artifacts, a one-to-one mapping between pixels
and shadow map texels is necessary. However, the area of the shadowmap
covered by each pixel is not uniform. The covered area depends on many
factors, such as the distance from the viewpoint or the angle of light. Pixels
belonging to geometry close to the viewpoint typically map to smaller areas
of the shadow map and, as such, require the most resolution. Due to this
non-uniformity, a different resolution is required for different parts of the
shadow map in order to achieve the ideal mapping.

These requirements are very similar to the ones demanded from ordinary
textures. Textures usually have the highest resolution possible to allow for
good-looking closeups, while relying on mipmaps for more distant views. To
combat the memory demands of high-resolution textures, a technique called
virtual texturing is often used [Bar08; Wav09; WH10]. Virtual texturing
leverages an important observation - even when the entirety of a texture is
present in memory, only a limited subset will be sampled at any given frame.
Due to this, memory can be reused to back only the sampled portions of the
virtual texture. This allows for the appearance of a very large contiguous
memory space without the need to fully reserve the physical memory. The
required memory is no longer given by the resolution of the texture. Instead,
it is given by the largest portion of the texture that can be visible at any given
time. Utilizing this concept across all textures present in a scene achieves a
high reduction in memory consumption.

9

2. Virtual Shadow Maps

Figure 2.5 The virtualization layout adapted by our technique. Each entry
stores metadata about the page, denoted by different colors in the image. In this
example, white pages are not allocated, green pages are allocated and visible
this frame, yellow pages are allocated but not visible this frame and finally blue
pages are newly seen, and thus dirty and requiring a backing page from the PPT.
The PPT itself is also denoted in the image. When a page is backed, the VPT
entry stores coordinates to the corresponding page in the PPT.

By treating a shadow map as an ordinary texture, all of these concepts
can be applied to increase the efficiency with which shadow maps are stored
and rendered. Each shadow map is divided into a set of pages and is fully
virtualized. It is thus represented by a single texture called Virtual Page
Texture (VPT). VPT is of much lower resolution than the full virtual resolution
of the shadow map. Every entry in the VPT contains the metadata for one
page. That is, each entry in the VPT contains the allocation status and
coordinates of the allocated page in the Physical Page Texture (PPT). The
PPT is a second texture that I introduce. It is shared by all shadow maps and
is used to provide the physical backing for the allocated pages in the VPT.
Because all lights share the PPT, the page size is uniform across all shadow
maps and light types. The virtualization scheme can be seen in Figure 2.5.

2.3.1 Page Caching

Shadow map caching utilizes the results from previous frames instead of
redrawing the shadow map each frame. Although this can be a large optimiza-
tion, it does come with caveats. Whenever any object that was previously
rendered in the shadow map changes its position, rotation, or scale, the cached
shadow map needs to be redrawn. Although most of the objects in a scene
remain static, there are typically at least a few dynamic objects visible at
any time. These objects force the shadow map to constantly redraw, greatly
reducing the benefits of caching. For these reasons, shadow map caching is
usually mainly utilized for smaller sources of light.

In VSMs, I have much more granular control over the entire shadow map.
Instead of redrawing the entire shadow map, only the pages containing the
dynamic objects need to be redrawn. By doing this, I minimize the number

10

.............................. 2.3. Shadow Map Virtualization

Figure 2.6 The virtualization scheme of the directional light. On the right we
can see the Clipmap stack. With dotted lines I denote the real size of the mip
level. In color is then the clipped level that is stored. All Clipmap stack levels
share the same resolution. Because of this the portion of the underlying mip
level covered by each clip level increases with increasing mip level. Increasing
clip levels thus cover larger area in the world as can be seen in the left part of
the image.

of required draws and allow for more efficient culling, which will be described
in later chapters.

2.3.2 Light Type Specifics

My technique supports three types of light sources, directional lights, spot
lights, and point lights. Although the three are similar in many ways, there
are important differences in how I approach the virtualization of their shadow
maps. In this part, I describe the specifics for each type of light.

Directional Lights

A typical scene contains only one or two directional lights. They always
affect the entire scene and thus are particularly difficult to provide consistent
shadows for. Due to their large area of influence, they are represented as a
virtual texture spanning the entire scene. This texture needs to have a very
high resolution, typically hundreds of thousands of pixels. To allow for this
approach, I use a concept called Clipmap [TMJ98; AH05].

The main difference between a traditional mipmap and a Clipmap is that
each level of a Clipmap is clipped to a specified maximum size. This divides
the Clipmap into two parts, the set of mip levels that have been clipped by
the maximum size, called the Clipmap stack, and the set of mip levels with
the original size called the Clipmap pyramid. For the purposes of my solution,
I utilize only the Clipmap stack.

A shadow map for a directional light is thus represented by a set of VPTs,
each representing a virtual shadow map for a single Clipmap level. Because
I utilize only the Clipmap stack, all levels maintain the same resolution.
According to the original Clipmap technique, every level covers twice the area
of the previous one. This ensures the varying texel density of the shadowmap.
The higher the level, the larger the area covered and the larger each texel
footprint becomes. A visualization of the directional light paging scheme can
be seen in Figure 2.6.

11

2. Virtual Shadow Maps

Figure 2.7 The snapping performed by the cameras corresponding to two clip
levels demonstrated in top down view. This is a simplified scenario, where each
virtual clip level has only four pages. Frustums of the individual Clipmap levels
are snapped to their local page grid. At the start, the frustums of the two
shown levels are aligned. When the camera starts to move the frustums become
misaligned due to the differing world sizes of the page grid.

To support caching, the frustums of the individual Clipmap stack levels
are snapped to the page grid given by that specific level. This means that
the positions of the frustums for individual levels do not need to be the same,
as can be seen in 2.7.

As the cascade frustum moves to follow the main camera, new pages,
previously located on the edge just outside of the cascade frustum, might
need to be drawn. In order to preserve previously cached pages, I utilize a
sliding window, also called Toroidal addressing [TMJ98] or 2D wraparound
addressing [AH05]. With a sliding window, the newly entered pages are
mapped to the location in the VPT previously occupied by old, exiting pages.
Figure 2.8 shows a visualization obtained by projecting the directional VPT
pages into the world space.

Spot Lights

A scene usually contains a larger number of spotlights. However, unlike for
directional lights, such a large virtual resolution is no longer needed. This is
mainly due to the fact that their effects are much more localized. As such,
resolutions of four to two thousand texels are often sufficient.

Clipmaps are thus no longer needed, and the classic mipchain can be used.
This is a key difference between spotlights and directional lights. Directional
lights have clip levels with constant resolution that cover an increasingly large
area. Spot lights have mipmap levels with decreasing resolution that cover
the same area.

While slightly complicating rendering of the shadow map, described in the
following chapters, it allows a significant reduction in the number of VPTs
required to represent the light. Where directional lights require an entire VPT
per clipmap, the mipchain of the VPT can be leveraged. Thus, a spotlight
can be represented by a single VPT.

12

..................................2.4. Algorithm Overview

Figure 2.8 Visualization of the directional shadow map virtualization and paging
scheme. Black lines denote individual shadow map tiles. Different colors denote
different clip levels. We can clearly see how each clip level increases the page
size. The objects close to the viewing position have low clipmap levels, because
they require the most resolution. The further the objects get from the camera
the less resolution are needed and so higher clip levels are requested.

Point Lights

The Last light type that will be described are point lights. Point lights
are often represented as cubemaps. I model the cubemap by six rotated
spotlights that share an origin. This makes point lights in many ways similar
to spot lights. As such, point lights do not pose a significant difference for
my technique. All shadow map textures are fully virtualized; a point light is
thus simply represented as six VPTs, one for each face. Figure 2.9 shows a
visualization obtained by projecting the point light VPT pages into world
space.

2.4 Algorithm Overview

Next, I will describe a high-level outline of the proposed algorithm. The goal
of this section is not to give a detailed description of each individual stage.
Instead, this section should serve to conceptually explain the purpose of each
of the steps. In addition to this, it should also provide an overview of how the
individual stages interact and fit together. The algorithm is divided into four
steps Page invalidation, Page marking, Page allocation, and Page drawing.
Each of these steps can contain multiple individual substeps, which will be
described in the later chapters.

13

2. Virtual Shadow Maps

Figure 2.9 Visualization of paging and virtualization of a single point light.
Black lines denote individual shadow map pages. Different colors determine
separate point light faces. The sizes of the pages imply the mip map from which
the tile was selected. The tiles are now distorted by the perspective projection of
the point light and no longer appear strictly rectangular. Additionally, the more
complicated mip level selection can be observed. As the distance towards the
light decreases, the resolution of the shadow map increases, which leads to lower
mip map levels required (visible on the bottom, red, face of the point light).

2.4.1 Page Invalidation

Before any processing of the current frame can begin, changes from the
previous frame need to be handled. These are mainly caused by the movement
of the main camera as well as dynamic objects. Because all pages are cached,
this requires an explicit step that frees pages that no longer contain valid
information. For dynamic objects, all allocated pages they intersected the
last frame, as well as all pages they intersect this frame, need to be redrawn.
This needs to be done for all light source types. In addition, for directional
lights, pages that fall outside of the wraparound addressing window need also
be freed.

2.4.2 Page Marking

The second step of our algorithm is determining the shadow map pages that
will be required for this frame. For these purposes, similarly to SDSM, the
scene is rendered from the view of the main camera into a depth buffer.
Following this, a pass over the acquired depth is performed. During this pass,
each pixel is projected into VPTs of each light. This projection obtains the
pixel footprint in the shadow map, which is used to determine the required
Clipmap level or mip level. The page that this pixel requires is then marked.
If this page is not currently allocated, it will be added to the set of VPT
pages that require backing, which will be consumed in the next step.

14

..................................2.4. Algorithm Overview

2.4.3 Page Allocation

The marking step is followed by an allocation step. From the set of VPT
pages marked in the previous step, those that do not have physical backing
need to be allocated.

For the purpose of this, I first perform a pass over the entire PPT. This
pass classifies all physical pages into three categories, free pages, allocated
pages, and cached pages. Free pages are self-explanatory; these are the pages
that are not currently used to back any VPT page. The allocated pages
denote pages that contain valid data from previous frames, which will also
be required in this frame. That is, the VPT page that is backed by this was
also marked as required for this frame. As such, these cannot be used in the
allocation process and remain untouched. Similarly to allocated pages, the
set of cached pages denotes the pages that contain valid data from previous
frames. However, they have not been marked by the Page marking step and
their data will not be used in the current frame.

Once the physical pages are classified, the allocation step performs the
assignment of the free or cached pages. I first attempt to back all the VPT
pages produced by the previous step with the free pages. If there are no free
pages remaining, I instead use the cached pages to back the requests. This
requires the cached page to first be freed before the memory can be reused.
Finally, all newly allocated pages need to be cleared so that their previous
content does not obstruct the next steps of the algorithm.

2.4.4 Page Drawing

Drawing the pages of the shadow map is the last step of my algorithm. The
rasterization itself is preceded by a number of geometry processing steps.
First, to obtain the geometry instances that need to be drawn, the scene graph
needs to be processed. This is followed by a series of work expansion and
hierarchical geometry culling steps. Work expansion is necessary to ensure
optimal work scheduling and sufficient GPU saturation. Culling massively
reduces the amount of geometry that needs to be processed. This plays a
fundamental role in obtaining real-time frame rates. To achieve the most
efficient culling, a specialized data structure is required. This structure, which
will be described in later chapters, is built as the next step of the page-drawing
process. Finally, all geometry that survives the culling steps can be rasterized
and drawn into the pages.

Support for Volumetric Effects

As stated in the goals section, the technique should allow for rendering
shadows cast both by volumes and into volumes. The former is immediately
supported by the described approach. All steps will remain the same up
to the point of rendering the pages. This step would be replaced by the
specific method used to store the shadowing information. For example, the
volume that should be casting the shadow would be ray-marched for each

15

2. Virtual Shadow Maps

Figure 2.10 Demonstration of issues caused by page marking. Green rectangle
denotes the area visible by the main camera. The blue box represents a volume
in which should be shadowed by the tree on the left. Because the pages are only
requested for pixels hitting opaque surfaces, the page in red will not be requested
and as such will not contain any data. This is an issue, because this page is
required to draw the tree shadow into the volume.

texel of every page, and the average depth stored. Depending on the method,
the shadowing information stored in each page might differ from traditional
shadow maps. As such, the format of the page and thus the format of the
underlying PPT might be different. However, the steps of the algorithm
remain exactly the same.

Sampling the shadow map when rendering volumetric effects will cause
issues with the steps described so far. More specifically, the marking stage
considers only visible surfaces when requesting the pages. That is, only the
pages that would result in shadow cast on a surface in the view of the main
camera are requested. Because the volume is not a solid surface, we might
encounter a scenario in which no page covers a section of the volume. This
can be seen in Figure 2.10.

This can be solved in various ways. The volume can be ray marched twice,
first time the individual pages will be requested and once these are drawn,
the volume will be ray marched for a second time, this time sampling the
shadows and properly shading. This is the most precise approach; however, it
is also the most expensive. Second, the volume can be only ray marched once
and immediately shaded. When an unallocated page is encountered, it will be
requested and drawn in the next frame. This will introduce some flickering;
however, it might still produce acceptable results. Another approach would
be to project the frustum of the main camera into a high level of the shadow
map. All pages intersected by this projection would then be marked. Since

16

..................................2.4. Algorithm Overview

volumetric effects are only marched for the on-screen pixels, this would always
guarantee the presence of the required pages. Because volumetric effects
are often of low visual frequency, the shadow resolution required is also not
high. As such, the frustum projection step might be skipped entirely, and
an entire, high, level of each shadow map might always be rendered. This is
especially viable for point lights and spot lights, as their highest levels cost
only a fraction of the memory required for the lower ones.

17

18

Chapter 3
Implementation

In this chapter, I will describe the implementation details of the solution
proposed in the previous chapter. The technique was integrated into an open
source research framework called Timberdoodle [SA25]. Because of this, our
solution was developed using the C++ language, using the Vulkan API to
interact with the GPU. All shaders were implemented using the Slang [NVI25]
shading language.

3.1 Virtualization Setup

I will start by describing the virtualization data structures that are the basis of
the solution. These are utilized throughout most of the steps of the algorithm,
and as such need to be described first. It is important to note that not all
details regarding virtualization will be described in this section. Specific parts
will be explained later in the chapter, once the appropriate context has been
laid out.

Figure 3.1 Format of a single VPT entry. Blue and green bits store the coor-
dinates of the backing page in the PPT, if one is allocated. The grey bits are
unused in our implementation. Finally the Red bits hold the meta information
about the VPT entry.

3.1.1 Virtual Page Texture

The VPT represents the virtualized shadow map and contains meta-data
entries for each page described in the previous chapter. To represent it, I use
a single 32 bit unsigned int texture. The resolution is given by the as:

ResolutionV P T = V irtual resolution

Page resolution
. (3.1)

19

3. Implementation....................................
The structure of each VPT entry can be seen in Figure 3.1. Each entry
contains five meta-information bits:.Allocated - when set, the entry is backed by a physical page..AllocReq - when set, the entry is requesting allocation..AllocFail - when set, the allocation for this entry failed..Dirty - when set, this page will need to be redrawn this frame..Visible - when set, this page will be sampled and requires backing.

Each entry also contains the coordinates for the physical page texture when
the page is allocated. I utilize only 16 bits to store this information, leaving
some bits unused. This limits the size of the PPT to only contain 256 × 256
pages, which is sufficient in my case. If the need for larger PPT would arise,
the unused bits could be used to extend the addressable range.

Directional lights utilize Clipmap levels, which have a set resolution and
thus require a VPT per level. However, for point lights and spotlights, the
mipchain of the VPT can be utilized to store all levels at once. To avoid
wasting memory by allocating mip levels for directional VPTs, I store the
VPTs in two array textures. The first is used for all directional light sources,
while the second is shared for point lights and spot lights.

Dynamically reallocating resources during the execution of the application
often causes expensive copies frame stutters. Because of this, in GPU-based
approaches, it is common that all textures are allocated once during the start
phase of the application. They are allocated for the worst-case specified by the
application. I follow this principle and allocate VPTs for a set number of light
sources. In my implementation, this number is modifiable, but only during
the compilation of the application itself. The actual amount of shadowcasting
lights can change throughout the runtime of the application, however, it
cannot exceed the worst-case boundary. The storage layout of all VPTs can
be seen in Figure 3.2.

3.1.2 Physical Page and Meta Memory Textures

The PPT represents the memory pool, or shared storage, which is used to
back individual virtual entries. In my implementation I use a single 32 bit
floating point channel texture. Because of implementation details that will
be described later, meta-information for each page in the physical texture
also needs to be stored. In order to do this, I utilize a second texture, which I
call the Meta-Memory Texture (MMT). Similarly to a VPT, the resolution is
given by the resolution of the PPT divided by the page resolution. In contrast
to the VPT, I require a bit more space to store all necessary information.
Because of this the format is a single channel 64 bit unsigned integer.

The MMT is essentially a mirror double of the VPT. The structure of
a single entry can be seen in Figure 3.3. Just like with VPT, each entry
contains meta-information about the state of the underlying physical page:

20

................................. 3.1. Virtualization Setup

Figure 3.2 The layout of VPTs in my implementation. On the left we see the
array of VPTs for directional lights. Each Clipmap level, denoted as different
colors, is represented by a separate array layer. The Clipmap levels of individual
directional lights are tightly packed in this array. Point lights and spotlights
occupy the second array shown on the right. The individual levels, denoted as
different colors, are represented by levels in the mipchain of the VPT. Each point
light is represented by six faces, each stored as a single VPT. After all point
lights, I tightly pack VPTs for spotlights. Each spotlight requires only a single
VPT.

.Allocated - when set, this memory is backing a VPT entry..Visible - when set, this memory is backing a visible VPT page.. PointSpot - when set, this memory is backing a spotlight or point light
VPT entry.

Additionally, every entry contains the complete coordinates required to
access the backed VPT entry. Using the PointSpot bit, the appropriate VPT
array is selected. The process of determining the offset in the array of VPTs
differs slightly depending on the type of light. For directional lights, the
directional light index is used first to determine the 0th Clipmap level of the
given light. To this, the clip level number is added, which obtains the correct
array layer. Point lights and spotlights store the offset into the array directly.
The bits used to represent the Clipmap level are used to represent the target
mip level of the given VPT. With this, there is a double link between the
VPT entries and backing PPT pages. This is especially useful because I often
need to perform two types of traversal. I wish to both iterate over memory
to resolve backed VPT entries and scan the VPT to find backing pages.

21

3. Implementation....................................

Figure 3.3 Format of a single MMT entry. Similarly to the VPT, the entries
in red store the meta information about the page. Blue and greed bits store
the coordinates of the backed page in the corresponding VPT. The yellow bits
represent either the Clipmap level or the mip level, depending on the type of
light. Finally the teal bits are used to represent the offset of the corresponding
VPT in the array of VPTs.

3.2 Toroidal Addressing

As discussed earlier, the usage of Clipmaps demands a special addressing
scheme in order to support caching. Whenever the camera representing the
virtual Clipmap level snaps to another location, new pages at the edge of the
new region need to be allocated. Similarly, the pages previously representing
locations that are not covered by the updated frustum can be freed. This
can be seen in Figure3.4. Without this mapping scheme, I would need to
copy and shuffle the entries in the VPT each time the light frustum moves.
This requires storing a per-Clipmap level offset of the respective light matrix
position from the origin.

Listing 3.1 Function used to convert from coordinates obtained by projecting by
clipstack level light matrix into wrapped coordinates.

1

2 int2 page_coords_virtual_to_wrapped(int2 virt_coords, int2 cliplevel_offset)
3 {
4 // Make sure that the virtual page coordinates are in
5 // page table bounds to prevent erroneous wrapping .
6 int2 bounds = int2(0, VSM_PAGE_TABLE_RESOLUTION - 1);
7 bool not_in_lower = any(lessThan(virt_coords, bounds.x));
8 bool not_in_upper = any(greaterThan(virt_coords, bounds.y);
9

10 if(not_in_lower || not_in_upper {
11 return int2(INVALID_COORDS);
12 }
13

14 int2 offset_coords = virt_coords + cliplevel_offset;
15 int2 wrapped_coords = mod(offset_coords, VSM_PAGE_TABLE_RESOLUTION);
16

17 return wrapped_coords;
18 }

This comes at the cost of more complicated addressing of the VPT. Now
I need to distinguish between virtual coordinates and what I call wrapped
coordinates. When determining which page a world position belongs to, I need
to proceed in two steps. First, the virtual coordinates need to be obtained by

22

..................................3.2. Toroidal Addressing

Figure 3.4 Left to right shows three consecutive frames in which the frustum
of one of the Clipmap levels snaps to another position. The top row displays
the covered world space area. In gray is the frustum of the previous camera
position. In green are pages that were cached by the original frustum. Yellow,
blue and red denote the pages that are covered by the new frustum. Hatched
are the pages that are no longer covered by the new frustum. The middle row
shows the mapping of the new pages. Finally, the bottom row shows how the
state of the VPT after the mapping has been performed.

projecting the position by the light matrix. Second, these coordinates need
to be transformed into wrapped coordinates. The wrapped coordinates can
then be used to look up the corresponding VPT entry. Listing 3.1 shows the
function used to perform the mapping from virtual to wrapped coordinates.

The last issue I would like to discuss occurs when sampling a cached page.
To know if a position in the world is shadowed, it first needs to be projected
into the shadow map. Then it is compared with the value stored in the
shadow map to determine visibility. Because the light camera matrix changes
between frames, it can be different from the camera with which the page was
drawn. If I were to use the current matrix of the Clipmap level to project the
world position, I would get invalid results. This is demonstrated in Figure 3.5.

To alleviate these issues, I introduce another texture that is paired with each
VPT. I use this texture to store and reconstruct the view matrix with which
each page was drawn. The entire matrix does not need to be stored as the only
thing that changes between frames is the position of the camera. I can store
only the elements which change with changing camera position, which are the
three floating point values in the last row of the matrix. Unfortunately, there
is nearly no hardware support for three channel 32 bit floating point textures,
so I must resort to four channel texture instead. Because this texture has the
same resolution as the VPT, combining them together would also be a viable
approach. The first channel would be used to store the VPT information
and the last three would be used to store the offset. In the end, I decided
to keep these separate to reduce bandwidth and increase cache coherency

23

3. Implementation....................................

Figure 3.5 Demonstration of issues caused by caching and camera movement.
The light camera of each Clipmap level follows the main camera. In the left
image two pages, denoted in purple, get rendered and cached. The following
shadow test determines the sample is shadowed because the distance in the
shadow map is closer than the projected world position. In the right image, the
main camera moves closer to the rock and the Clipmap camera follows. The
shadow test erroneously uses the new camera and determines the sample is no
longer in shadow. This is because the world position is not projected into the
camera with which the cached page was drawn.

while sampling the VPT. This is because sampling the VPT is needed in
many steps of our algorithm while sampling the offset happens only during
the shading stage.

3.3 Page Invalidation

The algorithm begins by freeing cached pages that no longer contain valid
data. This is done first so that the allocation step can immediately reuse the
freed memory to back new pages. There are two primary mechanisms that
can cause pages that have cached data to become stale. The first, discussed
in the previous section, is by means of toroidal addressing. When a page is
located outside of the current light frustum, it must be freed as it cannot no
longer be addressed. The second is caused by a dynamic object intersection.
Whenever the world area covered by a page contains a dynamic object, the
data need to be updated to represent the new state of this object.

3.3.1 Toroidal Invalidation

I will start by describing the toroidal invalidation. However, before any pages
need to be invalidated, the light camera for all Clipmap levels needs to be
updated. This is the only step that is performed on the CPU and will be
described in the next part.

24

...................................3.3. Page Invalidation

Light Camera Update

To preserve correct caching, the camera of each Clipmap level needs to snap
to the next position in page-sized increments. Because the pages sizes differ
across individual levels, the update of camera for each Clipmap level must
be done separately. While the view matrix of the clip-level camera changes,
the projection remains the same for the entire run-time of the application.
The projection matrix is thus calculated at the startup of the application
once, and then only reused. Directional light sources utilize orthographic
projection. As described in the previous chapter, each Clipmap level covers
twice the world area of the previous level. The orthographic projection is
then given by the clipmap level and the size of the zeroth level in world space.

The first step in determining the view matrix is to project the target
position into the default view space. This view space is shared by all clip-level
cameras that belong to the same light. It is given by a view matrix that is
centered at the origin of the world coordinate system looking in the direction
of the light source.

pdef = Vdef pt (3.2)
Following this, I project the position in the default view space by the clip-
level projection matrix to obtain the target position in normalized device
coordinates.

pNDC = Pclippdef (3.3)
Next, I calculate the NDC size of a single VSM page.

s = V SMpage resolution

V SMtexture resolution
(3.4)

And use it to scale the projected position.

pscaled = pNDC
s

(3.5)

This gives the position in the NDC space normalized to the size of the
page. Finally, I take the ceil of this to arrive at the position that is aligned
to the page grid.

palign_scaled = ⌈pscaled⌉ (3.6)
The page-aligned world position of the clip level is then obtained by

unprojecting from this space.

palign_scaled = (pscaled[1], pscaled[2], pNDC[3])
palign = palign_scaled ∗ s

palign_world = (PclipVdef)−1palign

(3.7)

This position is then offset by the height h at which the light should be
above the target position. The offset is calculated along the normalized light
direction dlight to preserve page alignment.

pfinal = palign_world + h ∗ −dlight (3.8)

25

3. Implementation....................................
Invalidation

Using the aligned page positions palign_scaled from the previous and current
frames, I calculate an offset per Clipmap level. This offset denotes the change
in pages in the position of each Clipmap level. To free pages invalidated by
this offset, I perform a single compute dispatch mapping one thread to each
entry in every VPT table. The shader checks whether the given entry falls
within the invalidation bounds, converts virtual coordinates into wrapped
coordinates, and frees the page if needed. If a page needs to be freed, it needs
to be freed both in the VPT as well as in the PPT. Before the VPT entry
is reset, the information that it stores is used to calculate the coordinates
of the appropriate PPT entry. These coordinates are then used to reset the
appropriate entry in the MMT. Listing 3.2 shows the code of the compute
shader. Notice that in addition to invalidating wrapped pages, whenever the
sun moves, all pages are invalidated.

Listing 3.2 Function used to free invalidated pages.
1

2 // SV_DispatchThreadID.xy are the coordinates inside the VPT page
3 // SV_DispatchThreadID.z is the array level index
4 void main(uint3 svdtid : SV_DispatchThreadID)
5 {
6 const int2 clear_offset = wrapped_pages_info[svdtid.z].clear_offset;
7

8 int2 max_bounds = int2(
9 VSM_PAGE_TABLE_RESOLUTION + (clear_offset.x - 1),

10 VSM_PAGE_TABLE_RESOLUTION + (clear_offset.y - 1));
11

12 bool invalid = false;
13 invalid |= (clear_offset.x > 0) && (svdtid.x < clear_offset.x);
14 invalid |= (clear_offset.y > 0) && (svdtid.y < clear_offset.y);
15 invalid |= (clear_offset.x < 0) && (svdtid.x > max_bounds.x);
16 invalid |= (clear_offset.y < 0) && (svdtid.y > max_bounds.y);
17

18 const int3 wrapped_coords =
19 page_coords_virtual_to_wrapped(
20 vsm_page_coords.xy,
21 vsm_settings.clip_offsets[svdtid.z]
22);
23

24 if(outside_new_window || (vsm_settings.sun_moved != 0u))
25 {
26 uint vsm_page_entry = virtual_page_table.get()[wrapped_coords];
27 if(get_is_allocated(vsm_page_entry))
28 {
29 int2 MMT_coords = MMT_coords_from_entry(wrapped_coords);
30 meta_memory_texture.get()[MMT_coords] = 0u;
31 virtual_page_texture.get()[vsm_wrapped_page_coords] = 0u;
32 }
33 }
34 }

26

.................................... 3.4. Page Marking

3.3.2 Dynamic Object Invalidation

Once the wrapped pages have been invalidated, I perform invalidation caused
by dynamic objects. For these purposes, I utilize the dynamic mesh drawlist
prepared when parsing the scene graph at the start of the frame. Before
invalidating the pages, I first need to find the pages that are overleaped by
the dynamic meshes. This is done by rasterizing the axis-aligned bounding
box of each mesh. To rasterize a bounding box into the VPT of a given
light, all corners of the bounding box are first projected by the corresponding
light matrix. This gives the corners in the normalized device coordinates
of the light. Then I calculate a Min-Max rectangle that bounds all points
in the NDC. Following this, I convert the min-max bounds into a range of
intersected pages. Finally, I iterate over this range and free every intersected
page.

To perform the entire invalidation, once again, I dispatch a single compute
shader. One logical mapping would be to dispatch a single thread per VPT
per dynamic object. That is, every thread gets a single dynamic object and a
single VPT into which this object should be rasterized. While this works, I
found that this approach struggles with having a few outliers, which greatly
slow the execution of this step. These outliers happen when a dynamic object
intersects a larger part, or potentially the whole VPT. A single thread then
has to iterate over all pages in a VPT, freeing every single one, which is very
expensive.

To avoid outliers, for the purpose of this step, I split every VPT into a set
of sections. I still launch a thread per dynamic object; however, instead of
each thread having a single VPT to iterate over, it only iterates over a single
section in the VPT. This increases both the amount of work and the number
of threads that end up being launched. Previously, one dynamic object would
cause dispatch equal to the number of VPTs. With this new mapping, one
dynamic object causes a dispatch equal to the number of VPTs multiplied by
the number of sections into which every VPT is split. The increased work
comes from rasterizing a single bounding box multiple times into the same
VPT. However, this approach is still faster than that initially suggested. This
is because it limits the number of iterations that a single thread executes,
which is the expensive part.

3.4 Page Marking

After freeing invalid pages, I move to marking the pages that will be required
in this frame. First, the world-space footprint of each pixel needs to be
calculated. To obtain a footprint for a single pixel, its four corners need to
be projected into the world. For these purposes, I use the depth rendered
from the main camera. The inverse of the view-projection matrix is used to
reconstruct the world space position from the depth and uvs of the pixel.

Unfortunately, I cannot use the same depth to unproject all four corners of
the pixel. I am trying to reconstruct the original world-space surface from

27

3. Implementation....................................

Figure 3.6 Incorrect and correct process of world-space footprint reconstruction.
The pixel I wish to reconstruct the footprint for is marked in blue. Left part of
the image demonstrates footprint reconstruction utilizing the same depth. This
produces incorrect result with regards to the original geometry shown in red.
The right part of the image shows the process of reconstructing a normal plane
in green, and intersecting it with four rays. This obtains a footprint that more
closely approximates the original surface.

the depth information. Using the same depth instead reconstructs a plane
that is facing towards the camera. This is not good enough when my goal
is to determine the footprint, which can be greatly deformed by the slope
of the original surface. Instead, I use the depth and uvs corresponding to
the center of the pixel to reconstruct a single world space position. At this
position, I construct a plane angled according to the normal of the surface at
that position. This normal is sampled from a texture that is rendered along
with the depth texture. Finally, to obtain the footprint, I shoot four rays and
intersect them with the constructed plane. Each ray originates at the main
camera position and intersects one of the corners of the pixel. This process
can be seen in Figure 3.6.

Once I obtain the world-space footprint, I can use it to determine the
footprint of the original pixel in each shadow map. For directional light
sources, this can be done directly in world space. The orthographic projection
is defined by providing the world space size the frustum should span. From
this I can calculate the world space size of each texel in the world. Once I
know this, I can immediately determine the number of shadow map texels
the world-space footprint covers.

Spotlights and point lights utilize perspective projection and as such cannot
determine the footprint directly from world space. This makes marking
the requested pages much more expensive. The marking can no longer be
performed in view space and the footprint needs to be fully projected into
shadowmap space. The footprint is then given as the bounding rectangle of
these projected corners. Lastly, from the footprint I calculate the desired clip
or mip level. This is given by the following formula:

level = max
(⌈

log2 (max(TW , TH))
⌉
, 0

)
(3.9)

28

.................................... 3.4. Page Marking

Figure 3.7 Visualization of the marking process for a single spot light. The
world-space pixel footprint, shown in green, is projected into the uv space of the
light. This gives the uv footprint, shown in blue which is then bounded by a
rectangle shown in red. The width TW and height TH are then used to obtain
the correct mip level of the VPT shown on right. Finally a page corresponding
to the uvs of the center of the bounding rectangle is marked. This page is shown
in gray.

Where TW and TH are the width and height of the footprint in texels.
Once the level is obtained, the page corresponding to the uv coordinates
at center of the footprint is marked. This process can be seen in figure 3.7.
As already mentioned before, point lights are represented as a cubemap
emulated by six spotlights. Because of this, the cubemap face needs to be
manually determined first before the marking process can begin. This makes
the marking process for point lights the most expensive one.

3.4.1 Processing Marked Page

Once a marked page has been identified, it needs to be processed. How a
page is processed is determined by its current state. A marked page that
is already allocated needs to be flagged as visible. In addition, the MMT
entry backing the page also needs to be flagged so that the state remains
consistent. Marked pages that are not currently allocated need to perform an
allocation request. An allocation is requested by appending a request to a
dedicated buffer. The request itself is represented by four integers that can
fully identify the respective VPT page. That is, the allocation request holds
the x and y coordinates of the page, the array layer index of the VPT, the
mip level of the VPT in case the page belongs to a point light or spotlight.

To mark required pages for all pixels, I again utilize a single compute shader
dispatch. I launch a single thread to process a single pixel. This ensures
that all pixels are marked in parallel; however, this unfortunately introduces

29

3. Implementation....................................

Figure 3.8 Flowchart depicting processing of a single marked page. The process
starts with atomically setting the AllocReq and Visible bits. This operation
returns the previous state of the page entry which is used in the following logic.
If a thread is first to set the AllocReq bit for an unallocated page, it will insert
the allocation request. Similarly, if a thread is first to set the Visible bit for an
allocated page, it will mark the corresponding MMT entry as visible.

issues. Multiple pixels can mark the same page. An unallocated page marked
by multiple pixels would result in the same request being inserted multiple
times. This would both waste space and complicate further processing as
these duplicates would need to be removed. Instead, all allocation requests
should be unique and present only once.

To achieve this, I utilize atomic operations in combination with two status
bits stored in each VPT entry. Every time I am processing a marked page, I
start by using an InterlockedOr operation to set the entries’ AllocReq and
Visible bits. In addition to setting these bits, the InterlockedOr operation
also returns the previous value of the entry. I use this to determine if this
thread is the first to mark this page. If the thread is first, it can safely
insert an allocation request, knowing that it will be unique. All other threads
will see the AllocReq bit as already set and thus will not insert additional
requests. The same mechanism is used to mark the MMT entry as visible
when a page is allocated. While marking the MMT as visible multiple times
would not produce any issues, it still saves bandwidth and thus increases
efficiency of the shader. Figure 3.8 shows the complete process as a flow
diagram.

3.4.2 Light Culling

The cost of the marking step increases linearly with the number of lights that
should be marked. This is mainly due to the number of projections that need
to be performed. The number of projections can be reduced by calculating
the world-space footprint once and reusing it for all lights. However, the
same cannot be done to obtain the footprint in the shadowmap space for
point lights and spotlights. The footprint for each of these lights needs to
be obtained individually, without the possibility of reusing the computation.

30

.................................... 3.4. Page Marking

Figure 3.9 A simple example of a single slice of a light grid. Each cell holds
a bitmask which represents influence of individual light sources. When a light
source affects a cell the bit corresponding to its index is set.

Because spotlights and point lights make up the majority of light sources in
typical scenes, this issue needs to be addressed.

Nothing can be done about the fact that I need to project into each light
individually. However, when a given light is determined to have no influence
on a specified world position, the marking process for that light can be skipped
entirely. This is called light culling, and it plays a fundamental role in the
efficiency of the marking step.

To determine which lights affect a given world position, I employ a world-
space grid. Each cell of this grid contains a 256-wide bitmask where each bit
corresponds to a single light source. A set bit at the index i means that the cell
is influenced by the i-th light source. This grid is centered around the main
camera and is updated at the beginning of each frame. The implementation
of the grid update process was already present in the framework and was
not developed by me. Only point light and spotlight indices are present in
the grid, as directional lights have infinitely large influence, and thus would
always be present in each cell of the grid.

In the marking shader, I first mark all directional light sources. Following
this, I use the world space position of the center of the pixel to find the
corresponding cell in the light grid. Then I extract all the sources of light
that affect the cell and perform a marking pass for each one. The maximum
amount of lights that need to be marked per pixel is no longer given by the
total amount of lights in the scene. Instead, it is given by the number of
lights that affect the same pixel. Due to the largely local influence of spot
and point light sources, this number is much lower. A simplified example of
a light grid slice can be seen in Figure 3.9.

31

3. Implementation....................................

Figure 3.10 Scalarization of a single warp with eight threads. To evaluate every
thread needs an individual entry stored in global memory. On the left is the
usual approach, where each thread fetches required entry and stores it in unique
registers. Following this all threads evaluate the function simultaneously. On
the right is scalarized version of this process. Each entry is only fetched once
into registers that can now be shared by all threads withing the warp. The
function is then evaluated once for each entry. A thread is active only when its
corresponding entry is currently being processed.

3.4.3 Scalarization

Preventing duplicate operations with AllocReq and Visible bits make the
marking process much more efficient. That said, atomic operations are still
very expensive, especially when large numbers of threads mark the same
page. Because threads process pixels that are spatially coherent, there is
a high probability that they mark the same page. This means that while
only a few atomic marking operations might be required, the operation still
needs to be performed multiple times, once for each thread. To reduce the
number of these operations, I utilize a concept called execution scalarization.
Scalarization is a process that takes advantage of specific properties of the
GPU hardware. A full analysis of GPU architecture is outside of the scope of
this work; however, for completeness, I provide a brief explanation of the key
concepts in the following paragraphs.

Individual threads on a GPU are scheduled in small groups called warps on
NVIDIA and wavefronts on AMD. For the rest of this section, I will utilize
the naming by NVIDIA and thus refer to these groups as warps. Threads
within a single warp typically execute the code in a lockstep. This means
that all threads execute the same code at any given time, which is also called
a single instruction multiple threads model (SIMT).

Whenever two parts of a warp disagree on the code that should be executed,
the warp is said to be diverging. This typically occurs when threads within a
warp evaluate a conditional statement differently, leading to different execution

32

................................... 3.5. Page Allocation

paths. In such a case, both code paths will be evaluated in sequence, with
parts of the warp active only when the code corresponding to its path is being
executed. Divergence also applies to data dependencies. Two threads in a
warp may wish to load data from different offsets in a single buffer or from
completely different buffers altogether. This increases the number of registers
that need to be allocated by the compiler, which in turn hurts occupancy
and limits the number of warps that execute at the same time.

A second key property of warps that I would like to highlight is the highly
efficient means of communication within a warp. Communication between
arbitrary threads on the GPU is typically very problematic. It involves either
writes to shared memory and expensive barriers, or atomic writes to global
memory, which are even slower. Communication between threads in a single
warp, however, is supported directly by hardware and is nowhere near as
expensive as the above methods.

Scalarization utilizes these to unify the code and data dependencies within
a warp. The first step is to collect the number of permutations, that is,
the number of unique execution paths or data points within a single warp.
Instead of allowing divergent execution of a warp, the shader iterates over
individual permutations, manually masking threads not belonging to the
active invocation. At first sight, this might seem like the same thing that
hardware does; however, there is a key difference. With this approach,
the compiler knows that the entire warp will follow a unified path. This
gives a much larger opportunity to optimize the code. Instead of having
to allocate one register per thread to account for unique values across the
entire warp, only a single register, shared by the entire warp, can be allocated.
Furthermore, this improves the pattern of accessing values, allowing for a
more efficient loading of these values from memory. It is important to note
that the effectiveness is highly dependent on the number of permutations
being small. For a large number of permutations, a scalarization loop will be
executed many times with a low number of active threads in each iteration.
Figure 3.10 visualizes a simple case of scalarization.

In most cases, there will be a limited number of unique pages within a
warp. This results in the same page being processed by multiple threads,
increasing the contention of the atomic operation and slowing down the
execution. Instead of each thread processing the marked page, the unique
pages within a warp are identified. A single thread is then elected to process
each unique page. The scalarized code can be seen in Listing 3.3.

3.5 Page Allocation

The page marking step produces the buffer that contains all unique allocation
requests. This is consumed by the allocation step, which acquires the necessary
pages from the PPT and assigns them to each allocation request. Additionally,
it clears all newly allocated pages, removing data that have potentially been
left by the previous allocation. To do this efficiently, page allocation is split
into three steps, which will be described in the next sections.

33

3. Implementation....................................
Listing 3.3 Scalarized function used to process marked pages.

1

2 // SV_DispatchThreadID.xy are the coordinates of the processed pixel.
3 void main(uint3 svdtid : SV_DispatchThreadID)
4 {
5 uint4 point_light_mask = query_lights(world_pos);
6 Footprint ws_footprint = unproject(depth, normal);
7

8 // Loop through all lights.
9 while (any(point_light_mask != uint4(0)))

10 {
11 // Obtain the next light in the mask.
12 // Also modifies the mask.
13 uint light_idx = extract_light(point_light_mask);
14

15 // Obtain the VPT coordinates from the footprint.
16 int4 VPT_coords = project_into_light(light_idx, ws_footprint);
17

18 bool thread_active = true;
19 bool first_to_see = false;
20

21 // Scalarization loop.
22 while(thread_active)
23 {
24 // Obtain the coordinates of the first active thread.
25 const int4 sg_uniform_coords = WaveReadLaneFirst(VPT_coords);
26

27 // All threads with the same page enter.
28 if(all(equal(sg_uniform_coords, VPT_coords)))
29 {
30 // Only one thread will process the marked page.
31 if(WaveIsFirstLane()) { first_to_see = true; }
32

33 // The page for active threads has been processed.
34 // These threads can exit the loop.
35 thread_active = false;
36 }
37 }
38

39 // One thread per page performs the processing.
40 if(first_to_see)
41 {
42 process_marked_page(VPT_coords);
43 }
44 }
45 }

3.5.1 Classification

The process begins by classifying PPT pages into three categories Free pages,
Allocated pages, and Cached pages. As already described in a previous
chapter, free pages are pages that currently do not back any VPT entry. In
contrast, both cached and allocated pages are currently backing a VPT entry.
The difference between those is that a cached page has not been marked as

34

................................... 3.5. Page Allocation

Figure 3.11 Scalarization of the writeout step visualized on a single warp with
eight threads. Each thread holding value 1 in the first step wants to write out
data into the buffer. First, an exclusive sum of the threads that want to write
out is performed. Following this, the last thread reserves slots in the buffer for
the entire warp. Next, threads that are writing out use the exclusive sum to
calculate the offset into the buffer. Finally, once the offset is obtained, the write
is performed.

visible by the marking process. It can thus be reclaimed and the memory used
to back another, currently visible and not allocated page. Allocated pages
cannot be freed and as such their memory is effectively constant. Because of
this, they are ignored by the later steps of the algorithm.

The classification pass outputs two buffers, one containing free pages and
one containing pages that are cached. During the marking pass, the visible bit
is written for both the VPT and MMT entries. To classify all pages, only the
MMT needs to be analyzed without the need to read individual VPTs. This
is much more efficient, as the majority of the VPTs will contain unallocated
entries. The classification is again performed by a single compute shader
dispatch, which launches a single thread per MMT page. Every thread reads
the corresponding MMT entry and determines the category into which this
entry falls. If the entry corresponds to a cached or a free page, its coordinates
are appended to the buffer of free or cached pages, respectively.

Because all threads run in parallel, there will be multiple threads attempting
to append information into the same buffer. Without synchronization, this
would result in a data race, which would produce undefined results. To
synchronize the writes to the buffers, I utilize an atomic version of the linear
allocation scheme. Both buffers store a single counter that denotes the offset
at which the buffer was last written. Each counter starts at the value of
0. Whenever a thread wishes to write to a buffer, it starts by atomically
increasing the appropriate counter. The previously stored value, returned
by the atomic addition, is now reserved by this thread. Finally, the thread
writes its data into the reserved slot.

35

3. Implementation....................................
This introduces a high atomic contention on the two counters, which in turn

slows down the execution time. Similarly to the marking pass, communication
within a wave is utilized to make this process more efficient. Instead of each
thread attempting to reserve a slot, the number of threads in the warp
that wish to reserve a spot in each buffer is counted. A single thread then
executes the atomic operation and reserves slots for all threads. Each thread
then determines the offset within the allocated window and writes the page
information. The code for this is shown in Listing 3.4 and Figure 3.11
visualizes this process.

Listing 3.4 Scalarized function used to write classified pages into a buffer.
1

2 void write_classified_pages(
3 bool condition,
4 int2 PPT_coords,
5 Data buffer)
6 {
7 // Returns the number of threads with index
8 // lower than current thread with condition set to true.
9 const uint local_index = WavePrefixSum(condition);

10

11 uint allocation_offset = 0;
12

13 // Last thread allocates space for all threads.
14 if(WaveGetLaneIndex() == 31)
15 {
16 // Add this threads result to the exclusive sum.
17 uint page_count = local_index + uint(condition);
18

19 allocation_offset = InterlockedAdd(buffer.counter, page_count);
20 }
21

22 // All threads read value from last thread.
23 allocation_offset = WaveBroadcastLaneAt(allocation_offset, 31);
24

25 // Each thread writes data to its own spot determined by the
26 // order obtained before.
27 if(condition)
28 {
29 buffer.data[allocation_offset + local_index] = PPT_coords;
30 }
31 }

3.5.2 Allocation

The allocation step performs a simple matching between the two buffers
produced by the classification pass and the allocation request buffer. For this,
I utilize another compute dispatch, launching one thread for one allocation
request. The number of allocation requests is known only on the GPU. To
avoid expensive read-back to the CPU memory, I employ indirect dispatch.
The classification pass described above reads the number of allocation requests
and fills out the indirect dispatch structure. In addition to filling out the

36

................................... 3.5. Page Allocation

Figure 3.12 Visualization of the dependencies of the allocate pages step. The
marking step is launched from the GPU just like the classfication part of the
allocate pages. As a last step of page classification, the number of allocation
requests produced by the marking pass is used to fill indirect dispatch structures.
These are used to launch an appropriate number of threads for both the allocation
as well as clearing of newly allocated pages.

indirect dispatch for the allocation, the classification also prepares the exact
same structure for the clear pass that follows the allocation. This is visualized
in Figure 3.12.

The counters of free and cached page buffers are used to partition the
threads performing the allocation. This is done utilizing the thread index.
All threads with an index smaller than the count of free pages allocate from
the free page buffer. The rest of the threads use the same principle to allocate
pages from the cached buffer. This ensures that cached pages are reallocated
only when necessary.

Whenever cached pages need to be reallocated, they need to be freed first.
This process is the same as the one described for page invalidation. The MMT
entry is used to look up the corresponding VPT page coordinates. These
coordinates are used to free the previously owning VPT page before assigning
the new owner. When there are not enough pages to satisfy all allocation
requests, the AllocFail bit is set for those pages that did not obtain an
allocation. The Dirty bit is set for all pages that have been successfully
allocated. This process can be seen in Figure 3.13.

3.5.3 Clear

The last step of this stage is to clear all newly allocated pages. As already
said, this is performed by an indirect compute shader dispatch. In contrast
to the previous part, instead of dispatching a single thread per page, one
allocation request is responsible for launching a group of threads. That is,
for each allocation request, the number of threads equal to the number of
pixels in each physical page are launched. All threads in this group read
the allocation status of the corresponding page. When the allocation was

37

3. Implementation....................................
successful, every thread clears a single pixel in the PPT. I again perform
scalarization to fetch the allocation request and VPT entry only once per
wave. The code of the shader performing the clear can be seen in Listing 3.5.

Listing 3.5 Shader performing clear of all newly allocated pages.
1

2 // SV_GroupThreadID.xy are the indices inside of each physical page.
3 // SV_DispatchThreadID.z is the index of the allocation request.
4 void main(
5 uint3 svdtid : SV_DispatchThreadID,
6 uint3 svgid : SV_GroupID,
7 uint3 svgtid : SV_GroupThreadID
8)
9 {

10 AllocRequest request = allocation_requests[svdtid.z];
11 uint VPT_entry = 0;
12

13 // Only one thread will fetch the VPT entry.
14 if(WaveIsFirstLane())
15 {
16 if(request.point_spot)
17 {
18 // We are clearing a point or spotlight page.
19 VPT_entry = point_spot_VPTs[request.mip].get()[request.coords];
20 }
21 else
22 {
23 // We are clearing a directional light source page.
24 VPT_entry = directional_VPTs.get()[request.coords];
25 }
26 }
27

28 // Broadcast the entry to all other threads in the wave.
29 VPT_entry = WaveBroadcastLaneAt(VPT_entry, 0);
30

31 // If the page did not receive an allocation do nothing.
32 if(get_failed_alloc(VPT_entry)) { return; }
33

34 // Calculate the threads coordinates within PPT.
35 int2 memory_page_coords = MMT_coords_from_VPT_entry(VPT_entry);
36 // Start by calculating the top left corner of the page in PPT.
37 int2 PPT_corner_coords = memory_page_coords * VSM_PAGE_SIZE;
38 // Multiple work groups are clearing the same page.
39 int2 wg_offset = svgid.xy * CLEAR_PAGES_XY_DISPATCH;
40

41 // Write the cleared value.
42 uint2 PPT_coords = PPT_corner_coords + wg_offset + svgtid.xy;
43 PPT.get()[PPT_coords] = 0.0f;
44 }

38

.................................... 3.6. Page Drawing

3.6 Page Drawing

Figure 3.13 Visualization of the dependencies of the allocate pages step. The
marking step is launched from the GPU just like the classfication part of the
allocate pages. As a last step of page classification, the number of allocation
requests produced by the marking pass is used to fill indirect dispatch structures.
These are used to launch an appropriate number of threads for both the allocation
as well as clearing of newly allocated pages.

The last phase of my algorithm populates newly allocated pages with depth
data. To make this process efficient, I utilize mesh shaders. As mentioned
during the scene description, the drawlists contain a list of mesh instances.
However, mesh shaders require individual meshlets. This poses a significant
challenge when scheduling work for the GPU. Due to the variable number
of meshlets present in each mesh, I do not know how large the mesh shader
dispatch should be. Because of this, the drawing starts with an additional
drawlist expansion step.

Once the dispatch size is known, processing of individual meshlets can
begin. Doing this naively would quickly become prohibitive due to the sheer
amount of geometry that needs to be processed. In order to maintain real-time
frame rates, the geometry needs to be culled to decrease the load on the
rasterization stages. The culling is performed hierarchically to eliminate large
groups of non-visible or irrelevant objects early in the process, reducing the
computational overhead of checking each individual element.

3.6.1 Drawlist Expansion

Work expansion performs further flattening of the draw list, unwrapping
meshes into a list of meshlet instances. Due to a relatively high number of
meshlets present in a scene, this step is performed on the GPU. Storing every
meshlet instance individually in a buffer would consume excessive memory,
making it impractical for real-time applications. Additionally, processing
them in a linear, unstructured manner would be computationally inefficient.
To solve both of these issues, I utilize a data structure called the power of
two buffers.

As the name suggests, this structure consists of a set of individual buffers.

39

3. Implementation....................................

Figure 3.14 The process of draw list flattening during work expansion for a
single mesh instance. First, the number of meshlets is read from the underlying
mesh. Following this, the lowest bit from the meshlet number is extracted. A
new entry, storing the index of this mesh, is created in a buffer corresponding to
the index of the lowest bit. This bit is then masked out and the same process is
repeated iteratively, until the number of meshlets falls to zero.

An entry in each buffer represents a set of meshlets belonging to an individual
mesh. The number of meshlets represented by each entry is given by the
buffer in which this entry is present. With an increasing buffer index, the
number of meshlets represented by each entry doubles. This is where the
"power of two" in the name comes from. That is, the first buffer represents
single meshlets, the second buffer represents two meshlets, the third buffer
represents four meshlets, and so on.

The meshlet expansion is performed in a compute shader, where a thread
maps to a single meshlet instance in the target drawlist. Every thread reads
the number of meshlets the mesh instance contains and distributes them
across corresponding buffers. This is done by looping over the number of
meshlets, extracting the first low bit, and writing an entry to the buffer
given by the index of this bit. Before continuing to the next iteration, this
bit is masked out from the meshlet number. This process can be seen in
Figure 3.14.

The process of sorting into power of two buffers greatly increases the
processing speed and reduces the memory required to store expanded draw
lists. That said, it still needs to account for the worst case. For example,
I need to allocate enough space for a scenario where all meshes in a scene
contain exactly sixteen meshlets. Because the majority of the scenes have the
meshlet numbers somewhat uniformly distributed, this wastes some memory.
This is normally not that severe, as the wasted memory is still marginal
compared to storing meshlets individually. For VSMs, however, the scene is
drawn potentially hundreds of times per frame. Creating a separate power of
two buffers for each of these draws would amplify the wasted memory.

To avoid this, I reuse the same power of two buffers for multiple draws.
Because every power of two buffer expansion maps directly to a set of draw
calls, this gives us the added benefit of dispatching fewer draw calls. There

40

.................................... 3.6. Page Drawing

Figure 3.15 The dispatch scheme for a single draw list seen at the top of the
image. For directional lights I launch a single thread for each entry for each
VPT. These share single power of two buffers. For point and spot light, I launch
one thread for each entry per VPT per Mip level. Every mip level has its own
power of two buffer, however these are shared across all point and spot lights.

are slight differences in how individual light types are handled. As already
described, every clip map of a directional light has the same resolution. I
pack meshlets for all clip maps into a single meshlet list, resulting in a single
indirect draw to render all clip maps at once.

Spotlights and point lights, however, use a mipmap chain, which has varying
resolution. Because of this, I unfortunately cannot reuse the same power
of two buffers as individual draw calls are required for each resolution. In
contrast to directional lights, however, a typical scene contains multiple point
lights and spot lights. This allows me to expand meshes for non-directional
lights by the desired resolution. Assuming the same virtual resolution, only
log2(resolution) power of two buffers and draw calls are required to draw
shadows for all non-directional lights.

To make this work, the previous approach needs to be slightly modified.
For work expansion, launching a single thread per mesh is no longer sufficient.
Instead, for directional lights, a single thread per mesh per VPT is launched.
For point lights and spotlights, a single thread per mesh per VPT per mip
level of each VPT is launched. I also need to include additional information
in the power of two entries themselves. In addition to storing the index of the
respective mesh, the index of the VPT and, for non-directional light sources,
the corresponding mip level need to be stored. The complete scheme of this
process is shown in Figure 3.15.

Once a power of two buffer is prepared, it is used to dispatch a set of
indirect draw calls. This is done by multiplying the number of entries in each
buffer by the power of two it represents. A single task shader is launched for

41

3. Implementation....................................

Figure 3.16 The process of culling with the standard culling methods. First,
distance culling removes all objects that lie outsite of the lighs area of influence.
Second, frustum culling removes all objecst that lie outside of the view frustum of
the light. Following this, all backfacing triangles are culled. Finally, all triangles
that would not result in any frament shader invocation are discarded.

each meshlet in every buffer. After processing the meshlet, the task shader
dispatches a group of mesh shaders. Finally, each mesh shader processes a
subset of the meshlets’ vertices and writes the resulting triangles.

3.6.2 Geometry Culling

Sharing the same power of two buffers reduces the number of draw calls
but does not reduce the amount of processed geometry. To allow for highly
detailed scenes with large amounts of geometry, culling needs to be utilized
throughout the pipeline. The proposed culling scheme closely matches the
scene representation and the logical steps of the drawing pipeline. First,
during drawlist expansion, mesh instances present in the draw list are culled.
Only entire meshes are culled as part of this pass, and individual meshlets
are not considered. Once a part of a mesh is determined visible, all of its
meshlets are written in the power of two buffers.

Second, in the task shader, the culling of individual meshlets is performed.
Every task shader thread processes a single meshlet instance. The task shader
threads only launch mesh shader groups for visible meshlets. Similarly to
meshes during drawlist expansion, meshlets that are not visible are thrown
away. Lastly, during meshlet processing, individual triangles are culled.
Although culling individual triangles is generally discouraged, it is critical
in achieving the fastest possible results for VSMs. This is mainly due to the
relatively expensive nature of fragment shader invocations.

Various standard methods were used to determine visibility. The fastest and
most conservative are utilized first, and only after these determine the object
visible are more expensive and precise culling methods employed. There are
two specific methods that apply only to triangle culling: micro-triangle and
backface culling. Except for those two, all other culling methods are utilized
during each culling step described above. To cull meshes and meshlets, the
axis aligned bounding boxes of the respective objects are used. Triangles are
culled directly, using their vertices.

42

.................................... 3.6. Page Drawing

Figure 3.17 On the left four levels of Hierarchical Page Buffer (HPB). Black tiles
denote dirty pages, that is, pages that will be drawn into this frame. Each level is
a 2 × 2 logical "OR" reduction of the previous level. The red square denotes how
areas across HPB levels map upon each other. On the right visualzation of HPBs
for spot directional lights and spotlight. Directional light has four Clipmap levels,
each represented by its own VPT and, as such, four full HPBs are constructed.
Spotlight has four mipmap levels represented by the mipchain of a single VPT.
As a result, the HBPs are smaller for each decreasing mip level.

For point lights and spotlights, distance culling is the first utilized method.
Because the radius each light affects is known, objects that lie outside of this
area can be discarded as their shadow will contribute nothing to the final
result. This method is not valid for directional light sources. The radius
of influence is infinite and as such would result in no objects being culled.
Following distance culling, frustum culling is used, which is applicable for
all types of light. The bounds of each object are checked against all frustum
planes of the corresponding shadow camera. If an object lies outside the
visible frustum, it is discarded. Next, the two triangle culling methods are
used, starting with backface culling. This step is typically performed by
the rasterization pipeline; however, with mesh shaders, this must be done
manually. The second, called micro-triangle culling, removes all triangles
that would not result in any fragment shader invocation. All standard culling
methods can be seen in Figure 3.16.

Lastly, a method specialized for VSMs called Hierarchical Page Culling
is utilized. This method is applicable to all light types as well as all three
culling stages. This will be described in the next section.

Hierarchical Page Buffer

As already discussed, in most cases only a very limited set of pages is visible
at one time. Furthermore, most of the visible pages will be cached and will
not need to be redrawn. This makes the set of dirty pages, that is, pages that
need to be drawn in any given frame, very small. Knowing this, all geometry
that does not overlap a dirty page will not contribute anything to the final
result and as such can be discarded. To make this process as efficient as

43

3. Implementation....................................

Figure 3.18 Culling performed with HPB. First individual objects are projected
into the VPT space of the given light. Based on their footprint, the appropriate
level of HPB is selected, such that at most four texels of the HPB need to be
sampled. The footprints of objects intersecting the near plane of the lights
camera cannot be determined. Because of this, these always sample the last level
of the HPB. In this example scenario, blue triangle would end up being removed
as it does not intersect any dirty page.

possible, a data structure called a Hierarchical Page Buffer(HPB) is used.
This structure and the culling process related to it are inspired by the

way a hierarchical Z buffer [GKM93] is used for occlusion culling. Similarly
to a hierarchical Z buffer, the HPB consists of multiple levels. Each level
in the HPB is constructed as a 2 × 2 logical "OR" reduction of the level
directly below it. That is, each level is half as large as the previous one. The
construction starts with the lowest level, which is directly initialized by the
Dirty bits of the corresponding VPT. As such, an HPB is built for each VPT.
For directional light sources, an HPB is thus built for each clip level. Spot
lights and point lights utilize mip maps and have a single VPT for all mip
levels. Individual mip levels still need to be culled separately, and thus an
HPB needs to be constructed for each level of the VPT.

Because HPBs are also used to cull meshes in the drawlist expansion step,
they need to be constructed as a first step of the drawing process. This is done
with a single compute dispatch. The construction process is heavily inspired
by the single pass downsampler (SPD) released as a part of the FidelityFX
SDK maintained by AMD [AMD25]. The original SPD processes the texture
in patches of 64×64 texels, which are then synchronized using atomic variables.
By limiting the maximal size of the VPT to the resolution of a single patch,
synchronization can be omitted, and each HPB can be constructed with a
single workgroup. This greatly simplifies the implementation as the majority
of the complexity of SPD lies in the atomic synchronization.

Every thread within a workgroup processes a 4 × 4 region of the underlying
VPT. As such, the size of each workgroup is 16 × 16 threads. Special care
needs to be taken when constructing the HPBs for point lights and spotlights.
Although the resolution of the 0th mip is 64×64 texels, higher mip levels have
lower resolution. Because of this, the downsampling pass needs to terminate
early to avoid writing out of bounds of the current HPB.

To cull using the HPB, the axis-aligned bounding box of the object is
projected into the texture space of the light. From the projection area, the

44

.................................... 3.6. Page Drawing

appropriate level of the HPB is calculated. The level is determined so that
only four texels need to be sampled in order to cover the whole projected
area. If none of the texels are marked as dirty, the object is culled.

Extra care needs to be taken when projecting objects into point lights
and spot lights. Because of perspective projection, an object that is behind
or intersecting the near-plane results in incorrect results after applying the
perspective division. For these objects, the highest level of the HBP is sampled
instead. This is equivalent to a situation where an object would span the
entire frustum of the light. Figure 3.18 shows the culling process.

45

46

Chapter 4
Results and Discussion

In this chapter, I will show the results and discuss the performance of my
method. All measurements were taken with an NVIDIA GeForce RTX 4070
Ti SUPER GPU and an AMD Ryzen 7 7800X3D CPU. I will start with
qualitative evaluation, comparing different configurations with a ray-traced
reference. Following this will be a section that analyzes the performance.
I used three test scenes to evaluate the quality and performance of my
implementation. These were the Lumberyard Bistro, McQuire Archive San
Miguel, and Unreal Engine Sun Temple. The configuration for each scene
can be seen in Table 4.1.

4.1 Qualitative Analysis

Bistro San Miguel Sun Temple
Triangles 4,144,001 9,895,141 608,161
Point lights 33 26 13
Spot lights 26 0 0
Directional lights 1 1 1

Table 4.1 Parameters of the three scenes utilized for qualitative and performance
testing in our application.

In this section, I will evaluate the quality of the shadows produced by the
implemented algorithm. For all results shown in this section, the size of the
PPT was set to 16384 × 16384 texels. This was done to achieve the best
looking results without worrying about memory consumption. That being
said, all settings used were still within reasonable bounds and run in real-time.

4.1.1 Final Results

The first results that I would like to present can be seen in Figure 4.1.
These are final images after shadow filtering and supersampling applied.
Supersampling for the means of anti-aliasing was chosen due to its simplicity,
but the same result could be achieved with other anti-aliasing methods.

47

4. Results and Discussion.................................

Figure 4.1 Images obtained by my implementation. From top to bottom Amazon
Lumberyard Bistro, McQuire San Miguel, and Unreal Engine Sun Temple. Every
image was taken with supersampling enabled using 16 shadow map samples per
pixel.

48

..................................4.1. Qualitative Analysis

The purpose of these images is to show a fully polished look that can be
achieved with VSMs. For all three images, virtual resolution of 4096 × 4096
texels for directional light sources and 2048 × 2048 texels for spotlight and
point light sources.

Next, I show comparisons of different quality configurations as well as
reference results obtained by ray tracing. The first of the tested configurations
was the same as the one used to obtain the first set of images. That is, the
resolution of 4096 × 4096 texels was used for directional light and 2048 × 2048
texels was used for spotlights and point lights. For the second configuration,
the resolution for all light sources was halved. That is, the resolution of
2048 × 2048 texels was used for directional light and 1024 × 1024 texels was
used for point lights and spotlights. Halving the resolution is a good trade-off
between the obtained quality and performance.

For this test scenario, only a single sample was taken for each light. This
was done to ensure consistency between ray tracing and shadow mapping.
In addition, it also better highlights the artifacts produced by shadow map-
ping and shows the difference between individual shadow map resolutions.
Although shadow map filtering is used by pretty much all shadow mapping
implementations, the quality of unfiltered shadows still strongly correlates
with the quality obtained after shadow filtering. Furthermore, this also helps
to separate the quality of the shadow map from the quality of the filtering
algorithm.

For the ray-traced reference a single ray was shot towards the origin of
the light. To achieve similar results between ray tracing and rasterization,
the near plane of the perspective projection used during rasterization needed
to be emulated. To do this, I added a distance equal to the near-plane to
all shadow ray hits when evaluating if a ray reached the light. This is not a
perfect emulation, because it discards geometry in a sphere around the light
source. In comparison, the near-planes of point-light faces discard geometry
in a cube around the light. As such, there might still be some slight differences
caused by this between the reference and the rasterized shadows.

4.1.2 Bistro

In Figure 4.2 we can see two different view points of the Bistro scene. The
first row shows the main square, which is the part that has the most lights
visible at once. The lower resolution shadow map does not have enough
texels to smoothly represent such a thin object. This is the most visible
on the cables holding the light bulbs. This results in parts of the cable not
casting any shadow, resulting in a dotted or dashed shadow, as can be seen
in the highlighted rectangle on the right, or a visibly jagged shadow, as can
be seen in the highlighted rectangle in the center. This is improved by the
higher-resolution shadow maps, which are very similar to the reference.

In the second row, we can see a close-up on display cases illuminated by
spotlights. Because spotlights, similarly to point lights, use a perspective
projection, the texel density of the shadow map decreases with increasing
distance from the light source. This can be seen in the rectangle highlighted

49

4. Results and Discussion.................................

Figure 4.2 In the top row a view of the square, which contains the most visible
lights for all tested configurations. Lower resolution shadow maps struggle to
reproduce the detail of thin geometry such as the cables holding the light bulbs.
In the bottom row a close up on a display case, shows the effect of decreasing
shadow quality with increased distance for a spot light illuminating the display
case.

on the left. In this view, even the higher-resolution shadow maps are not
enough to hide all discontinuities. The highlighted rectangle on the right
shows the effect of lowering directional light resolution, which results in visible
texels on the eaves.

4.1.3 San Miguel and Sun Temple

Figure 4.3 shows the views of the other two scenes tested. In the upper row,
we can see an image taken from the San Miguel scene. The rectangle in the
top left highlights blocky looking shadows cast on a wall by leaves. This is in
part due to the distance from the point light that casts the shadow. Similarly
to spotlight artifacts discussed in the previous image, point-light shadows
lose resolution as the distance from the source increases. Foliage shadows are
often hard to represent by shadow-mapping techniques. This is mainly due
to the high-frequency details, which are difficult to capture with the limited
resolution of the shadow map. The rectangle in the middle of the image
highlights the issues caused by a directional shadow stretched on a pillar. In
general, shadow maps suffer from the worst artifacts when light rays strike a
surface at near-grazing angles.

In the lower row, we can see an image of the Sun Temple scene. The
upper right rectangle shows further problems caused by foliage, this time for
directional light source. The lower rectangle shows an issue caused by our

50

................................. 4.2. Performance Analysis

Figure 4.3 Upper row shows a view of the San Miguel Scene. Rectangle in the
top left highlights issues caused by foliage which are worsened by the distance
from the light source. The rectangle in the middle shows issues caused by near
grazing angles of the incoming light. Bottom row shows a view of the Sun Temple
scene. The Upper rectangle again shows issues caused by foliage, this time for
directional light. The lower rectangle shows artifacts caused by our marking
process which results in pages with lower resolution being marked.

marking logic. As shown in Figure 3.6, I use the normal of the underlying
triangle to reconstruct the footprint of the pixel. However, this can result
in the footprint being stretched when the surface is viewed at near-grazing
angles. Because I only consider the bigger side of the footprint-bounding
rectangle when selecting the mip level, pages with insufficient resolution are
requested.

4.2 Performance Analysis

Next, I provide a performance analysis of my method. All measurements
were taken by moving the camera along a predetermined path. This path
was unique for each scene; however, for all measurements that involved one
scene, the same camera path was always used. Moving the camera when
collecting measurements is important for two reasons. First, the concentration
of geometric complexity as well as individual lights varies across the scenen.
This sometimes results in highly variable results in different locations of the
scene. To make sure I provide correct results, the camera visits every section
of each scene as a part of its path. The second reason why moving the camera
is important is the shadow map caching described in 2.3.1. When caching
is enabled, static cameras cache all pages. This results in no pages being
redrawn, which skews the metrics.

51

4. Results and Discussion.................................
4.2.1 Cached and Uncached Performance

First, I provide graphs showing how performance varies along the predefined
path in each scene, which can be seen in Figure 4.4. For these measurements,
the resolution of 4096 × 4096 texels was used for directional lights and the
resolution of 2048 × 2048 texels was used for both point lights and spotlights.
It is important to note that these measurements do not include the sampling
time of the shadow maps. These measurements consider only the time taken
by the algorithm steps described in the implementation chapter.

From these measurements, we can immediately see the importance of
caching. As soon as the geometric complexity of a scene rises above a certain
level, caching increases the performance by factor of five to ten. This is
because most of the geometric complexity is removed by the culling stages.
When caching is disabled, the performance of each scene reflects that of its
geometric complexity. Both San Miguel and Bistro scenes are five to in places
forty times slower than the much simpler Sun Temple scene. In contrast,
with caching enabled, the performance for all three scenes is in most parts
comparable. This is despite Bistro having five and Sun Miguel ten times the
triangles.

We can also see that, while caching improves performance, the trends of the
individual sections of the path remain the same. Caching greatly reduces the
number of pages that need to be redrawn, however, the pages still need to be
drawn at least once. The peaks in the graphs of individual scenes correspond
either to parts of increased geometric complexity or to parts along the path
where the camera movement is fast. The increased geometric complexity is
self-explanatory. With more overlapping geometry, comes more overdrawing,
which increases the cost of drawing each page. Fast-moving camera, on the
other hand, causes large dis-occlusions, which require many page draws each
frame. Further, when the camera moves fast, more directional pages are
invalidated due to toroidal addressing.

4.2.2 Performance of Algorithm Steps

Lastly, Figure 4.5 shows graph plotting the time taken by the most expensive
stages of the algorithm. This measurement was taken on the Bistro scene
with caching enabled. From this we can see that most of the spikes are caused
by drawing point and spot lights. The first few smaller spikes are caused
by the fast movement of the camera. As already discussed, this results in
an increase in the number of point-light and spot-light pages drawn due to
disocclusion and an increase in the number of directional pages drawn due
to toroidal invalidation. The last spike is caused by the camera returning
to the center Bistro area, where the path originally began. The center of
Bistro contains the most lights. At the start of the path, the pages for all
these lights were stored in cache. However, throughout the path, these got
invalidated or freed to allow for rendering new pages along the cameras path.
Upon reentry, the cache needs to be repopulated, which is what causes the
large spike at the end of the path.

52

................................. 4.2. Performance Analysis

(a) Uncached performance for the three tested scenes.

(b) Cached performance for the three tested scenes.

Figure 4.4 The top graph shows the performance when caching is not enabled.
The virtual resolution of directional lights was 4096×4096 texels and 2048×2048
texels was used for spotlights and point lights. While Sun Temple shows good
results, the high geometric complexity of both San Miguel and Bistro scenes
greatly reduce the performance. The performance with caching enabled can be
seen in the bottom graph. We can see that caching successfully handles the high
geometric complexity, resulting in comparable results for all three scenes.

Figure 4.5 The timings for the most expensive stages through the algorithm
along the path in the Bistro scene. The virtual resolution of directional lights
was 4096 × 4096 texels and 2048 × 2048 texels was used for spotlights and point
lights. We can see that the majority of the spikes are caused by the Point and
Spot light drawing. While there are still some fluctuations in the directional
light drawing, these are nowehere near as severe. The rest of the steps maintain
steady performance throughout the entire camera path.

53

4. Results and Discussion.................................
4.2.3 Scene Dependent Differences

Next, in Table 4.3 I show the times for individual stages of the algorithm.
These were obtained by averaging all measurements made along the path in
each scene. Measurements for two configurations are provided. These are the
same as those used for the qualitative analysis. For reference, I also compare
the time taken by the ray-tracing reference.

The ray-tracing was implemented utilizing inline ray queries. This is sub-
optimal, as inline ray tracing cannot utilize many of the capabilities hardware
has to improve the performance, such as shader execution reordering. The
BVH used in my implementation was built by having one bottom acceleration
structure per mesh. Then, all of them were grouped in one large top-level
acceleration structure. No optimization or compaction of the acceleration
structure was attempted. Both of these facts should be taken into account
when interpreting the presented values. The ray-tracing timings are included
for completeness, and are not meant to represent state-of-the-art performance.
However, they still serve as a good baseline and can provide insight about
how well VSMs compare to ray-tracing. The ray tracing uses the same light
culling structure that was used during the marking process. As such, rays
are only shot towards the lights that affect any given pixel, as opposed to
shooting a single ray towards each light in the scene.

Figure 4.6 Overdraw from the perspective of the shadow map. In the upper row
are three clip levels from the Bistro scene. Because Bistro is an outside scene.
Not a lot of geometry is stacked on top of each other from the perspective of the
light which results in little overdraw. In contrast, the three in the bottom show
the same three clip levels in the Sun Temple scene. The roof and geometry of
the temple cause significant overdraw, which increases the cost of the directional
shadows.

54

................................. 4.2. Performance Analysis

Page Marking

Unlike the previous graph, the timings presented in Table 4.3 also include
the sampling cost. Like in the qualitative comparison, I only took a single
shadow sample for each light. Looking at the timings presented, we can
notice several differences between the individual scenes. First is the Mark
Pages step. We can see that despite Bistro having the most lights out of
the three scenes, the marking pass is the most expensive for the San Miguel
Scene. San Miguel has multiple chandeliers that contain multiple candles. I
modeled each candle as a separate point light source. This often results in
many point lights being present in very close proximity to each other. As
discussed previously, because of light culling, the cost of the marking pass is
given by the number of lights that affect the same pixel. Both Bistro and Sun
Temple have more uniform distribution of the lights in the scene. Because of
this, the marking pass is faster even for Bistro, despite the larger number of
present lights. Sampling the lights uses the same light culling, and as such
the same arguments also apply.

Drawlist Expansion

The next difference is in the drawlist expansion step. This time, the larger
number of lights plays a direct role in the performance. Comparing Bistro and
San Miguel we can see that Bistro has seven more point lights and twenty-six
more spot lights. The drawlist expansion needs to be performed for 224
separate views. In contrast, the San Miguel drawlist expansion is performed
only 156 times. Bistro also contains more individual meshes and is generally
larger in the area it covers. Furthermore, the lights in the Bistro also have
larger influences. This means that frustum and distance culling is not as
efficient as in the San Miguel scene.

Directional Shadow Map Drawing

The last difference is in the drawing of directional shadow maps. This step is
the most expensive for the Sun Temple in both configurations. Sun Temple
is an entirely closed of scene. Because of this, when drawing the directional
shadows, there is a lot of overdraw caused by the roof of the temple. This
causes the directional shadows to be much slower. This is visualized in
Figure 4.6. It compares overdraw in three clip map levels on Bistro and Sun
Temple. Figure 4.8 then shows the same view from the perspective of the
main camera with the overdraw projected into the scene.

55

4. Results and Discussion.................................

(a) Bistro.

(b) San Miguel.

(c) Sun Temple.

Figure 4.7 The comparison of cached performance for two settings and ray
tracing reference for individual scenes. Higher Quality refers to configuration
with virtual directional resolution of 4096 × 4096 texels and virtual point and
spot resolution of 2048 × 2048 texels. Lower Quality refers to configuration with
virtual directional resolution of 2048 × 2048 texels and virtual point and spot
resolution of 1024 × 1024 texels. RT refers to the performance obtained by the
ray tracing reference.

4.2.4 Differences Across Configurations

Finally, I would like to discuss the differences in performance between the
two configurations and the ray traced reference. We can see that most stages
are completely independent of the VSM resolution. The marking pass is
slightly cheaper, which is caused by the reduced resolution of the VPT. As
we would expect, drawing of all directional, point and spot light pages is
cheaper. This comes from the reduced number of shadow map texels that
need to be rasterized.

In Figure 4.7 I also provide the comparison of all three methods in each

56

................................. 4.2. Performance Analysis

Samples taken 1 2 4 8
VSM sampling 295.7 µs 562.7 µs 618.9 µs 927.9 µs
VSM total 2615.1 µs 2882.3 µs 2938.6 µs 3247.6 µs
Ray tracing 2083.8 µs 4461.1 µs 9358.4 µs 19308.5 µs

Table 4.2 Comparison between ray tracing and VSMs when considering multiple
shadow map samples. We can see that ray tracing is faster only for a single
shadow map sample. As soon as the samples increase, the cost of ray tracing
increases linearly with it. This is not true for VSMs. Due to the spatial locality
of individual samples, the cache ensures faster following lookups, resulting in
much better performance.

scene separately. From this we can see that the lower virtual resolution
greatly reduces the spikes present for higher resolutions. Due to the reduced
resolution, each shadow map is represented by fewer pages. As such, the PPT
can store most of the pages, without having to throw any rendered pages out.

We can also see that while the average performance of the ray tracing
is better, the spikes produced by this are much worse. This is caused by
VSMs still being able to at least partially time slice the number of necessary
computations. Even when a lot of pages need to be allocated in a certain
section of the scene, these are still, at least partially, distributed through
multiple frames.

4.2.5 Performance with Multiple Samples

The results shown in Table 4.3 might suggest that ray tracing outperforms
and provides better detailed results than VSMs. Indeed, VSMs managed to
outperform ray-tracing only in the San Miguel scene. However, things change
when multiple samples are considered. This can be seen in Table 4.2. Due
to the pages being loaded into the cache, taking repeated samples that are
spatially close is significantly cheaper than the original sample. The same is
not true for ray tracing. Every ray needs to be traced anew, resulting in a
linear increase in cost. Another thing to consider is the typical presence of
other effects that require shadowing information. For example, for volumetric
effects, the same shadow maps could be reused. This would not be possible
for ray tracing, which would further increase the cost.

Finally, I tested the influence of the PPT size on the performance achieved
by my method. The result of this test can be seen in Figure 4.9. The
measurements in this figure show the performance of the drawing step of the
method. The test was run in the Bistro scene with the virtual resolution of
the directional light sources set to 4096 × 4096 and the virtual resolution of
the point and spot light sources set to 1024 × 1024. The resolution of the
point and spot light sources needed to be reduced so that the method would
not run out of memory.

From the figure, we can see a clear reduction in performance when the
PPT size is decreased. This is correlated with a cache hit rate statistic. The
cache hit rate was determined by dividing the number of pages marked and

57

4. Results and Discussion.................................
previously cached by the total number of pages marked in the given frame.
We can clearly see that in the parts of the graph where I measured spikes
in the performance, the cache hit rate is decreased because more pages need
to be drawn. The measurement with a larger PPT shows a much higher hit
rate at the end of the camera path. As already discussed above, in the last
section of the path, the camera reenters the center of the Bistro scene which
contains the most light sources. As such, more pages remained cached from
the start of the path, and thus the cache hit rate is much better.

Figure 4.8 Shadow map overdraw Visualization on Bistro and Sun Temple. The
overdraw visualization is obtained by projected data seen in Figure 4.6 onto the
scene. Because Sun Temple is a purely indoor scene, shadow maps for directional
lights encounter much more overdraw when compared to outside scenes like
Bistro.

58

................................. 4.2. Performance Analysis

Figure 4.9 The correlation between the performance of the drawing step and
cache hit rate measured on the Bistro scene. The virtual resolution of the
directional light sources was set to 4096 × 4096 and the virtual resolution of the
point and spot light sources was set to 1024 × 1024. Cache hit rate denotes the
number of pages that were marked but not drawn compared to the total number
of marked pages. We can clearly see, that the increase in PPT size allows for
more pages being cached, which results in better cache hit rate, improving the
performance.

4.2.6 PPT Size Analysis

Improved caching affects both the directional and point lights, as they share
the PPT. That said, point lights are affected more because they benefit more
from caching. For directional lights, pages still need to be invalidated and
redrawn when the main camera moves. However, the above is not true for
point lights. When the cache is large enough, all pages can be stored in
the PPT and never redrawn. The performance of uncached shadow maps is
independent of the PPT resolution as all pages are redrawn each frame.

59

4. Results and Discussion.................................

Bistro San Miguel Sun Temple

Directional 4096 × 4096 Spot and Point 2048 × 2048
Invalidate Pages 6.3 µs 5.7 µs 5.0 µs
Mark Pages 489.4 µs 739.7 µs 236.4 µs
Classify Pages 10.4 µs 10.5 µs 12.2 µs
Allocate Pages 4.9 µs 4.9 µs 4.6 µs
Clear Pages 8.1 µs 6.0 µs 4.2 µs
HPB Directional 5.8 µs 5.6 µs 6.3 µs
HPB Point Spot 96.1 µs 69.8 µs 53.2 µs
Expand Directional 14.4 µs 11.0 µs 12.5 µs
Expand Point Spot 759.0 µs 307.2 µs 149.7 µs
Draw Directional 180.0 µs 303.0 µs 350.3 µs
Draw Point Spot 738.7 µs 755.8 µs 90.7 µs
Sampling 295.7 µs 592.6 µs 221.3 µs
Total 2608.8 µs 2811.7 µs 1146.5 µs

Directional 2048 × 2048 Spot and Point 1024 × 1024
Invalidate Pages 5.8 µs 4.6 µs 4.7 µs
Mark Pages 442.2 µs 694.9 µs 247.2 µs
classify Pages 10.2 µs 10.3 µs 12.6 µs
Allocate Pages 4.1 µs 3.9 µs 4.8 µs
Clear Pages 4.0 µs 3.2 µs 3.7 µs
HPB Directional 5.2 µs 5.0 µs 6.9 µs
HPB Point Spot 101.2 µs 69.5 µs 52.5 µs
Expand Directional 14.4 µs 10.2 µs 12.8 µs
Expand Point Spot 779.1 µs 287.1 µs 164.5 µs
Draw Directional 46.9 µs 43.1 µs 69.3 µs
Draw Point Spot 75.8 µs 60.5 µs 20.9 µs
Sampling 323.8 µs 565.1 µs 284.4 µs
Total 1812.5 µs 1757.2 µs 884.3 µs

Raytracing
Render Time 2083.9 µs 4623.5 µs 446.3 µs

Table 4.3 Times of individual stages of the algorithm for two test configurations
which varied virtual resolutions. The used resolutions are denoted below each
subtable. The times were calculated by averaging values measured along the
entire pre-programmed path. For comparison, times to ray trace the scenes in
the bottom.

60

Chapter 5
Conclusion and Future Work

In this work, I have presented an efficient method for rendering shadow maps
called Virtual Shadow Maps. By separating the shadow map from the physical
storage, I achieved a significant reduction in consumed memory and improved
performance. I described the complexities of implementing the individual
steps of the algorithm to allow for the fastest and best quality results. I
showed that our method scales well for many light sources and generalizes to
various light types, allowing for a unified approach. This is an improvement
over existing methods that solve only a specific part of the problem. I have
described how our method utilizes a specialized scene representation scheme
to allow for highly efficient culling. Finally, I have shown the results obtained
by my implementation. I have analyzed the quality of the resulting shadow
maps compared to a reference obtained by ray tracing. In addition, I have
also provided detailed performance metrics for multiple configurations and
various scenes.

To further improve the performance of the Marking Pass, the hardware
capabilities of modern GPUs could be utilized to perform the marking step
for us. Modern graphics APIs expose functionality called Sampler Feedback,
which allows for capturing and recording texture sampling information and
location. This could be used to project the pixel into the shadow map.
As projection is the most costly operation of the marking pass, this could
significantly increase the performance.

Next, sparse (or tiled) resources in graphic APIs are a promising choice
for VSMs. Currently, the API for sparse resources does not allow for an
indirect GPU-driven approach. Backing individual pages would require GPU
read-back; however, I believe these issues can be negated by a clever approach.

Finally, combining VSMs with Ray Tracing approaches could promise a
further performance increase for scenes with enough complexity. Instead of
rasterizing each page, the GPU hardware could be used to trace a single ray
for each texel of every page. The VSM would then serve as a sort of cache for
individual rays. This could especially be useful for directional light sources
in scenes with large amounts of overdraw.

61

62

Bibliography

[AMD25] AMD. Fidelity FX SDK. https://gpuopen.com/amd-fidelityfx-
sdk/. 2025. url: https://gpuopen.com/amd-fidelityfx-sdk/.

[AH05] A. Asirvatham and H. Hoppe. “Terrain rendering using GPU-
based geometry clipmaps”. In: GPU gems 2.2 (2005), pp. 27–
46.

[Bar08] S. Barrett. Sparse Virtual Texture Memory. https://www.gdcvault.
com/play/417/Sparse-Virtual-Texture. GDC San Francisco
CA, Feb. 19, 2008. url: https://www.gdcvault.com/play/417/
Sparse-Virtual-Texture (visited on 04/15/2024).

[Dim07] R. Dimitrov. “Cascaded shadow maps”. In: Developer Documen-
tation, NVIDIA Corp (2007).

[FFB01] R. Fernando, S. Fernandez, K. Bala, and D. P. Greenberg. “Adap-
tive shadow maps”. In: Proceedings of the 28th annual conference
on Computer graphics and interactive techniques. 2001, pp. 387–
390.

[GW07] M. Giegl and M. Wimmer. “Queried virtual shadow maps”. In:
Proceedings of the 2007 symposium on Interactive 3D graphics
and games. 2007, pp. 65–72.

[GKM93] N. Greene, M. Kass, and G. Miller. “Hierarchical Z-buffer visibil-
ity”. In: Proceedings of the 20th annual conference on Computer
graphics and interactive techniques. 1993, pp. 231–238.

[Kap25] A. Kapoulkine. MeshOptimizer. https://github.com/zeux/meshoptimizer.
2025. url: https://github.com/zeux/meshoptimizer.

[LSL11] A. Lauritzen, M. Salvi, and A. Lefohn. “Sample distribution
shadow maps”. In: Symposium on Interactive 3D Graphics and
Games. 2011, pp. 97–102.

[LSO07] A. E. Lefohn, S. Sengupta, and J. D. Owens. “Resolution-matched
shadow maps”. In: ACM Transactions on Graphics (TOG) 26.4
(2007), 20–es.

[MM14] M. McGuire and M. Mara. “Efficient GPU screen-space ray trac-
ing”. In: Journal of Computer Graphics Techniques (JCGT) 3.4
(2014), pp. 73–85.

63

https://gpuopen.com/amd-fidelityfx-sdk/
https://www.gdcvault.com/play/417/Sparse-Virtual-Texture
https://www.gdcvault.com/play/417/Sparse-Virtual-Texture
https://www.gdcvault.com/play/417/Sparse-Virtual-Texture
https://www.gdcvault.com/play/417/Sparse-Virtual-Texture
https://github.com/zeux/meshoptimizer

5. Conclusion and Future Work
[NVI25] NVIDIA. Slang Shading language. https://github.com/shader-

slang/slang. 2025. url: https://github.com/shader-slang/
slang.

[OSK14] O. Olsson, E. Sintorn, V. Kämpe, M. Billeter, and U. Assarsson.
“Efficient virtual shadow maps for many lights”. In: Proceedings
of the 18th Meeting of the ACM SIGGRAPH Symposium on
Interactive 3D Graphics and Games. 2014, pp. 87–96.

[SA25] M. Sakmary and P. Ahrens. Timberdoodle. https://github.com/Sunset-
Flock/Timberdoodle. 2025. url: https://github.com/Sunset-
Flock/Timberdoodle.

[SRH24] M. Sakmary, J. Ryan, J. Hall, and A. Lustri. “Virtual Shadow
Maps”. In: GPU Zen 3. Black Cat Publising, 2024, pp. 319–336.

[TMJ98] C. C. Tanner, C. J. Migdal, and M. T. Jones. “The clipmap: a
virtual mipmap”. In: Proceedings of the 25th annual conference on
Computer graphics and interactive techniques. 1998, pp. 151–158.

[Wav09] J. van Waveren. id Tech 5 Challenges. Conference Presentation.
2009. url: https://web.archive.org/web/20091007031619/
http://s09.idav.ucdavis.edu/talks/05-JP_id_Tech_5_
Challenges.pdf (visited on 05/01/2024).

[WH10] J. van Waveren and E. Hart. “Using Virtual Texturing to Handle
Massive Texture Data”. In: GPU Technology Conference. Vol. 10.
2010.

64

https://github.com/shader-slang/slang
https://github.com/shader-slang/slang
https://github.com/Sunset-Flock/Timberdoodle
https://github.com/Sunset-Flock/Timberdoodle
https://web.archive.org/web/20091007031619/http://s09.idav.ucdavis.edu/talks/05-JP_id_Tech_5_Challenges.pdf
https://web.archive.org/web/20091007031619/http://s09.idav.ucdavis.edu/talks/05-JP_id_Tech_5_Challenges.pdf
https://web.archive.org/web/20091007031619/http://s09.idav.ucdavis.edu/talks/05-JP_id_Tech_5_Challenges.pdf

Appendix A
Attachment List

In this Appendix, I describe the structure of the attached application source
code. Attached is the code for the entire framework. The entirety of the
framework was not developed by me. However, the parts relevant to VSMs
were uniquely written by me. As such, I will only describe the parts of the
structure that are relevant to this work.. build - This folder will be generated by the build process and will contain

the resulting binaries.. deps - This folder contains all the external libraries utilized by the
implementation.. cmake - Contains files relevant to the CMake build system..media - Contains various snapshots taken from the implementation.. settings - Used to store the default settings used by the implementation.. camera - Stores keyframes of the paths used when obtaining the

results.. sky - Stores the default configuration of the procedural sky used
by the framework.. src - contains the entire source code of the framework..multithreading - source files relevant to the thread-pool used to
load the scene.. rendering - source files related to rendering.. virtual_shadow_maps - Contains source files of shaders for

individual steps, as well as all CPU side setup required in order
to run the algorithm.. scene - source files handling the loading of scene and processing of

geometry.. shader_lib - standalone contextless files used by shader code.. vsm_sampling.hlsl - Source file containing code related to
sampling of VSMs.

65

A. Attachment List
. vsm_util.hlsl - source file containing various VSM helper

functions.. shader_shared - code that is shared between the CPU and GPU
Code.. vsm_shared.hlsl - file that is shared between CPU and GPU

which provides the configuration for VSMs and the declaration
of shared structures.. ui - souce files relating to the ui of the framework.

66

Appendix B
Manual

The framework that I used uses Cmake to build the entire application. All
dependencies are managed by vcpkg. When vcpkg is not present in the system,
it will automatically be downloaded into the project. The application was
developed using vscode with the cmake extension, which is the recommended
way of building this project. When using this step, the provided cmake
configuration should automatically be detected.

When building the application manually through the command line, the
standard CMake process should also work:..1. Go to the root directory...2. From the command line call cmake –preset=<specify preset here>

to configure and generate cmake files...3. �To list all available presets, call cmake –list-presets...4. From the command line, call cmake –build –preset=<specify build
preset here> to build the application...5. �To list all available build presets, call cmake –build –list-presets.

The MSVC compiler with version 19.42.34433.0 and Cmake with version
3.29 were used to build the application.

B.0.1 Controls

The application operates in two modes. The first is the control mode. This
is the mode in which the application is initially in. It is used to control the
user interface of the application.

The second mode is the interactive mode which locks the camera and allows
the user to fly through the scene. This mode is entered and exited by pressing
the ESC key. The control scheme in this mode is slightly different:.WASD move forward, left, back and right, respectively.. SPACE increase altitude..ALT decrease altitude.

67

B. Manual
. SHIFT to increase the flying speed

In addition to this, the cursor is disabled in the fly-through mode, and the
user can control the view direction with the usage of mouse.

A new scene can be opened by navigating through the File menu in the
top left corner. Similarly, individual widgets controlling the behavior of the
entire application can be opened from the Widgets section.

68

	Introduction
	Goals

	Virtual Shadow Maps
	Previous Work
	Scene Description
	Graphics Library Transmission Format
	Geometry Processing
	Drawlists

	Shadow Map Virtualization
	Page Caching
	Light Type Specifics

	Algorithm Overview
	Page Invalidation
	Page Marking
	Page Allocation
	Page Drawing

	Implementation
	Virtualization Setup
	Virtual Page Texture
	Physical Page and Meta Memory Textures

	Toroidal Addressing
	Page Invalidation
	Toroidal Invalidation
	Dynamic Object Invalidation

	Page Marking
	Processing Marked Page
	Light Culling
	Scalarization

	Page Allocation
	Classification
	Allocation
	Clear

	Page Drawing
	Drawlist Expansion
	Geometry Culling

	Results and Discussion
	Qualitative Analysis
	Final Results
	Bistro
	San Miguel and Sun Temple

	Performance Analysis
	Cached and Uncached Performance
	Performance of Algorithm Steps
	Scene Dependent Differences
	Differences Across Configurations
	Performance with Multiple Samples
	PPT Size Analysis

	Conclusion and Future Work
	Bibliography
	Attachment List
	Manual
	Controls

