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Abstract
This text examines efficient rasterization
of large-scale 3D models in real time with
the main focus being on levels of detail
(LOD). After a brief summary of existing
techniques, the work contains a design and
implementation of a 3D renderer for polyg-
onal meshes that uses a hierarchical LOD
structure. The renderer preprocesses an
input OBJ mesh into a graph of meshlets.
Using modern GPU features such as task
and mesh shaders, the renderer enables
real-time navigation and view-dependent
LOD selection. The renderer is then eval-
uated on 20 meshes of various complexity
and the results show that frame time is
approximately halved on average without
causing any major visual artifacts. Fur-
ther investigation suggests that with a
better simplification and meshlet group-
ing algorithm, the performance increase
could be even greater.

Keywords: 3D, rendering, lod, Vulkan,
meshlet, view-dependent

Supervisor: Ing. Petr Felkel Ph.D.
Praha,
Karlovo náměstí 293,
120 00 Nové Město

Abstrakt
Tento text se zabývá efektivní rasterizací
rozsáhlých 3D modelů v reálném čase, při-
čemž hlavní pozornost je věnována úrov-
ním detailů (LOD). Po stručném shrnutí
existujících technik práce obsahuje návrh
a implementaci 3D rendereru pro poly-
gonální sítě, který využívá hierarchickou
strukturu LOD. Renderer předzpracovává
vstupní OBJ model do grafu meshletů.
Pomocí moderních funkcí GPU, jako jsou
task a mesh shadery, umožňuje renderer
navigaci v reálném čase a výběr LOD v zá-
vislosti na pozici kamery. Renderer je poté
vyhodnocen na 20 modelech a výsledky
ukazují, že se doba na jeden snímek v prů-
měru zkracuje přibližně o polovinu, aniž
by docházelo k výraznějším vizuálním ar-
tefaktům. Další zkoumání ukazuje, že s
lepším decimačním a algoritmem seskupo-
vání meshletů by mohl být nárůst výkonu
ještě větší.

Klíčová slova: 3D, vykreslování, lod,
Vulkan, meshlet, pohledově závislé

Překlad názvu: Vykreslování LOD
řízené GPU ve Vulkanu
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Introduction

Rendering large-scale models is essential in fields ranging from engineering
and architecture to entertainment and scientific research. As datasets grow
in complexity and detail, the demand for efficient, high-quality rendering
techniques has become more important than ever. Large models bring with
them the promise of unprecedented realism and accuracy, yet they also pose
significant challenges in computation, memory management, and rendering
performance [13][20].

This work will focus primarily on techniques and implementation of a
3D renderer for polygonal meshes. Several techniques for increasing the
performance of 3D scenes will be explained. In particular, algorithms for
rendering levels of detail (LOD) will be explored, and a deeper dive will be
done for adaptive mesh level of detail generation and selection, which aims to
enable rendering of arbitrarily sized models without compromising efficiency
or quality.

The work will contain a design and an implementation of a 3D rendering
engine which is able to preprocess a 3D triangle mesh provided as an OBJ file
into a hierarchical representation in the form of submeshes – meshlets. The
design of the Application will be centered around using new capabilities of
modern GPUs in the form of task and mesh shaders and the low-level GPU
API Vulkan. During runtime, the Application will be able to display this
hierarchy and the user will be able to navigate around the 3D scene in real
time. Based on a view-dependent error metric, the Application will switch
between different levels of detail of the meshlets. The Application will also
provide multiple configuration options which will be available either from a
configuration file, command line, or directly through a user interface.

The performance of the Application will then be evaluated through rigorous
measurements over several different meshes. The performance of different con-
figuration options will be compared and reported. The measurements will be
visualized using plotted graphs and discussed. Possible future improvements
to the algorithm, its usage, and the Application in general will be outlined.
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Chapter 1
Visualization of large models

New techniques like photo-realistic model acquisition, computer simulation,
or CAD software increased the size of rendered datasets multiple times. To
render these big datasets, we need to use more advanced algorithms, because
a naïve triangle mesh rendering is infeasible for these large models. Although
these algorithms can have different approaches and ideas, the main traits can
still be divided into a few categories [38].

Algorithms can perform filtering, which in some way limits the data that
needs to be processed to only the needed subset. The performance advantage
of leaving out some data is obvious, but care must be taken not to leave out
too much data, so the final rendered image does not have unwanted artifacts.
The exact specifications of what is unwanted and what is acceptable depend
on the use case.

A wide range of algorithms deals with data management. For any GPU
rendering, there must be some way to transfer data from the CPU to the GPU.
Some algorithms can utilize data locality to utilize the CPU or GPU cache. If
the data exceeds the size of RAM, some dynamic loading and unloading from
disk is needed. For even larger datasets, there is also the option of loading
data over the network.

After the data is loaded and available come the rendering algorithms, which
can utilize modern computer hardware (most notably the GPU) to render
this data efficiently. Renderers often need to balance the trade-off between
performance and visual quality.

Depending on the complexity of the algorithm, the algorithm can encompass
one or more of the traits mentioned above. The following chapters will explore
some of these algorithms.

1.1 View-dependent filtering

The main idea of view-dependent filtering is that anything that is not seen in
the 3D scene by the camera at render time can be discarded.

The most basic but still effective approach to filtering is discarding geometry,

3



1. Visualization of large models ..............................
which cannot possibly be visible in the 3D scene due to being out of the
viewing frustum – frustum culling, or due to having a polygon normal facing
away from the camera – backface culling.

In a scene with multiple objects, there can also be employed occlusion
culling which discards objects that are behind other objects (when viewed from
the camera). However, the overhead and algorithm complexity for occlusion
culling are noticeably higher when compared to frustum or backface culling.
An illustration of these three culling methods can be seen in Figure 1.1.

Figure 1.1: Example of different culling methods [14]

Another way to reduce the number of polygons that must be rendered is
to use levels of detail (or commonly referred to as LOD or LoD). This paper
focuses mainly on this approach of increasing 3D rendering performance,
which is why levels of detail is a standalone chapter that will explain this
technique in more detail.

4



Chapter 2
Levels of detail

The technique called levels of detail1 is mainly a filtering method with some
overlap to data management. The LOD filtering method decimates the mesh
into differently coarse mesh representations. Ideally, the rendered mesh should
contain only enough detail that every rendered pixel is the same as if the
original – most detailed – mesh had been used. In reality, there is often a
direct trade-off between increased performance and visual quality.

Typically, there are two distinct tasks for the LOD system:..1. Generate the different LODs..2. Choose which LOD to render

Generation of the different LODs is usually done as a precomputation step
and can often even be saved to disk as a form of “cache”. The choice of which
LOD to render is made during rendering based on some criteria set by the
algorithm used. Although advantages of a fast precomputation step exist, in
this paper only the runtime performance of the algorithm will be the main
focus.

When choosing which algorithm to use for levels of detail, one must know
how it deals with the following common problems of LODs..Too coarse mesh representation resulting in visual artifacts.Visual popping when switching between different levels.Visible cracks in the model. High memory usage

2.1 Discrete level of detail

The simplest method to create a LOD structure is to generate a discrete
set of decreasing resolution models at a predefined accuracy [11][17]. The

1Also sometimes called multi-resolution.
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2. Levels of detail ....................................
application then selects, based on a criterion (usually distance from camera or
screen space of the model bounding box), the best level for current use. The
selection is quick and simple. But when switching to another level of detail
due to camera or object crossing the selection criterion, the whole model
changes, which often causes visible popping. An example of multiple discrete
levels of detail can be seen in Figure 2.1.

Figure 2.1: Example of different discrete levels of detail [46]

Memory usage can be managed by dynamically loading only the closest
levels of detail to the currently selected with the assumption the selection
criterion will change continuously without jumps (for example, the camera gets
closer to the object). The property of memory manageability is important for
rendering large datasets, and the idea of keeping only the closest to currently
used levels of detail is common for other LOD algorithms as well.

2.2 Discrete level of detail with smooth transitions

The problem of visual popping can be solved by interpolating the two closest
LODs. The interpolation can be done either at the geometry level (before
rasterization) or pixel level (after rasterization). Pixel interpolation is just
a simple weighted alpha blending of the closest two LODs [18], but that
means essentially rendering the model twice2. Geometry interpolation is a
bit more complex as the model needs to store a mapping of vertices of the
lower resolution model onto the higher resolution model [23].

For rendering large models, this discretization could be used, but for some
models, as seen in Figure 2.2 the mesh representation will be too detailed
or too coarse by definition, as the decision of what LOD to use is made for
the whole model. Some parts of the mesh may be significantly closer to the
camera than others, so the renderer either wastes performance rendering the
far parts of the mesh in much more detail than needed, or the closer parts of

2Which may not be as bad as it sounds, because only the simplified meshes are rendered
for less important objects based on criterion.
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.................................... 2.3. Nested models

the model lack detail.

(a) : 2.5 million vertices (b) : 40 thousand vertices

Figure 2.2: Comparison of different landscape LOD levels

2.3 Nested models

The nested models approach is based on recursive subdivision and simplifica-
tion of the initial mesh. This enables the renderer to decide what parts of a
mesh to render in coarser detail and what parts to render in finer detail so,
in theory, the renderer keeps its performance and quality regardless of mesh
size and orientation.

However, when using this tree-like idea, another problem arises. When the
renderer chooses different LODs adjacent to each other, the boundary can
have “cracks” due to the simplification process – which does not preserve
boundaries by default. This can be solved in three ways [38].

The most straightforward solution is marking the boundary vertices as
read-only. Marking has one big disadvantage of creating dense geometry
near the marked edges, as the simplification algorithm can never touch the
boundary.

Cracks can also be fixed in a post-processing step by stitches which connects
the cracks to form a connected mesh again. Storing this data for every
combination of neighboring LODs is infeasible. Stitches can also be computed
during rendering, but that incurs significant performance overhead.

Geomorphing interpolates vertex attributes between different levels, so
similarly to the “Discrete level of detail with smooth transitions” there needs
to be additional complexity to map vertices between levels.

2.3.1 Batched multi-triangulation

Processing whole subsets of a mesh instead of individual triangles can be
beneficial from the data transfer and processing point of view. The loss of fine
control is almost always outweighed by the performance gains of using CPU
and GPU cache. So [38] proposed batched multi-triangulation – a solution to

7



2. Levels of detail ....................................
the edge cracks by temporary grouping the meshlets3 and marking only the
group edges as read-only. The edges are marked only for one (or in general
several, but limited) level of the simplification process. After simplifying
the grouped meshlets in one level, the marked edges are unmarked, different
meshlets are grouped (which are now simplified), their group edges are marked,
and simplification continues. You can see this illustrated in Figure 2.3 —
marked edges are red.

Figure 2.3: Illustration of marking different edges between levels

The progressive moving of the marked edges creates dependencies so that
one child may depend on multiple parents, so a directed acyclic graph is
created instead of a tree. This approach combines the possibility of displaying
different resolutions on different parts of the model and, at the same time,
there should be no visible cracks on the borders of the patches.

Even though the preprocessing is a bit more complicated and performance-
heavy than for the other approaches, the runtime overhead of choosing the
right nodes in the DAG should be manageable in real-time if implemented
correctly. If the patches are small enough and the error criterion is so strict
that LOD changes are subpixel large, there would also be no visual popping.
Inspiration from this algorithm idea by [38] is apparent in Unreal Engine [28].

2.4 Impostors

The basic idea of impostors is to render some of the objects to texture buffers
and instead of rasterizing the actual 3D object an impostor (the texture) is
displayed over a simple quad mesh. These impostors can be pre-computed for

3Meshlets were called patches in the original text by [38].
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............................... 2.5. Levels of detail summary

different angles and then shown as billboards. Many precomputed impostor
angles can be concerning memory-wise, while too few may limit the usefulness
or cause visual artifacts in the rendered image. Impostors can also be rendered
dynamically and changed upon the camera passing some kind of threshold
angle value. This technique is often used in games for objects that are far
away [12].

The impostor approach has two drawbacks. It can be used only for distant
objects because when the camera is closer to the object, even slight angle
changes would force rerendering of the whole impostor. Another drawback
is that, even with this technique, the model has to be rendered from “full”
resolution into the impostor texture.

Both of these drawbacks can be counteracted by combining other previously
mentioned LOD ideas with impostors based on some kind of threshold to
switch from rendering a lower resolution LOD to just an impostor4.

2.5 Levels of detail summary

In summary, each of the aforementioned techniques has drawbacks, but
offers advantages. The succinct comparison can be seen in Table 2.1. The
Application in this work will implement the approach of nested models –
batched multi-triangulation.

Technique Strengths Weaknesses

Discrete level of detail simplicity visual popping

DLOD with smooth
transitions

no popping quality/performance
trade-off

Nested models –
Batched

multi-triangulation

no popping, no
quality/performance

trade-off

complex preprocessing
and runtime handling

Impostors (dynamic) good performance, low
memory requirements

only suitable for far
away objects

Table 2.1: Summary of LOD techniques

2.6 Mesh simplification

In the previous section during the description of the techniques used for levels
of detail, the simplification of the mesh (either as a whole or as submeshes)

4Threshold can be any metric, but screen size or distance from camera is most common.

9



2. Levels of detail ....................................
is skipped and treated as a black-box. In this section, the black box will be
opened and explored.

The mesh simplification algorithm receives a dense/high-resolution 3D
mesh as its input. Then the goal is to generate some kind of coarser/lower-
resolution representation that is faster to process and render5. For some
applications that use mesh simplification, it is also beneficial when the
chosen mesh simplification algorithm reports either a computed or at least
an approximated error value of the simplification – the amount of “difference”
between the original mesh and the simplified mesh. An example of mesh
simplification can be seen in Figure 2.4.

Figure 2.4: Example of mesh simplification [41]

The mesh simplification algorithms generally only account for vertex posi-
tions, but some of them can be extended to also account for vertex normals
and/or texture coordinates. Simplification strategies may be broadly grouped
into two categories: local strategies that iteratively simplify the mesh by the
repeated application of some local operator and global strategies that are
applied to the input mesh as a whole. Local strategies are by far the most
common [45].

The most commonly used algorithms are explained in more detail in the
following text.

2.6.1 Local vertex decimation

The algorithm known as vertex decimation is working locally on individual
vertices. It classifies each vertex whether it can be deleted. Then based on
some criterion – in the original paper [42] it was distance to a plane created
by averaging all normals that the vertex touches – the vertex is deleted.
The resulting hole from the vertex deletion is then re-triangulated and the
algorithm continues until some stopping condition is reached. Illustration of
one step of the vertex decimation algorithm is shown in Figure 2.5.

5There exist algorithms for other kinds of mesh simplification, but they are not relevant
to this work.
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.................................. 2.6. Mesh simplification

Figure 2.5: Illustration of one step of vertex decimation

2.6.2 Local edge contraction

One of the most used algorithms for mesh simplification falls under the
category of edge contraction [45] – also referred to as edge collapse.

The algorithm also operates locally. In each step (as the name suggests) it
finds an edge and collapses it into a single vertex. An illustration of one step
of edge contraction can be seen in Figure 2.6 [24].

Figure 2.6: Illustration of one step of edge contraction

For a given edge collapse, it is not immediately clear where the resulting
vertex should be placed. Obvious choices such as the position of the start,
end of the edge, or their average are convenient but can easily be shown to
be non-optimal. Rather than arbitrarily placing the resulting vertex, it is
sensible instead to consider an error function associated with the contraction
operation and attempt to minimize its value in the space of possible vertex
placements [45].

In [19], the use of Qaudric Error Metric was proposed. The algorithm
assigns a symmetric 4 × 4 matrix Q to each vertex, the error function ∆(v)
of the vertex v = [vx, vy, vz, 1]T is then computed as ∆(v) = vT Qv. For
computing the error of an edge contraction (v1, v2) → v̄ the error matrix
is then simply computed as Qv̄ = Qv1 + Qv2 . The error function ∆(v̄) is
then minimized to find the best position for the contracted vertex. If this
minimization fails (for example, due to the matrix not being invertible), the
fallback can choose the lowest error of the aforementioned positions v1, v2, or
(v1 +v2)/2. After the removal of an edge, the error matrices of the neighboring
vertices are updated, and the algorithm continues. The mesh simplification
made by the Meshoptimizer library is based on this algorithm [27].

11



2. Levels of detail ....................................
2.6.3 Global simplification strategies

There are also algorithms that consider the model as a whole and perform
simplifications based on global error metrics. For the Application implemented
in this work, the global aspect is a problem, because using the batched multi-
triangulation inherently means that the simplification must be localized to
the submesh. As the global simplification strategies are not suitable, they
will be omitted from this overview.
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Chapter 3
Application

This chapter contains the design and implementation of an Application1,
which uses some of the techniques from previous chapters to enable viewing
and real-time exploration of a 3D polygonal scene.

3.1 Requirements

The Application should have some necessary features and a level of per-
formance. The following are the formal requirements for the implemented
software. For the functional requirements the software must:. dynamically select the appropriate resolution of a model based on the

error metric,. support automatic generation and management of different levels of
detail (LOD) for 3D polygonal models,. update the displayed model resolution in real-time during user interac-
tions such as zooming, panning, and rotating,. be able to import models in standard OBJ format and preprocess them
for multi-resolution rendering,. handle dynamically changing scenes where objects may move,. include user-configurable settings to visualize the LODs.

And for the non-functional requirements the software also must:. be capable of handling scenes with up to 1 million polygons without
significant degradation in performance,. run on Windows and Linux devices,

1Referred to in this text as Application with capital A.
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3. Application......................................
. have a codebase that should follow modular design principles to facilitate

updates and addition of features2,. ensure minimal perceptible loss in visual quality when transitioning
between different resolutions,. provide an intuitive interface for users to interact with and configure
rendering settings.

3.2 Chosen tools and dependencies

The Application was developed using multiple technologies. The goal was to
limit the number of external dependencies to a reasonable amount in order to
simplify the codebase, so that it can serve as a universal example. Using fewer
dependencies also increases the chance that the user will be able to compile
the Application without too many additional steps. The dependencies the
Application actually uses are abstracted into interfaces as much as possible
to enable swapping a potentially obsolete dependency for another one.

For this reason, an event system, a rudimentary OBJ file loader, a JSON file
writer, a configuration handler and a binary serializer were self-implemented.
The choice of technologies and external dependencies is discussed in the
following.

3.2.1 Engine programming language

The choice of the programming language most often comes down to the
preference of the developer, and there is no clear-cut best option. For real-
time rendering, compiled languages are preferred, as they usually provide
superior performance.

The Application will be written mostly in C++ as this language provides
the performance needed for real-time rendering. The widespread usage of
C++ in computer graphics development, mature documentation, type safety,
and a robust standard library are other advantages of this language which
simplify development.

It could be argued that C++ is quite complex, especially in comparison
with C, for example. The main disadvantage of C is the lack of a standard
library and less type safety.

One other candidate for a rendering engine is the language Rust, which is
very similar to C++. The disadvantage of Rust is that it is a relatively new
language, so some features might not be as well documented and/or polished.

2Mostly meaning extensibility with different windowing and GPU APIs other than
GLFW and Vulkan.
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.............................3.2. Chosen tools and dependencies

3.2.2 GPU API

In GPU APIs, the options are a bit limited. This work is intended to be as
“open” and widely available as possible, so in this context, the APIs that are
bound to a single platform (for example, DirectX and Metal) are omitted.

If only cross-platform APIs are considered, only three viable candidates
remain: OpenGL [29], Vulkan [30], and WebGPU [49].

OpenGL was historically the usual choice, but as [34] states, there are
several shortcomings in performance predictability and energy efficiency
compared to Vulkan.

Vulkan is a more modern alternative to OpenGL, which offers very fine
control over the graphics hardware resources, so the developer can utilize the
computing power of the GPU more fully. This comes at the cost of a more
complex implementation that has to take care of basically everything in the
rendering process.

WebGPU is an interesting alternative that is designed to run in the browser.
This has the advantage of being truly universal and multi-platform. This
comes at the cost of bigger runtime overhead, so the non-browser-based APIs
are more performant. As this work focuses on the performance and real-time
usability of the rendering algorithms, it could be an interesting comparison
between running functionally identical code in the browser with WebGPU
and locally with Vulkan. One thing to take into consideration is that for
WebGPU running in the browser, the serving of the large models can in some
cases be non-trivial. Also, at the time of writing, the WebGPU standard is
behind in development and does not offer the usage of task and mesh shaders.

From this comparison, Vulkan was chosen as the main GPU API. Specif-
ically, the implementation compiles with VulkanSDK version 1.3.296. But
all the code that involves Vulkan is as encapsulated as possible, so a later
switch to or an addition of another GPU API would not be a problem. For
example, specializations could be made for Windows (by using DirectX) or
Apple devices (by using Metal).

3.2.3 Windowing API

Two of the most commonly used multiplatform windowing APIs at the time
of writing are SDL [43] and GLFW [21]. SDL has more features involving, for
example, managing audio and game controllers. On the other hand, GLFW is
very well documented. As the newly created Application does not have much
need for the extra features that SDL provides, GLFW was chosen as the
windowing API used. Also, no advanced functionalities are to be expected –
the Application really just needs a cross-platform way to expose a surface to
the Vulkan API and basic keyboard and mouse input.
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3. Application......................................
3.2.4 Other dependencies

For simplifying math operations with 3D vectors and transformation matrices,
the library GLM [22] was used.

Another dependency used is for the user interface. During runtime, the
Application needs a user interface for changing various configuration values
and displaying statistics (most notably the frames per second). There are
many frameworks that can satisfy this rather simple use-case. For the
Application, the framework Dear ImGUI (commonly referred to as just
ImGUI ) [16] was chosen for its simplicity. The integration of this framework
is also made easy by the fact that the framework repository provides headers
specifically for Vulkan and GLFW.

The last dependency of the Application is a 3D mesh library Meshopti-
mizer [27] which has many features regarding 3D mesh manipulation, but the
Application uses only the mesh simplification algorithm. See Section 2.6 for
more details.

3.3 Application architecture

The Application updates in an infinite loop till it is explicitly shut down by
the user. The Application is divided into several logical components. The
main ones are the following.

Scene contains all information about models in the 3D scene, such as their
position, orientation, scale, and the 3D mesh that they are represented
by. Scene also contains the camera properties.

Input handles the user’s interaction with keyboard and mouse and exposes
Input Events that can be listened to by the Scene.

Renderer takes the Scene structure and renders it every frame from the
camera perspective (with 3D perspective projection). Currently, the
Renderer is using a Vulkan implementation called VulkanHandler, but
the Renderer is an API-agnostic interface that could be implemented by
any other GPU API.

Platform Framework is also an interface-like component which abstracts
away the GLFW API (so it could be swapped with SDL, for example)
and provides a window surface to the Renderer and hardware (keyboard
and mouse) callbacks for Input.

Config makes use of the singleton pattern to provide configurable values
to the entire application. It is split into a compiled and a loaded part.
Configuration values which are either performance-critical or it does
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...............................3.4. Core renderer components

not make sense to load them (for example a boolean for debug build)
are defined as constexpr constants. The loaded part of configuration
has some sensible default values hard-coded into the Application, but
they can be overridden by a simple text file named “config.cfg” which
can contain any number of configuration key-value pairs. The loaded
configuration can then be overridden once more by specifying command
line parameters in the same way.

Mesh contains logic for preprocessing and other operations with 3D meshes.
This logical component also includes the logic for the preprocessing and
representation of meshlets.

3.4 Core renderer components

As already stated, the Application is using Vulkan API to access and utilize
the GPU for rendering images onto the screen. When implementing the
Vulkan renderer, the book Vulkan Tutorial [37] was followed for the initial
Vulkan setup. Later, the implementation was heavily modified to suit the
intended usage of the Application to render 3D meshes with LOD using task
and mesh shaders, as the Vulkan Tutorial was only for a very basic renderer.

3.4.1 Rendering pipeline

When rendering with Vulkan, the Application can choose to use the vertex
shader pipeline, which has the optional stages of tessellation and geometry
shader before passing its output to the hardware rasterizer and then fragment
shader. The vertex shader runs on a predefined vertex buffer which defines
vertex positions and an index buffer which defines primitives – triangles.

Alternatively, the Application can choose the fairly new (first introduced
by NVIDIA in 2018) mesh shader pipeline [31]. The mesh shader works more
similarly to a non-graphics oriented compute shader. The mesh shader runs
in a predefined number of workgroups. Each of the workgroup threads (or
invocations) has very few basic "own" variables like its index. The majority
of the processed data is loaded from uniforms and storage buffers. The mesh
shader then outputs an upper bounded number of vertices and primitives to
the hardware rasterizer.

Optionally, the mesh shader pipeline can also utilize a task shader (called
amplification shader in DirectX). This shader runs before the mesh shader,
and its layout is very similar, but it does not emit vertices and primitives.
Instead, it schedules mesh shader workgroups with a very small data payload
that can be read by the mesh shader threads. An illustration of the pipeline
differences can be seen in Figure 3.1.
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3. Application......................................

Figure 3.1: Vertex and mesh pipeline comparison [32]

For the usage of the LOD hierarchy outlined in Section 2.3.1, the mesh
shader pipeline seems like a perfect fit – the mesh is divided into submeshes
called meshlets (as seen in Figure 3.2) which are then rendered independently.
Not all GPUs support the new mesh shader pipeline yet, so a traditional
fallback pipeline would be necessary for those GPUs. While the Application
can render meshes through the vertex shader pipeline, the rest of the text
is focused on the mesh shader pipeline, as that is the pipeline that uses the
LOD hierarchy.

Figure 3.2: Mesh split into meshlets [31]

3.4.2 Shaders

The three shaders in the LOD hierarchy rendering pipeline are, in order of
execution:..1. lod.task – task shader which decides which meshlets to render..2. lod.mesh – mesh shader which assembles the meshlet vertices and prim-

itives and sends them to the rasterizer
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.............................3.5. Data structures and algorithms..3. phong.frag – fragment shader which uses basic Blinn–Phong reflection
model to shade each fragment/pixel

3.4.3 User interface

As the user interface is also a rendered component of the screen, the renderer
also handles the rendering of the UI. Fortunately, the ImGUI library provides
a simple way to hook the UI rendering to Vulkan. The user of ImGUI just
needs to provide some Vulkan elements to the library so it can internally
initialize all necessities (like fonts, et cetera) and then just add two calls to
ImGUI in the Vulkan command buffer recording.

The UI elements are then added separately in a class. Most of the UI
elements are directly linked to the configuration values. So, setting something
up in the configuration file or command line arguments automatically loads
and synchronizes itself in the UI.

3.5 Data structures and algorithms

This section contains the various data structures and algorithms used in the
Application. Higher-level concepts are shown as pseudo-code and implemen-
tation details (which are also often important) are shown directly as C++ or
GLSL.

As mentioned in Section 2.5, the Application will implement the LOD
hierarchy using the batched multi-triangulation based on [38] with the addition
of using the new capabilities of the GPU – using mesh shaders and task shaders
to accelerate the batched nature of the algorithm.

The LOD hierarchy algorithm can be logically split into two parts:..1. The preprocessing – building of the LOD hierarchy..2. The runtime usage of the LOD hierarchy to render the mesh

3.5.1 The LOD hierarchy building

In the constructor, the HierarchyBuild class receives a Mesh consisting of
an array of vertices and triangles (and a bounding sphere). Note that the
triangles are just arrays of three uint32_t to reference the index of a vertex
in the vertex array.

The LOD hierarchy itself also contains the array of vertices (which is just
std::moved from the input Mesh. In addition to that, the LOD hierarchy
contains Nodes. These Nodes are basically meshlets with some additional
attributes such as their bounding sphere, group center and error and parent
group center and error. The meaning of these additional attributes will be
explained later.
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3. Application......................................
To conserve space and reduce CPU-GPU bandwidth, the triangle indices

inside a meshlet are remapped so that the vertices inside a single meshlet
can be referenced by a single byte (uint8_t) – meshlet local index. A visual
diagram of this compression can be seen in Figure 3.3 [31].

Figure 3.3: Diagram of buffers needed for efficient meshlet/node storage [1]

Then the final Node structure looks like in the Listing 3.1. The entire LOD
hierarchy has the necessary members listed in Listing 3.2.

Listing 3.1: Compressed Node structure
struct Node
{

uint32_t vertexOffset = 0;
uint32_t triangleOffset = 0;
uint32_t vertexCount = 0;
uint32_t triangleCount = 0;

// Bounding sphere center (xyz) and its radius (w).
glm::vec4 boundingSphere{};

glm::vec3 groupCenter{};
float groupError{};
glm::vec3 parentGroupCenter{};
float parentGroupError = FLT_MAX;

};

For convenience and simplicity, the structures used for the preprocessing
stage are not compressed so they are easier to work with. The overhead
of using a bigger structure is not really important as the preprocessing is
intended to be done only once and then saved to disk. Only at the end
of preprocessing is the LOD hierarchy compressed into the form above for
runtime usage (and serialization to disk).
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.............................3.5. Data structures and algorithms

Listing 3.2: Class members of the LOD hierarchy structure
class LodHierarchy
{

std::vector<Vertex> vertices{};
std::vector<uint32_t> vertexIndices{};
// MeshletTriangleBuffer in Figure 3.3
std::vector<std::array<uint8_t, 3>> nodeTriangles{};
// MeshletBuffer in Figure 3.3
std::vector<Node> nodes{};
glm::vec4 meshBoundingSphere{};

}

With the data structures described, the building of the whole LOD hierarchy
is done according to the pseudocode in Listing 3.3 by calling BuildHierarchy.

Listing 3.3: High-level pseudocode of LOD hierarchy build
def AddLevel(nodesToProcess):

// Nodes to process in next level
nextToProcess = []

while (group = GroupNodes(nodesToProcess)):
simplGroup, simplError = Simplify(group)
newNodes = CreateNodes(simplifiedGroup, simplError)
nextToProcess.append(newNodes)

return nextToProcess

def BuildHierarchy(mesh):
nodesToProcess = CreateNodes(mesh.triangles, 0)
while (nodesToProcess not empty):

nodesToProcess = AddLevel(nodesToProcess)

The CreateNodes function clusterizes the input into meshlets/nodes. The
GroupNodes function groups these nodes into even bigger “meshlets,” which
are then simplified and then reclusterized.

For a visualization of the node graph, see Figure 3.4a. After the first
CreateNodes call, the mesh is split into nodes (blue). Then these nodes are
grouped (red). The triangle set of each group is simplified individually. That
creates a simpler (green) triangle set with the same boundary as had the
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3. Application......................................

(a) : Graph visualization of node grouping in LOD hierarchy

(b) : Mesh visualization of group simplification

Figure 3.4: Visualization of node grouping in LOD hierarchy

group before3. The green triangle set is then split again into nodes (purple).
To better understand what is happening with the actual mesh, see Figure
3.4b which displays one iteration of the group simplification. Color meaning
is matching between Figure 3.4a and Figure 3.4b.

The nodes do not actually retain any references to each other after building
is complete, but for each parent-child relation (orange) it must hold that (see
3.1):.The parent’s groupError is higher than its child. So, any sequence from

root nodes to leaf nodes is always monotone..When a parent node is created, its groupError is the same as all the
other parents’ in the group. This is never adjusted in the future..When a parent node is created, its groupCenter is the average center of
the group. This is never adjusted in the future..The children’s parentGroupError is set to the groupError value of the
parent..The children’s parentGroupCenter is set to the groupCenter value of
the parent.

3Very important note is that the green simplified groups come before the purple nodes!
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.............................3.5. Data structures and algorithms

The monotonicity is ensured by taking the maximum of groupErrors of
the children and adding the simplification error of the group.

The first level4 differs in that it always has exactly 0.0f simplification
error, because it is the original most detailed mesh representation.

Then, each parent of these zero-error children has more and more simplifi-
cation error the higher the graph goes. Note that the topmost parent(s) have
parentGroupError set to infinity so that their non-existent parent is never
chosen during runtime.

CreateNodes

To create nodes from a triangle list, the function first computes a vector
of triangle adjacencies – one TriangleAdjacency for each triangle. The
TriangleAdjacency holds up to three (one triangle can have at most three
edge-neighbors) neighbors of each triangle. With this adjacency information,
the algorithm creates the nodes by calling CreateNodes according to the
pseudocode in Listing 3.4.

From the pseudocode, it can be seen that each node starts with one
triangle and grows to its neighbors until it reaches a constant cap of either
MAX_TRIANGLES or MAX_VERTICES. These constants can be fine-tuned for best
performance (for example, NVIDIA recommends up to 64 vertices and 126
triangles [31]).

The scoring is done by using a slightly modified version of lazy bounding
sphere scoring introduced in [26]. In short, the scoring of a neighboring
triangle is done by priority from the most important to the least important5:

NEGATIVE How many additional unique vertices would appending this triangle add
to the currently created node – that prioritizes triangles which already
have some vertices in the node. Note that because the neighbors are
always edge-adjacent, the number of additional vertices can be either 1
or 0.

POSITIVE If the triangle (its centroid) is already in the node bounding sphere.
With this, the node fills in, so it is as compact as possible.

NEGATIVE How much will the bounding sphere of the node enlarge when this
neighbor is added. If the node does not have any neighbors already in
its bounding sphere, it must enlarge it. This ensures the enlargement of
the bounding sphere is as low as possible.

4Note that indexing is from zero, so first level is actually level zero.
5POSITIVE means bigger number is better, NEGATIVE vice versa.
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Listing 3.4: Creation of the hierarchy nodes

def ComputeNeighborScore(unusedTriangles, neighbor, node):
if (!unusedTriangles.contains(neighbor))

return -infinity

// Score based on priority
score[0] = -HowManyVerticesWillNeighborAdd(neighbor, node)
score[1] = IsInNodeBoundingSphere(neighbor, node)
score[2] = -BoundingSphereEnlargesBy(neighbor, node)

return score

def CreateNode(unusedTriangles, adjacencies):
node = Node()
node.insert(unusedTriangles.pop())
while (true):

bestTriangle = None
for (nodeTriangle : node.triangles):

// The following for uses adjacencies
for (neighbor : adjacencies.From(nodeTriangle)):

score = ComputeNeighborScore(neighbor)
if (score > bestTriangle.score):

bestTriangle = neighbor

node.insert(bestTriangle)

if (node.triangles.size > MAX_TRIANGLES
or node.vertices.size > MAX_VERTICES):
node.remove(bestTriangle)
return node

unusedTriangles.remove(bestTriangle)

def CreateNodes(triangles):
nodes = []
adjacencies = ComputeAdjacencies(triangles)

while (triangles not empty):
nodes.append(CreateNode(triangles, adjacencies))

return nodes
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GroupNodes

The grouping of nodes and clusterization of triangles into nodes are different
algorithms, but in many aspects, they are similar, so this section will describe
the grouping in relation to Section 3.5.1.

The GroupNodes function also creates a vector of adjacencies between
nodes, but in this case the number of neighbors is not limited to three. Also,
the NodeAdjacency structure holds information about how many vertices are
shared – on the boundary with the neighbor. The created group does not
have a limit on the total count of vertices or triangles; instead, it simply has
a target count of nodes that it should contain.

Scoring of neighboring nodes is done by dividing the number of com-
mon/shared vertices between the currently examined node and its neighbor
by the triangle count of the neighbor. So, in short:

score = sharedV ertices

neighborTriangles

This “encourages” the group to add neighbors which have a high amount
of shared vertices, but also tries to promote neighbors with lower triangle
counts as they would be left out otherwise – as nodes with lower triangle
counts can never have as many shared vertices.

Simplify

For the step of simplification of the group, the library Meshoptimizer is used.
The user of the library (in this case the Application) can use the option
meshopt_SimplifyLockBorder to enforce that the simplification algorithm
does not move the border vertices. That is essential for the simplification
of a group because otherwise there could be visible cracks as described in
Chapter 2.

The implementation is abstract enough, so the library call could be replaced
by another mesh simplification library or a hand-crafted solution.

Compression and saving

After the preprocessing, the whole LOD hierarchy is compressed into the
form seen in Listing 3.2. The resulting data is then serialized to disk so
the hierarchy is built only once and then simply loaded for each subsequent
Application launch. In configuration, the user of the Application can force
rebuilding of the hierarchy by using ForceReserialization=true.

The full source of the lod hierarchy preprocessing can be seen in the file
src/mesh/lod.cpp.

25



3. Application......................................
3.5.2 LOD hierarchy runtime handling

Although preprocessing is arguably complex and not very optimized, it serves
to improve the performance of the runtime rendering as much as possible.
At runtime, when a scene contains a not-yet-loaded model, the Application
deserializes the LodHierarchy from disk or builds it if it is the first time the
model is contained in a scene. After that, the LOD hierarchy is copied from
CPU to GPU. This does not cause as much overhead as modern GPUs with
PCIe can transfer multiple GB of data per second [9].

During the rendering of a frame, these operations happen (in order of
execution):..1. Copy per-model uniforms (transforms) from CPU to GPU...2. Check if a LOD hierarchy is present on the GPU – skip this model if not...3. Based on a bounding sphere, frustum cull the whole mesh on the CPU...4. Push index of the model (to access correct uniform) from CPU to GPU...5. Bind LOD hierarchy descriptor set...6. Execute drawMeshTasksEXT(count) to launch the task shader. The

count of mesh tasks is computed as (nodeCount / TASK_THREADS) + 1...7. Task shader invocations fill payloads with data specifying which nodes
to render, and then schedule mesh shader invocations...8. Mesh shader invocations fill the vertex and primitive arrays for the
rasterizer, and then schedule rasterizer work...9. The hardware rasterizer rasterizes and schedules fragment shader work....10. The fragment shader shades each pixel with Blinn-Phong shading.

When using multiple frames in a sequence, the CPU can start processing
another frame as soon as it executes all the drawMeshTasksEXT commands.
However, if the CPU is too fast and processes more frames than are in the
swapchain faster than the GPU can render a single frame, it must wait for
the GPU to finish rendering the first frame.

Most of the steps are common and do not warrant a deeper inspection, but
the task shader and mesh shader directly work with the LOD hierarchy, so
they deserve a closer look. Inspiration for the shader implementation was
drawn from [1].

The task and mesh shaders also contain synchronization primitives and
logic, so it is recommended that a curious reader look directly into the source
code of the Application for details.
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Task shader

The responsibility of the task shader is to choose which nodes should be
drawn. There are two main checks that determine whether the node should
be drawn: culling by error and culling by frustum.

Culling by frustum is not really an innovative algorithm, but the task
shader has a noteworthy possibility of doing effective frustum culling on a
per-node level. That means, for example, if the camera is close to an object
and only a subset of nodes is visible from the whole mesh, the task shader
can cull many nodes that would have to be rasterized otherwise. An example
of moderate meshlet frustum culling can be seen in Figure 3.5.

Figure 3.5: Task shader frustum culling example [36]

The other culling – culling by error stems from the LOD hierarchy nature.
The goal is to cull too detailed and too coarse nodes. Due to the way the LOD
hierarchy is built (see Section 3.5.1) the groupErrors in the node “graph”6

are always monotone. By taking inspiration in [28], it is not necessary to
traverse the graph. Each node can be evaluated by itself using the GLSL
code in Listing 3.37.

The most important part of the cullByError is the line containing the
comparison with error THRESHOLD. In other words, it means that if the parent
error is lower than the error threshold, then the parent node should be drawn
as it is detailed enough and cheaper to draw (so do not draw this node). And
if the current node error is too high, then it means that the current node
is too coarse and a finer level – a child will be drawn (so do not draw this

6Remember that nodes do not have any references to each other, only the parent group
error and center.

7Uniform transform access was omitted for simplification.
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Listing 3.5: Snippet from the task shader

float computeError(vec3 center, float error)
{

if (error == 0.0)
return 0.0;

vec3 centerInCamera = (VM_MATRIX * vec4(center, 1.0)).xyz;
float centerDistance = length(centerInCamera);
return error / (centerDistance * centerDistance);

}

bool cullByError(Node node)
{

float parentError = computeError(
node.parentGroupCenterAndError.xyz,
node.parentGroupCenterAndError.w);

float error = computeError(
node.groupCenterAndError.xyz,
node.groupCenterAndError.w);

if (parentError <= THRESHOLD || error > THRESHOLD)
return true;

return false;
}

node).
The threshold is a uniform value that is set for the entire scene at the

start of rendering. When it is set to zero, only nodes with the simplification
error of exactly zero – so only the maximally detailed nodes will be drawn.
The user can then set the error threshold for the whole scene. With this one
variable, the performance/quality trade-off can be adjusted.

The final error metric is currently computed just as:

finalError = error

distanceToCamera2

But it could very well be experimented with and fine-tuned.
The full source of the task shader can be seen in the file shader/lod.task.
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Mesh shader

The mesh shader receives data from the task shader (called payload). The data
simply contain the indices of the nodes that should be rendered. Then the
mesh shader reconstructs the true 3D vertex positions and primitive/triangle
indices from the compressed Node structure and transforms them by the
per-model uniform.

Optionally, it can also do per-primitive culling and other operations, but
the effectiveness of that is lowered if the task shader is already doing that
type of culling on a per-meshlet basis. The culling computation would have
to be done for all the primitives, even though only a fraction of them could
be culled – because the task shader already culled most of them.

The full source of the task shader can be seen in the file shader/lod.mesh.

3.6 Example

This section will showcase the usage of the Application with some screenshots
and explanations. For the full Application guide, see the Appendix A. The
example uses a 3D mesh created by subdividing the default suzanne in Blender
called massive-suzanne (8 million vertices) [10]. For this example, the mesh
will be stored on the path “C:/data/objs”.

After using the command “./<executable path> Model=massive-suzanne
ResourcesPath=C:/data/objs”, the Application first preprocesses the 3D mesh
into the LOD hierarchy. As already mentioned, this LOD hierarchy is then
saved to disk, so on subsequent launches, it is only loaded. Once the LOD
hierarchy is available, the Application starts rendering the 3D scene onto a
window surface. The user interface will be collapsed on the first launch, as
can be seen in Figure 3.6.

The expandable user interface boxes are Options which enable the user to
adjust various runtime configuration options, Stats which display a rolling
average of frame time and frames per second. The last box How to use this app
basically copies Section A.2. By default, the Application displays the meshlets
as random-colored, which aids in visualizing the switching between different
nodes. By increasing the “Options » LOD hierarchy » Error threshold” from 0
to approximately 0.001, the Application applies more aggressive node selection
– meaning less detailed nodes are rendered closer to the camera. The error
threshold of exactly zero means that the most detailed nodes are always
visible.
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Figure 3.6: The Application upon launch

(a) : ET = 0 (b) : ET = 0.00001 (c) : ET = 0.001

Figure 3.7: Colored comparison of different error thresholds (ET )

(a) : ET = 0 (b) : ET = 0.00001 (c) : ET = 0.001

Figure 3.8: Colored comparison of different error thresholds (ET )
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(a) : ET = 0 (b) : ET = 0.00001 (c) : ET = 0.001

Figure 3.9: Zoomed comparison of different error thresholds (ET )

The difference is very noticeable (as seen in Figure 3.7) when drawing
meshlets with different colors. When the color is switched to a uniform
color by unchecking “Options » Fragment shader » Draw colored” and shaded
smoothly by the Blinn-Phong reflection model, the difference is practically non-
existent, as seen in Figure 3.8. For this mesh, the frame time is approximately
halved for the threshold 0.00001 with no perceptible difference. For the error
threshold 0.001, the frame time is about one fifth, but on the very shiny part
of the head, there is a slight visual difference, as seen in Figure 3.9.
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Chapter 4
Evaluation

The performance of the Application can be evaluated based on multiple
criteria. When comparing the raw performance of the renderer, the simplest
measurement is the frame render time. The application has the capability of
rendering the same scene with the classic vertex shader pipeline. So apart
from just absolute frame time values, the frame times can be compared
between the task/mesh shader pipeline (with and without the LOD hierarchy)
and the vertex shader pipeline. The vertex shader pipeline cannot use the
implemented LOD hierarchy properly, so it is evaluated without it.

LOD techniques should also be evaluated based on perceptible difference
when a lower-resolution representation is used. With the LOD technique
used, the visual difference between the original mesh and the adaptive lower
resolution representation can be measured with Structural Similarity Index
Measure (or SSIM )[48]. The resulting value of SSIM is in the range [0, 1]
with 1 meaning the absolute similarity (image identity) and 0 meaning the
lowest similarity.

Figure 4.1: Comparison of FLIP and SSIM metrics

There exists a newer comparison algorithm called FLIP (also can be seen
as FLIP) [2]. This algorithm aims to better model the perceived difference
between images. In this case, the value of 0 means zero difference/error
(images perceived as identical), there is no specific upper bound on the error,
but the higher the value goes, the more the images are perceived as different.
The ability to better model human perception can be seen in Figure 4.1.

Both SSIM and FLIP can output a “difference” image which shows where
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4. Evaluation ......................................
the compared images differ. The output similarity/error value is just an
aggregation of these differences over the whole image. For an example of this
difference image see the SSIM image in Figure 4.1. The images rendered by
the Application will be compared both by SSIM and FLIP.

Another option regarding measurement is the choice of the 3D meshes that
will be rendered. For this evaluation, only publicly available 3D meshes are
used. Some of the meshes are common in 3D mesh rendering papers like the
Stanford Bunny, Buddha Statue, or the Chinese Dragon. It is expected that
the LOD hierarchy generation algorithm of the Application will be best suited
to meshes which contain “one” object, as then the algorithm can iteratively
simplify the mesh. For meshes (for example, architectural or vehicular) that
contain multiple distinct objects, it may happen that the individual objects
are so simple that further simplification does not make sense, but the overall
complexity of the scene is not low enough. Both of these types of scenes are
tested and evaluated.

When viewed from different angles, the Application culls different meshlets,
so a seeded randomized sequence of camera positions and orientations is used.
The statistics of how many meshlets are culled are reported.

The Application also has a range of configuration options that slightly
change its behavior. In particular, the error threshold can be adjusted to alter
the aggressiveness of node culling. Different combinations and comparisons
of these are also evaluated.

The time of preprocessing of the original meshes into the LOD hierarchy
is measured, but the results of the preprocessing specifically are just for
completeness, as the preprocessing would be done once in a production-level
application and then saved to disk. At runtime, the application would only
load the already computed LOD hierarchy from a hard-drive.

The Python script handling the automatic launching and evaluation of
SSIM and FLIP is also in the repository of the Application in the folder
py-stats. More detail is added for each individual measurement in their
respective sections.

34



...................................... 4. Evaluation

Figure 4.2: Meshes used during evaluation

In the evaluation, 20 different meshes were used. The vertex and triangle
counts are listed in Table 4.1. The default view of the scene of these meshes
can be seen in Figure 4.2. The computer on which the Application was
measured had the following specifications:.Operating system: Windows 11. Compiler: MSVC.GPU: NVIDIA GeForce RTX 3070 Laptop
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4. Evaluation ......................................
. CPU: Intel i7-10870H @ 2.20GHz. RAM: 16 GB (2933 MT/s). Disk: KXG60ZNVV512G KIOXIA (SSD)

mesh vertices triangles

armadillo [44] 172 974 345 944
bmw [35] 198 895 384 893
buddha [44] 543 439 1 087 300
car [15] 219 463 420 643
church [5] 1 237 460 2 470 330
conference [35] 189 033 331 179
crown [39] 2 465 980 4 868 920
demogorgon [6] 1 254 260 2 508 610
destroyed-building [40] 44 931 89 932
dragon [44] 435 491 871 198
ggm11 [4] 7 715 960 15 373 900
hairball [35] 1 440 000 2 850 000
helicopter [3] 11 727 100 23 454 800
massive-suzanne [10] 8 063 620 16 121 900
monument [7] 3 588 860 7 177 020
fire-hydrant [8] 1 523 670 3 043 230
powerplant [35] 5 424 570 12 759 000
roadbike [35] 848 715 1 676 780
sibenik [35] 42 962 80 125
sodahall [33] 1 285 510 2 169 130

Table 4.1: Vertex and triangle counts for the evaluated meshes

For all tests and measurements, the ImGUI user interface was turned off.
The Application was compiled in release mode with maximum optimization
enabled. Unless stated otherwise, the measurements were done on fullscreen
FullHD (1920x1080) resolution.

4.1 First measurement

The first measurement was done with the aim to compare an approximated
use-case of displaying multiple models in a scene from different camera angles.

The configuration of the Application can influence how the Scene is ini-
tialized. Most notably, the mesh (in the format of an OBJ file). By default,
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.................................. 4.1. First measurement

this loaded mesh is uniformly rescaled so that it fits into the space [−1, 1].
Another option the configuration provides is arranging the scene meshes into
a grid – enabling direct rendering of the mesh at multiple distances/angles.
Camera position can be randomized by a specific seed (so the rendered frames
can be later compared between runs of the Application)1.

So in the first measurement, the mesh was placed in a grid of 10 by 10
instances (so 100 meshes in total) with the grid spacing left on the default
2.0f as can be seen in Figure 4.32. For the frame times, the time was
measured over 1000 frames with the camera positions randomized in the
extents (in each axis) [−20, 20] with instant position changes. Out of these
1000 frames, the first 20 were saved to disk – for performance reasons in a
different Application run – to compare them with the SSIM and FLIP error
metric.

Figure 4.3: 3D scene for the first measurement

The raw data from the first measurement can be seen in an appended Table
B.1. Each model was measured using 8 different setup configurations. The
first configuration used a traditional vertex shader pipeline, the following lod
configurations were the implemented LOD hierarchy with default settings
using an error threshold of 0, 0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1, and 1
respectively. That means that the lod_0 setup rendered maximum resolution
nodes and subsequent lod_N rendered coarser and coarser nodes – ideally
thus increasing performance.

The SSIM and FLIP comparison of lod setups was done both against the
traditional vertex pipeline setup to measure the absolute difference from the
original and against the previous (as ordered in the table) lod to measure an
approximated perceptible “popping” when the rendered nodes are switched.

From this data, several graphs are plotted by the library Matplotlib [25].
Figure 4.4 displays the absolute times to render 1000 frames for each mesh.
The absolute times of the vertex shader pipeline and zero error threshold
LOD (lod_0 ) are dominated by the meshes with most vertices, with the
highest one being the helicopter3. It can be seen, though, that when the error

1Camera view is always directed to the center of the scene – [0, 0, 0] in world coordinates.
2Grid spacing of 2.0f means that after normalization the meshes in the grid could be

exactly touching.
3Note that the helicopter mesh has over 23 millions of triangles so the full scene with
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4. Evaluation ......................................
threshold is increased, the render time decreases as expected.

Figure 4.4: Absolute times to render 1000 frames

To further examine the relative differences, Figure 4.5 was plotted. It takes
the time to render the mesh through the vertex pipeline as a baseline to
contrast the performance of different LOD error thresholds against it.

Figure 4.5: Times to render 1000 frames relative to the vertex pipeline

For 11 of the measured meshes, the vertex shader pipeline performs better
than the lod_0 setup. However, for most meshes, this difference is relatively
small. The cause of this difference is most likely the fact that the traditional

100 of these contains 2.3 billion triangles.
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vertex shader pipeline always renders only the highest resolution represen-
tation of the mesh, while the mesh shader pipeline (even for zero threshold)
still performs the node selection process, which incurs this overhead. For the
meshes where the mesh shader pipeline beats the performance of the vertex
shader pipeline, the performance increase is most likely gained through the
meshlet culling, which can discard parts of the mesh (which is impossible for
the vertex shader pipeline).

The performance gain when using a higher error threshold to render coarser
nodes when the camera is further away can be clearly seen in Figure 4.5 for
most of the measured meshes. It can also be seen that the error threshold
reaches a “maximum value” where further increase has very little to no effect
on rendering performance. This is the logical consequence of the nodes having
a finite absolute simplification error estimate. If the error threshold is so high
that the most simplified – “root” nodes are always chosen, there is no more
room for performance gains.

Ideally, there would be only a few root nodes, so that the renderer would
have to rasterize a very limited number of triangles. From the measurement,
it seems that the node simplification process terminates too early. By default,
if the simplification does not simplify the meshlet vertices by at least a factor
of 0.7, the simplification is rejected (and no new node is created) to keep the
number of nodes bounded to a reasonable amount.

One exception where the mesh shader pipeline performs much worse than
the vertex shader pipeline is on the powerplant mesh. It can also be seen on
the graph with absolute values in Figure 4.4, that even though helicopter has
more than twice as many vertices, the render times of the lod_0 setup are
almost the same. This can suggest that the nodes in powerplant are poorly
distributed/filled. This can happen when the input mesh contains a lot of
disconnected components, because the node generation algorithm does not
contain any metric to automatically connect close-by vertices. The overhead
of processing near-empty nodes then outweighs the other benefits of the mesh
shader pipeline. Although the maximum resolution nodes for powerplant offer
very poor performance, the simplified nodes remedy this at least somewhat.
The sodahall mesh did not have such poor performance for lod_0, but the
simplified nodes in further configuration setups did not bring too much of a
performance gain either. That is most likely again because the mesh contains
many disconnected objects which the simplification algorithm cannot handle.

When the render times are averaged across all the evaluated meshes in
Figure 4.6, it can be seen that even though the powerplant and sodahall are
involved, the frame times are on average lower for lod_1 and further. The
overhead of the task shader when rendering with zero error threshold is more
visible here, but in real use-case scenarios, the error threshold would never
be exactly zero.
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4. Evaluation ......................................

Figure 4.6: Render times relative to vertex pipeline averaged across meshes

Figure 4.7: Plot of SSIM and FLIP errors averaged across all models

The SSIM and FLIP errors are plotted in Figure 4.7. Both SSIM and
FLIP separately plot the errors compared to the “original” mesh rendered
by the traditional vertex pipeline (blue) and compared to the previous LOD
configuration in the sequence4. The values are averaged across all meshes and
the standard deviation of frame comparisons for each specific model averaged
across all models is also plotted.

As expected with increasing LOD error threshold, the SSIM decreases and
FLIP error increases – but note the 1e − 5 + 1 and 1e − 5 exponents in Figure
4.7 – meaning the errors are still quite small. The plot for the most part
supports the conclusions drawn from the frame rendering times figures. The
error threshold almost reaches its usable maximum around the value set for

4Hence lod_0 has zero FLIP error and SSIM of exactly one by definition.
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................................. 4.2. Second measurement

lod_4 at which the renderer already renders the most simplified nodes for
most camera positions, but there can still be seen a small “nudge” (more
noticeable on the orange lines) by increasing the LOD threshold to lod_5
value at which the renderer always renders the most simplified nodes.

As a side note, the similarity/error values obtained from the evaluation of
the two metrics of SSIM and FLIP are surprisingly symmetrical, and neither
one seems to provide any additional information over the other.

4.2 Second measurement

For the second measurement, the goal was to look deeper into the LOD
hierarchy and its runtime node selection. This time, the setup did not use
the grid, so only one mesh per measurement was rendered. The randomized
camera extents were slightly increased to [−25, 25] for every axis to better
ensure that the camera can reach positions further away from the mesh. To
test only the LOD hierarchy node selection, the node frustum culling was
turned off.

The number of configuration setups was increased to 12 for better gran-
ularity of the evaluation. From the first measurement, it was obvious that
increasing the error threshold more than for the configuration setup of lod_5
does not bring any benefits, so for the second measurement, the configuration
setups were rescaled accordingly by adding more lower error thresholds and
adding midpoint values between the existing ones – the comparisons can be
seen in Table 4.2.

Error
threshold

First
measurement

Second
measurement

0 lod_0 lod_0
0.0000001 — lod_1
0.0000005 — lod_2
0.000001 lod_1 lod_3
0.000005 — lod_4
0.00001 lod_2 lod_5
0.00005 — lod_6
0.0001 lod_3 lod_7
0.0005 — lod_8
0.001 lod_4 lod_9
0.005 — lod_10
0.01 lod_5 lod_11

Table 4.2: Measured error thresholds comparison
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4. Evaluation ......................................
The raw data from the measurement is appended in Table B.2. Each mesh

has its own header with information about how many nodes in total are in the
LOD hierarchy (nodes), how many of the nodes have zero simplification error
(zero nodes), how many of the nodes do not have any parent (root nodes)
and how many triangles are in the root nodes (root tris). The columns then
contain the counts of rendered nodes and triangles averaged over all 1000
frames. The Application exports these stats for each frame separately, so the
standard deviation is also calculated (as well as the minimum and maximum
can be retrieved).

Figure 4.8: Average nodes rendered relative to the count of zero-error nodes

To visualize how increasing the threshold reduces the number of nodes
selected for rendering, Figure 4.8 was plotted. It displays the number of
rendered nodes per frame averaged across all frames relative to the number of
zero error nodes for each error threshold configuration. The black lines above
some of the colored bars denote the minimum and maximum of rendered
nodes.
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When compared with Figure 4.5, the data shows very similar trends for
each model. That means the number of selected nodes for rendering is very
strictly tied to the render time. Due to rescaling the measured error threshold
values, a more gradual increase in performance can be seen for each one.

It is actually very good to see that the minimum and maximum values
for rendered nodes are fairly far apart for the middle error threshold values
(lod_4 to lod_7 approximately), because it means that the camera distance
influences the rendered quality greatly – when the camera is very close to the
mesh almost all max-resolution nodes are rendered, and when the camera
is far away only coarse nodes are rendered. An observant reader can also
spot that for some of the meshes, the lower thresholds (for example lod_1
and lod_2 for the crown mesh) can actually render more nodes than the
baseline zero error nodes. This is a consequence of the greedy nature of
the node-building process, which may create less triangle-filled nodes during
preprocessing. Then even though the nodes are less detailed, there are slightly
more of them.

To examine the exact “sweet spot” of the error threshold, Figure 4.9 was
plotted, which averages these relative amounts of rendered nodes across all
meshes. Additionally, it contains a measure of the range between minimum
and maximum of the rendered nodes (red dash-dotted line). It can be clearly
seen that the maximum range is reached for the configurations lod_4 and
lod_5 which, according to Table 4.2, correspond to error threshold values
of 0.000005 and 0.00001 respectively. The exact best error threshold could
be expected to be somewhere between these two values. When looking back
at Figure 4.6 (note that the error threshold configurations were rescaled
according to Table 4.2), the frame time can be expected to be approximately
halved when using this best error threshold value.

Also, with the assumption that the simplification algorithm would be fixed
to generate also the more aggressively simplified nodes, it could be reasonable
to expect that the performance would be even better, because from the figures
it seems that the main rendering overhead of the LOD hierarchy is still the
rasterization and processing of the nodes in the mesh shader (because the
amount of nodes rendered directly affects frame time) not the node selection
in the task shader.

4.3 Hierarchy build times

Although the performance of the preprocessing step is not the focus of this
work, the build times of the LOD hierarchy were also measured and reported
in appended Table B.3.

When the LOD hierarchy build times are compared against the mesh
vertex counts in Figure 4.10, it can be seen that the helicopter and powerplant
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Figure 4.9: Relative number of nodes rendered averaged across all meshes

especially stand out. After a debugging session, it was confirmed that this is
due to the fact that after failing to simplify a group (as discussed in Section
4.1), the Application keeps the nodes “open” and tries to simplify them in the
next iteration. This behavior is intentional because, when neighboring nodes
are changed, it may happen that simplification would be possible. However,
if many of the groups fail to simplify, the overhead of processing these nodes
multiple times can substantially increase the build time.

Figure 4.10: LOD hierarchy build times relative to mesh vertex count
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4.4 Limitations of current implementation

The Application has several limitations. Some of the limitations were expected
and were out-of-scope of this work. The ability to handle textures and other
file types apart from OBJ is not implemented but would be fairly easy to
add. Another simple limitation is that if the GPU hardware or driver does
not support the (at the time of writing this work fairly new) task/mesh
shader pipeline, the Application cannot be used at all. The Application is
also missing any runtime editing of the 3D scene (apart from turning on mesh
rotation).

The initial testing of the Application which was then complemented by the
measurements has shown another big limitation of the current implementation;
the simplification and node grouping algorithm can simplify only connected
components of the mesh and after a finite simplification steps gets “stuck”
unable to simplify the grouped nodes more. The algorithm iterates over
the triangle neighbors by their edge-connectivity, and although there is a
spatial-aware metric of the bounding sphere to rank these neighbors, the
neighbors which are not connected by an edge are not even considered. The
node grouping algorithm then works similarly. The problem is most apparent
for meshes with many disconnected objects like powerplant or sodahall. This
subsequently leads to the LOD hierarchy having too many root nodes – nodes
which are displayed when the camera is far away. Ideally, the count of root
nodes would be very low – could be as low as a single root node.

4.5 Future work

The Application is suited to be extended in multiple ways. The design of the
application was done so that the main blocks are abstract enough so that
they can be swapped or iterated on with future versions.

The application is currently CPU single-threaded, but there are multiple
opportunities for multi-threading. The basic and most influential would be
the loading of the meshes in a separate thread, as currently when a mesh is
loading, the application thread is blocked. The Application is designed so
that only the MeshBank would need to be adjusted. Currently, the Vulkan
renderer just prompts the MeshBank for a mesh and if the MeshBank returns
a nullptr, it skips the model. So, the multithreaded implementation would
be just to continuously return nullptrs till the mesh is loaded and ready.

Another opportunity for distributing work to multiple threads is in the
Vulkan implementation. For example, the transfer of data to and from the
GPU could be done – with some proper synchronization – in a separate
thread.
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From the user interface standpoint, it may be beneficial to implement some

kind of basic runtime 3D scene editing for adding models, moving models
around the scene, or scaling models. While not very useful for rigorous testing,
for quick experimentation, this way could be much faster than packing the
whole scene into an OBJ file.

As the OBJ format was mentioned, it would also be possible to implement
other loaders for different 3D scene descriptions (for example FBX). The
current ObjLoader simply returns a Mesh structure. So, if any other loader
was implemented, it could also return a Mesh structure and the MeshBank
would just decide which loader to use based on the file suffix. Alternatively, it
would be possible to plug in the quite well-known library Open Asset Import
Library (usually called Assimp)[47] into the code.

4.5.1 More aggressive simplification

Focusing on the LOD hierarchy technology/algorithm, there are also options
for future work and improvements. Probably the most influential of them
would be to implement a more aggressive node grouping and simplification
algorithm. This aggressive variant could be used as a fallback when the
current connectivity-preserving algorithm fails or simplifies the node group
too little.

In the Application, there already exists an implementation of a Kd-tree,
which was used for early mesh shader testing during development. The
aggressive simplification algorithm could use this structure to find close-by
nodes/triangles, which would enable the Application to have many fewer root
nodes and thus increase the performance even further when the camera is far
away.

As a bonus heuristic, the information from the original mesh could be
used while simplifying nodes throughout all of the hierarchy. The current
implementation performs the grouped node simplification in isolation (just
with the locked border) without any knowledge about the child nodes or the
original mesh.

4.5.2 Unloading of nodes

To handle a large number of different meshes, the Application would have to
have a system which adaptively loads and unloads currently unused Nodes
from GPU/RAM. The compressed structure of the Node (see Listing 3.1)
would have to be slightly altered to contain all the information necessary to
render the Node.

The system would then have to keep only the currently rendered Nodes
(from the camera viewpoint) in memory. The task shader would then simply
add a small additional code, which would write to a buffer any new “re-
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quested” Nodes based on the error metric. The requested Nodes would then
be asynchronously loaded (first to RAM, then copied to GPU memory) and
rendered.

This proposed approach would have one assumption about continuous
camera movement – as when the camera would move too rapidly, the additional
Nodes might not have enough time to get loaded and visual artifacts could
occur. To combat this, the system could have a buffer of Nodes in levels
above and below (parents and children in the graph) of the currently rendered
Nodes.

For instantaneous camera movements (like teleporting) some small subset
of coarse Nodes could be loaded so the Application would have a fallback.

4.5.3 Textures

Another feature that would have to be added for many use-cases of 3D
renderers is the ability to display textures on the mesh. Currently, the most
commonly used texture mapping is through UV coordinates, which map each
vertex to a point in a texture. The UV data is saved separately for each
vertex.

Some kind of texture file handling would have to be implemented into the
Application. Otherwise, a rudimentary texture mapping should be rather
simple to implement.

Currently, the implementation of the simplification uses the Meshoptimizers
meshopt_simplify [27] which does not create new vertices. That means that
for coarser nodes, the texture coordinates would have more and more artifacts.
As no new vertices are created, the vertex texture coordinates cannot be
properly interpolated for the simplified mesh.

When combined with the proposal in Section 4.5.2, new vertices could be
created, which would enable the simplification algorithm to also compute
better simplified texture coordinates.

4.5.4 Pipeline fallback

When the Vulkan implementation during its initialization fails to find a
device that supports the task/mesh shader pipeline, there could be some
kind of fallback pipeline implemented. The fallback pipeline could either use
traditional LOD techniques (see Chapter 2) or implement the LOD hierarchy
using compute shaders, which are supported on the most commonly used
GPUs at this point in time.5

5Or the simplest alternative of not using any LOD technique at all.
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4.5.5 Error metric adjustments

In Section 3.5.2, it is mentioned that the error threshold used in the task
shader to cull too coarse / too detailed nodes is set for the whole scene. While
this gives the user the tool to extremely simply adjust the performance/quality,
some additional information could be added to further improve or modify
this error threshold. For example, the user could adjust this error threshold
per object to prioritize higher quality rendering for more important objects.

Some automatic heuristics could also be employed based on the material
information or structural complexity of the object. As an example, the error
threshold could automatically be decreased for shiny objects, as generally
the visual artifacts caused by the node simplification are more noticeable on
those. Another simple heuristic would be to adjust the error threshold over
time to meet some preset target framerate. Even simpler would be to also
scale the error threshold with viewport resolution and field of view.
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Chapter 5
Conclusion

The theoretical part of this work gave an overview of the existing techniques
to increase the performance of 3D polygonal renderers. The main focus
was increasing performance through the usage of levels of detail (LOD). An
algorithm that uses a hierarchy of meshlets to enable rendering parts of a
mesh at different resolutions while maintaining good performance and visual
quality was explained. The different LOD techniques were compared.

In the practical part, an Application for meshlet rendering was designed
and implemented. The Application is able to load and preprocess a 3D mesh
into a hierarchy of meshlets which is then serializable onto the hard-drive.
At runtime, the Application can take this preprocessed hierarchy and do
effective culling of these meshlets based on a view-dependent metric to achieve
increased performance without sacrificing visual quality. The Application uses
the GPU API Vulkan to enable low-level control over the hardware. Instead of
the traditional vertex shader pipeline, the Application uses mesh/task shaders
for the selection and processing of the hierarchy. The selected meshlets are
then rasterized and rendered onto the screen. The application is able to
switch between these meshlets seamlessly without visual artifacts.

The user can navigate around the rendered 3D scene in real-time using the
mouse and keyboard. The Application also provides configuration options
that are available either from a configuration file, as a command line argument,
or directly through a simple user interface.

The text explained the design decisions, the architecture, and the inner
workings of the Application in detail. Chosen implementation details of the
LOD hierarchy preprocessing and runtime handling were highlighted and
provided as code snippets.

The performance of the Application was then measured using an imple-
mented Python script. The measurements were done on 20 meshes of various
complexity and nature ranging from 80 thousand triangles to 23 million
triangles. The results were visualized in multiple plotted graphs.

The results showed that frame time is approximately halved on average with-
out causing any major visual artifacts. Further investigation suggested that
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5. Conclusion......................................
with a better simplification and meshlet grouping algorithm, the performance
increase could be even greater. The limitations of the current implementa-
tion were critically assessed and possibilities for future improvements and
extensions were outlined.
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Appendix A
Application installation and usage

A.1 Installation

The application is available as a Git repository hosted on faculty GitLab here:
https://gitlab.fel.cvut.cz/smelyric/lod-o-matic.

After cloning the repository with the command
git clone --recurse-submodules <the repository url>

the external dependencies of GLM, GLFW, Meshoptimizer, and ImGUI
will also be cloned and initialized to the exact commit this application was
originally compiled with.

One other needed dependency is VulkanSDK which can be accessed through
https://www.vulkan.org/tools. The site offers the SDK for multiple op-
erating systems. The application was compiled and tested with the version
1.3.296, but future versions should be compatible as long as they maintain
backward compatibility. Also, the SDK should contain a command line tool
glslc which transpiles the GLSL shader files into SPIR-V – Vulkan readable
files.

The Application is compiled using CMAKE, so any tool or environment that
can handle CMAKE projects should now be able to compile the Application1.
The executable binary will be called Lod-o-Matic.exe.

A.2 Usage

By default, upon launch, the Application will display a single Suzanne model
near the middle of the screen.

For navigation around the scene, it is recommended to use the mouse and
keyboard. The keybinds are as follows:

W/S To move the scene camera forward and backwards, respectively, in the
direction of the view.

1Of course some kind of C++ compiler is needed.
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A. Application installation and usage............................
A/D To move the scene camera left and right, respectively, in the horizontal

direction perpendicular to view.

Q/S To move the scene camera up and down, respectively.

RIGHT MOUSE To look around, the user can hold the right mouse button, then by
moving the mouse, the camera/view rotates around the camera origin.

MOUSE WHEEL By rotating the mouse wheel up, the speed at which the camera is moving
by the previously mentioned keys increases. Rotating the mouse wheel
down decreases the speed.

C Resets the camera orientation to default.

K K ills the Application.

Figure A.1: Application Options

The user can influence the behavior of the Application by changing the
values in Options in the user interface as seen in Figure A.1. More extended
configuration is available through a configuration file config.cfg or command
line arguments. The complete list of configuration options is listed in Table
A.1 with their default values and descriptions. The configuration is changed
by <key>=<value> separated by newlines for the configuration file and
spaces for the command line.
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Table A.1: Application configuration options

Key Default
value

Description

RunTests true Runs tests at the start of
the Application.

PromptAfterEveryFrame false Needs you to press N after
each rendered frame.

DoBenchmarkRun false Does a benchmark run
which renders only a lim-
ited amount of frames be-
fore exiting.

BenchmarkFrameCount 1000 The amount of frames to
render in a benchmark
run.

RandomCamera false Positions the camera ran-
domly each frame

RandomCameraExtent 50 The extent of the random
camera position (for all
axes).

InterpolateCamera 0 Over how many frames
to interpolate the random
camera positions.

RenderIntoFiles false Whether to also render
each frame into a TGA file.
Note that this option de-
creases performance dras-
tically.

RenderedFilesDirectory rendered Where to save the ren-
dered TGA images.

WindowStartMaximized false Whether to start the win-
dow maximized.

WindowStartFullscreen false Whether to start the win-
dow in fullscreen.

WindowWidth 800 The initial width of the
window.

WindowHeight 600 The initial height of the
window.

WindowTitle App The title of the window.
VulkanPrintQueueFamilies false Whether to print found

GPU queues.
Continued on the next page. . .
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Key Default

value
Description

MaxFramesInFLight 2 Maximum amount of sub-
mitted frames.

GPU -1 Which GPU to use when
there are multiple valid
ones. Setting this to -1
prompts the user on com-
mand line.

DoBackfaceCulling true Whether to do triangle
backface culling.

DoMeshFrustumCulling true Whether to do whole-mesh
frustum culling.

DrawColored true Whether to draw the
meshlets/meshes colored.
Draws grey when false.

ShadeFlat false Whether to shade the
mesh flat.

VisualizeNormals false Whether to render nor-
mals as color.

ViewAngle 45 The view angle of the pro-
jection.

NearPlane 0.01 Position of the near clip-
ping plane.

FarPlane 1000 Position of the far clipping
plane.

UseMeshShader true Whether to use mesh
shaders (but not LOD hi-
erarchy).

UseLodHierarchy true Whether to use mesh
shaders with LOD hierar-
chy.

ErrorThreshold 0 The error threshold for
node selection.

DoNodeFrustumCulling true Whether to do node frus-
tum culling.

DoTriangleBackfaceCulling true Whether to do triangle
backface culling in the
mesh shader.

LodMaxNodesInGroup 4 Maximum amount of
nodes in group.

Continued on the next page. . .
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....................................... A.2. Usage

Key Default
value

Description

LodMinNodesToProcess 8 Minimum amount of nodes
to continue processing.

LodRestartRandom false Whether to restart from
random point or continue
from last during adjacen-
cies.

LodSimplifySingleNodes false Whether to try to simplify
singular nodes.

ForceReserialization false Whether to enforce LOD
hierarchy preprocessing
(even when serialized lod
was found).

LogKeyStrokes false Whether to log every
keystroke to console.

LogMousePosition false Whether to log mouse
movement to console.

ComputeMeshletStats true Whether to compute mesh-
let stats.

OutputInfo true Whether to output info
level messages to console.

OutputStats false Whether to output statis-
tics to console when exit-
ting the Application.

OutputRuntimeHierarchyStats false Whether to collect run-
time hierarchy stats. This
decreases performance sig-
nificantly.

MouseSensitivity 0.01 Camera turning sensitiv-
ity.

MovementSpeed 0.8 Initial camera movement
speed.

ShowUi true Whether to show user in-
terface.

ShowDemoUi false Whether to show sample
ImGUI user interface win-
dow.

Model suzanne.obj Which mesh to load and
display.

Continued on the next page. . .
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A. Application installation and usage............................
Key Default

value
Description

ModelRotationSpeed 0 Speed of the model rota-
tion.

RotateByTimeDelta true Whether to multiply the
model rotation by time
delta.

ModelGridSize 1 How many models in a grid
(in horizontal axes) to ren-
der.

ModelGridSpacing 2 How far apart should the
models be in the grid.

CameraPosX 1.5 Initial camera position on
the X axis.

CameraPosY 1.5 Initial camera position on
the Y axis.

CameraPosZ 1.5 Initial camera position on
the Z axis.

ResourcesPath resources Path to OBJ files.
LoadNormals true Whether to load normals

from the OBJ.
LoadTextureCoordinates false Whether to load texture

coordinate from the OBJ.
NormalizeMeshSize true Whether to normalize the

size of the mesh into [-1, 1]
in all axes. Must be turned
on for the error threshold
to be consistent.
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Appendix B
Measured data

This appendix contains only raw data. Descriptions can be found in the main
text of the work.

Table B.1: Raw data from the first measurement (see Section 4.1)

First measurement

setup

time per
1000

frames
in sec.

1 - ssim
to

vertex
(×10−5)

flip error
to

vertex
(×10−5)

1 - ssim
to

prev. lod
(×10−5)

flip error
to

prev. lod
(×10−5)

armadillo
vertex 9.0193
lod_0 6.0663 0.00000 0.00000
lod_1 5.1959 0.00552 0.01344 0.00552 0.01344
lod_2 2.7031 0.06064 0.07501 0.05360 0.06157
lod_3 1.2130 0.31991 0.43242 0.25127 0.35741
lod_4 0.7129 1.00410 1.86105 0.82498 1.61180
lod_5 0.6974 1.15776 2.27487 0.17306 0.41936
lod_6 0.6841 1.15776 2.27487 0.00000 0.00000
lod_7 0.6870 1.15776 2.27487 0.00000 0.00000

bmw
vertex 6.4475
lod_0 6.7852 0.00000 0.00000
lod_1 5.3663 0.66854 0.59626 0.66854 0.59626
lod_2 3.5425 0.84324 0.78513 0.17452 0.25132
lod_3 2.1178 1.15698 0.90021 0.31842 0.34481
lod_4 1.7649 1.36513 1.36800 0.25123 0.45128
lod_5 1.7519 1.41562 1.82002 0.12265 0.55132
lod_6 1.7583 1.41562 1.82002 0.00000 0.00000
lod_7 1.7394 1.41562 1.82002 0.00000 0.00000

buddha
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B. Measured data....................................
First measurement (continued)

setup

time per
1000

frames
in sec.

1 - ssim
to

vertex
(×10−5)

flip error
to

vertex
(×10−5)

1 - ssim
to

prev. lod
(×10−5)

flip error
to

prev. lod
(×10−5)

vertex 19.5355
lod_0 17.6522 0.00000 0.00000
lod_1 11.8157 0.00216 0.00000 0.00219 0.00000
lod_2 6.4829 0.02601 0.02308 0.02421 0.02308
lod_3 3.8005 0.11017 0.19403 0.09422 0.17358
lod_4 2.9143 0.21291 0.26819 0.13701 0.12585
lod_5 2.9137 0.27365 0.52139 0.11480 0.26124
lod_6 2.8931 0.27365 0.52139 0.00000 0.00000
lod_7 2.8953 0.27365 0.52139 0.00000 0.00000

car
vertex 6.7681
lod_0 7.1542 0.00000 0.00000
lod_1 6.0975 0.00135 0.00000 0.00135 0.00000
lod_2 4.1288 0.03912 0.03814 0.03726 0.03814
lod_3 2.8755 0.23410 0.15504 0.21289 0.13347
lod_4 2.6018 0.42653 0.49279 0.24947 0.34437
lod_5 2.5692 0.52249 0.67167 0.11131 0.17888
lod_6 2.5768 0.52249 0.67167 0.00000 0.00000
lod_7 2.5750 0.52249 0.67167 0.00000 0.00000

church
vertex 60.6307
lod_0 42.4796 0.00000 0.00000
lod_1 33.4828 0.00784 0.03198 0.00784 0.03198
lod_2 17.5898 0.12181 0.36259 0.12738 0.39457
lod_3 9.4527 0.79530 2.18432 0.77432 2.07182
lod_4 7.5508 1.42559 3.68640 0.92848 2.31949
lod_5 7.5743 1.62493 4.21458 0.56162 1.22499
lod_6 7.5699 1.62493 4.21458 0.00000 0.00000
lod_7 7.5322 1.62493 4.21458 0.00000 0.00000

conference
vertex 4.2443
lod_0 4.9803 0.00089 0.00000
lod_1 2.4885 0.00785 0.00000 0.00696 0.00000
lod_2 2.0311 0.17729 0.00000 0.16971 0.00000
lod_3 1.9050 0.28577 0.03569 0.34180 0.03569
lod_4 1.9221 0.42412 0.07434 0.14304 0.03866
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.................................... B. Measured data

First measurement (continued)

setup

time per
1000

frames
in sec.

1 - ssim
to

vertex
(×10−5)

flip error
to

vertex
(×10−5)

1 - ssim
to

prev. lod
(×10−5)

flip error
to

prev. lod
(×10−5)

lod_5 1.8996 0.43162 0.07434 0.04214 0.00000
lod_6 1.9280 0.43162 0.07434 0.00000 0.00000
lod_7 1.9002 0.43162 0.07434 0.00000 0.00000

crown
vertex 70.6058
lod_0 78.1575 0.00018 0.00000
lod_1 40.9428 0.00126 0.00000 0.00111 0.00000
lod_2 21.5414 0.02585 0.03485 0.02518 0.03485
lod_3 14.9189 0.07755 0.07754 0.07109 0.08294
lod_4 14.5405 0.09990 0.19833 0.08806 0.20217
lod_5 14.4786 0.12294 0.31183 0.05491 0.13487
lod_6 14.4988 0.12294 0.31183 0.00000 0.00000
lod_7 14.7427 0.12294 0.31183 0.00000 0.00000

demogorgon
vertex 71.7990
lod_0 41.8420 0.00000 0.00000
lod_1 32.9122 0.00842 0.00000 0.00846 0.00000
lod_2 17.9013 0.04127 0.00786 0.03461 0.00786
lod_3 9.6451 0.17885 0.15903 0.15520 0.15177
lod_4 6.8726 0.44594 0.62335 0.38332 0.54841
lod_5 6.8545 0.49743 0.82735 0.14129 0.26581
lod_6 6.8060 0.49743 0.82735 0.00000 0.00000
lod_7 7.0497 0.49743 0.82735 0.00000 0.00000

destroyed-building
vertex 1.7673
lod_0 1.4684 0.00000 0.00000
lod_1 1.4814 0.00000 0.00000 0.00000 0.00000
lod_2 0.8618 0.13519 0.11007 0.13522 0.11007
lod_3 0.4160 0.39306 0.38836 0.38697 0.40542
lod_4 0.2700 0.93568 1.44103 0.82573 1.27198
lod_5 0.2844 1.03399 1.81769 0.30256 0.61165
lod_6 0.2681 1.03399 1.81769 0.00000 0.00000
lod_7 0.2841 1.03399 1.81769 0.00000 0.00000

dragon
vertex 16.0649
lod_0 14.4507 0.00000 0.00000
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B. Measured data....................................
First measurement (continued)

setup

time per
1000

frames
in sec.

1 - ssim
to

vertex
(×10−5)

flip error
to

vertex
(×10−5)

1 - ssim
to

prev. lod
(×10−5)

flip error
to

prev. lod
(×10−5)

lod_1 9.7756 0.00514 0.00000 0.00514 0.00000
lod_2 5.4401 0.04303 0.05303 0.04084 0.05303
lod_3 3.0585 0.22771 0.31724 0.18211 0.26636
lod_4 2.0615 0.52601 1.02078 0.35961 0.81614
lod_5 2.0400 0.64807 1.21765 0.12820 0.20359
lod_6 2.0381 0.63644 1.21765 0.01519 0.00000
lod_7 2.0337 0.63644 1.21765 0.00000 0.00000

fire-hydrant
vertex 43.5083
lod_0 51.8932 0.00001 0.00000
lod_1 29.9826 0.01586 0.00000 0.01584 0.00000
lod_2 17.1873 0.13999 0.06950 0.11191 0.06950
lod_3 9.7831 0.45013 0.36549 0.40540 0.37934
lod_4 8.9039 0.53999 0.51040 0.18559 0.22692
lod_5 8.8979 0.55364 0.53809 0.01564 0.04140
lod_6 8.9050 0.55364 0.53809 0.00000 0.00000
lod_7 8.9858 0.55364 0.53809 0.00000 0.00000

ggm11
vertex 217.1840
lod_0 256.8200 0.00055 0.00000
lod_1 129.9210 0.05301 0.01030 0.05348 0.01030
lod_2 77.7935 0.06725 0.02922 0.06866 0.01892
lod_3 51.2127 0.35439 0.13117 0.31037 0.10457
lod_4 49.3321 0.35128 0.13117 0.02225 0.00000
lod_5 49.4529 0.35128 0.13117 0.00000 0.00000
lod_6 49.3745 0.35128 0.13117 0.00000 0.00000
lod_7 49.4795 0.35128 0.13117 0.00000 0.00000

hairball
vertex 40.8569
lod_0 40.3641 0.00174 0.00000
lod_1 41.0625 0.00174 0.00000 0.00000 0.00000
lod_2 21.3512 0.53769 0.88797 0.53580 0.88797
lod_3 11.0209 2.50129 5.48866 2.33432 4.99302
lod_4 10.7799 3.44592 7.80369 1.17841 2.42404
lod_5 10.7057 3.43679 7.80369 0.02517 0.00000
lod_6 10.7883 3.43679 7.80369 0.00000 0.00000
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.................................... B. Measured data

First measurement (continued)

setup

time per
1000

frames
in sec.

1 - ssim
to

vertex
(×10−5)

flip error
to

vertex
(×10−5)

1 - ssim
to

prev. lod
(×10−5)

flip error
to

prev. lod
(×10−5)

lod_7 10.8221 3.43679 7.80369 0.00000 0.00000
helicopter

vertex 329.6850
lod_0 386.6950 0.00378 0.00000
lod_1 136.4950 0.00490 0.00855 0.00253 0.00855
lod_2 83.9002 0.01130 0.02321 0.01200 0.01465
lod_3 69.2237 0.02883 0.06057 0.01849 0.03736
lod_4 68.9055 0.03602 0.06057 0.00674 0.00000
lod_5 68.9250 0.03602 0.06057 0.00000 0.00000
lod_6 68.9293 0.03602 0.06057 0.00000 0.00000
lod_7 68.9244 0.03602 0.06057 0.00000 0.00000

massive-suzanne
vertex 292.7830
lod_0 277.7680 0.00013 0.00000
lod_1 91.7137 0.00020 0.00000 0.00007 0.00000
lod_2 61.2992 0.00639 0.01182 0.00619 0.01182
lod_3 56.7070 0.01608 0.04755 0.00969 0.03573
lod_4 55.9219 0.02361 0.06162 0.00810 0.01636
lod_5 55.9318 0.02361 0.06162 0.00000 0.00000
lod_6 55.9986 0.02361 0.06162 0.00000 0.00000
lod_7 55.9118 0.02361 0.06162 0.00000 0.00000

monument
vertex 101.2710
lod_0 118.2960 0.00000 0.00000
lod_1 70.4387 0.01039 0.00000 0.01037 0.00000
lod_2 40.4608 0.04706 0.01103 0.03400 0.01103
lod_3 23.0155 0.13918 0.05093 0.09677 0.03990
lod_4 20.7299 0.18185 0.07513 0.06253 0.02633
lod_5 20.8325 0.20105 0.10000 0.02682 0.02488
lod_6 20.7797 0.20105 0.10000 0.00000 0.00000
lod_7 20.8092 0.20105 0.10000 0.00000 0.00000

powerplant
vertex 163.5360
lod_0 364.9820 0.00000 0.00000
lod_1 242.0000 0.00490 0.01741 0.00490 0.01741
lod_2 221.0780 0.02507 0.03487 0.02028 0.01747
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B. Measured data....................................
First measurement (continued)

setup

time per
1000

frames
in sec.

1 - ssim
to

vertex
(×10−5)

flip error
to

vertex
(×10−5)

1 - ssim
to

prev. lod
(×10−5)

flip error
to

prev. lod
(×10−5)

lod_3 220.1250 0.11842 0.10763 0.10030 0.07367
lod_4 220.2540 0.19463 0.26941 0.08540 0.16554
lod_5 220.3270 0.19463 0.26941 0.00000 0.00000
lod_6 220.4010 0.19463 0.26941 0.00000 0.00000
lod_7 220.2900 0.19463 0.26941 0.00000 0.00000

roadbike
vertex 29.9004
lod_0 26.7265 0.00017 0.00000
lod_1 13.7705 0.00200 0.01440 0.00203 0.01440
lod_2 7.0151 0.04763 0.16805 0.04527 0.15365
lod_3 4.4898 0.19907 0.84412 0.16159 0.75523
lod_4 4.1400 0.67196 2.68623 0.50001 2.02395
lod_5 4.1571 0.82298 3.38420 0.20553 0.87591
lod_6 4.1635 0.82159 3.35801 0.01469 0.08440
lod_7 4.1615 0.82159 3.35801 0.00000 0.00000

sibenik
vertex 1.2862
lod_0 1.3150 0.00000 0.00000
lod_1 1.1721 0.00000 0.00000 0.00000 0.00000
lod_2 0.8472 0.08114 0.06137 0.08114 0.06137
lod_3 0.6495 0.14689 0.08690 0.08470 0.02552
lod_4 0.5894 0.40042 0.30018 0.32936 0.22584
lod_5 0.5988 0.40273 0.30684 0.01063 0.00881
lod_6 0.5829 0.40273 0.30684 0.00000 0.00000
lod_7 0.6041 0.40273 0.30684 0.00000 0.00000

sodahall
vertex 39.1147
lod_0 50.1412 0.00035 0.00000
lod_1 41.8677 0.00036 0.00000 0.00001 0.00000
lod_2 38.7508 0.01724 0.00831 0.01696 0.00831
lod_3 38.7845 0.10414 0.07593 0.09681 0.06762
lod_4 38.6787 0.53229 0.62805 0.48111 0.56874
lod_5 38.5816 0.68946 0.79393 0.19231 0.16587
lod_6 38.6244 0.68946 0.79393 0.00000 0.00000
lod_7 38.6493 0.68946 0.79393 0.00000 0.00000
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.................................... B. Measured data

Table B.2: Raw data from the second measurement (see Section 4.2)

Second measurement

setup

time per
1000

frames
in sec.

rendered
nodes

average

rendered
nodes

standard
deviation

rendered
triangles
average

rendered
triangles
standard
deviation

armadillo
nodes: 16 644, zero nodes: 4788, root nodes: 1160, root tris: 14 212

lod_0 0.1447 4788.00 0.00 345944.00 0.00
lod_1 0.1742 4788.04 1.00 345812.71 469.64
lod_2 0.1858 4726.10 63.84 297125.87 47214.91
lod_3 0.1441 4603.58 120.16 226878.90 61567.00
lod_4 0.1464 3423.31 591.18 111311.56 42959.50
lod_5 0.1460 2881.89 528.66 83235.09 30158.17
lod_6 0.1503 2002.97 341.03 41276.30 15037.04
lod_7 0.1524 1680.89 300.29 29135.95 11765.71
lod_8 0.1531 1236.60 149.62 15980.67 4278.05
lod_9 0.1542 1183.88 80.93 14743.24 2095.50
lod_10 0.1496 1160.79 8.27 14226.65 151.16
lod_11 0.1519 1160.08 1.29 14213.48 23.54

bmw
nodes: 18 354, zero nodes: 6665, root nodes: 2884, root tris: 46 316

lod_0 0.1573 6665.00 0.00 384893.00 0.00
lod_1 0.1432 6331.88 72.83 337302.86 19898.29
lod_2 0.1454 5991.64 187.55 255455.57 38939.32
lod_3 0.1488 5709.71 260.36 206756.23 44651.95
lod_4 0.1447 4654.57 478.40 124527.63 30639.97
lod_5 0.1506 4167.18 464.33 100191.65 23979.82
lod_6 0.1517 3301.14 312.90 62012.66 13515.87
lod_7 0.1520 3081.88 225.09 53330.69 9182.80
lod_8 0.1461 2900.05 59.41 46849.92 2117.95
lod_9 0.1538 2888.17 24.15 46449.14 792.91
lod_10 0.1483 2884.04 0.80 46317.42 24.99
lod_11 0.1516 2884.00 0.13 46316.10 3.29

buddha
nodes: 51 354, zero nodes: 14 749, root nodes: 3383, root tris: 37 845

lod_0 0.2983 14749.00 0.00 1087304.00 0.00
lod_1 0.2976 14610.68 117.59 1004540.31 79791.17
lod_2 0.2482 13276.61 1060.31 564677.71 177209.62
lod_3 0.2254 11357.11 1744.52 407745.51 156439.91
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B. Measured data....................................
Second measurement (continued)

setup

time per
1000

frames
in sec.

rendered
nodes

average

rendered
nodes

standard
deviation

rendered
triangles
average

rendered
triangles
standard
deviation

lod_4 0.1783 7426.63 1465.99 200983.64 69855.42
lod_5 0.1689 6362.01 1086.84 153588.38 48554.90
lod_6 0.1663 4652.40 667.49 76371.89 27701.20
lod_7 0.1488 4024.39 586.30 55583.72 20789.96
lod_8 0.1508 3433.29 196.59 39126.56 5411.04
lod_9 0.1492 3396.30 85.62 38156.82 2109.40
lod_10 0.1473 3383.03 0.78 37846.27 19.74
lod_11 0.1583 3383.00 0.00 37845.00 0.00

car
nodes: 18 839, zero nodes: 6726, root nodes: 3459, root tris: 70 024

lod_0 0.1970 6726.00 0.00 420643.00 0.00
lod_1 0.1617 6708.53 16.17 413640.85 6263.66
lod_2 0.1394 6621.40 67.21 317669.60 57082.51
lod_3 0.1510 6400.94 258.42 253665.53 58940.58
lod_4 0.1574 5082.72 562.03 153965.68 36101.35
lod_5 0.1487 4547.93 522.01 128323.15 26177.14
lod_6 0.1464 3762.01 270.61 87147.12 14620.23
lod_7 0.1552 3594.33 179.53 77344.75 10231.92
lod_8 0.1491 3468.16 40.56 70540.42 2355.33
lod_9 0.1433 3461.25 15.58 70144.14 865.67
lod_10 0.1522 3458.99 0.31 70024.70 11.26
lod_11 0.1552 3459.00 0.00 70024.00 0.00

church
nodes: 116 635, zero nodes: 34 538, root nodes: 7025, root tris: 86 547

lod_0 0.6602 34538.00 0.00 2470327.00 0.00
lod_1 0.6177 34530.85 14.90 2467423.16 6898.81
lod_2 0.5668 33758.81 627.02 1784388.62 474261.57
lod_3 0.4892 31587.48 2777.25 1336079.72 441805.40
lod_4 0.3263 19851.47 4574.53 598570.72 252539.36
lod_5 0.2925 16199.46 3765.06 429712.60 173548.57
lod_6 0.1958 10419.45 2133.13 184133.48 83385.43
lod_7 0.2019 8574.66 1740.01 127616.39 57757.30
lod_8 0.1682 7135.43 473.98 89142.88 12036.58
lod_9 0.1529 7049.19 172.76 87074.01 3937.30
lod_10 0.1576 7025.04 0.69 86547.55 11.60
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Second measurement (continued)

setup

time per
1000

frames
in sec.

rendered
nodes

average

rendered
nodes

standard
deviation

rendered
triangles
average

rendered
triangles
standard
deviation

lod_11 0.1785 7025.00 0.00 86547.00 0.00

conference
nodes: 10 778, zero nodes: 5512, root nodes: 2694, root tris: 81 637

lod_0 0.1659 5512.00 0.00 331179.00 0.00
lod_1 0.1606 3657.45 124.28 160286.71 13949.54
lod_2 0.1536 3119.76 216.15 114132.42 17855.14
lod_3 0.1569 2990.22 150.58 102161.47 13007.70
lod_4 0.1584 2800.17 69.55 86818.54 5127.90
lod_5 0.1540 2747.36 51.43 83933.18 3166.04
lod_6 0.1514 2699.42 15.78 81859.78 644.38
lod_7 0.1456 2695.45 7.35 81701.39 266.63
lod_8 0.1453 2694.01 0.39 81638.97 14.30
lod_9 0.1491 2694.00 0.09 81637.23 3.87
lod_10 0.1551 2694.00 0.00 81637.00 0.00
lod_11 0.1519 2694.00 0.00 81637.00 0.00

crown
nodes: 223 070, zero nodes: 70 972, root nodes: 12 781, root tris: 268 585

lod_0 1.1496 70972.00 0.00 4868924.00 0.00
lod_1 0.8906 65964.47 4005.84 2869391.21 639116.90
lod_2 0.6599 48454.35 7529.62 1586636.52 469804.37
lod_3 0.5697 40854.66 7307.73 1220503.28 367372.08
lod_4 0.3840 25077.72 6176.27 607714.43 221528.29
lod_5 0.3327 19540.56 5292.13 442661.56 165621.88
lod_6 0.2624 13675.95 1910.09 290768.16 49089.32
lod_7 0.2557 13091.09 924.43 276013.68 22446.11
lod_8 0.2568 12793.53 69.55 268890.13 1762.21
lod_9 0.2528 12783.58 20.61 268644.36 504.12
lod_10 0.2458 12781.00 0.03 268585.04 1.20
lod_11 0.2528 12781.00 0.00 268585.00 0.00

demogorgon
nodes: 117 236, zero nodes: 34 030, root nodes: 6160, root tris: 68 784

lod_0 0.6721 34030.00 0.00 2508606.00 0.00
lod_1 0.6183 34029.11 5.83 2508250.54 967.92
lod_2 0.5420 33058.29 813.93 1838307.76 516350.46
lod_3 0.5127 30964.56 2714.88 1373507.91 469492.32
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B. Measured data....................................
Second measurement (continued)

setup

time per
1000

frames
in sec.

rendered
nodes

average

rendered
nodes

standard
deviation

rendered
triangles
average

rendered
triangles
standard
deviation

lod_4 0.3221 20045.08 4185.99 621005.16 257185.90
lod_5 0.2695 16533.61 3575.55 454374.19 172481.62
lod_6 0.1926 10796.55 2178.94 200992.15 89267.49
lod_7 0.2025 8664.89 1988.24 131952.85 68000.51
lod_8 0.1502 6378.12 737.51 73637.04 18529.32
lod_9 0.1646 6218.92 326.86 69983.45 7302.92
lod_10 0.1490 6160.20 3.91 68787.59 74.22
lod_11 0.1699 6160.00 0.00 68784.00 0.00

destroyed-building
nodes: 4224, zero nodes: 1370, root nodes: 349, root tris: 5078

lod_0 0.1756 1370.00 0.00 89932.00 0.00
lod_1 0.1791 1370.00 0.00 89932.00 0.00
lod_2 0.1587 1368.61 1.79 89916.76 34.57
lod_3 0.1550 1367.77 3.26 89522.58 1102.66
lod_4 0.1522 1270.23 86.16 53736.60 17710.92
lod_5 0.1526 1071.01 192.16 38134.69 15664.33
lod_6 0.1480 622.83 166.50 16558.34 7713.10
lod_7 0.1607 502.80 124.12 11532.43 5119.22
lod_8 0.1512 366.06 43.15 5744.05 1816.91
lod_9 0.1476 354.20 22.29 5278.33 916.87
lod_10 0.1518 349.11 1.51 5081.47 54.93
lod_11 0.1495 349.00 0.09 5078.03 0.82

dragon
nodes: 41 069, zero nodes: 11 851, root nodes: 2640, root tris: 30 683

lod_0 0.2523 11851.00 0.00 871198.00 0.00
lod_1 0.2450 11831.60 51.06 838411.00 47569.55
lod_2 0.2022 10881.73 741.74 485461.14 148035.16
lod_3 0.1806 9442.88 1327.47 352241.52 133031.61
lod_4 0.1481 6338.63 1168.83 176177.41 60555.86
lod_5 0.1603 5451.94 896.26 134153.75 42307.97
lod_6 0.1460 3958.22 578.41 67858.99 23753.85
lod_7 0.1466 3376.12 539.04 49477.99 18186.62
lod_8 0.1536 2709.67 216.20 32302.52 5480.84
lod_9 0.1501 2659.87 102.89 31125.52 2403.86
lod_10 0.1496 2640.16 2.86 30686.46 58.49

66



.................................... B. Measured data

Second measurement (continued)

setup

time per
1000

frames
in sec.

rendered
nodes

average

rendered
nodes

standard
deviation

rendered
triangles
average

rendered
triangles
standard
deviation

lod_11 0.1477 2640.00 0.00 30683.00 0.00

fire-hydrant
nodes: 149 271, zero nodes: 42 254, root nodes: 8459, root tris: 92 609

lod_0 0.7737 42254.00 0.00 3043226.00 0.00
lod_1 0.7034 41355.38 679.67 2474445.50 371907.73
lod_2 0.5442 34842.64 3976.27 1329895.25 435672.49
lod_3 0.4367 29361.63 4940.64 974489.04 355622.78
lod_4 0.3187 19614.08 3574.49 483898.05 173362.64
lod_5 0.3013 16765.53 2876.89 351349.55 132078.19
lod_6 0.2371 10733.93 2277.96 147126.10 70455.96
lod_7 0.2025 9280.16 1584.87 111419.85 43523.96
lod_8 0.1921 8505.45 331.65 93566.37 7424.95
lod_9 0.2000 8468.01 107.21 92780.50 2148.17
lod_10 0.1882 8459.00 0.00 92609.00 0.00
lod_11 0.1875 8459.00 0.00 92609.00 0.00

ggm11
nodes: 771 023, zero nodes: 222 694, root nodes: 48 758, root tris: 545 820

lod_0 3.3159 222694.00 0.00 15373918.00 0.00
lod_1 2.6453 213433.04 7907.86 9697086.13 2727190.44
lod_2 1.8558 154654.35 27764.94 4776824.29 1831579.89
lod_3 1.5904 129309.24 24768.82 3561377.52 1266045.15
lod_4 1.1250 89717.54 14711.27 1802713.23 625672.84
lod_5 0.9589 76079.88 12872.71 1292590.00 493231.63
lod_6 0.7082 53522.60 7585.44 653959.82 206356.28
lod_7 0.6812 50309.20 4408.07 579725.69 108583.71
lod_8 0.6633 48813.48 498.76 546879.34 9953.36
lod_9 0.6759 48763.94 90.22 545927.60 1647.69
lod_10 0.6589 48758.00 0.00 545820.00 0.00
lod_11 0.6511 48758.00 0.00 545820.00 0.00

hairball
nodes: 90 997, zero nodes: 29 747, root nodes: 13 233, root tris: 246 410

lod_0 0.6499 29747.00 0.00 2850000.00 0.00
lod_1 0.6001 29747.00 0.00 2850000.00 0.00
lod_2 0.5977 29748.40 1.50 2844681.07 7873.94
lod_3 0.5942 29693.94 246.98 2817778.54 55567.67
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B. Measured data....................................
Second measurement (continued)

setup

time per
1000

frames
in sec.

rendered
nodes

average

rendered
nodes

standard
deviation

rendered
triangles
average

rendered
triangles
standard
deviation

lod_4 0.4150 23268.88 3483.40 1549079.77 657627.50
lod_5 0.3011 19162.90 3771.14 885530.60 624610.58
lod_6 0.2052 13912.26 1778.93 298009.74 203074.10
lod_7 0.1985 13431.14 901.26 259920.31 88648.27
lod_8 0.1885 13235.99 54.36 246451.99 939.75
lod_9 0.1881 13233.00 0.03 246410.01 0.38
lod_10 0.1937 13233.00 0.00 246410.00 0.00
lod_11 0.1932 13233.00 0.00 246410.00 0.00

helicopter
nodes: 1 165 470, zero nodes: 324 342, root nodes: 66 458, root tris: 675 594

lod_0 4.8363 324342.00 0.00 23454798.00 0.00
lod_1 2.7292 229055.10 39202.85 7683371.31 3206091.57
lod_2 1.8838 154028.07 27040.70 3719334.80 1335829.59
lod_3 1.6661 133589.75 20571.70 2792288.45 927318.16
lod_4 1.1813 92968.73 15726.49 1322715.18 517591.87
lod_5 1.0284 79508.32 13028.23 968290.32 367365.34
lod_6 0.8877 67545.76 3932.09 697637.06 87567.71
lod_7 0.8839 66739.42 1641.35 680996.70 33612.43
lod_8 0.8952 66460.17 39.37 675632.88 684.63
lod_9 0.8863 66458.02 0.51 675594.59 18.52
lod_10 0.8713 66458.00 0.00 675594.00 0.00
lod_11 0.8858 66458.00 0.00 675594.00 0.00

massive-suzanne
nodes: 836 677, zero nodes: 228 097, root nodes: 56 743, root tris: 592 066

lod_0 3.4463 228097.00 0.00 16121856.00 0.00
lod_1 1.5813 128402.09 16066.02 3268756.76 809392.91
lod_2 1.2620 101804.07 10377.03 1964077.75 488453.77
lod_3 1.1300 90158.50 10839.95 1507807.87 432898.34
lod_4 0.8460 66357.82 8632.22 806018.07 239371.34
lod_5 0.7783 60866.69 5962.72 678238.50 148060.27
lod_6 0.7266 57034.33 1235.14 597573.45 25424.07
lod_7 0.7318 56812.77 445.18 593322.38 8470.28
lod_8 0.7409 56743.66 9.39 592077.05 152.90
lod_9 0.7189 56743.02 0.50 592066.38 8.66
lod_10 0.7460 56743.00 0.00 592066.00 0.00
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Second measurement (continued)

setup

time per
1000

frames
in sec.

rendered
nodes

average

rendered
nodes

standard
deviation

rendered
triangles
average

rendered
triangles
standard
deviation

lod_11 0.7362 56743.00 0.00 592066.00 0.00

monument
nodes: 355 297, zero nodes: 99 369, root nodes: 19 762, root tris: 211 371

lod_0 1.6911 99369.00 0.00 7177016.00 0.00
lod_1 1.4532 98472.53 1074.06 6138919.21 1041895.17
lod_2 1.0840 82957.17 10325.26 3118677.30 1150943.70
lod_3 0.9125 69503.76 12225.18 2254294.69 881850.44
lod_4 0.6357 46186.18 8456.14 1104103.12 397045.56
lod_5 0.5721 39246.27 6839.68 791258.26 304314.34
lod_6 0.3704 24870.85 5301.60 327730.94 155250.00
lod_7 0.3325 21622.95 3599.67 251794.42 92444.57
lod_8 0.3450 19856.22 630.46 213167.88 12708.11
lod_9 0.3215 19776.71 165.01 211635.37 3002.62
lod_10 0.3382 19762.00 0.00 211371.00 0.00
lod_11 0.3292 19762.00 0.00 211371.00 0.00

powerplant
nodes: 1 607 432, zero nodes: 909 810, root nodes: 429 813, root tris: 2 656 012
lod_0 6.0371 909810.00 0.00 12758950.00 0.00
lod_1 4.4721 682073.48 72214.89 7312419.90 2053774.92
lod_2 3.2124 503511.61 67834.84 3649797.84 1291875.15
lod_3 2.9515 461691.05 46185.38 3044410.28 748005.97
lod_4 2.7428 433831.62 9302.33 2706464.75 109821.78
lod_5 2.7565 431383.57 3001.04 2677312.60 29106.60
lod_6 2.7577 429918.65 384.44 2657663.47 5853.12
lod_7 2.7229 429840.98 172.52 2656476.88 2716.38
lod_8 2.7298 429813.23 2.13 2656018.23 33.19
lod_9 2.7390 429813.02 0.19 2656013.42 8.80
lod_10 2.7440 429813.00 0.00 2656012.00 0.00
lod_11 2.7386 429813.00 0.00 2656012.00 0.00

roadbike
nodes: 76 952, zero nodes: 25 359, root nodes: 3272, root tris: 73 011

lod_0 0.4147 25359.00 0.00 1676776.00 0.00
lod_1 0.3562 21571.24 1650.96 804733.98 143176.00
lod_2 0.2628 16366.03 2239.93 510620.20 113215.98
lod_3 0.2321 13830.84 2391.60 404060.57 102147.96
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B. Measured data....................................
Second measurement (continued)

setup

time per
1000

frames
in sec.

rendered
nodes

average

rendered
nodes

standard
deviation

rendered
triangles
average

rendered
triangles
standard
deviation

lod_4 0.1908 7920.68 2274.36 207476.55 72293.09
lod_5 0.1684 6152.44 1783.99 153715.81 54738.32
lod_6 0.1553 3986.48 733.12 90001.54 21201.44
lod_7 0.1589 3615.48 432.42 80337.50 11987.59
lod_8 0.1511 3304.14 98.26 73572.52 2153.14
lod_9 0.1581 3281.15 42.70 73157.82 794.66
lod_10 0.1612 3272.19 2.69 73013.24 33.61
lod_11 0.1539 3272.00 0.06 73011.02 0.51

sibenik
nodes: 3648, zero nodes: 1620, root nodes: 969, root tris: 19 671

lod_0 0.1689 1620.00 0.00 80125.00 0.00
lod_1 0.1671 1605.17 4.16 78765.64 412.54
lod_2 0.1653 1516.14 44.61 72001.16 3188.53
lod_3 0.1529 1464.95 52.34 67216.88 5242.36
lod_4 0.1489 1338.91 47.51 44499.24 9216.34
lod_5 0.1492 1268.34 74.67 37162.99 7600.49
lod_6 0.1532 1049.66 76.37 25703.41 3962.06
lod_7 0.1478 1006.87 52.51 22745.59 2949.95
lod_8 0.1502 970.99 10.19 19958.26 879.36
lod_9 0.1617 969.52 4.37 19748.06 374.82
lod_10 0.1529 968.99 0.23 19671.93 14.04
lod_11 0.1464 969.00 0.00 19671.00 0.00

sodahall
nodes: 117 038, zero nodes: 77 214, root nodes: 60 056, root tris: 993 222

lod_0 0.7230 77214.00 0.00 2169132.00 0.00
lod_1 0.6687 72216.13 1603.84 1671994.86 192228.17
lod_2 0.6321 66808.18 2368.54 1294539.10 144331.09
lod_3 0.6108 64407.04 2265.75 1182307.12 112003.39
lod_4 0.5635 61167.68 1066.50 1041856.98 45243.89
lod_5 0.5540 60748.85 590.53 1023120.60 25017.09
lod_6 0.5534 60323.59 138.75 1003236.67 5999.13
lod_7 0.5604 60198.05 116.92 998905.58 4335.71
lod_8 0.5693 60068.60 42.56 993812.61 1595.05
lod_9 0.5646 60059.58 20.22 993396.04 803.85
lod_10 0.5557 60056.04 0.60 993224.92 39.76
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.................................... B. Measured data

lod_11 0.5589 60056.00 0.06 993222.38 5.93

71



B. Measured data....................................
Table B.3: Raw data from measurement of hierarchy build times (see Section 4.3)

Hierarchy build times
mesh build time in sec.

armadillo 3.279
bmw 3.766
buddha 11.746
car 3.953
church 27.064
conference 1.789
crown 71.844
demogorgon 27.080
destroyed-building 0.579
dragon 7.910
fire-hydrant 45.040
ggm11 582.783
hairball 25.872
helicopter 4440.857
massive-suzanne 794.357
monument 141.453
powerplant 2770.908
roadbike 14.505
sibenik 0.542
sodahall 27.461
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