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Abstrakt / Abstract

Cílem této práce je generování ná-
hledů 3D tištěných objektů z instrukcí
pro 3D tiskárnu zvaných G-code pomocí
ray tracingu. Je zde popsán problém
převodu instrukcí G-code na geomet-
rickou reprezentaci tisknutého modelu.
Dále jsou diskutovány problémy vy-
kreslování geometrikcé remprezentace
generované z G-code instrukcí použitím
ray tracingu na CPU s naměřenými daty
o odrazivosti materiálů používaných 3D
tiskárnou pro dosažení photo-realismu

This thesis focuses on rendering im-
ages using ray tracing technique from
instructions for a 3D printed called
G-code. Problem of converting G-code
instructions into geometrical representa-
tion of a 3D printed part.This thesis also
discusses the problem of rendering the
geometrical representation generated
from G-code using CPU and utilizing
measured reflectance data of materials
used by a 3D printer in the rendering
process to achieve photo-realistic results

iv



Contents /

1 Introduction 1
1.1 goals . . . . . . . . . . . . . . . . 1

2 3D Printing 2
2.1 Fused Deposition Modeling

3D Printing . . . . . . . . . . . . 2
2.2 Types of 3D printer move-

ment systems . . . . . . . . . . . 3
2.3 Industrial and desktop

FDM 3D printers . . . . . . . . . 3
2.4 Infill . . . . . . . . . . . . . . . . 4
2.5 Overhangs and supports . . . . . 5
2.6 Multi-Material FDM 3D

printing . . . . . . . . . . . . . . 6
2.6.1 Single extruder . . . . . . . . 6
2.6.2 Multi extruder . . . . . . . . 6

2.7 Filament Materials . . . . . . . . 6
2.7.1 Commonly used . . . . . . . 6
2.7.2 Flexible . . . . . . . . . . . . 7
2.7.3 Soluble . . . . . . . . . . . . 7
2.7.4 High performance . . . . . . 7

3 G-code 8
3.1 G-code for FDM 3D printing . . 8
3.2 Syntax . . . . . . . . . . . . . . 8
3.3 Most used instructions in

FDM 3D printing . . . . . . . . . 9
3.3.1 G28 - perform homing

routine . . . . . . . . . . . . 9
3.3.2 G1 - linear movement . . . . 9
3.3.3 G28 - Move to Origin

(Home) . . . . . . . . . . . . 9
3.3.4 M104 and M109 - ex-

truder heating commands . . 9
3.3.5 M140 and M190 - bed

heating commands . . . . . . 9
3.3.6 M106 - set fan speed . . . . . 9

4 Slicer 10
4.1 input files . . . . . . . . . . . . 10
4.2 Commonly used standard-

ised 3D model formats . . . . . 11
4.2.1 .stl format . . . . . . . . . 11
4.2.2 .obj format . . . . . . . . . 11
4.2.3 .3mf format . . . . . . . . . 11

4.3 3D Print Preview . . . . . . . . 11
4.4 3D Geometry from G-code . . . 13

4.4.1 Geometry from point
cloud . . . . . . . . . . . . 13

4.4.2 Geometry from extrud-
er trajectory . . . . . . . . 13

5 Geometry from lines 15
5.1 Tessellation . . . . . . . . . . . 17

6 Raytracing 18
6.1 Simple ray tracing . . . . . . . 19
6.2 Improving image quality . . . . 19
6.3 Bounding Volume Hierar-

chy tree . . . . . . . . . . . . . 19
6.4 Ray tracing library . . . . . . . 20
6.5 Intel OSPRay . . . . . . . . . . 20

6.5.1 Renderer . . . . . . . . . . 21
6.6 NanoRT . . . . . . . . . . . . . 21

6.6.1 Custom primitive . . . . . 21
7 Extrusion primitive 22

7.1 Data . . . . . . . . . . . . . . . 22
7.2 Predicate . . . . . . . . . . . . 22
7.3 Bounding box . . . . . . . . . . 23
7.4 Ray intersector . . . . . . . . . 23
7.5 Cylinder intersection . . . . . . 24
7.6 Flat top/bottom intersection . 25
7.7 Intersection without caps . . . 25
7.8 Cap intersection . . . . . . . . 25
7.9 Intersection data . . . . . . . . 26

8 Measuring reflection data 27
8.1 Bidirectional Reflectance

Distribution Function . . . . . 27
8.2 Mini-Diff V2 . . . . . . . . . . 28
8.3 Textures from measured

BRDF data . . . . . . . . . . . 31
8.4 Measured textures in NanoRT . 31

8.4.1 Direct lighting . . . . . . . 32
8.4.2 Environment mapping . . . 33

9 Results 36
9.1 Division of long segments . . . 38
9.2 Photo comparison . . . . . . . 46
10 Conclusions 54

References 55

A Used files 59

B source folder structure 60

v



/ Figures

2.1 CostPerPart . . . . . . . . . . . . . . . . . . . . . .2
2.2 FDMschemati . . . . . . . . . . . . . . . . . . . .3
2.3 3DprinterTypes . . . . . . . . . . . . . . . . . .3
2.4 PrusaMK4S . . . . . . . . . . . . . . . . . . . . . .4
2.5 Fortus450mc . . . . . . . . . . . . . . . . . . . . . .4
2.6 infill_grid_15 . . . . . . . . . . . . . . . . . . . .4
2.7 infill_grid_30 . . . . . . . . . . . . . . . . . . . .4
2.8 infill_honeycomb_15 . . . . . . . . . . . .5
2.9 infill_honeycomb_30 . . . . . . . . . . . .5

2.10 Overhangs . . . . . . . . . . . . . . . . . . . . . . . .5
4.1 PrusaSlicer . . . . . . . . . . . . . . . . . . . . . 10
4.2 CuraSlicer . . . . . . . . . . . . . . . . . . . . . . 10
4.3 prusaSlicer_mid . . . . . . . . . . . . . . . . 11
4.4 prusaSlicer_top . . . . . . . . . . . . . . . . 11
4.5 gcode_analyzer. . . . . . . . . . . . . . . . . 11
4.6 PrusaSlicerMesh. . . . . . . . . . . . . . . . 12
4.7 Blender EEVVEE small . . . . . . . 12
4.8 Blender EEVVEE medium . . . . 12
4.9 Blender EEVVEE large . . . . . . . . 12

4.10 Blender cycles small. . . . . . . . . . . . 13
4.11 Blender cycles medium . . . . . . . . 13
4.12 Blender cycles large . . . . . . . . . . . . 13
4.13 Fusion360_small . . . . . . . . . . . . . . . 13
4.14 Fusion360_medium . . . . . . . . . . . . 13
4.15 Fusion360_large . . . . . . . . . . . . . . . . 13
4.16 LineGenerator . . . . . . . . . . . . . . . . . . 14

5.1 Extruded_cross_section . . . . . . . 15
5.2 simplePtimitive. . . . . . . . . . . . . . . . . 16
5.3 Extruded_primitive . . . . . . . . . . . . 16
5.4 Tessellation . . . . . . . . . . . . . . . . . . . . . 17
5.5 Tessellation_approx. . . . . . . . . . . . 17
6.1 RayTracingScheme . . . . . . . . . . . . . 18
6.2 BVHdiagram . . . . . . . . . . . . . . . . . . . 20
7.1 Extruded_primitive2 . . . . . . . . . . 22
7.2 splitPrimitive . . . . . . . . . . . . . . . . . . . 24
8.1 brdf_diagram . . . . . . . . . . . . . . . . . . 27
8.2 minidiff_diagram. . . . . . . . . . . . . . . 28
8.3 calibration_samples . . . . . . . . . . . . 29
8.4 measured_samples . . . . . . . . . . . . . 29
8.5 minidiff_preview_3D . . . . . . . . . . 30
8.6 minidiff_preview_2D . . . . . . . . . . 30
8.7 green_texture . . . . . . . . . . . . . . . . . . 31
8.8 3Dtexture . . . . . . . . . . . . . . . . . . . . . . . 32
8.9 benchy_indirect . . . . . . . . . . . . . . . . 33

8.10 enviroment_map . . . . . . . . . . . . . . . 33
8.11 envMapSample . . . . . . . . . . . . . . . . . 34

vi



8.12 benchy_mapping . . . . . . . . . . . . . . . 35
9.1 aoShader . . . . . . . . . . . . . . . . . . . . . . . . 36
9.2 benchyAO . . . . . . . . . . . . . . . . . . . . . . 37
9.3 stanfAO. . . . . . . . . . . . . . . . . . . . . . . . . 37
9.4 raccoonAO. . . . . . . . . . . . . . . . . . . . . . 38
9.5 benchy_renderers . . . . . . . . . . . . . . 39
9.6 StanfordDragon_renderers . . . . 39
9.7 RacoonBig_renderers . . . . . . . . . . 40
9.8 benchy_build. . . . . . . . . . . . . . . . . . . 40
9.9 StanfordDragon_build . . . . . . . . . 41

9.10 RacoonBig_build . . . . . . . . . . . . . . 41
9.11 benchy_total . . . . . . . . . . . . . . . . . . . 42
9.12 StanfordDragon_total . . . . . . . . . 42
9.13 RacoonBig_total . . . . . . . . . . . . . . . 43
9.14 RacoonBig_total_zoom . . . . . . . 43
9.15 BenchyRes . . . . . . . . . . . . . . . . . . . . . . 44
9.16 spiral_egg . . . . . . . . . . . . . . . . . . . . . . 44
9.17 spiral_vase . . . . . . . . . . . . . . . . . . . . . 44
9.18 nasafab_res . . . . . . . . . . . . . . . . . . . . 44
9.19 stanfor_res . . . . . . . . . . . . . . . . . . . . . 44
9.20 bunny_res . . . . . . . . . . . . . . . . . . . . . . 44
9.21 rocket_res . . . . . . . . . . . . . . . . . . . . . . 45
9.22 cat_res . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.23 babyDragonRes . . . . . . . . . . . . . . . . 45
9.24 maoiFaceRes. . . . . . . . . . . . . . . . . . . . 45
9.25 owl_res . . . . . . . . . . . . . . . . . . . . . . . . . 45
9.26 raccoon_res . . . . . . . . . . . . . . . . . . . . 45
9.27 bunny_real0 . . . . . . . . . . . . . . . . . . . . 46
9.28 bunny_fake0 . . . . . . . . . . . . . . . . . . . 46
9.29 bunny_real25 . . . . . . . . . . . . . . . . . . 47
9.30 bunny_fake25 . . . . . . . . . . . . . . . . . . 47
9.31 bunny_real75 . . . . . . . . . . . . . . . . . . 47
9.32 bunny_fake50 . . . . . . . . . . . . . . . . . . 48
9.33 bunny_real00 . . . . . . . . . . . . . . . . . . 48
9.34 bunny_fakel00 . . . . . . . . . . . . . . . . . 49
9.35 cat_fake0 . . . . . . . . . . . . . . . . . . . . . . . 49
9.36 cat_real0 . . . . . . . . . . . . . . . . . . . . . . . 50
9.37 cat_fake25. . . . . . . . . . . . . . . . . . . . . . 50
9.38 cat_real25 . . . . . . . . . . . . . . . . . . . . . . 51
9.39 cat_fake50. . . . . . . . . . . . . . . . . . . . . . 51
9.40 cat_real50 . . . . . . . . . . . . . . . . . . . . . . 52
9.41 cat_fake100 . . . . . . . . . . . . . . . . . . . . 52
9.42 cat_real100 . . . . . . . . . . . . . . . . . . . . . 53

vii





Chapter 1
Introduction

3D printing is a widely spread additive manufacturing process used in both fast proto-
typing and production. To create a 3D printed object, instruction for the 3D printer
are needed. Those instructions are called G-code. Each line of G-code describes single
elementary action that the 3D printer in succession reads and performs. This results in
long and not very readable files. Finding errors in these files directly is very difficult.
To solve this problem, software generating previews of the 3D printed part exists. The
generated previews offer higher readability thanks to color coding and the possibility to
see how the creation of 3D printed part progresses through the process. This previews
are rendered using simplified graphics, rendering images in real time.

However, some applications may require photo-realistic previews of the 3D printed
part. Previewing the final look of a 3D printed object in photo-realistic detail can
be achieved by exporting the geometry and using different physically based rendering
software. This software commonly requires graphical accelerator which are not available
on every computational device.

1.1 goals
First goal of this thesis is to parse G-code program which was generated for a 3D printer
by a slicer software. Evaluate the parsed G-code using a simulation. The simulation
should examine relevant G-code commands and predict behaviour of the 3D printer.
Based on the prediction of behaviour the simulation should approximate the result of the
3D printing process with a geometrical representation. This geometrical representation
of the 3D printed object can be used to render a preview.

Second goal of this thesis to create renderer that uses ray tracing technique to gen-
erate the previews. Ray tracing generates images by casting rays into a scene and
collecting color information based on what objects they hit. During traversal of the
scene rays are accumulating color information resulting in rendered image. The ren-
derer should be run on CPU and the renderer should use the geometric representation
generated by our simulation of the 3D printing process.

Third goal is to measure reflectance of some materials used by a 3D printer using
a scatterometer and to use this data to increase photo-realism of resulting images.
Reflectance describes how light interacts with a material based in angle of incidence at
which the light hits the object and at what viewing angle are we observing.

1



Chapter 2
3D Printing

3D printing is an additive manufacturing process, in this process material is deposited in
layers in order to create the final object. To use 3D printers, a virtual model is required
which is then converted to information about layers which the 3D printer reads and
according to them deposits material. This manufacturing method has low startup time
and costs compared to subtractive or formative manufacturing. In subtractive manufac-
turing a chunk of material is cut until desired geometry is reached. This wastes material
and the cutting tool must reach all positions where cutting is needed, which may result
in the need of a machine capable of movement along more axes, adding complexity,
time and cost. Formative manufacturing such as injection molding or stamping creates
objects by forming or molding material into the final geometry. It requires creation of
molds or dies in order to produce parts, the production can be faster and cheaper, but
creating molds or dies increases startup costs and time, as can be seen in figure 2.1.
The ability of 3D printers to create complex geometries with low startup costs, quickly
producing little waste is ideal for low volume production or prototyping [1].

Figure 2.1. Rough approximation of cost per part. Image taken from [1]

2.1 Fused Deposition Modeling 3D Printing

Fused Deposition Modeling 3D printing (FDM 3D printing), also known as fused fila-
ment fabrication 3D printing (FFF 3D printing), is a process where material is deposited
through a nozzle onto a printing platform. The material is deposited layer by layer cre-
ating the final 3D object. The FDM principle is depicted in figure 2.2. The material
used is mainly different types of thermoplastics in the form of thin spooled cord called
filament. The filament is pushed into part of the printer called extruder by an external
motor or pulled in directly by the extruder. In the extruder, the material is heated
up and deposited through a thin nozzle onto the printing platform (also referred to
as the bed) of the printer or onto previously deposited layers where it is cooled and

2
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solidifies. The extruder is moved using the 3D printer’s motion system which can come
in different types [2].

Figure 2.2. FDM 3D printer diagram. [3]

2.2 Types of 3D printer movement systems
There are 3 main types of 3D printer movement systems, as depicted in figure 2.3.
Cartesian is the most common system where the extruder moves along three linear
mutually perpendicular axes. There are also systems where the printer platform moves
along the z axis and the extruder only moves in the x/y plane. The Delta movement
system uses three independently controlled vertical rails with rigid rods linked to the
extruder to move it. Lastly the least common movement system is the Polar system,
where the extruder moves along two linear perpendicular axes and deposits material
onto a printer platform that spins around its center [2].

Figure 2.3. Types of FDM 3D printer. [4]

2.3 Industrial and desktop FDM 3D printers
FDM 3D printers can be assigned to two categories based on the scale of production,
prototyping (desktop) and industrial (professional) respectively shown in figures 2.4 and
2.5. Industrial FDM 3D printers are more expensive but offer higher efficiency, speed,
the ability to print materials requiring higher temperatures and the ability to print
using multiple different materials at once to create an 3D object, they are designed for
repeatability and reliability. Desktop FDM 3D printers require more user maintenance
and calibration and may not be able to print some materials [5].
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Figure 2.4. Desktop 3D printer
Original Prusa MK4S. Image

taken from [6].

Figure 2.5. Industial 3D printer
Fortus 450mc. Image taken from

[7].

2.4 Infill

Thanks to incremental layering of material, it is possible to create internal structures
inside the printed object. If there is no need for the inside of an object to be solid,
there is a possibility to fill the inside with hollow structures called infill. This makes the
object lighter and saves material, however it can also decrease its rigidity compared to
a solid object. Density and pattern of infill can be adjusted based on the requirements
[8]. Examples of different infill patterns with different infill ratio percentages are shown
in firures 2.6 to 2.9. The ratio states how much of the internal volume is occupied by
the generated infill structure.

Figure 2.6. Grid pattern infill with
15% ratio.

Figure 2.7. Grid pattern infill with
30% ratio.
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Figure 2.8. Honeycomb pattern infill
with 15% ratio.

Figure 2.9. Honeycomb pattern infill
with 30% ratio.

2.5 Overhangs and supports

In the 3D printing process layers are gradually stacked on top of each other and when
the material is extruded without a solid base underneath it can drop down due to
gravity before completely cooling and solidifying. Next layers will also be impacted
due to the lowered position of the previous layer. This occurs when the material is not
extruded directly above the previous layer, it can be seen in figure 2.10. Part of the
layer that is not above the previous layer is called overhang.

Figure 2.10. Overhangs in 3D printing process.

If overhangs are too large, support structure to provide a solid base for the viscous
material to deposit onto is needed. This structure is printed along with the printed
object and needs to be removed afterwards [9].
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2.6 Multi-Material FDM 3D printing

Some FDM 3D printers support printing using multiple materials. That allows com-
bining properties of different materials for mechanical parts, printing of multicolored
objects or for easier support structure removal with soluble materials. Multi-material
printing increases complexity for preparation of the 3D print and for the printing pro-
cess itself where change of material may be performed multiple times each layer, where
each material may require different settings of the printer [10]. We will describe two
ways of printing with multiple materials, single exturder changing material and multiple
extruders each with its assigned material.

2.6.1 Single extruder

If a 3D printer supports multi-material printing and has only one extruder, the filament
is pulled from the extruder and swapped for a different one which is then inserted into
the extruder. After new material is inserted it is mixed with some melted residue from
the previous material inside the extruder, because of that material needs to be purged
before continuing printing or some part of the model will be made from a mix of two
materials [10].

2.6.2 Multi extruder

Problem of a single extruder needing to purge material can be solved by using a 3D
printer with multiple extruders, where each material is assigned to a single nozzle. This
generally increases the cost and complexity of the machine. Some 3D printers have
multiple extruders on a single axis. Another possibility is that the moving mechanism
of a 3D printer changes which extruder is attached to it during the printing process
[10].

2.7 Filament Materials

FDM 3D printers can use multiple materials of filament, but not every 3D printer can
use every material. Some materials require higher temperature inside the extruder,
usually between 180-250°C. Some materials need slower printing, different nozzles or to
be printed in heated space to prevent warping or cracking that can occure due to stresses
induced by faster cooling and shrinking of higher layers that are more distant from
heated 3D printer platform. Materials have different mechanical properties, hardness,
stiffness, adhesion between layers and more.

2.7.1 Commonly used

Most materials for FDM 3D printing result in rigid objects. Most common are PLA,
PETG and ABS. PLA is easy to use material compatible with most 3D printers, it has
low printing temperature, usually does not warp or crack without heated chamber but
it is less durable than ABS and PETG. PETG is sturdy with a smooth surface, but
more hygroscopic. That means it absorbs more moisture from air and the result of wet
materials can be worse surface finish of printed objects and worse adhesion between
layers [11]. ABS is hard material but it is more prone to warping if it is not printed in
a heated chamber [12].
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2.7.2 Flexible
Flexible materials are made from TPEs (thermoplastic elastomers) which is a blend of
plastic and rubber. These materials are difficult to print and require good control of
the printing process. TPU (thermoplastic polyurethane) and TPC (thermoplastic co-
polyester) are common materials that fall under TPEs. TPUs materials are generally
more durable and can offer high resistance to abrasion, oils, chemicals and high and
low temperatures. TPC materials offer high-temperature and UV resistance [12].

2.7.3 Soluble
Some materials can be dissolved using some solution, this is useful for support structures
that can be dissolved instead of removal using abrasives and cutting tools. HIPS (High
impact polystyrene) is tough and flexible material, it is easily machined and painted
and can be dissolved using limonene solution. Other soluble material is PVA (Polyvinyl
alcohol), it is soluble in water which allows use of soluble support structures, but it
needs to be stored in a dry environment or the moisture in the air can damage it. PVB
(polyvinyl butyral) has similar properties to PLA and can be smoothed using Isopropyl
Alcohol vapors [12].

2.7.4 High performance
High performance materials such as PEEK (Polyaryletherketone) or PEI (Polyetherim-
ide) offer higher strength to weight ratio, heat and chemical resistance, lower flamma-
bility compared to other cheaper materials. Disadvantages are higher cost and more
difficult printing process that may need 3D printer with more capabilities (higher print-
ing temperature, heated chamber) [12]
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Chapter 3
G-code

Geometric code (G-code) [13]) is a simple programming language that does not require
complex logic used for computer numerical control machining (CNC) which refers to
computerized operation of machining tools used in manufacturing. G-code consists of
instructions that the microcontroller in the CNC machine can read, interpret and then
pass it to relevant machine part. G-code works in combination with machine code (M-
code). G-code controls functions related to movement of machine parts and M-code
controls functions related to other functions of the machine, for example instructions
to pause the program, coolant flow or controlling heating elements. Different manufac-
turers may customize the format of the G-code or implement only some instructions
[14].

3.1 G-code for FDM 3D printing
FDM 3D printers are also CNC machines and use G-code to control the machining
process. A G-code program for a 3D printer can be generated using a lower level
library like Mecode [15] where every action is coded in a different programming language
(Python) and then translated into G-code and exported. More common practice is
generating G-code using specialized software dedicated to generating instructions for
3D printer from virtual 3D model [16–17]. Example of Mecode:

from mecode import G
g = G()
g.move(10, 10) # move 10mm in x and 10mm in y
g.arc(x=10, y=5, radius=20, direction='CCW') # counterclockwise arc with

a radius of 5
g.meander(5, 10, spacing=1) # trace a rectangle meander with 1mm spacing

between passes
g.abs_move(x=1, y=1) # move the tool head to position (1, 1)
g.home() # move the tool head to the origin (0, 0)

Different 3D printers may work with different implementations of G-code so the
correct implementation must be selected before generating the G-code.

3.2 Syntax
Each line of G-code contains one instruction starting with its identifier, after that come
arguments starting with argument identifier then value of the argument. For example

G1 X20.3 Y19.2 E0.8

is instruction for linear movement G1 with arguments X = 20.3, Y = 19.2 and E=0.8.
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3.3 Most used instructions in FDM 3D printing

3.3.1 G28 - perform homing routine
This instruction tells the 3D printer to go to the edges of its axes until it hits the end.
Homing routine is used so that the printer knows its position after starting a program.

3.3.2 G1 - linear movement
This instruction tells the 3D printer to move the extruder to position X, Y, Z at given
feedrate F (speed of the movement) and move material in the extruder by the amount
E. This instruction makes up the majority of the G-code program for 3D printers. Most
printers support “sticky coordinates”, which means that if the argument is missing it is
taken from the last G1 instruction containing the missing argument. . The coordinates
in G1 command can be read by the machine either as absolute or relative, where absolute
is a coordinate system in relation to the machine and relative coordinates state distance
to move from the current position of the tool. The coordinate system used by machines
G-code interpreter is chosen by other g-code commands (G91 - all relative, G90 - all
absolute , M83 - E relative, M82 - E absolute) [18].

3.3.3 G28 - Move to Origin (Home)
This instruction tells the 3D printer to move the extruder to predefined origin (Home),
flags X, Y and Z specify along which axes will be the extruder set to its origin. Moving
extruder to origin is used to determine starting position of the extruder [18].

3.3.4 M104 and M109 - extruder heating commands
M104 instruction starts heating the extruder while allowing other commands to be
performed immediately after. M109 instruction waits until the extruder reaches a given
temperature. Printers using Makerbot firmware use command M133 for heating the
extruder while this command in other firmwares sets PID I limit value [18].

3.3.5 M140 and M190 - bed heating commands
Analogically to extruder heating commands M140 starts heating the printing platform
and does not wait and M190 waits until the printing platform reaches a given temper-
ature [18].

3.3.6 M106 - set fan speed
M106 instruction sets the speed of the cooling fan that is cooling the extruded material
[18].
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Chapter 4
Slicer

Slicer is a software that converts digital 3D models into printing instructions for a
given 3D printer represented by G-code according to settings specified by the user,
such as layer height, speed, extruder temperature, support structure settings, infill
settings, wall thickness etc.. Most commonly used slicers are Cura and PrusaSlicer,
shown respectively in figures 4.2 and 4.1 with preview of sliced cylinder that is 25 mm
tall and has radius of 14 mm. The two slicers are free and open-source [19].

Figure 4.1. PrusaSlicer

Figure 4.2. CuraSlicer

4.1 input files

Different CAD softwares used for creation of virtual 3D models use their own formats to
store information about a given model, “.blend” for Blender, “.sldprt” and “.sldasm” for
SolidWorks. To avoid implementing many different formats, slicers work with multiple
standardized 3D model formats as which CAD softwares can export the model.
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4.2 Commonly used standardised 3D model formats

4.2.1 .stl format
Stereolithography format [20] know as STL represents a 3D object as a triangular mesh
and stores information for each triangle facet of the 3D model, each triangle is described
by 3 positions of its vertices and vector specifying the normal of the face represented
by the triangle. There is no standard support for colors or textures of the 3D object.

4.2.2 .obj format
Wavefront OBJ [21] represents a 3D object as a mesh composed of polygonal faces. Each
vertex must be defined by 3 floating point values representing its position, but more
information can be added, normal and texture coordinates of the vertex. N-Polygonal
faces are then defined by 𝑛 integer values pointing to what vertices the face contains.
Geometry can then be split into multiple groups each defining its vertices and faces.

4.2.3 .3mf format
3D manufacturing format [22] is a 3D printing format that can hold more information
than just the geometry of a 3D model. 3D printer profile, generated support structures,
units in which the model was created, color and texture information and more in XML
format. It is widely used across CAD and slicer softwares.

4.3 3D Print Preview
Preview of 3D printing is important for increasing effectiveness and error prevention.
Tools used for preview are usually implemented in slicer software, others are accessible
as online service. Previews generated by these tools are not photorealistic but generated
using raster graphics or by rendering lines along the path of the extruder during the
3D printing process. These tools allow for quick check of printer settings assigned to
different parts of the 3D model thanks to colored parts and legend describing what each
color means.

Figure 4.3. Preview in
middle of printing pro-

cess in PrusaSlicer.

Figure 4.4. Preview
of completed part in

PrusaSlicer.

Figure 4.5. Preview
in GcodeAnalyzer

https://gcode.ws

Photorealistic preview can be generated by exporting 3D triangle mesh used by slicer
for rasterized preview as .obj file and by using this file in some rendering engine. From
the commonly used slicers mesh can be exported from PrusaSlicer and Superslicer.
Prusaslicer is open-source and the algorithm for generating the mesh can be found on
github [23] in file src/slic3r/GUI/3DScene.cpp. Extruder path along which material is
being deposited is represented by line segments from which positions and normals of
vertices are calculated. These vertices create a rhombus which approximates the profile
of the layer in a given position. These profiles are then connected by triangles creating
3D triangular mesh.
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Figure 4.6. PrusaSlicer exportovaná mesh v Blenderu.

Disadvantage of this method is increasing complexity of the 3D mesh, every move-
ment of the extruder during which material is being deposited adds additional geometry
including infill structures and support structures. If the same 3D model is scaled up,
the number of layers during the 3D printing process increases and so does the time
needed to render a photorealistic image. Following images were generated in Blender
with materials provided by PrusaSlicer during the export using renderers EEVVEE and
cycles and in Fusion360 with material Plastic-Glossy (Yellow). The small model is a
cylinder of height and diameter of 20mm the medium model has height and diameter of
75mm and the large model has height and diameter of 150mm. EEVVEE is rendering
engine designed to be used for previews and for close to real time performance while
sacrificing some quality, cycles is designed to be precise and physically based while tak-
ing more time to render images. Mesh was generated from differently scaled cylinders
with the same 3D printer settings for slicing. Figures 4.7 to 4.15 contain caption with
information about what software and scaled model was used to render the image and
how long the rendering took in seconds.

Figure 4.7. Blender-
EEVVEE small model

11s.

Figure 4.8. Blender-
EEVVEE medium

model 12s.

Figure 4.9. Blender-
EEVVEE large model

15s.
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Figure 4.10. Blender-
cycles small model

76s.

Figure 4.11. Blender-
cycles medium model

124s.

Figure 4.12. Blender-
cycles large model

276s.

Figure 4.13. Autodesk
Fusion360 small model

30s.

Figure 4.14. Autodesk
Fusion360 medium

model 37s.

Figure 4.15. Autodesk
Fusion360 large model

38s.

4.4 3D Geometry from G-code

If there is no option to export a triangle mesh from slicer software or the mesh does
not have desired properties it is possible to simulate the 3D printing process based on
G-code program and create a new virtual 3D model of the printed part.

4.4.1 Geometry from point cloud

From G1 and G0 commands extrusion arguments are read, based on their value sim-
ulation can differentiate whether during the movement during which material is being
deposited or the movement is only travel between different parts of 3D printed model.
It is possible to get point cloud of lines from the data of extruder travel, that is then
possible to convert to desired file format using other software like MeshLab [24–26].

4.4.2 Geometry from extruder trajectory

Similarly as in previous section G1 and G0 commands are read to find trajectory com-
posed of straight line segment along which is the extruder depositing material. G1 and
G0 commands are interchangeable, usually the G-code only contains the G1 command
and if it contains both, G0 is usually reserved for travelling moves along which there
is no material deposited [27]. To find these trajectories algorithm that is described by
figure 4.16 is used.
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Figure 4.16. Line generating algorithm.

Series of points between which the extruder continuously deposits material is referred
to as a line. Based on the extrusion value of the previous command is determined if
the current line should be continued, ended, or if there is no current line new if new
one should be started. This algorithm is repeated until all G1 (and G0) commands in
G-code file are read. Along with the information about position of the extruder it is
also useful to save extrusion value corresponding to each point for later calculations.
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Chapter 5
Geometry from lines

To approximate shape of extruded material shape of the cross section of the extruded
material is extruded along the lines generated by the algorithm 4.16. The shape is
created from 3 parts, two circles approximating squished out material and a rectangle
that represents material flattened by flat bottom of the extruder nozzle. It is shown in
figure 5.1.

Figure 5.1. Cross section of extruded material.
Layer height can be measured from the difference between previous layer and current

height of the extruder. Equation to calculate layer width is possible to calculate using
the equation (1)

𝑉𝑖𝑛 = 𝑉𝑜𝑢𝑡 (1)

For each line segment 𝑉𝑖𝑛 is defined by the length of filament pushed into the extruder
(derived from extrusion values of the G1 command) and the diameter of the filament
(usually 1.75 mm). 𝑉𝑜𝑢𝑡 can be then split into the volume of rectangular box created by
extruding the rectangular part of the cross section geometry 5.1 and two half cylinders
created similarly by extrusion of profile along the line segment. The layer width 𝑤 is
calculated as:

𝑤 =
𝜋 ⋅ 𝑟2

𝑓 ⋅ 𝐸
𝑙 ⋅ ℎ

− ℎ ⋅ (𝜋
4

− 1) (2)

Where 𝑟𝑓 is radius of the filament , 𝐸 is length of filament pushed into the extruder,
𝑙 is length of the line segment between two points defined by two consecutive G1 in-
structions, it can be seen in figure 5.2 and ℎ is height of the extruded layer.

By extruding the cross section from one point of the lie segment to the other we get
rectangular geometric primitives representing the extruded material shown in figure 5.2
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that are not connected by their front and back face as shown in figure 5.2 in the top
view.

Figure 5.2. Geometric shape generated by extruding the profile along a line segment.

To create smooth transitions between neighbouring primitives the geometry is cut/ex-
tended based on two cutting planes each at one of the points defining the line segment,
A and B. Each plane is defined by according normals 𝑛1 and 𝑛2 as shown in figure
5.3. The normals of the planes are parallel with x/y plane and are in such direction
that the planes intersect with points where would the most outside parts of the two
neighbouring primitives intersect if they were infinite (𝐴𝑖, 𝐵𝑖).

Figure 5.3. Geometry created by extruding cross section along a line segment and cut by
two planes.

Unless the cutting planes intersect inside the geometry volume is preserved so the
equation (2) holds true. Generated primitives can be described by the two points of
the line segment, normals of the cutting planes, layer width and layer height.
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5.1 Tessellation
Rendering software and libraries mainly work with triangular meshes composed of ver-
tices connected by triangles, to convert generated primitives to triangular mesh process
called tessellation is used. Points are placed around the outer surface of each face of
the primitive. Each two neighbouring points create a trapezoid with two corresponding
vertices on the other side of the primitive. This trapezoid can be then split into two
triangles as seen in 5.4

Figure 5.4. Creation of triangles from point along faces of the primitive.

Number of points on each face of the primitive determines how closely the generated
triangle mesh will resemble the original geometric primitive as shown in 5.5.

Figure 5.5. Approximation of primitive by generated triangular mesh.

Flat faces on top and bottom of the primitive do not require more than two trian-
gles to be precisely represented, so for further tessellation only vertices touching the
cylindrical parts of the primitive are required. Increasing number triangles generated
by tessellation increases required memory to store the newly generated mesh which can
increase time needed to render images using this geometry.
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Chapter 6
Raytracing

Ray tracing [28] is an image rendering technique that simulates light traveling as rays
from light sources in a scene. Rays are reflecting and refracting along their path through
the scene and some of them will enter the eye/camera contributing to the resulting
image. Most of the rays casted by light sources never hit the camera or reflect so
many times their light intensity is so low the change in resulting image is negligible.
To reduce the number of calculations needed rays are cast in reverse direction, starting
in the camera and traveling through the scene collecting light information from each
interaction with objects in the scene. For each pixel in the rendered image one or more
rays are cast in a direction going through a pixel of an image projected on the near
plane of the camera (near plane is a minimally sized rectangle at a selected distance
that completely covers the view of an eye/camera). This is shown in figure 6.1. When
a light ray collides with an object in the, multiple new rays can be cast from the point
of contact to collect additional light information. Light information from these newly
created rays is then accumulated and passed to a previous ray.

Figure 6.1. Ray tracing diagram.
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6.1 Simple ray tracing

One ray is spawned for each pixel, if the ray hits an object two or three rays are spawned
returning light values that are then added together. Shadow ray is cast in the direction
of each light source to determine which light sources contribute to the light value of
the previous ray by checking if there is a direct clear way between the point of contact
and the light source. Reflection ray is cast in the direction incoming ray would reflect.
The reflection ray behaves the same as the ray cast from the camera, it collects light
information if it hits an object and adds it to the incoming ray from which the reflection
ray was generated. Refraction ray behaves similarly to reflection ray but is only cast
if a hit object is not opaque. Refraction ray is cast in the direction the incoming ray
would take if it was refracted through the object it collided with. After each reflection
or refraction ray hits an object this process can be repeated and cast more rays into the
scene [28]. In the figure 6.1 ray E is cast from camera and propagates through a scene.
Rays marked S are shadow rays, rays marked R are reflected rays and rays marked T
are refracted rays passing through transparent objects.

6.2 Improving image quality

For higher quality of rendered images, more rays can be cast for each pixel with a
small offsets in the direction defined by pixel position on the near plane of the camera,
multiple reflection/refraction rays can be cast after collision in pseudo random directions
based on the material of the hit object. More complex methods can be used to evaluate
incoming light from multiple rays. Rendered images without enough rays cast for each
pixel can appear noisy, this effect can be reduced using de-noising algorithms.

6.3 Bounding Volume Hierarchy tree

To reduce time needed to render an image, hierarchical data structure called Bounding
Volume Hierarchy (referred to as BVH) can be used. BVH tree lowers the number of
primitives that need to be checked when evaluating which primitive will be hit first
by a ray. Main idea behind the hierarchical data structure is that only geometric
primitives that are close to the trajectory of a ray are evaluated. Geometric primitives
are wrapped in axis aligned boxes that can be evaluated faster than complex primitives.
Nearby primitives are grouped together creating a node described by a bounding box
containing all its children. Then nearby nodes are again grouped together to a new
node gradually creating a tree hierarchy. Now when evaluating rays trajectory, the root
node of the BVH tree is checked first, if ray hits the parent node all of its children
nodes are evaluated and again if one of them is hit the algorithm repeats itself until
leave node is reached where the more complex primitives are evaluated [29].
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Figure 6.2. Traversing BVH tree diagram.

In the diagram 6.2 BVH tree is constructed from primitives A, B, C, D. White nodes
contain bounding box encapsulating all of the nodes children. Blue nodes represent the
actual geometric primitives used in a scene. Using the BVH traversal algorithm for the
red ray only the nodes with red outline (A and B) are checked [29].

Primitives with large volume bounding boxes compared to their volume can lead to
ineffective BVH tree because probability of false positives increases with higher ratio
of bounding box volume to the primitives volume.

6.4 Ray tracing library
Ray tracing is a library containing implementations of ray tracing algorithms that
are often highly optimized, photo-realistic and supporting many different devices and
architectures. Using these libraries it is possible to write software utilizing ray tracing
without the need for an implementation from scratch. The libraries can offer pipelines
that allow a high level of customization of the rendering process.

6.5 Intel OSPRay
Intel OSPRay is an open source, portable and scalable ray tracing library. Purpose
of OSPRay is to provide a powerful and easy-to-use rendering library that can be
used to easily create ray tracing based applications. OSPRay can be utilized for both
rendering using CPU and rendering using GPU. OSPRay builds on top of Intel Embree,
Intel Open VKL and Intel Open Image Denoise. Intel Embree is high-performance
ray tracing library incorporating high quality and performative data structures and
algorithms. Intel Open VKL is a collection of high performance volume computation
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kernels, containing algorithms and data structures commonly used in ray tracing. Intel
Open Image Denoise is an open source library with denoising filters for images rendered
with raytracing, that allows the creation of images of comparable quality with fewer
samples of a scene [30].

To render an image in Intel OSPRay we need to specify the type of renderer that will
be used for the image generation, world that can contain geometric models, volumetric
models and lights and specify camera to capture the world.

Intel OSPRay offers materials for rendered objects that can be chosen based on
desired performance and final look of the rendered object. Each material can be cus-
tomized by changing values of its properties. For example, for the “Principled” material
we can choose base color, edge color, how metallic the material is, how rough the mate-
rial is and many more options. All of these properties can be specified by a texture for
even more control of the resulting look. This allows for a high degree of customizability
but shading technique is not possible without additional modules [31].

6.5.1 Renderer
Renderer is the central object for rendering in Intel OSPRay. Different renderers im-
plement different features and support different materials. OSPRay renderers support
adaptive accumulation which speeds up rendering by splitting image into regions and
sampling pixels multiple times only in regions where variance is higher than specified
threshold. OSPRay contains 3 renderers, SciVis renderer, Ambient occlusion renderer
and Path tracer. SciVis Renderer is a fast raytracer for scientific visualization, it
supports volume rendering and ambient occlusion. Ambient occlusion renderer sup-
ports only a subset of SciVis renderers features to gain performance. Lights are not
supported, the main shading method is ambient occlusion. Path tracer supports soft
shadows, indirect illumination, volumes with multiple scattering and realistic materials
[30].

6.6 NanoRT
NanoRT is a ray tracing kernel [32] implementing BVH data structure allowing efficient
ray intersection evaluation. It supports custom geometric primitives that can be im-
plemented to work with the implemented BVH data structure. It is cross platform and
can utilize OpenMP parallel programming API to build BVH tree taking advantage of
parallelization.

6.6.1 Custom primitive
To create a custom primitive definition of data representing the primitive is needed.
Next class resolving the bounding box calculations and a class with a predicate function
used build BVH tree. Lastly Class that resolves ray intersections and class that holds
data about the intersection for current ray traversal [32].
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Chapter 7
Extrusion primitive

In this chapter we discus process of creating custom geometric primitive representing our
geometric model of 3D printed material shown in figure 7.1. This geometric primitive
then can be used while rendering image using ray tracing.

7.1 Data
Data needed to represent the geometry of extruded material shown in figure 7.1 are
position of two points (𝐴 and 𝐵), normals of the two cutting planes ( ⃗𝑛1 and ⃗𝑛2), layer
width 𝑤 and layer height ℎ. The distance 𝑙 between points 𝐴 and 𝐵 can be additionally
saved in the data so there is no need to calculate it later during intersection testing.

Figure 7.1. Geometry created by extruding cross section along a line segment and cut by
2 planes.

7.2 Predicate
For NanoRT to build the BVH tree it needs predicate that tells it which bounding
boxes should be grouped together. NanoRT uses surface area heuristic (SAH) during
BVH building process. The idea behind SAH predicate is to minimize probability of
ray that passes through a parent node to hit both of its children (assuming binary
partitioning) by minimizing surface area of the bounding boxes containing the children
[33]. NanoRT uses greedy algorithm with use of this predicate to group the primitives
into nodes. NanoRTs SAH predicate for triangles returns true if position given to it is
behind the center of a primitive along a specified axis. Refactoring this function for the
primitive 7.1 is trivial, only change of the calculation of the center is needed resulting
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in equation (1) where 𝑐 is the calculated center, 𝐴 and 𝐵 are points of the line segment
defining the primitive.

𝑐 = 𝐴 + 𝐵
2

(1)

7.3 Bounding box

To calculate the bounding box of extrusion primitive calculation of the corners of the
extrusion primitive is necessary. These points can be seen in figure 7.1 marked 𝐶𝐴1,
𝐶𝐴2, 𝐶𝐵1, and 𝐶𝐵2. To calculate these points we need tangents to the normals of the
cutting planes. Normals of the cutting planes are aligned with the direction between
point A and B so the z coordinate will always be 0. With this knowledge constructing
tangent 𝑡𝑖 is trivial resulting in equation (2).

𝑡𝑖 = (−𝑛𝑖𝑥
, 𝑛𝑖𝑦

, 0) (2)

Where 𝑛𝑖𝑥
and 𝑛𝑖𝑥

is x and y values of the appropriate normal of a cutting plane.
Last remaining step is to calculate the distance from the point to the edge of the
primitive in the direction of tangent. Using trigonometry we get equation (3) where 𝑑
is the distance from the edge segment point to its corresponding normal 𝑛, and ⃗𝐴𝐵 is
normalized direction from point ⃗𝐴 to point 𝐵⃗.

𝑑 = 𝑤
2 ⋅ 𝑛⃗ ⋅ ( ⃗𝐴𝐵)

(3)

Using this knowledge we can calculate the corners and find minimum and maximum
in x and y axis. Minimum and maximum in z axis is derived by adding/subtracting
half of layer height from z coordinate of point A or B.

7.4 Ray intersector

When calculating intersection of a ray with extruded primitive we need to find signed
distance t the ray travels from its origin 𝑟𝑜 in a direction 𝑟𝑑 before it hits the extrusion
primitive, then using equation (4).We can get the intersection point.

𝑝 = 𝑟𝑜 + 𝑟𝑑 ⋅ 𝑡 (4)

The primitives outer surface not including caps can be split into four simple shapes
that are then cut by the two cutting planes (later referred to as sub-primitives), two
infinite cylinders with axis in direction ⃗𝐴𝐵. Two infinite planes bounded on sides by
edges in direction ⃗𝐴𝐵 called flats. The sub-primitives are shown in figure 7.2 moved
away from each for better readability.
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Figure 7.2. Extrusion primitive divided into 4 sub-primitives.

Signed distance is calculated for each of these sub-primitives then the smallest posi-
tive one is selected as the result of the ray and extrusion primitive intersection.

7.5 Cylinder intersection
Intersection between infinite cylinder and a ray can be derived from the equation (5)
describing cylinder.

‖𝑝 − ((𝑝 − 𝑐𝑜) ⋅ 𝑐𝑑) ⋅ 𝑐𝑑‖2 = 𝑟2 (5)

𝑝 is point on the surface of the infinite cylinder, 𝑐𝑜 is point on the axis of the cylinder,
𝑐𝑑 is direction of the cylinders axis and r is the radius of the cylinder. Now if p is
substituted for using (4) we get (6).

‖𝑡(𝑟𝑑 − 𝑟𝑑 ⋅ 𝑐𝑑 ⋅ 𝑐𝑑) + (𝑟𝑜 − 𝑐𝑜 − (𝑟𝑜 − 𝑐𝑜) ⋅ 𝑐𝑑)‖2 = 𝑟2 (6)

Which can be simplified to get (7).

‖𝑡 ⋅ 𝐴 + 𝐵‖2 = 𝑟2 (7)

This is solved as a quadratic equation:

𝑡1,2 = −𝑏 ± 2
√

𝑏2 − 4𝑎𝑐
2𝑎

, (8)

where

𝑎 = 𝐴 ⋅ 𝐴
𝑏 = 2 ⋅ 𝐴 ⋅ 𝐵
𝑐 = 𝐵 ⋅ 𝐵 − 𝑟2

(9)

To calculate the signed distance using our data we replace 𝑐𝑑 with ⃗𝐴𝐵 and 𝑐𝑜 is
calculated using equation (10).

𝑐𝑜 = ⃗𝐴 + 𝑤 − ℎ
2

⋅ ⃗𝑡𝑛 (10)
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7.6 Flat top/bottom intersection
The extrusion primitive has two flats, at its top and bottom with two always parallel
edges in the direction of the line segments ⃗𝐴𝐵 used to create the primitive. Because
the flats are always aligned with x/y plane we use equation (11) to see when the ray is
in the same height as is the flat surface using equation where 𝐹𝑧 is z coordinate of the
flat.

𝑡 =
𝐹𝑧 + ℎ − 𝑟𝑜𝑧

𝑟𝑑𝑧

(11)

Then the expresion (12) is used to check if the ray intersection is inside the primitive
if it was infinitely long.

((𝑝 − 𝐹1) ⋅ 𝐹𝑛) ⋅ ((𝑝 − 𝐹2) ⋅ 𝐹𝑛) < 0, (12)

where 𝑝 is point on rays trajectory in time t, 𝐹1 and 𝐹2 are points on each parallel
edge of the flat 𝐹𝑛 is a vector perpendicular to the direction of both edges aligned with
x/y plane and it is shown in figure 7.2.

7.7 Intersection without caps
Now with information about hits of the sub-primitives the minimal time t is chosen
and if point 𝑝 derived using (4) falls between the 2 cutting planes, which is true if (13)
is True ,with the assumption that the dot product of 2 normals of the planes is more
than zero (one of the 2 normals can be flipped to satisfy the assumption).

((𝑝 − 𝑃1) ⋅ 𝑃1𝑛) ⋅ ((𝑝 − 𝑃2) ⋅ 𝑃2𝑛) < 0, (13)

where 𝑃1, 𝑃2 are points on each plane (points A and B describing the primitive in
7.1 and 𝑃2𝑛, 𝑃2𝑛 are according normals of the two cutting planes. If the point with
minimal time t does not satisfy the equation (13) the next smallest time is chosen and
the procedure is repeated until a point satisfying it is found or until there are no more
intersections.

7.8 Cap intersection
If the intersection between ray and cap is needed it can be checked by finding intersection
of the ray and each of the cutting planes. Then for each plane the intersection point
between the plane and the ray is checked if it is inside any of the 2 infinite cylinders
or if is inside the rectangular box highlighted in green 7.1. Intersection between plane
and ray is calculated using equation (14).

𝑡 = (𝑝0 − 𝑟0) ⋅ 𝑝𝑛
𝑟𝑑 ⋅ 𝑛

(14)

Then equation (5) is used to check if the intersection point is inside any of the 2
cylinders and to check if it inside the rectangular box modified version of expression
used for the flats (15) is used.

((𝑝 − 𝑒1) ⋅ 𝑒1𝑛) ⋅ ((𝑝 − 𝑒2) ⋅ 𝑒1𝑛) < 0 (15)
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where 𝑒1, 𝑒2 are replaced by 2 points on the intersection of plane with the left and

right edge of the rectangular box. 𝑒1𝑛 is replaced by the tangent of the plane parallel
with the x/y plane and lastly the intersection points z coordinate must be between the
z coordinates of the 2 flats.

However when rendering the geometry created from the 3D printer’s G-code it is an
uncommon occurrence to see any of the caps of the extruded lines, so it can be skipped
to save performance.

7.9 Intersection data
Any intersection data structure must hold the id of the hit primitive and the signed
distance t. With the primitive 7.1 the type of sub-primitive that was hit is also saved
i.e.top/bottom flat, left/right cylinder or front/back cap. After traversing the BVH
tree and successfully finding intersection with a primitive, more information can be
calculated like tangent and normals at the intersection point. Tangent is either the
direction between points A and B if the circumference of the primitive was hit. If one
of the caps was hit the tangent is the same as the tangent of the according cutting
plane. Normals are also calculated based on the type of hit sub-primitive. The normals
is up/down direction if the hit sub-primitive is one of the top/bottom flats. It is the
same as normal of the hit cutting plane if one of the caps was hit or it is the normalized
direction from the projection of the intersection point onto the according cylinders axis
to the intersection point.
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Chapter 8
Measuring reflection data

In this chapter we discus how reflection data of a material can be measured to approx-
imate bidirectional reflectance distribution function and how to use the measured data
to render images.

8.1 Bidirectional Reflectance Distribution Function
The Bidirectional Reflectance Distribution Function is a theoretical concept describing
relationship between the luminance of incoming light and the illuminance of the reflected
light in any given direction of incoming light (𝜃𝑖, 𝜙𝑖) and any direction of reflected light
(𝜃𝑑, 𝜙𝑑) define by equation [34]. All the variables are shown in figure 8.1 in coordinate
space defined by normal 𝑛⃗, tangent ⃗𝑡 and bi-tangent ⃗𝑏𝑡 of surface described by the
BRDF.

𝐵𝑅𝐷𝐹(𝜃𝑑, 𝜙𝑑, 𝜃𝑖, 𝜙𝑖) = 𝑑𝐿(𝜃𝑑, 𝜙𝑑)
𝑑𝐸(𝜃𝑖, 𝜙𝑖)

(1)

Figure 8.1. BRDF coordinates diagram.

The BRDF is often approximated using analytical mathematical function. For ex-
ample ideal matte surface called Lamberian surface [35] can be described with function
(2),

𝐼(𝜃) = 𝐼𝑑𝑐𝑜𝑠𝜃 (2)

However more realistic and complex materials need more complex definitions of their
BRDF or the BRDF can be measured for many different directions to create point
cloud of data from which the values of BRDF can be read. To measure the required
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data machine called scatterometer is used, specifically Mini-Diff V2 [36] for purposes of
this work. This data can be then used in different domains like multimedia industry,
simulation software or the car industry.

8.2 Mini-Diff V2

Mini-Diff V2 measures light reflected from a sample placed under the machine as shown
in figure 8.2. Mini-Diff V2 measures materials using incoming light from four different
angles of incidence 𝜃𝑖 (0°, 20°, 40°, 60°) for red, blue and green light with constant 𝜙𝑖.
So the measured BRDF is isometric, meaning it returns same value for all 𝜙𝑖 which is
set to 0.

Figure 8.2. Mini-Diff V2. Image taken from [36]

Before measuring a sample of a material calibration is needed [36]. To calibrate
BRDF measurement black and white reference samples are used before the start of
each measuring session. The reference samples are depicted in figure 8.3.
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Figure 8.3. Samples used to calibrate Mini-Diff V2. Image taken from [36]

Measurement is performed by placing a sample of a material under the machine and
starting the measuring procedure in the provided software Mini-Diff with option to
select which of the three lights will be measured and for which of the four directions
of incoming light will the measurement be performed. It is possible to select multiple
options at once for a measurement [36].

Figure 8.4. Samples used to measure BRDF.

In the 3D preview show in figure 8.5 of green PLA measurement the measured value
for green light from incoming light under 0∘ is represented by both height and color of
the shown shape. In the 2D view show in figure 8.6 the same sample is presented but
in RGB preview composed from all three measured wavelengths.
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Figure 8.5. 3D preview in Mini-Diff software.

Figure 8.6. 2D preview in Mini-Diff software.
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8.3 Textures from measured BRDF data

To use measured data to render images it is converted to textures. To convert the data
application brdf_gui developed by Lukáš Cezner was used [37]. Data exported from the
Mini-Diff software are separated to files by color of measured light (red, green, blue),
so first brdf_gui is used to merge these files together. This merged file the brdf_gui
application converts to a texture into EXR format. EXR format support custom meta
data for generated image. In the generated textures meta data is the information about
the tiled layout, what color channels are used and what angles of incoming light 𝜃𝑖 were
used for the measurements. The result of the measurement of green PLA shown in
figures 8.5 and 8.6 measurement is converted into a texture can be seen in figure 8.7.

Figure 8.7. Texture created from green PLA sample.

Created texture is composed out of 4 tiles each corresponding to one of the measured
incoming light angles 𝜃𝑖. Each tiles horizontal coordinate corresponds to values of angle
𝜙𝑑 of the reflected light. Vertical coordinate then corresponds to values of angle 𝜃𝑑 [37].

8.4 Measured textures in NanoRT

Nanort engine traverses ray through a scene and returns intersection information con-
taining rays direction, normal and the tangent of the intersected surface. Combined
with information about direction of incoming light uv coordinates of the texture shown
in figure 8.8 can be calculated.
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Figure 8.8. 3D texture created from BRDF measurement.

Using coordinate system defined by normal, tangent and bi-tangent previously de-
fined in figure 8.1 with 𝜙𝑖 set to 0. Angle 𝜃𝑖 between normal and incoming light is
calculated as:

𝜃𝑖 = 𝑎𝑐𝑜𝑠(𝑛⃗ ⋅ ⃗𝑙) (3)

Angle 𝜃𝑑 is calculated similarly as:

𝜃𝑑 = 𝑎𝑐𝑜𝑠(𝑛⃗ ⋅ ⃗1) (4)

and lastly angle 𝜙𝑑 is calculated between projection of ⃗𝑖 and ⃗𝑑 on a plane with normal
𝑛⃗ using function atan2. Projections are calculated using:

⃗𝑣𝑝 = ⃗𝑣 − 𝑛⃗ ⋅ ( ⃗𝑣 ⋅ 𝑛⃗) (5)

where ⃗𝑣𝑝 is vector ⃗𝑣 projected on plane with normal 𝑛⃗. The function atan2(x, y)
returns angle 0 − 2𝜋 between positive x axis and vector (x, y), resulting in equation:

𝜙𝑑 = 𝑎𝑡𝑎𝑛2(𝑛⃗ ⋅ ( ⃗𝑑𝑝 × ⃗𝑖𝑝), ⃗𝑖𝑝 ⋅ ⃗𝑑𝑝)

where ⃗𝑑𝑝 is vector ⃗𝑑 projected on plane with normal 𝑛⃗ and ⃗𝑖𝑝 is direction to incoming
light ⃗𝑖 projected on the same plane.

8.4.1 Direct lighting

During direct lighting color value is calculated for each individual light that shines on
the intersected surface, then these values are added together. The lights are approxi-
mated as infinitely small at infinite distance. In this approach light reflected from the
environment is not taken into account resulting in less accurate result, shown in figure
8.9.
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Figure 8.9. Red benchy rendered with indirect lighting.

8.4.2 Environment mapping

During environment mapping light is sampled across the whole hemisphere around the
normal of the intersected surface. In each direction light value is read from environment
map. Environment map is a 2D texture that can be sampled using spherical coordinate
of longitude and latitude. The environment map is created by capturing incoming light
in every direction in the real world and saving it to the 2D texture. Example is show
in figure 8.10.

Figure 8.10. Enviroment map [38].

To sample light coming from a direction, the direction is transferred to spherical
coordinates. Value is then selected from the texture based on x coordinate across the
whole texture ranging from 0 to 2𝜋. and y coordinate across the whole texture ranging
from 0 to 𝜋.
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To calculate the color value of the reflected light the equation (6) for integration

around the whole hemisphere of incoming light is used.

𝐿𝑜𝑢𝑡( ⃗𝜔𝑜𝑢𝑡) =
𝑖𝑚𝑎𝑥

∑
𝑖=0

𝑗𝑚𝑎𝑥

∑
𝑗=0

𝑤𝑖,𝑗 ⋅ 𝑓( ⃗𝜔𝑖,𝑗, ⃗𝜔𝑜𝑢𝑡)) ⋅ 𝐿𝑖𝑛( ⃗𝜔𝑖,𝑗) ⋅ 𝑐𝑜𝑠𝜃𝑗 (6)

where as can be seen in figure 8.11 ⃗𝜔𝑜𝑢𝑡 is the direction towards the camera, 𝑤𝑖,𝑗
is the weight of the light sampled in chunk with center in direction ⃗𝜔𝑖,𝑗, 𝜃𝑗 is angle
between the normal and sampled chunk direction and lastly function 𝑓 samples the
BRDF texture and 𝐿𝑖𝑛 returns value of accumulated light of the chunk read from the
environment map. To properly calculate incoming light each pixel contained in the
chunk must be evaluated. For this reason we downsample the environment map to
increase performance.

After accumulating value from all pixels in area between 𝜙𝑖−1, 𝜙𝑖+1 and 𝜃𝑗−1, 𝜃𝑗+1
we calculate the weight 𝑤𝑖,𝑗 of the sample. To calculate the weight the surface area of
the sampled chunk of the hemisphere is needed which can be seen in figure 8.11. 𝜔𝑖,𝑗 is
a direction to the middle of the sampled chunk.

Figure 8.11. Sample of hemisphere around intersected surface.

To calculate the surface we first calculate the horizontal ring surface between current
and sampled next angle where we are sampling direction in linearly interpolated halfway
point between these 2 angles 𝜃𝑗 8.11.

𝑆𝑗 = 2 ⋅ 𝜋[(1 −
𝑐𝑜𝑠𝜃𝑗 + 𝑐𝑜𝑠𝜃𝑗+1

2
) − (1 −

𝑐𝑜𝑠𝜃𝑗 + 𝑐𝑜𝑠𝜃𝑗−1

2
)] (7)

then in similar fashion the surface is divided by the surface of the vertical strip 8.11.
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𝑤𝑖,𝑗 = 𝑆𝑗 ⋅ 𝜙𝑖−1
𝜙𝑖+1 − 𝜙𝑖−1

2 ⋅ 2 ⋅ 𝜋
resulting image is rendered slower due to computational complexity of numeric inte-

gration but with more realistic results 8.12.

Figure 8.12. Benchy rendered using environment mapping.
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Chapter 9
Results

To compare performance of NanoRT and OPSRay based renderers same shader called
ambient occlusion is used for both types. Ambient occlusion calculates how much is each
intersected surface affected by ambient lighting. Points surrounded by a large amount of
geometry are displayed as darker ones and the other way around as shown in figure 9.1.
To approximate the result of integrating across the whole hemisphere multiple checks
if a secondary ray has a clear path from the impacted point through the scene without
intersecting without any other geometry are performed in random directions [39]. Both
OSPRay and NanoRT renderers were configured to test one random direction per hit
with infinite maximal travel distance for the test ray and to sample 256 times per each
pixel, models and camera position are identical.

Figure 9.1. Definition of ambient occlusion shader. Image taken from [39]

In the results each plot has a legend describing what renderer and what geometry was
used. First half of each entry is self explanatory, OSPRay if renderer using Intel OSPRay
library and nanort if the renderer using NanoRT was used. Second part describes
geometry used to approximate extruded plastics shape. Quad means tessellation with
4 vertices per segment border. Hex is for 6 vertices, Poly for 10 and Prim means use of
extrusion primitive created for NanoRT.
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Images generated using ambient occlusion shader are shown in figures 9.2 to 9.4

using small model Benchy [40], medium model Stanford Dragon [41] and big model
Cute Raccoon [42].

Figure 9.2. Rendered Benchy model using AO shader. Volume of the model is 15.6 𝑐𝑚3.

Figure 9.3. Rendered Stanford dragon model using AO shader. Volume of the model is
140.8 𝑐𝑚3.
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Figure 9.4. Rendered Raccoon model using AO shader. Volume of the model is 1508.8
𝑐𝑚3.

9.1 Division of long segments

To increase performance we found the optimal ratio of maximum allowed length of
line segments describing extrusion primitive (if line segment is too long it is split to
equal parts with maximum length possible) by testing performance using the ambient
occlusion shared.

Each figure contains four plots, on the top left plot displays relation of time the
renderer took to generate an image ignoring the time it took to prepare optimization
data structures (building BVH tree etc.) on Y axis compared to maximal allowed ratio
of length to width of the extrusion primitive on the x axis. X axis is the same in all
plots. On the top right is a plot displaying relation of times renderers needed to prepare
the optimization data structures. Bottom left plot shows how many times the numbers
of primitives increased after segmenting of long extrusion primitives. Lastly bottom
right plot shows total time of both renderer preparation and the rendering of an image.
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Figure 9.5. Benchy all layers.

Figure 9.6. Stanford Dragon all layers.
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Figure 9.7. Racoon Big all layers.

In the next three graphs using the same three models is shown relation of time needed
to generate geometry using tessellation or creating extrusion primitives and the ratio
of maximal allowed length to average width.

Figure 9.8. Benchy time to prepare geometry.
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Figure 9.9. Stanford Dragon time prepare geometry.

Figure 9.10. Racoon Big time prepare geometry.

The next three graphs 9.11 to 9.13 using the same 3 models show total time to
prepare geometry, prepare renderer and to render the image.
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Figure 9.11. Benchy total time to prepare geometry, build and render.

Figure 9.12. Stanford Dragon total time to prepare geometry, build and render.
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Figure 9.13. Racoon Big total time to prepare geometry, build and render.

Last graph 9.14 is zoomed in to better see results of fastest renderers from figure 9.13

Figure 9.14. Racoon Big total time to prepare geometry, build and rende. Graph is zoomed
in on faster results.

We can see that across sizes, decreasing the maximal allowed ratio of length to width
of the primitives decreases time needed to render the image. However there is a point
that decreasing the ratio starts worsening our results. The optimal ratio is between 8
to 16 depending on the model. All upcoming images were rendered using maximum
allowed ratio of 16 using NanoRT renderer working with the extrusion primitive with 32
samples per pixel and each ray calculates color using measured BRDF and environment
mapping. In each figure 9.15 to 9.26 is described by the name of the model and by
volume of the model.
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9. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 9.15. Benchy model [40]. 15.6 𝑐𝑚3. Figure 9.16. Spiral egg model [43]. 46.7 𝑐𝑚3.

Figure 9.17. Swirl pot model [44]. 60.8 𝑐𝑚3. Figure 9.18. Nasa fabric model [45]. 86.9 𝑐𝑚3.

Figure 9.19. Stanford dragon model [41]. 140.8 𝑐𝑚3. Figure 9.20. Bunny model [46]. 172.4 𝑐𝑚3.
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Figure 9.21. Rocket model [47]. 496.9 𝑐𝑚3. Figure 9.22. Cat model [48]. 215.2 𝑐𝑚3.

Figure 9.23. Baby dragon model [49]. 1214.1 𝑐𝑚3. Figure 9.24. Maoi face model [50]. 1253.5 𝑐𝑚3.

Figure 9.25. Owl model [51]. 1362.4 𝑐𝑚3. Figure 9.26. Cute raccoon model [42]. 1508.7 𝑐𝑚3.
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9. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Model G-code size BVH build Render primitives

Benchy 2.7 KB 0.259 s 96.937 s 65084
Spiral egg 11.5 KB 1.004 s 72.410 s 280773
Swirl pot 24.0 KB 1.508 s 77.185 s 552636

Nasa fabric 64.7 KB 2.786 s 72.074 s 1077530
Stanford dragon 21.7 KB 1.550 s 71.312 s 559084

Bunny 12.6 KB 1.128 s 48.389 s 376960
Cat 10.6 KB 1.082 s 35.059 s 342491

Rocket 42.2 KB 3.394 s 37.686 s 1276321
Baby dragon 43.2 KB 4.192 s 66.560 s 1530100

Maoi face 23.2 KB 3.724 s 58.306 s 1167474
Owl 43.0 KB 4.461 s 66.091 s 1635285

Cute raccoon 39.2 KB 4.478 s 76.169 s 1626697

9.2 Photo comparison

Figure 9.27. Printed out bunny first layer.

Figure 9.28. Rendered out bunny first layer.
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Figure 9.29. Printed out bunny 25

Figure 9.30. Rendered out bunny 25

Figure 9.31. Printed out bunny 50
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9. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 9.32. Rendered out bunny 50

Figure 9.33. Printed out bunny 100
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Figure 9.34. Rendered out bunny 100

Figure 9.35. Rendered out cat first layer.
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9. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 9.36. Printed out cat first layer.

Figure 9.37. Rendered out cat 25%.
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Figure 9.38. Printed out cat 25%.

Figure 9.39. Rendered out cat 50%.
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9. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 9.40. Printed out cat 50%.

Figure 9.41. Rendered out cat.
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Figure 9.42. Printed out cat.
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Chapter 10
Conclusions

Goal of this thesis was to generate geometrical representation of a 3D printed part from
G-code program for a 3D printer and then to render previews of the resulting printed
object using ray tracing with measured BRDF data of materials used by 3D printers.

We devised a way to transfer G-code to a geometrical representation of 3D printed
object and compared renderers we implemented using ray tracing libraries Intel OSPRay
and NanoRT that worked with the generated geometry. The NanoRT renderer was also
expanded to test intersection with extrusion primitive instead of triangular mesh and
to use measured BRDF data with light sampled from environment map.

In comparison renderer using Intel OSPRay library was faster when rendering tri-
angular meshes but NanoRT renderer using extrusion primitive instead of triangular
mesh achieved comparable performance.

We renderer 12 models of different sizes using our NanoRT renderer using extrusion
primitive and BRDF with environment mapping, the size of the model or size of the
G-code used to generate the geometry did not significantly affect the resulting time
needed to render an image.

We also compared photographs of 2 printed out models with rendered previews.
Rendered geometry resembles printed object quite well during the printing process but
to achieve higher level of photo-realism future work is needed.
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Appendix A
Used files

Used G-code files

baby_dragon_big.gcode
benchy.gcode

big_owl.gcode
cute_raccoon_big.gcode
geometric_feline.gcode

maoiFace.gcode
nasa_fabric.gcode

rocket_engine_Prusa.gcode
spiralEgg.gcode

stanford-dragon.gcode
swirlVase.gcode

Generated BRDF textures

PETG_black.exr
PLA_blue.exr
PLA_green.exr
PLA_red.exr

PLA_white.exr
PLA_yellow.exr
SILK_pink.exr

PETG_orange.exr

Environment maps

golden_gate_hills_0075k.exr
golden_gate_hills_0125k.exr

studio_small_08_4k.exr
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Appendix B
source folder structure

����Brdfs - generated BRDF textures
����EnviromentMaps - used environment maps
����Gcode - gcode used to render 12 previews
� ����printed - gcode of the printed objects
����Header - .h files of code created in this work
����Source - .cpp files of code created in this work
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