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Abstract

This paper presents a generic technique for acceleration of ray tracing of
polygonal scenes. We propose scheduling rays in a way that forms pyramidal
shafts. We show that under certain conditions fulfilled by the corner rays
of a shaft, it is possible to immediately and conservatively answer visibility
queries for the inner rays without expensive ray traversal through acceleration
data structures (kd-tree in our case). We show that the presented technique
is suitable for primary, secondary, and shadow rays.
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1 Introduction

Visibility computation via ray tracing is the most time consuming part of
many rendering algorithms. Thus algorithms that improve ray tracing speed
are very important for research and industry and have immediate use in a
wide spectrum of applications.

In this paper we propose a new algorithm for speeding up the visibility
computation. It is a combination of several existing techniques and it takes
advantage of their best features. We aim at the following properties:

• algorithm should compute exact visibility information

• no additional preprocessing should be needed

• no additional user-definable parameters should be introduced

• technique should be easy to implement

• acceleration should be achieved for most of scenes, no significant decel-
eration should happen for others

The founding observation that is widely utilized in existing acceleration
techniques is that rays frequently appear to have the same origin and very
close directions. This holds for rays fired from the pinhole camera, shadow
rays (the origin is located at the point light source position then), primary
rays that are reflected or refracted at planar media boundary (the origin is
located at the reflected camera observer in this case). This kind of coherence
allows bucketing rays into coherent groups and applying different kinds of
optimization techniques for intersecting the whole group rather than separate
rays with the scene objects.

In the next section we review previous works in the area of ray tracing
acceleration. In the section 3 we give details of our algorithm. Section 4
contains results and discussion that are concluded in section 5.

2 Previous Work

Since ray tracing was introduced in [16], tremendous number of techniques
for improving its efficiency was proposed. This includes development of ray
tracing data structures (e.g. uniform grids[4] and kd-trees[10, 12]), use of
interpolation [2, 15], parallelization [11] and so on. Complete classification
and review of such techniques can be found in [3, 9]. Here we focus only on
techniques that are closely related to our algorithm.
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2.1 Shadow Caching

In 1986 Haines and Greenberg suggested a shadow cache algorithm [5]. Each
light source caches a reference to the opaque object that has most recently
cast a shadow from this light source, or null reference if the last shadow
ray fired to this light source did not encounter any opaque objects. Before
shadow ray is traced towards the light source, a cached object is checked for
an intersection with this ray. If an intersection occurs, no further processing
is required.

The disadvantage of this technique is that if reference in light source is
null or no intersection with cached object occurs, ray has to be traversed
all the way. Our algorithm also caches objects, most recently intersected by
shadow rays, but accelerates visibility computations even in ’not shadowed’
case.

2.2 Shaft Culling

Haines and Wallace[6, 7] introduced shaft culling in the context of radiosity
form-factors computation. The technique intersects a scene enclosed into hi-
erarchy of axis-aligned bounding volumes against a convex shaft with planar
boundaries. Testing a box against a shaft is a fast operation, as only one
corner of the box needs to be compared to each particular plane in the shaft.
All rays inside the shaft are then checked for intersection with objects that
are not culled away. Zwaan et al. [17] uses the shaft culling method for ray
tracing. Although they improve the speed of shaft culling construction, no
ray tracing speedup is achieved. Thus authors suggest to use their technique
to increase the coherence of computations for parallel ray tracing.

Similarly, our method encloses groups of rays into pyramidal convex
shafts. However, instead of bounding volumes hierarchy we use far more
efficient kd-tree structure ([9], chapter 3), and instead of testing each plane
of the shaft our algorithm executes conventional traversal loop for its bound-
ary rays.

2.3 Termination Object

LCTS (Longest Common Traversal Sequence) technique, proposed by Havran
[8], groups rays in such a way, that they create convex shafts. Due to convex-
ity, if common sequence of leaves visited by the boundary rays exists, exactly
this sequence has to be visited by the inner rays as well. Thus a sequence
of empty leaves can be skipped by the inner rays and they can immediately
start from the first non-empty leaf encountered by the boundary rays.
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An important special case of LCTS is given by the termination object
criterion ([9], section 6.3.3.2). If all boundary rays traverse the same sequence
of empty leaves and terminate at the same convex object that is the only
object contained in the last visited leaf, then all inner shaft rays have to
terminate at this object as well. In this case the visibility queries for the
inner rays can be immediately answered without ray tracing.

Disadvantage of the technique is that it traces the rays bounding the shaft
one by one, which requires storing the sequence of kd-tree leaves, traversed
by each ray, and then comparing those sequences. We avoid any storage by
tracing the 4 boundary rays simultaneously and checking their coherence as
they propagate through the kd-tree. Only one additional bitwise operation in
the kd-tree traversal loop is needed, introducing virtually no overhead when
compared to conventional ray shooting. We also allow non-empty leaves on
the ray paths and more than one triangle in the terminating leaf. This is very
important for ray tracing of triangulated scenes, since kd-tree leaves rarely
contain a single triangle.

2.4 SIMD Ray Tracing

SIMD (Single Instruction Multiple Data) technique suggested by Wald et al.
[13] in 2001 traces rays in groups of 4 and uses SIMD instructions to perform
kd-tree traversal and ray/triangle intersections for 4 rays simultaneously. The
maximum efficiency is obtained if all of them actually go through the same
kd-tree nodes, i.e. are coherent. In this case the cost of traversal loops and
ray/triangle intersections is amortized over all 4 rays. The technique also
reduces memory bandwidth by requesting data only once per ray packet,
and increases the processor cache utilization at the same time. Algorithms
that use SIMD ray tracing must be specifically designed to shoot the rays by
coherent packs. It has been shown that both recursive ray tracing [13] and
global illumination algorithms [14] can be designed in appropriate way.

Wald et al. [13] report speed improvement of an order of magnitude com-
pared to other well-known ray tracers, which makes the method a proper
starting point for further optimizations. We use SIMD instructions as well,
but instead of tracing rays in packets of 4, we create pyramidal shafts con-
sisting of at least 16 rays, 4 rays being at the corners and others - inside the
shaft. When traversing the corner rays we collect all the triangles that poten-
tially can be intersected by the inner rays in the memory buffer. Shooting of
inner rays then usually consists only of intersecting them with such relevant
triangles, which are very few in number (typically 1-2 per ray packet).
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3 Relevant Triangles Tracing (RTT)

To create convex ray shafts, we compute images in 4×4 independent pixel
tiles. Such image tiling requires that the image horizontal and vertical res-
olutions are multiples of 4. It is already so for most common resolutions
(640x480, 1024x768, 1280x768, etc.). If not, we render slightly larger image
and then crop it to match the initial resolution. Depending on the antialias-
ing setting, each 4×4 pixel tile can be subdivided to a number of subpixels
(Figure 1).

Figure 1: 4×4 pixels tile (pixel borders are shown with bold lines) with 2×2
antialiasing. Rays that go through the tile corners create a convex pyramidal
shaft.

BB

AA

Figure 2: A is a zone where one of the barycentric coordinates is positive.
If this barycentric coordinate is negative for all of the 4 corner rays, none of
the inner shaft rays (zone B) can intersect the triangle.

4 rays that go through the corner subpixels of each tile are simultaneously
traced using SIMD instructions. During traversal we check that rays go all
the way through the same kd-tree nodes. This is an easy thing to track since
traversal algorithm has this information anyway and all we have to do is
to set some flag as soon as the rays split to different sub-trees. If this flag
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happens to be set in the end, shaft is considered to be not coherent with
respect to the kd-tree and RTT can not be applied.

Every time the corner rays encounter a nonempty kd-tree node, triangles
contained there have to be tested for an intersection. Each triangle is si-
multaneously tested against 4 rays using SIMD instructions. 5 conventional
tests are applied: 2 tests check that the triangle plane is located between the
ray origin and the ray end, 3 tests check that each barycentric coordinate of
plane/ray intersection is positive. Due to the shaft convexity, if any of those
tests fails for all 4 rays simultaneously, the triangle can not be intersected by
any of the inner shaft rays (see example in Figure 2).

If none of the intersection tests fails for all 4 corner rays simultaneously,
the triangle has a chance to be intersected by the inner rays and thus its index
is stored into a so called relevant triangles list. Under certain conditions
visibility queries for the inner shaft rays can be answered without expensive
kd-tree traversal, but instead by checking just triangles from the relevant
list. As stated above, similarly to the termination criterion idea [9], the first
of those conditions is coherence of the shaft corners. The second condition
depends on the query type and is discussed below.

3.1 Primary and Secondary Rays

For RTT to be applicable to primary and secondary ray shafts, the corner
rays of the shaft have to terminate at the same triangle. Otherwise (Figure 3),
testing accumulated relevant triangles for an intersection is not sufficient for
conservative answering visibility queries. The case when corner rays hit two
triangle that share an edge, could still be handled by supporting connectivity
information, but this solution is more complicated to implement.

The approach is more difficult to apply for secondary rays because distor-
tion caused by one or more reflections can destroy the convexity of the initial
shaft of primary rays. Testing a shaft for convexity after such a transforma-
tion can be computationally expensive in general case. We therefore suggest
to keep searching for terminating triangles only while a shaft is reflected by
planar objects because in such a case the convexity is clearly preserved.

3.2 Shadow Rays

We create shafts for shadow rays by connecting the light source position
with the hit points of corresponding primary (or secondary) rays as depicted
in Figure 4. Clearly shaft B will be convex if the originating shaft A was
convex and the rays of shaft A have terminated on coplanar triangles. Thus
for shadow rays the condition for RTT to be applicable is more relaxed than
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a) b)

Figure 3: RTT for primary and secondary rays. a) Corner shaft rays hit
different triangles of the same kd-tree leaf. It is not guaranteed, that the
inner rays will pierce any of the depicted triangles, and even that they will
terminate in the same leaf: they can slip through the gap between triangles.
b) The inner shaft rays have to end at depicted triangle because all of the
corner rays are ending there.

Shaft AShaft A Shaft BShaft B

Figure 4: A shaft created by shadow rays originates at the light source posi-
tion and ends some ε before reaching the hit points of primary (secondary)
rays.

for primary rays. It is only required that the primary rays of originating
shaft land at coplanar triangles, not necessarily at the same triangle.

4 Results and Discussion

The algorithm was implemented and tested within the 3DS MAX framework
that offers vast modeling, animating, and rendering benefits. We only had to
implement ray shooting. Other procedures needed for rendering, like shading
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of materials and evaluation of light sources emission, are provided by the
3DS MAX core. Timings were measured purely for ray shooting and do
not include shading that strongly depends on the specifics of the underlying
system. Timer based on RDTSC (Read Time-Stamp Counter) processor
instruction was used. The resolution of such timer is equal to the processor
frequency (in our case 2, 385·106 ticks per second) and is enough for measuring
relative performance of even single ray shooting queries.

Figure 5 a) demonstrates one of the testing scenes, which is an office
environment illuminated by 16 omni-directional light sources. Figure 5 b)
illustrates RTT for primary rays. Pixels are black where kd-tree traversal was
used, they are white - where visibility queries that were answered by RTT
without ray traversal. Lines of black pixels appear at the borders between
two triangles or between two kd-tree nodes. Concentration of black color
corresponds to the image regions with detailed geometry, where the projected
triangle size is comparable to the size of the 4x4 pixels tile used for shafts
construction. Increasing the image resolution changes the notion of ’detailed’
and makes the algorithm perform better, which will be demonstrated later
on. Figure 5 c) shows similar statistics for shadow rays from one of the light
sources, except that we introduce two gradations for queries answered by
RTT. White corresponds to pixels where relevant triangles list contained 0
triangles, gray - to pixels where it contained 1 or more triangles.

The other two test scenes are depicted in Figure 6. Figure 6 a) is a
room environment illuminated by 7 spot light sources. Figure 6 b) is an
office environment filled with plants. Many small leaves destroy image space
coherence and make this scene a hard case for the suggested algorithm.

We compare RTT with the conventional SIMD ray tracing technique [13],
which is currently one of the fastest ray tracing algorithms and was used as
a starting point for our technique.

Table 1 lists miscellaneous statistics for the test scenes computed at the
resolution 640x480. It is seen that even at this small resolution, technique
allows to save significant amount of primary and shadow rays. For the ROOM
scene RTT needs about 1.8 times less primary rays and about 1.9 times less
shadow rays compared to SIMD ray tracing. The time reduction, however,
is not that spectacular: 1.22 and 1.17 for primary and shadow rays tracing
respectively. Reason for that is that the rays saved by RTT usually traverse
empty or poorly populated scene regions. kd-tree in such a regions is quite
shallow and it does not cost much to traverse it. Even though almost halve
of all rays are skipped, it is actually the other halve that takes most of the
time.

To exploit the power of the technique better, two possibilities exist. The
first is increasing the ratio of inner shaft rays, thus increasing acceleration
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(a)

(b) (c)

Figure 5: Visualization of RTT for OFFICE test scene. (a) OFFICE test
scene. (b) Visualization of RTT for primary rays. (c) Visualization of RTT
for shadow rays.

potential. Without antialiasing each 4x4 tile contains just 16 rays resulting
in ratio of corner rays equal to 25%. When using antialiasing 2x2, each 4x4
tile requires 64 rays and the ratio of corner rays is reduced to 6.25%. Graph
in Figure 7 shows the dependency of relative acceleration from antialiasing
settings. Note that even for the hard case of PLANTS scene technique shows
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ROOM OFFICE PLANTS
SIMD pr. rays time 119 157 477
#primary rays 307200 307200 307200
RTT pr. rays time 96.8 142 502
#primary rays 172524 170928 273588
#avr. relevant trgs 1.134 1.139 1.127
SIMD sh. rays time 81.8 2127 5991
#shadow rays 247251 4812053 3708088
RTT sh. rays time 70.1 1716 5485
#shadow rays 129461 2356197 2400053
#avr. relevant trgs 1.095 3.246 4.274

Table 1: Performance statistics for the test scenes. Time for primary and
shadow rays shooting separately is given in milliseconds. For RTT we addi-
tionally provide an average number of entries in the relevant triangles list.

some (though not large) acceleration.
Second possibility to exploit the suggested technique in a better way is

computing images of larger resolution. So far we have only experimented
with image resolution of 640x480 that does not supply much image space
coherency. Acceleration dependency on the image resolution is shown on the
Figure 8.

Increasing both resolution and antialiasing simultaneously can yield even
more benefit. For instance computing image of ROOM scene with antialias-
ing 6x6 at the resolution 2048x1560 is 2.43 times faster using RTT than
SIMD algorithm.

5 Conclusion

We have suggested a robust and simple ray tracing acceleration algorithm.
The algorithm is based on SIMD ray tracing technique, but further utilizes
image space ray tracing coherence to achieve even greater performance. The
neighboring rays are grouped into coherent packs, bounded by convex shafts.
When executing ray traversal loop for the shaft corners, the algorithm col-
lects information that allows to immediately and conservatively answer vis-
ibility queries for the inner shaft rays without expensive kd-tree traversal.
The information collection is performed on-the-fly and does not require any
additional scene preprocessing.

The proposed technique achieves acceleration on most of scenes. When
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computing small resolution images without antialiasing, speedup of 1.1 to
1.3 times can be expected. Especially large performance benefits up to 2.5
times are received when computing high quality images of large resolution.
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(a)

(b)

Figure 6: More test scenes. (a) ROOM test scene. (b) PLANTS test scene.
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