
' $ �
�

' $ �

��

I N F O R M A T I K

 	

� �

On Fast Construction of Spatial
Hierarchies for Ray Tracing

Vlastimil Havran Robert Herzog
Hans-Peter Seidel

MPI–I–2006–4–008 June 2006

FORSCHUNGSBERICHT RESEARCH REPORT

M A X - P L A N C K - I N S T I T U T
FÜR

I N F O R M A T I K

Stuhlsatzenhausweg 85 66123 Saarbrücken Germany

Author’s Address

Vlastimil Havran Robert Herzog Hans-Peter Seidel
Max-Planck-Institut für Informatik
Stuhlsatzenhausweg 85
66123 Saarbrücken
Germany
{havran, rherzog, hpseidel}@mpi-inf.mpg.de

Abstract

In this paper we address the problem of fast construction of spatial hier-
archies for ray tracing with applications in animated environments including
non-rigid animations. We discuss properties of currently used techniques with
O(N log N) construction time for kd-trees and bounding volume hierarchies.
Further, we propose a hybrid data structure blending between a spatial kd-
tree and bounding volume primitives. We keep our novel hierarchical data
structures algorithmically efficient and comparable with kd-trees by the use
of a cost model based on surface area heuristics. Although the time com-
plexity O(N log N) is a lower bound required for construction of any spatial
hierarchy that corresponds to sorting based on comparisons, using approx-
imate method based on discretization we propose a new hierarchical data
structures with expected O(N log log N) time complexity. We also discuss
constants behind the construction algorithms of spatial hierarchies impor-
tant in practice. We document the performance of our algorithms by results
obtained from the implementation on nine scenes.

Keywords

Ray shooting, ray tracing, animation, time complexity, hierarchical data
structures, spatial sorting, approximate algorithms

(a) (b) (c)

(d) (e) (f)

Figure 1: Six static scenes used for testing of our algorithm. (a) Conference
Room (b) Bunny (c) Armadillo (d) Dragon (e) Buddha (f) Blade.

1 Introduction

Nowadays, thanks to the algorithmic progress in spatial data structures (DS)
and increasing performance of computer hardware, we achieve interactive and
real time ray tracing of primary and shadow rays [28] for static scenes. This
requires efficient hierarchical DS that results in the logarithmic complexity
of ray tracing, such as kd-trees [20, 11, 28] built with surface area heuristics
(SAH). The preprocessing time for hierarchical DS has been shown to be
O(N log N).

In practice, kd-trees have been used in interactive ray tracing for static
walkthroughs [35]. So far only special settings of dynamic and semi-dynamic
scenes [42, 41] where only a small portion of objects is moving or object
instantiation is used, have been successfully addressed. Fully realtime or
interactive preprocessing of spatial hierarchies for non-rigid animations also

1

referred to as unstructured motion is a difficult problem. It was achieved
only for a small number of objects (≈ 10, 000 for year 2005). We lift these
limitations using several techniques. First, we show how spatial kd-trees
(SKD-trees) [23] can be used for ray tracing instead of classical kd-trees.
Second, we show that it is convenient to combine the spatial kd-trees with
bounding volumes (BVs), in a sparse way, resulting in a hybrid DS with
O(N log N) preprocessing time and O(N) storage.

We also lift the assumption on O(N log N) time complexity for prepro-
cessing to O(N log log N) by discretization in the space of splitting planes.
Radix sort (bucket/distribution sort etc.) [15] that relies on the limited pre-
cision of input data achieves O(N) time complexity for sorting instead of
O(N log N) based on comparisons. Similarly, we can construct an efficient
spatial hierarchy for ray tracing in a discrete setting with expected time
complexity O(N log log N) time instead of O(N log N). The construction
assumes that the representation of axis aligned bounding boxes tightly en-
compassing the objects is restricted to b bits. Further we assume that objects
do not vary much in size and that distribution of objects is not highly skewed.

This paper is further organized as follows. In Section 2 we describe pre-
vious work on ray tracing dynamic scenes. In Section 3 we provide an al-
gorithmic consideration for efficient algorithms. In Section 4 we recall the
SKD-trees developed for databases and the DS built in O(N log log N) time
in the community of theoretical computer science. In Section 5 we describe
the discretization for evaluation of SAH in one-dimensional setting. In Sec-
tion 6 we describe the hybrid tree combining a spatial kd-tree with BVs.
In Section 7 we describe how the discretization can be extended to three
dimensions using a 3D summed area table. In Section 8 we describe briefly
the modifications to the traversal algorithm. We present the experimental
results in Section 9. We conclude the paper with a summary of contributions
and future work.

2 Previous Work

In this chapter we briefly recall the previous work on ray tracing that relates
to our paper.

2.1 Dynamic Data Structures for Ray Tracing

While there has been much effort devoted to optimization of ray tracing
techniques for static scenes (surveys in [4, 11, 34, 2]), the DS for animated
scenes have not been investigated in depth. In the early work Parker et al. [25]

2

allow a few objects to be moved interactively. The ray tracing for a single
ray is decomposed into two phases. In the first phase the intersection with
static objects is computed using standard spatial DS. In the second phase
the ray is intersected with dynamic objects. Then the results of the two
phases are combined together taking the closest intersection. This method
allows rendering of only a few simple dynamic objects in practice. Later,
Reinhard et al. [27] show how to extend the grid-like structures duplicating
the boundary of grids virtually in order to enlarge the spatial extent accessible
by objects. More recently, Lext et al. [19] proposed a benchmark for ray
tracing of animated scenes containing three data sets. Although they propose
a classification of motion types and provide a very good motivation for such
a benchmark, they do not describe any particular algorithm to solve the
problem. Their classification of motion involves two types. First, hierarchical
motion is generated from a hierarchical scene graph and hence it preserves
some hierarchical spatial relationship among objects from frame to frame.
Second, unstructured motion as more general case corresponds to non-rigid
data animation where fewer or no assumptions can be made. The proposed
benchmark data containing three scenes addresses different issues for the two
types of motion and several challenges that new DS designed for ray tracing
of animated scenes should solve.

Wald et al. [42] motivated by the algorithm of Lext and Möller [17] show
a technique with two-level DS based on kd-trees exploiting the modeling hi-
erarchy. The bottom level contains single individual objects consisting of
many primitives. Such objects have their own locally precomputed kd-trees
and can be animated in the global space by a single transformation matrix
with optional instantiation over basic object data. The upper level kd-tree
is built over bottom level objects enclosed by boxes for every frame. If the
number of objects at the upper level is small (in order of hundreds to thou-
sands), then the upper-level kd-tree construction achieves interactive rates.
However, this solution is not suited for unstructured motion of individual
object primitives. In the same year, Szecsi et al. [37] propose an interest-
ing extension to the “sequential” method of Parker et al. They suggest to
construct two kd-trees, one kd-tree over static data and one kd-tree over dy-
namic objects. Instead of traversing the trees in sequential order and later
combining results, they propose to traverse the two trees simultaneously by
a special traversal algorithm over two trees. Another paper by Adams et
al. [1] focuses on the use of spatial and temporal coherence for efficient up-
date of bounding sphere hierarchy for deforming point-sampled surfaces. A
discussion on several important issues and motivation for dynamic DS was
presented in [41].

3

2.2 Collision Detection and Visibility

Another related field that deals with animated geometric data is collision
detection and general visibility algorithms. The focus of so far presented
techniques has been the update of DS (mostly BVHs) from frame to frame.
For a survey of techniques on collision handling we refer to the excellent
tutorial [40]. The most relevant techniques in visibility deal with the update
of dynamic data structures [5, 36]. More recently, Shagam and Pfeiffer [32]
propose to use dynamically updated octrees in the context of visibility culling.
We do not discuss the details of these techniques that are only related to the
update of DS and not to the construction of the hierarchies from the scratch
as presented in this paper.

3 Algorithmic Motivation

Below we briefly discuss algorithmic issues of spatial hierarchies relevant to
unstructured motion. If we have N moving objects with unstructured (=mu-
tually independent) motion, then the lower bound to construct or reconstruct
DS is Ω(N). This can be achieved for grid-like DS such as uniform subdi-
visions. The preprocessing time for grid-like DS is O(N · P), where N is
the number of objects, and P is the average number of references per one
object in grid cells. Since a single object can reside in more than one cell, for
large objects it can result in high preprocessing time and hence it is highly
dependent on the scene. More importantly, for skewed distributions the per-
formance of grid-like structures is not competitive with kd-trees built with
SAH [38, 12]. This could perhaps be alleviated by recursive grids [13]. How-
ever, it seems to be generally difficult to predict the memory requirements
and hence the preprocessing time of recursive grids [4, 12].

In collision detection the dynamic update of bounding volume hierarchies
(BVHs) is addressed, such as dynamic collision of unstructured motion [16].
This is efficient for collision detection where the query domain corresponds to
an expanding sphere. For ray tracing however, where the query is formed by a
line, different problems can be expected for dynamic updates. The dynamic
updates are localized on lower levels of the hierarchy similarly to collision
detection, at best only in leaves, where objects are moved to new positions.
The changes are propagated upwards in the hierarchy. By repetitive local
updates the global structure can become potentially less and less efficient,
since upper levels of the hierarchy do not reflect the changes as much as
efficiently as the construction from the scratch. Therefore, the performance
of updated DS can degrade with repetitive updates due to the lack of update

4

in the higher levels of the hierarchy. The moment when a subtree rooted
at a particular node need to be rebuild due to efficiency reasons has to be
recognized. This requires to keep the auxiliary information in nodes about
hierarchy rooted in the nodes to decide on the right moment to rebuild a
hierarchy completely. This in principle can cause stalls from time to time
during rendering if such an update is located close to the root node.

Second problem for unstructured motion is the time complexity of such
a rebuilding algorithm. For hierarchical (i.e. structured, organized) mo-
tion or scenes with only a small part of moving objects the update for
one object (object primitive) in a hierarchy can be computed in O(log N)
time. This is advantageous only for scenes where we need to update only
small number of objects. If the number of moving objects is P then hence
P � N 7−→ P log N � N log N . If we move majority of objects indepen-
dently then the update of DS starts to be a serious bottleneck since P ≈ N . It
could perhaps be alleviated by multiple processing of objects to be updated.
However, such algorithm has to be designed very carefully, since updating a
hierarchy without knowing new positions of the neighboring objects makes
the problem rather difficult. A trivial algorithm that updates all objects one
by one by locally rebuilding the hierarchy (including deferred rebuilding) for
each change has the time complexity O(N log N). This has the same time
complexity as rebuilding the hierarchy from the scratch. However, the algo-
rithm with updating the hierarchy does not guarantee the same efficiency as
the algorithm completely rebuilding DS for every frame.

Based on the analysis above we argue that one viable algorithm for un-
structured motion is an algorithm that can construct the DS very efficiently
from scratch for every frame of the animation. Such a solution, if it exists,
avoids bookkeeping the data in the nodes of the tree to be updated and guar-
antees good performance for every frame of the animation. Clearly, it can
also be used for static scenes to decrease the preprocessing time. Therefore
in order to overcome an algorithmic complexity we address the fast construc-
tion of DS while acceptably decreasing their performance during searching
by a discretization of the problem setting.

4 Algorithmic Background

In this chapter we describe algorithmic preliminaries developed in the field of
databases and theoretical computer science. We believe that below described
concepts are not well known in the computer graphics community. We con-
sider necessary to review them to give better motivation for our algorithm
design.

5

4.1 SKD-trees and Related Data Structures

Kd-trees were designed by Bentley [3] as underlying DS for efficient indexing
of multidimensional point data. A tree is constructed recursively, having
interior nodes and leaves embedded in the axis-aligned splitting planes.

In order to address efficient indexing of non-point data Ooi et al. [23]
have proposed an extension to kd-trees called spatial kd-trees (SKD-trees).
Several other extensions to kd-trees were proposed in several papers from
other authors, we refer to surveys [7, 24]. The proposal of SKD-trees is similar
to BVHs [29, 14] and R-trees [10], but SKD-trees are more memory efficient.
Instead of implementing a hierarchy by representing a single splitting plane
in an interior node as in kd-trees, the interior nodes of SKD-trees contain two
splitting planes. It subdivides the original region into two either overlapping
or disjoint subregions. The concept of a SKD-tree node is shown in Figure 2.
The closest concept to SKD-trees is Kay and Kajiya’s method of slabs [14]
that are used to represent BVs in BVHs.

Figure 2: An organization of splitting planes inside SKD-node. Two splitting
planes in the node defines spatial extents of two children (left) the child nodes
overlap (right) the child nodes are disjoint.

During the subdivision step every object is fully contained in the spatial

6

extent in one of the two child nodes. Every interior node describes both axis-
aligned splitting planes and references to children. The tree is constructed
recursively in a top down fashion. The recursion is terminated by a construc-
tion of a leaf node containing the reference to a single object residing in the
spatial extent of the leaf. We base our ray tracing algorithm on SKD-tree
nodes and combine them with BV nodes.

We would like to mention that there are many variants to kd-trees and
BVHs (and hence R-trees [10]) generalizing the concept of a hierarchy in var-
ious ways. For ray tracing two basic concepts are used. The first one allows
overlapping of spatial regions (BVHs, R-trees, SKD-trees etc) by building
up the hierarchy over the data, often referred to as object hierarchies. The
second concept forms strictly disjoint spatial regions, using for example a set
of subdividing hyperplanes (kd-trees, octrees, grid-like data etc.). This is
often referred to as spatial subdivision. A few hybrid methods combining the
two concepts were also proposed. Since this is a very broad topic, we refer
to excellent surveys [30, 7, 24].

4.2 Fast Construction of Spatial Hierarchies

Motivated by the linear time complexity of multipole algorithm in computa-
tional physics Reif, Tate, and Xu [26, 39] have addressed an important related
problem, namely fast construction of spatial decompositions for point data
to solve closest pair, k-nearest neighbor, and n-body problems. Assuming
that the input point data are represented with limited precision, namely
O(c log N) for all coordinates of a single point (c = const) in D-dimensional
space, they propose a method for construction of spatial subdivisions in
O(D2N log log N) time. Since we have been motivated by their approach,
we describe their method briefly to show the differences later. In the first
step a complete regular support tree of height h (so all leaves at the depth
h, spatial median, cyclic order of axes for splitting planes) is constructed. In
the second step all the input points represented in a finite representation are
mapped to the leaves of the support tree in constant time. In the third step,
the partial tree is processed by moving from the leaves to the root merging
empty leaves until each leaf contains at least a single point. This bottom-up
merging continues until the whole tree is created. For leaves containing more
than one point the algorithm recurses and new partial tree is supported and
linked to the parent partial tree. By carefully selecting the height of the
supporting tree for every level of recursion and performing the search in the
tree by bitwise operations in constant time for each point, the time complex-
ity is shown to be O(N log log N). For details, experimental results, and the
related work on this subject we refer to the excellent exposition in [26, 39].

7

5 SKD-Trees Constructed with Discretized

SAH Computation in 1D

In this paper we focus on SKD-trees described in Section 4.1. Obviously,
for SKD-trees we could use the spatial median strategy similar to other data
structures [14, 44, 33]. However, it has been shown on kd-trees that spatial
median results in inferior performance of ray tracing for skewed distributions
compared to the methods based on the SAH cost model [20, 11]. Therefore
we apply the cost model based on SAH to construct efficient SKD-trees.
While a precise construction algorithm with time complexity O(N log N)
could be used, motivated by the method of Reif and Tate [26] we discretize
the evaluation of a cost function along the axis to be subdivided.

In this chapter we describe the construction of SKD-tree based on the cost
model using surface area heuristics. This model was described by Goldsdmith
and Salmon [8]. They use integral geometry measure to estimate the prob-
ability of rays intersecting a spatial region such as a box. This is usually
referred to as surface area heuristics (SAH). Using the cost model based on
SAH they construct BVH in a randomized way inserting objects one by one,
changing the shape of the constructed hierarchical tree on the fly. It has
been shown independently by experiments that this method leads to inferior
performance compared to top-down construction [21, 22, 12].

A geometric probability of shooting rays has been applied later with suc-
cess to kd-trees [20]. Such a kd-tree is constructed in top-down fashion where
a cost model based on SAH is evaluated to select the splitting plane position
in interior nodes. This method has been shown to produce efficient kd-trees
for ray tracing scenes with uniform as well as skewed distribution of ob-
jects [20, 11]. An efficient construction algorithm based on the plane-sweep
paradigm with time complexity O(N log N) for kd-trees has been described
in [11, page 80] and detailed in [43].

Below we consider a geometry depicted in Figure 3. To create an interior
node of a kd-tree we assume a box of size w×h×d containing N objects which
is subdivided along w by a splitting plane at the position α · w, α ∈ (0, 1).
If NL(α) and NR(α) is the number of objects on the left respectively right
of the splitting plane, and NS(α) objects are straddling the splitting plane
(N = NL(α)+NR(α)+NS(α)), we can formulate the quality of a subdivision
step q(α) for a splitting plane at α by computing the ratio of the cost after

8

Figure 3: A spatial extent of the kd-tree node of width w, height h, and
depth d split into two spatial regions at w · α.

and before subdivision in the following way [11, page 68]:

SA = (w · (h + d) + h · d),

CL(α) = (NL(α) + NS(α)) · (w · α · (h + d) + h · d)/SA,

CR(α) = (NR(α) + NS(α)) · (w · (1 − α) · (h + d) + h · d)/SA,

q(α) = (CL(α) + CR(α))/N,

where CL(α) and CR(α) is a linear estimate of the cost of the left subtree
and right subtree to be constructed, respectively. A typical graph of q(α)
for large N is shown in Figure 4. The local greedy heuristics with the cost
model based on SAH can be used for all hierarchical DS constructed in a top-
down fashion. This was used for example to optimize octrees [45]. Recently,
Mahovsky [21, page 58] proposed to use the cost model also for BVH, but
neither experimental nor theoretical results are presented.

We have investigated if a cost function can be computed in a discretized
setting. We have found out to be convenient for a larger number of objects.
This has two reasons. First, the cost function shows a single global minimum
for a large number of objects as discontinuities are smoothed away due to a
large number of overlapping objects. Second, the cost function is relatively
smooth and flat around the global minimum of the function because of its
integral form. In the opposite for a small number of objects the cost function
shows strong discontinuities and the selection of a splitting plane has to be
handled more carefully.

To implement discretization we create M buckets subdividing the spa-
tial extent along the width of the box w. Each bucket contains the rep-
resentation of three axis aligned bounding boxes A, AL, and AR and the

9

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1#
Q
u
a
l
i
t
y

a
t

s
p
l
i
t
t
i
n
g

p
l
a
n
e

p
o
s
i
t
i
o
n

a
l
p
h
a

splitting plane position alpha

Quality of a subdivision step for SAH construction

’uniform’
’skewed’

Figure 4: A graph with the typical behavior of q(α) representing the
cost reduction for subdivision at position α for a large number of objects
(N=100,000) based on real data. Although in principle the cost function is
discontinuous, for many small objects the discontinuities are smoothed away.
(red) Uniform distribution. (green) Skewed distribution.

number of objects in the bucket. In the first step we initialize all bound-
ing boxes and counters in all buckets. In the second step every object is
one by one inserted into a bucket i based on the centroid of the bounding
box of the object updating A(i) (i ∈ 〈0,M − 1〉). The use of the box cen-
troids is necessary since objects are non-point data and we need to assign
them to buckets in a unique way. In the third step we carry out a plane-
sweep from right to the left to compute the minimum box on the right of
each bucket b as AR(b) =

⋃M−1
m=b A(m), so AR(b) = A(b)

⋃

AR(b + 1) and
AR(M − 1) = A(M − 1). In the fourth step we compute plane-sweep opera-
tion from left to the right to compute the minimum box on the left for bucket
b as AL(b) =

⋃b

m=0 A(m), so AL(b) = A(b)
⋃

AL(b − 1) and AL(0) = A(0).
This allows to compute in O(M) time a tight axis aligned box for all the
objects assigned to the bucket b in range 〈0, b〉 and 〈b,M − 1〉. The number
of objects NL(b) associated with all the buckets on the left of bucket b is
summed during the plane-sweep operation from left to right of bucket b.

Then we can evaluate the cost function in for M − 1 positions. We
computed a spatial extent (box) on the left of a bucket b in AL(b) and the
number of objects in NL(b). We also computed a box on the right of b in

10

AR(b) and the number of objects on the right as N−NL(b). Then we evaluate
the cost function C(b) based on SAH as follows:

CL(b) = NL(b) · SAL(b)/SA,

CR(b + 1) = (N − NL(b)) · SAR(b + 1)/SA,

C(b) = CL(b) + CR(b + 1) (1)

where SAL(b) is the surface area of the tight box AL(b) and SAR(b) is the
surface area of the box AR(b). We evaluate the cost function for M − 1 posi-
tions. We select such bm that results in the minimum value of the estimated
cost C(bm). Spatial extents for the two children along axis a to be subdivided
create two values for the SKD-tree node: Maxa(AL(bm)) for the left subtree
and Mina(AR(bm)) for the right subtree.

The construction of a SKD-tree is carried out recursively in a top down
fashion, performing in each step distribution of objects to buckets and com-
puting the split into two child nodes. This results in O(N log N) time com-
plexity for construction. Even if it is equivalent to O(N log N) algorithm
for kd-trees [11], there are different multiplicative factors hidden in big O
notation. First, for SKD-trees there is no fragmentation during splitting, so
the number of references to objects is strictly N . For kd-trees the number of
references to objects is r · N (r ≥ 1), according to our experimental evalua-
tion approximately in range 1.8 − 3.5 in dependence on the scene and used
termination criteria. This influences the number of evaluations of the cost
function. Second, O(N log N) algorithms for kd-trees require to split three
lists to six lists based on the position of the splitting plane plus evaluation
of a cost model. This is by factor of two to three times more costly than a
simple bucketing described above.

Clearly, the discretized evaluation of a cost function results in a smaller
precision. It means that less efficient spatial hierarchies are constructed due
to discretization. We show that this trade-off is acceptable if our concern is
total running time of the application (construction of DS + rendering based
on ray tracing using the data structures). Second source of inefficiency is
overlapping of SKD-nodes. We have to traverse all spatially overlapping
nodes to ensure that we find the nearest object. More traversal steps could
result in decreased performance. This is partially compensated by a smaller
height of SKD-trees compared to kd-trees and by single references to objects
in the leaves of hierarchy.

11

6 H-trees = SKD-trees + BVs

During experiments with SKD-trees described above we have found out that
SKD-nodes do not separate empty space sufficiently. The performance of ray
tracing with a tree containing only SKD-nodes and leaves is far behind the
performance of kd-trees, by factor about 1000% for some scenes we tested.
Below we propose the combination of SKD-trees and BVHs called H-tree. Its
efficiency is then comparable to kd-trees.

6.1 H-trees Description

The storage of traditional BVH nodes requires to store axis aligned bound-
ing box (six values). This has two disadvantages. First, storing the whole
box for every interior node is relatively memory expensive (a single interior
node takes 32 Bytes if pointers and floating point values are represented by
4 Bytes). Second, the ray traversal algorithm for BVHs requires to compute
up to six ray plane intersections to determine if a ray intersects the box. This
intersection test is relatively costly (kd-trees require to compute a single ray-
plane intersection and to evaluate only two conditions). During our study
of pure SKD-trees for ray tracing we have found out that a pure SKD-tree
node does not bound enough tightly the objects associated with the nodes.
Therefore we propose a hybrid DS combining SKD-tree nodes and bounding
volume nodes in a hybrid hierarchy. Our bounding volume nodes are in prin-
ciple equivalent to cutting off empty spaces in kd-trees. When empty space is
cut away, the ray traversal algorithm can proceed such spatial regions more
efficiently.

We distinguish between two current spatial extents associated with a node
ν represented by a box. First, we define the enclosing spatial box BE(ν) as
the minimum box enclosing all the objects associated with ν. Second, during
traversal a traversal box BT (ν) is formed by limiting the spatial extent of the
node by traversing all the interior nodes on the path from root to node ν.
Obviously, ∀ν : BE(ν) ∈ BT (ν) forms a necessary condition for any correct
spatial hierarchy. Based on relation between BE(ν) and BT (ν) and assuming
axis-aligned planes to be used in the bounding primitives, we can enumerate
the options for bounding nodes representing a bounding volume (BV):

• BV1: a single plane splitting node as in a kd-tree, used to cut away an
empty space on either side of the plane.

• BV2: a two-plane bounding node defining a spatial extent of objects
along one axis. This is complementary to the definition of the spatial

12

Figure 5: Bounding volume nodes used in our H-tree depicted in 2D space,
(top) BV2: two-plane bounding node, (bottom) BV6: six-plane bounding
node.

tree node and corresponds to slabs [14] as infinite region between two
parallel planes. The concept of the node is shown in Figure 5 (top).

• BV6: a six-plane bounding node (traditional axis-aligned bounding
box), shown in Figure 5 (bottom).

• BVO (others): we can form a bounding volume node by any combi-
nation of six axis-aligned bounding planes. In total having one, two,
three, four, five, or six axis aligned planes (this includes options in
above mentioned categories BV1, BV2, and BV6).

In total we could have 63 types of bounding nodes as it can be shown by
variational calculus. However, using all the nodes would complicate the algo-
rithm implementation. Such approach though theoretically viable is likely to
have small practical merit. In order to keep both construction and traversal
algorithm simple, we have implemented only variants BV2 and BV6 simul-
taneously. As a result, we have an H-tree that can contain these nine types
of nodes:

13

• a leaf node containing a pointer to a single object,

• a six-plane bounding node – traditional bounding box node, a single
child is referenced in DFS order,

• a two-plane bounding node – a bounding box node with two planes, in
total three nodes (one for each axis x, y, z),

• a SKD-tree node, in total three nodes (one for each axis x, y, z),

• a link node from a current address to another address to be used for
a fixed size memory allocator, if we allocate the memory in chunks of
fixed size.

6.2 Memory Layout of H-trees

The important aspect is the layout of nodes in the memory of a computer.
Such alignment in main memory, L2 cache, and L1 cache plays an important
role for the performance in current modern processors [28] and [11, page
125].

A design of H-tree can use depth-first-search (DFS) ordering of nodes in
the memory. It allows to align the nodes on the 16 Bytes boundary assuming
32-bit computer architecture. The SKD-tree nodes and leaves take 16 Bytes,
two-plane nodes 16 Bytes, and six-plane nodes 32 Bytes. Since the maximum
number of nodes is known in advance, we could preallocate the maximum
possible size required by the tree N ·16 · (1+1+2) for N objects. We have N
leaves (1× 16), N − 1 interior SKD-nodes (1× 16), and at most N six-plane
bounding nodes (2 × 16). To minimize wasting of unused allocated memory
we allocate memory subsequently in chunks of fixed size such as 16 KBytes.
We use link nodes from current address to the beginning of a new chunk
when the memory in the current chunk is exhausted.

6.3 H-trees Construction

The construction of an H-tree is started by a precomputation of a tight
bounding box over all objects (BE(root)). We set the traversal box to
BT (root) and initialize it with infinite size. Then we start building up a
tree with termination at leaves containing single objects. The type of the
interior node to be created is chosen by evaluating the cost model described
below. This model determines if it is the most advantageous to insert a six-
plane bounding node (automatically for root node), a two-plane bounding
node, or most frequently a SKD-tree node (also automatically for the child

14

of the root node). Since the expected traversal cost of a node is estimated
in a similar way as for kd-trees, we omit the notation of a node ν to keep
formulas simpler.

• For the SKD-tree node the cost induced by a two plane separation is:

CSKD = CT
SKD + CIT/SA(BT) · (2)

(

NL(b) · SA(BT
L (b)) + NR(b) · SA(BT

R(b + 1))
)

,

where CT
SKD is the estimated cost to traverse the node and BT

L (b) and
BT

R(b+1) is a traversal box of the left or right child respectively induced
by objects in buckets 〈0, b〉 and bucket 〈b+1,M−1〉. Further, CIT is an
estimated cost for ray object intersection and SA(BT) denotes surface
area of BT . The difference to Eq. 1 is the different surface area of tight
boxes (Eq. 1) and traversal boxes (Eq. 2). Further, the estimated cost
of traversing the node CT

SKD is also plugged into the formula.

• For two-plane bounding node (BV2) we compute the cost as follows:

C2PN = CT
2PN + CIT · SA(BT

2PN)/SA(BT) · N, (3)

where CT
2PN is the estimated cost of traversing the node with two planes

and BT
2PN is a new traversal box after bounding with the two planes.

• For six-planes bounding node (BV6) we compute the cost:

C6PN = CT
6PN + CIT · SA(BT

6PN)/SA(BT) · N, (4)

where CT
6PN is the estimated cost of traversing the node with six planes

and BT
6PN is a new traversal box (= tight box) after bounding with the

six planes.

The traversal costs CT
SKD, CT

2PN , and CT
6PN and an average intersection

cost CIT are obtained from measurements before construction, creating ran-
dom nodes and traversing them by a set of random rays as proposed in [4].

7 AH-Trees in expected O(N log log N) via Ap-

proximation

In this chapter we describe the basic version of the construction algorithm
to decrease the complexity from O(N log N) to expected (N log log N). Our
technique is based on discretization similar to sorting by radix sort that in-
stead of O(N log N) allows sorting in O(N) time, assuming limited precision

15

of the input data representation. We call the resulting data structures AH-
trees.

Below we briefly discuss the motivation for AH-trees. The discretization
of the cost function computation along one axis described in Section 5 does
not help us to reduce the algorithmic complexity of preprocessing, even if
the reduction of constants behind big O notation is important in practice.
We explain the reasons behind O(N log N) complexity required by sorting
necessary in the construction of spatial hierarchies. First, a key concept
of a spatial hierarchy is sorting and it takes Ω(N log N) [15]. Assuming
limited precision of the data representation radix sort allows time complexity
in O(N) time. This could be used in the preprocessing phase to sort all
object boundaries for all three axes [43, 11]. The rest of the algorithm splits
three lists containing object boundaries into six lists for one subdivision step.
This avoids repetitive sorting for each interior node, however, we still need
for splitting O(N) time for every interior node with N objects. Then the
time complexity remains O(N log N) for a tree of depth O(log N), even if
presorting took O(N) time.

Below we show how it is possible to overcome O(N log N) by discretiza-
tion, first for limited size of objects and second for arbitrary size of objects.

7.1 AH-trees for Limited Size of Objects

To overcome the algorithmic complexity issue we address the problem sim-
ilarly to Reif and Tate [26, 39] using limited precision also for position of
splitting planes by discretization of the whole 3D domain. However, instead
of constructing a tree from bottom to top as they do, we use construction in
a top-down fashion. It allows us to decide on a splitting plane at the discrete
positions using the cost model based on SAH. Another issue to be solved is
handling of large objects, since the method of Reif and Tate is designed only
for point data. We propose a solution in the next section.

First, we compute a tight box over the scene objects. Then we create a 3D
grid of arbitrary resolution preferably creating cubic-like cells. All the cells
of the 3D grid have the same size. If the size of the cell is C (cx, cy, cz), we
then define a “small object” as one whose bounding box B of size (bx, by, bz)
completely fits by size in C (i.e. bx ≤ cx ∧ by ≤ cy ∧ bz ≤ cz). This allows us
to limit a spatial extent of the object as shown in Figure 6.

In each cell of the grid we store the following data: list of objects as-
signed to the cell, the ’object count’ assigned to the list, and ’aggregate
count’. We distribute all objects into grid cells based on the position of the
centroids of objects. Then we construct a 3D summed area table over ’ob-
ject count’ storing the precomputed prefix sum to ’aggregate count’ of cells.

16

The precomputation for N objects and M ×M ×M buckets is computed in
O(N + M3) = O(N) time, since we take M = const · 3

√
N .

The use of 3D summed area table makes a difference to the method of
Reif and Tate [26], since they in fact use preallocated regular octree. The
3D summed area tables allows us to evaluate a number of objects on the left
and on the right for discrete positions of the splitting plane in constant time.
However, two spatial extents associated with the children can overlap by the
size of one bucket along the split axis. As we bound the size of the object
to the size of the cell, the maximum size of the box tightly enclosing all the
objects inside the cell is also limited. The cell box is extended for axis a on
both sides by ca/2 for all three axes as depicted in Figure 6.

Figure 6: The concept of maximum bounding boxes for objects in a cell.
Since the size of the objects is limited and objects are distributed according
to their centroids, the traversal box is extended by half the size of the grid
cell size. The box is depicted by dashed line.

The discretization allows us also to implement the evaluation of the cost
function in a discrete setting. We know the number of objects on the left and
on the right for a selected bucket. We can compute the minimum of a cost
function in expected O(log log M) time by interpolation-binary search [31].
Briefly, interpolation-binary search consists of one phase of interpolation
search [15] and one phase of binary search. We evaluate the cost model
until the bucket with minimum cost is found. Another feature discretized is
tight axis aligned bounding boxes for the left and right children. Although
we cannot compute exact tight boxes for objects in constant time, we can

17

easily detect if the box can be shrunk by the extent in any of the six bounding
planes. This is important for scenes with skewed distributions that contain
much empty space.

The construction algorithm proceeds recursively until a single cell is ac-
cessed. If this is a cell with only a single object, we create a leaf. Otherwise,
based on the number of objects in a single cell we either recurse the algo-
rithm with the discretization or use the algorithm described in Section 6. In
practice for low number of objects (≈ 100) we use the algorithm in Section 6.

Below we discuss the time complexity of the AH-tree construction algo-
rithm. In the analysis we relate M to N by formula M = 3

√
N , resulting

in M3 cells. We also assume that the precision of the objects is limited by
c log N . Each level of the discretization to a 3D grid over N objects re-
solves the tree construction in 3 · log

3
√

N bits in all coordinates of object
positions (hence object centroids). Then we need only a constant number
of grid levels (independent of N) to address the limited resolution c log N ,
including worst case distributions. Further, we have assumed in this section
that the objects fulfill the condition of ”small objects” above. Under these
assumptions we can compute the time complexity as follows. We create a
tree with exactly N leaves. The number of interior nodes is also O(N) (if
bounding nodes are inserted, then we have at most 2 ·N − 2 interior nodes).
To determine splitting positions for SKD-nodes closest to the root, we need
O(log log 3

√
N) = O(log log N) steps. In total we carry out N searches of

splitting plane positions. By summing N terms with the log log N term we
get O(N log log N) complexity (some constants are left in big O notation).
Recall that the factor log log N is in practice limited to 6 for N ≤ 264. If we
abuse the big O notation as discussed in [26], we could say that the construc-
tion under the condition of small objects for every level of the grid hierarchy
is O(N).

7.2 AH-Tree for All Object Sizes

In this section we describe an extension of the basic algorithm described
above to handle arbitrary objects. We utilize a method introduced by Guen-
ther and Gaede [9] developed in the context of spatial databases. They pro-
pose a concept called oversize shelves of extra storage space for large spatial
objects attached to interior nodes of a tree to avoid an excessive fragmen-
tation in spatial subdivision schemes. The oversize objects are put to extra
(ternary) child nodes during the insertion to the tree. Guenther and Gaede
propose this method for a cell tree, but the idea of oversize shelves can be
used in principle for any hierarchical DS.

Our DS are not created incrementally and the shape of the tree is not

18

known in advance. We extend the construction algorithm of our AH-tree with
oversize objects by two phases: location phase and oversize shelves construc-
tion phase. We insert all the objects based on the centroids to corresponding
cells. In a cell of a grid we mark oversize objects. When we access a single
cell C to process a node ν (we create a leaf, or recurse, or create H-tree
without discretization), we process all the oversize objects associated with C
in two phases as described below.

Location Phase: For every oversize object Oc we traverse up the tree to
the root starting at the node ν. We insert Oc to a temporary list L(νinsert)
associated with the first SKD-tree node νinsert we found on the traversal path
from ν to the root where the bounding box of Oc is fully contained in the
traversal box BT (νinsert).

Oversize Shelves Construction: During traversing up the tree from SKD-
tree node ν, after both child subtrees are constructed, we check every node
whether the list L(ν) of oversize objects is empty. If the list contains some
objects, we create a new tree T over all objects in L(ν) in the traversal box
BT (ν). We link T as a ternary child of ν. In practice, we have to extend the
nodes to allow ternary child nodes1.

Figure 7: Oversize shelves concept: a part of H-tree with a single ternary
child for oversize objects.

A part of the created AH-tree with ternary nodes containing oversize
objects is shown in Figure 7. We show that the oversize shelves concept

1This still fits to 16 Bytes for a SKD-node if implemented efficiently.

19

leads to correct DS. Each object Oi found in a cell C is used in one of three
cases:

• to create a leaf with one object, if a cell contains only a single object,

• in a recursion that constructs a AH-tree rooted at ν for all objects
found in the cell,

• in the list L(νinsert) of oversize objects of the node νinsert on the path
from ν to the root node.

If a list L(ν) containing oversize objects associated with a node ν is not
empty, we construct a tree. We use recursively either the same algorithm
described in this section (7) (if the number of objects is high and the dis-
cretization pays off) or an algorithm described in Section 5 (if the number of
oversize objects is small, which is typical case). The construction algorithm
for oversize objects, is also fully recursive, since the tree T2 constructed over
oversize objects in tree T1 can also invoke a construction of tree T3 for oversize
objects in any node of T2.

The discretization method for oversize objects has to be implemented
carefully. It may happen that the boxes of the objects only overlap and
the discretization does not separate objects, since the centroids of the ob-
jects are located in a single cell. When we detect such a case, we resort to
O(N log N) algorithm described in Section 5. This however happens rarely
for densely occupied scene regions, where all the objects span across the
whole bounding box of the scene. As a result the complexity of this algo-
rithm stays O(N log N) for the worst case, but in practice it shows expected
O(N log log N) for realistic input geometric data that overlap in acceptable
way we refer to [6].

8 Traversal Algorithm for H-tree and AH-

tree

The design of SKD-tree and H-tree nodes requires changes to the ray traversal
algorithm. We use an interval clipping algorithm along a ray implemented
with a stack similarly to kd-trees. A SKD-tree node traversal forms two
(disjoint or overlapping) intervals along the ray from which the closest child
is traversed first. The bounding nodes only clip the current interval along
a ray by two or six planes. The SKD-tree nodes with ternary children first
traverse the subtree constructed over oversize objects, since there is a higher
probability of ray object intersections.

20

9 Results

We have implemented several ray tracing algorithms. We are concerned with
the construction times of the DS and the performance of the ray tracing. As
a reference we use to standard kd-trees constructed with SAH and automatic
termination criteria implemented following course notes [35] and [11]. For
these kd-trees we do not use split clipping [11, page 71] in order to minimize
its construction time. For the same reason we evaluate the cost model only for
a single axis. It is important to recall that our reference kd-tree construction
algorithm is highly optimized. If we compare its performance to the recent
publication [43] using the same scenes that our algorithm is typically twice
faster than the one in [43]. This is also since we do not use split clipping.
The performance of ray tracing with kd-trees is comparable to [43, 35] for
shooting individual rays. For testing we used a PC equipped with AMD
Athlon(tm) 64 X2 Dual Core Processor 3800+, but for both construction
and rendering we exploit only a single core and single thread.

Table 1 shows the achieved experimental results. We use six static scenes
shown in Figure 1 and three benchmark scenes for animated ray tracing
(BART [18]). Three scenes have highly skewed distribution of objects that
concerns positioning and sizes of objects, namely scene “Conference Room”,
“Robots”, and “Museum”.

The first row of results refers to kd-tree. The second row denoted ’UG’
refers to uniform grids with the number of voxels five times higher than the
number of objects. The third row denoted ’BVH-Median’ is the bounding
volume hierarchy constructed with the spatial median in top-down fashion
similarly to [33]. However our implementation is highly optimized (by factor
from 3 to 5 compared with [33]). The fourth row denoted by ’BVH-SAH’ is
bounding volume hierarchy extended by discrete evaluation of SAH in 1D as
described in Section 5. The fifth row denoted ’H-tree’ follows Section 6 and
the last row denoted ’AH-tree’ follows Section 7.2.

From the speedups for the construction time we conclude that construc-
tion of H-trees is by a factor of 4.3 (from 2.4 to 11.7) faster than for kd-
trees, the more complex scene the better speedup. If we consider the total
time needed to get the image (construction + rendering), we achieve aver-
age speedup about 4.0 (from 1.12 to 6.23). The performance of ray tracing
with H-trees is comparable to kd-trees, H-trees are on average by 3% faster
(speedup from 0.62 to 1.30).

The approximation of sorting on higher level for AH-trees leads to even
faster construction times in the detriment to the performance of ray tracing
for highly skewed distribution of objects. While for relatively uniform distri-
bution of objects in the scene the performance of ray tracing is comparable

21

to H-trees and kd-trees, for highly skewed distributions of objects (scene
conference room, robots, kitchen) the performance drops by factor 0.23. The
performance of ray tracing and the construction time make clear trade-off; we
cannot make faster weighted sorting required in the construction of spatial
hierarchy than O(N log N) while keeping the same performance of traversal
algorithm through this hierarchy.

The construction time for H-trees has low variance over all frames of the
animation for BART scenes. Our method then allows us to render the images
by ray casting (only primary rays) on current PC hardware with dual core
processors approximately at 3 to 5 frames per second, when one core is used
to construct data structures and the other one ray traces an image.

We have been positively surprised by the results of Kay and Kajiya’s
algorithm redesigned in [33]. There are two reasons for its good performance.
First, we have highly optimized the algorithm and its implementation of both
the construction and traversal code given in [33], by about 300 to 500%.
Second, some scenes shown in Table 1 have relatively uniform distribution
of object primitives. In this case SAH-based construction is equivalent to
spatial median based construction, but it is about twice faster to construct
a hierarchy with a spatial median than that with the cost model based on
SAH. This is justified by the number of operations we have to carry out that
tightly corresponds to the source code.

10 Conclusion and Future Work

In this paper we have focused on the fast construction of efficient spatial
hierarchical data structures for ray tracing with the applications in render-
ing via ray tracing. We have addressed the problem in several ways by:
decreasing constants behind the big O notation while keeping O(N log n)
complexity, extending bounding volume hierarchies in a top down fashion
by surface area heuristics, relaxing bounding volume primitives from boxes
to two-plane slabs, and by designing a hybrid tree (H-tree) that efficiently
combines the properties of spatial subdivisions and bounding volume hier-
archies. Furthermore, we have proposed an approximate construction of
AH-trees via discretization of spatial sorting that decreases the algorithmic
complexity from O(N log N) to expected O(N log log N) assuming objects of
limited size and distributions. AH-trees handle objects of arbitrary sizes, in
the worst case resulting in O(N log N) time complexity.

We tested our both novel data structures on six static scenes and three
animated scenes. The ray tracing based on H-trees handles well uniform
and also highly skewed distributions of objects in general scenes. The per-

22

formance of ray tracing with H-trees is sometimes slightly faster (by up to
≈ 33%) sometimes slower (by up to ≈ 33%) than that one for kd-trees
(as the state of the art technique), on average by 3% faster. However, the
speedup for the construction of H-trees yields from 2.4 to 11.7, that allows
application in interactive scenarios.

The AH-trees thanks to discretization can be constructed up to twice
faster than H-trees. However, the decreased precision of splitting plane selec-
tions decreases the performance of ray tracing for highly skewed distributions
of objects in the scene. On the other hand, AH-trees are perfectly suited for
individual animated meshes, where the performance for ray tracing is compa-
rable with kd-trees, but the construction is 4 to 20 times faster. In practice
we can construct the efficient data structures for meshes having 100,000 to
200,000 objects in less than 300 milliseconds (hardware of year 2005) on a
single CPU core (it is ≈ 3 frames per second).

The proposed data structures can be used in general visibility prepro-
cessing relying on spatial hierarchies for example in occlusion culling where
queries are organized along lines as in ray tracing. We plan to study more
deeply the relation between precision of splitting plane determination and the
performance of resulting data structures, since making this unusual trade-off
is also an algorithmic contribution of this paper. It is almost obvious that
an efficient SSE implementation of a ray-packet traversal for kd-trees [44, 35]
can be implemented for H-trees and AH-trees. Furthermore, we assume the
hierarchical version of ray casting [28] for primary and shadow rays can also
be implemented on the proposed data structures.

References

[1] B. Adams, R. Keiser, M. Pauly, L. Guibas, M. Gross, and P. Dutre. Effi-
cient Raytracing of Deformable Point-Sampled Surfaces. In Proceedings
of the 2005 Eurographics Conference, pages 677–684.

[2] J. Arvo and D. Kirk. A Survey of Ray Tracing Acceleration Techniques,
pages 201–262. Academic Press, 1989.

[3] J. L. Bentley. Multidimensional Binary Search Trees Used for Associa-
tive Searching. Communications of the ACM, 18(9):509–517, 1975.

[4] A. Y.-H. Chang. Theoretical and Experimental Aspects of Ray Shooting.
PhD thesis, Politechnic University, USA, 2004.

[5] Y. Chrysanthou and M. Slater. Computing Dynamic Changes to BSP
Trees. In A. Kilgour and L. Kjelldahl, editors, Computer Graphics Fo-

23

rum (EUROGRAPHICS ’92 Proceedings), volume 11, pages 321–332,
September 1992.

[6] M. de Berg, M. J. Katz, A. F. van der Stappen, and J. Vleugels. Realistic
input models for geometric algorithms. In Symposium on Computational
Geometry, pages 294–303, 1997.

[7] V. Gaede and O. Günther. Multidimensional Access Methods. ACM
Computing Surveys, 30(2):170–231, 1998.

[8] J. Goldsmith and J. Salmon. Automatic Creation of Object Hierarchies
for Ray Tracing. IEEE Computer Graphics and Applications, 7(5):14–
20, May 1987.

[9] O. Günther and H. Noltemeier. Spatial database indices for large ex-
tended objects. In ICDE, pages 520–526. IEEE Computer Society, 1991.

[10] A. Guttman. R-trees: A Dynamic Index Structure for Spatial Searching.
In SIGMOD ’84: Proceedings of the 1984 ACM SIGMOD international
conference on Management of data, pages 47–57, New York, NY, USA,
1984. ACM Press.

[11] V. Havran. Heuristic Ray Shooting Algorithms. PhD thesis, Faculty of
Electrical Engineering, Czech Technical University in Prague, November
2000.

[12] V. Havran, J. Prikryl, and W. Purgathofer. Statistical comparison of
ray-shooting efficiency schemes. Technical Report TR-186-2-00-14, May
2000.

[13] D. Jevans and B. Wyvill. Adaptive voxel subdivision for ray tracing.
Proceedings of Graphics Interface ’89, pages 164–172, June 1989.

[14] T.L. Kay and J.T. Kajiya. Ray Tracing Complex Scenes. Computer
Graphics (Proceedings of ACM SIGGRAPH), 20(4):269–278, 1986.

[15] Donald E. Knuth. The Art of Computer Programming, Volume 3 Sorting
and Searching. Addison-Wesley, 1998.

[16] T. Larsson and T. Akenine-Möller. A Dynamic Bounding Volume Hier-
archy for Generalized Collision Detection. In Proceedings of the 2nd
Workshop on Virtual Reality Interactions and Physical Simulations,
pages 91–100, Pisa, Italy, November 2005.

24

[17] J. Lext and T. Akenine-Möller. Towards Rapid Reconstruction for Ani-
mated Ray Tracing. In Eurographics 2001 – Short Presentations, pages
311–318, 2001.

[18] J. Lext, U. Assarsson, and T. Möller. BART: A Benchmark for An-
imated Ray Tracing. Technical report, Department of Computer En-
gineering, Chalmers University of Technology, Göteborg, Sweden, May
2000. Available at http://www.ce.chalmers.se/BART/.

[19] J. Lext, U. Assarsson, and T. Möller. A Benchmark for Animated Ray
Tracing. IEEE Comput. Graph. Appl., 21(2):22–31, 2001.

[20] J. D. MacDonald and K. S. Booth. Heuristics for Ray Tracing using
Space Subdivision. In Proceedings of Graphics Interface, pages 152–63,
1989.

[21] J. Mahovsky. Ray Tracing with Reduced-Precision Bounding Volume
Hierarchies. PhD thesis, University of Calgary, 2005.

[22] J. P. Molina Masso and P. Gonzalez Lopez. Automatic Hybrid Hierarchy
Creation: a Cost-model Based Approach. Computer Graphics Forum,
22(1):5–13, 2003.

[23] B. Ooi, K.J. McDonell, and R. Sacks-Davis. Spatial KD-tree: An In-
dexing Mechanism for Spatial Databases. In Proceedings of the IEEE
COMPSAC Conference, 1987.

[24] B. C. Ooi, R. Sacks-Davis, and J. Han. Indexing in Spatial Databases,
1993. Unpublished Manuscript, available at: http://www.iscs.nus.

edu.sg/~ooibc/.

[25] S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P.-P. Sloan. Interactive
Ray Tracing. In Proceedings of Interactive 3D Graphics, pages 119–126,
1999.

[26] J.H. Reif and S.R. Tate. Fast Spatial Decomposition and Closest Pair
Computation for Limited Precision Input. Algorithmica: An Interna-
tional Journal in Computer Science, 28(3):271–287, 2000.

[27] E. Reinhard, B. Smits, and C. Hansen. Dynamic Acceleration Struc-
tures for Interactive Ray Tracing. In Proceedings of the Eurographics
Workshop on Rendering, pages 299–306, Brno, Czech Republic, June
2000.

25

[28] A. Reshetov, A. Soupikov, and J. Hurley. Multi-Level Ray Tracing Al-
gorithm. ACM Transaction of Graphics, 24(3):1176–1185, 2005. (Pro-
ceedings of ACM SIGGRAPH).

[29] S. M. Rubin and T. Whitted. A Three-Dimensional Representation for
Fast Rendering of Complex Scenes. Computer Graphics, 14(3):110–116,
July 1980.

[30] H. Samet. Foundations of Multidimensional and Metric Data Structures.
Morgan Kaufmann, 2006. to appear.

[31] N. Santoro and J. B. Sidney. Interpolation-Binary Search. Inf. Proc.
Lett., 20:179–181, 1985.

[32] J. Shagam and J. Pfeiffer. Dynamic Irregular Octrees. Technical Report
NMSU-CS-2003-004, 2003.

[33] P. Shirley and R. K. Morley. Realistic Ray Tracing. A K Peters, second
edition, 2003.

[34] G. Simiakakis. Accelerating Ray Tracing with Directional Subdivision
and Parallel Processing. PhD thesis, University of East Anglia, 1995.

[35] P. Slusallek, P. Shirley, I. Wald, G. Stoll, and B. Mark, editors. SIG-
GRAPH 2005 Course Notes 38 on Interactive Ray Tracing, 2005.

[36] O. Sudarsky and C. Gotsman. Dynamic Scene Occlusion Culling. In
Hans Hagen, editor, IEEE Transactions on Visualization and Computer
Graphics, volume 5 (1), pages 13–29. IEEE Computer Society, 1999.

[37] L. Szécsi, B. Benedek, and L. Szirmay-Kalos. Accelerating Animation
Through Verification of Shooting Walks. In Proceedings of SCCG, pages
231–238. ACM Press, 2003.

[38] L. Szirmay-Kalos, V. Havran, B. Balázs, and L. Szécsi. On the Efficiency
of Ray-shooting Acceleration Schemes. In Alan Chalmers, editor, Pro-
ceedings of SCCG, pages 89–98. ACM Siggraph, 2002.

[39] S.R. Tate and K. Xu. General-Purpose Spatial Decomposition Algo-
rithms: Experimental Results. In Proceedings of ALENEX 00, pages
179–216, 2000.

[40] M. Teschner, B. Heidelberger, D. Manocha, N. Govindaraju, G. Zach-
mann, S. Kimmerle, J. Mezger, and A. Fuhrmann. Collision Handling
in Dynamic Simulation Environments. In Eurographics Tutorials, pages
79–185, 2005.

26

[41] I. Wald. Course on Interactive Ray Tracing, Handling Dynamic Scenes.
In ACM SIGGRAPH 2005 Course Notes 38, pages 1–25. ACM Press,
2005.

[42] I. Wald, C. Benthin, and P. Slusallek. Distributed Interactive Ray Trac-
ing of Dynamic Scenes. In Proceedings of the IEEE Symposium on Par-
allel and Large-Data Visualization and Graphics (PVG), 2003.

[43] I. Wald and V. Havran. On building fast kd-trees for ray tracing, and on
doing that in o(n log n). SCI Institute Technical Report UUSCI-2006-
009, University of Utah, 2006.

[44] I. Wald, P. Slusallek, C. Benthin, and M. Wagner. Interactive Rendering
with Coherent Ray Tracing. Computer Graphics Forum, 20(3):153–164,
2001. (Proceedings of Eurographics).

[45] K. Y. Whang, J. W. Song, J. W. Chang, J. Y. Kim, W. S. Cho, C. M.
Park, and I. Y. Song. Octree-R: An adaptive octree for efficient ray
tracing. IEEE Transactions on Visualization and Computer Graphics,
1(4):343–349, 1995.

27

Method NNS NE NER NIT NTS NETS TC [s] TR[s] TT [s] s(TC) s(TR) s(TT)
[×103] [×103] [×103]

Static Scenes

Scene - Conference Room - 17,936 triangles, 500×500 pixels
kd-tree 80.2 29.3 70.9 11.99 49.74 10.32 0.12 0.81 0.93 1.00 1.00 1.00
UG 179.3 89.6 75.2 25.88 63.28 63.28 0.07 0.95 1.03 1.71 0.85 0.90
BVH-Median 35.9 17.9 17.9 10.40 89.84 10.40 0.02 1.15 1.17 6.00 0.70 0.79
BVH-SAH 35.9 17.9 17.9 5.27 60.86 5.27 0.05 0.93 0.97 2.40 0.87 0.96
H-tree 42.1 17.9 17.9 5.50 54.41 5.50 0.05 0.78 0.83 2.40 1.03 1.12
AH-tree 41.7 18.0 18.0 34.51 141.60 34.51 0.03 1.62 1.65 4.00 0.50 0.56

Scene - Bunny - 69,451 triangles, 500×500 pixels
kd-tree 663.8 241.6 408.4 5.58 34.21 6.30 0.76 0.35 1.11 1.00 1.00 1.00
UG 663.8 345.3 245.1 16.42 32.65 32.65 0.26 0.38 0.64 2.92 0.92 1.73
BVH-Median 138.9 69.4 69.4 2.62 35.58 2.62 0.08 0.40 0.48 9.50 0.88 2.31
BVH-SAH 138.9 69.4 69.4 2.36 33.36 2.36 0.20 0.38 0.57 3.80 0.92 1.95
H-tree 153.3 69.4 69.4 2.80 26.65 2.80 0.20 0.30 0.49 3.80 1.17 2.27
AH-tree 153.3 69.4 69.4 3.57 37.85 3.57 0.11 0.39 0.50 6.91 0.89 2.22

Scene - Armadillo - 345,944 triangles, 500×500 pixels
kd-tree 2891.1 1076.7 837.4 1.94 29.04 5.30 3.73 0.30 4.03 1.00 1.00 1.00
UG 3447.8 1723.9 833.5 11.78 58.29 58.29 1.51 0.47 1.98 2.47 0.64 2.04
BVH-Median 691.9 345.9 345.9 1.25 24.35 1.25 0.44 0.30 0.75 8.48 1.00 5.37
BVH-SAH 691.9 345.9 345.9 1.13 23.60 1.13 1.07 0.29 1.36 3.49 1.03 2.96
H-tree 783.2 345.9 345.9 1.19 17.39 1.19 1.07 0.23 1.30 3.49 1.30 3.10
AH-tree 777.8 345.9 345.9 1.29 29.02 1.29 0.54 0.33 0.86 6.91 0.91 4.69

Scene - Dragon - 844,037 triangles, 500×500 pixels
kd-tree 4426.7 2213.3 3827.2 11.20 50.93 9.62 9.65 0.63 10.28 1.00 1.00 1.00
UG 4260.3 4260.3 3834.4 33.20 94.79 94.79 3.50 0.94 4.44 2.76 0.67 2.32
BVH-Median 1688.0 844.0 844.0 5.90 55.36 5.90 1.10 0.71 1.81 8.77 0.89 5.68
BVH-SAH 1688.0 844.0 844.0 5.49 51.61 5.49 2.62 0.68 3.29 3.68 0.93 3.12
H-tree 1921.3 844.0 844.0 6.43 44.75 6.43 2.60 0.55 3.14 3.71 1.14 3.27
AH-tree 1895.7 844.0 844.0 8.26 64.84 8.26 1.25 0.75 2.00 7.72 0.84 5.14

Scene - Happy Buddha - 1,051,739 triangles, 500×500 pixels
kd-tree 2675.6 1542.8 8114.4 28.18 25.04 4.50 14.73 0.72 15.45 1.00 1.00 1.00
UG 5306.6 5306.6 10613.1 38.12 38.60 38.60 5.79 0.79 6.58 2.54 0.91 2.35
BVH-Median 2103.5 1051.7 1051.7 8.38 44.54 8.38 1.37 0.68 2.05 10.75 1.06 7.54
BVH-SAH 2103.5 1051.7 1051.7 8.13 43.20 8.13 3.13 0.67 3.80 4.71 1.07 4.07
H-tree 2335.4 1051.7 1051.7 9.19 39.53 9.19 3.11 0.54 3.65 4.74 1.33 4.23
AH-tree 2314.6 1051.7 1051.7 11.56 56.51 11.56 1.50 0.72 2.22 9.82 1.00 6.96

Scene - Blade - 1,765,388 triangles, 500×500 pixels
kd-tree 14984.3 7492.2 3388.4 1.98 33.28 5.72 16.45 0.34 16.80 1.00 1.00 1.00
UG 8862.8 8862.8 5369.6 13.93 76.42 76.42 6.85 0.64 7.50 2.40 0.53 2.24
BVH-Median 3530.8 1765.4 1765.4 1.89 33.28 1.89 2.31 0.43 2.75 7.12 0.79 6.11
BVH-SAH 3530.8 1765.4 1765.4 1.76 30.76 1.76 5.78 0.41 6.19 2.85 0.83 2.71
H-tree 4119.5 1765.4 1765.4 1.87 21.89 1.87 5.71 0.28 5.99 2.88 1.21 2.80
AH-tree 4064.7 1765.4 1765.4 2.15 42.24 2.15 2.51 0.45 2.96 6.55 0.76 5.68

Dynamic Scenes

Scene - Robots - 71,580 primitives, 400×300 pixels
kd-tree 506.3 186.5 356.3 7.55 58.38 9.43 0.75 0.24 0.99 1.00 1.00 1.00
UG 358.9 358.9 229.4 1074.98 13.99 13.99 0.73 5.30 6.03 1.03 0.05 0.16
BVH-Median 143.2 71.6 71.6 9.56 115.97 9.56 0.11 0.54 0.65 6.82 0.44 1.52
BVH-SAH 143.2 71.6 71.6 5.15 81.68 5.15 0.23 0.41 0.64 3.26 0.59 1.55
H-tree 166.9 71.6 71.6 9.22 86.36 9.22 0.22 0.36 0.58 3.41 0.67 1.71
AH-tree 165.2 71.6 71.6 43.48 262.17 43.48 0.13 1.06 1.19 5.77 0.23 0.83

Scene - Museum - 75,687 primitives, 400×300 pixels
kd-tree 313.6 156.8 1782.3 10.17 30.68 4.48 2.57 0.16 2.74 1.00 1.00 1.00
UG 378.0 378.0 271.6 14.69 43.56 43.56 0.79 0.20 0.99 3.25 0.80 2.77
BVH-Median 151.4 75.7 75.7 8.94 49.96 8.94 0.10 0.25 0.35 25.70 0.64 7.83
BVH-SAH 151.4 75.7 75.7 9.81 57.84 9.81 0.22 0.28 0.50 11.68 0.58 5.48
H-tree 163.4 75.7 75.7 9.88 55.44 9.88 0.22 0.21 0.44 11.68 0.76 6.23
AH-tree 163.9 75.7 75.7 14.71 60.88 14.71 0.13 0.27 0.40 19.77 0.59 6.85

Scene - Kitchen - 110,540 primitives, 400×300 pixels
kd-tree 335.6 167.8 353.7 6.29 56.59 8.60 1.03 0.22 1.25 1.00 1.00 1.00
UG 555.1 555.1 233.7 278.16 38.57 38.57 0.79 1.36 2.15 1.30 0.16 0.58
BVH-Median 221.1 110.5 110.5 7.22 106.91 7.22 0.15 0.50 0.64 6.87 0.44 1.95
BVH-SAH 221.1 110.5 110.5 5.21 87.50 5.21 0.35 0.42 0.76 2.94 0.52 1.64
H-tree 250.2 110.5 110.5 7.58 71.42 7.58 0.34 0.35 0.69 3.03 0.62 1.81
AH-tree 251.5 110.5 110.5 29.82 205.32 29.82 0.19 0.86 1.04 5.42 0.26 1.20

Table 1: Results for five static scenes and three dynamic scenes. For dynamic scenes we report average values
per frame. NNS is the number of nodes in the data structure, NE is the number of non-hierarchical nodes in the data
structure, NER is the number of references to objects. Furthermore, NIT is the number of ray-object intersection per ray,
NT S is the number of traversed nodes per ray, NETS is the number of traversed non-hierarchical nodes per ray. Timings
are given as: TC is the time for the data structure construction, TR is the rendering time for 500 × 500 pixels image for
static scenes and 400×300 for dynamic scenes, TT = TC +TR is the total time needed to render the image including data
construction. Speedups are: s(TC) is the speedup for construction time with respect to kd-trees, s(TR) is the speedup of
the rendering, s(TT) is the speedup for construction + rendering time.

28

���
�

�� k

I N F O R M A T I K

Below you find a list of the most recent technical reports of the Max-Planck-Institut für Informatik. They
are available by anonymous ftp from ftp.mpi-sb.mpg.de under the directory pub/papers/reports. Most
of the reports are also accessible via WWW using the URL http://www.mpi-sb.mpg.de. If you have any
questions concerning ftp or WWW access, please contact reports@mpi-sb.mpg.de. Paper copies (which
are not necessarily free of charge) can be ordered either by regular mail or by e-mail at the address below.

Max-Planck-Institut für Informatik
Library
attn. Anja Becker
Stuhlsatzenhausweg 85
66123 Saarbrücken
GERMANY
e-mail: library@mpi-sb.mpg.de

MPI-I-2006-5-004 F. Suchanek, G. Ifrim, G. Weikum Combining Linguistic and Statistical Analysis to
Extract Relations from Web Documents

MPI-I-2006-5-003 V. Scholz, M. Magnor Garment Texture Editing in Monocular Video
Sequences based on Color-Coded Printing Patterns

MPI-I-2006-5-002 H. Bast, D. Majumdar, R. Schenkel,
M. Theobald, G. Weikum

IO-Top-k: Index-access Optimized Top-k Query
Processing

MPI-I-2006-5-001 M. Bender, S. Michel, G. Weikum,
P. Triantafilou

Overlap-Aware Global df Estimation in Distributed
Information Retrieval Systems

MPI-I-2006-4-007 O. Schall, A. Belyaev, H. Seidel Feature-preserving Non-local Denoising of Static and
Time-varying Range Data

MPI-I-2006-4-002 G. Ziegler, A. Tevs, C. Theobalt,
H. Seidel

GPU Point List Generation through Histogram
Pyramids

MPI-I-2006-4-001 R. Mantiuk ?

MPI-I-2006-2-001 T. Wies, V. Kuncak, K. Zee,
A. Podelski, M. Rinard

On Verifying Complex Properties using Symbolic Shape
Analysis

MPI-I-2006-1-007 I. Weber ?

MPI-I-2006-1-006 M. Kerber Division-Free Computation of Subresultants Using
Bezout Matrices

MPI-I-2006-1-005 I. Albrecht ?

MPI-I-2006-1-004 E. de Aguiar ?

MPI-I-2006-1-001 M. Dimitrios ?

MPI-I-2005-5-002 S. Siersdorfer, G. Weikum Automated Retraining Methods for Document
Classification and their Parameter Tuning

MPI-I-2005-4-006 C. Fuchs, M. Goesele, T. Chen,
H. Seidel

An Emperical Model for Heterogeneous Translucent
Objects

MPI-I-2005-4-005 G. Krawczyk, M. Goesele, H. Seidel Photometric Calibration of High Dynamic Range
Cameras

MPI-I-2005-4-004 C. Theobalt, N. Ahmed, E. De Aguiar,
G. Ziegler, H. Lensch, M.A.,. Magnor,
H. Seidel

Joint Motion and Reflectance Capture for Creating
Relightable 3D Videos

MPI-I-2005-4-003 T. Langer, A.G. Belyaev, H. Seidel Analysis and Design of Discrete Normals and
Curvatures

MPI-I-2005-4-002 O. Schall, A. Belyaev, H. Seidel Sparse Meshing of Uncertain and Noisy Surface
Scattered Data

MPI-I-2005-4-001 M. Fuchs, V. Blanz, H. Lensch,
H. Seidel

Reflectance from Images: A Model-Based Approach for
Human Faces

MPI-I-2005-2-004 Y. Kazakov A Framework of Refutational Theorem Proving for
Saturation-Based Decision Procedures

MPI-I-2005-2-003 H.d. Nivelle Using Resolution as a Decision Procedure

MPI-I-2005-2-002 P. Maier, W. Charatonik, L. Georgieva Bounded Model Checking of Pointer Programs

MPI-I-2005-2-001 J. Hoffmann, C. Gomes, B. Selman Bottleneck Behavior in CNF Formulas

MPI-I-2005-1-008 C. Gotsman, K. Kaligosi,
K. Mehlhorn, D. Michail, E. Pyrga

Cycle Bases of Graphs and Sampled Manifolds

MPI-I-2005-1-008 D. Michail ?

MPI-I-2005-1-007 I. Katriel, M. Kutz A Faster Algorithm for Computing a Longest Common
Increasing Subsequence

MPI-I-2005-1-003 S. Baswana, K. Telikepalli Improved Algorithms for All-Pairs Approximate
Shortest Paths in Weighted Graphs

MPI-I-2005-1-002 I. Katriel, M. Kutz, M. Skutella Reachability Substitutes for Planar Digraphs

MPI-I-2005-1-001 D. Michail Rank-Maximal through Maximum Weight Matchings

MPI-I-2004-NWG3-001 M. Magnor Axisymmetric Reconstruction and 3D Visualization of
Bipolar Planetary Nebulae

MPI-I-2004-NWG1-001 B. Blanchet Automatic Proof of Strong Secrecy for Security
Protocols

MPI-I-2004-5-001 S. Siersdorfer, S. Sizov, G. Weikum Goal-oriented Methods and Meta Methods for
Document Classification and their Parameter Tuning

MPI-I-2004-4-006 K. Dmitriev, V. Havran, H. Seidel Faster Ray Tracing with SIMD Shaft Culling

MPI-I-2004-4-005 I.P. Ivrissimtzis, W.-. Jeong, S. Lee,
Y.a. Lee, H.-. Seidel

Neural Meshes: Surface Reconstruction with a Learning
Algorithm

MPI-I-2004-4-004 R. Zayer, C. Rssl, H. Seidel r-Adaptive Parameterization of Surfaces

MPI-I-2004-4-003 Y. Ohtake, A. Belyaev, H. Seidel 3D Scattered Data Interpolation and Approximation
with Multilevel Compactly Supported RBFs

MPI-I-2004-4-002 Y. Ohtake, A. Belyaev, H. Seidel Quadric-Based Mesh Reconstruction from Scattered
Data

MPI-I-2004-4-001 J. Haber, C. Schmitt, M. Koster,
H. Seidel

Modeling Hair using a Wisp Hair Model

MPI-I-2004-2-007 S. Wagner Summaries for While Programs with Recursion

MPI-I-2004-2-002 P. Maier Intuitionistic LTL and a New Characterization of Safety
and Liveness

MPI-I-2004-2-001 H. de Nivelle, Y. Kazakov Resolution Decision Procedures for the Guarded
Fragment with Transitive Guards

MPI-I-2004-1-006 L.S. Chandran, N. Sivadasan On the Hadwiger’s Conjecture for Graph Products

MPI-I-2004-1-005 S. Schmitt, L. Fousse A comparison of polynomial evaluation schemes

MPI-I-2004-1-004 N. Sivadasan, P. Sanders, M. Skutella Online Scheduling with Bounded Migration

MPI-I-2004-1-003 I. Katriel On Algorithms for Online Topological Ordering and
Sorting

MPI-I-2004-1-002 P. Sanders, S. Pettie A Simpler Linear Time 2/3 - epsilon Approximation for
Maximum Weight Matching

MPI-I-2004-1-001 N. Beldiceanu, I. Katriel, S. Thiel Filtering algorithms for the Same and UsedBy
constraints

MPI-I-2003-NWG2-002 F. Eisenbrand Fast integer programming in fixed dimension

MPI-I-2003-NWG2-001 L.S. Chandran, C.R. Subramanian Girth and Treewidth

MPI-I-2003-4-009 N. Zakaria FaceSketch: An Interface for Sketching and Coloring
Cartoon Faces

MPI-I-2003-4-008 C. Roessl, I. Ivrissimtzis, H. Seidel Tree-based triangle mesh connectivity encoding

MPI-I-2003-4-007 I. Ivrissimtzis, W. Jeong, H. Seidel Neural Meshes: Statistical Learning Methods in Surface
Reconstruction

MPI-I-2003-4-006 C. Roessl, F. Zeilfelder, G. Nrnberger,
H. Seidel

Visualization of Volume Data with Quadratic Super
Splines

MPI-I-2003-4-005 T. Hangelbroek, G. Nrnberger,
C. Roessl, H.S. Seidel, F. Zeilfelder

The Dimension of C1 Splines of Arbitrary Degree on a
Tetrahedral Partition

