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Abstract

In this report we present an experimental efficiency study of spatial subdivision schemes for
ray-shooting acceleration. Presented results are part of our effort to find the long-discussed best
efficiency scheme from the statistical point of view. We propose four testing procedures evalu-
ating the ray-shooting algorithm properties. We use these methods to produce hardware inde-
pendent statistics for different ray-shooting acceleration schemes that have been reimplemented
following the published literature. We define the minimal set of parameters to be reported as
well as scene invariants, parameters that stay the same regardless of the acceleration scheme
used. The main results of first 1440 measurements for 30 scenes from the SPD database and
12 acceleration methods are reported. We also attempt to outline a method that suggests the
most suitable acceleration scheme based on the scene complexity analysis of a given scene.

1. Introduction

Ray-shooting algorithm is one of fundamental al-
gorithms in computer graphics. It is used by virtu-
ally all modern rendering methods to sample dif-
ferent properties in three-dimensional space. Ray-
shooting is used not only for the image synthesis
in ray-tracing based methods, it is used for form-
factor computation in radiosity, for photon map
construction, for visibility preprocessing etc.

The ray-shooting task is actually simple: find
out the first object intersected by a given ray for
a given set of objects. In spite of this simple defini-
tion, it is not trivial to implement an efficient and
fast ray-shooting method and the problem of find-
ing an ultimately efficient algorithm still remains
open. Both computational geometers and com-
puter graphics researches have tried to develop
fast ray-shooting acceleration schemes (RAS) with
varying success. Computational geometers aimed
their efforts at improving the worst-case time com-
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plexity. Unfortunately the space and preprocess-
ing time complexity of these methods is unaccept-
able for real implementation in rendering frame-
works. In computer graphics different heuristic
acceleration methods improving the average-case
time complexity of ray-shooting were researched.
Even if the worst-case complexity of these heuris-
tics is unfavourable, the good average-case com-
plexity is the reason why these heuristic RASs are
commonly used in recent rendering packages.

A naive ray-shooting implementation tests all
the scene objects in order to select the closest
one, which gives the complexity of O(N), where
N is the number of objects. Szirmay-Kalos and
Marton25 proved that the lower bound on the
worst-case complexity of ray-shooting is ((log N).
The practical solutions exhibit worst-case com-
plexity O(N) and average-case complexity O(1)
for scenes with uniformly distributed objects26.
These complexities remain for non-random scenes
as well, but unfortunately, the unknown multi-
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plicative factor hidden behind the scenes and ran-
dom object distribution in the scene for average
case analysis make theoretical complexity defini-
tion unusable to decide which ray shooting algo-
rithm should be used in practice. This is the rea-
son why the RAS performance is compared on a
set of test scenes, using for example scenes from
Standard Procedural Database (SPD)12.

Looking at the literature addressing RASs we
find out that many recent results on different ac-
celeration schemes are either limited to a subset
of SPD scenes, or have been measured on pri-
vate scene sets. Further, different implementation
of reference algorithms, and the use of hardware-
dependent timing statistics rather than hardware
independent characteristics make a fair compar-
ison of the published work very difficult. Addi-
tionally, it is not known if the SPD—although be-
ing scalable—is a good representative set of scenes
suitable for RAS. As a result of all the facts men-
tioned above, many papers published about RASs
contain mutually contradictory statements.

Researchers involved in ray-shooting accelera-
tion have tried long to find the best efficiency
RAS, that is, such an acceleration technique that
outperforms other algorithms for any kind of ray-
shooting task. As one can suppose, no RAS has
been found to be generally the best until now. We
propose an alternative to the search of the glob-
ally best-performing RAS: Based on statistics pro-
vided by number of different RAS tests we will try
to find the statistically best RAS. The project pre-
sented in this paper is an ongoing work announced
to the globillum mailing list in October 199915. We
call this project Best Efficiency Scheme, abbre-
viated BES. This research report shows our first
results.

The paper is further structured as follows: Sec-
tion 2 gives more details on goals of the BES
project. Section 3 recalls the known scene com-
plexity measures. In Section 4 we describe the de-
sign of testing procedures used. Section 5 presents
the results from measurements on 30 SPD scenes
of different complexities and the possible interpre-
tation of the obtained results with regard to scene
complexity measures. Finally, Section 6 concludes
the paper with ideas for future work.

2. Project Goals

The basic idea of the BES project is to col-
lect a reasonable set of test scenes of differ-
ent complexity, and use these scenes to mea-
sure hardware-independent characteristics of dif-
ferent RASs. Collected scenes shall not exhibit
self-similar behaviour described by the algorithms

in the SPD database. The scenes and measured
results will be made available to the graphics com-
munity in a suitable form. The results of the
project for collected scene set will enable us to
evaluate the properties of SPD scenes for testing.

The project shall help in clarifying the following
points:

BES FEzistence. The question whether the best
efficiency RAS does or does not exist will be an-
swered using a statistically relevant set of scenes.
We suppose that the answer will be negative, but
it still has to be verified.

Alternative BES formulation. The proposal of
an alternative definition of best efficiency scheme,
based on hardware-independent statistics for a rel-
evant number of scenes, will be given.

BES Testing Procedures. Simple testing proce-
dures with moderate time requirements will be
defined. These procedures can be used by other
researchers to present properties of a new RAS.
These procedures shall not be directly global-
illumination algorithms requiring other computa-
tion than ray-shooting—they shall just perform
different ray-shooting tasks.

BES Comparison. The precise summary and
comparison of currently used RASs will be pro-
vided. In order to minimise discrepancies, all
RASs are implemented within a uniform frame-
work (GOLEM rendering system?3).

BES Repository. A collection of freely available
test scenes of different complexity will be made
available for the scientific community. This can
make future research in global illumination and
the visibility field easier and verifiable, as the lack
of the commonly used scenes makes it impossible
to verify the results when reimplementing previ-
ously published methods for reference purposes.

BES Prediction. We will check how the pro-
posed definitions of scene complexity could help us
predict which RAS should be optimally selected in
advance for the given scene. If such a prediction
does not exist, the way to define such predictors
will be opened.

Hybrid Methods. The question if it pays off to
construct hybrid spatial data structures for some
scene regions could be answered. The concept of
Meta-Hierarchies was defined ten years ago?, but
we are not aware that there would be any imple-
mentation in use at present.

3. Scene Complexity

In order to estimate the scene complexity we can
analyse our scenes and attempt to characterise
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them taking into account, for example, the num-
ber of objects, scene sparseness, sparseness vari-
ance and standard deviation, non-uniformity, and
so on. We have made use of several methods eval-
uating scene characteristics that were introduced
for this purpose 20. 5. 7,

3.1. Count Approach

The prevalent way to characterise the scene com-
plexity is to take the number of objects in the
scene, often referred to as scene size. Although
this is a very simplistic definition of scene com-
plexity — N objects —, it raises the question,
whether the use of this complexity measure is not
exaggerated. To our best knowledge no answer to
this problem was given.

3.2. Voxelisation Approach

A method of scene characterization based on the
presence of objects in voxels of a uniform grid has
been proposed by Klimaszewski2°chapter 4. The
resolution of the grid is selected according to the
O( % N) rule, more precisely:

resolution, = resolution, =
resolution, = | ¥/d- N + 0.5, (1)

where N is the number of objects and d is the
scene density (it is usually assumed d = 1.0).

The mean 71 gives the average number of objects

in a voxel:
. 1
n= v E N4, (2)

where n; is the number of objects in the i-th voxel
of a grid comprising V' voxels. Variance v, the vari-
ability of the data around the mean, and standard
deviation, ¢ are given as:

14
1 .
V=g Zl(n —@)? o=+ (3)
i=
To measure the uneveness of a distribution, the
nonuniformity coefficient is used, the larger it is,
the larger the disparities among the voxel occu-
pancy. It is defined as:

A=o/n (4)

Additionally, higher order moments reported are
known as skewness:

14 ~
s=1/V.Y (R, (5)
i=1

g
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and kurtosis:
v n; —n
k=Y BN -3 6
i=1

The objects should be assigned to the voxels us-
ing the intersection of the object surface with the
voxel, not the intersection of the objects’ bound-
ing box with the voxel.

3.3. Integral Geometry Approach

Cazals and Sbert 5 investigated several integral ge-
ometry tools that characterise average case scene
properties. Their strategy consisted in probing the
scene with random entities (lines and planes) pay-
ing special attention to those statistics that may
reveal the spatial distribution of scene objects.

We have selected all the random line-based tests
for our measurements, which allowed us to deter-
mine the following characteristics: average number
of intersection points for a global line crossing the
scene n&,, probability of not intersecting any ob-
ject in the scene pg, and relative average length of
a line span that lays in free space Sien:

3.3.1. Average number of intersection
points

When casting a global line through the whole
scene, an average number of intersections with

scene objects n$, may be determined a priori as:

N
nG= - 34 ™
int Abb P )

where Ay, is the surface area of a tight scene
bounding box and A; is the surface area of the
i-th object in the scene.

3.3.2. Probability of zero intersections

The probability of ray not intersecting anything
in the scene, denoted pq, is quite hard to deter-
mine analytically. As we have to cast global lines
anyway in order to compute another complexity
characteristics, we compute the probability sim-
ply as:

o

®)

bo = )
Ntotal
where ngota is the total number of global lines
casted and ng is the number of global lines that
did not intersect any object in the scene.
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3.3.3. Free path statistics

While tracing a global line trough a scene, every
intersection adds additional “span” to the traced
line. Average length of spans may give us insight
into the spatial density of the scene in concern.
For every global line n; casted we sum up span
lengths I, and identify also the maximum span
length ;,ax. For the total of M spans the free path
statistic is then given as:

li. 9)

3.4. Information Theory Approach

Feixas et al. 7 describe the task of determining
the scene complexity as a task of determining the
mutual information transfer. In their paper they
present a number of complexity measures from in-
formation theory quantifying how difficult is to
accurately compute visibility in the scene. While
working with scene discretised into patches, the
paper contains also a definition of scene continu-
ous mutual information, that is mutual informa-
tion independent of whatever discretisation of the
scene. We have used the continuous mutual infor-
mation I§ to characterise our scenes.

The scene continuous mutual visibility informa-
tion can be easily determined using Monte-Carlo
integration with global lines. The whole quite in-
volved formula boils down to:

A
1< ~ %ZMIOE’;< total costc050y> (10)
i=1

md(z,y)?

where M stands for total number of point pairs
observed, Aiota1 is the total scene surface area,
(z,y) is the point pair in concern, d(z,y) is the
distance of those two points and 8,6, are the an-
gles between the direction vector and correspond-
ing normal vector. As objects in SPD scenes do
not overlap, for the purposes of this paper we have
Atotal = Y_;—; Ai. In case of more complex geome-
try (CSG objects), the stochastic area estimation
method proposed by Wilkie et al. 28 can be used.

4. Testing Procedures

We designed the RAS testing procedures to em-
ulate the use of ray-shooting in rendering algo-
rithms. During the tests we take only surface ge-
ometry into account and do not perform any light-
ing or material calculations. This way the most
computational time in the tests is really devoted
to ray-shooting.

Rays shot during rendering can be classified as

primary (leaving the camera), secondary (reflected
and refracted rays), and shadow rays. As shadow
rays are actually used just for light source visi-
bility tests and these tests may be optimized re-
gardless of the RAS used, we disregard shadow
rays in our tests to make the testing procedures
consistent.

We use four different testing procedures. The
first three tests are general methods simulating
ray—shooting in rendering algorithms. The last
test is ray—tracing an image as defined in SPD
database. We are not rendering it just for the pur-
pose of getting a visually appealing image, it also
allows for finding out errors when implementing a
new RAS, and it also allows subjective evaluation
of scene properties.

In case that a testing scene has quite a varying
object distribution, performing ray-shooting tests
for a single ray origin located somewhere in the
scene may reveal only local properties of the tested
RAS. In order to test the RAS behaviour for the
whole scene, use of uniformly—distributed global
rays is more appropriate. In order to obtain equal
ray distributions for all tested RASs the same ini-
tial seeds for random number generators have to
be used in every test procedure.

The usual way of generating global lines is to
generate two uniformly distributed points on the
scene bounding sphere and shoot the ray between
these two points. This method would be however
unfair to those RASs that use directional accel-
eration schemes3: 24, Algorithm 1 shows an alter-
native uniform global ray generation scheme that
also preserves ray coherency of the subsequent
rays at the same time.

4.1. Definition of Testing Procedures

We have used the following testing procedures in
our tests:

Testing procedure TP 4: Shoots only primary
rays generated using Algorithm 1 on a sphere
circumscribed to the scene bounding box. The
bounding box is computed as a union of bounding
boxes of all scene objects.

Testing procedure TP pg: Assigns a tight rect-
angular bounding box to each object in the scene.
For each bounding box 4 computes its center point
@; and computes the center of the sphere as
C = 1/N - Zf;l Q;. Using a binary search finds
a minimum radius of a sphere containing 90% of
all @);. Shoots only primary rays generated on this
sphere using Algorithm 1.

Testing procedure TP ¢: The same as TP g, but
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Algorithm 1 Systematically casting N - (N — 1)
rays uniformly distributed on sphere

{Compute N points uniformly distributed on
the unit sphere}
B + number of bands
Subdivide sphere by (B — 1) planes z = const
{z=1-2(k+1)/B, ke {0,B-2}}
{Create B bands having the same surface area
on the sphere}
b + 0 {current band index }
Sone < 4/3 - w/N {required surface area of one
region}
a + 0 {the end angle of the current region}
for all i € N points do
Seurr ¢ 0 {Current region has zero area. Al-
ways generate point at the end of new region}
Integrate bands by increasing « or/and the b
until Scurr = Sone
Pz=05-(1—(1-2i)/N)
R = 10— (P.2)?, P.x = Recos(w),
P;.y = Rsin(a)
end for
Transform N points to world space given the
sphere center C and radius R
for all ¢ € N points do
for all j € N points do
if i # j then
Shoot (primary) ray between points 4
and j on the sphere in the world space.
end if
end for
end for

rays are randomly reflected using uniform distri-
bution over the hemisphere given by the surface
normal at the hit point. The bounces continue un-
til the maximum depth of recursion dpax = 4 is
reached (primary rays have recursion depth 0) or
until the ray leaves the scene.

Testing procedure TPp: Recursive ray tracing
exactly as defined in SPD. This task requires a
camera to be set and surface materials to be de-
fined. Depth of recursion is the same as for TP ¢,
the number of primary rays cast is 513 x 513. All
other details can be found in Readme.txt in the
SPD distribution?2.

As we can see, procedure TP 4 uses the whole
scene (rays are shot from the outside into the
scene). Procedures TPp and TP generate rays
in the space where most objects are present. Pro-
cedure TP ¢ simulates a random walk. Results of
the test TPp will then show how the results of
TP o—TP ¢ correlate with the RAS performance
for a common rendering task.
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Obviously, it is always possible to construct an
artificial scene where our testing procedures will
not work as expected. However, scenes that are
used for practical purposes, will not pose difficul-
ties to our tests.

4.2. Invariants

For every tested scene we can determine a set of
parameters that shall remain constant regardless
of the RAS used. These invariants can be used
to verify results of the acceleration scheme im-
plementation. However, we shall be aware that
this verification does not impose a globally cor-
rect RAS implementation, it merely proves that
the results are correct for the particular scene.

The invariants are:

. Nt},‘étox, the number of primary rays hitting the
scene box (applies for TP 4-TPp),

o NJ ., the number of primary rays hitting any
object (applies for TP 4-TPp),

e Ngec, the number of secondary rays (reflected
rays for TP, reflected and refracted rays for
TPD)7

e NHt the number of secondary rays hitting any
object (reflected rays for TP ¢, reflected and re-
fracted rays for T Pp),

® Nshad, the number of shadow rays (TP p only),
and

e Nhit.  the number of shadow rays hitting
opaque objects (TP p only).

In practice we observed that the invariants are
equal or that they differ just very slightly due
to the numerical precision problems. The relative
error for shooting 10® rays using single-precision
floating point arithmetic was always below € =
10~* in our experiments, which is acceptable un-
der assumption no differences between images ob-
tained as a result of TPp for different RASs are
visible. Given the finite precision arithmetic, we
feel that tuning the RAS implementations to get
exactly the same results can be even impossible to
achieve.

4.3. Minimum Testing Output

Performance of a ray-shooting acceleration scheme
can be described by some parameters related ei-
ther to the RAS itself or to the particular ray-
shooting task. In this Section we will define the
minimum set of RAS parameters that shall be
recorded during our tests.

All RASs can be considered to be different in-
stances of range-search query!. This implies that
every RAS can be separated into two parts: the
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data structure DT and the algorithm A working
over DT. The DT contains references to objects
that are to be tested for the intersection against
a given ray. The DT is also composed of certain
number of nodes.

Nodes of a DT can be divided into two groups:
elementary modes contain references to objects
(and, if RAS requires it, to some other data),
whereas generic nodes do not refer to any objects,
but rather point to other generic and/or elemen-
tary nodes. Special cases of an elementary nodes
are empty elementary nodes that do not contain
any object references and act as “free space con-
tainers” within the RAS. Given a ray, the algo-
rithm A (usually called traversal algorithm) op-
erates over the DT, traversing it from one node
to another, possibly adding/deleting nodes to any
part of DT on the fly, testing objects for intersec-
tion in the elementary nodes, and finally finding
the nearest intersection.

All RASs currently known fit in this general
framework. This makes it possible to define the
following hardware-independent parameters that
can be reported for any RAS:

e parameters depending on the scene S only:

— Ng, the number of generic nodes in DT,

— Ng, the number of elementary nodes in DT,

— Ngg, the number of empty elementary nodes
in DT,

— Ngg, the total number of references to ob-
jects in elementary nodes of DT'.

e parameters dependent on the scene S and test-
ing procedure TP:

— Ny, the number of intersection tests per one
ray,

— Nrpg, the number of all nodes accessed per
one ray,

— Ng7s, the number of elementary nodes ac-
cessed per one ray,

— Ngg7s the number of empty elementary
nodes accessed per one ray.

We will also record following hardware-dependent
timings:

e T'g[s], time to build DT for given RAS (depends
on the scene S),

e Tg[s], time consumed by given TP (depends on
the scene S, and on the testing procedure TP).

For T and Tr the hardware should be precisely
described together with operating system, com-
piler, and compiler switches used. If possible, the
RAS should be given not only in as pseudo-code in
the paper, but also the source code shall be made

freely available as all implementation details are
usually important.

The relationship between HW implementation
parameters and independent parameters can be
described by a general cost model, first introduced
by Cleary and Wyvills:

T = (NirCrr + N1sCrs).Neva + Tother;

where Cr[s] is the average cost of intersection
a ray with an object and Crs[s] is the average
traversal cost of RAS among DT nodes. N;aoo is
the total number of rays cast. Parameter Totper[s]
covers other computations performed in the given
TP, as the ray reflection for TP and lighting
and material computation for T Pp, that should

be always constant for a particular scene and T P.

5. Results and Discussion

In this section we describe the scenes used for the
project, their scene complexity measures, and the
results for all testing procedures.

5.1. Test Scenes

The process of collecting and preparing scenes has
started in October 1999 and it still continues. We
decided to group the collected scenes according
to the number of objects, creating 7 groups: GX,
X €0...5, 15 scenes containing (10X 41, 10X+1),
and G®, 10 scenes with more than 10® objects.

There are many WWW sites offering 3D mod-
els usable for our purposes. We have however en-
countered two problems: First, models are usu-
ally available in proprietary formats and conver-
sion into open formats (VRML in our case) does
not usually work very well. This results in scenes
having corrupted faces, invalid normals, missing
textures, and so on. Second, one can never es-
timate the scene size before actually download-
ing the model. We observed that most of the
215 scenes downloaded until now typically con-
tain 5 - 10%-5 - 10* primitives. Scenes having less
than 100 or more then 5 - 10° objects primitives
were not available at all. While small scenes can
be modelled, composing meaningful large scenes
is quite demanding task. As a result, groups sup-
posed to contain scenes with higher numbers of
primitives are still incomplete.

In experiments presented in this paper we have
used three groups of SPD scenes with different
object counts. Since SPD scenes are scalable, we
decided to generate individual scenes with object
counts as close as possible to maximum counts re-
quired scene size: group G2, (10% objects), Gépp,
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(10* objects), G&pp, (10° objects). The size of the
generated SPD scene depends on an optional size
factor Sg, where ratio of scene sizes for Sr and
Sr + 1 varies from 1.2 for “teapot” to 8.0 for
“jacks”. Table 1 lists numbers of objects in dif-
ferent SPD scenes for Sp = 1...6. The bold type-
set numbers of objects denote scenes selected into
groups Gipp, Gapp, and Gip,. We decided not
to use scene “shells” for our experiments, as this is
the only SPD scene containing densely overlapped
objects (that should not be the case of correctly
modelled scene), and causes problems for any RAS
that we tested.

Table 2 shows selected scene complexity mea-
sures for the 30 SPD scenes. Comparing the com-
puted complexities with testing results presented
below, it unfortunately seems that there is no di-
rect correlation between existing complexity mea-
sures and RAS performance.

5.2. Results

We implemented the following acceleration
schemes:

BSP: Binary space partitioning!® using efficient
hierarchical traversal algorithm16. The
subdivision plane creates always equally-
sized children. Maximum allowed depth
was 16, maximally 2 objects were allowed
in a node.

KD: KD-tree, similar to BSP, but the subdivi-
sion plane is put according to the surface
area heuristics?2. The same build criteria
as for BSP were used.

UG:  Uniform grid, also called uniform space
subdivision®, with resolution according
to!” (Woo’s method) with density 3.0.

BVH: Bounding volume hierarchy built with cost
function?!?.

AG: Adaptive grid, BVH over uniform grids2!.

RG: Recursive grid, a grid recursively put in
parent grid voxels again!®.

HUG: Hierarchy of uniform grids?.

084: Octree with sequential traversal build us-
ing midpoint subdivision!©.

084A: Sequential traversal + Octree-R using sur-
face area heuristics?0 27.

089: Octree wusing neighbour finding for
traversal?? using midpoint subdivision.

093: Octree  using  recursive  traversal
algorithm?®.
093A: Octree  using  recursive  traversal

algorithm® and surface area heuristics?7.

The detailed parameter settings of tested RASs
are beside the scope of this paper. We have consis-
tently used the best settings that we found during
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previous experiments!'?- 14 with one exception—in
case we ran out of memory, we allowed three it-
erations of modifying RAS build parameters to
require less memory and testing again. This oc-
curred for RG, AG, and HUG. Failures of this it-
erative setting are reported in Table 4. There are
two cases when results are not reported: either
the testing procedure did not finish in 10 hours,
or the computer memory was exhausted even after
three iterative parameter modifications described
above. It should be clear that manual tuning of
build parameters to construct failure-proof DT's
for 12 given RASs and 30 scenes is quite imprac-
tical.

All the tests were conducted on PCs running
Linux, kernel version 2.2.12-20, processor Intel
Pentium II, 350 MHz, 128 MB RAM. Test pro-
gram was compiled using egcs-1.1.2 with -O2 op-
timisation. The total number of measurements is
1440 (12 RASs by 30 scenes by 4 testing proce-
dures). With 10 reportable parameters for every
measurement (see Section 4.3) we have measured
11520 hardware-independent and 2880 hardware-
dependent RAS parameters.

Due to space limitations it is not possible to
report all the measurements in this paper. We
have therefore selected main characteristics from
all tests and we present a short summary. All mea-
sured statistics are available on the WWW site of
the project!s.

Table 3 reports for every tested scene time Tp
needed to build DT for the fastest RAS and min-
imum time Tg over all RAS needed to run the
given testing procedure.

Table 4 reports the average running time T ®
for given RAS and T P for the all scenes and sum-
mary times for columns and rows. The param-
eter m is the number of tasks where measure-
ments failed due to the memory limits, [ denotes
the number of cases when tests were not finished
within the time limit. RASs are sorted in Tq"®
for total sum including all T'Ps. We can see that
the winner on the tests on SPD scenes is KD-tree,
while BVH has the worst average running time,
being in some tests even more than two orders of
magnitude slower than KD-tree.

The total running time of the whole experiment
was about 400 hours on a single processor. Tests
TP 4~ TP ¢ used 108 primary rays.

Graphs in Figures 1 and 2 show the summary
of hardware independent parameters. Parameters
for every RAS are summed over all tested scenes
and testing procedures. Graph 3 shows for every
RAS its total running time T and construction
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Scene

SF balls  gears jacks lattice mount rings sombrero teapot tetra tree

1 11 147 9 20 12 61 1922 57 4 7

2 92 1169 81 81 36 301 7938 244 16 15

3 821 3943 657 208 132 841 32258 561 64 31

4 7382 9345 5265 425 516 1801 130050 1008 256 63

5 66341 18251 42129 756 2052 3301 522242 1585 1024 127

6 597876 31537 337041 1255 8196 5461 - 2292 4096 255

Table 1: Number of objects of SPD scenes according to the size factor Sp.

Scene(Sr) Group N Atotal i o s k "g.t Po Slen Ig
balls(3) GgPD 821 588 0.764 541 14.3 228 0.920 0.995 0.035 9.384
balls(4) G‘épD 7382 591 0.584 7.50 23.1 593 0.924 0.995 0.038 9.957
balls(5) GgPD 66341 594 0.481 10.2 325 1170 0.929 0.995 0.035 10.242
gears(2) Gipp 1169 32.6  0.760 2.53 4.97 27.2 1.356  0.788 0.120  4.333
gears(4) G‘éPD 9345 59.6 1.25 3.52 3.38 11.3 2.478 0.723  0.066 7.792
gears(9) GgPD 106435 126 1.25 3.82 3.68 13.1 5.245 0.690 0.032 10.735
jacks(3) GgPD 657 26.7 1.29 1.77 1.11  -2.90e-2 1.317 0.750 0.108 4.398
jacks(4) G‘éPD 5265 57.3 1.20 1.87 1.28 0.264 2498 0.662 0.092 6.769
jacks(5) GgPD 42129 118 1.20 196 1.37 0.464 4.869 0.607 0.076 9.365
lattice(6) Gipp 1255 14.7  2.09 1.66 0.57 -4.46e-1  4.166 0.300 0.101  5.165
lattice(12) G‘éPD 8281 24.5 1.87 1.52 0.77 0.090 7.488 0.174 0.081 7.279
lattice(29) GgPD 105307 52.7 1.76 1.54 1.11 0.830 16.919 0.090 0.061 10.757
mount(4) Gng 516 9.25 1.57 3.20 2.14 3.93 0.676 0.867 0.149 5.189
mount(6) GéPD 8196 10.1 0.986 3.40 3.88 15.4 0.743 0.851 0.131 5.808
mount(8) GgPD 131076 10.5 0.773 4.49 6.75 48.9 0.792 0.851 0.108 5.808
rings(3) G3pp 841 362 1.14 297 297 8.40 1.162 0.867 0.125  3.747
rings(7) Gipp 8401 2.82%4  1.15 2.78 2.62 6.57 2461 0.749 0.078  6.722
rings(17) Gipp 10701  3.27e5 1.10 255 2.41 519  5.952 0.642 0.043  10.381
sombrero(1) G, 1922 72.9 1.31 260 1.71 1.32  0.812 0966 0.105  5.152
sombrero(2) G‘éPD 7938 73.5 1.08 2.88 2.67 6.35 0.819 0.963 0.120 4.786
sombrero(4) GgPD 130050 73.7 0.772 3.40 4.46 18.8 0.820 0.962 0.123 4.628
teapot(4) G?S’PD 1008 115 1.26 3.88 5.49 45.2 1.009 0.795 0.267 6.647
teapot(12) G‘éPD 9264 116 0.967 4.74 10.2 159 1.020 0.791 0.272 6.595
teapot(40) GgPD 103680 117 0.743 5.72 16.6 421 1.021  0.791 0.272 6.600
tetra(5) Gipp 1024 13.9 1.40 2.68 1.70 1.78 1.152  0.641 0.065  5.027
tetra(6) Gipp 4096 13.9 1.26  3.12  2.62 6.46 1.152  0.690 0.051  6.244
tetra(8) Gng 65536 13.9 0.896 3.64 4.61 22.5 1.152 0.815 0.062 7.738
tree(8) G?S’pD 1023  1.00e5 0.839 18.4 55.0 3030 0.943 1.000 0.138 5.807
tree(11) GéPD 8191  1.00e5 0.791 28.5 81.2 7040 0.941 1.000 0.136 7.006
tree(15) GgPD 131071  1.00e5 0.626 46.1 121 1.69e5 0.941 1.000 0.154 6.275

Table 2: Scene complezity according to the Section 3 for Gipp, Gapp, and Gipp scenes

time T and sum of both summed over all testing 5.3. Discussion
procedures and scenes (120 measurements in case

all the tests completed successfully). Comparing results presented in Tables 3 and 4,

and Figures 1, 2, and 3 together with all the ex-
tra datal®, we can comment on the tested data
structures for ray-shooting acceleration:
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Testing procedures

Scene(Sr) TP, TPp TPo TPp

RAS TB [S] TR [S] RAS TB [S} TR [S] RAS TB [S} TR [S] RAS TB [S] TR [S]
balls(3) KD 0.30 3.72 KD 0.30 13.63 KD 0.30 50.25 KD 0.30 21.4
balls(4) KD 1.75 3.51 KD 1.75 17.64 KD 1.75  62.87 KD 1.75  27.06
balls(5) KD 16.2 3.82 KD 16.2  31.41 KD 16.2 102.2 KD 16.2 42.0
gears(2) KD 0.6 5.01 KD 0.6 10.1 KD 0.6 34.24 KD 0.6 38.96
gears(4) KD 2.45 5.71 KD 2.45 12,94 KD 2.45 57.49 KD 2.45 36.24
gears(9) KD  22.79 7.91 UG 7.24 18.36 KD 21.89 91.01 KD 2297 40.59
jacks(3) UG 0.04 12.59 UG 0.04 30.51 UG 0.04 74.05 UG 0.04 10.46
jacks(4) UG 0.3 16.38 UG 0.3 38.87 UG 0.3 118.8 UG 0.3 19.82
jacks(5) KD 12.68 21.76 UG 2.9 46.45 UG 29 1674 UG 2.9 30.69
lattice(6) UG 0.1 9.47 UG 0.1 13.36 UG 0.1 48.56 UG 0.1 33.24
lattice(12) UG 0.6 12.02 UG 0.6 16.88 UG 0.6 72.96 UG 0.6 39.95
lattice(29) UG 8.6  14.53 UG 8.6 19.35 UG 8.6  93.45 UG 8.6  43.65
mount(4) KD 0.09 6.83 KD 0.09 11.18 KD 0.09 26.65 KD 0.09 18.88
mount(6) KD 1.49 9.11 KD 1.49 15.71 KD 1.49 39.3 KD 1.49  21.06
mount(8) KD 25.9 18.45 KD 25.9 37.07 KD 26.9 114.7 KD 25.82 25.14
rings(3) KD 0.47 8.14 KD 0.47  30.01 KD 0.47  80.93 KD 0.47  40.39
rings(7) KD 2.36  12.61 KD 2.36  38.09 KD 2.36  139.5 KD 2.36  64.76
rings(17) KD  23.55 22.23 KD 23.55 61.13 KD 23.55 260.4 KD 23.55 106.6
sombrero(1) KD 0.32 6.18 KD 0.3 8.00 KD 0.31 18.21 KD 0.33 3.82
sombrero(2) KD 1.37 6.82 KD 1.37 9.16 KD 1.37  20.99 KD 1.37 4.0
sombrero(4) KD 26.39 11.83 KD 26.39 16.88 KD 26.39 40.61 KD 26.39 6.9
teapot(4) KD 0.38 5.65 KD 0.38 11.56 KD 0.38  35.25 KD 0.38 13.94
teapot(12) KD 2.18 6.65 KD 2.18 13.89 KD 2.18 43.12 KD 2.18 15.66
teapot(40) KD 22.4 9.54 KD 22.4  23.46 KD 22.4  74.58 KD 2239 23.85
tetra(5) KD 0.1 6.6 KD 0.1 9.33 KD 0.1 19.6 KD 0.1 2.48
tetra(6) KD 0.49 7.74 KD 0.49 10.9 KD 0.47  21.96 KD 0.47 2.66
tetra(8) KD 109 13.69 KD 10.9 19.47 KD 109 36.65 KD 10.9 3.57
tree(8) RG 0.13 3.72 KD 0.34 20.66 KD 0.34 34.23 KD 0.34 18.39
tree(11) AG 1.75 3.82 AG 1.8  29.96 KD 2.04 47.28 AG 1.8 20.61
tree(15) RG  358.5 3.72 HUG 104 76.37 AG 380.0 68.71 AG 380.0 43.38

Table 3: The RASs with minimum Tg[s] for TP B¢, D

BVH: Has rather poor results for all T Ps com-

084:

089:

pared to other RASs. We see the main
problem in the nature of BVH construc-
tion. This scheme does not keep track of
spatial coherency—when inserting a new
object to the hierarchy, there is no global
information about other still uninserted
objects.

Octree with sequential traversal algorithm
requires quite a lot of traversal steps from
the root node. Subdividing in midpoints
does not work particularly well for sparse
scenes (“tree”).

Has slightly better traversal algorithm

BSP:

093:

@© 2001 Institute of Computer Graphics, Vienna University of Technology

which outperforms 084 especially for
scenes with higher numbers of objects.

Although conceptually the same structure
as KD-tree, subdividing in midpoints re-
sults again in poor performance for sparse
scenes. For densely occupied scenes BSP
performs comparably to KD-tree.

Due to the most efficient traversal algo-
rithm outperforms the 084 and O89 even
if constructed using the midpoint subdivi-
sion. We can see that for all midpoint sub-
division octrees, shooting rays inside the
octree (TP, TP¢, TPp) is very time
demanding. This is the price we pay for
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Testing procedures Total

RAS TP 4 TPp TP¢ TPp ) TP_AB.CD
T2 m/l F Tp® m/l F Tg® m/l F Ty® m/l F Tp® m/l F
KD 9.98 0/0 22 2629 0/0 21 7627 0/0 23 2942 0/0 22 1420 0/0 88
093A 1501 0/0 0 4091 0/0 O 1068 0/0 0 3859 0/0 0 2013 0/0 0
O84A 1541 0/0 0 4172 0/0 0 1090 0/0 0 39.08 0/0 0 2052 0/0 0
RG 35.09 3/0 2 6444 3/3 0 1344 0/2 0 4784 0/0 0 2818 6/5 2
HUG 3963 0/0 0 9952 0/0 1 2682 0/0 0 7738 0/0 1 4847 0/0 1
AG 6331 3/0 1 1086 3/0 1 2789 3/1 1 1365 0/0 2 5873 9/1 5
UG 11.74 0/0 5 3727 0/0 7 5255 0/0 6 1454 0/0 6 1055 0/0 24
093 16.86 0/0 0 1114 0/0 0 2575 0/0 O 3928 0/0 0 1781 0/0 0
BSP 28.63 0/0 0 1291 0/0 O 3259 0/0 O 5603 0/l 0 2206 0/1 0
089 1449 0/0 0 1127 0/0 0 1421 0/0 0 38L7 0/0 O 2944 0/0 0
084 1744 0/0 0 1132 0/0 0 1437 0/0 0 4002 0/0 0 2987 0/0 0
BVH 1903 0/0 0 4569 0/2 0 5111 0/6 0 3376 0/0 0 14960 0/8 0
Y wlrAs 2170 6/0 12 9986 6/5 12 10050 3/9 12 5625 0/1 12 27832 15/15 120

Table 4: Average tuning time Tq &, memory (m) and time limit (1) failures, and number of “wins” F
for all tested acceleration algorithms and testing procedures.

084

061

044

024t

o

aN_G
mN_E

ON_EE
mN_ER

AC ——
BSP—
—
=
= :

Figure 1: Parameters Ng, Ng, Ngg, NEr
summed for all scenes and every RAS, normalized
to the worst RAS.

UG:

AG:

traversal down to the leaf when the inter-
sected object is in this node or very close.
Classical acceleration scheme. The em-
ployed smart algorithm for heterogeneous
grid resolution setting results in best per-
formance for several scenes. These scenes
are densely occupied with mostly reg-
ular structure (“jacks”, “lattice”, and
“mount”). In this kind of scenes the down
traversal phase for hierarchical spatial
data structures is expensive, since the ray
intersects object very close to the ray ori-
gin. For sparsely occupied scenes UG has
rather poor performance as it lacks a sense
of hierarchy.

as combination of BVH with UG has rea-
sonable performance, but the prediction of

0,8 4

0,6 q

04 |

0,24

BN_IT
EN_TS

ON_ETS
EmN_EETS

HUG:

RG:

093A |
084A |
RG |
HUG
AG
UG
093
BSP
089 |
084 |
BVH

Figure 2: Parameters Nyr, Nrs, Ngrs, NggTs
summed for all scenes for every RAS and normal-
ized to the worst RAS.

memory needed to construct DT is dif-
ficult for G3pp scenes, for one scene the
computation failed time limit due to swap-
ping. Tweaking of build settings was nec-
essary to get some G5y, scenes to work on
available memory.

Consists of UGs arbitrarily positioned in
other UGs. Has not only a slightly bet-
ter performance than AG, but also much
smaller and predictable memory usage.
UG inserted in voxels of UG recursively
shows negligible performance improve-
ment especially for TP ¢. Its performance
varies, five tests failed on the time limit.
The tuning of parameters to keep the test
within the memory limit was difficult as
memory consumption was rather unpre-
dictable.
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Figure 3: Total times Tg[s], Tr[s], Tr+Tr[s] for
every RAS, the last number gives the total run-
ning+construction time (I's +Tr) for all tests for
particular RAS.

084A: Octree built using the surface area heuris-
tics. We can see that although a simple
traversal algorithm was used, the more
appropriate subdivision process improved
the total performance by one order of mag-
nitude. The improvement is particularly
apparent on sparse scenes in GgPD. Un-
fortunately, the build time T'p rises rapidly
for G3pp, as well.

093A: The same improvement as between (084
and 093 can be observed due to the more
efficient traversal algorithm. Again, the
build time rises rapidly with the number
of objects in the scene.

KD:  Although being principally a BSP tree, the
subdivision using the surface area heuris-
tics and fast traversal algorithm makes
from this hierarchal spatial data structure
a winner even if improvements from O93A
are not dramatic. It has been beaten in
several cases: for regular artificial scenes
(“jacks”, “lattice”, and “mount”) by UG,
for Gipp, sparse scene (“tree”) by AG and
HUG. However, the differences in perfor-
mance in all these cases are small. The
only disadvantage is that the build time
for G3pp, scenes, which is comparable to
build times 0934 and O84A, can be rather
high in comparison with UG. Therefore, if
the number of rays to be cast is low, using
KD-tree probably does not pay off.

In general, we observe that using the surface
area heuristics?? pays off for both Octree and BSP
tree to get Octree-R and KD-tree. Also, hierarchi-
cal data structures win over non-hierarchical ones
in most cases, especially for sparse scenes.
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If these results and the ranking of algorithms
according t0 Y 7 p_4 p o p Tr Will remain for the
collection of 100 downloaded scenes is not cur-
rently known.

Examining the results of Tables 2 and 3 we
would like to present a preliminary proposal of an
algorithm for selecting an RAS to be used given a
scene: First, construct an uniform grid G 4—1 ¢ over
the bounding boxes of objects using the hetero-
geneous resolution setting, and voxel density 1.0.
Then compute sparseness parameters ¢, s, and k.
When the §, s, and k are low (see Table 2), then
construct uniform grid. If these three parameters
are in the middle range, construct a KD-tree us-
ing the surface area heuristics. If these parame-
ters are very high, then consider either KD-tree
or RG/AG for even better performance, but be
aware of difficult predictance of memory require-
ments for these hierarchical grids. If nothing from
rules above is applicable, construct KD-tree. Here,
we should stress out, that the preliminary algo-
rithm is derived from the measurements of 30 SPD
scenes with fractal nature. Its validity has to be
verified on larger set of scenes. The knowledge if
the most rays will be shot inside the scene will be
helpful for RAS selection as well.

6. Conclusion and Future Work

In this paper we outlined the goals of BES project
and its status in late March 2000. We have de-
fined testing procedures for ray-shooting acceler-
ation schemes, RAS invariants, and an algorithm
for systematically shooting uniformly distributed
rays. We have shown which parameters describing
computation using RAS can be recorded. Based
on the collected data we also outlined a heuris-
tics for selection of suitable RAS given a statistics
based on scene sparseness. Even if the heuristics
predicts reasonably well for tested SPD scenes, we
do not know if the algorithm in its present form
will be applicable to general scenes and its success
ratio. It is only clear, that for small number of rays
to be shot the construction of any DT does not
pay off at all.

Testing 12 RAS over 30 SPD scenes of dif-
ferent complexities and 4 testing procedures we
can conclude that using hierarchical spatial data
structures for ray-shooting acceleration, particu-
larly KD-tree, definitely pay off—with exception
of densely occupied scenes. This observation sup-
ports our opinion that only very unlikely there
will be a single optimal RAS for general use in
ray-shooting.

This project is still not completed. In order
to provide a sound basis that would help us to
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avoid further speculations about the design and
use of different ray-shooting algorithms, several
tasks have to be completed: First, we have to make
our collection of 100 practical scenes complete and
run all the tests presented in this paper again over
this set. This will provide us with a vast amount
of statistical data that will have to be analyzed to-
gether with measurements presented in this paper.
Having the results ready, we can conclude if the
result presented in this paper correlate somehow
with the results obtained for the practical scenes.
This will also reveal how well is the SPD distribu-
tion actually simulating the real scenes.
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