Technical Report/TR-186-2-00-20 (10 November 2000)

Comparison Methodology for
Ray Shooting Algorithms

Vlastimil Havran' and Werner Purgathofer?

t Department of Computer Science, Czech Technical University
Karlovo ndm. 13, CZ-12135 Prague 2, Czech Republic
e-mail: VHavran@seznam.cz
! Institute of Computer Graphics and Algorithms, Vienna University of Technology
Favoritenstrasse 9/186, A-1040 Wien, Austria
e-mail: purgathofer@cg.tuwien.ac.at

Abstract

In this paper we deal with a methodology for comparing various ray shooting algorithms for a set
of experiments performed on a set of scenes. We develop a computation model for ray shooting
algorithms, which allows us to map of any particular ray shooting algorithm to the computation
model. Further, we develop a performance model for ray shooting algorithms, which establishes
the correspondence between the computation model and the execution time of the ray shooting
algorithm for a sequence of ray shooting queries. Based on the computation and performance
models, we propose a set of parameters describing the use of a ray shooting algorithm in
applications. This allows us to make a fair comparison of various ray shooting algorithms
for the same set of input data, i.e., the same scene and the same sequence of ray shooting
queries, but virtually independently of the hardware and the implementation issues. Under
certain conditions, the proposed comparison methodology enables to perform cross-comparison

of published research work without reimplementing other ray shooting algorithms.

1. Introduction

Shooting a ray is one of the fundamental geomet-
ric tasks in computer graphics. It is utilised by
virtually all modern global illumination methods
to sample different properties in three-dimensional
space. Ray shooting is used not only for the image
synthesis in ray-tracing based methods, it is used
for form-factor computation in radiosity, for pho-
ton map construction, for visibility preprocessing
etc.

Ray shooting is a simply defined task: find out
the first object intersected by a given ray for a
given set of objects, if such an object exists. In
spite of this simple formulation, it is not trivial
to implement an efficient and fast ray shooting
algorithm (abbreviated to RSA). The problem of
finding an ultimately efficient RSA still remains
open. Both computational geometers and com-
puter graphics researchers have tried to develop
a fast RSA with varying success. Computational

geometers aimed their efforts at improving the
worst-case time complexity. Unfortunately, the
space and preprocessing time complexity of these
methods is unacceptable for real implementations
in rendering frameworks®. In computer graphics
different heuristic RSAs improving the average-
case time complexity were investigated. Even if
the worst-case complexity of these heuristics al-
gorithms is unfavourable, the good average-case
complexity is the reason why these heuristic RSAs
are commonly used in rendering packages?!- 5 22,

It is also possible to use a brute force method
for solving the problem. A naive RSA tests all
the scene objects in order to select the clos-
est one, which gives the complexity of O(N),
where N is the number of objects. Szirmay-
Kalos and Marton!® proved that the lower bound
on the worst-case complexity of ray shooting
is Q(logN). Some heuristics algorithms exhibit
worst-case complexity O(N) and average-case

@© 2000 Institute of Computer Graphics and Algorithms, Vienna University of Technology



2 Havran / Comparison Methodology forRay Shooting Algorithms

complexity O(1) for scenes with uniformly dis-
tributed objects!®. These complexities remain for
non-random scenes as well, but unfortunately, the
unknown multiplicative factor hidden behind the
scenes and random object distribution in the scene
for average case analysis make theoretical com-
plexity definition unusable to decide which RSA
should be used in practice. This is the reason why
the performance of RSAs is normally compared on
a set of some test scenes. In order to test the per-
formance of ray tracing algorithms Haines intro-
duced Standard Procedural Database package (ab-
breviated to SPD11), which defines a set of scenes
and a description of ray tracing algorithm.

Since the RSAs are implemented and tested us-
ing different software and hardware, an important
problem in research on RSAs is how to compare
them qualitatively and quantitatively. This should
be done on a technically sound basis, it should de-
fine time and memory complexity, suitability for
various type of scenes, and particular features of
an RSA. In spite of two decades of research on
RSA in the computer graphics community, it is
not yet clear if some particular RSA is more con-
venient and/or more efficient than any other RSA.
Some contradictory statements about RSAs have
appeared with the introduction of new types of
RSA in published papers.

Moreover, each paper that introduces a new
RSA must, or at least should, compare the pro-
posed algorithm with some reference algorithm.
There is no common choice for the reference algo-
rithm, but in most cases a uniform grid was used.
The quantitative comparison between a reference
RSA and a newly proposed RSA always depends
on the software implementation and on a partic-
ular hardware platform. For this reason any cross
comparison of the results presented in the differ-
ent papers is problematic and sometimes rather
impossible. A fair comparison of different RSAs
has been possible only when they are implemented
and tested within a uniform software framework,
such as'?, and when the testing is performed on
the same hardware. Only a few papers devoted to
the comparison of various RSAs 13.16.9.10 have
been published until now, which uses as means
for comparison the execution time.

In this paper we will try to decrease the gap
in understanding of the functionality of various
RSAs by finding out their commonalities. The
commonalities found in all RSAs allow us to de-
scribe the RSA computation model in a general
way that allows us to map a particular RSA to
this computation model. Further, we will describe
a performance model that establishes the connec-
tion between the execution time of the applica-

tion and the different algorithmic operations that
are the subject of the computation model. Then
we will define two procedures for an “ideal RSA”
that allow us to compute the answers to ray shoot-
ing queries in constant time. The “ideal RSA” re-
sults in the smallest possible time that can ever
be achieved using a certain hardware and a set of
ray-object intersection routines. We use the time
consumed by the “ideal RSA” as a reference time
value for all the parts of the computation in a
specific RSA. These parts cover the time needed
to traverse the data structure on which RSA is
based, ray-object intersection tests, and the re-
maining time consumed by the application. The
design of the computation model and performance
model allow us to define a set of thirteen param-
eters referred to as the minimum testing output
that should be reported for one experiment, given
a scene, a particular RSA, and a sequence of ray
shooting queries. Further, we describe how to get
the minimum testing output. The definition of the
two models and the minimum testing output is the
basis for a methodology for making a fair compar-
ison of various RSAs.

The concepts proposed below form a compari-
son methodology that allows us to compare var-
ious RSAs virtually independently of the imple-
mentation and the hardware used. We follow the
comparison methodology for experimental mea-
surement that was described in Havran and Z4ral4
for the kd-tree and further elaborated in!3. The
comparison methodology presented here is a gen-
eralised and extended version for any RSA virtu-
ally independently of the hardware issues.

This paper is further structured as follows:
In Section 2 we introduce an RSA computation
model. In Section 3 we describe an RSA perfor-
mance model. In Section 4 we develop an ideal
RSA that allows to compute the answers to a ray
shooting queries in constant time under certain
conditions. In Section 5 we describe a minimum
testing output and in Section 6 strategies how to
obtain the values for minimum testing output. In
Section 7 we describe a comparison methodology,
which specifies how to compare two or more RSAs.
In Section 8 we discuss various properties of our
method. Finally, Section 9 concludes the paper.

2. RSA Computation Model

In this section we introduce the RSA computa-
tion model. We will show that any RSA cur-
rently known or developed in the future can be
mapped to this computation model. The compu-
tation model is based on the definition of algorith-
mic operations in an RSA. These operations must

@© 2000 Institute of Computer Graphics and Algorithms, Vienna University of Technology



Havran / Comparison Methodology forRay Shooting Algorithms 3

always be performed due to the nature of the ray
shooting problem. We then use the computation
model to describe the set of parameters to be re-
ported, when an RSA is tested experimentally.

The ray shooting problem can be understood as
an instance of geometric range-searching!, which
implies that some data structure is built to an-
swer the specific query. The definition of the ray
shooting problem implies that every RSA con-
tains somewhere pointers to objects that are to
be tested for intersection against a given ray. This
means that each RSA is separated into two parts
(as all algorithms?): the data structure (further
abbreviated to DS) containing at least pointers
to the scene objects and the ray traversal algo-
rithm working over DS. The lifetime of an RSA is
composed of two phases, the first one is called pre-
processing phase and it involves the construction
of the initial DS. The second phase of an RSA is
called the execution phase. Within the execution
phase the RSA answers given ray shooting queries.

More theoretically, an RSA can be described a
special case of a general RAM model?: 20, where
any memory cell can be accessed in constant time
or through a series of pointers. A DS is composed
of some data entries, here referred to as nodes,
which contain some data. It usually involves the
pointers to the scene objects, the pointers to the
other nodes of DS, the size of the cells etc. Nodes
of a DS can be divided into two groups: elemen-
tary nodes contain only pointers to objects (and,
if RSA requires it, to some other data), whereas
generic nodes do not refer to any objects, but
rather point to other generic and/or elementary
nodes. A special case of elementary nodes are
empty elementary nodes that do not contain any
pointers to objects and act as “free space contain-
ers” within the DS.

When answering a ray shooting query in a par-
ticular RSA, the computation proceeds as follows.
Given a ray R, a ray traversal algorithm begins
at a special starting node of a DS and performs a
sequence of the following operations:

TRAVERSAL STEP: visit a new node of the DS
using a pointer from a pre-
viously visited node,

NEW NODE: create a new node of the
DS,
DELETE NODE: delete a node from the DS

and unlink all pointers to
the node from the remain-
ing nodes of the DS,

when accessing an elemen-
tary node of the DS, test
objects pointed to in this

TEST OBJECTS:

node for the intersection
with the ray R,

finally finding the closest intersected object if such
an object exists. There are two possibilities: a DS
is or is not changed by a ray traversal algorithm.
If a DS underlying the RSA is not changed by
the ray traversal algorithm, then the operations
“NEW NODE” and “DELETE NODE” are not
performed. These RSAs are referred to as RSAs
based on a static data structure.

There are several RSAs that modify the under-
lying DS on the fly within the execution phase,
for example, ray space subdivision techniques3.
The operations “NEW NODE” and “DELETE
NODE” can be used within the preprocessing
phase to build up some initial DS, however, this
DS is modified during the execution phase. These
RSAs are referred to as RSAs based on a dynamic
data structure.

Since every RSA can be mapped to this gen-
eral RSA computation model, this enables us to
define a common set of parameters to be reported
when any RSA is performed on an input scene S
containing N objects over an input sequence of
ray shooting queries. The sequence of ray shoot-
ing queries induced by the application for an input
scene S is associated with a testing procedure (the
symbol for the testing procedure is TP). The test-
ing procedure is an algorithm in the application
that generates a sequence of ray shooting queries
to be answered by a particular RSA. A particular
testing procedure TP can be the result of a global
illumination algorithm such as ray tracing etc., or
just an artificial algorithm shooting rays to obtain
some required distribution of rays in space.

We propose to organise the set of parameters
resulting from the use of a particular RSA on the
input scene and given a TP into three subsets, the
first two of them hardware/implementation inde-
pendent:

o RSA parameters related to static properties of
data structure DS:

— If an RSA is based on a static data structure,
they depend on the scene S only, and they
are evaluated at the end of the preprocessing
phase.

— If an RSA is based on a dynamic data struc-
ture, they depend on the scene S and the
testing procedure TP, and they are evalu-
ated during the execution phase as maximum
values reached.

© 2000 Institute of Computer Graphics, Vienna University of Technology and Algorithms



4 Havran / Comparison Methodology forRay Shooting Algorithms

Ng[-] — maximum number of generic
nodes in DS,

Ng[-] — maximum number of elemen-
tary nodes in DS,

Ngg[-] - maximum number of empty
elementary nodes in DS
(Nge < Ng),

Ngr[-] - maximum number of the

pointers to objects in all
the elementary nodes of DS
(Nggr > N).

e RSA parameters related to dynamic properties
of data structure DS. They depend on the
scene S and the testing procedure TP, they are
evaluated at the end of the execution phase:

ratio of ray-object inter-
section tests performed to
minimum number of in-
tersection tests (rrra >
1.0, assuming at least one
object is hit given S and
TP),

average number of all DS
nodes accessed per ray
(NTS 2 1-0)7

average number of ele-
mentary DS nodes ac-
cessed per ray (NETS <
NTS)7

average number of empty
elementary DS nodes ac-
cessed per ray (N EETS <
Ngrs).

e RSA hardware/implementation dependent
parameters. Obviously, these parameters also
depend on the scene S and testing procedure
TP:

rrra[—] -

Nrs[-] -

Ners[-] -~

NEETS[—] -

Tgls] - time consumed to build DS
for the RSA in the preprocess-
ing phase (depends on S and
hardware/implementation),

Tgr[s] — time consumed to perform

given TP in the application,
which involves the execution
phase of the RSA.

We consider the parameters in the first two sub-
sets as the minimum hardware/implementation
independent parameters to be reported. Princi-
pally, it is possible to extend the set of parameters
by others (for example, the variance of number of
objects in leaves), but we want to keep this set of
the smallest possible size that still characterizes
RSA via the computation model.

The parameters Ts and Tk depend not only

on the hardware used, but also on the quality
of implementation (and programming language),
the compiler used and its version, the optimisa-
tion switches used for compilation etc. For this
reason, all these experimental conditions should
be described in detail. The treatment of these pa-
rameters related to the implementation makes the
problem of comparing various RSAs rather diffi-
cult; we describe a solution to the problem in more
detail below.

3. RSA Performance Model

The RSA computation model enables us to count
the number of basic algorithmic operations per-
formed on average in an RSA. The RSA computa-
tion model does not define any cost of these oper-
ations in terms of execution time, it only describes
the time Tg and Tg. For the sake of convenience,
we further use the term cost[s] as the execution
time to perform some particular algorithmic op-
eration.

In order to establish the relationship between
hardware/implementation dependent and inde-
pendent parameters, we further develop an RSA
performance model, which separates the cost of a
ray traversal algorithm and the cost of ray-object
intersection tests. The concept of the performance
model for an RSA was first introduced by Cleary
and Wyvill? in the context of uniform grid analy-
sis. We present here a more general performance
model for any RSA that is derived from the RSA
computation model described above. The RSA
performance model is based on the decomposition
of the total execution time Tr of the application
that uses an RSA into three parts:

e computing ray-object intersection tests,

e traversing the DS of the RSA, and

e the remaining computation effort required by
the application.

We bind the time-dependent and independent
characteristics by means of cost consumed by spe-
cific algorithmic operations. Then we can express
Tg as:

Tr = (rrrar-rsr-Crr + N7s.Crs) Nyays (1)
+Tapp;

where rgy is the ratio of the number of rays hit-
ting the objects to the number of all rays (rs; <
1.0), thus the average number of ray-object inter-
section tests per ray is Ny = ryrar.rsr- Further,
Crr [s] is the average cost of a ray-object intersec-
tion test, Crg[s] is the average cost of the traver-
sal step of a ray traversal algorithm among the

@© 2000 Institute of Computer Graphics and Algorithms, Vienna University of Technology



Havran / Comparison Methodology forRay Shooting Algorithms 5

nodes of DS, Ny.ys is the total number of rays
induced by a testing procedure TP, and Tgpp[s] is
the remaining time of the application. The time
Topp covers another computation effort performed
in the application, for example, in a rendering
application T,,, might cover the time consumed
to compute the ray reflection, lighting, texturing,
and other material calculations. Thus T, is al-
ways constant for a particular scene S and testing
procedure TP, provided the same implementation
and hardware is used.

We can refine the performance model if we con-
sider the hit ratio of ray-object intersection tests
to all intersection tests:

Tp = [(N7.Ci + N[p".Cli")rsr + (2)
NTS-CTS]-NTays + Tapp;

where N54°¢ is the average number of successful
ray-object intersection tests per ray, C$4°¢[s] is the
average cost of successful ray-object intersection
tests, N7%" is the average number of failed ray-
object intersection tests per ray, and C‘}cq‘f’l[s] is
the average cost of failed ray-object intersection
tests.

4. Ideal RSA

Having described the refined performance model,
we can now introduce the “ideal RSA” as an RSA
that has the best possible performance. The con-
cept of the “ideal RSA” serves us as the ultimate
but in practice unachievable goal. However, it is
important since the execution time of the “ideal
RSA” is used as the reference time value for com-
paring various RSAs.

Definition An “ideal RSA 7 is an RSA that
for a given ray computes any ray shooting query
in O(1) time independently of whether an inter-
sected object exists or not. The multiplicative fac-
tor hidden behind the O-notation is very small.

Since Szirmay-Kalos and Mérton!® proved that
any RSA works at least at time Q(logN) in the
worst-case, then we can ask if the definition of an
“ideal RSA” makes sense. Inspired by the idea of
Parametrized Ray Tracing”, we can construct the
“ideal RSA” provided the same testing procedure
TP is repeatedly performed for the same scene S.
Further, it is required that the application code is
deterministic in the sense that the testing proce-
dure TP in the application always generates the
same sequence of ray shooting queries for a given
scene. This can require the setting of initial seeds

in pseudo-random generators to the same value in
the application, etc.

Further, we describe the two procedures that
form the “ideal RSA”. The first assumption that
enables us to execute the “ideal RSA” is that the
application is run at least twice using the same
TP and S. In the preprocessing phase each object
is assigned an identification tag ID (integer) in the
range {0, N — 1}. Then we construct the array Ar
where objects are addressed directly using IDs of
objects in O(1) time.

In the first application run we use some tradi-
tional RSA. The results obtained by the RSA for
the sequence of input ray shooting queries gen-
erated by TP are saved linearly to a temporary
array Ag using the object’s IDs. When no object
is intersected, the array entry is set to a special
ID value (IDspe. = —1). Since the number of ray
shooting queries can be high, it may be necessary
to save the results of ray shooting queries to ex-
ternal memory. The procedure that must be used
in the first application run and at the interface
between the application and the traditional RSA
is outlined in the pseudocode, Algorithm 1.

Algorithm 1 The first phase of “ideal RSA” that
saves the results of ray shooting queries.

{ Preprocessing phase}
Assign each object a unique ID in the range
{0,N -1}
Allocate the array Ag to store IDs of objects,
the number of entries in Ag must be greater
than or equal to the number of all ray shooting
queries generated by TP.
{the pointer to the array — order of ray shooting
query}
1+ 0
{FEzecution phase}
function RayShoot(ray R): object
{compute the result of the i-th ray shooting
query by some other specific RSA.}
Compute the result for R using some specific
RSA
Object O « the result of the specific RSA for
the given R
if object was found then

Agli] + ID of object O
else

As[i] < IDgpec
end if
t+i+1
RayShoot + O
{Final phase of RSA }
Possibly save Ag to external memory

In the second (repetitive) application run, in-

© 2000 Institute of Computer Graphics, Vienna University of Technology and Algorithms



6 Havran / Comparison Methodology forRay Shooting Algorithms

stead of calling a specific RSA, we read the correct
answer to the ray shooting query from the array
Ag provided that repetitive run(s) of the appli-
cation results in the same testing procedure TP
and uses the same scene S. If we get the object’s
valid ID, we get the address of the object through
the array A1 and compute the ray-object intersec-
tion point exactly by one ray-object intersection
test. This computation is required to get the cor-
rect signed distance for the current ray shooting
query. If the object’s ID has the value I Dsp., then
the answer to the ray shooting query is “no ob-
ject”, and no signed ray-object intersection test is
computed. Since the ray-object intersection test
is computed at most once for each ray shooting
query, the “ideal RSA” runs in O(1) time. The
“ideal RSA” performed in a repetitive run of the
application is outlined in the pseudocode, Algo-
rithm 2.

Algorithm 2 The second phase of “ideal RSA”
that reads the results for ray shooting queries.

{Preprocessing phase}
Assign each object its unique ID in the range
{0, N — 1}. These IDs correspond to the first
phase of “ideal RSA”.
Allocate the array Ag to store IDs of objects
Possibly read Ag from the external memory.
Allocate the array Ar to store the pointers to
objects, size of A7 is the number of objects
for each object O specified by its ID do
Ar[ID] < address of the object O
end for
{the pointer to the array — order of ray shooting
query}
1+ 0
{Ezecution phase}
function RayShoot(ray R): object
ID of object + Agl[i]
t+i+1
if ID # IDgpe. then
Object O < Ar[ID)]
Compute the signed distance ¢ for R and O
else
Object O + “no object”
end if
RayShoot ¢+ object O

For the repetitive run(s) of the “ideal RSA” the
time Tg becomes the minimum possible applica-
tion execution time THIN:

Tllaw IN[S] = T}%IAN + Topp: (3)

where THN is the minimum time devoted to

ray shooting only, further called the ideal ray
shooting time:

T}%{L{V[s] = é;%cc-Nrays-TSI (4)

If external memory is used to save the array Ag,
we should avoid the time consumed to transfer the
data from this external memory to internal mem-
ory to minimise the repetitive application execu-
tion time T'g. Practically, array Ag is read from
a file by blocks to internal memory, and the time
for reading the blocks should not be included in
TMIN From the implementation point of view,
the “ideal RSA” is fairly easy to implement in the
application.

5. Minimum Testing Output

The results of experiments published in the pa-
pers introducing new RSAs were often restricted
to only Tp and Ty and some other parameters.
Based on these hardware dependent parameters,
we could not fairly compare newly introduced
RSAs with those published in the past. It follows
from the description of the computation and per-
formance model that experiments allowing us to
fairly compare various RSAs must be performed
for the same scene S and testing procedure TP.
For this purpose a Standard Procedural Database!!
was introduced. This database enables us to proce-
durally generate various scenes with various num-
bers of objects. It also defines some standard sizes
of the scenes that should preferably be used for
testing RSAs. However, the use of SPD scenes
for testing RSAs has also been violated, and re-
search papers often show results for testing per-
formed on private scenes, or on only a small sub-
set of SPD scenes. Such a researcher’s behaviour
is a direct violation of research etiquette, since
the nature of science is that every research paper
should describe new techniques and experiments
that will be reproducible and verifiable by all fol-
lowing researcherss. Therefore, whenever possible,
qualitative properties of algorithms should always
be tested on non-private input data.

Let us discuss why the comparison of various
RSAs based only on time Tg consumed by the
whole application is rather incorrect. The first rea-
son is that T’r also includes Tgpp, which is con-
stant. If we want to compare the performance of
various RSAs on the same hardware and with the
same implementation, instead of comparing Tr'
for RSA' and Tx? for RSA? it is more correct
to compare (Tg' — Topp) with (Tr* — Tapp), since
this considers the time devoted to the ray shoot-
ing only only. Obtaining the value of T}, can be

@© 2000 Institute of Computer Graphics and Algorithms, Vienna University of Technology



Havran / Comparison Methodology forRay Shooting Algorithms 7

difficult, as it usually requires profiling of the ap-
plication by some software tool. We propose a way
avoiding the use of a profiler in the section below.
The value of Tr can be used correctly only for
ranking of RSAs, but it cannot be used to express
how much an RSA is faster than another RSA.

The SPD package!! also recommends that
some time-independent characteristics should be
reported: Npgys, N7t Nrays, NTs.Nrpays- We
follow this approach by extending this set of
hardware/implementation independent character-
istics.

In order to avoid mutually contradictory state-
ments in further papers concerning RSAs, we de-
fine a set of parameters to be reported from the ex-
periments. We call the set of parameters the mini-
mum testing output. This consists of three subsets
as already presented: RSA parameters that relates
to static properties of DS, RSA parameters that
relates to dynamic use of DS, and RSA parame-
ters dependent on hardware/implementation. The
hardware/implementation dependent characteris-
tics Tp and Tk are supplied by three other pa-
rameters. We normalise the time portions devoted
to the particular phases to the ideal ray shooting
time THLN to allow us to make a fair compari-
son among different implementations and differ-
ent hardware used for testing. Our main goal is
that the parameters in the minimum testing out-
put should allow us to compare the performance
of various RSAs independently of hardware and
implementation.

We define the minimum testing output for an RSA
as:

Subset ¥ of parameters describing the static
properties of a DS within the RSA:
Y= {NG;NE'aNE'EaNER}a

Subset A of parameters describing the dynamic
use of the data structure DS, which also depend
on the input scene S and testing procedure TP:
A = {rirm,Nrs, Ngrs, Neprs},

Subset © of hardware/implementation depen-
dent parameters of the RSA concerning to timing,
which also depend on the input scene S and test-
ing procedure TP:

= {04,0r7,075,Tp, T} = ()

{Sapp_ Tapp

TR
Nrays ( succ Csucc + N{;” CIf’;ll)

TMIN ’
RSA
Nyays-Nrs.Crs
— v T, Tr}
RSA

The parameter © 4 expresses the ratio of the
remaining application time to the ideal ray shoot-
ing time THLY, which is not necessary for the
comparison of RSAs, however, suitable for other
reasons. The parameter O is the ratio of time
required for computing the ray-object intersection
tests to Thi sV . Similarly, the parameter Org gives

the ratio of time consumed by traversing the DS
o TMIN.

The time portions related to the ideal ray shoot-
ing time TALN can be difficult to measure. In the
next section we deal further with this problem.
The value of TN enables us to compare differ-
ent hardware/implementation dependent charac-
teristics. Subset © contains the value of the ideal
ray shooting time T}%QN only indirectly, since it
can be computed as:

T
TMIN _ R 6
Qs+ 07+ 07158 ©)

6. Measuring the Minimum Testing
Output

The minimum testing output allow us to make a
fair comparison of various RSAs. We pay for it
by additional effort needed to get this set of thir-
teen parameters for one experiment. The counters
to get the subsets ¥ and A must be coded in-
side the RSA in its preprocessing and execution
phase, which is fairly easy to implement. It is ad-
vantageous to check these counters for verification
purposes as well, since they can indicate to us an
implementation error of a particular RSA. In or-
der to have a correct implementation of a partic-
ular RSA given some testing procedures TP and
scene S, the parameters N;qys and rsr must have
correct values when the application run is over.
Although N;qys can be considered as an indepen-
dent input quantity, it is often the case that the
number of rays generated is connected with the
use of RSA and thus N,,y, is dependent on the
correctness of the RSA. For example, this is the
case for higher order rays in various global illumi-
nation algorithms. Reference values of N;qys and
rgr can be obtained by running another RSA that
is known to be correct. The simplest way is to im-
plement naive RSA even if the naive RSA is inef-
ficient.

To obtain subset © we need the total execution
time T'r to be decomposed into the three portions:
the time for the ray traversal algorithm performed
within the RSA, the time of the ray-object inter-
section tests performed within the RSA, and the
remaining application time T,,,. There are two

© 2000 Institute of Computer Graphics, Vienna University of Technology and Algorithms



8 Havran / Comparison Methodology forRay Shooting Algorithms

ways to obtain subset ©, which are two profiling
methods described below.

6.1. Software Tool Profiling

One way to get subset © is to use a software
profiler tool. This is a common method for solv-
ing performance issues in software applications.
It enables us to distinguish the times consumed
within particular software functional units, such
as functions, procedures, or even the lines of a
source code. Then we can sum the time devoted
to ray-object intersection test routines, the time
consumed by traversing the nodes of a DS, and
the remaining application time.

Software tool profiling should be preferred for
getting O, since it provides precise values. How-
ever, under certain conditions this is not possible,
for one of the following reasons: the profiler is not
available, the profiler does not work correctly, the
profiler cannot determine the time portions of the
required RSA parts within a given implementa-
tion, the profiler needs some compiler switches to
be used, which influences Tg (a debugging switch
is usually required, and this can increase the ap-
plication time considerably) and the different time
portions of Tg. Therefore we propose an alterna-
tive to obtain subset ©® without using a software
profiler tool below.

6.2. Multiple Run Profiling

This profiling method involves running the appli-
cation several times and computing the unknown
variables in Eq. 2 from linear equations. Eq. 2
contains four unknown variables that express the
costs of distinct algorlthmlc operations in some
RSA application: Csuee, C19 Crg, and Tapp,

In order to obtain the four unknown variables
we need four different application runs. These
have to use the same sequence of ray shooting
queries, but they have to result in different total
execution times. For this purpose we utilise the
concept of the “ideal RSA”, and modify the ray-
object intersection tests to be performed K-times.
The first used equation comes from the common
application run, described by Eq. 2. The second
used equation is for the application run, when the
ray-object intersection test is performed K-times,
resulting in the execution time:

Tr(K)[s] = [K.(Nf.Cp + Nip".Clz")
+NTS-CTS] -Nrays + Tapp (7)

The third used equation is the time of the “ideal
RSA”, Eq. 3. The fourth used equation is for the

case when the ray-object intersection test in the
“ideal RSA” is performed K-times, resulting in
the execution time:

MIN( )[S] succ‘ ~rays-7'SI + Tapp (8)

Assuming Cguce, C’{;ﬂ, Crs, and Ty, are of
the same value in these four application runs, we
can compute these unknown variables by solving
a system of linear equations. From Egs. 3 and 8,

we get C¥°¢ and Tgpp as follows:
TMIN K) — TMIN
Csucc — _R ( ) R (9)
Nrays-(K - ]-)-"'SI
Toapp = T — Nyays-TsI- C'S“CC (10)

From Egs. 2 and 7 we derive the C’f il and Crg:

Cfazl (11)
Tr(K)—T, 1
Nty — O NH) e
éTS _ [TR(K) _TR Asucc prsucc
= 7 —  —viIT -IT
Nrays
1
Cfazl Nfazl]‘ (12)
Nrs

We call the profiling method based on the four
equations multiple run profiling. It is oriented only
to the software applications that use RSA.

6.2.1. Properties

Multiple run profiling has one big advantage, it
does not require any profiling. However, it suffers
from several disadvantages. First, it requires the
multiple ray-object intersection test to be imple-
mented in routines for all the object types in the
application. Second, the time of the multiple ray-
object intersection test is affected by the cache be-
haviour of the processor used during experiments.
Even if the ray-object intersection test is per-
formed K-times, instead of being K-times slower
it is only K' times slower, where 0 < K' < K.
Further, we have found out during the testing
of an “ideal RSA” that caching and branch pre-
diction within the processor also influences the
time of ray-object intersection tests within the
“ideal RSA”. Since in this case the ray-object in-
tersection test is always positive (Egs. 3 and 8),
the branches are always well predicted, resulting
in lower cost C$%°°. Our experiments had best
matching with the software tool profiling using
K = 2. Third, the application must be run at least

@© 2000 Institute of Computer Graphics and Algorithms, Vienna University of Technology



Havran / Comparison Methodology forRay Shooting Algorithms 9

five times over the same input scene. In addition to
the four measurement runs described above, one
run is required to save the results of RSA into the
visibility array Ag for the “ideal RSA” not to in-
fluence Ty in the measurement run corresponding
to Eq. 2.

The second way is to get directly some other
estimates of Crg, Cuce, C}i}”, and Typp. Some
of these may be known or well estimated for
given hardware/implementation independent of
TP and S for some previous runs of the appli-
cation. Provided Tapp > THLN | we can also as-
sume Tapp = THIN . Third, we can obtain the es-
timate for C§%°¢ and C’f;il when we use the same
RSA with a different setting used for the construc-
tion of data structure underlying the RSA. For
example, if a kd-tree is used, we can set the maxi-
mum depth allowed to various constants and then
we get a set of equations of type 2, which allows
us to compute C’Tg.

Although multiple run profiling has several dis-
advantages, it remains the only known way when
software tool profiling is not possible for some rea-
son. Below, we improve this method using some
correction parameters.

6.2.2. Corrected Measuring of Subset ©

To obtain more precise profiling results we can
modify the equations of application runs to model
the behaviour of caching and branch prediction to
some extent. We propose to use three correction
parameters in this modified multiple run profil-
ing. They express the time between the operation
that is expected to be cached and the time of un-
cached operation: r7¢2 . rhit —pfail “al] of them
in the range (0.0, 1.0). First, we correct Cyp pro-
vided that the ray-object intersection test always
succeeds:

Crp = Crrriet, (13)

Second, we correct Crr of the repetitive suc-
cessful ray-object intersection test:
O (K) = Crr [L+ (K = 1)l ] (14)
Third, we correct Crp of the repetitive failed
ray-object intersection test:
~1 'l
CHH(K)

=Crr 1+ (K=-1)rf% (15

CO’I"I"
Then we can express the corrected three equa-
tions as follows:

MIN succ Te
T C . rays-rSI'Tcofr + TG»PP’ (16)

Tr(K)[s] = {[NFF.CH.(1+ (K = 1).reor,)] +
(V77" cf‘“l (L+ (K = 1).rfgi)] +
NTS-CTS}-Nrays + Tappa (17)

and
TN (K)[s] = CPcaioh.(1+ (K = 1).rlt,).
Nrays-nIT + Tapp. (18)

Similarly to Eqs. 9-12 we can derive the formu-
las to obtain Crg, O34, Cf‘“l, and Typp. Cor-
rected measuring is more precise, but it requires
us to set the correction parameters. These can be
estimated by using a software profiler when com-
piling without using optimisation switches, or for
a different setting of K. Another way is to use
various ray traversal algorithms, since the correct
setting of the correction parameters O yr remains
the same, because the number of ray-objects does
not differ and ©g depends on the ray traversal
algorithm used.

7. Comparison Methodology

The establishment of the subsets ¥, A, and © of
the minimum testing output enables us to com-
pare different features of RSAs. For the use of an
RSA in an application there are several different
features for us to distinguish:

S: the complexity of input scene S is im-
portant, for example, some RSA can be
efficient for scenes with a small number
of objects, although slow for scenes with
a higher number of objects. The scene in-
fluences all parameters in X, A, and ©.

RSA:  the idea behind RSA has a major im-
pact on performance. RSA influences ¥,
A, and O.

TP: the testing procedure is specific to the
application used, and the use of RSA can
vary greatly. It only influences A and ©
for an RSA based on a static data struc-
ture, otherwise it also influences X.

HW: type of hardware used — this influences
all parameters in subset ©, particularly
TB and TR.

COMP: the compiler, its version, and the

switches used can influence T and Tg

significantly, and thus all parameters in
subset ©. For example, setting optimisa-
tion switch -O2 of the C++ compiler in
the UNIX operating system can decrease
the execution time by half.

implementation — the actual coding of
the algorithm also has a great impact on

IMPL:

© 2000 Institute of Computer Graphics, Vienna University of Technology and Algorithms



10 Havran / Comparison Methodology forRay Shooting Algorithms

performance, depending on the program-
mer’s experience, etc. Various implemen-
tations of the same ideas can exhibit sig-
nificant differences in performance. It in-
fluences only subset ©. When the RSA
is (re)implemented correctly, the param-
eters in subsets ¥ and A are not influ-
enced.

We note that HW, COMP, and IMPL can be
intertwined to some extent, since a certain imple-
mentation can better fit to a certain hardware,
etc. It is obvious that so many dimensions of free-
dom make the comparison of various RSAs rather
difficult in general, especially for subset ©. For ex-
ample, if we want to compare two different RSAs,
we have to fix as many other possible dimensions
as possible, in this case S, TP, HW, COMP, and
IMPL. As the minimum requirement, we can re-
quire the same set of scenes and the testing proce-
dure within the application to be used. The exis-
tence of dimensions HW, COMP, and IMPL dis-
able the direct use of T and Tg for comparing
various RSAs. Some parameters in subset X, A,
and O allow us to compare even such cases, due to
the generality of the underlying RSA computation
and performance model.

In general, we can perform the following com-
parisons for one measurement using the same
TP and scene S for two ray shooting algorithms
RSA" and RSA? (values for RSA" are denoted by
superscript!, for RSA? by superscript?):

e memory complexity we compare (N} + N})
with (NZ + N%). To a constant factor given
by implementation of a particular RSA, it ex-
presses the different memory requirements.

e use of hierarchy, we compare N}/N} and
N2/N2.

e use of empty space, we compare N} /N& and
N/N2

e time complexity, we have several choices de-
pending on the conditions for comparison:

- Tg'— T,,p With Tr% — T;,, for performance
ratio, Tgr' with Tg? for ranking only — time
can be used directly for comparison, when
HW, COMP, and IMPL attributes are the
same or very similar. The conditions must
be stated explicitly.

— Ok, with ©%; — concerns the portion of time
for ray-object intersection tests. It can be
used even when any of HW, COMP, and
IMPL attributes differ.

- Ol with ©%¢ — concerns the portion of
traversal time. It can be used even when any
of HW, COMP, and IMPL attributes differ.

— O} + 0Lg with 0%, + ©%.¢ — concerns the
time required for ray shooting in the ap-
plication related to ideal ray shooting time.
Assuming that the implementation of ray-
object intersection tests is practically the
same, this enables a really fair comparison
independent of HW, COMP, and IMPL at-
tributes. The sum Oy + ©rg defines how
far the tested RSA is from the “ideal RSA”,
and thus the maximum portion of the time
that could possibly be reduced by some RSA
with higher performance. Unlike comparing
Tg' — T,,, With Tg? — T;,, it enables us
to compare various different RSAs virtually
independently of HW, IMPL, and COMP.

— rlpa with v, — an efficient RSA should
have a ratio of ray-object intersection tests
performed to the minimum number of inter-
section tests, as close to 1.0 as possible.

~ Nig with NZg - an efficient RSA has the
number of traversal steps per ray as small as
possible.

~ Nprs/Nirs ot Npprs/Niprs — this shows
us the utilisation of empty space within the
execution phase. Empty space can have a
great impact on RSA performance.

Based on these developments, we can formulate
a comparison methodology for two or more RSAs.
First, we map each tested RSA to the RSA com-
putation model described in Section 2. Second, we
have to measure the minimum testing output for
each RSA and a set of scenes (the scenes should
be publicly available, SPD scenes are suitable).
The testing procedure used within the applica-
tion has to be the same for one scene and any
RSA and must be well described. This guaran-
tees the same sequence of ray shooting queries and
thus the correctness and reproducibility of exper-
iments. Then, we can compare various features of
tested RSAs as described above, for each scene
used and also as a whole set of scenes using basic
statistics tools (e.g., minimum, maximum, aver-
age, variance). The minimum testing output for
each scene and each experiment considered as a
research work must be fully published. For exam-
ple, when introducing a new RSA, then for SPD
scenes it is required a table with 10 rows (scenes)
and with at least 13 columns (minimum testing
output).

8. Discussion

The proposed minimum testing output organised
into three subsets has a total of thirteen param-
eters, which can be considered a high number.
Nonetheless, we consider this set as the minimum
output that shows different features of an RSA,

@© 2000 Institute of Computer Graphics and Algorithms, Vienna University of Technology



Havran / Comparison Methodology forRay Shooting Algorithms 11

since it is based on the general computation model
that fits any RSA. The minimum testing out-
put contains both hardware/implementation in-
dependent and hardware/implementation depen-
dent characteristics that allow us to make mu-
tual comparison of various RSAs under certain
conditions. The disadvantage of this comparison
methodology is the underlying assumption that
the costs of the ray-object intersection tests are of
the equal efficiency for various shapes of objects on
different implementations. Fortunately, the ray-
object intersection tests for objects’ shapes in the
SPD package are more or less standardised? 5.
There is a set of standard scenes, and a well-
defined testing procedure, namely ray tracing in
the SPD package. However, we show that at least
the same scene S and the same testing procedure
TP must be used to validate the comparison.

Let us now discuss if it is possible to manipu-
late the minimum testing output by the changing
the quality of the implementation. It is not possi-
ble to influence the parameters in subsets ¥ and
A, assuming that the implementation of statistics
counters and RSA itself is correct. If less efficient
or more efficient ray-object intersection tests are
applied, then the parameters © 4, ©rg, and Tg
are influenced. However, it is virtually impossible
to influence the parameter O ;7.

9. Conclusion

In this paper we have shown the concept that is
common for all RSAs, i.e., an RSA computation
model and performance model. We have described
the “ideal RSA” that provides us with the refer-
ence value for comparing two RSAs. Further, we
have presented a methodology for comparing var-
ious RSAs. However, after the analysis performed
here it is clear that an experimental comparison of
various RSAs still remains a difficult problem in
general. The comparison methodology presented
here enables us to compare various RSAs, assum-
ing that the same application uses the same test-
ing procedure for the same input scene. The con-
struction of an “ideal RSA” and thus the measure-
ment of TAIN also shows us the time in the best
possible and ideal case. The minimum application
time Th!IN expresses the minimum time of a par-
ticular application that uses an RSA for a given
scene and testing procedure.

A byproduct of this development is that we can
measure how far we are from the minimum appli-
cation execution time TA 1N ever achievable, given
the application implementation that computes the
set, of ray shooting queries on the tested hardware.
For example, it can then be shown whether or not

it is possible to compute a particular global illumi-
nation task such as ray tracing in real time, given
a certain hardware and a certain software imple-
mentation.

Acknowledgements

The authors would like to thank Jan Piikryl and
Jiti Bittner for comments on previous version of
the paper. This work has been supported by the
joint Czech-Austrian scientific collaboration fund-
ing under project number 1999/17.

Appendix

Here, we present an example of reporting the re-
sults using the minimum testing output for a ray
shooting algorithm for a set of scenes. The scenes
were generated using the SPD package 1!, where
X for “sceneX” denotes the scaling factor when
generating the scene. Table 1 reports the results
for an RSA based on a kd-tree, which were ob-
tained using multiple run profiling. The first col-
umn of the table refers to the name of the scene,
the second column denotes the number of objects.

For testing we used a ray tracing algorithm as
defined in Readme.txt file in the SPD package
distribution!! (the number of primary rays cast
is 513 x 513, depth of recursion 4). All the exper-
iments were conducted on a PC running Linux,
kernel version 2.2.12-20, processor Intel Pentium
II, 466 MHz, 128 MB RAM. The test program
in the GOLEM rendering system!? was compiled
using egcs-1.1.2 with -O2 optimisation.

References

1. P. K. Agarwal and J. Erickson. Geometric
range searching and its relatives. Tech. Re-
port CS-1997-11, Department of Computer
Science, Duke University, 1997.

2. A. Aho, J. Hopcroft, and J. D. Ullman. The
Design and Analysis of Computer Algorithms.
Addison-Wesley, Reading, MA, 1974.

3. J. Arvo and D. Kirk. Fast ray tracing by ray
classification. In M. C. Stone, editor, (SIG-
GRAPH ’87 Proceedings), volume 21, pages
55-64, July 1987.

4. J. Arvo and D. Kirk. A survey of ray tracing
acceleration techniques, pages 201-262. Aca-
demic Press, 1989.

5. P. Bekaert, F. Suykens, P. Dutré, and
J. Ptikryl. RenderPark - a photorealistic ren-
dering tool. Available from http://www.cs.
kuleuven.ac.be/“graphics/RENDERPARK/.

© 2000 Institute of Computer Graphics, Vienna University of Technology and Algorithms



12 Havran / Comparison Methodology forRay Shooting Algorithms

Scene A e

Nogyg Ng Ng  Ngge Ngr rTiTM Nrs Ngrs Nggers ©4 Orr Orgs Tp Tr
balls4 7382 7892 7893 1479 17323 12.79 27.13 5.34 1.61 5.67 2.83 8.00 1.22 14.69
gearsd 9345 27471 27472 964 53681 7.55  21.85 3.29 0.68 5.70 2.48 5.97 1.67  20.10
jacks4 5265 17878 17879 4883 25902 21.04  39.51 7.20 3.08 2.33 4.46 7.40 1.13  13.05
latticel2 8281 42904 42905 5197 49876 4.94  42.78 6.85 3.12 4.80 3.17 5.82  1.58  27.03
mount6 8196 13191 13192 5649 12237 6.57  20.73 3.71 1.69 8.19 4.17 6.51 0.93 11.89
rings7 8401 14951 14952 2527 35894 19.32 37.40 6.67 2.90 3.06 7.44 6.50 1.45 40.29
sombrero2 7938 13927 13928 7677 10234 6.05 18.88 3.51 2.39 4.17 1.18 5.21 0.87 2.43
teapot12 9264 23502 23503 6337 38220 12.01  28.97 5.50 3.33 9.33 3.18 10.97  1.50 9.16
tetra6 4096 2971 2972 1948 4096 10.47 14.83 2.79 2.31 29.00 6.37 22.30 0.31 1.73
treell 8191 4369 4370 1743 11327 22.24  14.94 3.70 0.91 31.38  41.02 9.98 1.38 10.71

Table 1: Ezample of reporting the results using the minimum testing output in tabular form for scenes
from the SPD package. Parameter Nopy is the number of objects in the scene.

6.

10.

11.

12.

13.

14.

M. D. Berg. Ray shooting, depth orders and
hidden surface removal. In Lecture Notes in
Computer Science, volume 703. Springer Ver-
lag, New York, 1993.

J. G. Cleary and G. Wyvill. Analysis of
an algorithm for fast ray tracing using uni-
form space subdivision. The Visual Computer,
4(2):65-83, July 1988.

R. Day. How to write & Publish a Scientific
Paper. Academic Press, 1997.

R. Endl and M. Sommer. Classification of ray-
generators in uniform subdivisions and oc-
trees for ray tracing. Computer Graphics Fo-
rum, 13(1):3-19, Mar. 1994.

A. Formella and C. Gill. Ray tracing: a quan-
titative analysis and a new practical algo-
rithm. The Visual Computer, 11(9):465-476,
1995. ISSN 0178-2789.

E. A. Haines. A proposal for standard graph-
ics environments. IEEE Computer Graph-
ics and Applications, 7(11):3-5, Nov. 1987.
Available from http://www.acm.org/pubs/
tog/resources/SPD/overview.html.

V. Havran. Golem rendering system. HOME
page at http://www.cgg.cvut.cz/GOLEM.

V. Havran, J. Pfikryl, and W. Purgath-
ofer. Statistical comparison of ray-shooting
efficiency schemes. Technical Report TR-
186-2-00-14, Institute of Computer Graph-
ics, Vienna University of Technology, Karl-
splatz 13/186/2, A-1040 Vienna, Austria,
May 2000. human contact: technical-
report@cg.tuwien.ac.at.

V. Havran and J. Zira. Evaluation of bsp
properties for ray—tracing. In Proceedings of
12th Spring Conference on Computer Graph-
ics, pages 155-162, Budmerice, June 1997.

15.

16.

17.

18.

19.

20.

21.

22.

M. Held. Erit—a collection of efficient and re-
liable intersection tests. Journal of Graphics
Tools, 2(4):25-44, Dec. 1997.

M. D. J. McNeill, B. C. Shah, M.-P. Hebert,
P. F. Lister, and R. L. Grimsdale. Per-
formance of space subdivision techniques in
ray tracing.  Computer Graphics Forum,
11(4):213-220, Oct. 1992.

C. H. Sequin and E. K. Smyrl. Parameterized
ray tracing. In J. Lane, editor, SIGGRAPH
’89 Proceedings, volume 23, pages 307-314,
July 1989.

L. Szirmay-Kalos and G. Marton. On the
limitations of worst—case optimal ray shoot-
ing algorithms. In Winter School of Computer
Graphics 1997, pages 562-571, Feb. 1997. held
at University of West Bohemia, Plzen, Czech
Republic, 14-18 February 1997.

L. Szirmay-Kalos and G. Marton. Worst-
case versus average case complexity of ray-
shooting. Computing, 61(2):103-131, 1998.

R. Tarjan. Data Structures and Network Al-
gorithms. Society for Industrial and Applied
Mathematics, Philadelphia, 1987.

R. F. Tobler, A. Wilkie, and J. Ptikryl.
Advanced Rendering Toolkit. Available from
http://www.cg.tuwien.ac.at/research/
rendering/ART/.

G. Ward. Radiance rendering package.
Available from http://radsite.lbl.gov/
radiance/HOME.html.

@© 2000 Institute of Computer Graphics and Algorithms, Vienna University of Technology



