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Abstract

We propose a new adaptive algorithm for determining virtual point lights (VPL) in the scope of real-time instant
radiosity methods, which use a limited number of VPLs. The proposed method is based on Metropolis-Hastings
sampling and exhibits better temporal coherence of VPLs, which is particularly important for real-time appli-
cations dealing with dynamic scenes. We evaluate the properties of the proposed method in the context of the
algorithm based on imperfect shadow maps and compare it with the commonly used inverse transform method.
The results indicate that the proposed technique can significantly reduce the temporal flickering artifacts even for
scenes with complex materials and textures. Further, we propose a novel splatting scheme for imperfect shadow
maps using hardware tessellation. This scheme significantly improves the rendering performance particularly for
complex and deformable scenes. We thoroughly analyze the performance of the proposed techniques on test scenes

with detailed materials, moving camera, and deforming geometry.

Categories and Subject Descriptors (according to ACM CCS): 1.3.7 [Computer Graphics]: Three-Dimensional

Graphics and Realism—([Radiosity]

1. Introduction

Global illumination algorithms provide important visual
cues that add on realistic appearance of rendered scenes.
Ray tracing based global illumination methods can provide
high quality images, but they are too slow for real-time ap-
plications such as games. Therefore we often resort to solu-
tions that approximate global illumination up to different ex-
tents, for example they limit the number of indirect illumina-
tion bounces or use various visibility approximations. These
methods often exploit rasterization, which is easy to paral-
lelize and heavily optimized in the GPUs. Unlike ray trac-
ing, rasterization methods do not rely on acceleration data
structures and thus they easily handle dynamic scenes. On
the other hand the rasterization methods are in their basic
form restricted to computing visibility for coherent groups
of rays enclosed by a viewing frustum.

One solution for computing global illumination, which
has been designed to exploit rasterization hardware is the
instant radiosity method [Kel97]. The main principle of the
instant radiosity and the follow-up algorithms is the use of
Virtual Point Lights (VPLs) that are traced from the primary
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light sources. The VPLs are then used for gathering of radi-
ance at the shaded points, while visibility of VPLs is deter-
mined using shadow maps. The creation of shadow maps and
subsequent visibility lookups form a bottleneck of the algo-
rithm and even with recent hardware we cannot achieve real-
time performance for moderately complex scenes. This bot-
tleneck has been addressed by the Imperfect Shadow Maps
(ISM) algorithm [RGK*08], which uses many low resolu-
tion shadow maps each computed using only a subset of the
scene geometry. In contrast to the traditional shadow maps,
all ISMs are stored in one texture and they are created in one
rendering pass. Even though with ISMs the instant radios-
ity method achieves real-time performance, the number of
VPLs that can be handled in real-time is still limited, which
is an issue for complex scenes. To improve the quality of
ISM based instant radiosity for complex scenes Ritschel et
al. [REH*11] designed view adaptive method which opti-
mizes the set of VPLs (and ISMs) for the given frame. This
method estimates the importance of possible VPL positions
with respect to the rendered image and then uses the inverse
transform method to sample with respect to this importance.
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In this paper we present a novel algorithm based on
Metropolis-Hastings sampling that allows efficient selection
of VPLs for complex scenes. Our main contributions are:
(1) reducing temporal artifacts caused by adaptive VPL se-
lection using parallel Independent Metropolis-Hastings sam-
pling, (2) fast creation of ISMs using hardware tessellation.

The paper is further structured as follows. The next sec-
tion presents briefly the work related to our approach. In Sec-
tion 3 we describe the outline of the algorithm. In Section 4
we present a new method for temporally coherent sampling
of VPLs in the context of the imperfect shadow maps algo-
rithm. In Section 5 we describe a novel ISM creation algo-
rithm using GPU tessellation. In Section 6 we give results
from measurement for several scenes. Finally, in Section 7
we conclude the paper.

2. Related Work

Real-time global illumination. The global illumination al-
gorithms for interactive applications were surveyed recently
in the state-of-the-art report by Ritschel et al. [RDGK12].
Here we pay attention only to the most important papers di-
rectly related to our work. The proposed algorithm builds up
on the idea of instant radiosity by Keller [Kel97] that intro-
duced the concept of many virtual point lights (abbreviated
to VPL). The created VPLs are used to gather the radiance
from the indirect illumination in the same way as for direct
illumination, while the visibility is resolved using shadow
maps. Techniques which use many virtual lights for repre-
senting illumination are generally referred to as many-light
methods and they were recently surveyed by Dachsbacher et
al. [DKH"13].

Wald [WKB™*02] adopted the instant radiosity method in
the context of interactive ray tracing, where visibility be-
tween VPL and shaded points is computed by tracing rays
on the CPU. Wald [WBS03] also developed an importance
sampling approach for large scale and possibly highly oc-
cluded scenes. This method uses sparse sampling over a
small set of image pixels to compute the approximation of
importance of all VPLs and the most important VPLs are
selected by thresholding according to the precomputed im-
portance. Georgiev and Slusalek [GS10] propose a tunable
importance sampling of VPLs, where a single parameter can
be used to select a given portion of light sources. Similarly,
Dammertz et al. [DKL10] in their progressive algorithm use
stochastic culling of VPLs with low importance, based on
the use of Halton random generator.

GPU rendering algorithms. To allow generation of VPLs
on the GPU without the necessity of using ray tracing Dachs-
bacher and Stamminger [DS05] introduced the concept of
reflective shadow maps. To generate VPL on scene surfaces
the scene is rendered from primary light sources before the
gathering from the generated VPLs takes place. Ritschel et
al. [RGK™*08] introduced imperfect shadow maps that lift re-
striction on the visibility computation in instant radiosity.

The visibility for shadow maps is sub-sampled by coarse
shadow maps of low resolution. This allows to use more
VPLs for gathering, while the error of the proposed ap-
proximation is visually acceptable. In the follow-up paper
Ritschel et al. [REH*11] use importance sampling based on
the inverse transform method that first constructs the cumu-
lative distribution (CDF) and then applies a binary search.
The importance of all VPLs is computed for only small set of
pixels (such as 0.1%) randomly selected for each light. An-
other alternative, which is possibly less prone to temporal ar-
tifacts and can better handle glossy scenes is to perform fast
gathering of illumination [REG*09, MW 11] for which vis-
ibility is evaluated with respect to gather points rather than
VPLs.

Metropolis Sampling. Veach and Guibas [VG97] pre-
sented the Metropolis Light Transport (MLT) algorithm,
which computes an unbiased estimate of the rendered im-
age. The method uses mutations of light paths within the
ingenious Markov chain Monte Carlo (MCMC) algorithm
proposed by Metropolis et al. [MRR*53] and generalized
by Hastings [HAS70]. Metropolis-Hastings sampling allows
to sample from unknown possibly multidimensional distri-
butions without the need to compute all probabilities of the
underlying state space. Szirmay-Kalos et al. [SKDP99] stud-
ied the start-up bias of MLT for different ray distributions.
Ashikhmin et al. [APSS01] analyzed the variance of MLT
concluding the variance is inversely proportional to the num-
ber of samples taken. In context of interactive rendering and
VPL-based method Segovia et al. [SIPO7a] presented the use
of Multiply-Try Metropolis-Hasting (MTMH) sampling of
VPLs to get such sets of VPLs that are sufficiently spatially
coherent and can be ray traced with fast packet based algo-
rithms. Another method of Segovia et al. [SIPO7b] exploits
MTMH to provide such a set of VPLs in which each VPL
contributes the same amount of power to the rendered im-
age. Note that an open topic of research in statistics is the
usage of quasi-random sequences within the MCMC meth-
ods [CDOL11].

Temporally coherent rendering algorithms. A number of
rendering algorithms have been specifically targeted at ren-
dering animations and walkthroughs. In general these meth-
ods aim either to make the rendering more efficient by ex-
ploiting frame-to-frame coherence and/or to minimize the
disturbing temporal artifacts usually perceived as flickering.
The temporally coherent methods were surveyed by Tawara
et al. [TMD*04] in the context of offline rendering algo-
rithms and more recently by Scherzer et al. [SYM™*12] in the
context of real-time rendering. Directly related to our work,
Laine et al. [LSK*07] presented a method that updates only
a small part of all VPLs for subsequent frames. This method
reduces temporal artifacts, but it also introduces a latency in
handling fast illumination changes or fast camera movement
for the case of adaptive VPL sampling.
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3. Algorithm Overview

Our method builds on the idea of Instant Radiosity with
Imperfect Shadow Maps (ISM) [RGK*08]. We use a de-
ferred shading pipeline and thus in the first stage we cre-
ate a layered framebuffer representation of the camera view,
often referred to as g-buffer [AMHHOS8]. Then we cre-
ate reflective shadow map (RSM) for each primary light
source [DS05]. The RSM contains geometry and material
information for surfaces visible from the corresponding pri-
mary light source. Similarly to the camera view the RSMs
are stored as g-buffers.

The RSMs are then used to construct the set of VPLs,
which then approximate the first bounce indirect illumina-
tion. We follow the adaptive sampling approach of Ritschel
etal. [REH*11] who defined an importance metric for VPLs,
which is used to create the importance map (IM). The IM
represents the estimated contribution of the VPL at the
given scene position to the rendered image. Unlike Ritschel
et al. who used the inverse transform method, we use the
Metropolis-Hastings sampling to sample according to the
importance map, which in turn reduces the temporal artifacts
caused by VPL adaptations.

When the VPLs are established, the ISMs are created by
resampling the scene geometry to points and stochastically
splatting these points to the ISMs. For this step we pro-
pose to use hardware tessellation, which provides signifi-
cant speedup and which is also better suited to highly dy-
namic and deformable scenes. The ISM splatting phase is
followed by the pull-push algorithm [MKCO07], which fills
holes caused by undersampling.

When ISMs are created, indirect illumination is gathered
by summing up the contributions of the VPLs to shaded
points, while using the ISMs for resolving approximate vis-
ibility of VPLs. Each pixel uses only a subset of the VPLs
in order to speed up this phase of the algorithm [RGK*08].
Note, that we also use g-buffer splitting to shuffle the
shaded pixels in order to improve the coherence of shadow
lookups [SIMPO6]. Finally, the indirect illumination is fil-
tered using geometry aware filter and the result is summed
up with the direct illumination to finalize the rendered im-
age. The overview of the whole algorithm and its parts which
will be discussed below in the paper is shown in Figure 1.

4. Temporally Coherent VPL Sampling
4.1. View Adaptive Imperfect Shadow Maps

The ISM algorithm can handle only a limited number of
VPLs (and corresponding ISMs) in order to achieve real-
time performance. Thus for scenes with more complex struc-
ture it is important to allocate these VPLs so that their con-
tribution to the image is balanced.

Ritschel et al. [REH*11] proposed to treat every RSM
pixel as a potential VPL (pVPL). Using a random subset of

(© 2013 The Author(s)
(© 2013 The Eurographics Association and Blackwell Publishing Ltd.

Figure 1: Overview of the indirect illumination computation
using view adaptive Imperfect Shadow Maps. The two steps
of the algorithm which we address in the paper are high-
lighted in bold (VPL sampling, ISM creation).

P scene points visible from the camera, the importance of
each pVPL is estimated as follows:

™~

fV) = L IV)H (X, 0, v) ¢))
=1

H(x,m,v) = fr(x,0,r(v) = X)G(x,r(v)) 2)

where v = (/,0,0) is the VPL description vector, i.e. the vec-
tor of parameters describing a VPL (/ is the index of the
RSM, 6 and ¢ are the coordinates of the VPL in the RSM),
I(v) is the VPL intensity, x; is the world space position of
image sample k, @y is the direction vector from the camera
towards x, r(v) is the position of VPL v, f+(x,®,r(v) — x)
is BRDF at point x, G(x,7(v)) is the geometry factor be-
tween point X and VPL v. Note that this function does not
include visibility.

The importance computed for each pVPL forms an impor-
tance map (IM) of the same resolution as RSM (also called
Bidirectional Reflective Shadow Map [REH* 11]). This map
after normalization corresponds to probability density func-
tion. A required number of VPLs is then established by sam-
pling according to this density. The quality of the generated
VPL pattern depends on the importance function definition
and also on the actual VPL sampling algorithm. Ritschel et
al. used the inverse transform method [REH* 11] briefly dis-
cussed in the next section.

4.2. Inverse Transform Method

Using the inverse transform method (InvTM) the estimated
contributions f(v) in the importance map are normalized in
order to create a discrete probability density p(v)oc f(V).
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The normalization this p(v) requires the knowledge of sum
of the values of f(v) over all lights / and directions (6, ).

The cumulative distribution function CDF is calculated on
the graphics hardware using multiple parallel prefix scans.
For our case, the CDF is first constructed over all rows of all
IMs, then over the last column of all IMs and finally, the val-
ues of all lights/IMs are cumulated. This calculation requires
multiple kernel/shader launches and additional memory to
store the CDF.

The successive sampling phase generates three random
numbers (§1,&7,E3) with the uniform distribution in the
range [0, 1]3 . The first random number &; is used to select the
light , &, and &3 are used to select the row and column of the
matching IM. This is done by using three consecutive binary
searches in the CDF function (see Figure 2). Another pos-
sibility is to use two random numbers and the number used
for the light selection renormalize back to the unit interval
as for direct lighting [SW91]. We will show the differences
between both approaches in Section 6.
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Figure 2: lllustration of the InvIM for sampling with input
of three random numbers. Each of the four IMs corresponds
to one primary light source.

For generating the random numbers (§1,&,E3) we use
a Halton sequence evaluated directly on the GPU. Even if
we use the same Halton sequence every frame, it turns out
that the InvTM sampling exhibits insufficient temporal co-
herence. In particular even a local change in the p(v) causes
global changes in the corresponding c¢d f(v)s and potentially
alters positions of a high number of VPLs (almost all VPLs
slightly float on the surfaces). Although the VPL positions
are not modified dramatically, the changes in scene geom-
etry and materials cause sudden changes in the VPL image
contribution. This is emphasized if the scene contains high
geometric detail, detailed textures, or bump maps. As a result
the adaptation of VPLs to the p(v) introduces unwanted illu-
mination flickering. In the next section we present a method
which reduces the temporal artifacts, while being faster than
the InvTM and simpler to implement.

4.3. Metropolis-Hastings Sampling

The Metropolis-Hastings (M-H) algorithm [HAS70] can be
used to draw samples from an arbitrary probability distribu-
tion. The algorithm constructs a Markov chain and in each

iteration it selects a sample that relies on the result of the pre-
vious iteration. The tentative samples are proposed using a
proposal distribution and the algorithm decides either to ac-
cept the proposed sample or to keep the previously reported
sample as the current one. After certain number of samples
has been drawn the generated samples follow the target dis-
tribution. A know issue of the method is that a number of
initial samples in so called burn-in phase will not follow the
target distribution and thus they are often discarded. Alter-
natively we can use a compensation method which takes the
accommodation phase into account. This issue is sometimes
referred to as start-up bias [SKDP99].

A particular subclass of Metropolis-Hastings sampling
are the Independent Metropolis-Hastings (IM-H) meth-
ods [Tie94]. In the IM-H methods the proposal distribution
does not depend on the current state of the Markov chain. In
our work we exploit the IM-H principle as this approach has
several benefits for our application: (1) it is easier to control
the correlation of the samples by using disjoint sets of pro-
posals, (2) we can use a simple method to weight the sam-
ples and thus to reduce the start-up bias of the Monte Carlo
estimator based on the VPLs determined by IM-H.

Traditionally the M-H algorithms are used to solve com-
plex high dimensional integrals in cases when the InvTM
method cannot be easily used. Contrary to the standard us-
age of M-H our primary motivation for using M-H algorithm
is achieving better temporal coherence of the generated sam-
ples than the InvTM method does.

Our sampling strategy is based on parallel evaluation of N
Markov chains, where N corresponds to the number of de-
sired samples, that is the number of VPLs. From each chain
we compute M samples and we only take the last gener-
ated sample as the representative of the target distribution.
Within each chain we use a unique uniform proposal density
generated using Halton sequence in the style of Wang and
Hickernell [WHOO]. For a chain with index j we take quasi-
random numbers for seeds starting at j+ Nk (0 < k < M),
which produces disjoint proposals for each of the sequences.
Together with using just one sample per chain this leads to
disjoint set of generated M samples. Thus we avoid the com-
mon problem of Metropolis-Hastings sampling which is the
potentially high correlation of samples, particularly the issue
of one sample (VPL) being drawn multiple times.

All N chains can be evaluated in parallel using a simple
algorithm, in which each chain performs M steps. The algo-
rithm is illustrated in Figure 3 and outlined in Algorithm 1
(the use of weights w(v;) will be explained in the next sec-
tion). We refer to this algorithm as M-H-Our in Section 6.

4.3.1. Gathering VPL illumination
The indirect illumination at point x visible from the camera,

which corresponds to a pixel in the image, is gathered from

(© 2013 The Author(s)
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Figure 3: Illustration of the Metropolis-Hastings VPL sam-
pling. The figure shows two Markov chains of length M = 5
in four IMs. The first chain starts at IM| and two of the M — 1
proposed moves were accepted. The result of this chain is a
VPL sample at IMy. The second chain starts at IM>. Here
again two of the proposed M — 1 moves were accepted. The
result of this chain is a VPL sample at IM,.

input : j, f(),M
output: v;, f(v;), w(v;)
begin
s +—0;
rand <— initialize, use j as a seed;
Vj «— rand.nextVector3();
for i< 1toMdo
Vnew <— rand.nextVector3(),
a<— f(vnew)/f(v));
S <— S+f(Vnew)§

if a > rand.nextScalar() then
Vj <— Vnew;

end
end
w(v;) «— s/M;
return v;, f(v;), w(v;)

Aﬁggrithm 1: Pseudocode of the Independent Metropolis-
Hastings algorithm for a single VPL that runs in paral-
lel with different sequences of random numbers for each
thread.

the VPLs using the following Monte Carlo estimator:
AR
Lix,@) ~ & ; ml("j)H(vav vi)V(x,r(vj))
j=

where N is the number of VPLs, I(v;) is the intensity of VPL
v;, p(v;) is the probability of generating v;, r(v;) is the po-
sition of v;, and V(x,r(v;)) is the binary visibility function
between points x and r(v;) and H(x,®,v;) is defined ac-
cording to Eq. 2.

In our case the target probability density of the IM-H al-
gorithm is proportional to the importance function f(v) and
we use the following estimator:

1 & w(v))
L(x,®) ~ N g f(vl)I(vj)H(x,(o,vj)V(X,r(vj)) 3)
j=1 J
where w(v;) is the weight of VPL v; calculated in order to
normalize the importance function f(v) and also to reflect
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the below discussed issue connected with the burn-in phase
of the M-H algorithm.

A common problem of M-H sampling is the burn-in phase
in which the samples do not follow the target distribution.
Using these samples in a Monte Carlo estimator might result
in so called start-up bias of the estimator.

We use a simple strategy for reducing the start-up bias,
which in the same time accounts for the normalization of the
importance function f(v). As the weight w(v;) for a sam-
ple generated by chain j we use a local mean of the uni-
formly distributed proposals for that chain. For the case that
M =1 the algorithm degenerates to uniform sampling of the
target distribution and the weights become w(v;) = f(v;).
For the case that M — oo the weights correspond to the ex-
pected value of the importance function f(v) and the dis-
tribution of samples v; follows f(v). Thus for very small
M the generated samples v; are closer to the uniform dis-
tribution, but the weights w(v;) compensate for that and
the estimator is normalized accordingly. Our experiments
show that for M > 4 the samples already follow the impor-
tance function sufficiently well. It can also be shown that if
f(v)ocI(v;)H(x,0,v;)V(x,r(v;)) the resulting estimator is
unbiased for M > 1. This generally does not hold in our case,
however we will show that in our target application the pro-
posed method leads to images with error comparable to the
InvTM method, while achieving lower temporal flickering.

The proposed weighting strategy resembles the method
for eliminating startup bias proposed by Veach and Guibas
for the Metropolis Light Transport algorithm [VG97]. Their
technique draws the initial samples from a given stationary
distribution and then weights the Markov chains by the im-
age contribution function divided by the proposal distribu-
tion probability density at the initial sample points. In the
results we will show that this weighting technique applied
in our setting leads to higher variation of VPL intensities
and thus exhibits higher temporal artifacts and higher error
compared to a reference image. We refer to this variant as
M-H-Single in Section 6.

Note that we use the same Halton sequence in each frame
to achieve temporal coherence of the generated random
numbers.

4.3.2. Performance

Unlike the InvTM which requires to store the computed
CDFs the IM-H algorithm requires no additional data stor-
age. The IM-H algorithm also avoids the CDF calculation
and it does not require to calculate the total sum of im-
portances for normalization. On the other hand the IM-H
does not scale well with the length of the chains M, since
M — 1 samples are always discarded. Using the proposed
method for reducing the start-up bias we however observed
that very short sequences (e.g. M > 4) already provide high
VPL adaptation to the underlying importance function (eval-
uation will be presented in Section 6).
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5. Tessellation based ISM Rendering
5.1. Precomputed points

For the ISM creation step Ritschel et al. [RGK*08] use an
approximate point representation of the scene. In the pre-
processing stage, they create a point based representation
of the scene by sampling the surface of the scene triangles.
Later, in the ISM creation step, they use splatting of the point
samples. Each point sample is splatted to a randomly chosen
VPL/ISM.

This approach introduces additional complexity for mov-
ing or deforming geometry, as the point representation has to
be updated with the moving or deforming triangles. This re-
quires storing supplementary information with each point in
the point-based representation, namely the index of the trian-
gle and the barycentric coordinates of the point. To deal with
deformable scenes a subset of point samples is regenerated
in each frame. In the next section we propose a straightfor-
ward replacement of this approach which creates the whole
point representation of the scene triangles on the fly.

5.2. Dynamic GPU tessellation

Instead of creating the point cloud oft-line, we create the
point representation of the scene during the ISM splatting
phase by tessellation. For this task, we exploit the capabili-
ties of modern graphics hardware that can tessellate the in-
put geometry during the rendering stage (this functionality
is called tessellation shaders in OpenGL 4.3 API).

Instead of generating finer triangle representation (which
is the common use-case of the hardware tessellation), we use
the point mode tessellation capability. During the point mode
tessellation, the graphics hardware is instructed to change
the primitive type from triangles to points after the tessel-
lation stage. New point primitives are generated instead of
vertices of the finer tessellated geometry. This feature allows
us to transform the input triangle representation into points
on the fly during the ISM splatting phase without storing the
intermediate point representation.

Our ISM splatting algorithm works as follows (using the
OpenGL pipeline terminology):

1. CPU: render the whole triangle representation of the
scene with the tessellation turned on,

2. vertex shader: pass the vertex attributes to the next stage,

3. tessellation control shader: calculate the triangle surface
area, set the number of points to be generated,

4. tessellation evaluation shader: generate a new position
on the triangle, generate a random number generator seed
for the next stage,

5. geometry shader: randomly choose VPL/ISM using the
supplied seed, translate and project the splat into the se-
lected shadow map, calculate the size of the splat,

. fragment shader: store the depth into the ISM.

[=))

The process of rendering ISMs using hardware tessella-
tion is illustrated in Figure 4.

R oL
area\ = /e®e\
Ay
vertex tess. tess. geom. fragm.
shader control eval. shader shader
#points seed ISM offset depth
(u,v) splat size store

Figure 4: Illustration of the tessellation based ISM splatting.

The key observation behind our approach is that in com-
mon scenarios the number of required splats is much higher
than the number of scene triangles. For higher quality indi-
rect shadows, the number of required point splats becomes
prohibitively high and the memory accesses can create a bot-
tleneck in the rendering process. By omitting the need of
storing and reading the large point cloud representation, we
achieve a notable performance boost of this rendering stage.

Another benefit of using this approach is the additional
flexibility it introduces for dynamic and deformable scenes.
The proposed approach can be seamlessly connected to
usual rasterization pipeline and can generate point splats di-
rectly from the deformed or moved meshes. There is also
no need to maintain additional data structure containing the
point splats.

6. Results

We test our implementation on a Core 17-3770, 16 GB RAM
desktop computer, running 64 bit Linux operating system,
equipped with GeForce GTX 470, 1280 MB GRAM graph-
ics card with 310.32 NVIDIA driver. Rasterization uses
OpenGL 4.3 API, all GPGPU tasks are implemented as
GLSL compute shaders. The computation times are mea-
sured using high resolution GPU timers exported through
the OpenGL timer query capability.

If it is not stated otherwise, we use the following settings
in our measurements: 512 X 512 pixels output resolution,
2048 x 2048 pixels ISM resolution, 1024 VPLs are created,
128 VPLs are evaluated at each shaded pixel.

6.1. Run-time Performance

We tested the algorithm on four scenes shown in Figure 9.
The timings of the individual algorithmic stages and the av-
erage frame times are shown in Table 1. The achieved frame
rates are sufficient for the use in real-time applications. The
time needed to create VPL by three different methods is
shown in Table 2. For the InvTM method the measured times
also include the CDF construction and are therefore higher

(© 2013 The Author(s)
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Figure 5: The visualization of the distribution of selected VPLs in the Crytek-Sponza scene: (left) Uniform sampling, (center)
Metropolis-Hastings, (right) InvTM. The intensity of indirect illumination mapped by pseudo-color from blue (low intensity) to
red (high intensity). Note how both adaptive sampling methods distribute the samples according to the underlying importance

function.

than for the Uniform and M-H methods. Note that the times
are almost equal for generating different number of VPLs.
This follows from the fact that the GPU is capable of run-
ning more threads in parallel than the number of generated
VPLs and thus in this step it is actually underutilized.

6.2. Evaluation of Image Quality and Flickering

To evaluate the frame-to-frame temporal coherence, we need
amethod to evaluate the amount of disturbing temporal flick-
ering, which appears particularly during a walkthrough. Al-
though several video-quality metrics were developed and
published, e.g. [Win09, CHM*12), they are not well suited
for our evaluation for which we need a simple measure to
compare the different VPL sampling techniques.

Our comparison metric is specifically designed for com-
paring renderings of static scenes with mostly diffuse sur-
faces. The radiosity solution should be temporally constant
and independent of the camera movements. We therefore
reproject pixels including their intensities from the previ-
ous frame to the current frame by taking their world-space
coordinates from the previous frame. The temporal image
difference (TID) is then given as a RMS value of differ-
ences among intensities of matching pixels for all consec-
utive pairs of frames in a walkthrough.

In Figure 5 we show the visualization of the VPL distribu-
tion for all three sampling algorithms being compared. We
show the above described 71D metric for the walkthrough
and the RMSE against a reference walkthrough in Figure 7.
The uniform sampling (VPLs are sampled uniformly from
the RSMs using the same Halton sequence every frame) has
the lowest temporal flickering, but the quality of the indirect
illumination is lower, which leads to higher RMSE with re-
spect to a reference. The InvTM sampling decreases RMSE,
but it exhibits significant temporal flickering. Metropolis-
Hastings sampling provides the good trade-off: the RMSE
is slightly increased, while the temporal flickering is signif-

(© 2013 The Author(s)
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icantly reduced. Start-up bias depending on the M-H chain
length for the tested sampling methods is shown in Figure 6.

Figure 8 shows the temporal image difference T/D for
varying number of VPLs and the number of VPLs used in
gathering. The results are depicted for the sampling using
either 3 (13) or 2 (12) random numbers from the Halton gen-
erator. In this context the temporal flickering is significantly
lower when using 3 random numbers compared to the renor-
malization approach used for direct lighting [SWO91].

0.8

07 = S TS 7 o R S

0.6 [~

Mean

0.5~

04
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Our-w/o Red.
Our-Single

) Inv .

0 2 T N S N N

Figure 6: Mean value of pixel intensities for various lengths
of IM-H chains (i.e. number of steps) for the Crytek-Sponza
scene. Note that in contrast to the IM-H without bias re-
duction reduction (Our —w/o — Red.), the proposed method
(Our) successfully reduces the bias even for lower numbers

of steps.

6.3. Dynamic GPU Tessellation for ISMs

‘We measured the dynamic tessellation performance on a few
scenes with various complexities. The rendered images for
the tested scenes are shown in Figure 9. Table 3 shows the
timings for the two evaluated ISM splatting methods in de-
pendence on the number of splats N5 Our approach is
2 to 5 times faster than using the preprocessed points. De-
tailed comparison of splatting time for the two evaluated
ISM splatting methods is shown in Figure 10.
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Figure 7: Temporal image differences (left) and reference error (right) for the three compared methods (InvTM, M-H-Our,
M-H-Single, Uniform). The plots show the first 50 frames of the Crytek-Sponza walkthrough using 1024 VPLs and 128 VPL

evaluations per pixel.
scene Ne | Tair  Tism Tingir | Tsum
Conference R. 6| 509 1550 10.39 | 30.99
Sibenik Cath. 6 | 6.10 1459 10.29 | 30.98
Crytek-Sponza 6 | 742 1552 10.57 | 33.52
Armadillo (*) | 3.06 8.27 7.03 | 18.37

Table 1: The timings of different algorithm phases and the
total time in [ms] for four test scenes. Ty, is the direct il-
lumination computed by shadow mapping, Tysps covers VPL
sampling and ISM splatting including the pull-push phase,
Tinair s indirect illumination evaluation from VPLs. Ny, the
number of primary light sources, (*) for Armadillo the VPLs
are generated on the sphere to simulate environment map
lighting.

256 VPLs 512 VPLs 1024 VPLs
VPL Sampling Tsample Tsample Tsample
algorithm [ms] [ms] [ms]
Uniform 0.25 0.24 0.25
InvTM 0.62 0.62 0.63
M-H, 1 step 0.26 0.26 0.26
M-H, 5 steps 0.30 0.30 0.31
M-H, 10 steps 0.34 0.34 0.35
M-H, 20 steps 0.44 0.45 0.46

Table 2: Timings for the generation of different count of
VPLs. For InvTM the sampling includes the computation of
CDE for Metropolis-Hastings the different length of chain
(i.e. the number of steps) is reported.

6.4. Discussion and Limitations

Table 3 shows that our dynamic splatting approach can ac-
tually be slower if the number of generated splats Npjqrs
is lower than the total number of scene triangles N5 In
this case the preprocessing based approach transfers lower
amount of data during the splatting phase compared to our
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Figure 8: The average temporal image differences for the
walkthrough in Crytek-Sponza. Average sums of temporal
image differences are reported for different settings referred
to as ism-A-rB-C, where A denotes that every n-th VPL is
used for rendering per pixel (1st for all generated VPL hence
the highest computation time and quality), B denotes using
either 2 or 3 dimensions of random generator and C denotes
the number of VPLs generated.

approach which has to read and evaluate all the scene tri-
angles. This setup is however a rare case that will unlikely
appear in a real applications as the ISM algorithm requires
a high number of point samples to create ISMs of sufficient
quality. The method does not resolve the case, when the light
sources are moving during the animation, for which other
techniques such as spatio-temporal filtering are needed as
discussed in [SYM*12].

7. Conclusion

We proposed a novel algorithm for view adaptive compu-
tation of VPLs in the context of real-time instant radiosity
with imperfect shadow maps. The method is based on paral-

(© 2013 The Author(s)
(© 2013 The Eurographics Association and Blackwell Publishing Ltd.
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Figure 9: The rendered images and the count of triangles in the used test scenes.
scene Armadillo Crytek-Sponza Conference Sibenik
Nsprar Tpr Tpr s Tpr Tpr s Tpr Tpr s Tpr Tpr s
[ms] [ms]  [-] [ms] — [ms] [-] [ms]  [ms] [-] | [ms] [ms] — [-]
10,000 0.36 242 0.15 0.25 1.21  0.21 0.31 1.40 0.22 0.39 0.56 0.69
100,000 1.66 245 0.67 1.34 2.14  0.62 1.90 242  0.78 1.81 2.05 0.88
250,000 3.55 241 148 2.71 2.890 094 3.61 3.62 1.00 3.20 2.85 1.12
500,000 543 237 230 4.84 349 1.39 5.36 395 1.36 5.31 4.55 1.17
1,000,000 8.69 3.84 226 8.78 463 1.90 8.80 484 1.82 9.83 7.38 1.33
2,000,000 17.32 535 3.24 17.30 6.52 2.65 16.79 6.95 242 18.56 13.35 1.39
4,000,000 34.28 13.25 2.59 3430 11.23 3.05 33.67 1142 295 | 34.88 24.06 145
8,000,000 68.56 2587 2.65 68.29 18.74 3.64 6690 18.82 3.55 | 68.17 4394  1.55
16,000,000 | 136.58 5212 2.62 | 13670 33.03 4.14 | 133.10 32.55 4.09 | 136.18 75.71 1.80
32,000,000 | 272.93 107.25 2.54 | 27242 5520 494 | 266.13 5554 479 | 274.88 11940 2.30

Table 3: Dynamic GPU tessellation versus precomputed point-based sampling. Ngprar refers to the number of splats used
to create the ISM. Tpg refers to the time needed to splat the precomputed point cloud [RGK*08, REH*11]. Tpr refers to the
dynamic tessellation and splatting to ISM. Both Tpr and Tpt are reported in [ms] excluding the processing of the pull-push
phase. Value s = Tpg / Tpt refers to speedup of the dynamic GPU tessellation.

1000 ¢ T T 45
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F Speedup

TISM [ms]

Lol . L i . 05
le+06

Ngprarl™]
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Figure 10: ISM splatting time Tysyy as a function of the splat
count Nsprar measured in the Crytek-Sponza scene. Our
approach Tpr achieves better performance than the offline
method Tpg [REH 11] for higher numbers of splats.

lel Independent Metropolis-Hastings sampling, it is easy to
implement, it is fast, and it requires no additional data stor-
age. The results show that the method significantly reduces
temporal flickering compared to the sampling based on the
inverse transform method.

(© 2013 The Author(s)
(© 2013 The Eurographics Association and Blackwell Publishing Ltd.

As a second contribution we proposed to accelerate the
ISM creation by using hardware tessellation instead of pre-
computed point cloud. The results document significant
speedup of the proposed technique and its better scalability
towards large dynamic scenes.

In the future we would like to study other applications of
the proposed temporally coherent Independent Metropolis-
Hastings sampling. We also want to test different VPL im-
portance metrics and evaluate them in a perceptual user ex-
periment.
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