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Abstract

In this paper we discuss a methodology for comparing various ray shooting algorithms through a set of experiments

performed on a set of scenes. We develop a computational model for ray shooting algorithms, which allows us to map

any particular ray shooting algorithm to the computational model. Further, we develop a performance model for ray

shooting algorithms, which establishes the correspondence between the computational model and the running time of

the ray shooting algorithm for a sequence of ray shooting queries. Based on these computational and performance

models, we propose a set of parameters describing the use of a ray shooting algorithm in applications. These parameters

allows us to make a fair comparison of various ray shooting algorithms for the same set of input data, i.e., the same

scene and the same sequence of ray shooting queries, but virtually independently of hardware and implementation

issues. Under certain conditions, the proposed comparison methodology enables cross-comparison of published

research work without reimplementation of other ray shooting algorithms.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Shooting a ray is one of the fundamental geometric

tasks in computer graphics. It is utilized by virtually all

modern global illumination methods to sample three-

dimensional space. Ray shooting is used not only for

image synthesis in ray-tracing based methods, but also

for form-factor computations in radiosity, for photon

map construction, for visibility preprocessing, etc.

Ray shooting is a simple task: find out the first object

intersected by a given ray for a given set of N objects, if
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such an object exists. In spite of this simple formulation,

it is not easy to implement an efficient and fast ray

shooting algorithm (RSA). The problem of finding an

ultimately efficient RSA still remains open. Both

computational geometry and computer graphics re-

searchers have tried to develop a fast RSA with varying

success. Computational geometry [1] aims its effort at

improving the worst-case time complexity, however, the

methods developed are often restricted to certain shapes

of objects (convex polygons, triangles, spheres). Un-

fortunately, the space and preprocessing time complex-

ity of these methods is unacceptable for real

implementations in rendering frameworks. Szirmay-

Kalos and M!arton [2] proved that the lower bound on

the worst-case complexity of ray shooting is Oðlog NÞ in
a computational model based on algebraic decision

trees. Their next result is the lower bound of space

complexity OðN4Þ (and thus of preprocessing) for any

worst-case RSA working in Oðlog NÞ time complexity,
rved.
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which makes these RSAs practically inapplicable in

computer graphics applications.

It is also possible to use a brute force method for

solving the problem. A naive RSA tests all the scene

objects in order to select the closest one, which gives the

complexity of OðNÞ; where N is the number of objects.

However, for a higher number of objects this is

impractical since the time consumed by the method is

unacceptable.

In the field of computer graphics various heuristic

RSAs [3] aimed at average-case time complexity have

been investigated since 1980. These RSAs usually

assume that a ray-object intersection test is available

for each shape of object, which allows us to use general

shapes of objects. We have to recall that the time

complexity of the heuristic algorithms for the worst

case is no better than for the naive RSA. However,

good average-case complexity is the reason why the

heuristic RSAs are commonly used in rendering

packages [4–6].

Some heuristic RSAs exhibit worst-case complexity

OðNÞ and average-case complexity Oð1Þ for scenes with
uniformly distributed objects [7]. These complexities

remain for non-random scenes as well, but unfortu-

nately, the unknown multiplicative factor hidden behind

the O-notation and random object distribution in the

scene for average case analysis make theoretical com-

plexity definition unusable in deciding which RSA

should be used in practice. This is the reason why the

performance of RSAs is commonly compared experi-

mentally on a set of some test scenes. Within this

context, Haines introduced the Standard Procedural

Database (SPD) package [8] in order to test the

performance of ray tracing algorithms. SPD defines a

set of scenes and description of ray tracing algorithm to

be used for testing. Recently, Smits and Jensen proposed

another set of test scenes [9], which defines scenes

suitable for testing global illumination algorithms. Even

more recently, Lext et al. [10] provided a scene bench-

mark for animated ray tracing.

In spite of two decades of research on RSA in the

computer graphics community, it is not yet clear

whether some particular RSA is more convenient and/

or more efficient than any other RSA. Some contra-

dictory statements about RSAs have appeared with the

introduction of new types of RSAs in published papers.

Moreover, each paper that introduces a new RSA must,

or at least should, compare the proposed algorithm with

some reference algorithm. There is no common choice

for the reference algorithm, but in most cases a uniform

grid was used using the
ffiffiffiffiffi
N3

p
rule to set the uniform grid

resolution. The quantitative comparison between a

reference RSA and a newly proposed RSA always

depends on the software implementation and on a

particular hardware platform. For this reason any cross-

comparison of the results presented in the different
papers is problematic and usually impossible. A fair

comparison of different RSAs has been possible only

when they were implemented and tested within a

uniform software framework, and when testing was

performed on the same hardware. Only a few papers

devoted to the comparison of various RSAs [11–14] have

been published until now, which use running time for

comparing RSAs.

Since RSAs are implemented and tested using

different software and hardware, an important problem

in research on RSAs is how to compare them

qualitatively and quantitatively. This should be done

on a technically sound basis, it should define time and

memory complexity, suitability for various types of

scenes, and particular features of an RSA.

Classical worst-case complexity measures are rather

wrong for evaluating ray shooting since they rank those

algorithms first, which are intuitively unacceptable due

to their memory requirements. Worst-case complexity

analysis may extract those input cases which happen

very rarely, thus they cannot be accepted as typical

inputs. Average-case complexity is better and can

explain why heuristic RSAs are good, but cannot

make a distinction between different heuristic RSAs.

All complexity measures hide physical parameters

behind O-notation, while different algorithms belong-

ing to the same complexity class can have very

different performance. The objective of this paper is to

propose a model that solves all of these problems, also

taking into account the parameters of the actual

computer.

In this paper we will try to decrease the gap in

understanding the functionality of various RSAs by

finding out their commonalities. The commonalities

found in all RSAs allow us to describe the RSA

computational model in a general way that enables us

to map a particular RSA to this computational model.

Furthermore, we will describe a performance model

which establishes a connection between the running

time of the application and the different algorithmic

operations that are the subject of the computational

model. We will then define two procedures for an

‘‘ideal RSA’’ that provides the minimum time on

which ray shooting can be solved on a given machine.

We use the time consumed by the ‘‘ideal RSA’’ as a

reference value for all the parts of the computation in a

specific RSA. These parts cover the time needed to

traverse the data structure on which an RSA is based,

ray-object intersection tests, and the remaining time

consumed by the application. The design of the

computational model and performance model allows

us to define a set of thirteen parameters referred to as the

minimum test output that should be reported for one

experiment, given a scene, a particular RSA, and a

sequence of ray shooting queries. The definition of the

two models and the minimum test output is the basis for
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a methodology for making a fair comparison of various

RSAs.

The concepts proposed below form a comparison

methodology that allows us to compare various RSAs

virtually independently of the implementation and the

hardware used. We follow the comparison methodology

for experimental measurement that was described in

Havran and $Z!ara [15] for the kd-tree and further

elaborated in [11].

To make the scope of this paper clearer, we have to

say that ray tracing is a particular global illumination

method. Ray tracing, similarly to other global illumina-

tion algorithms, uses some RSA to evaluate pixel

illumination. Even if it is possible to define other

generalized rays (beam, cone, and pencil tracing, see

[3]), the computation of these is usually considered

time consuming [3]. Practically all global illumination

algorithms that can produce general lighting effects

such as Monte Carlo techniques stick with the

concept of a ray as a half-line, as presented here.

Further, we do not consider these generalized rays, nor

refer to different ray tracing methods. Instead, we

limit ourselves to ray shooting methods only. Conse-

quently, we from now on assume the existence of an

application that deterministically generates a set of rays

for a given input set of objects and uses an RSA to

compute the result. However, the necessary condition

and limitation for any comparison methodology is

that the ray-object intersection test is required within

an RSA. We do not include the algorithms, in which

results of the RSA are approximated, e.g., with the use

of an OpenGL z-buffer for eye rays in ray casting etc.

All the requirements we pose are common in applica-

tions using RSAs, particularly in global illumination

algorithms.

This paper is further structured as follows: In

Section B2 we introduce an RSA computational model.

In Section B3 we describe an RSA performance model.

In SectionB4 we develop an ‘‘ideal RSA’’ that allows to

compute the answers to ray shooting queries in constant

time under certain conditions. In Section 5 we describe a

minimum test output and in Section 6 the method of

getting values for minimum test output. In Section 7 we

present a comparison methodology which describes how

to compare two or more RSAs, and in Section 8 we

discuss various properties of our method. Section 9

concludes the paper.
2. A computational model of ray shooting algorithms

(RSAs)

In this section we describe the RSA computational

model for RSAs based on ray-object intersection tests.

We will show that any such RSA currently known or

developed in the future can be mapped to this
computational model. The computational model is

based on the definition of algorithmic operations in an

RSA. These algorithmic operations must always be

performed due to the nature of the ray shooting

problem. We then use the computational model to

describe the set of parameters to be reported, when an

RSA is tested experimentally.

The ray shooting problem can be understood as

an instance of geometric range-searching [16], which

implies that some data structure is built to answer

the specific query. The definition of ray shooting

implies that every RSA somewhere contains pointers

to objects that are to be tested for intersection against

a given ray. This means that each RSA is separated

into two parts (as are all algorithms [17]): the data

structure (DS) at least containing pointers to the scene

objects and the ray traversal algorithm working over the

DS: The lifetime of an RSA is composed of two phases,

the first one is called preprocessing phase and involves

the construction of the initial DS: The second phase of

an RSA is called the execution phase. Within the

execution phase the RSA answers given ray shooting

queries.

A DS contains some data entries, here referred to as

nodes. The nodes include the pointers to the scene

objects, the pointers to the other nodes of the DS; the
size of the spatial cells, etc. Nodes of a DS can be

divided into two groups: elementary nodes are intended

to contain only pointers to objects (and, if the RSA

requires it, some other data), whereas generic nodes are

all other nodes, which serve to point to other generic

and/or elementary nodes. A special case of elementary

nodes are empty elementary nodes that do not contain

any pointers to objects and act as ‘‘free space contain-

ers’’ within the DS:
For any answer to a ray shooting query in a particular

RSA, computation proceeds as follows. Given a ray R, a

ray traversal algorithm performs a sequence of the

following operations:
TRAVERSAL STEP:
 visit a new node of the DS;

NEW NODE:
 create a new node of the DS;

DELETE NODE:
 delete a node from the DS and

unlink all pointers to the node

from the remaining nodes of the

DS;

TEST OBJECTS:
 when accessing an elementary

node of the DS; test objects

pointed to in this node for inter-

section with the ray R,
finally finding the closest intersected object if such an

object exists. There are two cases: a DS is changed by a

ray traversal algorithm or it may not. If a DS underlying

the RSA is not changed by the ray traversal algorithm,

then the operations ‘‘NEW NODE’’ and ‘‘DELETE
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NODE’’ are not performed during the execution phase.

Such an RSA is referred to as the RSA based on a static

data structure.

There are several RSAs that modify the underlying

DS on the fly within the execution phase, for example,

ray space subdivision techniques [18]. The operations

‘‘NEW NODE’’ and ‘‘DELETE NODE’’ are usually

used within the preprocessing phase to build up some

initial DS; however, in this case the DS is modified

during the execution phase. Such an RSA is referred to

as the RSA based on a dynamic data structure.

As we can see, each RSA based on ray-object

intersection tests must contain a data structure where

the pointers to objects are stored, with at least one

pointer for each object. From all this it follows that

through this underlying data structure it is possible to

map any RSA based on ray-object intersection tests to

the general RSA computational model above. This

enables us to define a common set of parameters to be

reported when any RSA is performed on an input scene

S containing N objects over an input sequence of ray

shooting queries. Further, we call the testing procedure

an algorithm in the application that generates a

sequence of ray shooting queries to be answered by a

particular RSA. (The symbol for the testing procedure is

TP.) A particular testing procedure TP can be the

result of a global illumination algorithm such as ray

tracing, etc., or just an artificial algorithm shooting

rays to obtain some required distribution of rays in

space [11].

We propose to organize the set of parameters

resulting from the use of a particular RSA on the input

scene, and given a TP into three subsets, the first two of

them hardware/implementation/compiler independent:
�
 RSA parameters related to static properties of data

structure DS:
3
 If an RSA is based on a static data structure, the

parameters depend on the scene S only, and they

are evaluated at the end of the preprocessing

phase.
3
 If an RSA is based on a dynamic data structure,

the parameters depend on the scene S and the

testing procedure TP, and they are evaluated

during the execution phase as maximum values

reached.
NG
 [�]—maximum number of generic nodes

in the DS;

NE
 [�]—maximum number of elementary

nodes in the DS;

NEE
 [�]—maximum number of empty elemen-

tary nodes in the DS (NEEoNE),
NER
 [�]—maximum number of pointers to

objects in all the elementary nodes of the

DS (NER is greater than or equal to the

number of objects N).
�
 RSA parameters related to dynamic properties of a

data structure DS; i.e., the use of the DS within an

RSA. They depend on the scene S and the testing

procedure TP, and they are evaluated at the end of

the execution phase:
rITM
 [�]—ratio of ray-object intersection tests

performed to minimum number of ray-

object intersection tests (rITMX1:0; assum-

ing at least one object is intersected given

S and TP. The minimum number of ray-

object intersection tests corresponds to the

number of rays hitting objects.),

*NTS
 [�]—average number of (all) DS nodes

accessed per ray ( *NTSX1:0),

*NETS
 [�]—average number of elementary DS

nodes accessed per ray ( *NETSp *NTS),

*NEETS
 [�]—average number of empty elementary

DS nodes accessed per ray ( *NEETSp *NETS).
�
 RSA hardware/implementation/compiler dependent

parameters. Obviously, these parameters also depend

on the scene S and testing procedure TP:
TB
 [s]—time consumed to build an initial DS for

the RSA in the preprocessing phase (it does

not depend on a TP),
TR
 [s]—running time of the application that

uses the RSA. It involves the execution

phase of the RSA, which also covers the

time devoted to other computations than the

RSA. (Obviously, TB is not included in TR:)
We consider the parameters in the first two subsets as

the minimum hardware/implementation independent

parameters to be reported. It is certainly possible to

extend the set of parameters even further (for example,

the variance of number of objects in leaves), but we

want to keep this set of the smallest possible size that

still characterizes an RSA through the computational

model.

The parameters TB and TR depend not only on the

hardware used, but also on the quality of implementa-

tion (and programming language), the compiler used

and its version, the optimization switches used for

compilation, etc. For this reason, all of these experi-

mental conditions should be described in detail. The

treatment of these parameters related to the implemen-

tation makes the problem of comparing various RSAs

rather difficult; we describe our solution to the problem

in more detail below.
3. RSA performance model

The RSA computational model enables us to count

the number of basic algorithmic operations performed
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on average in an RSA. The RSA computational model

does not define any cost of these operations in terms of

running time, it only describes the time TB and TR: For
the sake of convenience, we further use the term cost½s�
as the running time required to perform some particular

algorithmic operation.

In order to establish the relationship between hard-

ware/implementation dependent and independent para-

meters, we further develop an RSA performance model.

The concept of the performance model for an RSA was

first introduced by Cleary and Wyvill [19] in the context

of uniform grid analysis. Here we present a more general

performance model for any RSA that is derived from the

RSA computational model described above. The RSA

performance model is based on the decomposition of the

total running time TR of the application that uses an

RSA into three parts:
�
 computing ray-object intersection tests,
�
 traversing nodes of the DS; and

�
 the remaining computation effort required by the

application.

For any application that uses an RSA based on ray-

object intersection tests we can divide the time TR into

the parts mentioned above. We put into relation the

time-dependent and independent characteristics by

means of cost consumed by specific algorithmic opera-

tions as follows:

TR ¼ ðrITM � rSI � *CIT þ *NTS � *CTSÞ � NRAYS þ TAPP; ð1Þ

where rSI is the ratio of the number of rays intersecting

objects to the number of all rays (rSIo1:0). We can

remark that rSI does not depend on an RSA, it is

given by TP and S: Then the average number of ray-

object intersection tests per ray is *NIT ¼ rITM � rSI :
Further, *CIT ½s� is the average cost of a ray-object

intersection test, *CTS½s� is the average cost of the

traversal step of a ray traversal algorithm among the

nodes of the DS; NRAYS is the total number of rays

induced by a testing procedure TP, and TAPP½s� is the

remaining application time. The time TAPP covers other

computational effort performed in the application, for

example, in a rendering application TAPP might cover

the time consumed to compute the ray reflection,

lighting, texturing, and other material calculations. Thus

TAPP is always constant for a particular scene S and

testing procedure TP, provided the same implementa-

tion and hardware is used.

We can refine the performance model if we consider

the ratio of successful ray-object intersection tests to all

intersection tests computed:

TR ¼ ½ð *Nsucc
IT � *Csucc

IT þ *N
fail
IT � *C

fail
IT Þ � rSI þ *NTS � *CTS�

� *NRAYS þ TAPP; ð2Þ
where *Nsucc
IT is the average number of successful ray-

object intersection tests per ray, *Csucc
IT ½s� is the average

cost of successful ray-object intersection tests, *N
fail
IT is the

average number of failed ray-object intersection tests per

ray, and *C
fail
IT ½s� is the average cost of failed ray-object

intersection tests.
4. Ideal RSA

Having described the refined performance model,

we can now introduce the ‘‘ideal RSA’’ as an RSA

that has the best possible performance. The concept

of the ‘‘ideal RSA’’ serves us as the ultimate but in

practice unachievable goal. However, it is important

since the running time of the ‘‘ideal RSA’’ is used

as the reference time value for comparing various

RSAs.

Definition. An ‘‘ideal RSA’’ is an RSA that for any ray

shooting query computes the answer in Oð1Þ time

independently of whether an intersected object exists

or not. The multiplicative factor hidden behind the

O-notation is very small. (For example, it is close

to reading a single element of an array from the

memory.)

We should recall that each RSA is in fact a query of a

data structure, which is described by the parameters of

the ray. The ‘‘ideal RSA’’ aims at minimizing the time

required by the query to the smallest possible value

provided the ray-object intersection is computed at most

once.

Since Szirmay-Kalos and M!arton [7] proved that any

RSA works at least at time Oðlog NÞ for the worst-case

input, we can ask whether the definition of an ‘‘ideal

RSA’’ makes sense. Inspired by the idea of Parametrized

Ray Tracing [20], we can construct the ‘‘ideal RSA’’

provided the same testing procedure TP is repeatedly

performed for the same scene S: Further, it is required
that the application code be deterministic in the sense

that the testing procedure TP in the application always

generates the same sequence of ray shooting queries for a

given scene. This can require the setting of initial seeds

in pseudo-random generators to the same value in the

application, etc.

Further, we describe the two procedures that form the

‘‘ideal RSA’’. The first assumption that enables us to

execute the ‘‘ideal RSA’’ is that the application is run at

least twice using the same TP and S: Each object is

assigned an identification tag ID (integer) in the range

/0;N � 1S: Then we construct the array AT of pointers

to objects. An object is then accessed directly in AT

using IDs of the object in Oð1Þ time.

In the first application run we use some ‘‘conven-

tional’’ RSA to compute the results of given ray
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shooting queries. The results obtained by the ‘‘conven-

tional’’ RSA for the sequence of input ray shooting

queries generated by TP are saved one by one to a

temporary array AS using the objects’ ID. When no

object is intersected, the array entry is set to a special ID

value (IDspec ¼ �1). The procedure that is used in the

first application run and at the interface between the

application and the ‘‘conventional’’ RSA is outlined in

the pseudocode, Algorithm 1.

Algorithm 1. The first run of an ‘‘ideal RSA’’ that saves

the results of ray shooting queries.

{Preprocessing phase}

Assign each object a unique ID in the range /0;N � 1S:
Allocate the array AS to store IDs of objects, the size of

AS must be greater than or equal to the number of all ray

shooting queries generated by TP.

{the pointer to the array—order of ray shooting query}

i’0

{Execution phase}

function ShootRay(ray R): object

{Compute the result of the ith ray shooting query by

some ‘‘conventional’’ RSA.}

Compute the result for R using some ‘‘conventional’’

RSA.

Object O’ the result of the ‘‘conventional’’ RSA for the

given R.

if object was found then

AS½i�’ID of object O

else

AS½i�’IDspec

end if

i’i þ 1

ShootRay ’ object O

{Postprocessing phase—possibly save AS to external

memory}.

In the second (repetitive) application run, instead

of calling a specific RSA, we read the correct answer

to the ray shooting query from the array AS provided

that repetitive run(s) of the application result in

the same testing procedure TP and use the same scene

S: If we obtain the object’s valid ID, we obtain the

address of the object through the array AT and

compute the exact intersection point by one ray-object

intersection test. This computation is required to

obtain the correct signed distance for the current ray

shooting query. If the object’s ID has the value

IDspec; then the answer to the ray shooting query is

‘‘no object’’, and no signed ray-object intersection

test is computed. Since the ray-object intersection

test is computed at most once for each ray shoot-

ing query, the ‘‘ideal RSA’’ runs in Oð1Þ time.

The ‘‘ideal RSA’’ performed in a repetitive run

of the application is outlined in the pseudocode,

Algorithm 2.
Algorithm 2. The second run of an ‘‘ideal RSA’’ reading

the results of ray shooting queries.

{Preprocessing phase}

Assign each object its unique ID in the range /0;N �
1S: These ID correspond to the first run of an ‘‘ideal

RSA’’.

Allocate the array AS to store ID of objects.

{Possibly read AS from the external memory.}

Allocate the array AT to store the pointers to objects,

size of AT is the number of objects.

for each object O specified by its ID do
AT ½ID�’ address of the object O

end for

{the pointer to the array—order of ray shooting query}

i’0

{Execution phase}

function ShootRay(ray R): object

ID of object ’AS½i�
i’i þ 1

if IDa IDspec then
Object O’AT ½ID�

Compute the signed distance for the ray R and the

object O:
else
Object O’ ‘‘no object’’

end if

ShootRay ’ object O

For the repetitive run(s) of the ‘‘ideal RSA’’ the time

TR becomes the minimum application running time TMIN
R :

TMIN
R ½s� ¼ TMIN

RSA þ TAPP; ð3Þ

where TMIN
RSA is the minimum time devoted to ray

shooting only, further called the ideal ray shooting

time:

TMIN
RSA ½s� ¼ *Csucc

IT � NRAYS � rSI : ð4Þ

As we can see, the ‘‘ideal RSA’’ is also a kind of average

since it is different for different object types according to

different ray-object intersection tests.
5. Minimum test output

The results of experiments published in the papers

introducing new RSAs were often restricted only to

times TB and TR and some other parameters. Mostly

based on these hardware dependent parameters, we

could not fairly compare newly introduced RSAs with

those published in the past. It follows from the

description of the computational and performance

model that experiments allowing us to fairly compare

various RSAs must be performed for the same scene S

and testing procedure TP. For this purpose Haines
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introduced the Standard Procedural Database SPD [8],

which enables us to procedurally generate various scenes

with various numbers of objects. It also defines some

standard sizes of the scenes that should preferably be

used for testing RSAs. The ray tracing as an algorithm

generating rays corresponds to the TP.

However, the use of SPD scenes for testing RSAs has

also been violated, and research papers often show

results for testing performed on private scenes, or on

only a small subset of SPD scenes. The selection of

scenes is important, since it might be biased to get better

results for the algorithmic technique presented in the

research paper than for other scenes. For this reason it is

highly desirable to use either standard test scenes or to

provide the tested scenes used in a research paper for

public use. We would like to recall that the nature of

scientific work is that every research paper should

describe new techniques and experiments with results

that are reproducible and verifiable by all following

researchers [21]. Therefore, whenever possible, qualita-

tive properties of algorithms obtained via experiments

should be tested on non-private input data.

Let us discuss why the comparison of various RSAs

based only on time TR consumed by the whole

application is not fair. The first reason is that TR also

includes TAPP; which is constant. If we want to compare

the ratio of performances of various RSAs on the same

hardware and with the same implementation, instead of

comparing T1
R for RSA1 and T2

R for RSA2 it is more

correct to compare ðT1
R � TAPPÞ with ðT2

R � TAPPÞ; since
this considers the time devoted to ray shooting only. The

value of TR can be used correctly only for ranking the

RSAs, but it cannot be used to express by how much a

given RSA is faster than another RSA.

The SPD package [8] also recommends that some

time-independent characteristics should be reported:

NRAYS; *Nsucc
IT � NRAYS; *NTS � NRAYS: We follow this

approach by extending this set of hardware/implemen-

tation/compiler independent characteristics.

In order to avoid mutually contradictory statements

in further papers concerning RSAs, we define a set of

parameters to be reported from the experiments. We

call the set of parameters the minimum test output.

This consists of three subsets as already presented:

RSA parameters that relate to static properties of the

DS; RSA parameters that relate to dynamic use of the

DS; and RSA parameters dependent on hardware/

implementation. The hardware/implementation depen-

dent characteristics TB and TR are supplied by three

other parameters. We normalize the time portions

devoted to the particular phases to the ideal ray

shooting time TMIN
RSA that allow us to make a fair

comparison among different implementations and

different hardware used for testing. Our main goal

is that the parameters in the minimum test output

should allow us to compare the performance of
various RSAs independently of hardware and imple-

mentation.

We define the minimum test output for an RSA as (see

Section 2 for the description of most of the parameters

used below):

Subset S of parameters describing the static properties

of a DS within the RSA:

S ¼ fNG;NE ;NEE ;NERg;

subset D of parameters describing the dynamic use of the

data structure the DS; which also depend on the input

scene S and on the testing procedure TP:

D ¼ frITM ; *NTS ; *NETS; *NEETSg;

and subset Y of hardware/implementation dependent

parameters of the RSA related to timing, which also

depend on the input scene S and on the testing

procedure TP:

Y ¼fTB;TR;YAPP;YRAT ;YRUNg

¼ TB;TR;
TAPP

TMIN
RSA

;

�

NRAYS � ð *Nsucc
IT � *Csucc

IT þ *N
fail
IT � *C

fail
IT Þ

TR � TAPP

;

TR � TAPP

TMIN
RSA

�
: ð5Þ

The parameterYAPP expresses the ratio of the remaining

application time to the ideal ray shooting time TMIN
RSA ;

which is not necessary for the comparison of RSAs, but,

suitable for other reasons as we will show later. The

parameter YRAT ðYRATA/0; 1SÞ is the ratio of time

required for computing the ray-object intersection tests

to the time consumed by an RSA only. The parameter

YRUN gives the ratio of time consumed by an RSA

to TMIN
RSA :

The time portions related to the ideal ray shooting

time TMIN
RSA can be difficult to measure. In the next

section we deal further with this problem. The value of

TMIN
RSA enables us to compare different hardware/

implementation dependent characteristics. Subset Y
contains the value of the ideal ray shooting time TMIN

RSA

only indirectly, since it can be computed as

TMIN
RSA ¼

TR

YAPP þYRUN

: ð6Þ

6. Measuring the minimum test output

The minimum test output allows us to make a fair

comparison of various RSAs. We pay for it through the

additional effort needed to get this set of thirteen

parameters for one experiment. The counters to obtain

the subsets S and D must be coded inside the RSA in its

preprocessing and execution phase, which is fairly easy

to implement. It is advantageous to check these counters
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for verification purposes as well, since they can indicate

to us an implementation bug in a particular RSA. In

order to have a correct implementation of a particular

RSA given some testing procedures TP and scene S; the
parameters NRAYS and rSI must have correct values

when the application run is over. Although NRAYS can

be regarded as an independent input quantity, it is often

the case that the number of rays generated is connected

with the use of an RSA and thus NRAYS is dependent on

the correctness of the RSA. For example, this is the case

for higher order rays in various global illumination

algorithms. Reference values of NRAYS and rSI can be

obtained by running another RSA that is known to be

correct. The simplest way is to implement naive RSA,

although the naive RSA is extremely slow for higher

numbers of objects in the scene.

In order to obtain the subset Y we need the total

running time TR to be decomposed into the following

three portions: the time for the ray traversal algorithm

performed within the RSA, the time of the ray-object

intersection tests performed within the RSA, and the

remaining application time TAPP: One way to obtain

subset Y is to use a software profiler tool. This is a

common method for solving performance issues in

software applications. It enables us to distinguish

between the time portions consumed within particular

software functional units, such as functions, procedures,

or even the lines of source code. Then we can sum up the

time devoted to ray-object intersection test routines, the

time consumed by traversing the nodes of a DS; and
the remaining application time. In order to obtain subset

Y we thus profile the normal application run (Eq. (2))

and the application run that uses the ‘‘ideal RSA’’

(Eq. (3)). Subset Y could also be measured by instru-

menting the code with appropriate timing calls.

We also require to profile the run of the application

with the ‘‘ideal RSA’’. In order to get TMIN
RSA we only need

to sum up the time consumed by ray-object intersection

test procedures/functions, which gives us the minimum

time possible.

7. Comparison methodology

The establishment of the subsets S; D; and Y of the

minimum test output enables us to compare different

characteristics of tested RSAs, we are mainly concerned

with time and space complexity. For the use of an RSA

in an application there are several different input

features to distinguish:
S:
 the input scene S is important, for example,

one kind of RSA can be efficient for scenes

with a small number of objects, although slow

for scenes with a higher number of objects.

The scene influences all parameters in subsets

S; D; and Y:
RSA:
 the idea behind an RSA has a major impact

on time and space complexity, which influ-

ences S; D; and Y:

TP:
 the testing procedure is specific to the

application used, and the use of the RSA

can vary greatly. It only influences D and Y
for an RSA based on a static data structure,

otherwise it also influences S:

HW:
 type of hardware used—this influences all

parameters in subset Y; particularly TB and

TR:

COMP:
 the compiler, its version, and the switches

used can influence TB and TR significantly,

and thus all parameters in subset Y: For

example, setting optimization switch -O2 of

the C++ compiler in the UNIX operating

system can decrease the running time by half

for some programs.
IMPL:
 implementation—the actual coding of the

algorithm also has a great impact on its

performance, depending on the programmer’s

experience, etc. Various implementations of

the same ideas can exhibit significant differ-

ences in performance, which influences only

subset Y: When the RSA is (re)implemented

correctly, the parameters in subsets S and D
will not be influenced.
We note that HW, COMP, and IMPL can be

intertwined to some extent, since a certain implementa-

tion can better fit a certain hardware, etc. It is obvious

that so many dimensions of freedom make the

comparison of various RSAs rather difficult in general,

especially for subset Y: For example, if we want to

compare two different RSAs, we have to keep fixed as

many other possible dimensions as possible, in this case

S; TP, HW, COMP, and IMPL. As the minimum

requirement, we demand that the same set of scenes and

the same testing procedure within the application be

used. The existence of dimensions HW, COMP, and

IMPL disable the direct use of TB and TR for comparing

various RSAs. Some parameters in subset S; D; and Y
allow us to compare even those cases, due to the

generality of the underlying RSA computational and

performance model.

In general, we can perform the following comparisons

for one measurement using the same TP and scene S for

two ray shooting algorithms RSA1 and RSA2 (values

for RSA1 are denoted by superscript1; for RSA2 by

superscript2):
�
 for space complexity, we compare ðN1
G þ N1

EÞ with

ðN2
G þ N2

EÞ: To a constant factor given by an

implementation of a particular RSA, it expresses

the different memory requirements for various DSs.
�
 for use of hierarchy inside the DS, we compare

N1
G=N1

E and N2
G=N2

E :
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�
 for use of empty space inside the DS, we compare

N1
EE=N1

E and N2
EE=N2

E :

�
 for time complexity, we have several choices depend-

ing on the conditions for comparison:
3
 T1
B with T2

B to compare the time required for the

preprocessing phase for the same HW, COMP,

and IMPL. If we use different HW, COMP, and

IMPL, we have to normalize TB to TMIN
RSA using

Eq. (6), and thus compare T1
B=TMIN;1

RSA with

T2
B=TMIN;2

RSA :
3
 T1
R � T1

APP with T2
R � T2

APP for performance

ratio, T1
R with T2

R for ranking only—time can

be used directly for comparison, when HW,

COMP, and IMPL attributes are the same. The

HW/COMP/IMPL attributes must always be

stated explicitly for the experiments.
3
 Y1
RUN with Y2

RUN—concerns the time required

for ray shooting in the application related to the

ideal ray shooting time. Assuming that the

implementation of ray-object intersection tests

is practically the same, this enables a fair

comparison independent of HW, COMP, and

IMPL attributes. The parameter YRUN defines

how far the tested RSA is from the ‘‘ideal RSA’’,

and thus the maximum portion of the time that

could possibly be reduced by some RSA with a

higher performance. It can be regarded as the

main index of performance. Unlike comparing

T1
R � T1

APP with T2
R � T2

APP; it enables us to

compare various different RSAs virtually inde-

pendently of HW, IMPL, and COMP.
3
 Y1
RAT withY2

RAT—we can compare how much of

the time for an RSA is devoted to computing

ray-object intersection tests.
3
 Y1
RUN �Y1

RAT with Y2
RUN �Y2

RAT—concerns the

portion of time for ray-object intersection tests.

It can be used virtually independently of HW,

COMP, and IMPL.
3
 Y1
RUN � ð1�Y1

RAT Þ with Y2
RUN � ð1�Y2

RAT Þ—
concerns the portion of time for traversing and

manipulating data structures. It can be used

virtually independently of HW, COMP, and

IMPL.
3
 r1ITM with r2ITM—an efficient RSA should have

this ratio (of ray-object intersection tests per-

formed to the minimum number of intersection

tests) which is as small as possible (as close to 1.0

as possible).
3
 *N1
TS with *N2

TS—an efficient RSA has a number

of traversal steps per ray which is as small as

possible (as close to 0.0 as possible).
3
 *N1
EETS= *N1

ETS with *N2
EETS= *N2

ETS—this shows us

the utilization of empty space within the execu-

tion phase. The level of empty space utilization

can have a great impact on RSA performance.
Based on these developments, we can formulate a

comparison methodology for two or more RSAs. First,

we map each tested RSA to the RSA computational

model described in Section 2. Second, we measure the

minimum test output for each RSA and a set of scenes

(the scenes should be publicly available, like the SPD

package [8]). The testing procedure used within the

application must be the same for each scene and each

RSA and it must be well documented. For example, four

testing procedures are described in [11]. The same testing

procedure guarantees the same sequence of ray shooting

queries and thus the correctness and reproducibility of

experiments. Then, we can compare various features of

tested RSAs as described above, for each scene used and

also as a whole set of scenes using basic statistics tools

(e.g., minimum, maximum, average, variance). The

minimum test output for each scene and each experi-

ment considered as research work must be fully

published. For example, when introducing a new RSA,

for SPD scenes, a table of numbers with 10 rows (scenes)

and with at least 13 columns (minimum test output) is

required.
8. Discussion

From the implementation point of view, the ‘‘ideal

RSA’’ is fairly easy to implement in the application.

Since the number of ray shooting queries can be high, it

can be necessary to save the results of ray shooting

queries to external memory. In this case for the second

(repetitive) run we should avoid counting the time

consumed to transfer the data from external memory to

internal memory to minimize TMIN
RSA : In practice, array

AS is read from a file by blocks to internal memory, and

the time for reading the blocks should not be included

in TMIN
RSA :

One might argue that any RSA is influenced by

hardware issues, such as caching etc. However, the

‘‘ideal RSA’’ as presented here has practically the best

behavior for caching that can ever be achieved. First, we

access the minimum number of objects for one ray, so

the hit ratio in the cache is the best one possible for a

given sequence of rays. Second, the references for array

AT are linearly arranged, having also the best possible

memory coherence and properties for caching of

subsequent rays with respect to coherence. Third, the

branching within ray-object intersection tests is pre-

dicted with 100% accuracy, since all the objects are

intersected. It is hard to imagine an RSA based on a ray-

object intersection test with better cache coherence for

data access and code execution than the ‘‘ideal RSA’’.

The second possible objection is that the data coherence

access can be improved, for example, if the application

uses space-filling curves in ray tracing. We do not want
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to change the testing procedure TP within an applica-

tion to preserve the generality of our methodology, we

regard the application as a black-box producing the

sequence of rays for the RSA. The issue of how rays

are generated within an application with respect to the

data access of the RSA into the memory hierarchy is an

inherent issue of the application. A better ordering of

rays can decrease the time for both the ‘‘ideal RSA’’ and

the tested RSA.

The proposed minimum test output organized into

three subsets has a total of thirteen parameters, which

can be considered a high number. Nonetheless, we

regard this set as the minimum output that shows

different features of an RSA, since it is based on the

general computational model that fits any RSA. The

minimum test output contains both hardware/imple-

mentation/compiler independent and hardware/imple-

mentation/compiler dependent characteristics that allow

us to make mutual comparisons of various RSAs under

certain conditions. The disadvantage of proposed

comparison methodology is the underlying assumption

that the costs of the ray-object intersection tests are of

equal efficiency for various shapes of objects on different

implementations. Fortunately, the ray-object intersec-

tion tests for shapes of objects (at least for objects in the

SPD package) are more or less standardized [22,23].

There is a set of standard scenes, and a well-defined

testing procedure, namely ray tracing in the SPD

package. However, we show that at least the same scene

S and the same testing procedure TP must be used to

validate the comparison.

Let us now discuss whether it is possible to

manipulate the minimum test output by changing the

quality of the implementation. It is not possible to

influence the parameters in subsets S and D; assuming

that the implementation of statistics counters and the

RSA itself is correct. If less efficient or more efficient

ray-object intersection tests are applied, then practically

all the parameters in Y are influenced, excluding TB:
However, it is virtually impossible to influence the value

of YRUN �YRAT :
9. Conclusion

In this paper we demonstrated a concept that can be

applied to all RSAs: a computational model and

performance model for the RSA. We described the

‘‘ideal RSA’’ that provides us with a reference value for

comparing RSAs. Further, we presented a methodology

for comparing various RSAs. However, after the

analysis performed here it is clear that an experimental

comparison of various RSAs still remains a difficult

problem in full generality. The presented comparison

methodology enables us to compare various RSAs,

assuming that each application uses the same sequence
of ray shooting queries for the same set of objects. The

construction of an ‘‘ideal RSA’’ and thus the measure-

ment of the ideal ray shooting time also shows us the

time in the best possible and ideal case given hardware

and an implementation. The minimum application

running time expresses the minimum time of a particular

application that uses an RSA for a given scene and

testing procedure.

A by-product of this development is that we can

measure how far we are from the minimum application

running time ever achievable in dependence on a ray

shooting algorithm, given the application implementa-

tion that computes the set of ray shooting queries on the

tested hardware. For example, it can then be shown

whether or not it is possible to compute a particular

global illumination task such as ray tracing in real time,

given a certain hardware and a certain software

implementation.

The comparison methodology as described is not

application-dependent with respect to the generation of

rays and use of the results inside the application, which

can be of a different nature. It is valid not only for

applications working over static scenes computing still

images, but also for applications computing animations.

These methods seem to play an important role in the

ongoing future of interactive rendering techniques

[10,24].
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Appendix

Here, we present an example of reporting the results

using the minimum test output for a ray shooting

algorithm for a set of scenes for two RSAs. The scenes

were generated using the SPD package [8], where X for

‘‘sceneX’’ denotes the scaling factor when generating the

scene. Table 1 reports the results for an RSA based on a

kd-tree. Similarly, Table 2 reports the result for an RSA

based on a uniform grid, where the required ratio of

number of voxels and objects was set to one. For the

sake of clarity and completeness, in both tables the first

column refers to the name of the scene, the second

column denotes the number of objects in the scene.

(When introducing a new RSA, the description of the
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Table 1

Example of reporting the results using the minimum test output in tabular form for scenes from the SPD package. Parameter NOBJ is

the number of objects in the scene. An RSA based on a kd-tree was used

Scene NOBJ Minimum test output

S D Y
NG NE NEE NER rITM

*NTS
*NETS

*NEETS TB TR YAPP YRAT YRUN

balls4 7382 7891 7892 1484 17313 12.79 27.13 5.34 1.61 1.97 30.08 14.47 0.21 28.71

gears4 9345 27343 27344 940 53627 7.54 21.89 3.30 0.70 2.86 40.08 6.83 0.31 10.83

jacks4 5265 17859 17860 4883 25876 21.00 39.48 7.21 3.09 2.21 24.77 7.72 0.56 35.06

lattice12 8281 42868 42869 5203 49834 4.93 42.69 6.85 3.12 2.89 52.04 7.74 0.32 16.59

mount6 8196 13190 13191 5648 12239 6.57 20.72 3.71 1.69 1.41 24.23 14.20 0.20 21.69

rings7 8401 14943 14944 2523 35876 19.27 37.40 6.67 2.90 2.57 74.55 4.98 0.61 22.37

sombrero2 7938 13926 13927 7676 10234 6.05 18.88 3.51 2.39 1.28 5.34 11.19 0.18 20.22

teapot12 9264 23507 23508 6338 38225 12.01 28.97 5.50 3.33 2.54 19.01 16.71 0.21 27.20

tetra6 4096 2961 2962 1938 4096 10.47 14.81 2.78 2.30 0.46 3.77 16.80 0.20 29.13

tree11 8191 4369 4370 1747 11323 22.24 14.95 3.70 0.91 2.14 23.06 16.09 0.35 34.81

Average 7636 16886 16887 3838 25864 12.29 26.69 4.86 2.20 2.03 29.69 11.67 0.32 24.66

Table 2

Example of reporting results similarly to Table 1, but an RSA based on a uniform grid was used

Scene NOBJ Minimum test output

S D Y
NG NE NEE NER rITM

*NTS
*NETS

*NEETS TB TR YAPP YRAT YRUN

balls4 7382 0 8648 6444 10542 607.08 4.94 4.94 1.14 0.25 238.63 14.47 0.67 327.90

gears4 9345 0 8976 6018 19682 43.60 6.20 6.20 1.70 0.48 58.85 6.80 0.58 19.13

jacks4 5265 0 5472 3110 18734 56.74 6.66 6.66 3.06 0.27 35.09 7.72 0.80 52.89

lattice12 8281 0 9261 0 21936 14.30 5.47 5.47 0.00 0.39 59.81 7.74 0.65 20.25

mount6 8196 0 8820 7204 21890 33.84 8.15 8.15 3.87 0.40 38.84 14.20 0.57 42.53

rings7 8401 0 8000 5635 28149 86.11 10.06 10.06 2.77 0.42 182.43 4.99 0.84 61.95

sombrero2 7938 0 7854 6154 21673 60.24 6.02 6.02 2.78 0.40 9.54 11.16 0.65 44.92

teapot12 9264 0 9251 7483 22771 112.69 13.90 13.90 6.99 0.43 38.70 16.71 0.70 72.70

tetra6 4096 0 4096 3104 12556 115.51 7.13 7.13 5.19 0.21 8.44 16.84 0.68 86.04

tree11 8191 0 8112 5400 11096 4583.10 5.38 5.38 1.13 0.25 1463.30 16.16 0.88 3214.08

Average 7636 0 7849 5055 18903 571.32 7.39 7.39 2.86 0.35 213.36 11.68 0.70 394.24
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new RSA must precisely describe the setting used for the

construction, here we just show how to use the minimum

test output for comparison given any two RSAs.)

For testing we used a ray tracing algorithm as defined

in the Readme.txt file in the SPD package distribution

[8] (the number of primary rays cast is 513� 513; depth
of recursion is 4). All the experiments were conducted on

an SGI O2 running Irix 6.2, processor MIPS PRO

R8000, 180 MHz; 128 MB RAM: The test program in

the GOLEM rendering system [25] was compiled using

MIPS PRO with -O2 optimization. The parameters for

subset Y of the minimum test output were obtained

using a software profiler tool. (‘‘Ideal pixie time’’ was

measured.)

Based on the results in the tables we can compare

various aspects of two RSAs tested on average and also

for a single scene. Concerning static properties, i.e.,
subset S of the minimum test output, the RSA based on

a kd-tree used about 4 times more nodes (NG þ NE)

within the data structure on average than the RSA based

on the uniform grid. Obviously, nearly half of the nodes

for the kd-tree were elementary; for the uniform grid all

the nodes were elementary. However, on average the

ratio of empty elementary nodes to all elementary nodes

(NEE=NE) for the RSA based on a kd-tree was 2.8-times

smaller than for the RSA based on a uniform grid. The

number of pointers to the objects (NER) was quite

similar on average for both RSAs.

Concerning dynamic properties, i.e., subset D; the

ratio of number of ray-object intersection tests to

minimum number of ray-object intersection tests

(rITM ), was 46-times smaller on average for the RSA

based on a kd-tree than for the RSA based on a uniform

grid. The deficiency on performance of the RSA based
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on a uniform grid is particularly apparent for sparsely

occupied scenes (‘‘tree11’’). However, parameter rITM

for the RSA based on a kd-tree also achieved lower

values for all densely occupied scenes. The number of

traversal steps per ray ( *NTS) for the RSA based on a

uniform grid was 4.4-times smaller than for the RSA

based on a kd-tree on average. In the kd-tree, most of

the traversed nodes were generic (81%), and nearly half

of the traversed elementary nodes were empty (45%), on

average. Obviously, in the uniform grid only elementary

nodes were traversed, and nearly 39% of them were

empty on average.

Concerning timing, i.e., subset Y; we can compare the

time for preprocessing directly (parameter TB), since we

used the same hardware, implementation, and compiler.

The time consumed building up the kd-tree was on

average about 6 times higher than the time for building

up the uniform grid. The time portion devoted to the

ray-object intersection tests in contrast to the time

consumed by the RSA (YRAT ) was on average only 0.3

for the kd-tree, but still relatively high for the uniform

grid (0.7). It means that in the kd-tree most of the time is

devoted to traversing the data structure, in contrast to

the uniform grid, where most of the time is needed for

ray-object intersection tests. Concerning the parameter

YRUN ; which is the main index of performance, we can

see that the RSA based on a kd-tree performs

significantly better (nearly 16-times faster on average)

than the RSA based on a uniform grid for a given set of

scenes. This is caused by degradation in the performance

of uniform grids when used for sparsely occupied scenes

as we have mentioned above (scene ‘‘tree11’’). However,

even for other scenes the performance of the RSA based

on a kd-tree is typically twice as high than for the RSA

based on a uniform grid. The closest difference of YRUN

is for the scene ‘‘lattice12’’, where the viewpoint (and

thus origin of primary rays) is located inside the scene.
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