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Abstract
In this paper we review the traversal algorithms for kd-trees for ray tracing. Ordinary traversal algorithms such
as sequential, recursive, and those with neighbor-links have different limitations, which led to several new devel-
opments within the last decade. We describe algorithms exploiting ray coherence and algorithms designed with
specific hardware architecture limitations such as memory latency and consumption in mind. We also discuss the
robustness of traversal algorithms as one issue that has been neglected in previous research.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Ray Tracing

Keywords: kd-tree, ray tracing, traversal algorithm

1. Introduction

Many rendering algorithms aiming at high quality images
are based on ray tracing [App68], i.e. finding the primitives
along the oriented half-line or along a line segment which
provides the means to propagate or gather energy in the
scene. The naive algorithm for ray tracing with O(N) com-
plexity computes the intersections with all geometric prim-
itives. This can be used efficiently only for a small number
of primitives (N up to 100). For larger scenes we need to
restrict the number of computed intersections along the ray
path. This is achieved by various data structures which allow
different structuring of spatial regions or objects of a scene.
We have to pay the reduced number of computed intersec-
tions by the time spent on traversing the data structures.

A kd-tree [Ben75] is one of the hierarchical data struc-
tures often used for ray tracing algorithms. It is a special
case of a BSP tree [FKN80], recursively partitioning space
with planes that are perpendicular to the axes of a coordi-
nate system. Every inner node of the tree has a defined split-
ting plane, which creates two separate half-spaces. These
two half-spaces are included in the left and the right child
of the original node and object primitives, such as triangles,
are redistributed among both of its children. Those objects
straddling the splitting plane need to be assigned to both
children. The leaves contain the references to the geometric
primitives. An example of a kd-tree can be found on Fig-
ure 1.

When working with kd-trees, or acceleration structures in
general, one needs to take care of two separate algorithms:
data structure build/construction and traversal. This paper is
concerned with the latter, but the former is co-essential. A
brief introduction into the build algorithm is given in Sec-
tion 2.

The rest of this paper is structured as follows. In Section 3
we recall the basic traversal algorithms for kd-trees used in
ray tracing. In Section 4 we discuss the traversal algorithms
for coherent ray packets. In Section 5 we focus on the ap-
proaches that were motivated by specific issues of computer
hardware. In Section 6 we discuss the modifications aimed at
the minimization of computation time due to cache latency.
In Section 7 we summarize the discussed algorithms. In Sec-
tion 8 we conclude the paper.

2. Build Algorithms

A kd-tree is commonly constructed recursively in a top-
down fashion, making local greedy decision about the po-
sitioning of the splitting planes. When visiting a node, it
first decides whether to construct an inner node or to de-
clare the node as a leaf. In the former case decisions must be
made about the orientation (axis) and position of the split-
ting plane. The way how a kd-tree is constructed, in partic-
ular the positions of the splitting planes, is essential for the
performance of the kd-tree. This is usually done by mini-
mizing the cost function of a local greedy heuristics, called
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Figure 1: Simple scene with three triangles with a corresponding kd-tree with three leaves (boxes) and three inner nodes
(circles).

surface area heuristics (SAH) [MB90]. The underlying idea
behind the SAH is to put the splitting planes in such a way
that they minimize locally estimated traversal and intersec-
tion costs. This is achieved by considering geometric proba-
bilities of intersecting axis aligned bounding boxes (AABBs,
further referred to as bounding boxes) associated with the
tree nodes, expressed by the surface areas of these boxes,
multiplied with the number of primitives incident to them.
The estimated cost is computed for both lower and upper
boundaries of every object on each of the coordinate axis and
the splitting plane and a minimal value is picked. Wald and
Havran [WH06] summarized the techniques for kd-tree con-
struction and proposed an algorithm to minimize the SAH.
The modifications to SAH for some special cases are dis-
cussed in detail in [Hav00]. SAH computation is quite costly
as one has to evaluate the equation twice for each object on
the split axis. We will now shortly describe two algorithms
based on the approximation of the SAH.

A so-called binning [HMS06, PGSS06] algorithm was
proposed, where the idea is to split an interval into a number
of equally large bins along one axis. Then, in one pass over
all objects in a certain node, it inserts each object into one of
the bins according to its centroid, and increments the bin’s
object count. SAH is then computed only for the boundaries
of the bins.

Furthermore, Shevtsov et al. proposed a min-max bin-
ning algorithm [SSK07] which gives a better approximation
than the binning algorithm as given in [HMS06, PGSS06].
At the beginning, one creates two arrays of bins for minima
and maxima of triangle bounding volumes. These are rep-
resented by bounding boxes. Then, in one sweep over the
geometry object counts in bins are incremented for every tri-
angle boundary that falls into the respective bin. The second
pass is then over the bin boundaries, which are now splitting

plane candidates. SAH is evaluated on each of them with a
number of objects on the left computed from the min bins
and a number of objects on the right computed from the max
bins.

3. Basic Traversal Algorithms

In this section we describe several basic algorithms that
were published prior to the year 2000: a sequential algo-
rithm, a stack-based traversal algorithm, and the two based
on neighbor-links placed into leaves. The sequential algo-
rithm was described as the first and the most simple one.
The recursive traversal algorithm based on a stack is proba-
bly the most known and used algorithm. A neighbor-link tree
algorithm extends kd-tree nodes with information about the
interior structure of the tree and has smaller traversal over-
head when compared to the recursive one.

3.1. Sequential Traversal Algorithm

A basic traversal algorithm for kd-trees (see Algorithm 1)
was devised by Kaplan [Kap85] in 1985. We call it a sequen-
tial traversal algorithm in this paper. First, a ray is intersected
with an axis aligned box that covers the whole scene. This
will return entry and exit distances. These will represent an
interval on which an intersection of the ray with the scene
is valid. When there is no intersection between the ray and
the box the function returns no intersection. Otherwise we
will continue by progressively finding all leaves that the ray
pierces by point-location queries on the kd-tree.

We will start with a point that is on the entry of the ray
into the scene box or if the ray origin is inside of the box
this point will be the ray origin. This step is called leaf lo-
cation. It is implemented by traversing the kd-tree from the
root downwards: in each inner node we traverse to the child
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Figure 2: Intersection with a triangle in a leaf. Ray 1 in-
tersects the primitive (triangle) that lies partly in leaf A, the
intersection (I1) lies outside of the leaf and thus is not valid.
Instead a valid intersection (I3) is with the dashed triangle
that will be found when the other part of the tree is traversed.
Ray 2 has a valid intersection (I2) with the triangle as it lies
inside of the leaf.

which includes the half-space containing our search point.
When a leaf is found the ray is intersected with all the ob-
jects referenced in the leaf (there may be none). If there is no
valid intersection that lies inside the leaf box (see Figure 2),
the next leaf location search occurs. This requires comput-
ing the exit point of the ray on the bounding box associated
with the leaf. To avoid visiting the same leaf, the new point
to search is moved along the ray path by a small epsilon out-
side the box. This is repeated until an intersection is found
or the next point is outside the scene bounding box.

As the sequential traversal algorithm has to visit the ex-
actly same sequence of nodes several times, it is not very
efficient, though it does need constant local memory for its
execution which is beneficial for parallel implementations.
Moreover, the numerical stability of the algorithm is depen-
dent on the choice of the epsilon. For scenes with very large
models and/or ones that lead to kd-trees with cells having
one extent equal to zero a choice of a wrong epsilon can
lead to an endless loop due to the rounding of floating-point
values.

Below we provide the improved algorithms with different
design goals that are more involved but they provide algo-
rithmically more efficient solutions or are designed with a
particular computer hardware in mind.

3.2. Stack-Based Traversal Algorithm

A stack-based traversal algorithm (often called recursive
traversal) remedies the major disadvantage of a sequential
one: it traverses each node in a tree at most once and all nece-
ssary nodes exactly once (see Algorithm 2). This is achieved
by the use of a stack data structure. When traversing a node,
the algorithm chooses in which order the children need to be

1 Locate Leaf ( node, point)
2 begin
3 current node← node;

4 if point lies outside node’s AABB then
5 return no leaf exists;
6 end

7 while current node is not a leaf do
8 if point is to the left of the node’s splitting plane then
9 current node← current node’s left child;

10 else
11 current node← current node’s right child;
12 end
13 end

14 return current node
15 end

16 Kd-tree Sequential Traversal:
17 begin
18 (entry distance, exit distance)← intersect ray with root’s

AABB;

19 if ray does not intersect AABB then
20 return no object intersected;
21 end

22 if ray has origin in AABB then
23 point = ray origin;
24 else
25 point = ray origin + ray direction * ( entry distance +

eps );
26 end

/* this will locate first leaf */
27 current node = Locate Leaf ( tree root node, point);
28 while current node is leaf do

/* current node is a leaf while point is inside tree root
node’s AABB, see Locate Leaf lines 4-6 */

29 (entry distance, exit distance)← intersect ray with
current node’s AABB;

30 if current node is not empty leaf then
31 intersect ray with each object;
32 if any intersection exists inside the leaf then
33 return closest object to the ray origin;
34 end
35 end

/* point just a bit outside the current node */
36 point = ray origin + ray direction * ( exit distance +

eps );
37 current node = Locate Leaf ( tree root node,

point);
38 end
39 return no object intersected;
40 end

Algorithm 1: Sequential traversal.
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Traversal near only far only both

decision

ray origin (t < 0) or (t > exit) (t > 0) and (t < entry) (entry < t) and (t < exit)

cases: (a)1, (b)1, (c)1 (a)2, (b)2, (c)2 (a)3, (b)3

ray dir t > exit t < entry (entry < t) and (t < exit)

cases: (a)1, (b)1, (c)2 (a)2, (b)2, (c)1 (a)3, (b)3

Table 1: Conditions for the traversal of origin/direction node classifications. For the cases and entry/exit/t refer to Figure 3.

traversed and if any of them can be skipped. The children are
generally referred to as a left and a right child, based on their
position with respect to the splitting plane. For the traversal
algorithm the children have to be classified as near and far
child nodes. For this classification of children there are only
three possible cases of traversal: (i) visit only the near child,
(ii) visit only the far child, (iii) visit the near child first and
then the far child. The stack stores the far node in case both
children need to be visited and this node is used when no in-
tersection occurs in the near node. This can be translated to
the original left/right classification into four cases: (1) visit
only the left child, (2) visit only the right child, (3) visit the
left child first and the right child second, (4) visit the right
child first and the left child second.

There are three variants of the stack-based traversal al-
gorithm. The first one uses a near/far classification based
on ray-origin and was published by Jansen [Jan86] and also
later by Arvo [Arv88]. The second one uses a near/far clas-
sification based on the ray direction and was given in the ap-
pendix of Keller’s thesis [Kel97] and is also used in Wald’s
thesis [Wal04]. The last algorithm uses the left/right classi-
fication directly and was given by Havran et al. [HKBv97].

The near/far classification based on the ray origin uses the
origin of the ray and the position of the splitting plane. As
a result it treats left as near and right as far when the ray
origin is to the left of the splitting plane and vice versa. The
near/far classification based on the ray direction classifies
the left node as near and the right node as far if the sign of
the direction of the ray in the axis of the splitting plane is
positive and vice versa if negative. The near/far classifica-
tions based on the ray origin and direction are depicted in
Figure 3. In Table 1 we can find conditions for these classi-
fications that are used in the recursive traversal algorithm.

There are subtle differences between the two ways in
which child nodes are classified as near or far. As this was
not discussed in the former publications, we provide short
analysis below. The traversal algorithm based on the ray ori-
gin classification can suffer from robustness issues when the
ray origin is embedded into the splitting plane, as was shown
by Havran et al. [HKBv97]. It can thus happen that instead
of the left child the right child is traversed and vice versa.

1 Kd-tree Recursive Traversal:
2 begin
3 (entry distance, exit distance)← intersect ray with root’s

AABB;

4 if ray does not intersect AABB then
5 return no object intersected;
6 end
7 push ( tree root node, entry distance, exit distance) to

stack ;
8 while stack is not empty do
9 (current node, entry distance, exit distance)← pop

stack;
10 while current node is not a leaf do
11 a← current node’s split axis;
12 t← (current node’s split position.a - ray origin.a)

/ ray dir.a;
13 (near, far)← classify near/far with (split

position.a > ray origin.a);
14 if t ≥ exit distance or t < 0 then
15 current node← near;
16 else if t ≤ entry distance then
17 current node← far;
18 else
19 push ( far, t, exit distance) to stack;
20 current node← near;
21 exit distance← t;
22 end
23 end
24 if current node is not empty leaf then
25 intersect ray with each object;
26 if any intersection exists inside the leaf then
27 return closest object to the ray origin;
28 end
29 end
30 end
31 return no object intersected;
32 end

Algorithm 2: Recursive traversal based on ray origin clas-
sification. For direction based classification change line 10
to use (ray dir.a > 0) and remove condition (t < 0) from
line 11.
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Figure 3: Direction and origin based near/far classification. The classification for rays in (a) and (b) are the same. Rays in (c)
have their origin closer to (or it may be even inside of) the node and thus on the other side of the splitting plane. Here for ray 1
the ray direction classifies left as far, but the ray origin classifies left as near and vice versa for ray 2.

The same problem with robustness can also happen for
the algorithm based on the ray direction, if the ray direction
is zero for one of the coordinates. Fortunately, the robustness
can easily be reinforced by a small trick before the ray traver-
sal starts. The zero coordinates of the ray direction are found
and are set to a small epsilon. The error due to the change
of the ray direction is negligible and the correctness of al-
gorithm can be shown for all of the cases. Such a trick can
obviously not be used for the near/far classification based
on the ray origin, as the comparison between the ray origin
and the splitting plane is computed in each traversal step and
this must be always checked for the case of an embedded ray
origin in the splitting plane.

There is a robust algorithm provided by Havran [Hav00]
that also minimizes the number of conditions performed for
each traversal step. This is achieved by not storing only the
distance along the ray, but also the coordinates of the point
on the splitting plane. It assumes that the memory required to
implement the stack is available and can be always quickly
accessed. The method also approaches the theoretical limit
on the processed conditions - there are only 4 traversal cases
when visiting an interior node that can be distinguished by
log24 = 2 consecutive branches.

3.3. Neighbor-Links and Neighbor-Link Trees Traversal

As the recursive traversal improves the sequential one
by not traversing nodes more than once, it still traverses
many nodes inside the tree when finding consecutive leaves

pierced by a ray. If we added information regarding the inter-
nal structure of the tree to the nodes, e.g. with which nodes
a node shares its faces (sides), we would be able to traverse
to neighboring nodes directly from and inner node without
or with minimal traversal overhead.

Neighbor-links (or ropes) as proposed by MacDonald
and Booth [MB90] and further investigated by Havran et
al. [HBv98] use this idea. Six additional pointers are added
to each node, providing links to neighboring spaces in the
tree, where those spaces can be a number of inner and/or leaf
nodes. The basic algorithm constructs links that will point to
leaves wherever possible, i.e. where a leaf’s face covers the
whole of a node’s face completely, thus the leaf is a sole
neighbor (direct link). Otherwise a link to an inner node that
covers all leaves that are connected to that node’s face is cre-
ated (indirect link, see Figure 4(b)).

We can also replace links to inner nodes by so-called
neighbor-link trees. These are 2D kd-trees that contain all
nodes from the inner node’s sub-tree that can be accessed
through the inner node’s face. This will replace traversal
from an inner node by a traversal through an optimized
neighbor tree, where only relevant nodes are traversed as de-
picted on Figure 4(c).

3.3.1. Construction

The construction of neighbor-links is straightforward. First,
one needs to build a kd-tree using the SAH or a different
build algorithm. Then, for each face in each leaf’s bounding
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Figure 4: Neighbor-links and neighbor-link trees. (a) source scene, (b) kd-tree with direct and indirect (dotted) neighbor-links,
(c) neighbor-link trees that replace indirect links from the middle image.

box in the kd-tree a single neighbor-link is set up. For a given
face the kd-tree is searched, starting from the root node of
the kd-tree. In each step the search continues in the sub-tree
that contains the whole face. If the splitting plane splits the
face, the search is terminated. The algorithm constructing
the neighbor-link trees further replaces indirect neighbor-
links by their corresponding 2D neighbor-link trees. This
is done with a constrained depth-first-search (DFS) on the
kd-tree. Only sub-trees corresponding to the cells that inter-
sect the leaf’s face are visited during the DFS and only the
leaves where the faces intersect the leaf’s face are added to
the neighbor-link tree.

3.3.2. Traversal

The ray traversal algorithm for the kd-tree using neighbor-
links replaces the redundant point-location search that al-
ways starts from the root of the kd-tree in the sequential ray
traversal algorithm by the one that starts in the node pointed
to by a neighbor-link. Compared to the stack-based traver-
sal algorithm it also allows us to skip some inner nodes di-
rectly while it does not use any memory for the stack. How-
ever, it is necessary to store the neighbor-links/neighbor-
link trees which can result in significantly increased mem-
ory consumption. In addition to the links it also requires to
explicitly store the bounding boxes of leaves directly in the
leaf node structure.

The ray traversal algorithm first finds the exit face from
the leaf and then computes the exit point on this face. Four
cases can occur, depending on which node the neighbor-link
associated with the exit face is pointing to and what algo-
rithm was used:

1. The node is a leaf (direct link) and it is directly used as a
next leaf in the sequence that needs to be traversed.

2a. The node is an inner node (indirect link). This node is

then used as a root for the point-location search until we
find the next leaf.

2b. Or the node is a root of a neighbor-link tree (indirect
link expanded to a tree). This 2D tree is searched for a
leaf that contains the exit point.

3. The link is pointing to nowhere, the ray then leaves the
scene box.

4. Ray Coherence and Packet Tracing

Basic ray tracing algorithms that trace single rays can be im-
proved by taking advantage of ray coherence. Rays with a
similar origin and a similar direction will traverse a com-
mon, sometimes very long part of the scene near to each
other. This is depicted on Figure 5. The ray coherence can
therefore be exploited by not tracing individual rays but by
packaging several such rays together into a ray packet, and
then tracing those together through the acceleration struc-
tures at once.

4.1. Longest Common Traversal Sequence

The use of ray coherence in the context of kd-trees was pro-
posed by van der Zwaan et al. [ZRJ95] for pyramidal shafts
formed by primary rays. It was further extended by progres-
sively refining the shafts by Havran and Bittner [HB00] us-
ing the Longest Common Traversal Sequences (LCTS). It
groups rays into convex shafts with four corner rays. These
rays are then traversed through the data structure one by one
and their traversal path is saved as a traversal sequence. If
a common traversal sequence to all four rays is found, the
traversal sequence is valid for all the rays inside the shaft.
The empty leaves in the traversal sequence can be skipped.
Moreover, if all corner rays intersect a single convex object,
this (termination) object is also intersected by all inner rays.
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4.2. Packet Tracing

Another approach for a group of 2× 2 rays (a packet) was
proposed by Wald et al. [WBWS01]. They propose to use
Single Instruction Multiple Data (SIMD) instructions im-
plemented in contemporary CPUs and known as Streaming
SIMD Extensions [TH99], which execute one operation over
a vectors of operands at once. These instructions are then
used to compute traversal of a whole packet of rays at once.
One must be careful when the rays diverge, however, e.g.
some of them want to traverse only the far child while the
others will want to traverse both children. At this point a bit-
mask is usually used to save which rays are currently active
in the traversal and the results of inactive rays need to be
masked out not to trigger incorrect traversal steps or com-
pute incorrect intersections. One also has to take into ac-
count the classification algorithm, where for different types
of rays in a packet, e.g. rays traced from different surface
hitpoints towards a common light source (shadow rays), the
origin-based classification or the direction-based one will re-
sults in packets diverging sooner.

Currently the most common SIMD width on commod-
ity CPUs is 4 which we can see rise to 8 with an expected
support of Advanced Vector Extensions (AVX) in 2011. If
we also take the current graphical processing units into ac-
count we can find SIMD widths of up to 32 on NVidia’s
Fermi architecture. Moreover, the best number of rays in a
packet does not necessarily have to equal the SIMD width
and the packets of 4× 4 and 8× 8 rays are mentioned al-
ready in [WBWS01].

4.3. Relevant Triangle Tracing

Relevant triangle tracing by Dmitriev et al. [DHS04] ex-
panded the idea by Wald et al. by using SIMD instructions
to traverse all four corner rays of a pyramidal shaft at once,
allowing more rays to be included. Under certain conditions
fulfilled by the corner rays of a shaft, it is possible to imme-
diately and conservatively answer visibility queries for the
inner rays with respect to a triangle in the leaf nodes of a
kd-tree. This is in general possible for primary rays induced
by a pinhole camera or shadow rays cast from a point light

source. For other rays such as secondary rays it could be dif-
ficult or even impossible to use this technique.

4.4. Multi-Level Ray Tracing algorithm

The Multi-Level Ray Tracing algorithm (MLRTA) by
Reshetov et al. [RSH05] introduced the entry point search,
which is basically trying to find the LCTS of a ray shaft,
though by a different search algorithm based on the geom-
etry of the shaft. An entry point is the deepest node from
which the actual intersection search can start. The shaft tra-
verses the acceleration structure in a breadth-first search
manner, keeping the topmost node with potential intersec-
tions in sub-trees of both children. Sub-trees without po-
tential intersections are those with all leaves in them either
empty or not intersected by the shaft.

The final entry point candidate is thus the node that is
the common ancestor of all non-empty leaves that the shaft
actually intersects. It is clear that the performance gain
of the entry point search heavily relies on the number of
empty leaves in the tree. Reshetov et al. thus proposed a
kd-tree build method, which sets a bias for creating leaves
with empty spaces and also works best for dominantly axis-
aligned scenes with large occluders, such as in architectural
scenes.

4.5. Image Plane Tiling

The coherence based traversal algorithms above, excluding
packet tracing, require either regular or adaptive splitting of
the image plane. The so-called adaptive tile splitting is an ex-
tension to the entry point search, where we start with pixels
of an image split into a couple of uniformly sized squares.
When these are connected to the eye origin they create the
initial ray shafts. The number of nodes in a sub-tree of a kd-
tree depends on the the complexity of the geometry enclosed
in that part of a tree. Thus we can adaptively split ray shafts
in places where geometry is complex.

4.6. Early exit

For coherent packets, we can allow an early exit strategy
similar to that for single rays. The kd-tree is traversed in a
front-to-back manner along a ray. This will assure that if an
intersection is found, then it is the nearest one to the ray
origin and the traversal of this ray can be terminated. This is
not true for packets of incoherent rays, as the rays in a packet
will have different classifications for near and far child nodes
for a traversed node. Thus we can test a single node for an
incoherent packet but we cannot assume anything about the
other nodes on the stack, as some of them may be still closer
to one of the rays in the packet. This can be solved by split-
ting incoherent packets into coherent subsets where for each
the classification is computed separately.

7



Figure 6: Acceleration structure augmented with sparsely
distributed augmented nodes. Links to parents are only be-
tween nodes with additional data.

4.7. Omnidirectional Traversal

Reshetov [Res06] has shown an omnidirectional algorithm
for tracing packets of incoherent rays which relaxes this
early exit strategy by not terminating the traversal altogether
when an occluded node is found, but only pops the occluded
one from the stack and then continues until the stack is
empty. Another approach for traversing packets with differ-
ent directions at once was shown by Tsakok et al. [TBK08].
They use ray origin based classification and change negative
intersection distances to positive infinity (see in Figure 3(c)).
At the beginning of every traversal step all rays that have
an entry distance larger than their exit distance are excluded
from processing. This will correctly traverse packets without
the need to check their coherence. Both Reshetov [Res06]
and Tsakok et al. [TBK08] include source code of their re-
spective algorithms.

5. Hardware Motivated Modifications

Recently, ray tracing algorithms, including those with kd-
trees, were modified to suit specialized computer architec-
tures, such as graphical processing units (GPUs) or the IBM
Cell processor, which have proved to give better perfor-
mance than general purpose ones. The modifications are
based on the need to find a work-around for limitations im-
posed by these architectures. For example, some architec-
tures possess no or very small low-latency memory (cache),
some architectures have greater penalties for branched code,
because they lack branch prediction capabilities, and almost
all architectures now possess wide SIMD arithmetic units.
Basically, the important issue on special hardware archi-
tectures is data and instruction parallelism. This has to be
carefully considered when adopting a traversal algorithm to
these architectures. Disregarding these limitations can lead
to stalls during the traversal algorithm execution.

5.1. Stackless Traversal Algorithms

To stay efficient on specialized hardware one can avoid a
stack altogether and work with a stackless algorithms. Fo-
ley and Sugerman [FS05] have shown two basic approaches:
kd-restart and kd-backtrack. The kd-restart is basically a se-
quential traversal ported to the GPU, as already stackless

(Section 3.1). Its main disadvantage is thus the same as it
was already mentioned, i.e. to find each consecutive leaf it
has to start from the root of the tree.

5.1.1. Kd-Backtrack

The kd-backtrack adds bounding boxes and pointers to a par-
ent in each node. This allows it to avoid the restart of the
traversal from the root node. The point is moved a bit for-
ward along the ray path and the traversal backtracks upwards
the tree until the point lies inside the bounding box of a node
traversed (see Algorithm 3).

1 Backtrack To Leaf ( node, point)
2 begin
3 current node← node’s parent;

4 if point lies outside global AABB then
5 return no leaf exists;
6 end

7 while point lies outside current node’s AABB do
8 current node← current node’s parent;
9 end

10 while current node is not a leaf do
11 if point is to the left of the node’s splitting plane then
12 current node← current node’s left child;
13 else
14 current node← current node’s right child;
15 end
16 end

17 return current node
18 end

Algorithm 3: Backtrack traversal.

5.1.2. Sparse Boxes

Havran and Bittner [HB07a] reduced the memory footprint
of kd-backtrack by reducing the number of nodes with
bounding boxes and parent links. The augmented nodes
(with additional data) are sparsely distributed throughout the
tree and only these are connected with parent links (see Fig-
ure 6). The last augmented node is always cached and used
as first when the traversal restarts. If there is no intersection
between its bounding box and the currently valid intersec-
tion interval, its parent link is used to find another augmented
node further up the tree. The pseudo-code is given in the pa-
per [HB07a] and generalized for coherent rays in [HB07b].

5.2. Kd-Restart and Kd-Push-Down Traversal

Horn et al. [HSHH07] expanded kd-restart to kd-push-down,
which keeps information about the depth-wise lowest node
that completely contains the valid intersection interval. In-
stead of the root, this node is then used when a traversal
is restarted. This pushed node is updated to the currently
traversed node until the ray no longer traverses only near
nodes or far nodes. The pushdown algorithm is given in Al-
gorithm 4.
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1 Kd-tree Push-down Traversal:
2 begin
3 (entry distance, exit distance)← intersect ray with root’s

AABB;
4 maximum distance← exit distance;
5 exit distance← entry distance;
6 pushed node← tree root node;
7 enable pushdown;
8 while exit distance < maximum distance do
9 current node = pushed node;

10 entry distance← exit distance;
11 exit distance← maximum distance;
12 while current node is not a leaf do
13 a← current node’s split axis;
14 t← (current node’s split position.a - ray origin.a)

/ ray direction.a;
15 if t ≥ exit distance or t < 0 then
16 current node← near;
17 else if t ≤ entry distance then
18 current node← far;
19 else
20 current node← near;
21 exit distance← t;
22 disable pushdown;
23 end
24 if pushdown enabled then
25 pushed node← current node;
26 end
27 end
28 if current node is not empty leaf then
29 intersect ray with each object;
30 if any intersection exists in the leaf node then
31 return closest object to the ray origin;
32 end
33 end
34 end
35 return no object intersected;
36 end

Algorithm 4: Push-down traversal.

5.3. Neighbor-links Traversal

The concept of neighbor-links, which inherently requires no
stack, has been used by Popov et al. [PGSS07] to implement
a stackless traversal on Nvidia’s G80 architecture [NVi06].
Neighbor-links are added to the tree during construction,
where links from the faces of a node are copied to the faces
of its relevant children, respectively their outer faces and the
children are connected by through the common sides. To
create neighbor-links suitable for single rays one needs to
“push” these links down the tree as far as possible, linking
neighboring leaves to each other. Popov et al. skipped this
step for packet traversal, thus every leaf was left with a link
to the root of the neighboring sub-tree.

This linking is implemented by a regrouping mechanism.
When ray packets traverse to a child of a node, some of the
rays may be deactivated as they do not intersect it. Thus it

L1

L2 L3

0

3

21

1 2

(L1)

(L2)

(L3)

0

3

Figure 7: Neighbor links for packet tracing. The wide dotted
line is an ordinary neighbor link that leads to the lowest node
that encapsulates all leaves that are neighboring one of the
faces. The wide dashed line is a link that has not been pushed
down the tree and hence points to the whole neighboring
sub-tree.

is needed, after the processing of the child is finished, to re-
activate the whole packet and continue to the other child. In
this case it is advantageous to have a rope linking the current
node to the whole neighboring sub-tree. For simplicity, if we
take a packet of rays with a common origin (see Figure 7),
we can see that all the rays on the right side of the dashed
one need to traverse the right child only, thus they will be
deactivated on entry of the packet into the left one. When
the packet ends processing in leaf L1 it is advantageous to
have a neighbor-link to the root of the neighboring tree, so
the packet can reactivate and continue processing from the
nearest node to the origin.

5.4. Stack-Based Traversal Algorithms

One approach for architectures with a small on-chip mem-
ory is to use a stack that does not scale logarithmically with
respect to the size of the acceleration structure built over the
scene, but rather is of a fixed size. One pushes nodes onto
a stack as usual and discards the bottom item when a stack
overflow occurs. When an underflow occurs the algorithm
has to fall back to a stackless version.

Horn et al. [HSHH07] provide a very fast short stack al-
gorithm which falls back to a stackless algorithm with push-
down, so when eventually a restart needs to be done, one can
simply backtrack to the top of the smallest enclosing tree
(see Section 4.1). They also state, that “the algorithm with
short stack visits fewer than 3% more nodes than the one
with unlimited stack”. A different solution for alleviating the
impact of a restart was shown by Novák [Nov09]. He used a
technique called “stack spilling” (shown in Figure 8), where
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Figure 8: Stack spilling. (a) stack overflow, (b) stack under-
flow.

a regular large stack in the GPU memory is used as a place
for nodes that were at the bottom of the short-stack at the
moment of overflow. These nodes are, instead of being dis-
carded, saved to the large stack. In the moment of underflow
one uses all the nodes on the large stack before the need to
do a restart. Novák claims that the technique with spilling is
faster by 23% on average than the short-stack with restart on
a GeForce 285 GTX. He has also shown that a conventional
stack in memory is a viable option on current graphics hard-
ware, where a large stack without spilling still performed
better than a short-stack with restart.

Zlatuška and Havran [ZH10] studied the performance of
three spatial data structures for ray tracing on a GPU. They
also include the study of a kd-tree traversal algorithm with
a stack on a GPU. In addition to the pointer to a node they
also have to save the interval along the ray given by the en-
try and the exit distance. However, the entry distance can be
taken as exit distance of the traversed node. Storing the two
values instead of three leads to non-negligible performance
increase.

5.5. Branch-Aware Traversal Algorithms

Mispredicted branches can be sometimes avoided by trans-
forming branched code to a branchless one. This idea is
based on performing computations in both the taken and
not taken branch sequentially and then choosing the correct
values according to the Boolean value that was previously
used to branch the code. In SIMD this can be achieved by a
“blending” instruction that will combine two vectors of val-
ues into one according to another vector.

A branchless kd-tree traversal algorithm, as it was imple-
mented in [Hap09], is based on the idea that instead of using
branches when deciding which node is going to be traversed
or possibly pushed on the stack, one can push both nodes
and by simply moving the stack pointer forward or back-
ward skip those that are not needed (see Algorithm 5). The
correctness of the code for all traversal cases shown in Fig-
ure 3 is documented in Table 2. A similar approach, in a
more condensed form, has been shown by Benthin [Ben06].
A similar construction of a branchless algorithms can be cre-
ated for other recursive variants described in Section 3.2.

1 c← (t < exit distance) ; /* c is either 0 or 1 */
2 d← (t < entry distance) ; /* d is either 0 or 1 */

3 stack [ stackPtr ].node← far;
4 stack [ stackPtr ].entry distance← max(t, entry distance);
5 stack [ stackPtr ].exit distance← exit distance;
6 stackPtr← stackPtr + c;

7 stack [ stackPtr ].node← near;
8 stack [ stackPtr ].entry distance← entry distance;
9 stack [ stackPtr ].exit distance← min(t, exit distance);

10 stackPtr← stackPtr - d;

/* next node to be processed is on the
top of the stack */

Algorithm 5: Branchless traversal (direction based). One
step for a single node.

6. Latency-aware Motivated Modifications

In this chapter we will discuss modifications that aim to re-
duce memory latency when traversing through the kd-tree.
These methods try to have a maximum of data that will be
needed at a similar time close together in memory and a min-
imal memory consumption. This will reduce cache misses
that are caused by random memory access which keeps less
relevant data in cache. In other words, the methods are based
on either algorithmic improvements or spatial and temporal
locality.

6.1. Implicit Pointers

Concerning the data layout, the size of the tree node can be
minimized in order to have more of them fetched on each
cache line. The cache line size (size of a block of memory
transferred between main memory and cache at once) is be-
tween 32 to 256 bytes for current CPUs. To represent an in-
ner kd-tree node we have to store the following variables: a
pointer to the left child, a pointer to the right child, a split-
ting plane axis and a splitting plane position. Using 4 bytes
per pointer and float or integer value and 2 bits for a splitting
plane axis (3 possible values) we need a total of 13 bytes per
node. A leaf needs only a pointer to the array of primitives
and the number of primitives that it contains, so the leaf data
can be saved into the same data structure as an inner node,
when we use the fourth left-over value in the 2 bits for a
splitting plane axis to signify a leaf node.

Wald et al. [WBWS01] proposed to reduce memory con-
sumption so that addressing of all nodes in memory is
aligned to a multiple of 8. This creates room to store ad-
ditional data in the pointers to the left and the right child,
because there will be bits in the address that will always be
zero. The splitting plane axis can be easily stored in those
bits. To reduce the node size by another 4 bytes to the fi-
nal 8 bytes we avoid storing one of the pointers to a child.
If the nodes are stored so that the left child always follows
its parent node, then only a right child pointer is needed and
the left child pointer can be computed as parent + 8 bytes.
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c d Save far Inc with c Save near Dec with d Decision

values line 3 line 6 line 7 line 10

ray 1 0 0 far far near near near only

ray 2 1 0 far far far near far near both

ray 3 1 1 far far far near far far only

Table 2: Stack content in different phases of the branchless traversal algorithm for different rays from Figure 3. Save far, Inc
with c, Save near and Dec with d columns include current stack content after the operation has been completed, where a boxed
value is the one pointed to by the stack pointer.

left (4B) right (4B) split (4B)

plane/leaf (2b)

address: 0x........
right (30b) split (4B)

plane/leaf (2b)

address: 0x......00

2

1

0

4

3

0 21 43
right child pointers

(a) (b)

Figure 9: Memory layout of a (a) kd-tree node for basic layout storing 13 Bytes and (b) memory aligned and condensed layout
reduced to 8 Bytes to a node with an example of a simple tree.

The node then is comprised of only a right child pointer (in-
cluding 2 bits for splitting plane axis) and a splitting plane
position. The node storage is depicted in Figure 9. To have
this applicable in 64-bit address space one needs to convert
all pointers to 4 byte memory offsets from a given static 8
byte memory address.

6.2. Regular Subtree Layouts

There are other methods to store nodes in memory, but usu-
ally this will leave the parent and the children, or the two
children, far from each other. This reduces the effectiveness
of the cache, because after a parent is processed it would
be advantageous to have both of its children on the same
cache line prepared to be processed. Havran [Hav99] pro-
posed a solution (corresponding to van Emde Boas mem-
ory layout [vEB75]) that uses a custom memory allocation,
which clumps together nodes from a sub-tree of a certain
height, where the memory allocated for such is as large as the
maximum possible number of nodes for that sub-tree. Only
the nodes on the lowest level need pointers to their children,
as inside the sub-tree the locations can be computed from
their memory address. This will tradeoff memory size for la-
tency, as some space in these sub-trees will not be occupied.
The solution is also named treelet layout in the literature.

Szécsi [Szé03] expanded the idea of treelets and tried to
decrease fragmentation of memory space that inevitably oc-

curs in the leaf parts of the kd-tree. The idea is to occupy
the memory that is left unused in the leaves of the treelets
and move leaves in place of their pointers to them (see Fig-
ure 10).

6.3. Irregular Subtree Layouts

Yoon et al. [YM06] proposed a generalization of the subtree
layout in a cache-oblivious model which adds spatial local-
ity to the parent-child locality used by Havran [Hav99] and
Szécsi [Szé03]. They show a probabilistic model to quantify
these localities where for ray tracing applications the proba-
bility that a node would be accessed during a query is com-
puted as a ratio of surface areas of its parent node and its
grandparent node. They then cluster nodes to maximize the
sum of probabilities of nodes in one cluster. These clusters
are then reorganized to get spatially close clusters which are
also close together in the final layout.

6.4. Nodes Prefetching

To avoid memory stalls when fetching the kd-tree data from
the main memory to the cache a technique similar to one
used in hardware called temporal multithreading can be em-
ployed. It was implemented on the IBM Cell processor and
called software hyperthreading by Benthin et al. [BWSF06],
but the idea can also be implemented on general-purpose
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Algorithm
(derived from)

Leaf location summary Additional memory re-
quirements

Sequential
(-) • To find leaves the algorithm uses separate point-location searches (al-

ways traversing from the root) starting with a point on the entry of the
ray into the scene box.

• After finding a leaf the next point for point-location is set just after the
exit of the ray from that leaf.

Bounding box data in
each leaf (faster, but not
necessary).

Stack-based
(Sequential) • The algorithm chooses which nodes to traverse according to a compar-

ison between the ray origin or ray direction and the splitting plane.
• If both children of a node are to be traversed the second one is pushed

on the stack. Each node is traversed at most once.
• When a leaf is found the traversal continues with the node on the top of

the stack.

One traversal stack of a
maximal depth.

Neighbor links
(Sequential) • Each side of each leaf has associated either the only neighboring leaf

(direct link) or the inner node that contains all neighboring leaves (indi-
rect link). Traversal then follows these links to find consecutive leaves
pierced by the ray.

• On average less nodes are traversed than in Stack-based traversal.

Six pointers in each leaf,
one for each side. Bound-
ing box data in each leaf.

Neighbor-link
trees
(Neighbor links)

• Indirect links are replaced with 2D kd-trees that include only relevant
nodes for the traversal to the leaf.

Six pointers and bound-
ing box data in each leaf,
shallow 2D kd-trees to
replace indirect links.

Kd-backtrack
(Sequential) • After finding a leaf the next point-location is started from the closest

node upwards in the tree that includes the next point. The node is found
by following pointers to parent nodes and intersecting the point with
the bounding boxes saved in them.

Bounding box data and
pointer to parent in each
node.

Sparse boxes
(Kd-backtrack) • Next point-location is started from the closest node with a bounding

box upwards in the tree, that includes the next point.

Bounding box data and
pointer to parent in some
nodes.

Kd-pushdown
(Sequential) • Next point-location is started from a cached node, which is the last

that completely encapsulates the currently valid intersection interval,
i.e. from the point we were locating to the exit point of the ray from the
scene box.

One pointer to a node.

Short stack
(Sequential) • The algorithm uses stack as in Stack-based, but does not scale its depth

with the acceleration structure depth and is rather of a fixed size.
• When an underflow occurs falls back to a form of a stackless traversal.
• Nodes that overflow the stack are discarded.
• Small on-chip memory friendly algorithm.

One traversal stack of a
small constant size.

Stack spilling
(Short stack) • Overflown nodes are saved to a larger stack that is in the conventional

memory.
• In the moment of underflow it first uses all nodes from the larger stack

before falling back to a stackless traversal.

One traversal stack of a
small constant size and a
large traversal stack of a
maximal depth.

Table 3: Summary of traversal algorithms.
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Figure 10: Kd-tree layout with treelets. (a) Source kd-tree, (b) Havran [Hav99] based on van Emde Boas layout, (c) Szécsi
expansion [Szé03] for incomplete trees.

hardware. This method works on a pool of rays or ray pack-
ets at once. The algorithm always executes one packet at a
time, but when the data is not available in cache, the execu-
tion of the packet is suspended and another packet is started
instead. While the second packet is being processed, the data
for the first one are copied to the cache by direct memory
transfer (DMA). This reduces the memory latency as oth-
erwise the program would have to wait for the data to be
fetched from memory, and a memory stall would occur.

On general purpose hardware with support for data
prefetch instructions, where are no means to find the avail-
ability of data in the cache, the traversal is carried out for a
sequence of N rays from the pool. A single node is traversed
for each ray, the data for the child node to be traversed are
prefetched, and the computation moves to the next ray in the
sequence. When the ray tracing for a single ray is finished,
the result for the ray is stored and the data for a new ray
are placed in the sequence until the whole pool is computed.
This approach can be then used successfully for offline com-
putation of ray tracing queries, i.e. with those queries known
before the start of the algorithm. This has been tested with
a performance gain between 5 to 12 percent by Bittner et
al. [BMW∗09], though the results depended strongly on the
architecture and the compiler.

7. Summary

In this section we present Table 3, which summarizes the
core traversal algorithms. For every algorithm we describe:
its direct predecessor, how the algorithm finds consecutive
leaves pierced by the ray and memory required by the al-
gorithm. Algorithms described in Sections 4 and 6 are not
included, as their purpose is to enhance performance, rather
than to create a completely new approach.

8. Conclusion

We have summarized the traversal algorithms for kd-trees
used in ray tracing. We have described the ordinary traver-

sal algorithms and the changes that were developed for spe-
cialized cases. These include the ray coherence for a set of
rays that can be formed by casting them from the camera
or a point light source. Furthermore, we have described the
modifications of the traversal algorithm motivated by spe-
cific hardware issues such as the lack of caches, the memory
latency, and the penalty for performing branches. We have
shown that the traversal algorithms can be interconnected to
the kd-tree build algorithm as specific data may be needed to
be precomputed and stored in the kd-tree representation. We
have also discussed the memory layouts for this representa-
tion that can be optimized in particular for larger data sets
or when limited by memory of a specific hardware. We also
discussed the robustness issues for the traversal algorithms,
which, when neglected, can lead to incorrect traversal. Fi-
nally, we have described several approaches for ray tracing
of many rays at once. We believe that this survey will sim-
plify the user design choices when an implementation of a
kd-tree based ray tracer for a particular application and com-
puter hardware is needed.
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