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Abstract

We present a novel method for massively parallel hierarchical scene processing on the
GPU, which is based on sequential decomposition of the given hierarchical algorithm
into small functional blocks. The computation is organized using a specialized work
pool in which different blocks of processing units solve different functional blocks. We
present an application of the proposed approach to two methods used in ray tracing:
construction of the bounding volume hierarchies and the recently introduced divide-
and-conquer ray tracing on the GPU. The results indicate that using our approach we
achieve high utilization of the GPU even for complex hierarchical problems which pose
a challenge for massive parallelization.
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1 Introduction

Hierarchical algorithms and data structures are powerful tools for efficient processing of compu-
tationally intense problems. Hierarchical data structures such as bounding volume hierarchies or
kd-trees have become standard methods for rendering acceleration particularly when targeting
ray tracing based techniques. Apart from the established methods based on spatial hierarchies
some new techniques such as the divide-and-conquer ray tracing [WK09, Mor11] work with an
implicit hierarchy stored in a simple index array. Such methods may become an interesting
alternative for ray tracing highly dynamic scenes.

While the hierarchical techniques have their provable benefits in terms of algorithmic effi-
ciency, the general drawback is their difficult mapping to the massively parallel computational
model of the GPU. While a number of clever solutions for this mapping have already been
designed, most of the proposed techniques rely on management of the computation from the
CPU side, invoking specialized computational kernels at different stages of the computation.
This is due to the fact that different computational stages of the hierarchical techniques ex-
hibit different levels of parallelism and it is not easy to reflect this using the currently available
frameworks for GPU computation such as CUDA or OpenCL. As a result the scalability of the
CPU managed method might be reduced when targeting massively parallel systems with tens
of thousands of processing units, which are likely to become available in the future.

In this paper we propose an innovative method which moves the whole computation to
the GPU and as the first proposed algorithm requires no management from the CPU side.
The method handles all important aspects of hierarchical techniques as it is able to perform
complex evaluation of the given task, spawn new tasks, and handle the dependencies among the
tasks. We provide two applications that justify the concept for our method: BVH construction
and divide-and-conquer ray tracing. The results indicate that the implementations based on
our method perform comparable to existing solutions, while they still provide a number of
possibilities for performance improvement.

2



2 Related Work

We review here in short the relevant background knowledge in GPU algorithms and spatial
sorting with focus on the building of hierarchical data structures on GPUs.

GPUs and Load Balancing. Load balancing and scheduling for GPU architectures
is an active research area which relates to the method proposed in our paper. Tsigas and
Zhang [TZ01] propose a simple non-blocking concurrent queue for FIFO processing for shared
memory multiprocessor systems that utilizes compare-and-swap operations (CAS). With the
availability of atomic operations on GPUs Cederman and Tsigas [CT08] compare four ap-
proaches for dynamic load balancing on GPUs and conclude that blocking queues perform the
worst. Tzang et al. [TPO10] study efficiency of load balancing methods for irregular workloads
on the GPU and they conclude that task-stealing and task-donation are the most efficient. Chen
et al. [CVKG10] propose a task-based dynamic load balancing approach for single and multi
GPU computer systems. They use a persistent kernel running on a device(s) (a GPU or several
GPUs) where the task queue is generated on a host (CPU). The most recent work by Sundell
et al. [SGPT11] propose a lock-free algorithm for distributing work on concurrent hardware
without the restriction of work producers and consumers, this being the closest to our approach
presented here. We also want to point out a recent paper by Lee et al. [Lee10] that rigorously
analyze the performance of an NVIDIA GTX280 and an Intel Core i7 960 processor for fourteen
different computational problems with carefully optimized implementations. They show that
the GPU-CPU performance gap narrows from the mythical 10-100 times to only 2.5 times on
average.

GPU Rendering and Hierarchical Data Structures. There has been number of ap-
proaches dealing with the hierarchical data structures used in computer graphics for ray tracing,
general visibility computations such as occlusion culling, collision detection etc. We restrict our
review here to the works concerning the bounding volume hierarchies (BVH) and kd-trees with
the stress on the algorithms implemented on the GPU. In particular we focus not only on those
that efficiently utilize the GPU for performing computations with the help of these data struc-
tures, but also on those that use the GPU for actually building these data structures. The
first technique that used the GPU for ray tracing was proposed by Purcell et al. [PBMH02]
who utilized a shading language and remapped a uniform grid into textures. This method was
followed by other papers which are surveyed by Wald et al. [WMG+09]. The newer papers
utilize specialized languages for the GPU like the CUDA API [NBGS08]. However, the data
structures were typically prepared on the CPU and the memory footprint was transferred to
the GPU to allow for parallel traversal operations. The building of data structures on the GPU
have become possible with the introduction of CUDA and OpenCL.

Kd-trees. Zhou et al. [ZHWG08] present an algorithm to build kd-trees on the GPU,
restricting the approach to a spatial median and cutting off empty space. This approach was
extended by Hou et al. [HSZ+11] using partial breadth-first-search to afford for limited memory
consumption. Danilewski et al. [DPS10] presented a scalable GPU algorithm with binning for
kd-trees that improves on the quality of constructed kd-trees following the method of Shevtsov
et al. [SSK07]. Wu et al. [WZL11] proposed an algorithm running on the GPU as a sequence of
kernels that construct kd-trees in a breadth-first search manner, but for all boundary positions
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in the fashion of the serial approach by Wald and Havran [WH06]. This algorithm was also
parallelized for multi core CPUs by Choi et al. [CKL+10].

Bounding Volume Hierarchies. Lauterbach et al. [LGS+08] presented an algorithm to
build the Linear BVH (LBVH) using Morton codes, where the speed is moderately penalized
by the quality of the built BVH. Aila and Laine [AL09] study different possibilities to orga-
nize the traversal code on GPU architectures to get the highest performance. Pantaleoni and
Luebke [PL10] present a more efficient version of the LBVH algorithm with Morton codes and
compress-sort-decompress strategy together with improved memory management. They call it
the Hierarchical LBVH (HLBVH). Further they present a hybrid algorithm with a two-level
BVH, where top layers are built with an exact algorithm with a surface area heuristics (SAH)
and bottom levels with a Morton curve based algorithm. Garanzha et al. [GPM11] simplify the
HLBVH algorithm using binary search and work queues. They achieve both memory savings
and lower build times for breadth-first-search tree layout using a parallel binning approach pro-
posed by Wald [Wal07] for a multi-core CPU. Wald describes a parallel version of a BVH based
builder with SAH using binning on a many-core architecture (MIC) [Wal12]. Building on their
work, Sopin et al. [SBU11] studied binned SAH BVH construction on the GPU with focus on
efficient division of data between computational units.

Grids. Kalojanov and Slusallek [KS09] present a parallel algorithm for building uniform
grids, followed by another paper by Kalojanov et al. [KBS11] for hierarchical grids.

Without data structure approaches. Keller and Wächter [WK09] present an approach
for ray tracing which simultaneously subdivides rays and triangles and can be computed without
explicit spatial data structures that builds up on the approach of Bittner and Havran for kd-
trees [BH07, BH09]. A similar approach was independently developed and implemented on a
single-core CPU with SSE instructions by Mora [Mor11]. Mora also utilizes bounding cones for
primary rays to improve the performance.
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3 Hierarchical Scene Sorting

In this section we first present the terminology and an overview of our algorithm and then
propose a novel general methodology of mapping a hierarchical algorithm to the GPU frame-
work. Note that we limit our discussion to CUDA ( [NBGS08]) based implementations and use
terminology and constants associated with the currently available CUDA platforms.

3.1 Terminology

Prior to introducing the algorithm we briefly define the basic terms used in the paper.

• Task is a computational job which is associated with the given range of scene data (ge-
ometry, ray queries, etc. stored in the linear array in contiguous block of memory). The
whole computation is initiated using a single task associated with the whole scene. After
a task is processed, it is either finished or spawns one or more child tasks. Every child
task processes the associated range of data. The task is characterized by its state.

• Phase is a logical algorithmic block of the task, such as finding the splitting plane, sorting
triangles, computing a tight bounding box, etc.

• Step is an algorithmic block of the phase. A phase might consist of a single step, but
some phases need more steps, the number of required steps depends on the size of the
given data range. If the phase consists of more steps, the results of one step are processed
by the further steps in order to compute an aggregated result of the whole phase. An
example when more steps are needed is a parallel prefix sum (PPS) computation used for
subdividing scene primitives into subsets, which requires a logarithmic number of steps.

• Work chunk is a data range associated with a particular step processed by a single warp.
The work chunk is thus the smallest unit of work in our method. Note that while the task,
the phase and the step represent a subdivision into smaller algorithmic blocks (i.e. in the
time domain), the work chunk represents a subdivision of the data associated with the
step (i.e. in the contiguous block in memory address space). Typically the work chunk
consists of 32 data items and thus each thread in a warp processes a single item.

• Task pool is a data structure used for managing the execution of tasks. In our method the
task pool is not working as a queue nor stack. This is implied by required computational
efficiency as well as computational dependencies among the tasks. The details on the task
pool will be given later in the paper.

Apart from the above defined terms we recall the basic terminology associated with CUDA:
kernel is a program executed on the CUDA device, warp is a group of 32 threads, which execute
the same instruction at a time.
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3.2 Algorithm Overview

Our algorithm follows the divide-and-conquer principle of hierarchical methods: when the cur-
rent task is too large to be solved directly it is further subdivided until it is small enough to be
terminated or solved in a trivial way.

Each task holds information about its data interval (e.g. interval in the triangle index array)
and the state of the task. The task also holds additional information describing the current
phase, the current step, the number of available work chunks, and auxiliary information such
as the bounding box of the given geometry data.

A typical task dealing with 3D primitives can be divided into two major phases which
are processed sequentially: determining a quicksort-like pivot for one phase of sorting (e.g. a
splitting plane) and sorting the primitives according to this pivot into several (at least two)
subsets using the index array. After these phases the algorithm continues with the subsets of
primitives in a given number of branches. The algorithm can also contain other phases, which
evaluate data needed for further invocation of the algorithm such as computing bounding boxes.
An example of the computational phases for the BVH construction is illustrated in Figure 3.1.

split plane

PPS

swap

subdivide

w  w  w  w

          w  w  w 
w  w

AABB
log n

...

w  w  w  w  w

w  w

child tasks

log n

...

w  w  w  w  w

w  w

log n

...

w  w  w  w  w

w  w

Figure 3.1: Overview of the task and its phases in an algorithm for BVH construction. The
figure also shows the warps cooperating on solving the particular steps of the task phases.
Symbol ’w’ stands for a single warp.

We aim at maximizing the parallelism of the computation on two different levels. First, we
aim to process a given step of the computation using as many threads as possible (fine grain
parallelism), i.e. the number of threads working on the given step corresponds to the size of
the data range associated with the step. Second, we aim to compute different tasks in different
computational phases in parallel (coarse grain parallelism). For example we want to determine
a splitting plane for one node in the hierarchy using a particular number of warps and at the
same time we perform sorting of the triangles in some other node using the remaining warps.

For some algorithmic problems it is possible that several tasks may need to work on the
shared data range. For example when constructing a kd-tree the subsets of triangles associated
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with the left and right children of a node generally overlap and thus the data ranges of the
associated child tasks will overlap as well. In such a case it is necessary to enforce an order
on the task execution and we mark some tasks as dependent on other active tasks. These
dependent tasks must wait to be activated upon the completion of active tasks. A dependent
task holds the counter on how many tasks have to finish before it is activated. An active task
contains pointers (indices) to tasks it is responsible for activating.

3.3 Managing the parallel computation

Our algorithm is built on the concept of persistent warps [AL09]. We launch a single kernel
with as many warps as can be run simultaneously on the GPU. There is no management from
the CPU and the work flow takes place completely on the GPU. The crucial component in our
system is the task pool stored in the global memory: all warps are synchronized and take their
work from the task pool. The task pool holds all the information about the current state of the
computation.

When the kernel is launched the task pool is filled with a single task. This task encapsulates
all the scene geometry (triangles). When this task is finished it can spawn its child task(s) until
the whole task pool is empty signalling that the computation is done.

Since warps are independent in CUDA, each warp can process a different task with a different
state. However, as our algorithm is parallel, warps also participate in computation of the
same task. Each warp takes a work chunk from an arbitrary active task based on the current
distribution of work in the task pool. The algorithm can be described with a simple pseudo-code
in listing 1.

In serial: Insert the first task into the task pool;
In parallel: while Task pool is not empty do

if retrieve(taskIdx, work chunks) was successful then
read task from task data array;
switch task phase do

repeat
process work chunk of the task;

until no more work chunks ;
memory fence;
advance the state or finish the task;

end

end

end
Computation is done;

Algorithm 1: Main loop of the algorithm.

The algorithm shows that the warps are constantly searching for arbitrary work chunks
that they can handle. When they succeed in acquiring the work chunks they perform the
work according to that particular task and its phase and step. The overview of the main data
structures used in our method is depicted in Figure 3.2. It consists of geometry data (for
example triangles or rays), index array that allows to swap only indices instead of geometric
data, and the task pool consisting of two separate arrays.
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Figure 3.2: Overview of the main data structures used in the proposed method.

3.4 Task Pool

The task pool is represented by two arrays, one for holding all the information necessary for
computing the task (task data array) and the second compact one for defining the amount of
work to be done in the current step (task header array). Because of this decomposition the task
header array contains a single integer for each task that represents the combination of a state
and a counter. This gives a very small memory footprint that can easily fit into the cache on
modern GPU architectures.

For each task the header array encodes the task state in an integer value. Apart from the
task state we also encode additional quantitative information in this integer value, the meaning
of which depends on the task state. This allows to use efficient mechanism to acquire work
chunks and handle task dependencies that will be described below in this section.

The task can exhibit one of the following four states in its header by the integer value I:

• I > 0: Active state. The task is ready to be processed and there are I work chunks to be
done on this task for the given phase and step. Note that the phase and the step is stored
in the task data array. Below we call a task in active state an active task.

• I < 0: Dependent state. The task waits for −I other tasks to finish before it is activated.

• I = 0: Locked state. The task is locked, which means that its data entry is just being
created or modified.

• I <= −BIG INT : Empty. This entry in the task pool is currently not used and it can
be populated with a new task.
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Retrieving work. When warps are trying to find a work chunk to process they loop
through the task header array searching for an active task. To promote parallelism each warp
starts at a different index in the pool, based on its warp ID. Each thread in the warp then reads
the state of one consecutive entry from the task header array. As multiple entries can be active,
we have to choose one to take work from. To prevent all warps from choosing the same active
task introducing conflicts of atomic operations, we compute the prefix sum i on the states of
the entries within each warp and choose the i-th active task based on the warp ID. When the
active tasks are chosen, the warps atomically decrement the task’s header. Each warp may
decrement the value by any number i.e. retrieve as many work chunks from a single entry as it
desires. It is often beneficial to retrieve multiple work chunks in one atomic operation because
the overhead or acquiring the work chunk is not negligible. We use the following function for
determining the number of work chunks retrieved by the warp:

Nw = max(d S
W
e,K), (3.1)

where S is the sum of work chunks in the task pool entries loaded by the warp searching
for an active task, W is the number of warps launched, and K is a constant preventing the
retrieval of too few work chunks for a given warp. The first term d S

W e aims to distribute the
available work among other warps, while the constant K prevents the fragmentation of work
and in turn it bounds the overhead connected with the task pool management, especially in
the later stages of the computation when the processed tasks deal with smaller amount of data.
We have tested experimentally that K = 14 proved to be a reasonable choice in practice for
contemporary GPU architectures.

It may happen that the value of the entry is decremented below the value representing
the Lock state. This is not a problem as long as the counter is not decremented to the value
representing an empty task. If the warp did not succeed in acquiring the task, i.e. the value
returned by the atomic decrement was not positive (the value before the decrement operation
is returned by atomic instruction), the same process is repeated.

Finishing work. When warp finishes the retrieved work it has to communicate this fact
to the other warps. In particular the last finished warp has to be aware that it is responsible
for advancing the task state or issuing new tasks. To accomplish this we use another counter
of unfinished work chunks stored in the task’s data for each task. This counter is atomically
decremented by each finished warp. The warp that decrements it to zero is the last finished
warp. This warp can then interpret the results of the step and progress the computation further
to the next step or phase for the given task.

Storing work. In order to create a new task the warp loops through the task header array
searching for an empty entry. When it finds one it atomically compares-and-swaps its value
with the value representing a lock. If it succeeds, it fills the corresponding entry in task data
array with the child task. As the last step, it sets the header array entry with the number of
work chunks required to process the first step of the first phase of the child task. This operation
also unlocks it. Note that a memory fence operation must be issued before the task is unlocked.

Minimizing pool overhead. We use two improvements that accelerate the computation
of tasks. They are both targeting steps with little parallelism. First, when some task requires
zero work chunks to compute it is immediately skipped. Second, if some step requires less
than K work chunks, this step is processed immediately by the given warp without the global
memory synchronization through the task pool (K is the constant used in Eq. 3.1). This is
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often the case with the reduction in the PPS or AABB phases.
In the rest of the paper we discuss two applications of the proposed framework for paral-

lelization of hierarchical algorithms: BVH construction and divide-and-conquer ray tracing.
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4 Constructing Bounding Volume
Hierarchies

Bounding volume hierarchies are common data structures used for rendering acceleration. They
became particularly popular for ray tracing acceleration of dynamic scenes since they are rela-
tively fast to construct and update, and have predictable memory footprint.

The algorithm for constructing a BVH can be easily mapped to our parallel framework as
we describe in the next sections. For the rest of the paper we assume that the scene consists of
triangles although the method can generally handle other scene primitives as well.

4.1 Defining Phases and Steps

The computation starts with a single task associated with all scene triangles. Each task then
needs to subdivide the given set of triangles into two disjoint subsets (assuming a binary hier-
archy). The formation of these subsets is typically based on spatial criteria such as the spatial
median or the more involved surface area heuristics (SAH). The subdivision can be easily im-
plemented by sorting the triangle indices into two disjoint groups in the index array. If the
given triangle subset is large enough, a new task is created. Otherwise, the current branch of
the computation is terminated and a leaf is created.

For each task we can define four different phases:

1. SplitPlane: Splitting plane computation (spatial median or cost model with SAH).

2. PPS : Parallel prefix sum computation of the number of triangles right of the splitting
plane.

3. Swap: Sorting of a triangle interval into the left and right sub-intervals.

4. AABB : Computation of the two bounding boxes for the child tasks.

Note that some of these phases represent parallel divide-and-conquer algorithms on their
own (PPS, AABB) and thus require a logarithmic number of steps to complete. The illustration
of the phases is shown in Figure 3.1. Note that the figure also shows the number of work chunks
required by different steps of the tasks (indicated as w). The number of work chunks per step
corresponds to the number of warps which perform the work according to Eq. 3.1. Below we
describe the particular phases of the algorithm in more detail.

SplitPlane. Currently we support two splitting strategies: the spatial median and the SAH
based one. Both of these cycle the splitting plane in the round-robin fashion, where for the first
task the longest axis is chosen. Nevertheless, any strategy for choosing the planes is possible.
For the SAH strategy we select 32 candidate planes and evaluate their cost using the SAH in
parallel. Each warp processes up to 64 triangles and each thread computes their position with
respect to one of the candidate planes. Then the number of triangles to the left and to the right
of the splitting plane as well as the bounding boxes are atomically updated in global memory.
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The last warp that have finished its work loads these data from the global memory and chooses
the best splitting plane. As there are exactly 32 candidates this works in parallel as well. For
the spatial median strategy the splitting plane is evaluated directly when the task is enqueued
in the pool and this phase is skipped.

PPS. In this phase we determine the position of each triangle with respect to the selected
splitting plane and perform parallel prefix sum to determine the target index of each triangle in
the sorted array. When a centroid of the triangle is classified as lying on the left or straddling
the splitting plane, its index is marked by zero, otherwise it is marked by one. The PPS then
sums the number of triangles to the right of the plane for all smaller indices in the given range of
triangles. We use the algorithm proposed by Harris [HSO07] but with our own implementation
that allows for persistent threads. As the result of this operation the number of triangles to the
left and straddling the splitting plane is known and it is used as a pivot index for the subsequent
swap phase.

Swap. This phase consists of two steps that work with the triangle index array. It aims to
swap the triangles so that they are sorted with respect to the splitting plane. In the first step
the triangles with indices larger than the pivot index are processed. For the sorting we need
a separate index array of the same size as the original triangle index array. When a triangle
marked with zero is found in this interval its index is copied to the separate index array at
the position given by the result of the PPS phase for this triangle. In the second step the
triangles with indices smaller than the pivot index are processed. When a triangle marked with
one is found in this interval it is swapped with the item in the separate index array at the
corresponding position. The result of the swap phase is then stored in the original index array.

AABB. Segmented parallel reduction is computed on the interval in the triangle index
array. The bounding boxes for the triangle intervals corresponding to left and right triangle
subsets are computed by reusing the arrays allocated for the phase Swap described above. The
computation requires log2(#tris) steps. This phase is only needed for the median splitting as
the SAH evaluation gives us the exact bounding boxes. The complexity of this phase is higher
than for a serial algorithm because the tournament-like parallel algorithm is used.

4.2 Handling Tasks

Note that since the algorithm subdivides the current data range into disjoint subsets there are
no data dependencies among different tasks and thus the tasks can be processed fully in parallel.

The two child tasks are created by the last phase, more precisely at the last step of the
AABB phase for the spatial median splitting or Swap phase for the SAH based splitting. The
algorithm first checks whether the termination criteria are met for the given subset of triangles.
If this is the case (the number of triangles is below a threshold or a maximum depth is reached),
a BVH leaf is created. Otherwise, a new task is stored to the task pool and it is initiated to
the SplitPlane phase. When creating new tasks the method reuses the task pool entry for the
current task and then it searches for an empty spot in the task pool to allocate the other child
task.
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5 Divide-And-Conquer Ray Tracing

In this section we describe the application of our method to the parallelization of the divide-
and-conquer ray tracing algorithm proposed by Mora [Mor11] and Keller and Wächter [WK09].
We first present a brief overview of this method and describe the phases and steps needed to
cover the method in our framework.

5.1 Algorithm overview

The divide-and-conquer ray tracing is based on an idea of avoiding the explicit construction of
a spatial data structure. Instead the method performs a hierarchical computation in which an
implicit spatial subdivision is used and maintained in an array of indices for both triangles and
rays.

The method starts with all scene triangles and the set of rays to be cast. Then it picks
up a splitting plane which subdivides the current bounding box into two smaller boxes. The
method then sorts the triangle and ray arrays and recursively evaluates the triangles and rays
intersecting one of the smaller boxes. When the recursion returns it resorts the rays and
triangles to obtain those that intersect the other bounding box and performs recursion. The
recursion is terminated if the number of rays or triangles is below a specified threshold. Then
the intersections of rays and triangles are computed using a naive algorithm, computing the
intersection among all pairs of rays and triangles.

While the recursive formulation of this method is simple, its parallelization is rather involved.
The main problem is that the sets of rays and triangles intersecting the bounding boxes of the
implicit spatial subdivision can overlap. We cannot evaluate all the child tasks in parallel
using a single array of indices since different tasks would compete for sorting the ray and
triangle intervals and storing the results. Therefore we need to establish dependencies for the
computation and handle them appropriately in the parallel version of the algorithm.

When a splitting plane is selected for the given bounding box all rays and triangles associated
with the given task are classified as either lying left, right, or straddling the splitting plane. We
aim to create child tasks which would cover all sub-intervals at which an intersection of rays
and triangles can happen. As we have three intervals for both rays and triangles we obtain nine
pairs of different ray/triangle intervals to process. Out of the nine pairs for two pairs of intervals
no intersection can happen: (1) triangles lying left from the splitting plane and rays lying right
of the plane and (2) triangles lying right from the plane and rays lying left of the plane. For
the remaining seven intervals we create child tasks and proceed with the computation. The
subdivision into child tasks is illustrated in Figure 5.1.

There are clear computation dependencies among the child tasks shown in Figure 5.1: the
tasks cannot be executed simultaneously if they share some triangle or ray data (they are in
the same row or column). There are several ways to execute and synchronize the tasks in order
to avoid different tasks competing for the access to the same data. For example, the execution
of the tasks can proceed as follows: We first activate three independent tasks T1, T4, and T7.
Tasks T2 and T3 wait for execution as they depend on finalizing T1 and T4. Task T5 depends
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Figure 5.1: Matrix representing a subdivision of the task into its child tasks for the divide-and-
conquer ray tracing.

on T3 and T7 and Task T6 depends on T2 and T7. More details about the task dependencies
will be discussed in Section 5.3.

5.2 Defining Phases and Steps

For the divide-and-conquer ray tracing there are two types of tasks that can be created in the
task pool: the intersection tasks and the subdivision tasks. The intersection task consists of
one step with a number of work chunks which are set in a way that each warp processes 32
ray-triangle intersections in parallel (one intersection per thread). The closest intersection for
each ray, if any, is then written to the global memory. Note that our implementation does not
explicitly identify the type of the task. Instead for the intersection task we initiate it into a
phase which implies a different task type (intersection phase).

The subdivision task is more complex. It consists of six phases that are computed se-
quentially (see Figure 5.2). Some of these phases are only a minor modification of the phases
described for the BVH construction in Section 4.1. Below we describe these phases in more
detail.

SplitPlane. This phase is similar to the phase used for the BVH construction. The dif-
ference is that we also evaluate the position of rays with respect to the particular candidate
splitting planes. Again we support two splitting strategies: spatial median and cost model
based splitting. A different cost model than SAH is used which is explained in this paragraph.
Instead of using the SAH or a spatial median as proposed by Mora we use the RDH cost model
by Bittner and Havran [BH09]. The termination criteria are derived using this model, the in-
tersection task is created when #tris · #rays · CINTERS < (#tris + #rays) · CSORT , where
CINTERS is the expected cost for one ray-triangle intersection and CSORT is the expected cost
for one sorting operation. We use 32 triangle planes that cover all three axes. The number
of candidates for each axis is proportional to the node’s extent in that axis and the candidate
positions are uniformly distributed. We do not use all triangles and rays associated with the
given task for the evaluation of cost, but only their smaller subsets. The number of triangle
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Figure 5.2: Overview of the task phases and steps for the divide-and-conquer ray tracing algo-
rithm.

samples NT and ray samples NR are computed as: NT =
√

#tris, NR =
√

#rays. The median
splitting strategy is the same as for the BVH construction. Either strategy, this phase needs
only one step.

PPS1. The parallel prefix sum is computed in parallel on both rays and triangles. During
the ray classification the rays that do not hit the bounding box of the current node are marked
as clipped. These rays are treated as lying to the right of the splitting plane in this phase and
the subsequent swap. Other than that this phase is exactly the same as the PPS phase in
building BVH. The computation thus requires 2 · log2(max(#tris,#rays)) steps. As the result
of this operation the number of the rays and triangles lying to the left or straddling the splitting
plane and the number of rays and triangles to the right of the splitting plane is known.

Swap1. The swap phase reorganizes the triangle and ray array so that they are sorted
according to the splitting plane. Similarly to the case of the BVH construction this phase
requires two steps and a separate auxiliary index array. In the first step the rays and triangles
lying at array indices to the right of the index of the splitting plane are processed. When a
ray or triangle is classified as lying to the left or straddling the splitting plane, its index is
copied to the separate index array. In the second step the array indices left of the index of
the splitting plane are processed. When a ray or triangle classified as lying to the right of the
splitting plane is found, it is swapped with the item in the separate index array. In both phases
the indices where to write the result to and where to read from are computed from the prefix
sum information for the processed ray or triangle.

PPS2. This phase is done the same way as PPS1 but for two intervals in parallel. In the
left interval created during the first split the prefix sum for the rays and triangles straddling the
splitting plane is computed and in the right interval the prefix sum for clipped rays is computed.

Swap2. Similarly to PPS2 two intervals are reorganized in parallel. After this phase the
task’s ray interval is fully sorted into left, straddling, right, and clipped rays and triangle interval
into left, straddling, and right intervals with respect to the selected splitting plane.

AABB. This phase works similarly as for the BVH construction and requires log2(#tris)
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steps. The only difference is that we have to compute three new bounding boxes instead of two,
since we compute the bounding box of the triangles straddling the splitting plane (tasks T2,
T4, and T6).

5.3 Handling Tasks

As mentioned in Section 5.1 the child tasks resulting from the subdivision of a given task have
certain dependencies and thus they cannot be processed fully independently. Certain groups
of child tasks are, however, independent. In general we can formalize the dependencies among
the tasks in a way that each task is responsible for activating at most two other dependent
tasks. Initially we mark three child tasks as active and the remaining four tasks wait for being
activated. Note that some of the tasks need to inherit the activation pointers of the task being
subdivided as some other tasks may depend on it.

As already discussed in Section 5.1, we propose to use the following subdivision into three
independent task groups: (T1, T4, T7), (T2, T3), (T5, T6), which implies the following depen-
dencies (TX→TY: TX activates TY, i.e. TY depends on TX):

• T1→T2, T1→T3,

• T4→T2, T4→T3,

• T7→T5, T7→T6,

• T3→T5,

• T2→T6,

• T5→P1, T5→P2,

• T6→P1, T6→P2,

where P1 and P2 are the dependencies inherited from the parent task. Note that a task TY
which should be activated by task TX has to be inserted first into the task pool. This is due
to the fact that the task TX needs to know the index of the entry for the task TY in the task
pool.

When an active task finishes, it decrements the task header array entry for the dependent
tasks by the number of its children in the last dependency group minus one for itself (recall
that the counter of dependencies is represented as a negative integer). If the task is a splitting
task and has no children or it is an intersection task, the dependency counter in the dependent
task may reach 0 after this operation. In this case the active task activates the dependent task
by setting its entry in the header array to the number of its unfinished work chunks.

The division of tasks into groups is defined by a look-up table. This table is queried when
a parent task is divided into its child tasks. The index into the table is a binary array flag
describing which intervals (left, right, straddling) are empty and which are nonempty. The table
contains the number of child tasks to generate, number of child tasks in the last dependency
group, the order in which the child tasks should be added into the task pool, the dependencies
among the child tasks and the activity flag for each child task.

16



6 Results

We have implemented the proposed framework in C++ and CUDA. For testing we have used a
PC with Intel Core i7-2600, 16GB of RAM and NVIDIA GeForce GTX 580 running on Windows
7 64-bit. We have used two types of scenes for testing, individual objects and more complex
scenes with triangles sparsely distributed in space. The images for the test scenes are shown in
Figure 6.1.

Figure 6.1: Snapshots for more complex architectural models: Conference, Sponza, Sibenik
Cathedral, Powerplant section 9, Powerplant section 16, Fairy Forest, Sodahall, and for single
geometric object models: Happy Buddha, Dragon, Armadillo, and Blade.

6.1 Constructing BVHs

First, we tested the time for building BVHs using the parallel algorithm described in Section 4
and the traversal performance of these BVHs. We used three different ray distributions: pri-
mary rays corresponding to the images in Figure 6.1, incoherent rays corresponding to ambient
occlusion (AO) rays shot from the hit points of the primary rays (seven AO rays per primary
ray), and random rays distributed uniformly in the scene bounding box. Although our algorithm
is capable of using the SAH termination criteria, for easier comparison to other methods we
have chosen to use simple termination criteria. A leaf is created when the number of triangles
drops below a given threshold. The results are shown in Table 6.1 for the spatial median splits
and in Table 6.2 for the SAH splits.

The build times range from 6.4ms (Sponza, spatial median, 32 triangles per leaf) to 381.6ms
(Sodahall, SAH, 8 triangles per leaf). As expected the build times depend on the termination
criteria – the deeper the tree, the more time it takes to construct it. For the spatial median we
can mostly observe an increase of time complexity when building a deeper BVH (e.g. for the
Conference with 32 triangles per leaf the build takes 17.5ms, whereas for 8 triangles per leaf it
takes 34.2ms). Interestingly, for the SAH method the increase of build times when constructing
a deeper tree is not that significant (e.g., for the Conference with 32 triangles per leaf the SAH
build takes 37.4ms, whereas for 8 triangles per leaf it takes 51.2ms).

Figures 6.2 and 6.3 show the performance of our spatial median and SAH based BVH
builders on six of our test scenes. The performance in MTris/s depends on the actual scene
structure and interestingly it is higher on larger scenes. We expect that this is because for these
scenes there is more exploitable parallelism present in the computation, which leads to better
GPU utilization.

The ray tracing speed varies between 14.1 MRays/s (Happy Buddha, random rays, 32 trian-
gles per leaf) and 1049.2 MRays/s (Powerplant section 9, ambient occlusion rays, 8 triangles per
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Figure 6.2: Performance in MTris/s for building the BVH with spatial median for varying
termination criteria.
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Figure 6.3: Performance in MTris/s for building the BVH with SAH for varying termination
criteria.

leaf) for the spatial median splits. For the SAH splits the ray tracing speed ranges between 14.8
MRays/s (Happy Buddha, random rays, 32 triangles per leaf) and 1276.9 MRays/s (Powerplant
section 9, ambient occlusion rays, 8 triangles per leaf). Constructing a deeper tree increases
the ray tracing speed, and this increase is significant for most tested cases (e.g. Conference,
spatial median, random rays, 22.2 MRays/s for 32 triangles per leaf and 41.6 MRays/s for 8
triangles per leaf). As expected the SAH based BVH provides higher ray tracing speed than
the spatial median BVH while the difference is more significant for the architectural scenes such
as Conference, Powerplant section 9 and 16, or Sodahall. The optimal choice of the building
algorithm and the termination criteria depends on the scene as well as the target rendering
algorithm and the actual rays which are cast for each frame. The more rays are cast per frame
the more it pays off to construct a deeper tree using the more advanced SAH based splits.

The BVHs build up with our algorithm are comparable to other state-of-the-art methods
such as [HSZ+11, PL10], but take more time than the fastest published method of Garanzha
et al. [GPM11]. On the other hand, our method allows to easily implement a complex BVH
building algorithm (such as SAH build for all inner nodes) and the resulting quality of the tree
should pay off when more rays are being traced.

6.2 Divide-And-Conquer Ray Tracing

Second, we have tested the divide-and-conquer ray tracing described in Section 5 using the same
scenes and the same types of rays as for the BVH evaluation. The results for the spatial median
subdivision and for the cost model based on the RDH are given in Table 6.3. The constants
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Build [ms] Trace performance [MRays/s]
Primary Ambient Occlusion Random

Scene #tris 8 16 32 8 16 32 8 16 32 8 16 32
Conference 283k 34.2 24.2 17.5 87.1 80.6 59.3 69.8 59.6 37.7 41.6 33.3 22.2

Sponza 76k 12.9 9.0 6.4 83.2 72.7 54.6 38.2 28.6 17.4 32.6 23.8 14.4
Ppsection 9 122k 23.7 16.1 14.2 156.3 147.9 112.6 1049.2 966.5 756.2 43.9 40.6 29.3

Ppsection 16 366k 46.7 31.4 22.6 36.1 33.7 26.8 115.1 108.6 89.6 44.5 36.7 25.1
H. Buddha 1,087k 135.0 75.2 49.9 216.5 161.8 109.7 243.6 185.1 121.9 30.4 22.2 14.1

Dragon 871k 104.0 55.8 39.4 187.8 139.2 94.4 175.6 136.0 90.4 32.5 23.9 15.2
Armadillo 307k 35.5 22.6 15.2 205.4 153.1 107.3 202.3 156.5 105.2 45.6 32.7 20.3

Blade 1.765k 207.1 120.4 77.8 207.8 157.9 106.6 340.6 275.0 190.8 37.8 28.1 17.9
Sodahall 2,169k 253.2 154.2 107.7 68.6 60.5 46.3 141.3 128.9 104.7 42.4 31.4 20.0
Sibenik 80k 14.3 11.9 11.7 61.9 56.9 41.8 40.1 31.2 19.3 61.4 46.9 31.4

Fairy Forest 174k 27.0 21.2 18.1 101.7 87.8 67.6 44.2 34.6 23.6 59.5 45.8 31.5
average - 81.2 49.3 34.6 128.4 104.7 75.2 223.6 191.9 141.5 42.9 33.2 21.9

Table 6.1: Results for the spatial median BVH building algorithm. Build time and trace
performance for test scenes for the leaf termination criteria either 8, 16, or 32 for the maximum
number of triangles in a node. The image resolution (the number of primary rays) is 1024×1024
pixels. The number of ambient occlusion rays is 7 times higher than the number of primary
rays, the number of random rays is the same as the number of primary rays.

Build [ms] Trace performance [MRays/s]
Primary Ambient Occlusion Random

Scene #tris 8 16 32 8 16 32 8 16 32 8 16 32
Conference 283k 51.2 41.1 37.4 143.4 133.2 91.4 98.6 84.1 52.1 54.6 43.5 27.8

Sponza 76k 21.8 19.6 19.3 132.6 116.4 88.1 64.8 50.1 30.4 50.5 36.5 22.6
Ppsection 9 122k 29.1 26.1 26.8 249.0 229.6 187.1 1276.9 1111.3 963.5 58.9 55.8 48.1

Ppsection 16 366k 70.2 55.2 48.4 54.2 51.6 41.6 172.2 164.7 139.0 65.7 59.7 43.5
H. Buddha 1,087k 186.2 143.1 124.0 230.0 172.8 117.2 260.8 197.3 128.2 32.5 23.6 14.8

Dragon 871k 147.3 115.5 100.8 208.2 156.4 105.0 189.1 145.7 96.4 35.0 25.5 16.1
Armadillo 307k 52.9 42.3 37.4 218.7 161.8 112.3 216.4 167.2 111.5 48.5 34.7 21.5

Blade 1.765k 303.4 234.4 205.1 228.0 171.0 111.9 358.1 285.3 193.4 39.9 29.8 18.9
Sodahall 2,169k 381.6 313.1 280.9 91.5 79.9 61.2 189.1 170.9 136.6 58.2 43.7 26.9
Sibenik 80k 27.4 27.3 26.6 100.7 88.9 63.5 59.0 44.9 27.9 83.6 63.1 40.8

Fairy Forest 174k 36.9 31.5 28.1 117.7 98.7 72.0 48.4 38.1 24.4 67.0 52.9 33.8
average - 118.9 95.4 85.0 161.3 132.8 95.6 266.7 223.6 173.1 54.0 42.6 28.6

Table 6.2: Results for SAH-cost based BVH building algorithm with binning. The legend is the
same as for Table 6.1.
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Spatial median, performance [MRays/s] RDH performance, [MRays/s]
Primary Amb. Occlusion Random Primary Amb. Occlusion Random

Scene #tris 512 1024 512 1024 512 1024 512 1024 512 1024 512 1024
Conference 283k 0.757 1.611 1.671 2.690 0.335 0.651 1.132 2.298 2.198 3.674 0.405 0.879

Sponza 76k 0.917 1.878 1.486 2.103 0.417 0.695 0.824 2.173 1.840 2.596 0.401 0.824
Ppsection 9 122k 1.396 2.785 31.120 40.194 0.731 1.392 2.097 4.077 39.932 73.387 1.118 2.359

Ppsection 16 366k 0.208 0.519 4.609 5.241 0.407 0.755 0.278 0.624 6.472 7.007 0.568 1.089
H. Buddha 1,087k 0.688 1.492 0.928 1.776 0.074 0.139 0.988 2.237 1.130 2.306 0.081 0.161

Dragon 871k 0.742 1.614 0.854 1.597 0.085 0.155 0.988 2.250 1.039 2.049 0.098 0.191
Armadillo 307k 0.616 1.168 1.604 2.783 0.187 0.320 0.814 1.322 1.994 3.609 0.215 0.361

Blade 1,765k 0.265 0.554 2.964 6.764 0.050 0.098 0.357 0.650 4.614 9.341 0.055 0.111
Sodahall 2,169k 0.313 0.706 4.471 5.391 0.062 0.132 0.359 0.832 6.499 7.810 0.080 0.176

Sibenik C. 80k 0.449 0.952 1.191 1.789 0.526 0.927 0.507 1.130 1.775 2.596 0.783 1.501
Fairy Forest 174k 0.255 0.566 0.455 0.804 0.286 0.544 0.794 1.555 0.896 1.444 0.504 1.020

average - 0.601 1.259 4.668 6.467 0.287 0.528 0.831 1.741 6.217 10.529 0.392 0.788

Table 6.3: The results for divide-and-conquer ray tracing with spatial median subdivision and
RDH cost-based model for two resolutions and three different kind of rays. The running per-
formance in MRays/s is reported for the resolutions. The number of ambient occlusion rays is
7 times higher than for primary rays, the number of random rays is the same as the number of
primary rays.

used in the formula deciding when to stop the subdivision and invoke the intersection tasks
defined in Section 5.2 were set as follows: CINTERS = 1, CSORT = 80. An intersection task is
also invoked when the number of rays drops below 32 or the number of triangles drops below
16, however these cases are rather rare as the intersection tasks are mostly invoked due to the
above mentioned formula.

The ray tracing performance using the parallel implementation of the divide-and-conquer
ray tracing ranges between 0.05 MRays/s (Blade, random rays, 512×512) and 73.4 MRays/s
(Powerplant section 9, AO rays, 1024×1024). Note that the reported ray tracing speed also
includes the time needed for the triangle sorting phase, which is similar to building an implicit
BVH.

The table shows that the cost based RDH method is almost always faster than the spatial
median splits and the improvement due to RDH ranges from few percent to a threefold speedup
(Fairy Forest, primary rays, 512×512, 0.255 MRays/s versus 0.794 MRays/s).

We have studied the dependence of the rendering performance on the number of rays shot
(see Figure 6.4). The figure shows that for the measured range of number of cast rays the ray
tracing times grows almost linearly with the number of AO samples per pixel with a constant
smaller than 1. This indicates that the method is better suited for tracing larger sets of rays
where there is more coherence among the rays which can be exploited by the algorithm and
where there is more parallelism.

6.3 Discussion

The resulting ray tracing performance of the divide-and-conquer algorithm is significantly lower
than the performance of the BVH ray tracing once the BVH has been built. If we would include
the BVH build times in the BVH ray tracing speed, the BVH based ray tracing would still
exceed the speed of the divide-and-conquer ray tracing algorithm. This differs from the results
of Mora [Mor11] who actually reported speedup of his CPU implementation of the method
compared to the CPU BVH based ray tracers. When directly comparing the tracing times for
our GPU implementation of the divide-and-conquer ray tracing with Mora’s paper we observe
either comparable or slower ray tracing performance for our GPU implementation. We expect
that this is caused by several reasons: (1) the load balancing is problematic for the divide-
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and-conquer ray tracing on many core architectures, (2) we did not yet implement the conic
packet optimization used by Mora, (3) the current task subdivision used in our paper might
probably be improved to achieve better computational efficiency. The last point addresses the
fact that unlike Mora’s CPU based method we subdivide the task into seven subtasks. The
subdivision increases the amount of exploitable parallelism, but on the other hand it increases
the number of sorting and intersection operations evaluated by our algorithm, since some of the
created tasks might not be well balanced. This holds especially for tasks corresponding to rays
or primitives straddling the splitting plane. A solution to this problem might be a strategy that
would adaptively select the task subdivision pattern and the corresponding dependencies. Note,
that such adaptive subdivision strategy could be easily handled in the framework proposed in
our paper and we plan to study this possibility in future.
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Figure 6.4: Dependence of rendering times on the number of rays shot in the divide-and-conquer
ray tracer with RDH cost model on image with resolution of 1024×1024 pixels. Reported data
are for ambient occlusion rays with varying number of samples per pixel on selected scenes.

6.4 GPU Utilization

There are several noteworthy facts caused by deviation of our method from the standard CUDA
paradigm of launching separate kernels. First, we could use only functions operating on the
warp level from libraries such as CUDPP or Thrust. As most logic in these libraries is done
by calling sequences of different kernels we had to reimplement this logic in our framework.
Thus, despite our effort, the code is probably not on the same level of optimization as the codes
from these libraries. Second, the time of the complete build / trace kernel is reported for our
method including the management of the computation, which is done on the CPU and usually
not measured for other methods.

To judge the efficiency of our design we ran the CUDA Visual Profiler on the complex
Sodahall model. Particularly interesting is the L1 Global Hit Rate, which is quite high on all of
our kernels. For the BVH construction about 90% of global memory accesses are cached in L1
and for our divide-and-conquer ray tracer it is over 99%. Quite solid is also the caching behavior
for the texture cache unit, which helps in loading of triangle data. The hit rate is about 80%
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for all the kernels except for the BVH build with the median splitting strategy, for which it
is 42%. We suspect this is because with the other methods the triangle data are loaded more
times for each task. For SAH BVH the data are used for candidate plane evaluation, as well as
for classification according to the chosen splitting plane. For the subdivision ray caster triangle
data are used in the computation of bounding boxes as well as in ray-triangle intersection.
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7 Conclusion

We proposed a novel method for massively parallel GPU sorting in the context of hierarchical
algorithms dealing with 3D geometrical data. Our method runs entirely on the GPU and
requires no management of the computation from the CPU side. We propose a methodology of
subdividing a given hierarchical algorithm into phases, steps, and work chunks in order to map
the algorithm to the proposed parallel framework. We show two applications of our method:
construction of the BVH and divide-and-conquer ray tracing on the GPU. We proposed and
evaluated two proof of concept applications, which indicate that the proposed approach has a
good potential for massive parallelization of complex hierarchical problems.

In future we plan to further improve the particular phases of our applications in order to
reduce the computational load and memory accesses required by our current implementation.
We would also like to apply our method to other problems in computer graphics such as collision
detection or kd-tree construction.
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