Robust and Numerically Stable Bézier Clipping Method for Ray Tracing
NURBS Surfaces

Alexander Efremov*

Vlastimil Havran®

Hans-Peter Seidel*

MPI Informatik, Saarbriicken, Germany

Abstract

Raytracing has become a popular method for generating realistic
images and movies. The progress in hardware development shows
that the real time raytracing on a single PC might be possible in the
ongoing future. Obviously, that new generation of raytracing based
applications will require more visualization precision and flexibil-
ity. Most of the modern raytracing based applications only deal
with triangles as basic primitives, which brings limitations to an ap-
plication and may cause visual artifacts to appear. NURBS surface
representation is common for most of 3D modeling tools because
of its compactness and useful geometric properties of NURBS sur-
faces. Using the direct raytracing NURBS surfaces, one can achieve
better quality of rendered images. Although, many such approaches
have already been presented, almost all of them suffer from nu-
merical problems or do not work in some special cases. This pa-
per presents a modified Bézier clipping method for finding ray -
NURBS surface intersection points, which is fast, robust, and nu-
merically stable.

CR Categories: 1.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing.

Keywords: ray tracing, NURBS surface, rational Bézier surface,
Bézier clipping method.

1 Introduction

Raytracing has become a popular method for generating realistic
images and movies. It allows to simulate a great variety of amazing
light effects, including caustics, diffuse reflections, and soft shad-
ows from environment maps.

Most of the modern raytracing based applications only deal with
triangles as basic primitives because of their fast intersection test
with a ray. But such restriction brings artifacts to the appearance

*e-mail: aefremov@mpi-sb.mpg.de
fe-mail: havran@mpi-sb.mpg.de
*e-mail: hpseidel @mpi-sb.mpg.de

—)

Ay

of models. Even with the normal interpolation technique, visual
artifacts along silhouette edges may still occur. This negative effect
becomes more troublesome in the case of a close-up view on the
surface silhouette.

Models for raytracing applications are usually supplied by 3D
modeling tools, which predominantly work with NURBS surfaces.
Therefore, a model has to be tessellated into triangles before being
raytraced. During the tessellation process some shape information
is lost. If the initial model is represented by trimmed NURBS sur-
faces, the tessellation process becomes more complicated and of-
ten results in artifacts along trimming contours [Guthe et al. 2002].
Moreover, the tessellation of complex shape models results in a
large number of triangles, which require large amount of memory
and preprocessing time for building acceleration data structures.

All these problems can be avoided if a method of direct raytracing
NURBS surfaces is used. The problem, which arises here, is com-
plexity of deterministic solutions for finding the nearest intersec-
tion point between a ray and a NURBS surface. Although the ex-
act intersection is difficult or even impossible to obtain, especially
for higher order surfaces, an approximate solution can be obtained
using numerical procedures. Many different approaches for find-
ing an approximate solution have been proposed [Lischinski and
Gonczarowski 1990; Wang et al. 2000; Martin et al. 2000], which
are mostly based on two methods: Newton’s iteration method [Toth
1985] and Bézier clipping method [Nishita et al. 1990].

Newton’s iteration method has found its application in many re-
search areas for solving a great variety of problems. However, it
has one significant drawback - its convergence to the root depends
on the initial guess, which must lie in the vicinity of the root. If
the initial guess is not chosen properly, Newton’s iteration method
may converge to a wrong intersection or not converge at all. An
approach for identifying regions of parameter space of a surface
in which Newton’s iteration method is guaranteed to converge to a
unique solution has been proposed [Toth 1985], but it is very time
consuming, and therefore not practical. Some other improvements
have also been applied [Barth and Stiirzlinger 1993; Qin et al. 1997]
to reduce the probability of reporting wrong intersections, but nei-
ther of them gives 100% guarantee of the right convergence. There-
fore, visual artifacts can still be observed, especially along the sur-
face silhouettes.

Bézier clipping method does not suffer from the initial guess prob-
lem. Moreover, it can compute all intersections of a ray with a
NURBS surface if multiple intersections exist. However, it has
some bottlenecks, which are highlighted in this paper. This pa-
per presents a modified Bézier clipping method for finding ray -
NURBS surface intersection points, which is fast, robust, and nu-
merically stable.

1.1 Outline

The content of this paper is organized as follows. Section 2 re-
calls basic ideas behind the NURBS to rational Bézier conversion.
Section 3 describes Bézier clipping method originally proposed by
Nishita et al. [1990]. Problems of the original Bézier clipping
method, which have been detected by Campanga et al. [1997],
are described in Section 4. An improved Bézier clipping method,
which is fast, robust, and numerically stable, is described in Sec-
tion 5. Section 6 presents the achieved results, and future work is
discussed in Section 7.

2 From NURBS to Rational Bézier Repre-
sentation

When dealing with raytracing nonstandard primitives, like paramet-
ric surfaces, we are mostly interested in such procedures as surface
subdivision, point evaluation, partial derivatives, and normal eval-
uations. As NURBS surfaces do not have fast evaluation proce-
dures, they are not suitable for the direct raytracing. Fortunately,
any NURBS surface can be represented by the number of rational
Bézier patches without losing accuracy. Evaluation procedures of
rational Bézier patches are mostly based on fast de Casteljau al-
gorithm for surface subdivision. Therefore, we convert NURBS
surfaces into rational Bézier patches during the preprocessing stage
of raytracing.

A NURBS surface S(u,v) of degree p in u parameter direction and
degree g in v parameter direction defined of the parameter domain
[a,b] x [c,d] is represented in a 3D (x,y,z) coordinate space by
equation

DTN NI)t 2
Lo LT N (W)N] (v)ws

S(u,v) (€3]

where a <u <b, c<v<d, ¢ ;e R3 are control points, and
w;‘: jERare weights assigned to the corresponding control points.
The control points form a control mesh of the surface. The most im-
portant property of NURBS surfaces in the context of the presented
paper is the convex hull property — the whole NURBS surface is
completely enclosed in the convex hull of its control mesh.

NURBS surfaces are defined on two knot vectors, which correspond
to u and v parameter directions:

U:{a,.‘.,a,upﬂ,...,ur,p,l,b,...,b}
N—— N——

p+l1 p+1
V:{C,...,C,Vq+1,...,Vs,q,hd,...,d} (2)
—— N——
q+1 q+1

where r =n+p+1and s = m+ g+ 1. Notice that the control mesh
is formed by (n+ 1) x (m+ 1) control points.

NP (u) and N;-](v) are B-spline basis functions of degree p and ¢
respectively. Definition and properties of B-spline basis functions
as well as other useful information about NURBS surfaces can be
found in [Piegl and Tiller 1995].

In order to represent a NURBS surface by the number of rational
Bézier patches we have to modify the knot vectors in such a way
that each knot has multiplicity p+ 1 in U knot vector and multiplic-
ity g+ 1 in V knot vector. This can be done using the knot insertion
or the knot refinement algorithms, whose description and efficient
implementation framework can be found in [Piegl and Tiller 1995].

(a) (b)

Figure 1: NURBS to rational Bézier conversion. (a) Initial NURBS
surface. (b) Rational Bézier patches obtained after changing the
representation.

After the modification of the knot vectors, the number of con-
trol points in u and v parameter directions increases proportion-
ally to the number of inserted knots, and each parameter subdo-
main [ug, w1 1] X [v,ve41] of not coinciding subsequent knots uy
and uy in u direction and v; and v;41 in v direction represents a
rational Bézier patch of the form

Py BP(u)BL(v)w p; ;
S(u,v) = iz Xjmo Bi 0B (v)wi ;i
) P oY B (u)BI(v)w?

LicoLj=o B NN

3

where pij = & (i) (qj) are the control points and wl'-fj =
w]‘27<p7i>_t7<q7j) are the weights.

Notice that each rational Bézier patch is defined on its own param-
eter domain determined by u € [ug,uy+1] and v € [vy,ve1]. BY (u)
and B;]- (v) are Bernstein basis functions of degree p and ¢ respec-
tively, whose definition and properties can be found in [Piegl and
Tiller 1995]. Figure 1 shows an example of a NURBS surface and
the corresponding rational Bézier patches obtained after changing
the representation. Notice that the convex hull property also holds
for rational Bézier patches, i.e., each rational Bézier patch is com-
pletely enclosed in the convex hull of its control mesh.

3 Original Bézier Clipping Method

Bézier clipping method was originally introduced by Nishita et al.
[1990]. This section explains in detail the ideas behind the method.
The detailed explanation is necessary to better understand improve-
ments of the method, which are described in Section 5. An inter-
ested reader is advised to access the original paper [Nishita et al.
1990].

Suppose we have a ray defined by its parametric equation
R(t)=0+td (C))

where & € R is the ray origin and d € R? is the ray direction. Sup-
pose we are looking for intersection points between the ray and
a rational Bézier patch in a 3D (x,y,z) coordinate space given by
equation

Lo Lo B (w)B} (v)wi ;i j
Yio Xt B} (w)BT (v)w?

S(u,v) = 5)

where p; ; € R3 are the control points, wf ; ER are the weights,
a<u<b, ¢ <v<d. Bézier clipping method consists of several
steps, which are explained below.

Step 1. We want to represent the ray as an intersection of two or-
thogonal planes further denoted by P and P, as shown in Figure 2
(a). In order to define these planes we have to define their normal
vectors. Suppose, ii; = (aj,by,c1) and 7ip = (az,by,cp) are nor-
mal vectors of the first and the second plane respectively. Then we
can represent the ray as an intersection of two planes given by their
implicit equations

P ajx+biy+ciz+ (—ajor —bjoy—ci0;) =0

dy
Py: axx+byy+cazt (—a20x —broy —c20;) =0 (6)

dy

() (©

(d) (e)

Figure 2: Original Bézier clipping method. (a) Representing a ray
as an intersection of two orthogonal planes. (b) An example of a
projected patch. (c) Determining L, and L,. (d) A clipping iteration
in u direction. (e) The projected patch segment after two clipping
iterations. (f) An example of multiple intersections.

We can compute the normal vectors by rotation of the initial ray
direction vector d by 90°:

ﬁl = (al 7bl 7C1) = (_dy?dX7O)

iy = (a2,b2,¢2) = (0, —d;, dy) (M

Step 2. The intersection of plane P, and the rational Bézier patch
can be represented by substituting Equation (5) into Equation (6)
and clearing the denominator

n m
W)=Y Y Bl)BT (v)h ;=0 ®)
i=0j=0
where hﬁj = wfj(akpx,._f +bpy,; +cxpy; +Hdi) €R k= [1,2].
Note that S(u,v) lies on the plane k iff 1 (u,v) = 0. Note also that

h{-‘.j is the weighted distance from control point p; ; to plane k. We

can now project the surface into a 2D (x,y) coordinate space by
taking the projected point coordinates to be

Fij = (xij.vij) = (h ;b7 ;) € R?)

The projected surface is then defined by equation

[ngE

R(u,v) = Z

=0

B (u)B} (v)Fi, (10)
=0

n

<
Il

In this projection, the plane P; becomes the x axis, the plane P,
becomes the y axis, and the ray projects to the coordinate system
origin. Figure 2 (b) shows an example of a projected surface R(u,v).
The ray-patch intersection problem now becomes one of finding

{(u,v)|R(u,v) =0; a<u<b; c<v<d}. (11)

Step 3. We determine two normalized vectors L, and L, in the 2D
(x,y) coordinate space in such a way, that L, represents the u di-
rection of parameterization of the projected patch and L, represents
the v direction of parameterization of the projected patch as shown
in Figure 2 (c):

Ly = [(F20—Fo,0) + (F22 — Fo.0)]
L, = [(Fop —Fo0) + (P22 — F20)] (12)

Such a choice of L, and L, vectors leads to faster convergence of
Bézier clipping method. Now, in order to solve Equation (11), we
alternate the vectors L, and L, and iterate on the following steps
(for brevity we consider only one iteration with the L, vector).

Step 4. We have to determine the signed distances d; ; € R from the
projected control points 7; j to L,. This gives a Bézier representa-
tion of the “distance to L,” function that can be used to de_termine
the distance of an arbitrary point on the projected patch to L,:

n m

duy)=Y'Y B} (u)B} (v)d; (13)

i=0,=0

Step 5. Using the following property for evenly spaced control
parameters ¢; = ;.
n

Y Bl (u)ci=u (14)
i=0
we can define an explicit patch in a 2D (u,d) coordinate space,
whose control points D; j = (u; j,dj j) € R? are evenly spaced in
u parameter direction: u; j = # A point on the explicit patch has
coordinates

M=
agH

D(u,v) = B} (u)BT (v)D; j = (u,d(u,v)) (15)

i 0

0j

Step 6. We plot the control points (£,d; ;) of the explicit patch in
the 2D (u,d) diagram. This is shown in Figure 2 (d).

Step 7. We determine the convex hull of the points in this diagram
and intersect it with the u axis. This gives us an interval of interest
[Umin, Wmax). We conclude that d(u,v) # 0, and therefore R(u,v) #
0, for regions u < i, and u > Upgy.

Step 8. The de Casteljau subdivision algorithm is applied to the
projected patch to clip away these regions, leaving a patch segment,
which corresponds to the interval [t , Umay]- This is referred to as
the Bézier clipping in u.

Note that [umin, umax] C [0,1] is the interval of interest of a patch
segment on the current iteration. In order to determine the corre-
sponding interval in the domain of the initial projected patch, we
have to apply the following coordinate mapping on each iteration
in u direction:

Umin,d = Umin,d T (umax,d - umin,d) *Umin

Umax,d = Umin,d + (umax,d - Mmin,d) * Umax (16)

where [tin 4, Umax,q4) initially is the parameter domain of the pro-
jected patch in u direction, i.e., [a,b]. The v parameter direction is
handled analogously.

Now we need to switch directions (L, — L, — L, — ---) and re-
peat Steps 4 to 8. The parametric coordinates of intersection points
(if an intersection exists) must be within the parameter subdomain
(Umin,ds Wmax.d) X [Vinin.d> Vmax,qa]. Figure 2 (e) shows the projected
patch R(u,v) after two clipping iterations. The Bézier clipping
method terminates in two cases:

1. the convex hull on the corresponding iteration does not in-
tersect the appropriate axis — this indicates that there is no
intersection of S(u,v) with the ray R(¢);

2. the size of the box in each parameter direction is smaller than
a threshold value € — in this case the intersection (i, Vine) 18
assumed to exist in the center of the current parameter subdo-
main:

Ujnt = (umin,d + Mmax,d)

N = N =

Vint = (Vminﬁd + Vmax,d) (17)

Note that if the size of the parameter subdomain in one direction is
smaller than &, this direction is not considered any more, i.e., only
the second direction is proceeded iteratively without the alternation.
Note also that in this case it is not absolutely necessary to apply
Bézier clipping in this direction, and the second direction may be
considered either with the same patch segment or with the clipped
one.

If multiple intersections exist, Bézier clipping method does not con-
verge to a single solution. Therefore, if a Bézier clipping fails to
reduce the parameter interval width by at least 20%, we have to
split the current patch segment in half in the direction of the current
iteration. The case of multiple intersections is illustrated in Figure
2 (f). First, Bézier clipping in u discards regions 1. In attempting to
clip in v, it turns out that v;,gx — Viin > 0.8. Therefore, the remain-
ing domain is subdivided in half at v = 0.5. Two patch segments
can be proceeded iteratively. The regions 2 of the first patch seg-
ment are discarded after one more iteration in ¥ domain. Without
further subdivision we can compute the intersection, which lies be-
tween regions 3 within tolerance. Two more iterations are needed
to proceed the second patch segment. After clipping away the re-
gions 4 and 5, one more intersection, which lies between regions 6
within tolerance, can be computed without further subdivision.

4 Detected Problems

The original Bézier clipping method does not suffer from the ini-
tial guess problem as Newton’s iteration method does, and is there-
fore more suitable for finding ray-rational Bézier patch intersec-
tion points. However, it still suffers from the problem of reporting
wrong intersections, which has been detected by Campanga et al.
[1997]. An example of this problem is illustrated in Figure 3.

Figure 3 (a) shows an example of a projected rational Bézier patch
and the calculated vector Z,. One of the patch control points lies
slightly above the vector and the others lie below. After construct-
ing the 2D (u,d) diagram (see Section 3, Step 6), we get very small
interval of interest as shown in Figure 3 (b). We stop to consider
the u direction and start new iteration in v direction. We can con-
sider the v direction either with the same patch segment or with
the clipped one. For brevity we consider only the second case with

© ’)

Figure 3: Problem of reporting wrong intersections. (a) The initial
projected patch. (b) The 2D (u,d) diagram. (c) The patch segment
after the Bézier clipping in u. (d) The 2D (v,d) diagram.

the clipped patch segment, but the problem of wrong intersections
arises in both cases. Figure 3 (c) shows the clipped patch segment
obtained after Bézier clipping in u direction together with the vector
L,. Figure 3 (d) shows the corresponding 2D (v,d) diagram. Very
small interval of interest in v direction leads to reporting a wrong
intersection.

The reason for reporting wrong intersections is in the fact, that both
vectors L, and L, can intersect the projected patch, but these inter-
sections may be not in the vicinity of the point of origin (0,0). Sev-
eral suggestions of how to avoid this problem have been proposed
[Campagna et al. 1997]. As the improved version of the original
Bézier clipping method proposed in Section 5 does not suffer from
this problem, detailed explanations are skipped. We refer interested
readers to the original paper [Campagna et al. 1997].

5 Robust and Numerically Stable Bézier
Clipping Method

This section describes novel improvements of the original Bézier
clipping method proposed by Nishita et al. [1990]. First, the mul-
tiple equivalent intersections problem is described in Subsection
5.1. The reasons for necessity to change the coordinate space of
the termination criteria € are described in Subsection 5.2 together
with related modifications of the method. An efficient view de-
pendent computation of the new termination criteria € for primary
rays (rays shot from the virtual camera) is described in Subsection
5.3. A problem of computing the vectors L, and L, and an effi-
cient modification of their computation are described in Subsection
5.4. Subsection 5.5 shows how an acceleration data structure can
improve the performance of Bézier clipping method.

5.1 Multiple Equivalent Intersections Problem

The original Bézier clipping method has a problem, which has not
been detected by any of researchers so far. Let us call this prob-

lem the multiple equivalent intersections problem — sometimes the
method may result in thousands of intersections, which actually
correspond to the same intersection point. Let us consider an ex-
ample in Figure 4.

Figure 4: Testing a ray against a sphere patch.

Suppose that a ray is tested against a section of a sphere, which is
represented by a rational Bézier patch and has the following mesh
of control points and weights:

poo =(0,0,0), po1 = (0,0,1), po2 = (0,1,1);
p10=(0,0,0), p11 = (1,0,1), p1a=(1,1,1);
P20 =(0,0,0), pa1 = (1,0,0), p2o =(1,1,0);

woo = 1, wor = V2/2, wop = 1

wio =1, wi =V2/2, wip = I;

wog =1, wp1 = \/5/27 wyy = 1. (18)

The ray is represented as an intersection of two planes, which are
shown in Figure 4. After projecting this problem in the 2D (x,y)
coordinate space, we obtain a projection, which is shown in Figure
5 (a). Suppose that the initial rational Bézier patch is defined on the
parameter domain [0, 1] x [0, 1]. Then, after determining distances
from its control points to the vector L,, we obtain a convex hull,
which is shown in Figure 5 (b). Apparently, the interval of interest
(the intersection with the u axis) is less than €. This means that we
stop to consider the u direction and continue to consider iteratively
only the v direction. Notice that if we now applied Bézier clipping
in u direction, we would obtain a very small patch segment (actu-
ally it is almost one point). So, it would be a good idea to stop
the iterations at this point and report the intersection, because the
obtained patch segment is already negligible in the 2D (x,y) coor-
dinate space. But the method does not have any termination criteria
like this and the next iteration is executed.

Notice that next iterations cause the multiple equivalent intersec-
tions problem. Suppose for simplicity that after obtaining the in-
terval of interest in u direction, we do not subdivide the initial pro-
jected patch and consider the same one in v direction. If we subdi-
vide the patch, the scale of figures is much smaller, but the problem
remains. After constructing the convex hull in v direction (see Fig-
ure 5 (c)), we see that the size of the v axis span is almost equal to 1.
So, the multiple intersections are supposed to exist, and the initial
patch is subdivided in half in v direction as shown in Figure 5 (d).
One subpatch is now defined on the v interval [0, %} and another

one is defined on the v interval [%, 1} .

After the subdivision, each half of the patch is considered sepa-
rately in v direction only. But Figures 5 (e) and (f) show that after
the convex hulls construction the problem remains. So, the both
halves of the patch are assumed to have multiple intersections too
and are subdivided once more in half in v direction. This gives us

© @
d o |
© ®

Figure 5: Multiple equivalent intersections problem. (a) The initial
projected patch. (b) The 2D (u,d) diagram. (c) The 2D (v,d) dia-
gram. (d) The patch segments after the Bézier clipping in v. (e) 2D
(v,d) diagram for the first patch segment. (f) 2D (v,d) diagram for
the second patch segment.

four patch segments to be considered, which are defined on the v
intervals [O,ﬂ, DT,%}, [%,%], and [%,1]

Two of these patch segments report intersections on the next itera-
tion in v direction. Another two patch segments are subdivided in
half once more, and so on. This process of subdivision repeats many
times until the size of the parameter domain of each patch segment
“adjacent to L,” is very small in v direction (less than €). As the
result, many intersections are reported, which actually correspond
to the same intersection point.

This shows that a special procedure has to be applied when process-
ing a new intersection. In order to do it efficiently, we can store the
intersections in a sorted list (which is sorted by distances to the ray
origin). When a new intersection is found, we locate a position in
the sorted list, where the intersection has to be inserted, and com-
pare the new intersection with two (at most) neighbor intersections
in the list. If the difference in distances is less than the value €, the
new intersection is discarded, otherwise the new intersection is in-
serted in the sorted list. We implemented this approach as outlined
in the following pseudocode:

void PROCESS_INTS(ints_list, ints)

/* Process a new intersection #/
/*
Input: @ints_list - the list of all found intersections;
@ints - a new intersection to be processed;
Output: modified (is necessary) @ints_list;

*/
pos = ints_list.Locate(ints);
if (pos > 0)
if (fabsf(ints.dist - ints_list[pos - 1].dist) < EPSILON)
return;

if (pos < ints_list.size())
if (fabsf(ints.dist - ints_list[pos].dist) < EPSILON)
return;
ints_list.Insert(pos, ints);

}

We have found out that the problem of multiple equivalent inter-
sections occurs often in practice for available real world models.
Notice that depending on the threshold value €, one may compute
thousands of unnecessary intersections. It can significantly increase
the computation time. Although the problem of multiple equivalent
intersections cannot be avoided in general, using termination crite-
ria in the 2D (x,y) coordinate space of a projected patch rather than
in its 2D (u,v) parameter space, can highly decrease the number of
such intersections. This idea is described in the next subsection.

5.2 Changing the Coordinate Space of the Termi-
nation Criteria

The original Bézier clipping method terminates depending on the
termination criteria € in the 2D (u,v) parameter space of a projected
patch. It is the main bottleneck of the method, because depending
on the speed of the parameterization of different segments of the
patch, we can achieve different precision of the obtained result in
the 3D (x,y,z) object space of the patch. In other words, we can
overestimate or underestimate the obtained result.

When looking for an intersection point, we are mostly interested
in the precision of the result in the 2D (x,y) coordinate space of a
projected patch. In other words, we are looking for an approximate
intersection point, whose deviation from the real intersection point
is within the given tolerance € in the 2D (x,y) coordinate space. The
original Bézier clipping method has to be improved in order to work
properly with the termination criteria € in the 2D (x,y) coordinate
space.

d

dmax

o
0 _Zmin _—

Figure 6: Determining the maximum distance span.

In order to improve the original Bézier clipping method, we have to
make the following modifications:

e on each iteration, when determining the signed distances d; ;
of the projected control points 7; ; to the vectors L,orL, (see
Section 3, Step 4), we determine the minimum and maximum

distances d,i, and dy,qy. This gives us the maximum distance
span. Figure 6 shows the d,,;, and dy,.x distances together
with the convex hull and the interval of interest for an iteration
in u direction.

e we stop to consider the corresponding direction if the size of
the maximum distance span in this direction is less than the
value €:

(dmax - dmin) <€ (19)

In this case we do not perform the Bézier clipping and con-
sider the second direction with the same patch segment (or
report the intersection if the iteration process in the second di-
rection is already stopped). Notice that we do not construct
the convex hull and do not calculate the interval of interest in
this case — an intersection is supposed to exist in the middle of
the corresponding parameter domain direction of the current
patch segment.

e if the size of the maximum distance span is greater than
threshold value €, we construct the convex hull, determine the
interval of interest, perform the Bézier clipping and execute
the next iteration (see Section 3, Steps 5 to 8).

Notice that problems detected by Campanga et al. [1997] described
in Section 4 cannot arise with the modified version of Bézier clip-
ping method, because the method terminates depending on the size
of the maximum distance span for both vectors L, and L,. How-
ever, these vectors are not orthogonal in general and can be of any
directions. In some cases they can even coincide. It may cause
reporting of wrong intersections because the obtained intersection
point can lie far away from the point of origin (0,0). This problem
is addressed in Subsection 5.4.

5.3 View Dependent Computation of the Termina-
tion Criteria

The modified in Subsection 5.2 Bézier clipping method is more
preferable than the original one, because its 2D (x,y) coordinate
space termination criteria € is more intuitive and yields more robust
results. The idea of an efficient € computation for primary rays
(rays shot from the virtual camera) is explained in this subsection
by a simple example in Figure 7. The idea follows the ray differen-
tials [Igehy 1999].

virtual camera
virtual camera

object’s bounding box

. =~ virtual screen
virtual screen

(a) (b)

Figure 7: The determination of value € for primary rays. (a) The
difference in the necessary result precisions. (b) The scheme of
value € computation.

Suppose we are given two objects: object A and object B of the
same shape (represented by rational Bézier patches) as show in Fig-
ure 7 (a). Apparently, the object A covers just one pixel on the
virtual screen, and the object B covers three pixels on the virtual
screen. It is obviously that an intersection of a ray with the object
A can be calculated with three times less precision than an intersec-
tion with the object B. Considering the object A, we can take any

point on its surface because all of them are projected on the same
pixel of the virtual screen.

This shows that in order to optimize the performance of Bézier clip-
ping method, we have to make the termination criteria € dependent
on the 3D (x,y,z) coordinates of an object, the position of the cam-
era, and the resolution of the virtual screen.

A scheme of computing the termination criteria € is depicted in
Figure 7 (b). Suppose ¢ is the distance from the ray origin to the
point of intersection with the object’s axis aligned bounding box,
0 is the camera field of view parameter, and x and y are the image
width and height in pixels respectively. We express the smallest
possible angle « between the ray, which goes through the center
of a pixel and the ray, which goes through the pixel’s border by
equation

in 6
sino = o : (20)
\/4~ (max{x,y} — sin2(g)) +5sin” @
Then the value € can be computed by equation
e=t-(k-sina) (21)

The coefficient k € R is used to control the exact accuracy and can
be set to a value from the interval (0,1]. When antialiasing tech-
niques are not involved, we can set k to 1. If regular supersampling
is used to prevent aliasing, we can use the following equation:

k=1/- (22)
n
where n € I is the number of rays, which are shot through one pixel.
Notice that the coefficient k - sin & can be precomputed on the pre-
processing stage.

This approach works well if we consider only rational Bézier
patches with all weights equal to 1. Termination criteria € of Bézier
clipping method must correspond to the 2D (x,y) coordinate space
of a projected patch, whose control points coordinates are weighted
by weight values of the corresponding rational Bézier patch in the
3D (x,y,z) object space (see Equation (8)). If we do not take these
values into account, we can oversestimate or underestimate the pre-
cision. To avoid this problem we must multiply the value € calcu-
lated by Equation (21) by the factor of the minimal weight value of
the control mesh of the rational Bézier patch:

e=t-min{w];}-(k-sina) (23)

The proposed approach makes the value € more intuitive and opti-
mizes the termination criteria of Bézier clipping method. The prob-
lem of multiple equivalent intersections, discussed in Subsection
5.1, still exists, but the number of such intersections is significantly
reduced and in general is restricted by only few ones.

Notice, however, that the proposed approach works only for pri-
mary rays. For secondary rays (reflected, refracted, and shadow
rays) we have to use a predefined constant value € (probably multi-
plied by the factor of min{wfj j}), which must correspond to the size
of the scene bounding box, the precision of computations, etc.

5.4 Efficient Computation of L, and L,

Termination criteria in the 2D (x,y) coordinate space guarantees
that distances from obtained intersection points to both vectors L,
and L, (see Subsection 5.2) are less than the threshold value &.
However, the vectors L, and L, are not orthogonal and in general

can be of any directions. Figure 8 (a) shows a weak case of the
method when the angle between these two vectors is small. Obvi-
ously, intersection points can be found everywhere inside the shown
parallelogram, i.e., can lie far from the point of origin (0,0).

y

(a) (b)

Figure 8: Efficient computation of L,and L,. (a) Problem of small
angle between L, and L,. (b) At least 60° between L, and L.

Actually, the problem becomes more serious when the angle be-
tween L, and L, decreases. Notice that the efficient threshold value
& computed in Subsection 5.3 corresponds to the case when L, and
L, are orthogonal and coincide with ¥ and y basis vectors of the 2D
(x,y) coordinate space. In order to satisfy two arbitrary orthogonal
vectors, the value € must be multiplied by the factor of —=

V2

to satisfy two arbitrary vectors of any directions, the value € must
be additionally multiplied by the factor of tan(%), where ¢ is the
angle between L, and L,. Putting it all together, we have:

. In order

tan(% i
g =g) = t-min{w! } -tan(2) - (k- 0%

V2 2 V2

Calculated in such a way €’ value guarantees that the distance from
any obtained intersection point in the 2D (x,y) coordinate space to
the point of origin (0,0) is at most &, i.e., any obtained intersection
point in the 3D (x,y,z) coordinate space projects to the same pixel
on the virtual screen.

y<e (24)

If the angle @ between L, and L, is small, we can experience the
convergence problem, because the value of €’ is also small. To pre-
vent this problem, we have to guarantee, that the angle ¢ is above
some predefined value. During experiments we have found out that
¢ > 60° is a good choice. As tan(e‘zﬁ) = %, we can calculate the
final value of the termination criteria of the modified Bézier clip-
ping method:

sin &

V6

Notice that the coefficient & - Si\%" can be precomputed on the pre-

8'/:t~min{wfj (k-)<ée<e (25)

processing stage. The only one problem remains is how to guar-
antee at least 60° angle between L, and L,. This can be done in
several steps, which are explained below (see Figure 8 (b)).

Step 1. After determining the vectors L, and L, (see Section 3, Step
3), we compute cos @ = L,-L,. If cos ¢ < 0, we invert the direction
of L, vector. It guarantees that the angle ¢ between L, and L, is
less than 90°.

Step 2. If | cos | > % i.e., ¢ < 60°, we have to go through the next
steps. Otherwise we stop here.

Step 3. We compute the bisector vector M by the equation M =
3 (Ly+Ly). We also compute two vectors, which are orthogonal

to M as follows
Nl = (My, _MX)
N? = (—My, M) (26)

Step 4. If the vector L, makes a right turn with respect to the vector
M, we compute new L, and L, vectors as follows

L, =sin30° -N'+cos30°- M= - -N'+

L, =sin30°-N?+cos30°-M = = - N* +

= N =

Otherwise we swap vectors N! and N2 in Equation (27).

Notice that sometimes the initial computation of the vectors L, and
L, (see Section 3, Step 3) can give us vectors of zero length. It
can happen if some control points of a projected patch are coincide.
To avoid the problem of normalization of such vectors, we initially
set L, = (1,0) and L, = (0, 1) and update them only if we compute
vectors of nonzero length. After that we go to the Step 1 of this sub-
section and correct the direction of L, and L, if the angle between
them is less that 60°.

Computing L, and L, only once before the Bézier clipping itera-
tions, as it is suggested in the original method (see Section 3, Step
3), can lead to visible artifacts caused by bad convergence. More-
over, the bad convergence decreases the performance of Bézier clip-
ping method. An example of this problem is shown in Figure 9 (a).

(a) (b)

Figure 9: The problem of convergence of the original Bézier
clipping method demonstrated on Gnom.wrl model (courtesy of
Blaxxun Interactive). (a) The vectors L, and L, are precomputed
only once. (b) The vectors L, and L, are recomputed on each itera-
tion.

The problem arises because, after few Bézier clipping steps, the
vectors L, and L, do not correspond to the u and v directions of pa-
rameterization of obtained patch segments any more. To avoid this
problem we have to recompute the vectors L, and L, on each itera-
tion, i.e., iterate on Steps 3 to 8 (see Section 3). Figure 9 (b) shows
the result without visible artifacts obtained after the modification of
the method. Notice, however, that we recompute the vectors L, and
L, only until one of the parameter directions reports an intersection
within the tolerance €”. Afterwards, we consider the remaining
direction without recomputing the vectors to guarantee the correct
result.

5.5 Acceleration Data Structure for the Initial Clip

This section shows how an acceleration data structure, constructed
for a rational Bézier patch on the preprocessing stage, improves the

performance of Bézier clipping method. We construct the acceler-
ation data structure as follows.

Step 1. We subdivide the initial rational Bézier patch in the middle
of the u parameter direction and construct temporary axis aligned
bounding boxes for each half of the patch utilizing the convex hull

property.

Step 2. We subdivide the initial rational Bézier patch in the middle
of the v parameter direction and construct temporary axis aligned
bounding boxes for each half of the patch utilizing the convex hull

property.

Step 3. We select that pair of the subpatches (either from Step 1 or
from Step 2), which gives us two bounding boxes of smaller aggre-
gate surface area. Such an approach guarantees that the leaves of
the acceleration data structure enclose surface segments of almost
of the same size in both parameter directions. This idea is shown
on a simple 2D example in Figure 10.

20 20

T Clipping Plane
Clipping Plane '

Initial Bounding Box

i Initial Bounding Box i

Aggregate Area = 2- (20 + 3+ 20 + 3) = 92

(a) (b)

Aggregate Area = 2- (10 + 6 + 10+ 6) = 64

Figure 10: The idea of the acceleration data structure construction.
(a) Bad choice of a clipping plane. (b) Good choice of a clipping
plane.

Step 4. We repeat Steps 1 to 3 recursively for each half of the
patch until we reach an appropriate level of recursion or the surface
area of the bounding box of a patch segment is below a predefined
threshold value. In this case we construct a leaf of the acceleration
data structure, which stores the axis aligned bounding box and the
parameter domain of the enclosed patch segment. Notice that we
do not store the control points and the weights themselves. By this
way a binary tree is constructed.

Step 5. When the binary tree construction is finished, we build
a 3D kd-tree for the leaves of the binary tree. The bounding box
of the rational Bézier patch (the initial box for the 3D kd-tree) is
computed as the union of bounding boxes of all leaves of the binary
tree. Notice that such approach yields tight bounding boxes for
rational Bézier patches.

When aray is tested against a rational Bézier patch, ray-axis aligned
bounding box test is executed first. If the ray intersects the bound-
ing box, we compute the ¢ distance (see Subsection 5.3), calculate
the termination criteria £” (see Subsection 5.4), and shoot the ray
through the 3D kd-tree. By this way we determine all leaves, which
are intersected by the ray. As each leaf stores the parameter do-
main of the enclosed patch segment, we can apply the initial clip -
cut away those parts of the rational Bézier patch, which are guaran-
teed not to have intersections with the ray. Notice that we apply the
initial clip in the 2D (x,y) coordinate space of the projected patch
rather than in the 3D (x,y,z) object space. After applying the ini-
tial clip, we execute Bézier clipping method with the clipped patch
segment.

6 Results

The proposed modifications of Bézier clipping method have been
implemented within a library for NURBS surfaces evaluation. The
library has been integrated into a working ray tracing system. The

goal of this paper was not to implement optimized framework of
the modified Bézier clipping method. The implementation of the
method is rather general than optimized — it supports raytracing
NURBS surfaces of any degree and any knot vectors. Moreover,
the library is supposed to be easily integrated in any ray tracing
system, and therefore is not optimized for a particular ray tracing
application framework. Many different scene models, which con-
sist of NURBS surfaces, have been rendered. The rendered images
do not contain visible artifacts. Some rendered images of a com-
plete Mercedes C-class model in trimmed NURBS representation
are shown in Figure 11.

Figure 11: Rendered images of a complete Mercedes C-class model
(courtesy of DaimlerChrysler AG).

7 Conclusion and Future Work

In this paper we have presented improvements of Bézier clipping
method for raytracing NURBS surfaces, originally proposed by
Nishita et al. [1990]. The multiple equivalent intersections prob-
lem has been detected and demonstrated on a simple example. The
reasons for changing the coordinate space of the termination crite-
ria have been explained and an efficient view dependent scheme for
computing the termination criteria for primary rays have been pro-
posed. It has been shown how to avoid the convergence problem,
caused by small angles between the L, and L, vectors. The advan-
tage of utilizing an acceleration data structure for the initial clip has
been demonstrated.

The proposed improvements deal only with the core of Bézier clip-
ping method. Different extensions of the original Bézier clipping
method, such as utilizing the ray coherence [Wang et al. 2000],
work with the modified method as well.

There are several possibilities for further improving the implemen-
tation. SIMD processor instructions can be utilized [Benthin et al.
2004; Geimer and Abert 2005] in order to improve the performance.
As the performance of the method depends on the degree of ratio-
nal Bézier patches, a special kind of the degree reduction technique,
which preserves the surface geometry within a given tolerance, can
be used on the preprocessing stage. Though, this paper does not
deal with trimmed NURBS surfaces, a trimming test framework
has also been implemented and can be further optimized.

8 Acknowledgement

We would like to thank Charles Adams, Blaxxun Interactive and
DaimlerChrysler AG for providing models in NURBS representa-
tion. This work was partially supported by the European Union
within the scope of project IST-2001-34744, “Realtime Visualiza-
tion of Complex Reflectance Behaviour in Virtual Prototyping”
(RealReflect).

References

BARTH, W., AND STURZLINGER, W. 1993. Efficient ray tracing
for Bezier and B-spline surfaces. Computers & Graphics 17, 4,
423-430.

BENTHIN, C., WALD, 1., AND SLUSALLEK, P. 2004. Interactive
Ray Tracing of Free-Form Surfaces. In Proceedings of Afrigraph
2004.

CAMPAGNA, S., SLUSALLEK, P., AND SEIDEL, H.-P. 1997. Ray
tracing of spline surfaces: Bézier clipping, Chebyshev boxing,
and bounding volume hierarchy - a critical comparison with new
results. The Visual Computer 13, 6, 265-282.

GEIMER, M., AND ABERT, O. 2005. Interactive Ray Tracing
of Trimmed Bicubic Bézier Surfaces without Triangulation. In
Proceedings of WSCG.

GUTHE, M., MESETH, J., AND KLEIN, R. 2002. Fast and
Memory Efficient View-Dependent Trimmed NURBS Render-
ing. In Pacific Conference on Computer Graphics and Applica-
tions, 204-213.

IGERY, H. 1999. Tracing ray differentials. In SIGGRAPH *99: Pro-
ceedings of the 26th annual conference on Computer graphics
and interactive techniques, ACM Press/Addison-Wesley Pub-
lishing Co., 179-186.

LISCHINSKI, D., AND GONCZAROWSKI, J. 1990. Improved tech-
niques for ray tracing parametric surfaces. The Visual Computer
6, 3, 134-152.

MARTIN, W., COHEN, E., FIsH, R., AND SHIRLEY, P. 2000.
Practical ray tracing of trimmed NURBS surfaces. J. Graph.
Tools 5, 1, 27-52.

NISHITA, T., SEDERBERG, T. W., AND KAKIMOTO, M. 1990.
Ray tracing trimmed rational surface patches. In SIGGRAPH
’90: Proceedings of the 17th annual conference on Computer
graphics and interactive techniques, ACM Press, 337-345.

PIEGL, L., AND TILLER, W. 1995. The NURBS book. Springer-
Verlag.

QIN, K., GONG, M., YOUJIANG, G., AND WANG, W. 1997. A
new method for speeding up ray tracing NURBS surfaces. Com-
puters & Graphics 21, 5, 577-586.

TotH, D. L. 1985. On ray tracing parametric surfaces. In
SIGGRAPH ’85: Proceedings of the 12th annual conference
on Computer graphics and interactive techniques, ACM Press,
171-179.

WANG, S.-W., SHIH, Z.-C., AND CHANG, R.-C. 2000. An im-
proved rendering technique for ray tracing Bézier and B-spline
surfaces. Journal of Visualization and Computer Animation 11,
4,209-219.

