
FAST ROBUST BSP TREE TRAVERSAL ALGORITHM FOR

RAY TRACING

Vlastimil Havran, Tom�a�s Kopal, Ji�r�� Bittner, Ji�r��

�

Z�ara

Czech Technical University, Faculty of Electrical Engineering

Department of Computer Science and Engineering

Karlovo n�am. 13, 12135 Prague 2, Czech Republic

e-mail: fhavran, kopal, bittner, zarag@fel.cvut.cz

ABSTRACT

An orthogonal BSP (binary space partitioning) tree is a commonly used spatial subdivision data

structure for ray tracing acceleration. While the construction of a BSP tree takes a relatively short

time, the e�ciency of a traversal algorithm signi�cantly in
uences the overall rendering time. We

propose a new fast traversal algorithm based on statistical evaluation of all possible cases occurring

during traversing a BSP tree. More frequent cases are handled simply, while less frequent ones are

more computationally expensive. The proposed traversal algorithm handles all singularities correctly.

The algorithm saves from 30% up to 50% of traversal time comparing with the commonly known

Sung and Arvo algorithms.

Keywords: spatial subdivision, BSP tree, ray tracing, traversal algorithm.

1 INTRODUCTION

Spatial subdivision techniques are well{known meth-

ods used to speed up ray tracing calculations. There

is a variety of schemes for spatial subdivision includ-

ing uniform ones (grids), non{uniform (BSP tree, oc-

tree), and their combinations. The basic introduc-

tion to acceleration techniques is given in [Watt92].

Their more comprehensive classi�cation can be found

in [Glass89]. Generally, the time complexity of the

ray tracing is determined by casting a large amount

of rays. The computation of a �rst object in the

scene, that is hit by a given ray, is known as the

ray{casting problem.

The principle of all spatial subdivision techniques

is the reduction of ray{object intersection compu-

tations by partitioning the scene space into disjunct

cells. The ray{object intersection test is then com-

puted only for cells located along the ray path. Al-

though the number of intersection tests is reduced

signi�cantly, there are additional time requirements

for traversal of spatial subdivision data structures.

One way to reduce the overall time is to improve

spatial data structures, the second method is to im-

prove the traversal algorithm. This paper deals with

the latter approach.

A Binary Space Partitioning (BSP) tree is simple and

powerful data structure that can be used to solve a

variety of geometrical problems. In case of the ray

tracing a BSP tree is often constructed using split-

ting planes perpendicular to principal axes only. It is

advantageous especially when rendered objects with

complex shapes are enclosed by axis{aligned bound-

ing boxes. Moreover, the orthogonality of BSP tree

decreases the number of computations required for

an intersection of a ray and a splitting plane.

2 TRAVERSAL

CLASSIFICATION

When �nding the nearest object pierced by a ray dur-

ing rendering process, a BSP tree is traversed from

the root to the leaves. Corrected sequence of leaves

has to be identi�ed for a given ray origin and direc-

tion. The nearest leaf has to be processed �rst.

The splitting plane subdivides a rectangular cell into

two smaller ones. The test performed during the

traversal has to determine, whether to visit both

nodes and in which order or just one node and which

one.

All possible cases are shown in Fig. 1, classi�ed by

the ray origin and its direction with respect to a given



Figure 1: Classi�cation of mutual positions between a ray and a BSP tree node

splitting plane. Since the splitting plane is oriented,

we can distinguish between negative location of the

origin (below the splitting plane) and the positive lo-

cation (above the plane). These cases are marked as

N and P respectively. Three remaining cases Z show

the situation when the ray origin is embedded in the

splitting plane. For the purpose of the following text,

we call the BSP node representing subvolume below

the splitting plane as a left node. The other is the

right node.

Important geometrical points of the classi�cation

scheme are characterized by their signed distance

measured from the ray origin along the ray direc-

tion. The ray enters the node at the entry point

denoted by signed distance a and exits the node at

the exit point denoted by signed distance b. It is

obvious that a � b. The signed distance from the

ray origin to the splitting plane is denoted as s. The

classi�cation includes all possible mutual relations of

a, b, and s assuming the ray hits the bounding box

of given node.

The classi�cation basically depicts the cases when

ray origins are placed outside the node. Such rays

have external origins. All cases can also incorpo-

rate internal origins located inside the node. Possi-

ble internal origins are distinguished by thin crosses

in Fig. 1. The only exceptions are cases N5 and P5

respectively, which are equivalent to cases P1 and

N1 respectively from the point of view of internal

origins.



3 COMMON TRAVERSAL

ALGORITHM

A commonly used traversal algorithm has been de-

scribed several times in the literature ([Janse85,

Arvo88, Sung92]). We call it TA{A algorithm in this

paper.

The algorithm uses signed distances a; b, and s mea-

sured from the ray origin. The value a is the signed

distance to the entry point, similarly the signed dis-

tance b corresponds to the exit point.

The sequence of comparisons determines which child

node will be processed in the next step. Child nodes

are called near and far in Sung algorithm. The near

node is placed on the same side as the ray origin with

respect to the splitting plane. If s < 0 or s > b, then

only the near node will be visited by the ray (cases

N1; P1 or N3; P3 in Fig. 1).

Otherwise, if s < a (cases N5 and P5), then the ray

hits the far node only. If s is between a and b, the

ray �rst hits the near and then the far node (cases

N4 and P4).

It is interesting that cases Z1 and Z3 are not solved

correctly, because the origin placed in the splitting

plane does not give any hint to distinguish which

node is near and which is far. The problem can

be overcome by additional tests of the ray direction.

Robust implementation has also to solve the cases

N2, P2, and Z2, where the signed distance s cannot

be directly computed. It must be assigned to cer-

tain constant if the division by zero is detected when

computing s.

// a = signed distance from origin to entry point a

// b = signed distance from origin to exit point b

// s = signed distance from origin to splitting plane

// LeftNode = the child node in negative halfspace

// RightNode = the child node in positive halfspace

Pick up a and b from memory

Compute and store s

if (origin in negative halfspace) f // cases N

NearNode = LeftNode

FarNode = RightNode

g

else f // cases P

NearNode = RightNode

FarNode = LeftNode

g

if (s < 0) or (s > b)

Visit NearNode // N1, P1 or N3, P3

else

if (s < a)

Visit FarNode // N5, P5

else

Visit NearNode and FarNode // N4, P4

Algorithm 1: Selection of node(s) in algorithm TA{A

Note, that signed distances a and b used in algo-

rithm TA{A are not recomputed in each traversal

step. They are inherited from parent nodes during

traversing the BSP tree. Actually, the distance s re-

places either a or b for child nodes. A use of a stack

is convenient for storing a and b values.

The C implementation of this algorithm, which is

used as a reference one for the following text, can be

found on the web [GEMS].

4 NEW TRAVERSAL ALGO-

RITHM

In this section we propose a new algorithm TA{B,

which is more e�cient than algorithm TA{A. More-

over, it solves correctly all the cases depicted in

Fig. 1. The algorithm compares coordinates instead

of distances. This is allowed, since the BSP tree is

orthogonal.

Figure 2: Example of traversal case N1

For the explanation, see Fig. 2. It depicts the case

N1. Let us suppose that the splitting plane is per-

pendicular to the x axis. Then x coordinates of

points s; a, and b are su�cient enough to distinguish

among all traversal cases (Fig. 1). The case N1 is

recognized when x

a

� x

s

and x

b

� x

s

.

// a[coord] = proper coordinate of entry point a

// b[coord] = proper coordinate of exit point b

// s = splitting plane o�set

Pick up a[coord], b[coord] and s from memory

if (a[coord] <= s) f

if (b[coord] < s)

Visit LeftNode // N1, N2, N3, P5, Z3

else

if (b[coord] == s)

Visit arbitrary child node // Z2

else f

Compute and store location of "s"

Visit LeftNode and RightNode // N4

g

g

else f /� i.e. (a[coord] > s) �/

if (b[coord] > s)

Visit RightNode // P1, P2, P3, N5, Z1

else f

Compute and store location of "s"

Visit RightNode and LeftNode // P4

g

g



Algorithm 2: Selection of node(s) in algorithm TA{B

The algorithm TA{B needs exactly two comparisons

to �nd certain traversal case. Appropriate coordi-

nates x; y, or z are selected according to orientation

of the given splitting plane. The coordinate s is not

recomputed because it is already stored in the split-

ting plane data.

When both nodes are hit by the ray (cases N4; P4),

complete location of point s has to be computed. It

is the most time consuming part of the algorithm.

Fortunately, coordinates of point s are reused later,

because this point alters to points a and b in child

nodes. This is implemented in the same way by a

stack as in the algorithm TA{A.

The statistical occurrence of individual traversal

cases plays important role in overall e�ciency of

the TA{B algorithm. While the signed distance s

is repeatedly evaluated in each traversal step in al-

gorithm TA{A, new algorithm TA{B has been de-

signed with the aim to process costly computations

only when needed.

5 STATISTICAL POINT OF

VIEW

The idea behind the e�ciency improvement is based

on the statistical analysis. The traversal cases oc-

curring less frequently are dealt with higher constant

time complexity, while the cases occurring more fre-

quently are handled as much as e�ciently.

In terms of algorithm TA{B, the piece of code with

the highest cost belongs to the casesN4 and P4. The

computation of all three coordinates of point s rep-

resents several algebraic operations including multi-

plication and division. In this particular case, the

algorithm TA{B is less e�cient than TA{A, where

the computation of signed distance to the splitting

plane takes lower number of algebraic operations.

The question is how frequent is the situation in which

the ray crosses the splitting plane and visits both

child nodes. The answer can be obtained from the

theoretical analysis based on the surface area heuris-

tics (see [Glass89] or [MacDo90a]). The probability

that a ray of arbitrary direction hits certain object

A (a splitting plane) once it passes through a given

volume B (a node bounding box) is proportional to

the surface areas.

We have derived a formula for conditional probability

regarding cases N4 and P4. It depends on dimen-

sions of the bounding box and positions of splitting

planes inside this box. The worst case occurs, when

all dimensions are the same (the volume is of a cu-

bic shape) and splitting planes are placed just in the

middle of the volume. Then the probability has the-

oretically the highest value 47=180

:

= 26:1 %. The

proof of the formula is out of scope of this paper.

It is important to follow theoretical considerations

by practical measurements. Several experiments

have been performed on the SPD scenes described

in [Haine87]. The BSP trees were built up using sur-

face area heuristics [MacDo90a]. Table 1 shows the

statistics of the traversal cases. The critical casesN4

and P4 are highlighted.

Scene balls tetra mount gears average

N1 + P1 [%] 29.6 18.0 43.4 43.9 33.7

N2 + P2 [%] 0.04 0.0 0.02 0.04 0.03

N3 + P3 [%] 32.8 39.0 29.2 34.5 33.9

N4+P4 [%] 24.4 20.8 20.5 15.8 20.4

N5 + P5 [%] 13.3 22.1 7.0 5.7 12.0

Z1; 2; 3 [%] 0.0 0.0 0.0 0.0 0.0

Table 1: Traversal cases statistics for SPD scenes

Real measurements show that occurrence of casesN4

and P4 is lower than theoretical value 26.1 %. We

see that the only piece of code, where the computa-

tions in algorithm TA{B are of higher cost than in

algorithm TA{A, is performed with reasonably low

probability.

6 RESULTS

We have tested both algorithms discussed above by

measurements performed on the SPD scenes. Ta-

ble 2 shows running times for four selected SPD

scenes. Total running time for the algorithm TA{

A and TA{B is in the �rst and the second line. The

times devoted to the traversal only (not including

the intersection tests with the objects in the scene)

are enumerated in the following lines.

Next two lines show how much the algorithm TA{

B saves time comparing with the algorithm TA{A.

The �fth line expresses saving for traversal part only.

The last line shows total time reduction.

All the experiments were conducted on PC based

computer equipped with Pentium, 166 MHz, running

under Linux operating system.

The results depicted in Table 2 show evident im-

provement achieved by the new algorithm. Time

saving for traversal part of ray tracing is certainly

remarkable, the speedup is about two in average.

The impact to the overall rendering time depends

on the scene geometry and complexity. The range

of possible total time saving is thus quite wide {



Scene balls tetra mount gears

t

total

(TA{A) [sec] 94.21 7.86 122.4 307.7

t

total

(TA{B) [sec] 70.34 6.33 94.26 281.4

t

trav

(TA{A) [sec] 45.58 4.34 52.97 58.52

t

trav

(TA{B) [sec] 21.71 2.81 24.83 32.22

saving (trav.) [%] 52.37 35.25 53.12 44.94

saving (total) [%] 25.34 19.47 22.99 8.54

Table 2: Experimental comparison between TA{A

and TA{B algorithm

from 9 to 25 %.

7 CONCLUSION

In this paper we have described and analyzed a new

algorithm for the orthogonal BSP tree traversal with

theoretically the smallest number of condition oper-

ations. We have shown statistically based method

for improving e�ciency of traversal algorithms. The

costly operations performed in each traversal step

in commonly used Arvo and Sung algorithm have

been left and replaced by combination of simple tests

and one occasionally performed computation with a

higher cost.

Theoretical expectations have been proved by practi-

cal measurements. The speedup reaches from 1.5 up

to 2 depending on the input data. Additionally, the

new algorithm correctly handles all singular cases, in

which the commonly used algorithm can fail.

Acknowledgment

This research was partially supported by Grant

Agency of the Ministry of Education of the Czech

Republic number 1252/1998 and by Internal Grant

Agency of Czech Technical University in Prague

number 309810103.

References

[Arvo88] Arvo, J.: Linear{time voxel walking for

octrees , Ray Tracing News, E{mail edition,

March 26, 1988.

[Glass89] Glassner, A.,S.: An Introduction to Ray

Tracing , Academic Press, London 1989.

[GEMS] http://www.acm.org/tog/GraphicsGems

[Haine87] Haines, E.: A proposal for standard graph-

ics environments. In IEEE Computer Graph-

ics and Applications, Vol. 7, No. 11, pp. 3{5,

1987.

[Janse85] Jansen, F.W.: Data structures for ray

tracing, In book Data Structures for Raster

Graphics , Springer Verlag, 1985.

[MacDo90a] MacDonald, J., D., Booth, K., S.:

Heuristics for ray tracing using space subdi-

vision, The Visual Computer, Vol. 6, No. 3,

pp. 153{166, 1990.

[Sung92] Sung, K., Shirley, P.: Ray Tracing with

BSP Tree, Graphics Gems III , pp. 271{274,

1992.

[Watt92] Watt, A., Watt, M.: Advanced Animation

and Rendering Techniques , ACM{PRESS,

Addison{Wesley, 1992.


